1
|
Mao TH, Huang HQ, Zhang CH. Clinical characteristics and treatment compounds of obesity-related kidney injury. World J Diabetes 2024; 15:1091-1110. [PMID: 38983811 PMCID: PMC11229974 DOI: 10.4239/wjd.v15.i6.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Disorders in energy homeostasis can lead to various metabolic diseases, particularly obesity. The obesity epidemic has led to an increased incidence of obesity-related nephropathy (ORN), a distinct entity characterized by proteinuria, glomerulomegaly, progressive glomerulosclerosis, and renal function decline. Obesity and its associated renal damage are common in clinical practice, and their incidence is increasing and attracting great attention. There is a great need to identify safe and effective therapeutic modalities, and therapeutics using chemical compounds and natural products are receiving increasing attention. However, the summary is lacking about the specific effects and mechanisms of action of compounds in the treatment of ORN. In this review, we summarize the important clinical features and compound treatment strategies for obesity and obesity-induced kidney injury. We also summarize the pathologic and clinical features of ORN as well as its pathogenesis and potential therapeutics targeting renal inflammation, oxidative stress, insulin resistance, fibrosis, kidney lipid accumulation, and dysregulated autophagy. In addition, detailed information on natural and synthetic compounds used for the treatment of obesity-related kidney disease is summarized. The synthesis of detailed information aims to contribute to a deeper understanding of the clinical treatment modalities for obesity-related kidney diseases, fostering the anticipation of novel insights in this domain.
Collapse
Affiliation(s)
- Tuo-Hua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Han-Qi Huang
- Department of Endocrinology, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan 430033, Hubei Province, China
| | - Chuan-Hai Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
2
|
Alvarado-Ojeda ZA, Trejo-Moreno C, Ferat-Osorio E, Méndez-Martínez M, Fragoso G, Rosas-Salgado G. Role of Angiotensin II in Non-Alcoholic Steatosis Development. Arch Med Res 2024; 55:102986. [PMID: 38492325 DOI: 10.1016/j.arcmed.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Fatty liver is a multifactorial disease characterized by excessive accumulation of lipids in hepatocytes (steatosis), insulin resistance, oxidative stress, and inflammation. This disease has a major public health impact because it is the first stage of a chronic and degenerative process in the liver that can lead to steatohepatitis, cirrhosis, and liver cancer. Although this disease is mainly diagnosed in patients with obesity, type 2 diabetes mellitus, and dyslipidemia, recent evidence indicates that vasoactive hormones such as angiotensin II (ANGII) not only promote endothelial dysfunction (ED) and hypertension, but also cause fatty liver, increase adipose tissue, and develop a pro-steatotic environment characterized by a low-grade systemic pro-inflammatory and pro-oxidant state, with elevated blood lipid levels. The role of ANGII in lipid accumulation has been little studied, so this review aims to summarize existing reports on the possible mechanism of action of ANGII in inducing lipid accumulation in hepatocytes.
Collapse
Affiliation(s)
| | - Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico
| | - Eduardo Ferat-Osorio
- División de Investigación en Salud, Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marisol Méndez-Martínez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Rosas-Salgado
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico.
| |
Collapse
|
3
|
Yu H, Song YY, Li XH. Early diabetic kidney disease: Focus on the glycocalyx. World J Diabetes 2023; 14:460-480. [PMID: 37273258 PMCID: PMC10236994 DOI: 10.4239/wjd.v14.i5.460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
The incidence of diabetic kidney disease (DKD) is sharply increasing worldwide. Microalbuminuria is the primary clinical marker used to identify DKD, and its initiating step in diabetes is glomerular endothelial cell dysfunction, particularly glycocalyx impairment. The glycocalyx found on the surface of glomerular endothelial cells, is a dynamic hydrated layer structure composed of pro-teoglycans, glycoproteins, and some adsorbed soluble components. It reinforces the negative charge barrier, transduces the shear stress, and mediates the interaction of blood corpuscles and podocytes with endothelial cells. In the high-glucose environment of diabetes, excessive reactive oxygen species and proinflammatory cytokines can damage the endothelial glycocalyx (EG) both directly and indirectly, which induces the production of microalbuminuria. Further research is required to elucidate the role of the podocyte glycocalyx, which may, together with endothelial cells, form a line of defense against albumin filtration. Interestingly, recent research has confirmed that the negative charge barrier function of the glycocalyx found in the glomerular basement membrane and its repulsion effect on albumin is limited. Therefore, to improve the early diagnosis and treatment of DKD, the potential mechanisms of EG degradation must be analyzed and more responsive and controllable targets must be explored. The content of this review will provide insights for future research.
Collapse
Affiliation(s)
- Hui Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Yun Song
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xian-Hua Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
4
|
Huang Z, Tan Y. The Potential of Cylindromatosis (CYLD) as a Therapeutic Target in Oxidative Stress-Associated Pathologies: A Comprehensive Evaluation. Int J Mol Sci 2023; 24:8368. [PMID: 37176077 PMCID: PMC10179184 DOI: 10.3390/ijms24098368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress (OS) arises as a consequence of an imbalance between the formation of reactive oxygen species (ROS) and the capacity of antioxidant defense mechanisms to neutralize them. Excessive ROS production can lead to the damage of critical biomolecules, such as lipids, proteins, and DNA, ultimately contributing to the onset and progression of a multitude of diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer's disease, and cancer. Cylindromatosis (CYLD), initially identified as a gene linked to familial cylindromatosis, has a well-established and increasingly well-characterized function in tumor inhibition and anti-inflammatory processes. Nevertheless, burgeoning evidence suggests that CYLD, as a conserved deubiquitination enzyme, also plays a pivotal role in various key signaling pathways and is implicated in the pathogenesis of numerous diseases driven by oxidative stress. In this review, we systematically examine the current research on the function and pathogenesis of CYLD in diseases instigated by oxidative stress. Therapeutic interventions targeting CYLD may hold significant promise for the treatment and management of oxidative stress-induced human diseases.
Collapse
Affiliation(s)
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China;
| |
Collapse
|
5
|
Eita MAH, Ashour RH, El‐Khawaga OY. Pentosan polysulfate exerts anti‐inflammatory effect and halts albuminuria progression in diabetic nephropathy: Role of combined losartan. Fundam Clin Pharmacol 2022; 36:801-810. [DOI: 10.1111/fcp.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Mai Abdel Hamid Eita
- Biochemistry Division, Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| | - Rehab Hamdy Ashour
- Clinical Pharmacology Department, Faculty of Medicine Mansoura University Mansoura Egypt
- Pharmacology and Toxicology Department, Al‐Qunfudah Medical College Umm Al‐Qura University Mecca Saudi Arabia
| | - Omali Youssef El‐Khawaga
- Biochemistry Division, Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| |
Collapse
|
6
|
Eid SA, Savelieff MG, Eid AA, Feldman EL. Nox, Nox, Are You There? The Role of NADPH Oxidases in the Peripheral Nervous System. Antioxid Redox Signal 2022; 37:613-630. [PMID: 34861780 PMCID: PMC9634986 DOI: 10.1089/ars.2021.0135] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
Significance: Reactive oxygen species (ROS) contribute to multiple aspects of peripheral nervous system (PNS) biology ranging from physiological processes (e.g., axonal outgrowth and regeneration) to pathophysiology (e.g., nerve degeneration). Although ROS are derived from multiple sources, NADPH oxidase (Nox) family members are dedicated to ROS generation. Noxs are expressed in the PNS, and their overexpression is associated with detrimental effects on nerve function and contributes, at least in part, to peripheral neuropathies. Recent Advances: Of the seven members, studies mostly focused on Nox1, Nox2, and Nox4, which are expressed in the PNS in a cell-specific manner. We have also recently identified human Nox5 in sural nerve biopsies. When maintained at homeostatic levels, Noxs regulate several aspects of peripheral nerve health, most notably neurite outgrowth and axonal regeneration following nerve lesion. While Nox2 and Nox4 dysregulation is a major source of oxidative stress in PNS disorders, including neuropathic pain and diabetic peripheral neuropathy, recent evidence also implicates Nox1 and Nox5. Critical Issues: Although there is compelling evidence for a direct role of Noxs on nerve function, little is known about their subcellular localization, intercellular regulation, and interaction. These, together with redox signaling, are considered crucial components of nerve redox status. In addition, the lack of isoform-specific inhibitors limits conclusions about the physiological role of Noxs in the PNS and their therapeutic potential in peripheral neuropathies. Future Directions: Future research using isoform-specific genetic and pharmacological approaches are therefore needed to better understand the significance of Nox enzymes in PNS (patho) physiology. Antioxid. Redox Signal. 37, 613-630.
Collapse
Affiliation(s)
- Stéphanie A. Eid
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Masha G. Savelieff
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Eva L. Feldman
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Herrera-Ruiz M, Gutiérrez-Nava ZJ, Trejo-Moreno C, Zamilpa A, González-Cortazar M, Jiménez-Aparicio AR, Jiménez-Ferrer E. Agave tequilana Counteracts Chronic Hypertension and Associated Vascular Damage. J Med Food 2022; 25:443-455. [PMID: 35085011 DOI: 10.1089/jmf.2021.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Systemic arterial hypertension (SAH) is a health problem of great importance worldwide, and endothelial dysfunction underlies SAH development. This condition's main characteristics include vasoconstriction, inflammation, oxidative stress, and procoagulant and proliferative states. This study's objective was to evaluate the antihypertensive, anti-inflammatory, and antioxidant effects of the whole extract and fractions of Agave tequilana in a murine model of SAH. SAH was induced in male ICR or CD-1 (Strain obtained from animals from Charles River Laboratories, Massachusetts) mice by intraperitoneal administration of angiotensin II (AGII) (0.1 μg/kg) for 4 weeks, and then A. tequilana treatments were co-administered with AGII. At the end of the experiment, systolic and diastolic blood pressure were measured and the kidneys were dissected to quantify interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha, IL-10, and malondialdehyde (MDA). The whole extract and the fractions of A. tequilana were chemically characterized using gas chromatography-mass spectrometry. The results indicate that the whole extract (At-W) and At-AcOEt fraction treatment are the most efficient in lowering blood pressure, although all the treatments had an immunomodulatory effect on the cytokines evaluated and an antioxidant effect on lipid peroxidation. Finally, the chromatographic profile shows that the integral extract and fractions of A. tequilana contained phytol (M)3,7,11,15-Tetramethyl-2-hexadecen-1-ol; 9,12-octadecadienoic acid; hentriacontane; 9,19-cyclolanost-24-en-3-ol,(3b); t-sitosterol; and stigmasta-3,5-dien-7-one.
Collapse
Affiliation(s)
- Maribel Herrera-Ruiz
- Southern Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| | | | - Celeste Trejo-Moreno
- Southern Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico.,Postgraduate in Experimental Biology, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Alejandro Zamilpa
- Southern Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| | - Manasés González-Cortazar
- Southern Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| | | | - Enrique Jiménez-Ferrer
- Southern Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| |
Collapse
|
8
|
Chen YY, Hong H, Lei YT, Zou J, Yang YY, He LY. IκB kinase promotes Nrf2 ubiquitination and degradation by phosphorylating cylindromatosis, aggravating oxidative stress injury in obesity-related nephropathy. Mol Med 2021; 27:137. [PMID: 34711178 PMCID: PMC8555227 DOI: 10.1186/s10020-021-00398-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/12/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Obesity-related nephropathy (ORN) has become one of the leading causes of end-stage renal disease and has tripled over the past decade. Previous studies have demonstrated that decreased reactive oxygen species production may contribute to improving ORN by ameliorating oxidative stress injury. Here, IκB kinase (IKK) was hypothesized to inactivate the deubiquitination activity of cylindromatosis (CYLD) by activating the phosphorylation of CYLD, thus promoting the ubiquitination of NF-E2-related factor 2 (Nrf2) and further aggravating oxidative stress injury of the kidney in ORN. This study was aimed to confirm this hypothesis. METHODS Haematoxylin and eosin (HE), periodic acid-Schiff (PAS) and Oil Red O staining were performed to assess histopathology. Dihydroethidium (DHE) staining and MDA, SOD, CAT, and GSH-PX assessments were performed to measure reactive oxygen species (ROS) production. Immunohistochemical (IHC) staining, qRT-PCR and/or western blotting were performed to assess the expression of related genes. JC-1 assays were used to measure the mitochondrial membrane potential (ΔΨm) of treated HK-2 cells. Co-immunoprecipitation experiments (Co-IP) were used to analyse the interaction between CYLD and Nrf2 in ORN. RESULTS ORN in vivo and in vitro models were successfully constructed, and oxidative stress injury was detected in the model tissues and cells. Compared with the control groups, the phosphorylation level of CYLD increased while Nrf2 levels decreased in ORN model cells. An IKK inhibitor reduced lipid deposition, ROS production, CYLD phosphorylation levels and ΔΨm in vitro, which were reversed by knockdown of CYLD. Nrf2 directly bound to CYLD and was ubiquitinated in ORN cells. The proteasome inhibitor MG132 activated the Nrf2/ARE signalling pathway, thereby reversing the promoting effect of CYLD knockdown on oxidative stress. CONCLUSION IKK inactivates the deubiquitination activity of CYLD by activating the phosphorylation of CYLD, thus promoting the ubiquitination of Nrf2 and further aggravating oxidative stress injury of the kidney in ORN. This observation provided a feasible basis for the treatment of kidney damage caused by ORN.
Collapse
Affiliation(s)
- Yin-Yin Chen
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, Hunan, People's Republic of China
- Changsha Clinical Research Center for Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
| | - Han Hong
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, Hunan, People's Republic of China
- Changsha Clinical Research Center for Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
| | - Yu-Ting Lei
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, Hunan, People's Republic of China
- Changsha Clinical Research Center for Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
| | - Jia Zou
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, Hunan, People's Republic of China
- Changsha Clinical Research Center for Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
| | - Yi-Ya Yang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, Hunan, People's Republic of China
- Changsha Clinical Research Center for Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, 410000, Hunan, People's Republic of China
| | - Li-Yu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, No. 139 people's Middle Road, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
9
|
Vincent JL, Ince C, Pickkers P. Endothelial dysfunction: a therapeutic target in bacterial sepsis? Expert Opin Ther Targets 2021; 25:733-748. [PMID: 34602020 DOI: 10.1080/14728222.2021.1988928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Endothelial cells maintain vascular integrity, tone, and patency and have important roles in hemostasis and inflammatory responses. Although some degree of endothelial dysfunction with increased vascular permeability may be necessary to control local infection, excessive dysfunction plays a central role in the pathogenesis of sepsis-related organ dysfunction and failure as it results in dysregulated inflammation, vascular leakage, and abnormal coagulation. The vascular endothelium has thus been proposed as a potential target for therapeutic intervention in patients with sepsis. AREAS COVERED Different mechanisms underlying sepsis-related dysfunction of the vascular endothelium are discussed, including glycocalyx shedding, nitrosative stress, and coagulation factors. Potential therapeutic implications of each mechanism are mentioned. EXPERT OPINION Multiple targets to protect or restore endothelial function have been suggested, but endothelium-driven treatments remain a future potential at present. As some endothelial dysfunction and permeability may be necessary to remove infection and repair damaged tissue, targeting the endothelium may be a particular challenge. Ideally, therapies should be guided by biomarkers related to that specific pathway to ensure they are given only to patients most likely to respond. This enrichment based on biological plausibility and theragnostics will increase the likelihood of a beneficial response in individual patients and enable more personalized treatment.
Collapse
Affiliation(s)
- Jean-Louis Vincent
- Dept of Intensive Care, Erasme Hospital, Université Libre De Bruxelles, Brussels, Belgium
| | - Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Peter Pickkers
- Dept of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Samadi M, Aziz SGG, Naderi R. The effect of tropisetron on oxidative stress, SIRT1, FOXO3a, and claudin-1 in the renal tissue of STZ-induced diabetic rats. Cell Stress Chaperones 2021; 26:217-227. [PMID: 33047279 PMCID: PMC7736377 DOI: 10.1007/s12192-020-01170-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022] Open
Abstract
Tropisetron is a 5-HT3 receptor antagonist that exerts protective effect against DN. The aim of this study was to investigate the possible molecular mechanisms associated with the renoprotective effects of tropisetron in STZ-induced diabetic rats. Animals were subdivided into 5 equal groups; control, tropisetron, diabetes, tropisetron + diabetes, and glibenclamide + diabetes (n = 7). For induction of type 1 diabetes, a single injection of STZ (55 mg/kg, i.p.) was administered to the animals. Diabetic rats were treated with tropisetron (3 mg/kg) and glibenclamide (1 mg/kg) for 2 weeks. According to the conducted analysis, diabetes led to renal dysfunction (reduction in glomerular filtration rate and urine urea and creatinine as well as elevation in plasma urea and creatinine) and abnormalities in antioxidant defense system (reduction in TAC and elevation in MDA), compared with the control group, which was prevented by tropisetron treatment. Reverse transcription-quantitative polymerase chain reaction and western blotting analysis demonstrated that SIRT1 gene expression decreased while FOXO3a and NF-κB gene expression as well as phosphorylated FOXO3a/total FOXO3a protein ratios and claudin-1 protein level increased in the kidney of diabetic rats compared with the control group. Herein, the results of this research showed that tropisetron treatment reversed these changes. Besides, all these changes were comparable with those produced by glibenclamide as a positive control. Hence, tropisetron ameliorated renal damage due to diabetic nephropathy possibly by suppressing oxidative stress and alteration of SIRT1, FOXO3a, and claudin-1 levels.
Collapse
Affiliation(s)
- Mahrokh Samadi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
11
|
Lassén E, Daehn IS. Molecular Mechanisms in Early Diabetic Kidney Disease: Glomerular Endothelial Cell Dysfunction. Int J Mol Sci 2020; 21:ijms21249456. [PMID: 33322614 PMCID: PMC7764016 DOI: 10.3390/ijms21249456] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), with prevalence increasing at an alarming rate worldwide and today, there are no known cures. The pathogenesis of DKD is complex, influenced by genetics and the environment. However, the underlying molecular mechanisms that contribute to DKD risk in about one-third of diabetics are still poorly understood. The early stage of DKD is characterized by glomerular hyperfiltration, hypertrophy, podocyte injury and depletion. Recent evidence of glomerular endothelial cell injury at the early stage of DKD has been suggested to be critical in the pathological process and has highlighted the importance of glomerular intercellular crosstalk. A potential mechanism may include reactive oxygen species (ROS), which play a direct role in diabetes and its complications. In this review, we discuss different cellular sources of ROS in diabetes and a new emerging paradigm of endothelial cell dysfunction as a key event in the pathogenesis of DKD.
Collapse
|
12
|
Li W, Zhang D, Yuan W, Wang C, Huang Q, Luo J. Humanin Ameliorates Free Fatty Acid-Induced Endothelial Inflammation by Suppressing the NLRP3 Inflammasome. ACS OMEGA 2020; 5:22039-22045. [PMID: 32923762 PMCID: PMC7482084 DOI: 10.1021/acsomega.0c01778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/13/2020] [Indexed: 05/10/2023]
Abstract
Cardiovascular disease (CVD) has been considered as a major risk factor of death in recent decades. In CVDs, the NLRP3 inflammasome is important for inflammatory response and vascular damage. Therefore, safe and effective treatments to decrease NLRP3 inflammasome activation are required. Increased levels of free fatty acid (FFA) have been associated with the progression of CVD. Humanin, a kind of mitochondrial-derived peptide, has shown its beneficial effects in different types of cells. However, the roles of humanin in the NLRP3 inflammasome induced by FFA are still unknown. Here, we investigated the molecular mechanisms whereby humanin was found to exert protective effects in human aortic endothelial cells (HAECs) against FFA-caused endothelial injury. Here, treatment with humanin inhibited FFA-induced lactate dehydrogenase release, thereby demonstrating a protective capacity against cell death. Humanin also suppressed oxidative stress by downregulating the expression of reactive oxygen species and NOX2. Notably, humanin reduced NLRP3 and p10 and rescued FFA-induced dysfunction of adenosine monophosphate-activated protein kinase. Consequently, humanin inhibited the expression of IL-1β and IL-18. These results conclude that humanin might be a promising therapeutic agent for CVD.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Luo
- . Phone: +86-19979702109. Fax: +86-797-5889810
| |
Collapse
|
13
|
Horton WB, Jahn LA, Hartline LM, Aylor KW, Patrie JT, Barrett EJ. Hyperglycemia does not Inhibit Insulin's Effects on Microvascular Perfusion in Healthy Humans: A Randomized Crossover Study. Am J Physiol Endocrinol Metab 2020; 319:E753-E762. [PMID: 32830553 DOI: 10.1152/ajpendo.00300.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus accelerates vascular disease through multiple biochemical pathways driven by hyperglycemia, with insulin resistance and/or hyperinsulinemia also contributing. Persons with diabetes mellitus experience premature large vessel and microvascular disease when compared to normoglycemic controls. Currently there is a paucity of clinical data identifying how acutely the vasculature responds to hyperglycemia and whether other physiologic factors (e.g., vasoactive hormones) contribute. To our knowledge, no prior studies have examined the dynamic effects of acute hyperglycemia on insulin-mediated actions on both micro- and macrovascular function in the same subjects. In this randomized crossover trial, healthy young adults underwent two infusion protocols designed to compare the effects of insulin infusion during euglycemia and hyperglycemia on micro- and macrovascular function. Both euglycemic- and hyperglycemic-hyperinsulinemia increased skeletal (but not cardiac) muscle microvascular blood volume (each p<0.02) and blood flow significantly (each p<0.04), and these increases did not differ between protocols. Hyperglycemic-hyperinsulinemia trended towards increased carotid-femoral pulse wave velocity (indicating increased aortic stiffness; p= 0.065 after Bonferroni adjustment), while euglycemic-hyperinsulinemia did not. There were no changes in post-ischemic flow velocity or brachial artery flow-mediated dilation during either protocol. Plasma endothelin-1 levels significantly decreased during both protocols (each p<0.02). In this study, acute hyperglycemia for 4 hours did not inhibit insulin's ability to increase skeletal muscle microvascular perfusion but did provoke a slight increase in aortic stiffness. Hyperglycemia also did not adversely affect myocardial microvascular perfusion or endothelial function or prevent the decline of endothelin-1 during insulin infusion.
Collapse
Affiliation(s)
| | - Linda A Jahn
- endocrinology, University of Virginia, United States
| | | | - Kevin W Aylor
- Division of Endocrinology, Department of Medicine, Department of Pharmacology , University of Virginia, School of Medicine, Charlottesville, VA 22908; Department of Molecular and Clinical Medicine (
| | - James T Patrie
- Public Health Sciences, University of Virginia Medical Center, United States
| | - Eugene J Barrett
- Division of Endocrinology, Department of Medicine, Department of Pharmacology , University of Virginia, School of Medicine, Charlottesville, VA 22908; Department of Molecular and Clinical Medicine (, United States
| |
Collapse
|
14
|
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
|
15
|
Endothelial Toxicity of High Glucose and its by-Products in Diabetic Kidney Disease. Toxins (Basel) 2019; 11:toxins11100578. [PMID: 31590361 PMCID: PMC6833015 DOI: 10.3390/toxins11100578] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Alterations of renal endothelial cells play a crucial role in the initiation and progression of diabetic kidney disease. High glucose per se, as well as glucose by-products, induce endothelial dysfunction in both large vessels and the microvasculature. Toxic glucose by-products include advanced glycation end products (AGEs), a group of modified proteins and/or lipids that become glycated after exposure to sugars, and glucose metabolites produced via the polyol pathway. These glucose-related endothelio-toxins notably induce an alteration of the glomerular filtration barrier by increasing the permeability of glomerular endothelial cells, altering endothelial glycocalyx, and finally, inducing endothelial cell apoptosis. The glomerular endothelial dysfunction results in albuminuria. In addition, high glucose and by-products impair the endothelial repair capacities by reducing the number and function of endothelial progenitor cells. In this review, we summarize the mechanisms of renal endothelial toxicity of high glucose/glucose by-products, which encompass changes in synthesis of growth factors like TGF-β and VEGF, induction of oxidative stress and inflammation, and reduction of NO bioavailability. We finally present potential therapies to reduce endothelial dysfunction in diabetic kidney disease.
Collapse
|
16
|
Qi Y, Du X, Yao X, Zhao Y. Vildagliptin inhibits high free fatty acid (FFA)-induced NLRP3 inflammasome activation in endothelial cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1067-1074. [PMID: 30945564 DOI: 10.1080/21691401.2019.1578783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Elevated free fatty acids (FFAs) are a risk factor for type 2 diabetes. Endothelial dysfunction induced by high levels of FFAs is one of the mechanisms related to the progression of diabetes. In clinical diabetes care, DPP-4 inhibitors have been shown to be effective in reducing glucose levels. In this study, we investigated the molecular mechanism of the clinically available DPP-4 inhibitor vildagliptin in the protection of FFA-induced endothelial dysfunction. Treatment of endothelial cells with vildagliptin inhibits FFA-induced cellular LDH release and generation of ROS. Vildagliptin also reverses FFA-induced reduced levels of GSH and elevated expression of the FFA-associated NAPHD oxidase protein NOX-4. Moreover, vildagliptin ameliorates the reduction in mitochondrial potential triggered by FFAs. Mechanistically, we show that vildagliptin suppresses FFA-induced expression of proteins of the NLRP3 inflammasome complex, including NLRP3, ASC, p20 and HMGB-1, and mitigates FFA-induced inactivation of the AMPK pathway. Consequently, vildagliptin inhibits production of two cytokines that are favored by NLRP3 inflammasome machinery: IL-1β and IL-18. Finally, we demonstrate that vildagliptin ameliorates FFA-induced reduced eNOS, indicating its protective role against endothelial dysfunction. Collectively, we conclude that the protective role of vildagliptin in endothelial cells is mediated via suppression of the AMPK-NLRP3 inflammasome-HMGB-1 axis pathway. These findings imply that the anti-diabetic drug vildagliptin possesses dual therapeutic applications in lowering glucose and improving vascular function.
Collapse
Affiliation(s)
- Yanyan Qi
- a Department of Anesthesiology , Henan Province People's Hospital , Zhengzhou , Henan , China
| | - Xianhui Du
- a Department of Anesthesiology , Henan Province People's Hospital , Zhengzhou , Henan , China
| | - Xiangyan Yao
- a Department of Anesthesiology , Henan Province People's Hospital , Zhengzhou , Henan , China
| | - Yuanyuan Zhao
- b Department of Cardiology , Qilu Hospital of Shandong University , Qingdao , Shandong , China
| |
Collapse
|
17
|
Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot PA, Kaplanski G, Le Quintrec M, Pernin V, Rigothier C, Sallée M, Fremeaux-Bacchi V, Guerrot D, Roumenina LT. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 2019. [PMID: 30607032 DOI: 10.1038/s4158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
Affiliation(s)
- Noemie Jourde-Chiche
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France.
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France.
| | - Fadi Fakhouri
- Centre de Recherche en Transplantation et Immunologie, INSERM, Université de Nantes and Department of Nephrology, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Laetitia Dou
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Jeremy Bellien
- Department of Pharmacology, Rouen University Hospital and INSERM, Normandy University, Université de Rouen Normandie, Rouen, France
| | - Stéphane Burtey
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Marie Frimat
- Université de Lille, INSERM, Centre Hospitalier Universitaire de Lille, U995, Lille Inflammation Research International Center (LIRIC), Lille, France
- Nephrology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Pierre-André Jarrot
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Gilles Kaplanski
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Moglie Le Quintrec
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Vincent Pernin
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Claire Rigothier
- Tissue Bioengineering, Université de Bordeaux, Bordeaux, France
- Service de Néphrologie Transplantation, Dialyse et Aphérèse, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marion Sallée
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Dominique Guerrot
- Normandie Université, Université de Rouen Normandie, Rouen University Hospital, Department of Nephrology, Rouen, France
| | - Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.
- Sorbonne Universités, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
18
|
Trejo-Moreno C, Castro-Martínez G, Méndez-Martínez M, Jiménez-Ferrer JE, Pedraza-Chaverri J, Arrellín G, Zamilpa A, Medina-Campos ON, Lombardo-Earl G, Barrita-Cruz GJ, Hernández B, Ramírez CC, Santana MA, Fragoso G, Rosas G. Acetone fraction from Sechium edule (Jacq.) S.w. edible roots exhibits anti-endothelial dysfunction activity. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:75-86. [PMID: 29501845 DOI: 10.1016/j.jep.2018.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A recent ethnomedical survey on medicinal plants grown in Mexico revealed that Sechium edule (Jacq.) Sw. (Cucurbitaceae) is one of the most valued plant species to treat cardiovascular diseases, including hypertension. Fruits, young leaves, buds, stems, and tuberous roots of the plant are edible. Considering that endothelial dysfunction induced by Angiotensin II plays an important role in the pathogenesis of hypertension and is accompanied by a prooxidative condition, which in turn induces an inflammatory state, vascular remodeling, and tissue damage, and that S. edule has been reported to possess antioxidant, anti-inflammatory and antihypertensive activity, its capability to control endothelial dysfunction was also assessed. AIM OF THE STUDY To assess in vivo the anti-endothelial dysfunction activity of the acetone fraction (rSe-ACE) of the hydroalcoholic extract from S. edule roots. MATERIALS AND METHODS Endothelial dysfunction was induced in female C57BL/6 J mice by a daily intraperitoneal injection of angiotensin II for 10 weeks. Either rSe-ACE or losartan (as a control) were co-administered with angiotensin II for the same period. Blood pressure was measured at weeks 0, 5, and 10. Kidney extracts were prepared to determine IL1β, IL4, IL6, IL10, IL17, IFNγ, TNFα, and TGFβ levels by ELISA, along with the prooxidative status as assessed by the activity of antioxidant enzymes. The expression of ICAM-1 was evaluated by immunohistochemistry in kidney histological sections. Kidney and hepatic damage, as well as vascular tissue remodeling, were studied. RESULTS The rSe-ACE fraction administered at a dose of 10 mg/kg was able to control hypertension, as well as the prooxidative and proinflammatory status in kidney as efficiently as losartan, returning mice to normotensive levels. Additionally, the fraction was more efficient than losartan to prevent liver and kidney damage. Phytochemical characterization identified cinnamic acid as a major compound, and linoleic, palmitic, and myristic acids as the most abundant non-polar components in the mixture, previously reported to aid in the control of hypertension, inflammation, and oxidative stress, three important components of endothelial dysfunction. IN CONCLUSION this study demonstrated that rSe-ACE has anti-endothelial dysfunction activity in an experimental model and highlights the role of cinnamic acid and fatty acids in the observed effects.
Collapse
Affiliation(s)
- Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - Gabriela Castro-Martínez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - Marisol Méndez-Martínez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - Jesús Enrique Jiménez-Ferrer
- Laboratorio de Farmacología, Centro de Investigaciones Biomédicas del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos CP 62790, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México CP 04510, Mexico
| | - Gerardo Arrellín
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico; Facultad de Ciencias de la Salud, Universidad Panamericana, Ciudad de México CP 03920, Mexico
| | - Alejandro Zamilpa
- Laboratorio de Farmacología, Centro de Investigaciones Biomédicas del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos CP 62790, Mexico
| | - Omar Noel Medina-Campos
- Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México CP 04510, Mexico
| | - Galia Lombardo-Earl
- Laboratorio de Farmacología, Centro de Investigaciones Biomédicas del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos CP 62790, Mexico
| | - Gerardo Joel Barrita-Cruz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - Beatriz Hernández
- Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México CP 04510, Mexico
| | - Christian Carlos Ramírez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico
| | - María Angélica Santana
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca, Morelos CP 62209, Mexico
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México CP 04510, Mexico
| | - Gabriela Rosas
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62350, Mexico.
| |
Collapse
|
19
|
Sultan CS, Saackel A, Stank A, Fleming T, Fedorova M, Hoffmann R, Wade RC, Hecker M, Wagner AH. Impact of carbonylation on glutathione peroxidase-1 activity in human hyperglycemic endothelial cells. Redox Biol 2018; 16:113-122. [PMID: 29499564 PMCID: PMC5952877 DOI: 10.1016/j.redox.2018.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Abstract
AIMS High levels of glucose and reactive carbonyl intermediates of its degradation pathway such as methylglyoxal (MG) may contribute to diabetic complications partly via increased generation of reactive oxygen species (ROS). This study focused on glutathione peroxidase-1 (GPx1) expression and the impact of carbonylation as an oxidative protein modification on GPx1 abundance and activity in human umbilical vein endothelial cells (HUVEC) under conditions of mild to moderate oxidative stress. RESULTS High extracellular glucose and MG enhanced intracellular ROS formation in HUVECs. Protein carbonylation was only transiently augmented pointing to an effective antioxidant defense in these cells. Nitric oxide synthase expression was decreased under hyperglycemic conditions but increased upon exposure to MG, whereas superoxide dismutase expression was not significantly affected. Increased glutathione peroxidase (GPx) activity seemed to compensate for a decrease in GPx1 protein due to enhanced degradation via the proteasome. Mass spectrometry analysis identified Lys-114 as a possible carbonylation target which provides a vestibule for the substrate H2O2 and thus enhances the enzymatic reaction. INNOVATION Oxidative protein carbonylation has so far been associated with functional inactivation of modified target proteins mainly contributing to aging and age-related diseases. Here, we demonstrate that mild oxidative stress and subsequent carbonylation seem to activate protective cellular redox signaling pathways whereas severe oxidative stress overwhelms the cellular antioxidant defense leading to cell damage. CONCLUSIONS This study may contribute to a better understanding of redox homeostasis and its role in the development of diabetes and related vascular complications.
Collapse
Affiliation(s)
- Cheryl S Sultan
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany
| | - Andrea Saackel
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany
| | - Antonia Stank
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany; Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Heidelberg D-69120, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg D-69120, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig D-04103, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig D-04103, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg D-69120, Germany; Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg D-69120, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany.
| |
Collapse
|
20
|
Trejo-Moreno C, Méndez-Martínez M, Zamilpa A, Jiménez-Ferrer E, Perez-Garcia MD, Medina-Campos ON, Pedraza-Chaverri J, Santana MA, Esquivel-Guadarrama FR, Castillo A, Cervantes-Torres J, Fragoso G, Rosas-Salgado G. Cucumis sativus Aqueous Fraction Inhibits Angiotensin II-Induced Inflammation and Oxidative Stress In Vitro. Nutrients 2018; 10:nu10030276. [PMID: 29495578 PMCID: PMC5872694 DOI: 10.3390/nu10030276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/15/2018] [Accepted: 02/25/2018] [Indexed: 01/05/2023] Open
Abstract
Inflammation and oxidative stress play major roles in endothelial dysfunction, and are key factors in the progression of cardiovascular diseases. The aim of this study was to evaluate in vitro the effect of three subfractions (SFs) from the Cucumis sativus aqueous fraction to reduce inflammatory factors and oxidative stress induced by angiotensin II (Ang II) in human microvascular endothelial cells-1 (HMEC-1) cells. The cells were cultured with different concentrations of Ang II and 0.08 or 10 μg/mL of SF1, SF2, or SF3, or 10 μmol of losartan as a control. IL-6 (Interleukin 6) concentration was quantified. To identify the most effective SF combinations, HMEC-1 cells were cultured as described above in the presence of four combinations of SF1 and SF3. Then, the effects of the most effective combination on the expression of adhesion molecules, the production of reactive oxygen species (ROS), and the bioavailability of nitric oxide (NO) were evaluated. Finally, a mass spectrometry analysis was performed. Both SF1 and SF3 subfractions decreased the induction of IL-6 by Ang II, and C4 (SF1 and SF3, 10 μg/mL each) was the most effective combination to inhibit the production of IL-6. Additionally, C4 prevented the expression of adhesion molecules, reduced the production of ROS, and increased the bioavailability of NO. Glycine, arginine, asparagine, lysine, and aspartic acid were the main components of both subfractions. These results demonstrate that C4 has anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Celeste Trejo-Moreno
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico.
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Leñeros S/N, Cuernavaca, Morelos CP 62350, Mexico.
| | - Marisol Méndez-Martínez
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico.
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Leñeros S/N, Cuernavaca, Morelos CP 62350, Mexico.
| | - Alejandro Zamilpa
- Laboratorio de Farmacología, Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Republica de Argentina 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Enrique Jiménez-Ferrer
- Laboratorio de Farmacología, Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Republica de Argentina 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Maria Dolores Perez-Garcia
- Laboratorio de Farmacología, Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Republica de Argentina 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Omar N Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, Mexico City CP 04510, Mexico.
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, Mexico City CP 04510, Mexico.
| | - María Angélica Santana
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico.
| | | | - Aida Castillo
- Departamento de Fisiología Biofísica y Neurociencias del Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV del IPN), Mexico City CP 07360, Mexico.
| | - Jacquelynne Cervantes-Torres
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City CP 04510, Mexico.
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City CP 04510, Mexico.
| | - Gabriela Rosas-Salgado
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Leñeros S/N, Cuernavaca, Morelos CP 62350, Mexico.
| |
Collapse
|
21
|
Paeng J, Park J, Um JE, Nam BY, Kang HY, Kim S, Oh HJ, Park JT, Han SH, Ryu DR, Yoo TH, Kang SW. The locally activated renin-angiotensin system is involved in albumin permeability in glomerular endothelial cells under high glucose conditions. Nephrol Dial Transplant 2017; 32:61-72. [PMID: 27358275 DOI: 10.1093/ndt/gfw089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/16/2016] [Indexed: 01/08/2023] Open
Abstract
Background Although the diabetic milieu per se , hemodynamic changes, oxidative stress and local growth factors such as angiotensin II (AII) are considered to be mediators in the pathogenesis of diabetic nephropathy, the underlying pathways mediating the changes in glomerular endothelial cells (GECs) are not well understood. Therefore, we investigated changes in the renin-angiotensin system (RAS) components in high glucose (HG)-stimulated GECs and the role of the local RAS in morphological and functional changes in GECs under diabetic conditions. Methods We stimulated GECs with 5.6 mM glucose or 30 mM glucose with or without an angiotensin II type I receptor blocker (ARB) in vitro and also performed experiments with Sprague-Dawley rats injected with diluent ( n = 16) or streptozotocin [ n = 16, diabetes (DM)]. Eight rats from each group were treated with ARB for 3 months in vivo . Real-time polymerase chain reaction, western blot analysis, enzyme-linked immunosorbent assay and immunofluorescent staining using cultured GECs were performed. The permeability of GECs to macromolecules was assessed by measuring the passage of fluorescein isothiocyanate-labeled bovine serum albumin. Morphological changes were also evaluated by scanning and transmission electron microscopy. Results There were significant increases in angiotensinogen expression in HG-stimulated GECs along with significant increases in AI and AII levels. Moreover, the expression of heparan sulfate glycosaminoglycans (HS-GAG) assessed by immunofluorescent staining was significantly lower and the permeability to albumin was significantly higher in GECs exposed to HG medium, and ARB treatment significantly abrogated these changes. Upon electron microscopy examination, the mean size of the GEC fenestrae was significantly greater in HG-stimulated GECs and DM rats, and these increases were significantly ameliorated by ARB. Conclusions The local RAS within GECs was activated under HG conditions, and this activation may be associated with both an alteration in GEC fenestration and a decrease in HS-GAG, resulting in the development of albuminuria in diabetic nephropathy.
Collapse
Affiliation(s)
- Jisun Paeng
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Korea
| | - Jimin Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Korea
| | - Jae Eun Um
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Korea
| | - Hye-Young Kang
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Korea
| | - Seonghun Kim
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Korea
| | - Hyung Jung Oh
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Korea
| | - Dong-Ryeol Ryu
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Korea
| |
Collapse
|
22
|
Gonzalez AA, Salinas-Parra N, Leach D, Navar LG, Prieto MC. PGE 2 upregulates renin through E-prostanoid receptor 1 via PKC/cAMP/CREB pathway in M-1 cells. Am J Physiol Renal Physiol 2017; 313:F1038-F1049. [PMID: 28701311 DOI: 10.1152/ajprenal.00194.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
During the early phase of ANG II-dependent hypertension, tubular PGE2 is increased. Renin synthesis and secretion in the collecting duct (CD) are upregulated by ANG II, contributing to further intratubular ANG II formation. However, what happens first and whether the triggering mechanism is independent of tubular ANG II remain unknown. PGE2 stimulates renin synthesis in juxtaglomerular cells via E-prostanoid (EP) receptors through the cAMP/cAMP-responsive element-binding (CREB) pathway. EP receptors are also expressed in the CD. Here, we tested the hypothesis that renin is upregulated by PGE2 in CD cells. The M-1 CD cell line expressed EP1, EP3, and EP4 but not EP2. Dose-response experiments, in the presence of ANG II type 1 receptor blockade with candesartan, demonstrated that 10-6 M PGE2 maximally increases renin mRNA (approximately 4-fold) and prorenin/renin protein levels (approximately 2-fold). This response was prevented by micromolar doses of SC-19220 (EP1 antagonist), attenuated by the EP4 antagonist, L-161982, and exacerbated by the highly selective EP3 antagonist, L-798106 (~10-fold increase). To evaluate further the signaling pathway involved, we used the PKC inhibitor calphostin C and transfections with PKCα dominant negative. Both strategies blunted the PGE2-induced increases in cAMP levels, CREB phosphorylation, and augmentation of renin. Knockdown of the EP1 receptor and CREB also prevented renin upregulation. These results indicate that PGE2 increases CD renin expression through the EP1 receptor via the PKC/cAMP/CREB pathway. Therefore, we conclude that during the early stages of ANG II-dependent hypertension, there is augmentation of PGE2 that stimulates renin in the CD, resulting in increased tubular ANG II formation and further stimulation of renin.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile;
| | - Nicolas Salinas-Parra
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Dan Leach
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and
| | - L Gabriel Navar
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
23
|
da Silva Cristino Cordeiro V, de Bem GF, da Costa CA, Santos IB, de Carvalho LCRM, Ognibene DT, da Rocha APM, de Carvalho JJ, de Moura RS, Resende AC. Euterpe oleracea Mart. seed extract protects against renal injury in diabetic and spontaneously hypertensive rats: role of inflammation and oxidative stress. Eur J Nutr 2017; 57:817-832. [PMID: 28105508 DOI: 10.1007/s00394-016-1371-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 12/21/2016] [Indexed: 01/10/2023]
Abstract
PURPOSE Euterpe oleracea Mart. (açaí) seed extract (ASE), through its anti-hypertensive, antioxidant and anti-inflammatory properties, may be useful to treat or prevent human diseases. Several evidences suggest that oxidative stress and inflammation contribute to the pathogenesis of diabetic nephropathy; therefore, we tested the hypothesis that ASE (200 mg/kg-1day-1) prevents diabetes and hypertension-related oxidative stress and inflammation, attenuating renal injury. METHODS Male rats with streptozotocin (STZ)-induced diabetes (D), and spontaneously hypertensive rats with STZ-induced diabetes (DH) were treated daily with tap water or ASE (D + ASE and DH + ASE, respectively) for 45 days. The control (C) and hypertensive (H) animals received water. RESULTS The elevated serum levels of urea and creatinine in D and DH, and increased albumin excretion in HD were reduced by ASE. Total glomeruli number in D and DH, were increased by ASE that also reduced renal fibrosis in both groups by decreasing collagen IV and TGF-β1 expression. ASE improved biomarkers of renal filtration barrier (podocin and nephrin) in D and DH groups and prevented the increased expression of caspase-3, IL-6, TNF-α and MCP-1 in both groups. ASE reduced oxidative damage markers (TBARS, carbonyl levels and 8-isoprostane) in D and DH associated with a decrease in Nox 4 and p47 subunit expression and increase in antioxidant enzyme activity in both groups (SOD, catalase and GPx). CONCLUSION ASE substantially reduced renal injury and prevented renal dysfunction by reducing inflammation, oxidative stress and improving the renal filtration barrier, providing a nutritional resource for prevention of diabetic and hypertensive-related nephropathy.
Collapse
Affiliation(s)
- Viviane da Silva Cristino Cordeiro
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro, nº 87, Rio de Janeiro, CEP 20551-030, Brazil
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro, nº 87, Rio de Janeiro, CEP 20551-030, Brazil
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro, nº 87, Rio de Janeiro, CEP 20551-030, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro, nº 87, Rio de Janeiro, CEP 20551-030, Brazil
| | - Lenize Costa Reis Marins de Carvalho
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro, nº 87, Rio de Janeiro, CEP 20551-030, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro, nº 87, Rio de Janeiro, CEP 20551-030, Brazil
| | - Ana Paula Machado da Rocha
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro, nº 87, Rio de Janeiro, CEP 20551-030, Brazil
| | - Jorge José de Carvalho
- Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro, nº 87, Rio de Janeiro, CEP 20551-030, Brazil
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro, nº 87, Rio de Janeiro, CEP 20551-030, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Av 28 de Setembro, nº 87, Rio de Janeiro, CEP 20551-030, Brazil.
| |
Collapse
|
24
|
Hsu CC, Chang YK, Hsu YH, Lo YR, Liu JS, Hsiung CA, Tsai HJ. Association of Nonsteroidal Anti-inflammatory Drug Use With Stroke Among Dialysis Patients. Kidney Int Rep 2017; 2:400-409. [PMID: 29142967 PMCID: PMC5678629 DOI: 10.1016/j.ekir.2017.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022] Open
Abstract
Introduction Limited studies have evaluated risk of stroke associated with the use of NSAIDs in patients with end-stage kidney disease. We examined the adverse effects of selective and nonselective NSAID use on the risk of stroke in dialysis patients. Methods A case-crossover study was conducted using medical claims data from the National Health Insurance Research Database in Taiwan. We identified patients with ischemic and hemorrhagic stroke (defined as International Classification of Diseases, 9th revision, Clinical Modification codes 433, 434, and 436 for ischemic stroke and 430 and 431 for hemorrhagic stroke) from inpatient claims during the period from 2003 to 2012. Conditional logistic regression models with adjustment for potential confounders were used to determine the effects of NSAID use on stroke. Results A total of 1190 dialysis patients with stroke were identified from 2003 to 2012. The results indicate a 1.31-fold increased risk of stroke related to NSAID use during the 30 days prior to a stroke (AOR = 1.31; 95% CI: 1.03–1.66); likewise, an excessive risk of ischemic stroke was observed (AOR = 1.34; 95% CI: 1.02–1.77). When classifying NSAIDs into selective and nonselective groups, nonselective NSAID use was significantly associated with an increased risk of stroke (AOR = 1.27; 95% CI: 1.00–1.61). Discussion In summary, the results show supportive evidence that NSAID use increased the risk of stroke in dialysis patients, which suggests the importance of closely monitoring the transient effects of initial NSAID treatment to patients on dialysis.
Collapse
Affiliation(s)
- Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Health Services Administration, China Medical University, Taichuang City, Taiwan
- Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Yu-Kang Chang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yueh-Han Hsu
- Department of Internal Medicine, Division of Nephrology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan City, Taiwan
| | - Yu-Ru Lo
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Jia-Sin Liu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chao A. Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Correspondence: Hui-Ju Tsai, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.Institute of Population Health SciencesNational Health Research InstitutesZhunanMiaoli CountyTaiwan
| |
Collapse
|
25
|
Fakhruddin S, Alanazi W, Jackson KE. Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury. J Diabetes Res 2017; 2017:8379327. [PMID: 28164134 PMCID: PMC5253173 DOI: 10.1155/2017/8379327] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetes induces the onset and progression of renal injury through causing hemodynamic dysregulation along with abnormal morphological and functional nephron changes. The most important event that precedes renal injury is an increase in permeability of plasma proteins such as albumin through a damaged glomerular filtration barrier resulting in excessive urinary albumin excretion (UAE). Moreover, once enhanced UAE begins, it may advance renal injury from progression of abnormal renal hemodynamics, increased glomerular basement membrane (GBM) thickness, mesangial expansion, extracellular matrix accumulation, and glomerulosclerosis to eventual end-stage renal damage. Interestingly, all these pathological changes are predominantly driven by diabetes-induced reactive oxygen species (ROS) and abnormal downstream signaling molecules. In diabetic kidney, NADPH oxidase (enzymatic) and mitochondrial electron transport chain (nonenzymatic) are the prominent sources of ROS, which are believed to cause the onset of albuminuria followed by progression to renal damage through podocyte depletion. Chronic hyperglycemia and consequent ROS production can trigger abnormal signaling pathways involving diverse signaling mediators such as transcription factors, inflammatory cytokines, chemokines, and vasoactive substances. Persistently, increased expression and activation of these signaling molecules contribute to the irreversible functional and structural changes in the kidney resulting in critically decreased glomerular filtration rate leading to eventual renal failure.
Collapse
Affiliation(s)
- Selim Fakhruddin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| | - Wael Alanazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| | - Keith E. Jackson
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| |
Collapse
|
26
|
Vorn R, Yoo HY. Effects of high glucose with or without other metabolic substrates on alpha-adrenergic contractions in rat mesenteric and femoral arteries. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 21:91-97. [PMID: 28066145 PMCID: PMC5214915 DOI: 10.4196/kjpp.2017.21.1.91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023]
Abstract
Hyperglycemia is associated with an increased risk of cardiovascular diseases. It has been demonstrated that chronic exposure to high glucose impaired endothelial functions. However, specific effects of short-term exposure to high glucose on vascular reactivity are controversial. Moreover, the combined effects of other metabolic substrates such as free fatty acids (FFA) on vascular reactivity remain poorly understood. Here we investigate the effects of short-term exposure to high glucose with or without other metabolic substrates including FFAs termed “nutrition full” (NF) solution, on mesenteric (MA) and deep femoral arteries (DFA) of rats. Arterial ring segments were mounted in a double-wire myograph. Contraction in response to phenylephrine (PhE) was determined in control (5 mM) and high glucose (23 mM, HG) environments over a 30 min period. In both arteries, PhE-inducedvasocontraction was enhanced by pre-incubation of HG solution. A combined incubation with HG and palmitic acid (100 µM) induced similar sensitization of PhE-contractions in both arteries. In contrast, high K+-induced contractions were not affected by HG. Interestingly, pre-incubation with NF solution decreased PhE-induced contraction in MA but increased the contraction in DFA. In NF solution, the HG-induced facilitation of PhE-contraction was not observed in MA. Furthermore, the PhE-induced contraction of DFA was attenuated by HG in NF solution. Our results demonstrate that the sensitization of PhE-induced arterial contraction by HG is differentially affected by other metabolic substrates. The conversation of skeletal arterial contractility by HG in NF solution requires careful interpretation of the previous in vitro studies where only glucose is included in physiological salt solutions. Further studies are required to elucidate the mechanism underlying the inconsistent effect of NF solution on MA and DFA.
Collapse
Affiliation(s)
- Rany Vorn
- Chung-Ang University Red Cross College of Nursing, Seoul 06974, Korea.; Chung-Ang University Graduate School, Seoul 06974, Korea
| | - Hae Young Yoo
- Chung-Ang University Red Cross College of Nursing, Seoul 06974, Korea
| |
Collapse
|
27
|
Jha JC, Banal C, Chow BSM, Cooper ME, Jandeleit-Dahm K. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid Redox Signal 2016; 25:657-684. [PMID: 26906673 PMCID: PMC5069735 DOI: 10.1089/ars.2016.6664] [Citation(s) in RCA: 434] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intrarenal oxidative stress plays a critical role in the initiation and progression of diabetic kidney disease (DKD). Enhanced oxidative stress results from overproduction of reactive oxygen species (ROS) in the context of concomitant, insufficient antioxidant pathways. Renal ROS production in diabetes is predominantly mediated by various NADPH oxidases (NOXs), but a defective antioxidant system as well as mitochondrial dysfunction may also contribute. Recent Advances: Effective agents targeting the source of ROS generation hold the promise to rescue the kidney from oxidative damage and prevent subsequent progression of DKD. Critical Issues and Future Directions: In the present review, we summarize and critically analyze molecular and cellular mechanisms that have been demonstrated to be involved in NOX-induced renal injury in diabetes, with particular focus on the role of increased glomerular injury, the development of albuminuria, and tubulointerstitial fibrosis, as well as mitochondrial dysfunction. Furthermore, novel agents targeting NOX isoforms are discussed. Antioxid. Redox Signal. 25, 657-684.
Collapse
Affiliation(s)
- Jay C Jha
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Claudine Banal
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Bryna S M Chow
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Mark E Cooper
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia .,2 Department of Medicine, Monash University , Melbourne, Australia
| | - Karin Jandeleit-Dahm
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia .,2 Department of Medicine, Monash University , Melbourne, Australia
| |
Collapse
|
28
|
Epigallocatechin-3-gallate Attenuates Renal Damage by Suppressing Oxidative Stress in Diabetic db/db Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2968462. [PMID: 27698952 PMCID: PMC5028863 DOI: 10.1155/2016/2968462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/14/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023]
Abstract
Epigallocatechin-3-gallate (EGCG), extracted from green tea, has been shown to have antioxidative activity. In the present study, we evaluated the effect of EGCG on the kidney function in db/db mice and also tried to investigate the underlying mechanism of the renoprotective effects of EGCG in both animals and cells. EGCG treatment could decrease the level of urinary protein, 8-iso-PGF2a, and Ang II. Moreover, EGCG could also change the level of several parameters associated with oxidative stress. In addition, the protein expression levels of AT-1R, p22-phox, p47-phox, p-ERK1/2, p-p38 MAPK, TGF-β1, and α-SMA in diabetic db/db mice were upregulated, and all of these symptoms were downregulated with the treatment of EGCG at 50 and 100 mg/kg/d. Furthermore, the pathological changes were ameliorated in db/db mice after EGCG treatment. HK-2 cell-based experiments indicated that EGCG could inhibit the expression of MAPK pathways, which is the downstream effector of Ang II mediated oxidative stress. All these results indicated that EGCG treatment could ameliorate changes of renal pathology and delay the progression of DKD by suppressing hyperglycemia-induced oxidative stress in diabetic db/db mice.
Collapse
|
29
|
Liang X, Duan N, Wang Y, Shu S, Xiang X, Guo T, Yang L, Zhang S, Tang X, Zhang J. Advanced oxidation protein products induce endothelial-to-mesenchymal transition in human renal glomerular endothelial cells through induction of endoplasmic reticulum stress. J Diabetes Complications 2016; 30:573-9. [PMID: 26861949 DOI: 10.1016/j.jdiacomp.2016.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 12/21/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) in renal glomerular endothelial cells plays a critical role in the pathogenesis of diabetic nephropathy (DN). Furthermore, advanced oxidation protein products (AOPPs) have been shown to contribute to the progression of DN. However, whether AOPPs induce EndMT in renal glomerular endothelial cells remains unclear. Thus, we investigated the effect of AOPPs on human renal glomerular endothelial cells (HRGECs) and the mechanisms underlying the effects. Our results showed that AOPP treatment lowered the expression of vascular endothelial cadherin, CD31, and claudin 5 and induced the overexpression of α-smooth muscle actin, vimentin, and fibroblast-specific protein 1, which indicated that AOPPs induced EndMT in HRGECs. Furthermore, AOPP stimulation increased the expression of glucose-regulated protein 78 and CCAAT/enhancer-binding protein-homologous protein, which suggested that AOPPs triggered endoplasmic reticulum (ER) stress in HRGECs. Notably, the aforementioned AOPP effects were reversed following the treatment of cells with salubrinal, an inhibitor of ER stress, whereas the effects were reproduced after exposure to thapsigargin, an inducer of ER stress. Collectively, our results indicate that AOPPs trigger EndMT in HRGECs through the induction of ER stress. These findings suggest novel therapeutic strategies for inhibiting renal fibrosis by targeting ER stress.
Collapse
Affiliation(s)
- Xiujie Liang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Na Duan
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Yue Wang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Shuangshuang Shu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Xiaohong Xiang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Tingting Guo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Lei Yang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Shaojie Zhang
- College of Arts and Science, Syracuse University, Syracuse, NY, USA
| | - Xun Tang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China.
| | - Jun Zhang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China.
| |
Collapse
|
30
|
Heme oxygenase‑1 protects H2O2‑insulted glomerular mesangial cells from excessive autophagy. Mol Med Rep 2016; 13:5269-75. [PMID: 27122182 DOI: 10.3892/mmr.2016.5177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 04/08/2016] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence has demonstrated that the activation of heme oxygenase (HO)‑1 reduces autophagy stimulated by oxidative stress injury, in which the supraphysiological production of reactive oxygen species (ROS) is detected. However, the potential mechanism underlying this effect remains unclear. The present study aimed to investigate the function of HO‑1 activation in the regulation of autophagy in glomerular mesangial cells subjected to H2O2‑induced oxidative stress injury. The results demonstrated that the HO‑1 agonist, hemin, reduces the LC3 protein level, which was enhanced by H2O2 treatment. Furthermore, hemin‑activated HO‑1 may function as a regulator of oxidative stress‑induced autophagy in a dose‑dependent manner. Pharmacological activation of c‑Jun N‑terminal kinase (JNK) inhibited the effect of hemin, indicating that the JNK signaling pathway is associated with the mechanism of HO‑1 in impeding excessive autophagy. In addition to successfully alleviating H2O2‑induced oxidative stress and cellular apoptosis, hemin‑activated HO‑1 may provide cytoprotection against rapamycin, a specific autophagy agonist. The present result suggested the inhibitory action of HO‑1 in the avoidance of a potentially enhanced linkage between autophagy and apoptosis, particularly in the setting of excessive ROS. Therefore, enhancing the intracellular activity of HO‑1 may assist the crosstalk between oxidative stress, autophagy and apoptosis, and represent a novel therapeutic strategy for renal ischemic disease.
Collapse
|
31
|
Chen S, Hong K, Zou F, Peng Q, Hu W, Li J, Lai X, Cheng X, Su H. Impact of glucose load in an oral glucose tolerance test on urinary albumin excretion varies with 2-h glucose levels. J Diabetes 2016; 8:206-13. [PMID: 25676539 DOI: 10.1111/1753-0407.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The aim of the present study was to investigate whether an oral glucose load can induce an increase in urinary albumin excretion (UAE). METHODS One hundred and thirty subjects without macroalbuminuria or increased fasting serum glucose (≥7.0 mmol/L) were included in the study. At 0600 hours, subjects were asked to empty their bladder and drink 300 mL water. At 0800 hours, venous blood and 2-h urine were collected for fasting examination. Subjects were then asked to drink 300 mL solution containing 75 g glucose and, at 1000 hours, samples were collected again for post-challenge examination. Concentrations of serum glucose, urinary glucose, albumin, N-acetyl-β-D-glucosaminidase and retinol-binding protein were measured. RESULTS Based on the results of the oral glucose tolerance test, subjects were divided into three groups: (i) normal glucose tolerance (NGT; n = 55); (ii) impaired glucose tolerance (IGT; n = 39); and (iii) newly diagnosed diabetes mellitus (NDM; n = 36). In the NDM group, post-challenge urinary excretion of glucose and albumin was 14- and 1.6-fold greater than fasting values, respectively. In the IGT and NGT groups, although post-challenge urinary glucose excretion was 2.6- and 1.6-fold greater than fasting values, UAE did not increase. There was a positive correlation between post-challenge serum glucose and the UAE rate (UAER; r = 0.24, P < 0.01) and the UAER increment (ΔUAER; r = 0.19, P < 0.05), as well as between the serum glucose increment and post-challenge UAER (r = 0.23, P < 0.01) and ΔUAER (r = 0.18, P < 0.05). Post-challenge serum glucose levels were independently correlated with logarithmically converted post-challenge UAER (β = 0.322, P = 0.008). CONCLUSIONS Oral glucose load can induce a significant increase in UAE in NDM subjects. The main mechanism may be glomerular hyperfiltration.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kui Hong
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiang Peng
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weitong Hu
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juxiang Li
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoyang Lai
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoshu Cheng
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hai Su
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Hong OK, Yoo SJ, Son JW, Kim MK, Baek KH, Song KH, Cha BY, Jo H, Kwon HS. High glucose and palmitate increases bone morphogenic protein 4 expression in human endothelial cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:169-75. [PMID: 26937213 PMCID: PMC4770107 DOI: 10.4196/kjpp.2016.20.2.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 11/15/2022]
Abstract
Here, we investigated whether hyperglycemia and/or free fatty acids (palmitate, PAL) aff ect the expression level of bone morphogenic protein 4 (BMP4), a proatherogenic marker, in endothelial cells and the potential role of BMP4 in diabetic vascular complications. To measure BMP4 expression, human umbilical vein endothelial cells (HUVECs) were exposed to high glucose concentrations and/or PAL for 24 or 72 h, and the effects of these treatments on the expression levels of adhesion molecules and reactive oxygen species (ROS) were examined. BMP4 loss-of-function status was achieved via transfection of a BMP4-specific siRNA. High glucose levels increased BMP4 expression in HUVECs in a dose-dependent manner. PAL potentiated such expression. The levels of adhesion molecules and ROS production increased upon treatment with high glucose and/or PAL, but this eff ect was negated when BMP4 was knocked down via siRNA. Signaling of BMP4, a proinflammatory and pro-atherogenic cytokine marker, was increased by hyperglycemia and PAL. BMP4 induced the expression of infl ammatory adhesion molecules and ROS production. Our work suggests that BMP4 plays a role in atherogenesis induced by high glucose levels and/or PAL.
Collapse
Affiliation(s)
- Oak-Kee Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Soon-Jib Yoo
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.; Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Kyunggi-do 14647, Korea
| | - Jang-Won Son
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.; Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Kyunggi-do 14647, Korea
| | - Mee-Kyoung Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.; Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ki-Hyun Baek
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.; Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ki-Ho Song
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.; Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Bong-Yun Cha
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, GA 30322, USA
| | - Hyuk-Sang Kwon
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.; Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
33
|
Gai Z, Gui T, Hiller C, Kullak-Ublick GA. Farnesoid X Receptor Protects against Kidney Injury in Uninephrectomized Obese Mice. J Biol Chem 2015; 291:2397-411. [PMID: 26655953 DOI: 10.1074/jbc.m115.694323] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 01/07/2023] Open
Abstract
Activation of the farnesoid X receptor (FXR) has indicated a therapeutic potential for this nuclear bile acid receptor in the prevention of diabetic nephropathy and obesity-induced renal damage. Here, we investigated the protective role of FXR against kidney damage induced by obesity in mice that had undergone uninephrectomy, a model resembling the clinical situation of kidney donation by obese individuals. Mice fed a high-fat diet developed the core features of metabolic syndrome, with subsequent renal lipid accumulation and renal injury, including glomerulosclerosis, interstitial fibrosis, and albuminuria. The effects were accentuated by uninephrectomy. In human renal biopsies, staining of 4-hydroxynonenal (4-HNE), glucose-regulated protein 78 (Grp78), and C/EBP-homologous protein, markers of endoplasmic reticulum stress, was more prominent in the proximal tubules of 15 obese patients compared with 16 non-obese patients. In mice treated with the FXR agonist obeticholic acid, renal injury, renal lipid accumulation, apoptosis, and changes in lipid peroxidation were attenuated. Moreover, disturbed mitochondrial function was ameliorated and the mitochondrial respiratory chain recovered following obeticholic acid treatment. Culturing renal proximal tubular cells with free fatty acid and FXR agonists showed that FXR activation protected cells from free fatty acid-induced oxidative stress and endoplasmic reticulum stress, as denoted by a reduction in the level of reactive oxygen species staining and Grp78 immunostaining, respectively. Several genes involved in glutathione metabolism were induced by FXR activation in the remnant kidney, which was consistent with a decreased glutathione disulfide/glutathione ratio. In summary, FXR activation maintains endogenous glutathione homeostasis and protects the kidney in uninephrectomized mice from obesity-induced injury.
Collapse
Affiliation(s)
- Zhibo Gai
- From the Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland and
| | - Ting Gui
- the Department of Nephrology, Hypertension, and Clinical Pharmacology, Inselspital, CH-3010 Bern, Switzerland
| | - Christian Hiller
- From the Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland and
| | - Gerd A Kullak-Ublick
- From the Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland and
| |
Collapse
|
34
|
Branched-chain amino acids attenuate early kidney injury in diabetic rats. Biochem Biophys Res Commun 2015; 466:240-6. [PMID: 26362188 DOI: 10.1016/j.bbrc.2015.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is the most severe diabetic microvascular complication. The pathogenesis of diabetic nephropathy is complex, and oxidative stress plays an important role in the development of diabetic nephropathy. Elevated reactive oxygen species (ROS) levels activate various signaling pathways and influence the activities of transforming growth factor-β (TGF-β) and matrix metalloproteinase-9 (MMP-9), which contributes to glomerular hypertrophy. Branched-chain amino acids (BCAAs) are widely used in clinical treatment, and BCAAs can reduce the oxidative stress associated with the diabetic pancreas and some liver diseases. Thus, the aim of the present study was to determine whether BCAAs could attenuate oxidative stress in the kidneys of streptozotocin (STZ)-induced diabetic rats to prevent early diabetic kidney injury. Male Wistar rats were fed for two weeks with a normal chow diet or a high-fat diet in which 40% of calories were derived from fat. After this two-week period, the mice fed normal chow were injected with vehicle, while the high-fat diet group was injected intraperitoneally (i.p.) with 40 mg/kg STZ. The STZ-treated group was randomly divided into four subgroups that were treated with different doses of BCAAs or vehicle for two months by oral gavage. Plasma glucose, plasma creatinine, urinary protein and JNK, TGF-β, and MMP-9 mRNA and protein expression levels were measured in the rats. The ROS levels and proteinuria in the STZ-induced diabetic rats were significantly higher than those in the control groups. Moreover, early kidney injury occurred in the STZ-induced diabetic rats. However, BCAAs treatment decreased ROS levels, proteinuria and kidney injury. Moreover, JNK, TGF-β and MMP-9 mRNA and protein levels were significantly increased in the diabetic rats when compared with the control rats, and BCAAs treatment reversed these changes. Our results suggest that BCAAs counter oxidative stress in the kidneys of diabetic rats and alleviate diabetic kidney injury via the JNK/TGF-β/MMP-9 pathway.
Collapse
|
35
|
Hsu CC, Wang H, Hsu YH, Chuang SY, Huang YW, Chang YK, Liu JS, Hsiung CA, Tsai HJ. Use of Nonsteroidal Anti-Inflammatory Drugs and Risk of Chronic Kidney Disease in Subjects With Hypertension. Hypertension 2015; 66:524-33. [DOI: 10.1161/hypertensionaha.114.05105] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/15/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Chih-Cheng Hsu
- From the Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan (C.-C.H., S.-Y.C., Y.-W.H., Y.-K.C., J.-S.L., C.A.H., H.-J.T.); Departments of Health Services Administration (C.-C.H., Y.-H.H.) and Public Health (H.-J.T.), China Medical University, Taichuang City, Taiwan; Department of Cardiovascular Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China (H.W.); National Center for Cardiovascular Disease, Chinese Academy
| | - Hongjian Wang
- From the Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan (C.-C.H., S.-Y.C., Y.-W.H., Y.-K.C., J.-S.L., C.A.H., H.-J.T.); Departments of Health Services Administration (C.-C.H., Y.-H.H.) and Public Health (H.-J.T.), China Medical University, Taichuang City, Taiwan; Department of Cardiovascular Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China (H.W.); National Center for Cardiovascular Disease, Chinese Academy
| | - Yueh-Han Hsu
- From the Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan (C.-C.H., S.-Y.C., Y.-W.H., Y.-K.C., J.-S.L., C.A.H., H.-J.T.); Departments of Health Services Administration (C.-C.H., Y.-H.H.) and Public Health (H.-J.T.), China Medical University, Taichuang City, Taiwan; Department of Cardiovascular Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China (H.W.); National Center for Cardiovascular Disease, Chinese Academy
| | - Shao-Yuan Chuang
- From the Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan (C.-C.H., S.-Y.C., Y.-W.H., Y.-K.C., J.-S.L., C.A.H., H.-J.T.); Departments of Health Services Administration (C.-C.H., Y.-H.H.) and Public Health (H.-J.T.), China Medical University, Taichuang City, Taiwan; Department of Cardiovascular Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China (H.W.); National Center for Cardiovascular Disease, Chinese Academy
| | - Ya-Wen Huang
- From the Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan (C.-C.H., S.-Y.C., Y.-W.H., Y.-K.C., J.-S.L., C.A.H., H.-J.T.); Departments of Health Services Administration (C.-C.H., Y.-H.H.) and Public Health (H.-J.T.), China Medical University, Taichuang City, Taiwan; Department of Cardiovascular Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China (H.W.); National Center for Cardiovascular Disease, Chinese Academy
| | - Yu-Kang Chang
- From the Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan (C.-C.H., S.-Y.C., Y.-W.H., Y.-K.C., J.-S.L., C.A.H., H.-J.T.); Departments of Health Services Administration (C.-C.H., Y.-H.H.) and Public Health (H.-J.T.), China Medical University, Taichuang City, Taiwan; Department of Cardiovascular Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China (H.W.); National Center for Cardiovascular Disease, Chinese Academy
| | - Jia-Sin Liu
- From the Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan (C.-C.H., S.-Y.C., Y.-W.H., Y.-K.C., J.-S.L., C.A.H., H.-J.T.); Departments of Health Services Administration (C.-C.H., Y.-H.H.) and Public Health (H.-J.T.), China Medical University, Taichuang City, Taiwan; Department of Cardiovascular Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China (H.W.); National Center for Cardiovascular Disease, Chinese Academy
| | - Chao A. Hsiung
- From the Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan (C.-C.H., S.-Y.C., Y.-W.H., Y.-K.C., J.-S.L., C.A.H., H.-J.T.); Departments of Health Services Administration (C.-C.H., Y.-H.H.) and Public Health (H.-J.T.), China Medical University, Taichuang City, Taiwan; Department of Cardiovascular Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China (H.W.); National Center for Cardiovascular Disease, Chinese Academy
| | - Hui-Ju Tsai
- From the Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan (C.-C.H., S.-Y.C., Y.-W.H., Y.-K.C., J.-S.L., C.A.H., H.-J.T.); Departments of Health Services Administration (C.-C.H., Y.-H.H.) and Public Health (H.-J.T.), China Medical University, Taichuang City, Taiwan; Department of Cardiovascular Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China (H.W.); National Center for Cardiovascular Disease, Chinese Academy
| |
Collapse
|
36
|
Hofni A, El-Moselhy MA, Taye A, Khalifa MM. Combination therapy with spironolactone and candesartan protects against streptozotocin-induced diabetic nephropathy in rats. Eur J Pharmacol 2014; 744:173-82. [DOI: 10.1016/j.ejphar.2014.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/05/2014] [Accepted: 10/08/2014] [Indexed: 01/13/2023]
|
37
|
Nagasawa Y, Hasuike Y, Nanami M, Kuragano T, Nakanishi T. Albuminuria and hypertension: the chicken or the egg? Hypertens Res 2014; 38:8-10. [PMID: 25185833 DOI: 10.1038/hr.2014.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yasuyuki Nagasawa
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Mukogawa-Cho, Nishinomiya, Japan
| | - Yukiko Hasuike
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Mukogawa-Cho, Nishinomiya, Japan
| | - Masayoshi Nanami
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Mukogawa-Cho, Nishinomiya, Japan
| | - Takahiro Kuragano
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Mukogawa-Cho, Nishinomiya, Japan
| | - Takeshi Nakanishi
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Mukogawa-Cho, Nishinomiya, Japan
| |
Collapse
|
38
|
Wu M, Tang RN, Liu H, Ma KL, Lv LL, Liu BC. Nuclear Translocation of β-Catenin Mediates the Parathyroid Hormone-Induced Endothelial-to-Mesenchymal Transition in Human Renal Glomerular Endothelial Cells. J Cell Biochem 2014; 115:1692-701. [PMID: 24821601 DOI: 10.1002/jcb.24832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 05/08/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Min Wu
- Institute of Nephrology, Zhongda Hospital; Southeast University School of Medicine; Nanjing China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhongda Hospital; Southeast University School of Medicine; Nanjing China
| | - Hong Liu
- Institute of Nephrology, Zhongda Hospital; Southeast University School of Medicine; Nanjing China
| | - Kun-Ling Ma
- Institute of Nephrology, Zhongda Hospital; Southeast University School of Medicine; Nanjing China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital; Southeast University School of Medicine; Nanjing China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital; Southeast University School of Medicine; Nanjing China
| |
Collapse
|
39
|
PENG HUI, XING YANFANG, YE ZENGCHUN, LI CANMING, LUO PENGLI, LI MING, LOU TANQI. High glucose induces activation of the local renin-angiotensin system in glomerular endothelial cells. Mol Med Rep 2013; 9:450-6. [DOI: 10.3892/mmr.2013.1855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 11/19/2013] [Indexed: 11/05/2022] Open
|
40
|
Xue H, Yuan P, Ni J, Li C, Shao D, Liu J, Shen Y, Wang Z, Zhou L, Zhang W, Huang Y, Yu C, Wang R, Lu L. H(2)S inhibits hyperglycemia-induced intrarenal renin-angiotensin system activation via attenuation of reactive oxygen species generation. PLoS One 2013; 8:e74366. [PMID: 24058553 PMCID: PMC3772925 DOI: 10.1371/journal.pone.0074366] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/31/2013] [Indexed: 01/09/2023] Open
Abstract
Decrease in endogenous hydrogen sulfide (H2S) was reported to participate in the pathogenesis of diabetic nephropathy (DN). This study is aimed at exploring the relationship between the abnormalities in H2S metabolism, hyperglycemia-induced oxidative stress and the activation of intrarenal renin-angiotensin system (RAS). Cultured renal mesangial cells (MCs) and streptozotocin (STZ) induced diabetic rats were used for the studies. The expressions of angiotensinogen (AGT), angiotensin converting enzyme (ACE), angiotensin II (Ang II) type I receptor (AT1), transforming growth factor-β1 (TGF-β1) and collagen IV were measured by real time PCR and Western blot. Reactive oxygen species (ROS) production was assessed by fluorescent probe assays. Cell proliferation was analyzed by 5'-bromo-2'-deoxyuridine incorporation assay. Ang II concentration was measured by an enzyme immunoassay. AGT, ACE and AT1 receptor mRNA levels and Ang II concentration were increased in high glucose (HG) -treated MCs, the cell proliferation rate and the production of TGF-β1 and of collagen IV productions were also increased. The NADPH oxidase inhibitor diphenylenechloride iodonium (DPI) was able to reverse the HG-induced RAS activation and the changes in cell proliferation and collagen synthesis. Supplementation of H2S attenuated HG-induced elevations in ROS and RAS activation. Blockade on H2S biosynthesis from cystathione-γ-lyase (CSE) by DL-propargylglycine (PPG) resulted in effects similar to that of HG treatment. In STZ-induced diabetic rats, the changes in RAS were also reversed by H2S supplementation without affecting blood glucose concentration. These data suggested that the decrease in H2S under hyperglycemic condition leads to an imbalance between oxidative and reductive species. The increased oxidative species results in intrarenal RAS activation, which, in turn, contributes to the pathogenesis of renal dysfunction.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensinogen/genetics
- Angiotensinogen/metabolism
- Animals
- Blood Glucose/metabolism
- Cell Proliferation/drug effects
- Cells, Cultured
- Collagen Type IV/metabolism
- Cystathionine beta-Synthase/genetics
- Cystathionine beta-Synthase/metabolism
- Cystathionine gamma-Lyase/genetics
- Cystathionine gamma-Lyase/metabolism
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Glucose/pharmacology
- Hydrogen Sulfide/pharmacology
- Hyperglycemia/enzymology
- Hyperglycemia/genetics
- Hyperglycemia/metabolism
- Hyperglycemia/pathology
- Kidney/drug effects
- Kidney/pathology
- Losartan/pharmacology
- Mesangial Cells/drug effects
- Mesangial Cells/metabolism
- Mesangial Cells/pathology
- NADPH Oxidases/metabolism
- Onium Compounds/pharmacology
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Reactive Oxygen Species/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Renin-Angiotensin System/drug effects
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Hong Xue
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ping Yuan
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pulmonary Circulation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Ni
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Li
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Decui Shao
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Liu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Huang
- School of Biomedical Sciences and Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Biology, Lakehead University, Thunder Bay, Canada
| | - Limin Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
41
|
Over-production of nitric oxide by oxidative stress-induced activation of the TGF-β1/PI3K/Akt pathway in mesangial cells cultured in high glucose. Acta Pharmacol Sin 2013; 34:507-14. [PMID: 23524565 DOI: 10.1038/aps.2012.207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM To investigate whether NO over-production in rat mesangial cells cultured in high glucose (HG) is related to activation of the TGF-β1/PI3K/Akt pathway. METHODS Rat mesangial cells line (HBZY-1) was exposed to HG (24.44 mmol/L) or H2O2 (10 μmol/L) for 16 h. NO release was quantified using the Griess assay. The TGF-β1 level was measured using ELISA. The protein expression of p-Akt, t-Akt, Bim, and iNOS was examined by Western blotting. The mRNA levels of TGF-β1 and Bim were measured using RT-PCR. The cell proliferation rate was estimated using a BrdU incorporation assay. RESULTS Treatment of the cells with HG, H2O2, or TGF-β1 (5 ng/mL) significantly increased the NO level that was substantially inhibited by co-treatment with the NADPH oxidase inhibitor diphenylene iodonium (DPI), TGF-β1 inhibitor SB431542, or PI3K inhibitor LY294002. Both HG and H2O2 significantly increased the protein and mRNA levels of TGF-β1 in the cells, and HG-induced increases of TGF-β1 protein and mRNA were blocked by co-treatment with DPI. Furthermore, the treatment with HG or H2O2 significantly increased the expression of phosphorylated Akt and iNOS and cell proliferation rate, which was blocked by co-treatment with DPI, SB431542, or LY294002. Moreover, the treatment with HG or H2O2 significantly inhibited Bim protein and mRNA expression, which was reversed by co-treatment with DPI, SB431542, or LY294002. CONCLUSION The results demonstrate that high glucose causes oxidative stress and NO over-production in rat mesangial cells in vitro via decreasing Bim and increasing iNOS, which are at least partially mediated by the TGF-β1/PI3K/Akt pathway.
Collapse
|
42
|
Lu Q, Zhai Y, Cheng Q, Liu Y, Gao X, Zhang T, Wei Y, Zhang F, Yin X. The Akt-FoxO3a-manganese superoxide dismutase pathway is involved in the regulation of oxidative stress in diabetic nephropathy. Exp Physiol 2013; 98:934-45. [DOI: 10.1113/expphysiol.2012.068361] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 2013; 14:6306-44. [PMID: 23528859 PMCID: PMC3634422 DOI: 10.3390/ijms14036306] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 02/06/2023] Open
Abstract
The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
| | - Edgar A. Jaimes
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
- Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
44
|
Shao D, Liu J, Ni J, Wang Z, Shen Y, Zhou L, Huang Y, Wang J, Xue H, Zhang W, Lu L. Suppression of XBP1S mediates high glucose-induced oxidative stress and extracellular matrix synthesis in renal mesangial cell and kidney of diabetic rats. PLoS One 2013; 8:e56124. [PMID: 23457509 PMCID: PMC3573021 DOI: 10.1371/journal.pone.0056124] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/04/2013] [Indexed: 12/21/2022] Open
Abstract
Recent evidences suggest that endoplasmic reticulum (ER) stress was involved in multi pathological conditions, including diabetic nephropathy (DN). X-box binding protein 1(XBP1), as a key mediator of ER stress, has been proved having the capability of preventing oxidative stress. In this study, we investigated the effects of spliced XBP1 (XBP1S), the dominant active form of XBP1, on high glucose (HG)-induced reactive oxygen species (ROS) production and extracellular matrix (ECM) synthesis in cultured renal mesangial cells (MCs) and renal cortex of STZ-induced diabetic rats. Real time PCR and Western blot were used to evaluate the mRNA and protein levels respectively. Transfection of recombinant adenovirus vector carrying XBP1S gene (Ad-XBP1S) was used to upregulate XBP1S expression. XBP1S siRNA was used to knockdown XBP1S expression. ROS level was detected by dihydroethidium (DHE) fluorescent probe assay. The results showed that HG treatment significantly reduced XBP1S protein and mRNA level in the cultured MCs while no obvious change was observed in unspliced XBP1 (XBP1U). In the mean time, the ROS production, collagen IV and fibronectin expressions were increased. Diphenylene-chloride iodonium (DPI), a NADPH oxidase inhibtor, prevented HG-induced increases in ROS as well as collagen IV and fibronectin expressions. Transfection of Ad-XBP1S reversed HG-induced ROS production and ECM expressions. Knockdown intrinsic XBP1S expression induced increases in ROS production and ECM expressions. Supplementation of supreoxide reversed the inhibitory effect of Ad-XBP1S transfection on ECM synthesis. P47phox was increased in HG-treated MCs. Ad-XBP1S transfection reversed HG-induced p47phox increase while XBP1S knockdown upregulated p47phox expression. In the renal cortex of diabetic rats, the expression of XBP1S was reduced while p47phox, collagen IV and fibronectin expression were elevated. These results suggested that XBP1S pathway of ER stress was involved in HG-induced oxidative stress and ECM synthesis. A downstream target of XBP1S in regulating ROS formation might be NADPH oxidase.
Collapse
Affiliation(s)
- Decui Shao
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Liu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Ni
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Huang
- School of Biomedical Sciences and Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Jun Wang
- Department of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Xue
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Limin Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
45
|
Mak IT, Landgraf KM, Chmielinska JJ, Weglicki WB. Angiotensin II promotes iron accumulation and depresses PGI₂ and NO synthesis in endothelial cells: effects of losartan and propranolol analogs. Can J Physiol Pharmacol 2012; 90:1413-8. [PMID: 23067376 DOI: 10.1139/y2012-104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin may promote endothelial dysfunction through iron accumulation. To research this, bovine endothelial cells (ECs) were incubated with iron (30 µmol·L⁻¹) with or without angiotensin II (100 nmol·L⁻¹). After incubation for 6 h, it was observed that the addition of angiotensin enhanced EC iron accumulation by 5.1-fold compared with a 1.8-fold increase for cells incubated with iron only. This enhanced iron uptake was attenuated by losartan (100 nmol·L⁻¹), d-propranolol (10 µmol·L⁻¹), 4-HO-propranolol (5 µmol·L⁻¹), and methylamine, but not by vitamin E or atenolol. After 6 h of incubation, angiotensin plus iron provoked intracellular oxidant formation (2'7'-dichlorofluorescein diacetate (DCF-DA) fluorescence) and elevated oxidized glutathione; significant loss of cell viability occurred at 48 h. Stimulated prostacyclin release decreased by 38% (6 h) and NO synthesis was reduced by 41% (24 h). Both oxidative events and functional impairment were substantially attenuated by losartan or d-propranolol. It is concluded that angiotensin promoted non-transferrin-bound iron uptake via AT-1 receptor activation, leading to EC oxidative functional impairment. The protective effects of d-propranolol and 4-HO-propranolol may be related to their lysosomotropic properties.
Collapse
Affiliation(s)
- I Tong Mak
- Department of Biochemistry and Molecular Biology, Division of Experimental Medicine, The George Washington University, 2300 Eye Street, N.W. Ross Hall, Washington, DC 20037, USA.
| | | | | | | |
Collapse
|
46
|
|
47
|
The complex interplay between cyclooxygenase-2 and angiotensin II in regulating kidney function. Curr Opin Nephrol Hypertens 2012; 21:7-14. [PMID: 22080858 DOI: 10.1097/mnh.0b013e32834d9d75] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Cyclooxygenase-2 (COX-2) plays a critical role in modulating deleterious actions of angiotensin II (Ang II) where there is an inappropriate activation of the renin-angiotensin system (RAS). This review discusses the recent developments regarding the complex interactions by which COX-2 modulates the impact of an activated RAS on kidney function and blood pressure. RECENT FINDINGS Normal rats with increased COX-2 activity but with different intrarenal Ang II activity because of sodium restriction or chronic treatment with angiotensin-converting enzyme (ACE) inhibitors showed similar renal hemodynamic responses to COX-2-selective inhibition (nimesulide) indicating independence from the intrarenal Ang II activity. COX-2-dependent maintenance of medullary blood flow was consistent and not dependent on dietary salt or ACE inhibition. In contrast, COX-2 influences on sodium excretion were contingent on the prevailing RAS activity. In chronic hypertensive models, COX-2 inhibition elicited similar reductions in kidney function, but COX-2 metabolites contribute to rather than ameliorate the hypertension. SUMMARY The maintenance of renal hemodynamics reflects direct and opposing effects of Ang II and COX-2 metabolites. The antagonism in water and electrolyte reabsorption is dependent on the prevailing intrarenal Ang II activity. The recent functional experiments demonstrate a beneficial modulation of Ang II by COX-2 except in the presence of inflammation promoted by hypertension, hyperglycemia, and oxidative stress.
Collapse
|
48
|
Inflammation and oxidative stress in obesity-related glomerulopathy. Int J Nephrol 2012; 2012:608397. [PMID: 22567283 PMCID: PMC3332212 DOI: 10.1155/2012/608397] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/06/2012] [Indexed: 01/17/2023] Open
Abstract
Obesity-related glomerulopathy is an increasing cause of end-stage renal disease. Obesity has been considered a state of chronic low-grade systemic inflammation and chronic oxidative stress. Augmented inflammation in adipose and kidney tissues promotes the progression of kidney damage in obesity. Adipose tissue, which is accumulated in obesity, is a key endocrine organ that produces multiple biologically active molecules, including leptin, adiponectin, resistin, that affect inflammation, and subsequent deregulation of cell function in renal glomeruli that leads to pathological changes. Oxidative stress is also associated with obesity-related renal diseases and may trigger the initiation or progression of renal damage in obesity. In this paper, we focus on inflammation and oxidative stress in the progression of obesity-related glomerulopathy and possible interventions to prevent kidney injury in obesity.
Collapse
|
49
|
Whaley-Connell A, Habibi J, Nistala R, Hayden MR, Pulakat L, Sinak C, Locher B, Ferrario CM, Sowers JR. Combination of direct renin inhibition with angiotensin type 1 receptor blockade improves aldosterone but does not improve kidney injury in the transgenic Ren2 rat. ACTA ACUST UNITED AC 2012; 176:36-44. [PMID: 22465166 DOI: 10.1016/j.regpep.2012.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/01/2012] [Accepted: 03/20/2012] [Indexed: 01/09/2023]
Abstract
Enhanced renin-angiotensin-aldosterone system (RAAS) activation contributes to proteinuria and chronic kidney disease by increasing glomerular and tubulointerstitial oxidative stress, promotion of fibrosis. Renin activation is the rate limiting step in angiotensin (Ang II) and aldosterone generation, and recent work suggests direct renin inhibition improves proteinuria comparable to that seen with Ang type 1 receptor (AT(1)R) blockade. This is important as, even with contemporary use of AT(1)R blockade, the burden of kidney disease remains high. Thereby, we sought to determine if combination of direct renin inhibition with AT(1)R blockade in vivo, via greater attenuation of kidney oxidative stress, would attenuate glomerular and proximal tubule injury to a greater extent than either intervention alone. We utilized the transgenic Ren2 rat with increased tissue RAS activity and higher serum levels of aldosterone, which manifests hypertension and proteinuria. Ren2 rats were treated with renin inhibition (aliskiren), AT(1)R blockade (valsartan), the combination (aliskiren+valsartan), or vehicle for 21days. Compared to Sprague-Dawley controls, Ren2 rats displayed increased systolic pressure (SBP), circulating aldosterone, proteinuria and greater urine levels of the proximal tubule protein excretory marker beta-N-acetylglucosaminidase (β-NAG). These functional and biochemical alterations were accompanied by increases in kidney tissue NADPH oxidase subunit Rac1 and 3-nitrotyrosine (3-NT) content as well as fibronectin and collagen type III. These findings occurred in conjunction with reductions in the podocyte-specific protein podocin as well as the proximal tubule-specific megalin. Further, in transgenic animals there was increased tubulointerstitial fibrosis on light microscopy as well as ultrastructural findings of glomerular podocyte foot-process effacement and reduced tubular apical endosomal/lysosomal activity. Combination therapy led to greater reductions in SBP and serum aldosterone, but did not result in greater improvement in markers of glomerular and tubular injury (i.e. β-NAG) compared to either intervention alone. Further, combination therapy did not improve markers of oxidative stress and podocyte and proximal tubule integrity in this transgenic model of RAAS-mediated kidney damage despite greater reductions in serum aldosterone and BP levels.
Collapse
Affiliation(s)
- Adam Whaley-Connell
- Harry S. Truman VA Medical Center, University of Missouri-Columbia School of Medicine, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Swärd P, Rippe B. Acute and sustained actions of hyperglycaemia on endothelial and glomerular barrier permeability. Acta Physiol (Oxf) 2012; 204:294-307. [PMID: 21812939 DOI: 10.1111/j.1748-1716.2011.02343.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Microalbuminuria is an established marker of systemic endothelial dysfunction, which for patients with diabetes signals an increased risk of both diabetic nephropathy and cardiovascular complications. A better understanding of the pathogenesis of microalbuminuria is important in the quest of finding new approaches to treat patients with diabetes. Direct acute effects of episodes of hyperglycaemia (HG) could have implications for the microalbuminuria seen in early diabetes before renal structural alterations have started, especially in those patients with poor glycaemic control. This review summarizes the literature evidence that acute or sustained HG may lead to an increased vascular or glomerular permeability. Special focus is on glomerular barrier permeability. There is evidence in the literature that HG increases systemic capillary and glomerular barrier permeability within 20-30 min in vivo in rats and mice. Furthermore, exposure of monolayers of cultured endothelial cells to HG has been shown to increase monolayer permeability rapidly and transiently (during 60-100 min). Instant cellular changes following F-actin cytoskeleton rearrangements, which could be abrogated by Rho-kinase (ROCK) inhibition, are implicated. Data in this review also suggest that activation of protein kinase C, the polyol pathway, and an increased release of reactive oxygen species (ROS) and cytokines could contribute to the increase in barrier permeability induced by HG. Recent in vitro data from cultured podocyte monolayers also designates a role of insulin in acute podocyte F-actin remodelling, underpinning the complexity of the mechanisms leading to glomerular and endothelial barrier alterations in diabetes mellitus.
Collapse
Affiliation(s)
- P Swärd
- Department of Nephrology, University of Lund, University Hospital of Lund, Sweden
| | | |
Collapse
|