1
|
Kokesh KJ, Bala N, Dogan YE, Nguyen VAL, Costa M, Alli A. Mycobacterium avium inhibits protein kinase C and MARCKS phosphorylation in human cystic fibrosis and non-cystic fibrosis cells. PLoS One 2024; 19:e0308299. [PMID: 39413095 PMCID: PMC11482691 DOI: 10.1371/journal.pone.0308299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/03/2024] [Indexed: 10/18/2024] Open
Abstract
In cystic fibrosis (CF), there is abnormal translocation and function of the cystic fibrosis transmembrane conductance regulator (CFTR) and an upregulation of the epithelial sodium channel (ENaC). This leads to hyperabsorption of sodium and fluid from the airway, dehydrated mucus, and an increased risk of respiratory infections. In this study, we performed a proteomic assessment of differentially regulated proteins from CF and non-CF small airway epithelial cells (SAEC) that are sensitive to Mycobacterium avium. CF SAEC and normal non-CF SAEC were infected with M. avium before the cells were harvested for protein. Protein kinase C (PKC) activity was greater in the CF cells compared to the non-CF cells, but the activity was significantly attenuated in both cell types after infection with M. avium compared to vehicle. Western blot and densitometric analysis showed a significant increase in cathepsin B protein expression in M. avium infected CF cells. Myristoylated alanine rich C-kinase substrate (MARCKS) protein was one of several differentially expressed proteins between the groups that was identified by mass spectrometry-based proteomics. Total MARCKS protein expression was greater in CF cells compared to non-CF cells. Phosphorylation of MARCKS at serine 163 was also greater in CF cells compared to non-CF cells after treating both groups of cells with M. avium. Taken together, MARCKS protein is upregulated in CF cells and there is decreased phosphorylation of the protein due to a decrease in PKC activity and presumably increased cathepsin B mediated proteolysis of the protein after M. avium infection.
Collapse
Affiliation(s)
- Kevin J. Kokesh
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Niharika Bala
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Yunus E. Dogan
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Pediatrics, Erciyes University of Medicine, Kayseri, Turkey
| | - Van-Anh L. Nguyen
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Marcus Costa
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Abdel Alli
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Medicine, Division of Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida, United States of America
| |
Collapse
|
2
|
Yu L, Bala N, Nguyen VAL, Kessler L, LaDisa JF, Alli AA. Activity and function of the endothelial sodium channel is regulated by the effector domain of MARCKS like protein 1 in mouse aortic endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600595. [PMID: 38979152 PMCID: PMC11230428 DOI: 10.1101/2024.06.25.600595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The endothelial sodium channel (EnNaC) plays an important role in regulating vessel stiffness. Here, we investigated the regulation of EnNaC in mouse aortic endothelial cells (mAoEC) by the actin cytoskeleton and lipid raft association protein myristoylated alanine-rich C-kinase substrate like protein 1 (MLP1). We hypothesized that mutation of specific amino acid residues within the effector domain of MLP1 or loss of association between MLP1 and the anionic phospholipid phosphate PIP2 would significantly alter membrane association and EnNaC activity in mAoEC. mAoEC transiently transfected with a mutant MLP1 construct (three serine residues in the effector domain replaced with aspartate residues) showed a significant decrease in EnNaC activity compared to cells transfected with wildtype MLP1. Compared to vehicle treatment, mAoEC treated with the PIP2 synthesis blocker wortmannin showed less colocalization of EnNaC and MLP1. In other experiments, Western blot and densitometric analysis showed a significant decrease in MLP1 and caveloin-1 protein expression in mAoEC treated with wortmannin compared to vehicle. Finally, wortmannin treatment decreased sphingomyelin content and increased membrane fluidity in mAoEC. Taken together, our results suggest constitutive phosphorylation of MLP1 attenuates the function of EnNaC in aortic endothelial cells by a mechanism involving a decrease in association with MLP1 and EnNaC at the membrane, while deletion of PIP2 decreases MARCKS expression and overall membrane fluidity.
Collapse
|
3
|
Al-Humiari MA, Yu L, Liu LP, Nouri MZ, Tuna KM, Denslow ND, Alli AA. Extracellular vesicles from BALF of pediatric cystic fibrosis and asthma patients increase epithelial sodium channel activity in small airway epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184219. [PMID: 37634857 PMCID: PMC11632644 DOI: 10.1016/j.bbamem.2023.184219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Extracellular Vesicles (EVs) are nanosized vesicles derived from all cell types. EV cargo allows for intercellular communication, intracellular signaling, and regulation of proteins in recipient cells. We tested the hypothesis that EVs isolated from the bronchoalveolar-lavage fluid (BALF) of pediatric cystic fibrosis (CF) or pediatric asthma patients increase epithelial sodium channel (ENaC) activity in normal human small airway epithelial cells (SAECs) and the mechanism involves specific EV lipids. We characterized EVs from BALF of pediatric CF and pediatric asthma patients by nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. The CF and asthma pediatric groups were similar in BALF electrolytes concentration and cell count, except for neutrophils, which were higher in the CF group. Lipidomic analyses for each group of EVs were performed using targeted mass spectrometry. Phosphatidylethanolamine, sphingomyelins, and triacylglycerol were enriched in both groups, but phosphatidylcholine and phosphatidylinositol concentrations were greater in the CF group compared to the asthma group, and the opposite trend was found for phosphatidylserine. Endogenous ENaC activity, measured by the single-channel patch-clamp technique, increased in normal human SAECs after challenging SAEC with EVs from either the CF or asthma groups compared to control EVs. In conclusion, EVs isolated from BALF of pediatric patients with CF or asthma have unique lipid profiles. Despite the differences, both types of EVs increase ENaC activity in normal human SAECs compared to control EVs isolated from the conditioned media of these cells.
Collapse
Affiliation(s)
- Mohammed A Al-Humiari
- Department of Pediatrics, Pediatric Pulmonology, University of Florida, Gainesville, FL, United States of America
| | - Ling Yu
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States of America
| | - Lauren P Liu
- Department of Physiology and Aging, University of Florida, Gainesville, FL, United States of America
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States of America
| | - Kubra M Tuna
- Department of Endocrinology, University of Florida, Gainesville, FL, United States of America
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States of America
| | - Abdel A Alli
- Department of Pediatrics, Pediatric Pulmonology, University of Florida, Gainesville, FL, United States of America; Department of Physiology and Aging, University of Florida, Gainesville, FL, United States of America; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL, United States of America.
| |
Collapse
|
4
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, Villanueva-Tobaldo CV, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Epithelial Transport in Disease: An Overview of Pathophysiology and Treatment. Cells 2023; 12:2455. [PMID: 37887299 PMCID: PMC10605148 DOI: 10.3390/cells12202455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Epithelial transport is a multifaceted process crucial for maintaining normal physiological functions in the human body. This comprehensive review delves into the pathophysiological mechanisms underlying epithelial transport and its significance in disease pathogenesis. Beginning with an introduction to epithelial transport, it covers various forms, including ion, water, and nutrient transfer, followed by an exploration of the processes governing ion transport and hormonal regulation. The review then addresses genetic disorders, like cystic fibrosis and Bartter syndrome, that affect epithelial transport. Furthermore, it investigates the involvement of epithelial transport in the pathophysiology of conditions such as diarrhea, hypertension, and edema. Finally, the review analyzes the impact of renal disease on epithelial transport and highlights the potential for future research to uncover novel therapeutic interventions for conditions like cystic fibrosis, hypertension, and renal failure.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain;
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Carlota Valeria Villanueva-Tobaldo
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
5
|
Gholam MF, Bala N, Dogan YE, Alli AA. Augmentation of Cathepsin Isoforms in Diabetic db/db Mouse Kidneys Is Associated with an Increase in Renal MARCKS Expression and Proteolysis. Int J Mol Sci 2023; 24:12484. [PMID: 37569859 PMCID: PMC10419664 DOI: 10.3390/ijms241512484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The expression of the myristoylated alanine-rich C-kinase substrate (MARCKS) family of proteins in the kidneys plays an important role in the regulation of the renal epithelial sodium channel (ENaC) and hence overall blood pressure regulation. The function of MARCKS is regulated by post-translational modifications including myristoylation, phosphorylation, and proteolysis. Proteases known to cleave both ENaC and MARCKS have been shown to contribute to the development of high blood pressure, or hypertension. Here, we investigated protein expression and proteolysis of MARCKS, protein expression of multiple protein kinase C (PKC) isoforms, and protein expression and activity of several different proteases in the kidneys of diabetic db/db mice compared to wild-type littermate mice. In addition, MARCKS protein expression was assessed in cultured mouse cortical collecting duct (mpkCCD) cells treated with normal glucose and high glucose concentrations. Western blot and densitometric analysis showed less abundance of the unprocessed form of MARCKS and increased expression of a proteolytically cleaved form of MARCKS in the kidneys of diabetic db/db mice compared to wild-type mice. The protein expression levels of PKC delta and PKC epsilon were increased, while cathepsin B, cathepsin S, and cathepsin D were augmented in diabetic db/db kidneys compared to those of wild-type mice. An increase in the cleaved form of MARCKS was observed in mpkCCD cells cultured in high glucose compared to normal glucose concentrations. Taken together, these results suggest that high glucose may contribute to an increase in the proteolysis of renal MARCKS, while the upregulation of the cathepsin proteolytic pathway positively correlates with increased proteolysis of MARCKS in diabetic kidneys, where PKC expression is augmented.
Collapse
Affiliation(s)
- Mohammed F. Gholam
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 22384, Saudi Arabia
| | - Niharika Bala
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Yunus E. Dogan
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Abdel A. Alli
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Medicine Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Bala N, Yu L, Liu LP, Shelton L, Xu Y, Ghayee HK, Alli AA. Metabolic Characterization and Glyceraldehyde-3-Phosphate Dehydrogenase-Dependent Regulation of Epithelial Sodium Channels in hPheo1 Wild-type and SDHB Knockdown Cells. Endocrinology 2023; 164:7034155. [PMID: 36763043 DOI: 10.1210/endocr/bqad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Pheochromocytomas (PCC) and paragangliomas (PGL) are rare neuroendocrine tumors with limited curative treatment options outside of surgical resection. Patients with mutations in succinate dehydrogenase subunit B (SDHB) are at an increased risk of malignant and aggressive disease. As cation channels are associated with tumorigenesis, we studied the expression and activity of cation channels from the Degenerin superfamily in a progenitor cell line derived from a human PCC. hPheo1 wild-type (WT) and SDHB knockdown (KD) cells were studied to investigate whether epithelial sodium channels (ENaC) and acid-sensing ion channels (ASIC) are regulated by the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). First, we performed targeted metabolomic studies and quantified changes in glycolysis pathway intermediates and citric acid cycle intermediates using hPheo1 WT cells and SDHB KD cells. Next, we performed protein biochemistry and electrophysiology studies to characterize the protein expression and activity, respectively, of these ion channels. Our western blot experiments show both ENaC alpha and ASIC1/2 are expressed in both hPheo1 WT and SDHB KD cells, with lower levels of a cleaved 60 kDa form of ENaC in SDHB KD cells. Single-channel patch clamp studies corroborate these results and further indicate channel activity is decreased in SDHB KD cells. Additional experiments showed a more significant decreased membrane potential in SDHB KD cells, which were sensitive to amiloride compared to WT cells. We provide evidence for the differential expression and activity of ENaC and ASIC hybrid channels in hPheo1 WT and SDHB KD cells, providing an important area of investigation in understanding SDHB-related disease.
Collapse
Affiliation(s)
- Niharika Bala
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ling Yu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lauren P Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Yiling Xu
- Department of Medicine, Division of Endocrinology & Metabolism, University of Florida College of Medicine, Gainesville, FL, USA
| | - Hans K Ghayee
- Department of Medicine, Division of Endocrinology & Metabolism, University of Florida College of Medicine, Gainesville, FL, USA
- Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Abdel A Alli
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
7
|
Scindia YM, Gholam MF, Waleed A, Liu LP, Chacko KM, Desai D, Lopez JP, Malik Z, Schramm WC, Morales AG, Carson-Marino M, Alli AA. Metformin Alleviates Diabetes-Associated Hypertension by Attenuating the Renal Epithelial Sodium Channel. Biomedicines 2023; 11:305. [PMID: 36830842 PMCID: PMC9953274 DOI: 10.3390/biomedicines11020305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Diabetic nephropathy is the primary cause of morbidity in type 2 diabetes mellitus (T2DM) patients. New data indicate that hypertension, a common comorbidity in T2DM, can worsen outcomes of diabetic nephropathy. While metformin is a commonly prescribed drug for treating type 2 diabetes, its blood pressure regulating ability is not well documented. The aim of this study was to investigate the effect of metformin on normalizing blood pressure in salt-loaded hypertensive diabetic db/db mice. Sixteen-week-old male and female diabetic db/db mice were individually placed in metabolic cages and then randomized to a control vehicle (saline) or metformin treatment group. We evaluated the blood pressure reducing ability of metformin in salt-induced hypertension and progression of nephropathy in db/db mice. We observed that metformin- normalized systolic blood pressure in hypertensive diabetic mice. Mechanistically, metformin treatment reduced renal cathepsin B expression. Low cathepsin B expression was associated with reduced expression and activity of the epithelial sodium channel (ENaC), sodium retention, and thus control of hypertension. In addition, we identified that urinary extracellular vesicles (EVs) from the diabetic mice are enriched in cathepsin B. Compared to treatment with urinary EVs of vehicle-treated hypertensive diabetic mice, the amiloride-sensitive transepithelial current was significantly attenuated upon exposure of renal collecting duct cells to urinary EVs isolated from metformin-treated db/db mice or cathepsin B knockout mice. Collectively, our study identifies a novel blood pressure reducing role of metformin in diabetic nephropathy by regulating the cathepsin B-ENaC axis.
Collapse
Affiliation(s)
- Yogesh M. Scindia
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, University of Florida, Gainesville, FL 32610, USA
| | - Mohammed F. Gholam
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
| | - Alina Waleed
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Lauren P. Liu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kevin M. Chacko
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Dhruv Desai
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Juliana Pena Lopez
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zeeshan Malik
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Whitney C. Schramm
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Angelica G. Morales
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Morgan Carson-Marino
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Abdel A. Alli
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
8
|
Yue Q, Al-Khalili O, Moseley A, Yoshigi M, Wynne BM, Ma H, Eaton DC. PIP 2 Interacts Electrostatically with MARCKS-like Protein-1 and ENaC in Renal Epithelial Cells. BIOLOGY 2022; 11:biology11121694. [PMID: 36552204 PMCID: PMC9774185 DOI: 10.3390/biology11121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
We examined the interaction of a membrane-associated protein, MARCKS-like Protein-1 (MLP-1), and an ion channel, Epithelial Sodium Channel (ENaC), with the anionic lipid, phosphatidylinositol 4, 5-bisphosphate (PIP2). We found that PIP2 strongly activates ENaC in excised, inside-out patches with a half-activating concentration of 21 ± 1.17 µM. We have identified 2 PIP2 binding sites in the N-terminus of ENaC β and γ with a high concentration of basic residues. Normal channel activity requires MLP-1's strongly positively charged effector domain to electrostatically sequester most of the membrane PIP2 and increase the local concentration of PIP2. Our previous data showed that ENaC covalently binds MLP-1 so PIP2 bound to MLP-1 would be near PIP2 binding sites on the cytosolic N terminal regions of ENaC. We have modified the charge structure of the PIP2 -binding domains of MLP-1 and ENaC and showed that the changes affect membrane localization and ENaC activity in a way consistent with electrostatic theory.
Collapse
Affiliation(s)
- Qiang Yue
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Otor Al-Khalili
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Auriel Moseley
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Masaaki Yoshigi
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Brandi Michele Wynne
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Heping Ma
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
| | - Douglas C. Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +1-404-727-4533; Fax: +1-404-727-3425
| |
Collapse
|
9
|
Lucas R, Hadizamani Y, Enkhbaatar P, Csanyi G, Caldwell RW, Hundsberger H, Sridhar S, Lever AA, Hudel M, Ash D, Ushio-Fukai M, Fukai T, Chakraborty T, Verin A, Eaton DC, Romero M, Hamacher J. Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance. Front Physiol 2022; 12:793251. [PMID: 35264975 PMCID: PMC8899333 DOI: 10.3389/fphys.2021.793251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Alveolar-capillary leak is a hallmark of the acute respiratory distress syndrome (ARDS), a potentially lethal complication of severe sepsis, trauma and pneumonia, including COVID-19. Apart from barrier dysfunction, ARDS is characterized by hyper-inflammation and impaired alveolar fluid clearance (AFC), which foster the development of pulmonary permeability edema and hamper gas exchange. Tumor Necrosis Factor (TNF) is an evolutionarily conserved pleiotropic cytokine, involved in host immune defense against pathogens and cancer. TNF exists in both membrane-bound and soluble form and its mainly -but not exclusively- pro-inflammatory and cytolytic actions are mediated by partially overlapping TNFR1 and TNFR2 binding sites situated at the interface between neighboring subunits in the homo-trimer. Whereas TNFR1 signaling can mediate hyper-inflammation and impaired barrier function and AFC in the lungs, ligand stimulation of TNFR2 can protect from ventilation-induced lung injury. Spatially distinct from the TNFR binding sites, TNF harbors within its structure a lectin-like domain that rather protects lung function in ARDS. The lectin-like domain of TNF -mimicked by the 17 residue TIP peptide- represents a physiological mediator of alveolar-capillary barrier protection. and increases AFC in both hydrostatic and permeability pulmonary edema animal models. The TIP peptide directly activates the epithelial sodium channel (ENaC) -a key mediator of fluid and blood pressure control- upon binding to its α subunit, which is also a part of the non-selective cation channel (NSC). Activity of the lectin-like domain of TNF is preserved in complexes between TNF and its soluble TNFRs and can be physiologically relevant in pneumonia. Antibody- and soluble TNFR-based therapeutic strategies show considerable success in diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel disease, but their chronic use can increase susceptibility to infection. Since the lectin-like domain of TNF does not interfere with TNF's anti-bacterial actions, while exerting protective actions in the alveolar-capillary compartments, it is currently evaluated in clinical trials in ARDS and COVID-19. A more comprehensive knowledge of the precise role of the TNFR binding sites versus the lectin-like domain of TNF in lung injury, tissue hypoxia, repair and remodeling may foster the development of novel therapeutics for ARDS.
Collapse
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Rudolf Lucas,
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Robert W. Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Harald Hundsberger
- Department of Medical Biotechnology, University of Applied Sciences, Krems, Austria,Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Supriya Sridhar
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Alice Ann Lever
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Dipankar Ash
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tohru Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Maritza Romero
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland,Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, University Medical Centre of the Saarland, Saarland University, Homburg, Germany,Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, Homburg, Germany,Jürg Hamacher,
| |
Collapse
|
10
|
Khuituan P, Huipao N, Jeanmard N, Thantongsakul S, Promjun W, Chuthong S, Tipbunjong C, Peerakietkhajorn S. Sargassum plagiophyllum Extract Enhances Colonic Functions and Modulates Gut Microbiota in Constipated Mice. Nutrients 2022; 14:496. [PMID: 35276855 PMCID: PMC8838385 DOI: 10.3390/nu14030496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/11/2022] Open
Abstract
Constipation is a symptom that is widely found in the world’s population. Various dietary supplementations are used to relieve and prevent constipation. Seaweed is widely used for its health benefits. In this study, we aimed to investigate the effects of Sargassum plagiophyllum extract (SPE) on functions of the gastrointestinal tract and gut microbiota. The results show that SPE pretreatment increased the frequency of gut contraction, leading to reduce gut transit time. SPE pretreatment also significantly increased the secretion of Cl− and reduced Na+ absorption, increasing fecal water content in constipated mice (p < 0.05). In addition, the Bifidobacteria population in cecal contents was significantly higher in constipated mice pretreated with 500 mg/kg SPE for 14 days than in untreated constipated mice (p < 0.05). Our findings suggest that SPE can prevent constipation in loperamide-induced mice. This study may be useful for the development of human food supplements from S. plagiophyllum, which prevent constipation.
Collapse
Affiliation(s)
- Pissared Khuituan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (P.K.); (N.H.); (C.T.)
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla 90110, Thailand; (N.J.); (S.T.); (W.P.); (S.C.)
| | - Nawiya Huipao
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (P.K.); (N.H.); (C.T.)
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla 90110, Thailand; (N.J.); (S.T.); (W.P.); (S.C.)
| | - Nilobon Jeanmard
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla 90110, Thailand; (N.J.); (S.T.); (W.P.); (S.C.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sitthiwach Thantongsakul
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla 90110, Thailand; (N.J.); (S.T.); (W.P.); (S.C.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Warittha Promjun
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla 90110, Thailand; (N.J.); (S.T.); (W.P.); (S.C.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Suwarat Chuthong
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla 90110, Thailand; (N.J.); (S.T.); (W.P.); (S.C.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (P.K.); (N.H.); (C.T.)
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla 90110, Thailand; (N.J.); (S.T.); (W.P.); (S.C.)
| | - Saranya Peerakietkhajorn
- Gut Biology and Microbiota Research Unit, Prince of Songkla University, Songkhla 90110, Thailand; (N.J.); (S.T.); (W.P.); (S.C.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
11
|
Iron Inhibits the Translation and Activity of the Renal Epithelial Sodium Channel. BIOLOGY 2022; 11:biology11010123. [PMID: 35053120 PMCID: PMC8772986 DOI: 10.3390/biology11010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Hypertension is associated with an increased renal expression and activity of the epithelial sodium channel (ENaC) and iron deficiency. Distal tubules absorb iron, causing perturbations that may influence local responses. In this observational study, we investigated the relationship between iron content and ENaC expression and activity using two cell lines and hepcidin knockout mice (a murine model of iron overload). We found that iron did not transcriptionally regulate ENaC in hepcidin knockout mice or in vitro in collecting duct cells. However, the renal tubules of hepcidin knockout mice have a lower expression of ENaC protein. ENaC activity in cultured Xenopus 2F3 cells and mpkCCD cells was inhibited by iron, which could be reversed by iron chelation. Thus, our novel findings implicate iron as a regulator of ENaC protein and its activity.
Collapse
|
12
|
The Pharmacological Inhibition of CaMKII Regulates Sodium Chloride Cotransporter Activity in mDCT15 Cells. BIOLOGY 2021; 10:biology10121335. [PMID: 34943250 PMCID: PMC8698651 DOI: 10.3390/biology10121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The thiazide-sensitive sodium chloride cotransporter (NCC) in the distal convoluted tubule is responsible for reabsorbing up to one-tenth of the total filtered load of sodium in the kidney. The actin cytoskeleton is thought to regulate various transport proteins in the kidney but the regulation of the NCC by the actin cytoskeleton is largely unknown. Here, we identify a direct interaction between the NCC and the cytoskeletal protein filamin A in mouse distal convoluted tubule (mDCT15) cells and in the native kidney. We show that the disruption of the actin cytoskeleton by two different mechanisms downregulates NCC activity. As filamin A is a substrate of the Ca2+/calmodulin-dependent protein kinase II (CaMKII), we investigate the physiological significance of CaMKII inhibition on NCC luminal membrane protein expression and NCC activity in mDCT15 cells. The pharmacological inhibition of CaMKII with the compound KN93 increases the active form of the NCC (phospho-NCC) at the luminal membrane and also increases NCC activity in mDCT15 cells. These data suggest that the interaction between the NCC and filamin A is dependent on CaMKII activity, which may serve as a feedback mechanism to maintain basal levels of NCC activity in the distal nephron.
Collapse
|
13
|
Chacko KM, Nouri MZ, Schramm WC, Malik Z, Liu LP, Denslow ND, Alli AA. Tempol Alters Urinary Extracellular Vesicle Lipid Content and Release While Reducing Blood Pressure during the Development of Salt-Sensitive Hypertension. Biomolecules 2021; 11:biom11121804. [PMID: 34944449 PMCID: PMC8699083 DOI: 10.3390/biom11121804] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
Salt-sensitive hypertension resulting from an increase in blood pressure after high dietary salt intake is associated with an increase in the production of reactive oxygen species (ROS). ROS are known to increase the activity of the epithelial sodium channel (ENaC), and therefore, they have an indirect effect on sodium retention and increasing blood pressure. Extracellular vesicles (EVs) carry various molecules including proteins, microRNAs, and lipids and play a role in intercellular communication and intracellular signaling in health and disease. We investigated changes in EV lipids, urinary electrolytes, osmolality, blood pressure, and expression of renal ENaC and its adaptor protein, MARCKS/MARCKS Like Protein 1 (MLP1) after administration of the antioxidant Tempol in salt-sensitive hypertensive 129Sv mice. Our results show Tempol infusion reduces systolic blood pressure and protein expression of the alpha subunit of ENaC and MARCKS in the kidney cortex of hypertensive 129Sv mice. Our lipidomic data show an enrichment of diacylglycerols and monoacylglycerols and reduction in ceramides, dihydroceramides, and triacylglycerols in urinary EVs from these mice after Tempol treatment. These data will provide insight into our understanding of mechanisms involving strategies aimed to inhibit ROS to alleviate salt-sensitive hypertension.
Collapse
Affiliation(s)
- Kevin M. Chacko
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA; (M.-Z.N.); (N.D.D.)
| | - Whitney C. Schramm
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Zeeshan Malik
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Lauren P. Liu
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA; (M.-Z.N.); (N.D.D.)
| | - Abdel A. Alli
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Correspondence: ; Tel.: +1-(352)-273-7877
| |
Collapse
|
14
|
Liu LP, Gholam MF, Elshikha AS, Kawakibi T, Elmoujahid N, Moussa HH, Song S, Alli AA. Transgenic Mice Overexpressing Human Alpha-1 Antitrypsin Exhibit Low Blood Pressure and Altered Epithelial Transport Mechanisms in the Inactive and Active Cycles. Front Physiol 2021; 12:710313. [PMID: 34630137 PMCID: PMC8493122 DOI: 10.3389/fphys.2021.710313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Human alpha-1 antitrypsin (hAAT) is a versatile protease inhibitor, but little is known about its targets in the aldosterone-sensitive distal nephron and its role in electrolyte balance and blood pressure control. We analyzed urinary electrolytes, osmolality, and blood pressure from hAAT transgenic (hAAT-Tg) mice and C57B/6 wild-type control mice maintained on either a normal salt or high salt diet. Urinary sodium, potassium, and chloride concentrations as well as urinary osmolality were lower in hAAT-Tg mice maintained on a high salt diet during both the active and inactive cycles. hAAT-Tg mice showed a lower systolic blood pressure compared to C57B6 mice when maintained on a normal salt diet but this was not observed when they were maintained on a high salt diet. Cathepsin B protein activity was less in hAAT-Tg mice compared to wild-type controls. Protein expression of the alpha subunit of the sodium epithelial channel (ENaC) alpha was also reduced in the hAAT-Tg mice. Natriuretic peptide receptor C (NPRC) protein expression in membrane fractions of the kidney cortex was reduced while circulating levels of atrial natriuretic peptide (ANP) were greater in hAAT-Tg mice compared to wild-type controls. This study characterizes the electrolyte and blood pressure phenotype of hAAT-Tg mice during the inactive and active cycles and investigates the mechanism by which ENaC activation is inhibited in part by a mechanism involving decreased cathepsin B activity and increased ANP levels in the systemic circulation.
Collapse
Affiliation(s)
- Lauren P Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Mohammed F Gholam
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ahmed Samir Elshikha
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Tamim Kawakibi
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Nasseem Elmoujahid
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hassan H Moussa
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Sihong Song
- Department of Pharmaceutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States.,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
15
|
Nouri MZ, Yu L, Liu L, Chacko KM, Denslow ND, LaDisa JF, Alli AA. Increased endothelial sodium channel activity by extracellular vesicles in human aortic endothelial cells: Putative role of MLP1 and bioactive lipids. Am J Physiol Cell Physiol 2021; 321:C535-C548. [PMID: 34288724 DOI: 10.1152/ajpcell.00092.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) contain biological molecules and are secreted by cells into the extracellular milieu. The endothelial sodium channel (EnNaC) plays an important role in modulating endothelial cell stiffness. We hypothesized EVs secreted from human aortic endothelial cells (hAoEC) positively regulate EnNaC in an autocrine dependent manner. A comprehensive lipidomic analysis using targeted mass spectrometry was performed on multiple preparations of EVs isolated from the conditioned media of hAoEC or complete growth media of these cells. Cultured hAoEC challenged with EVs isolated from the conditioned media of these cells resulted in an increase in EnNaC activity when compared to the same concentration of media derived EVs or vehicle alone. EVs isolated from the conditioned media of hAoEC but not human fibroblast cells were enriched in MARCKS Like Protein 1 (MLP1). The pharmacological inhibition of the negative regulator of MLP1, protein kinase C, in cultured hAoEC resulted in an increase in EV size and release compared to vehicle or pharmacological inhibition of protein kinase D. The MLP1 enriched EVs increased the density of actin filaments in cultured hAoEC compared to EVs isolated from human fibroblast cells lacking MLP1. We quantified 141 lipids from glycerolipids, glycerophospholipids, and sphingolipids in conditioned media EVs that represented twice the number found in control media EVs. The concentrations of sphingomyelin, lysophosphatidylcholine and phosphatidylethanolamine were higher in conditioned media EVs. These results provide the first evidence for EnNaC regulation in hAoEC by EVs and provide insight into a possible mechanism involving MLP1, unsaturated lipids, and bioactive lipids.
Collapse
Affiliation(s)
- Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Ling Yu
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Lauren Liu
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Kevin M Chacko
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - John F LaDisa
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States.,Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Zhou Z, Hua Y, Ding Y, Hou Y, Yu T, Cui Y, Nie H. Conditioned Medium of Bone Marrow Mesenchymal Stem Cells Involved in Acute Lung Injury by Regulating Epithelial Sodium Channels via miR-34c. Front Bioeng Biotechnol 2021; 9:640116. [PMID: 34368091 PMCID: PMC8336867 DOI: 10.3389/fbioe.2021.640116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/17/2021] [Indexed: 01/01/2023] Open
Abstract
Background One of the characteristics of acute lung injury (ALI) is severe pulmonary edema, which is closely related to alveolar fluid clearance (AFC). Mesenchymal stem cells (MSCs) secrete a wide range of cytokines, growth factors, and microRNA (miRNAs) through paracrine action to participate in the mechanism of pulmonary inflammatory response, which increase the clearance of edema fluid and promote the repair process of ALI. The epithelial sodium channel (ENaC) is the rate-limiting step in the sodium–water transport and edema clearance in the alveolar cavity; the role of bone marrow-derived MSC-conditioned medium (BMSC-CM) in edema clearance and how miRNAs affect ENaC are still seldom known. Methods CCK-8 cell proliferation assay was used to detect the effect of BMSC-CM on the survival of alveolar type 2 epithelial (AT2) cells. Real-time polymerase chain reaction (RT-PCR) and western blot were used to detect the expression of ENaC in AT2 cells. The effects of miR-34c on lung fluid absorption were observed in LPS-treated mice in vivo, and the transepithelial short-circuit currents in the monolayer of H441 cells were examined by the Ussing chamber setup. Dual luciferase reporter gene assay was used to detect the target gene of miR-34c. Results BMSC-CM could increase the viability of mouse AT2 cells. RT-PCR and western blot results showed that BMSC-CM significantly increased the expression of the γ-ENaC subunit in mouse AT2 cells. MiR-34c could restore the AFC and lung wet/dry weight ratio in the ALI animal model, and Ussing chamber assay revealed that miR-34c enhanced the amiloride-sensitive currents associated with ENaC activity in intact H441 cell monolayers. In addition, we observed a higher expression of miR-34c in mouse AT2 cells administrated with BMSC-CM, and the overexpression or inhibition of miR-34c could regulate the expression of ENaC protein and alter the function of ENaC. Finally, we detected that myristoylated alanine-rich C kinase substrate (MARCKS) may be one of the target genes of miR-34c. Conclusion Our results indicate that BMSC-CM may alleviate LPS-induced ALI through miR-34c targeting MARCKS and regulate ENaC indirectly, which further explores the benefit of paracrine effects of bone marrow-derived MSCs on edematous ALI.
Collapse
Affiliation(s)
- Zhiyu Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Hua
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Iyer DN, Faruq O, Zhang L, Rastgoo N, Liu A, Chang H. Pathophysiological roles of myristoylated alanine-rich C-kinase substrate (MARCKS) in hematological malignancies. Biomark Res 2021; 9:34. [PMID: 33958003 PMCID: PMC8101130 DOI: 10.1186/s40364-021-00286-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The myristoylated alanine-rich C-kinase substrate (MARCKS) protein has been at the crossroads of multiple signaling pathways that govern several critical operations in normal and malignant cellular physiology. Functioning as a target of protein kinase C, MARCKS shuttles between the phosphorylated cytosolic form and the unphosphorylated plasma membrane-bound states whilst regulating several molecular partners including, but not limited to calmodulin, actin, phosphatidylinositol-4,5-bisphosphate, and phosphoinositide-3-kinase. As a result of these interactions, MARCKS directly or indirectly modulates a host of cellular functions, primarily including cytoskeletal reorganization, membrane trafficking, cell secretion, inflammatory response, cell migration, and mitosis. Recent evidence indicates that dysregulated expression of MARCKS is associated with the development and progression of hematological cancers. While it is understood that MARCKS impacts the overall carcinogenesis as well as plays a part in determining the disease outcome in blood cancers, we are still at an early stage of interpreting the pathophysiological roles of MARCKS in neoplastic disease. The situation is further complicated by contradictory reports regarding the role of phosphorylated versus an unphosphorylated form of MARCKS as an oncogene versus tumor suppressor in blood cancers. In this review, we will investigate the current body of knowledge and evolving concepts of the physical properties, molecular network, functional attributes, and the likely pathogenic roles of MARCKS in hematological malignancies. Key emphasis will also be laid upon understanding the novel mechanisms by which MARCKS determines the overall disease prognosis by playing a vital role in the induction of therapeutic resistance. Additionally, we will highlight the importance of MARCKS as a valuable therapeutic target in blood cancers and will discuss the potential of existing strategies available to tackle MARCKS-driven blood cancers.
Collapse
Affiliation(s)
- Deepak Narayanan Iyer
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Omar Faruq
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Lun Zhang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Nasrin Rastgoo
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Aijun Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital University, Beijing, China.
| | - Hong Chang
- Laboratory medicine program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
19
|
Xu BY, Jin Y, Ma XH, Wang CY, Guo Y, Zhou D. The potential role of mechanically sensitive ion channels in the physiology, injury, and repair of articular cartilage. J Orthop Surg (Hong Kong) 2021; 28:2309499020950262. [PMID: 32840428 DOI: 10.1177/2309499020950262] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biomechanical factors play an extremely important role in regulating the function of articular chondrocytes. Understanding the mechanical factors that drive chondrocyte biological responses is at the heart of our interpretation of cascade events leading to changes in articular cartilage osteoarthritis. The mechanism by which mechanical load is transduced into intracellular signals that can regulate chondrocyte gene expression remains largely unknown. The mechanically sensitive ion channel (MSC) may be one of its specific mechanisms. This review focuses on four ion channels involved in the mechanotransduction of chondrocytes, exploring their properties and the main factors that activate the associated pathways. The upstream and downstream potential relationships between the protein pathways were also explored. The specific biophysical mechanism of the chondrocyte mechanical microenvironment is becoming the focus of research. Elucidating the mechanotransduction mechanism of MSC is essential for the research of biophysical pathogenesis and targeted drugs in cartilage injury-related diseases.
Collapse
Affiliation(s)
- Bo-Yang Xu
- School of Acupuncture-Moxibustion and Tuina, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yu Jin
- School of Chinese Medicine, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Xiao-Hui Ma
- School of Culture and Health Communication, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chi-Yu Wang
- Department of Electrical Engineering and Computer Sciences, 1438University of California, Berkeley, CA, USA
| | - Yi Guo
- School of Chinese Medicine, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Research Center of Experimental Acupuncture Science, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People's Republic of China
| | - Dan Zhou
- School of Acupuncture-Moxibustion and Tuina, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Research Center of Experimental Acupuncture Science, 58301Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People's Republic of China
| |
Collapse
|
20
|
Morachevskaya EA, Sudarikova AV. Actin dynamics as critical ion channel regulator: ENaC and Piezo in focus. Am J Physiol Cell Physiol 2021; 320:C696-C702. [PMID: 33471624 DOI: 10.1152/ajpcell.00368.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ion channels in plasma membrane play a principal role in different physiological processes, including cell volume regulation, signal transduction, and modulation of membrane potential in living cells. Actin-based cytoskeleton, which exists in a dynamic balance between monomeric and polymeric forms (globular and fibrillar actin), can be directly or indirectly involved in various cellular responses including modulation of ion channel activity. In this mini-review, we present an overview of the role of submembranous actin dynamics in the regulation of ion channels in excitable and nonexcitable cells. Special attention is focused on the important data about the involvement of actin assembly/disassembly and some actin-binding proteins in the control of the epithelial Na+ channel (ENaC) and mechanosensitive Piezo channels whose integral activity has a potential impact on membrane transport and multiple coupled cellular reactions. Growing evidence suggests that actin elements of the cytoskeleton can represent a "converging point" of various signaling pathways modulating the activity of ion transport proteins in cell membranes.
Collapse
|
21
|
Liao HW, Wang SM, Chan CK, Lin YH, Lin PC, Ho CH, Liu YC, Chueh JS, Wu VC. Transtubular potassium gradient predicts kidney function impairment after adrenalectomy in primary aldosteronism. Ther Adv Chronic Dis 2020; 11:2040622320944792. [PMID: 32922714 PMCID: PMC7457632 DOI: 10.1177/2040622320944792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/26/2020] [Indexed: 11/17/2022] Open
Abstract
Background: In primary aldosteronism (PA), kidney function impairment could be concealed
by relative hyperfiltration and emerge after adrenalectomy. We hypothesized
transtubular gradient potassium gradient (TTKG), a kidney aldosterone
bioactivity indicator, could correlate to end organ damage and forecast
kidney function impairment after adrenalectomy. Methods: In the present prospective study, we enrolled lateralized PA patients who
underwent adrenalectomy and were followed up 12 months after operation in
the Taiwan Primary Aldosteronism Investigation (TAIPAI) registry from 2010
to 2018. The clinical outcome was kidney function impairment, defined as
estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2
at 12 months after adrenalectomy. End organ damage is determined by
microalbuminuria and left ventricular mass. Results: In total, 323 patients [mean, 50.8 ± 10.9 years old; female 178 (55.1%)] were
enrolled. Comparing pre-operation and post-operation data, systolic blood
pressure, serum aldosterone, urinary albumin to creatinine ratio and eGFR
decreased. TTKG ⩾ 4.9 correlated with pre-operative urinary albumin to
creatinine ratio >50 mg/g [odds ratio (OR) = 2.42;
p = 0.034] and left ventricular mass (B = 20.10;
p = 0.018). Multivariate logistic regression analysis
demonstrated that TTKG ⩾ 4.9 could predict concealed chronic kidney disease
(OR = 5.42; p = 0.011) and clinical success (OR = 2.90,
p = 0.017) at 12 months after adrenalectomy. Conclusions: TTKG could predict concealed kidney function impairment and cure of
hypertension in PA patients after adrenalectomy. TTKG more than 4.9 as an
adverse surrogate of aldosterone and hypokalaemia correlated with
pre-operative end organ damage in terms of high proteinuria and cardiac
hypertrophy.
Collapse
Affiliation(s)
| | - Shuo-Meng Wang
- Department of Urology, National Taiwan University Hospital, Taipei
| | - Chieh-Kai Chan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu branch, Hsin-Chu
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Po-Chih Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Chen-Hsun Ho
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | - Jeff S Chueh
- Glickman Urological and Kidney Institute, and Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Room 1555, Clinical Research Building, 7 Chung-Shan South Road, Taipei 100
| |
Collapse
|
22
|
Archer CR, Enslow BT, Carver CM, Stockand JD. Phosphatidylinositol 4,5-bisphosphate directly interacts with the β and γ subunits of the sodium channel ENaC. J Biol Chem 2020; 295:7958-7969. [PMID: 32341072 PMCID: PMC7278353 DOI: 10.1074/jbc.ra120.012606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
The plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) regulates the activity of diverse ion channels to include the epithelial Na+ channel ENaC. Whether PIP2 regulation of ENaC is due to a direct phospholipid-protein interaction, remains obscure. To date, possible interaction of PIP2 with ENaC primarily has been tested indirectly through assays of channel function. A fragment-based biochemical analysis approach is used here to directly quantify possible PIP2-ENaC interactions. We find using the CIBN-CRY2 optogenetic dimerization system that the phosphoryl group positioned at carbon 5 of PIP2 is necessary for interaction with ENaC. Previous studies have implicated conserved basic residues in the cytosolic portions of β- and γ-ENaC subunits as being important for PIP2-ENaC interactions. To test this, we used synthetic peptides of these regions of β- and γ-ENaC. Steady-state intrinsic fluorescence spectroscopy demonstrated that phosphoinositides change the local conformation of the N terminus of β-ENaC, and two sites of γ-ENaC adjacent to the plasma membrane, suggesting direct interactions of PIP2 with these three regions. Microscale thermophoresis elaborated PIP2 interactions with the N termini of β- (Kd ∼5.2 μm) and γ-ENaC (Kd ∼13 μm). A weaker interaction site within the carboxyl terminus of γ-ENaC (Kd ∼800 μm) was also observed. These results support that PIP2 regulates ENaC activity by directly interacting with at least three distinct regions within the cytoplasmic domains of the channel that contain conserved basic residues. These interactions are probably electrostatic in nature, and are likely to bear a key structural role in support of channel activity.
Collapse
Affiliation(s)
- Crystal R Archer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Benjamin T Enslow
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, United States
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, United States
| |
Collapse
|
23
|
Rein JL, Heja S, Flores D, Carrisoza-Gaytán R, Lin NYC, Homan KA, Lewis JA, Satlin LM. Effect of luminal flow on doming of mpkCCD cells in a 3D perfusable kidney cortical collecting duct model. Am J Physiol Cell Physiol 2020; 319:C136-C147. [PMID: 32401606 DOI: 10.1152/ajpcell.00405.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cortical collecting duct (CCD) of the mammalian kidney plays a major role in the maintenance of total body electrolyte, acid/base, and fluid homeostasis by tubular reabsorption and excretion. The mammalian CCD is heterogeneous, composed of Na+-absorbing principal cells (PCs) and acid-base-transporting intercalated cells (ICs). Perturbations in luminal flow rate alter hydrodynamic forces to which these cells in the cylindrical tubules are exposed. However, most studies of tubular ion transport have been performed in cell monolayers grown on or epithelial sheets affixed to a flat support, since analysis of transepithelial transport in native tubules by in vitro microperfusion requires considerable expertise. Here, we report on the generation and characterization of an in vitro, perfusable three-dimensional kidney CCD model (3D CCD), in which immortalized mouse PC-like mpkCCD cells are seeded within a cylindrical channel embedded within an engineered extracellular matrix and subjected to luminal fluid flow. We find that a tight epithelial barrier composed of differentiated and polarized PCs forms within 1 wk. Immunofluorescence microscopy reveals the apical epithelial Na+ channel ENaC and basolateral Na+/K+-ATPase. On cessation of luminal flow, benzamil-inhibitable cell doming is observed within these 3D CCDs consistent with the presence of ENaC-mediated Na+ absorption. Our 3D CCD provides a geometrically and microphysiologically relevant platform for studying the development and physiology of renal tubule segments.
Collapse
Affiliation(s)
- Joshua L Rein
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Szilvia Heja
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel Flores
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rolando Carrisoza-Gaytán
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Neil Y C Lin
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Kimberly A Homan
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Jennifer A Lewis
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Lisa M Satlin
- Division of Pediatric Nephrology and Hypertension, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
24
|
Kleyman TR, Eaton DC. Regulating ENaC's gate. Am J Physiol Cell Physiol 2020; 318:C150-C162. [PMID: 31721612 PMCID: PMC6985836 DOI: 10.1152/ajpcell.00418.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Epithelial Na+ channels (ENaCs) are members of a family of cation channels that function as sensors of the extracellular environment. ENaCs are activated by specific proteases in the biosynthetic pathway and at the cell surface and remove embedded inhibitory tracts, which allows channels to transition to higher open-probability states. Resolved structures of ENaC and an acid-sensing ion channel revealed highly organized extracellular regions. Within the periphery of ENaC subunits are unique domains formed by antiparallel β-strands containing the inhibitory tracts and protease cleavage sites. ENaCs are inhibited by Na+ binding to specific extracellular site(s), which promotes channel transition to a lower open-probability state. Specific inositol phospholipids and channel modification by Cys-palmitoylation enhance channel open probability. How these regulatory factors interact in a concerted manner to influence channel open probability is an important question that has not been resolved. These various factors are reviewed, and the impact of specific factors on human disorders is discussed.
Collapse
Affiliation(s)
- Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, and Departments of Cell Biology and of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Douglas C Eaton
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
25
|
Ng R, Salem SS, Wu ST, Wu M, Lin HH, Shepherd AK, Joiner WJ, Wang JW, Su CY. Amplification of Drosophila Olfactory Responses by a DEG/ENaC Channel. Neuron 2019; 104:947-959.e5. [PMID: 31629603 DOI: 10.1016/j.neuron.2019.08.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Insect olfactory receptors operate as ligand-gated ion channels that directly transduce odor stimuli into electrical signals. However, in the absence of any known intermediate transduction steps, it remains unclear whether and how these ionotropic inputs are amplified in olfactory receptor neurons (ORNs). Here, we find that amplification occurs in the Drosophila courtship-promoting ORNs through Pickpocket 25 (PPK25), a member of the degenerin/epithelial sodium channel family (DEG/ENaC). Pharmacological and genetic manipulations indicate that, in Or47b and Ir84a ORNs, PPK25 mediates Ca2+-dependent signal amplification via an intracellular calmodulin-binding motif. Additionally, hormonal signaling upregulates PPK25 expression to determine the degree of amplification, with striking effects on male courtship. Together, these findings advance our understanding of sensory neurobiology by identifying an amplification mechanism compatible with ionotropic signaling. Moreover, this study offers new insights into DEG/ENaC activation by highlighting a novel means of regulation that is likely conserved across species.
Collapse
Affiliation(s)
- Renny Ng
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Secilia S Salem
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shiuan-Tze Wu
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Meilin Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hui-Hao Lin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew K Shepherd
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - William J Joiner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Tuna KM, Liu BC, Yue Q, Ghazi ZM, Ma HP, Eaton DC, Alli AA. Mal protein stabilizes luminal membrane PLC-β3 and negatively regulates ENaC in mouse cortical collecting duct cells. Am J Physiol Renal Physiol 2019; 317:F986-F995. [PMID: 31364376 PMCID: PMC6843038 DOI: 10.1152/ajprenal.00446.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/15/2023] Open
Abstract
Abnormally high epithelial Na+ channel (ENaC) activity in the aldosterone-sensitive distal nephron and collecting duct leads to hypertension. Myelin and lymphocyte (Mal) is a lipid raft-associated protein that has been previously shown to regulate Na+-K-2Cl- cotransporter and aquaporin-2 in the kidney, but it is not known whether it regulates renal ENaC. ENaC activity is positively regulated by the anionic phospholipid phosphate phosphatidylinositol 4,5-bisphosphate (PIP2). Members of the myristoylated alanine-rich C-kinase substrate (MARCKS) family increase PIP2 concentrations at the plasma membrane, whereas hydrolysis of PIP2 by phospholipase C (PLC) reduces PIP2 abundance. Our hypothesis was that Mal protein negatively regulates renal ENaC activity by stabilizing PLC protein expression at the luminal plasma membrane. We investigated the association between Mal, MARCKS-like protein, and ENaC. We showed Mal colocalizes with PLC-β3 in lipid rafts and positively regulates its protein expression, thereby reducing PIP2 availability at the plasma membrane. Kidneys of 129Sv mice injected with MAL shRNA lentivirus resulted in increased ENaC open probability in split-open renal tubules. Overexpression of Mal protein in mouse cortical collecting duct (mpkCCD) cells resulted in an increase in PLC-β3 protein expression at the plasma membrane. siRNA-mediated knockdown of MAL in mpkCCD cells resulted in a decrease in PLC-β3 protein expression and an increase in PIP2 abundance. Moreover, kidneys from salt-loaded mice showed less Mal membrane protein expression compared with non-salt-loaded mice. Taken together, Mal protein may play an essential role in the negative feedback of ENaC gating in principal cells of the collecting duct.
Collapse
Affiliation(s)
- Kubra M Tuna
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Bing-Chen Liu
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Qiang Yue
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Zinah M Ghazi
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
27
|
Alli A, Yu L, Holzworth M, Richards J, Cheng KY, Lynch IJ, Wingo CS, Gumz ML. Direct and indirect inhibition of the circadian clock protein Per1: effects on ENaC and blood pressure. Am J Physiol Renal Physiol 2019; 316:F807-F813. [PMID: 30759025 DOI: 10.1152/ajprenal.00408.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Circadian rhythms govern physiological functions and are important for overall health. The molecular circadian clock comprises several transcription factors that mediate circadian control of physiological function, in part, by regulating gene expression in a tissue-specific manner. These connections are well established, but the underlying mechanisms are incompletely understood. The overall goal of this study was to examine the connection among the circadian clock protein Period 1 (Per1), epithelial Na+ channel (ENaC), and blood pressure (BP) using a multipronged approach. Using global Per1 knockout mice on a 129/sv background in combination with a high-salt diet plus mineralocorticoid treatment, we demonstrated that loss of Per1 in this setting is associated with protection from hypertension. Next, we used the ENaC inhibitor benzamil to demonstrate a role for ENaC in BP regulation and urinary Na+ excretion in 129/sv mice. We targeted Per1 indirectly using pharmacological inhibition of Per1 nuclear entry in vivo to demonstrate altered expression of known Per1 target genes as well as a BP-lowering effect in 129/sv mice. Finally, we directly inhibited Per1 via genetic knockdown in amphibian distal nephron cells to demonstrate, for the first time, that reduced Per1 expression is associated with decreased ENaC activity at the single channel level.
Collapse
Affiliation(s)
- Abdel Alli
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida.,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida
| | - Ling Yu
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida.,College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing , China
| | - Meaghan Holzworth
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida
| | - Jacob Richards
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida
| | - Kit-Yan Cheng
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida.,North Florida/South Georgia Veterans Affairs Medical Center , Gainesville, Florida
| | - I Jeanette Lynch
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida.,North Florida/South Georgia Veterans Affairs Medical Center , Gainesville, Florida
| | - Charles S Wingo
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida.,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida.,North Florida/South Georgia Veterans Affairs Medical Center , Gainesville, Florida
| | - Michelle L Gumz
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida.,North Florida/South Georgia Veterans Affairs Medical Center , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| |
Collapse
|
28
|
Saitta B, Elphingstone J, Limfat S, Shkhyan R, Evseenko D. CaMKII inhibition in human primary and pluripotent stem cell-derived chondrocytes modulates effects of TGFβ and BMP through SMAD signaling. Osteoarthritis Cartilage 2019; 27:158-171. [PMID: 30205161 PMCID: PMC6309757 DOI: 10.1016/j.joca.2018.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Upregulation of calcium/calmodulin-dependent kinase II (CaMKII) is implicated in the pathogenesis of osteoarthritis (OA) and reactivation of articular cartilage hypertrophy. However, direct inhibition of CaMKII unexpectedly augmented symptoms of OA in animal models. The role of CaMKII in OA remains unclear and requires further investigation. METHODS Analysis of CaMKII expression was performed in normal human and OA articular chondrocytes, and signaling mechanisms were assessed in articular, fetal and Pluripotent Stem Cell (PSC)-derived human chondrocytes using pharmacological (KN93), peptide (AC3-I) and small interfering RNA (siRNA) inhibitors of CaMKII. RESULTS Expression levels of phospho-CaMKII (pCaMKII) were significantly and consistently increased in human OA specimens. BMP2/4 activated expression of pCaMKII as well as COLII and COLX in human adult articular chondrocytes, and also increased the levels and nuclear localization of SMADs1/5/8, while TGFβ1 showed minimal or no activation of the chondrogenic program in adult chondrocytes. Targeted blockade of CaMKII with specific siRNAs decreased levels of pSMADs, COLII, COLX and proteoglycans in normal and OA adult articular chondrocytes in the presence of both BMP4 and TGFβ1. Both human fetal and PSC-derived chondrocytes also demonstrated a decrease of chondrogenic differentiation in the presence of small molecule and peptide inhibitors of CaMKII. Furthermore, immunoprecipitation for SMADs1/5/8 or 2/3 followed by western blotting for pCaMKII showed direct interaction between SMADs and pCaMKII in primary chondrocytes. CONCLUSION Current study demonstrates a direct role for CaMKII in TGF-β and BMP-mediated responses in primary and PSC-derived chondrocytes. These findings have direct implications for tissue engineering of cartilage tissue from stem cells and therapeutic management of OA.
Collapse
Affiliation(s)
- Biagio Saitta
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA,Medicine Div. of Nephrology and Hypertension, University of Southern California, Los Angeles, CA, 90033, USA
| | - Joseph Elphingstone
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sean Limfat
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ruzanna Shkhyan
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Denis Evseenko
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA,Stem Cell Research and Regenerative Medicine Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA,Corresponding Author:Denis Evseenko MD, PhD., Associate Professor of Orthopaedic Surgery, Stem Cell Research and Regenerative Medicine, Keck School of Medicine of USC, 1450 Biggy St, NRT 4509, Los Angeles, CA 90033,
| |
Collapse
|
29
|
Dagenais A, Desjardins J, Shabbir W, Roy A, Filion D, Sauvé R, Berthiaume Y. Loss of barrier integrity in alveolar epithelial cells downregulates ENaC expression and activity via Ca 2+ and TRPV4 activation. Pflugers Arch 2018; 470:1615-1631. [PMID: 30088081 DOI: 10.1007/s00424-018-2182-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023]
Abstract
The epithelial Na channel (ENaC) plays an essential role in lung physiology by modulating the amount of liquid lining the respiratory epithelium. Here, we tested the effect of breaking alveolar epithelial cell barrier integrity on ENaC expression and function. We found that either mechanical wounding by scratching the monolayer or disruption of tight junction with EDTA induced a ~ 50% decrease of α,β and γENaC mRNA expression and an 80% reduction of ENaC short-circuit current (Isc) at 6 h. Scratching the cell monolayer generated a Ca2+ wave that spread from the margin of the scratch to distant cells. Pretreatment with BAPTA-AM, an intracellular Ca2+ chelator, abolished the effect of mechanical wounding and EDTA on αENaC mRNA expression, suggesting that [Ca2+]i is important for this modulation. We tested the hypothesis that a mechanosensitive channel such as TRPV4, a cationic channel known to increase [Ca2+]i, could mediate this effect. Activation of the channel with the TRPV4 specific agonist GSK-1016790A (GSK) decreased αENAC mRNA expression and almost completely abolished ENaC Isc. Pretreatment of alveolar epithelial cells with HC-067047 (HC0), a specific TRPV4 antagonist, reduced the extent of αENAC mRNA downregulation by mechanical wounding and EDTA. Altogether, our results suggest that mechanical stress induced by wounding or TRPV4-mediated loss of tight junction increases [Ca2+]i and elicits a Ca2+ wave that affects ENaC expression and function away from the site of injury. These data are important to better understand how Ca2+ signaling affects lung liquid clearance in injured lungs.
Collapse
Affiliation(s)
- André Dagenais
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada.
- Département de médecine, Université de Montréal, Montreal, Quebec, Canada.
| | - Julie Desjardins
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Waheed Shabbir
- Institute of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Antoine Roy
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Dominic Filion
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Rémy Sauvé
- Département de pharmacologie et physiologie, Université de Montréal, Montreal, Quebec, Canada
| | - Yves Berthiaume
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
- Département de médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Mulder C, Prust N, van Doorn S, Reinecke M, Kuster B, van Bergen en Henegouwen P, Lemeer S. Adaptive Resistance to EGFR-Targeted Therapy by Calcium Signaling in NSCLC Cells. Mol Cancer Res 2018; 16:1773-1784. [DOI: 10.1158/1541-7786.mcr-18-0212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/26/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
|
31
|
Shuyskiy LS, Levchenko VV, Negulyaev YA, Staruschenko AV, Ilatovskaya DV. Role of the Scaffold Protein MIM in the Actin-Dependent Regulation of Epithelial Sodium Channels (ENaC). Acta Naturae 2018; 10:97-103. [PMID: 30116621 PMCID: PMC6087825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Epithelial Sodium Channels (ENaCs) are expressed in different organs and tissues, particularly in the cortical collecting duct (CCD) in the kidney, where they fine tune sodium reabsorption. Dynamic rearrangements of the cytoskeleton are one of the common mechanisms of ENaC activity regulation. In our previous studies, we showed that the actin-binding proteins cortactin and Arp2/3 complex are involved in the cytoskeleton-dependent regulation of ENaC and that their cooperative work decreases a channel's probability of remaining open; however, the specific mechanism of interaction between actin-binding proteins and ENaC is unclear. In this study, we propose a new component for the protein machinery involved in the regulation of ENaC, the missing-in-metastasis (MIM) protein. The MIM protein contains an IMD domain (for interaction with PIP2 -rich plasma membrane regions and Rac GTPases; this domain also possesses F-actin bundling activity), a PRD domain (for interaction with cortactin), and a WH2 domain (interaction with G-actin). The patch-clamp electrophysiological technique in whole-cell configuration was used to test the involvement of MIM in the actin-dependent regulation of ENaC. Co-transfection of ENaC subunits with the wild-type MIM protein (or its mutant forms) caused a significant reduction in ENaC-mediated integral ion currents. The analysis of the F-actin structure after the transfection of MIM plasmids showed the important role played by the domains PRD and WH2 of the MIM protein in cytoskeletal rearrangements. These results suggest that the MIM protein may be a part of the complex of actin-binding proteins which is responsible for the actin-dependent regulation of ENaC in the CCD.
Collapse
Affiliation(s)
- L. S. Shuyskiy
- Institute of Cytology of RAS, Tikhoretskij Ave. 4, St. Petersburg, 194064, Russia , Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - V. V. Levchenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Y. A. Negulyaev
- Institute of Cytology of RAS, Tikhoretskij Ave. 4, St. Petersburg, 194064, Russia , Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya Str. 2, St. Petersburg, 195251, Russia
| | - A. V. Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - D. V. Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA , Medical University of South Carolina, Department of Medicine, Division of Nephrology, 96 Jonathan Lucas St, MSC 629 CSB 822, Charleston, SC 29425, USA
| |
Collapse
|
32
|
Camilleri M, Ford AC, Mawe GM, Dinning PG, Rao SS, Chey WD, Simrén M, Lembo A, Young-Fadok TM, Chang L. Chronic constipation. Nat Rev Dis Primers 2017; 3:17095. [PMID: 29239347 DOI: 10.1038/nrdp.2017.95] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic constipation is a prevalent condition that severely impacts the quality of life of those affected. Several types of primary chronic constipation, which show substantial overlap, have been described, including normal-transit constipation, rectal evacuation disorders and slow-transit constipation. Diagnosis of primary chronic constipation involves a multistep process initiated by the exclusion of 'alarm' features (for example, unintentional weight loss or rectal bleeding) that might indicate organic diseases (such as polyps or tumours) and a therapeutic trial with first-line treatments such as dietary changes, lifestyle modifications and over-the-counter laxatives. If symptoms do not improve, investigations to diagnose rectal evacuation disorders and slow-transit constipation are performed, such as digital rectal examination, anorectal structure and function testing (including the balloon expulsion test, anorectal manometry or defecography) or colonic transit tests (such as the radiopaque marker test, wireless motility capsule test, scintigraphy or colonic manometry). The mainstays of treatment are diet and lifestyle interventions, pharmacological therapy and, rarely, surgery. This Primer provides an introduction to the epidemiology, pathophysiological mechanisms, diagnosis, management and quality of life associated with the commonly encountered clinical problem of chronic constipation in adults unrelated to opioid abuse.
Collapse
Affiliation(s)
- Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Charlton Bldg., Rm. 8-110, Rochester, Minnesota 55905, USA
| | - Alexander C Ford
- Leeds Gastroenterology Institute, St. James's University Hospital, Leeds and Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Gary M Mawe
- Department of Neurological Sciences, The University of Vermont, Burlington, Vermont, USA
| | - Phil G Dinning
- Departments of Gastroenterology & Surgery, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Satish S Rao
- Division of Gastroenterology and Hepatology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - William D Chey
- Division of Gastroenterology, University of Michigan, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Magnus Simrén
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anthony Lembo
- Digestive Disease Center, Beth Israel Deaconess Hospital, Boston, Massachusetts, USA
| | | | - Lin Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
33
|
Zou L, Linck V, Zhai YJ, Galarza-Paez L, Li L, Yue Q, Al-Khalili O, Bao HF, Ma HP, Thai TL, Jiao J, Eaton DC. Knockout of mitochondrial voltage-dependent anion channel type 3 increases reactive oxygen species (ROS) levels and alters renal sodium transport. J Biol Chem 2017; 293:1666-1675. [PMID: 29180450 DOI: 10.1074/jbc.m117.798645] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/27/2017] [Indexed: 11/06/2022] Open
Abstract
It has been suggested that voltage-dependent anion channels (VDACs) control the release of superoxide from mitochondria. We have previously shown that reactive oxygen species (ROS) such as superoxide (O2̇̄) and hydrogen peroxide (H2O2) stimulate epithelial sodium channels (ENaCs) in sodium-transporting epithelial tissue, including cortical collecting duct (CCD) principal cells. Therefore, we hypothesized that VDACs could regulate ENaC by modulating cytosolic ROS levels. Herein, we find that VDAC3-knockout(KO) mice can maintain normal salt and water balance on low-salt and high-salt diets. However, on a high-salt diet for 2 weeks, VDAC3-KO mice had significantly higher systolic blood pressure than wildtype mice. Consistent with this observation, after a high-salt diet for 2 weeks, ENaC activity in VDAC3-KO mice was significantly higher than wildtype mice. EM analysis disclosed a significant morphological change of mitochondria in the CCD cells of VDAC3-KO mice compared with wildtype mice, which may have been caused by mitochondrial superoxide overload. Of note, compared with wildtype animals, ROS levels in VDAC3-KO animals fed a normal or high-salt diet were consistently and significantly increased in renal tubules. Both the ROS scavenger 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL) and the mitochondrial ROS scavenger (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mito-TEMPO) could reverse the effect of high-salt on ENaC activity and systolic blood pressure in the VDAC3-KO mice. Mito-TEMPO partially correct the morphological changes in VDAC3-KO mice. Our results suggest that knocking out mitochondrial VDAC3 increases ROS, alters renal sodium transport, and leads to hypertension.
Collapse
Affiliation(s)
- Li Zou
- From the Department of Nephrology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,the Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Valerie Linck
- the Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Yu-Jia Zhai
- the Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Laura Galarza-Paez
- the Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Linda Li
- the Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Qiang Yue
- the Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Otor Al-Khalili
- the Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Hui-Fang Bao
- the Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - He-Ping Ma
- the Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Tiffany L Thai
- the Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Jundong Jiao
- From the Department of Nephrology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China, .,the Institute of Nephrology, Harbin Medical University, Harbin, China
| | - Douglas C Eaton
- the Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, and
| |
Collapse
|
34
|
Dang VD, Jella KK, Ragheb RRT, Denslow ND, Alli AA. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells. FASEB J 2017; 31:5399-5408. [PMID: 28821634 DOI: 10.1096/fj.201700417r] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022]
Abstract
Exosomes are endosome-derived nanovesicles that are involved in cellular communication and signaling. Exosomes are produced by epithelial cells and are found in biologic fluids including blood and urine. The packaged material within exosomes includes proteins and lipids, but the molecular comparison within exosome subtypes is largely unknown. The purpose of this study was to investigate differences between exosomes derived from the apical plasma membrane and basolateral plasma membrane of polarized murine cortical collecting duct principal cells. Nanoparticle tracking analysis showed that the size and concentration of apical and basolateral exosomes remained relatively stable across 3 different temperatures (23, 37, and 42°C). Liquid chromatography-tandem mass spectrometry analysis revealed marked differences between the proteins packaged within the two types of exosomes from the same cells. Several proteins expressed at the inner leaflet of the plasma membrane, including α-actinin-1, moesin, 14-3-3 protein ζ/δ, annexin A1/A3/A4/A5/A6, clathrin heavy chain 1, glyceraldehyde-3-phosphate dehydrogenase, α-enolase, filamin-A, and heat shock protein 90, were identified in samples of apical plasma membrane-derived exosomes, but not in basolateral plasma membrane exosomes from mouse cortical collecting duct cells. In addition to differences at the protein level, mass spectrometry-based shotgun lipidomics analysis showed significant differences in the lipid classes and fatty acid composition of the two types of exosomes. We found higher levels of sphingomyelin and lower levels of cardiolipin, among other phospholipids in the apical plasma membrane compared to the basolateral plasma membrane exosomes. The molecular analyses of exosome subtypes presented herein will contribute to our understanding of exosome biogenesis, and the results may have potential implications for biomarker discovery.-Dang, V. D., Jella, K. K., Ragheb, R. R. T., Denslow, N. D., Alli, A. A. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells.
Collapse
Affiliation(s)
- Viet D Dang
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA.,Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA.,Department of Veterinary Diagnostic and Production Animal Production, Iowa State University, Ames, Iowa, USA
| | - Kishore Kumar Jella
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Nancy D Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA.,Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA; .,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
35
|
Czikora I, Alli AA, Sridhar S, Matthay MA, Pillich H, Hudel M, Berisha B, Gorshkov B, Romero MJ, Gonzales J, Wu G, Huo Y, Su Y, Verin AD, Fulton D, Chakraborty T, Eaton DC, Lucas R. Epithelial Sodium Channel-α Mediates the Protective Effect of the TNF-Derived TIP Peptide in Pneumolysin-Induced Endothelial Barrier Dysfunction. Front Immunol 2017; 8:842. [PMID: 28785264 PMCID: PMC5519615 DOI: 10.3389/fimmu.2017.00842] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/04/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a major etiologic agent of bacterial pneumonia. Autolysis and antibiotic-mediated lysis of pneumococci induce release of the pore-forming toxin, pneumolysin (PLY), their major virulence factor, which is a prominent cause of acute lung injury. PLY inhibits alveolar liquid clearance and severely compromises alveolar-capillary barrier function, leading to permeability edema associated with pneumonia. As a consequence, alveolar flooding occurs, which can precipitate lethal hypoxemia by impairing gas exchange. The α subunit of the epithelial sodium channel (ENaC) is crucial for promoting Na+ reabsorption across Na+-transporting epithelia. However, it is not known if human lung microvascular endothelial cells (HL-MVEC) also express ENaC-α and whether this subunit is involved in the regulation of their barrier function. METHODS The presence of α, β, and γ subunits of ENaC and protein phosphorylation status in HL-MVEC were assessed in western blotting. The role of ENaC-α in monolayer resistance of HL-MVEC was examined by depletion of this subunit by specific siRNA and by employing the TNF-derived TIP peptide, a specific activator that directly binds to ENaC-α. RESULTS HL-MVEC express all three subunits of ENaC, as well as acid-sensing ion channel 1a (ASIC1a), which has the capacity to form hybrid non-selective cation channels with ENaC-α. Both TIP peptide, which specifically binds to ENaC-α, and the specific ASIC1a activator MitTx significantly strengthened barrier function in PLY-treated HL-MVEC. ENaC-α depletion significantly increased sensitivity to PLY-induced hyperpermeability and in addition, blunted the protective effect of both the TIP peptide and MitTx, indicating an important role for ENaC-α and for hybrid NSC channels in barrier function of HL-MVEC. TIP peptide blunted PLY-induced phosphorylation of both calmodulin-dependent kinase II (CaMKII) and of its substrate, the actin-binding protein filamin A (FLN-A), requiring the expression of both ENaC-α and ASIC1a. Since non-phosphorylated FLN-A promotes ENaC channel open probability and blunts stress fiber formation, modulation of this activity represents an attractive target for the protective actions of ENaC-α in both barrier function and liquid clearance. CONCLUSION Our results in cultured endothelial cells demonstrate a previously unrecognized role for ENaC-α in strengthening capillary barrier function that may apply to the human lung. Strategies aiming to activate endothelial NSC channels that contain ENaC-α should be further investigated as a novel approach to improve barrier function in the capillary endothelium during pneumonia.
Collapse
Affiliation(s)
- Istvan Czikora
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States.,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Michael A Matthay
- Cardiovascular Research Institute, UCSF, San Francisco, CA, United States
| | - Helena Pillich
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Besim Berisha
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Maritza J Romero
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Joyce Gonzales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
36
|
Montgomery DS, Yu L, Ghazi ZM, Thai TL, Al-Khalili O, Ma HP, Eaton DC, Alli AA. ENaC activity is regulated by calpain-2 proteolysis of MARCKS proteins. Am J Physiol Cell Physiol 2017; 313:C42-C53. [PMID: 28468944 PMCID: PMC5538800 DOI: 10.1152/ajpcell.00244.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/27/2022]
Abstract
We previously demonstrated a role for the myristoylated alanine-rich C kinase substrate (MARCKS) to serve as an adaptor protein in the anionic phospholipid phosphate-dependent regulation of the epithelial sodium channel (ENaC). Both MARCKS and ENaC are regulated by proteolysis. Calpains are a family of ubiquitously expressed intracellular Ca2+-dependent cysteine proteases involved in signal transduction. Here we examine the role of calpain-2 in regulating MARCKS and ENaC in cultured renal epithelial cells and in the mouse kidney. Using recombinant fusion proteins, we show that MARCKS, but not the ENaC subunits, are a substrate of calpain-2 in the presence of Ca2+ Pharmacological inhibition of calpain-2 alters MARCKS protein expression in light-density sucrose gradient fractions from cell lysates of mouse cortical collecting duct cells. Calpain-dependent cleaved products of MARCKS are detectable in cultured renal cells. Ca2+ mobilization and calpain-2 inhibition decrease the association between ENaC and MARCKS. The inhibition of calpain-2 reduces ENaC activity as demonstrated by single-channel patch-clamp recordings and transepithelial current measurements. These results suggest that calpain-2 proteolysis of MARCKS promotes its interaction with lipids and ENaC at the plasma membrane to allow for the phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent regulation of ENaC activity in the kidney.
Collapse
Affiliation(s)
- Darrice S Montgomery
- Department of Physiology and Functional Genomics and Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Ling Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China; and
| | - Zinah M Ghazi
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Tiffany L Thai
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Otor Al-Khalili
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Abdel A Alli
- Department of Physiology and Functional Genomics and Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida;
| |
Collapse
|
37
|
Camilleri M, Sellin JH, Barrett KE. Pathophysiology, Evaluation, and Management of Chronic Watery Diarrhea. Gastroenterology 2017; 152:515-532.e2. [PMID: 27773805 PMCID: PMC5285476 DOI: 10.1053/j.gastro.2016.10.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 02/08/2023]
Abstract
Chronic watery diarrhea poses a diagnostic and therapeutic challenge and is often a disabling condition for patients. Although acute diarrhea is likely to be caused by infection, the causes of chronic diarrhea (>4 weeks in duration) are more elusive. We review the pathophysiology, diagnosis, and treatment of chronic diarrhea. Drawing on recent insights into the molecular mechanisms of intestinal epithelial transport and barrier function, we discuss how diarrhea can result from a decrease in luminal solute absorption, an increase in secretion, or both, as well as derangements in barrier properties. We also describe the various extraepithelial factors that activate diarrheal mechanisms. Finally, clinical evaluation and tests used in the assessment of patients presenting with chronic diarrhea are reviewed, and an algorithm guiding therapeutic decisions and pharmacotherapy is presented.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Joseph H. Sellin
- Division of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Kim E. Barrett
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
38
|
Jella KK, Yu L, Yue Q, Friedman D, Duke BJ, Alli AA. Exosomal GAPDH from Proximal Tubule Cells Regulate ENaC Activity. PLoS One 2016; 11:e0165763. [PMID: 27802315 PMCID: PMC5089749 DOI: 10.1371/journal.pone.0165763] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022] Open
Abstract
Exosomes are nanometer-scale, cell-derived vesicles that contain various molecules including nucleic acids, proteins, and lipids. These vesicles can release their cargo into adjacent or distant cells and mediate intercellular communication and cellular function. Here we examined the regulation of epithelial sodium channels in mpkCCD cells and distal tubule Xenopus 2F3 cells by exosomes isolated from proximal tubule LLC-PK1 cells. Cultured mpkCCD cells were stained with CTX coupled to a green fluorophore in order to label the cell membranes and freshly isolated exosomes from LLC-PK1 cells were labeled with the red lipophilic dye PKH26 in order to visualize uptake of exosomes into the cells. Single-channel patch clamp recordings showed the open probability of ENaC in Xenopus 2F3 cells and in freshly isolated split-open tubules decreased in response to exogenous application of exosomes derived from LLC-PK1 proximal tubule cells. Active GAPDH was identified within exosomes derived from proximal tubule LLC-PK1 cells. The effect on ENaC activity in Xenopus 2F3 cells was blunted after application of exosomes transfected with the GAPDH inhibitor heptelidic acid. Also, we show GAPDH and ENaC subunits associate in mpkCCD cells. These studies examine a potential role for exosomes in the regulation of ENaC activity and examine a possible mechanism for communication from proximal tubule cells to distal tubule and collecting duct cells.
Collapse
Affiliation(s)
- Kishore Kumar Jella
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Ling Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qiang Yue
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Daniel Friedman
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Billie J. Duke
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Abdel A. Alli
- Department of Physiology and Functional Genomics and Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
39
|
Lucas R, Yue Q, Alli A, Duke BJ, Al-Khalili O, Thai TL, Hamacher J, Sridhar S, Lebedyeva I, Su H, Tzotzos S, Fischer B, Gameiro AF, Loose M, Chakraborty T, Shabbir W, Aufy M, Lemmens-Gruber R, Eaton DC, Czikora I. The Lectin-like Domain of TNF Increases ENaC Open Probability through a Novel Site at the Interface between the Second Transmembrane and C-terminal Domains of the α-Subunit. J Biol Chem 2016; 291:23440-23451. [PMID: 27645999 DOI: 10.1074/jbc.m116.718163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/29/2022] Open
Abstract
Regulation of the epithelial sodium channel (ENaC), which regulates fluid homeostasis and blood pressure, is complex and remains incompletely understood. The TIP peptide, a mimic of the lectin-like domain of TNF, activates ENaC by binding to glycosylated residues in the extracellular loop of ENaC-α, as well as to a hitherto uncharacterized internal site. Molecular docking studies suggested three residues, Val567, Glu568, and Glu571, located at the interface between the second transmembrane and C-terminal domains of ENaC-α, as a critical site for binding of the TIP peptide. We generated Ala replacement mutants in this region of ENaC-α and examined its interaction with TIP peptide (3M, V567A/E568A/E571A; 2M, V567A/E568A; and 1M, E571A). 3M and 2M ENaC-α, but not 1M ENaC-α, displayed significantly reduced binding capacity to TIP peptide and to TNF. When overexpressed in H441 cells, 3M mutant ENaC-α formed functional channels with similar gating and density characteristics as the WT subunit and efficiently associated with the β and γ subunits in the plasma membrane. We subsequently assayed for increased open probability time and membrane expression, both of which define ENaC activity, following addition of TIP peptide. TIP peptide increased open probability time in H441 cells overexpressing wild type and 1M ENaC-α channels, but not 3M or 2M ENaC-α channels. On the other hand, TIP peptide-mediated reduction in ENaC ubiquitination was similar in cells overexpressing either WT or 3M ENaC-α subunits. In summary, this study has identified a novel site in ENaC-α that is crucial for activation of the open probability of the channel, but not membrane expression, by the lectin-like domain of TNF.
Collapse
Affiliation(s)
- Rudolf Lucas
- From the Vascular Biology Center, .,the Department of Pharmacology and Toxicology, and.,the Division of Pulmonary and Critical Care Medicine, Medical College of Georgia, Augusta, Georgia 30912
| | - Qiang Yue
- the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Abdel Alli
- the Department of Physiology, Emory University, Atlanta, Georgia 30322.,the Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610
| | | | - Otor Al-Khalili
- the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Tiffany L Thai
- the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Jürg Hamacher
- the Department of Pulmonology, Saarland University, D-66421 Homburg, Germany
| | | | - Iryna Lebedyeva
- the Department of Chemistry, Augusta University, Augusta, Georgia 30912
| | - Huabo Su
- From the Vascular Biology Center
| | - Susan Tzotzos
- Apeptico Research and Development, 1150 Vienna, Austria
| | | | | | - Maria Loose
- the Institute for Medical Microbiology, Justus-Liebig University, 35390 Giessen, Germany, and
| | - Trinad Chakraborty
- the Institute for Medical Microbiology, Justus-Liebig University, 35390 Giessen, Germany, and
| | - Waheed Shabbir
- the Department of Pharmacology and Toxicology, University Vienna, 1010 Vienna, Austria
| | - Mohammed Aufy
- the Department of Pharmacology and Toxicology, University Vienna, 1010 Vienna, Austria
| | - Rosa Lemmens-Gruber
- the Department of Pharmacology and Toxicology, University Vienna, 1010 Vienna, Austria
| | - Douglas C Eaton
- the Department of Physiology, Emory University, Atlanta, Georgia 30322,
| | | |
Collapse
|
40
|
The Epithelial Sodium Channel and the Processes of Wound Healing. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5675047. [PMID: 27493961 PMCID: PMC4963570 DOI: 10.1155/2016/5675047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/15/2016] [Indexed: 12/19/2022]
Abstract
The epithelial sodium channel (ENaC) mediates passive sodium transport across the apical membranes of sodium absorbing epithelia, like the distal nephron, the intestine, and the lung airways. Additionally, the channel has been involved in the transduction of mechanical stimuli, such as hydrostatic pressure, membrane stretch, and shear stress from fluid flow. Thus, in vascular endothelium, it participates in the control of the vascular tone via its activity both as a sodium channel and as a shear stress transducer. Rather recently, ENaC has been shown to participate in the processes of wound healing, a role that may also involve its activities as sodium transporter and as mechanotransducer. Its presence as the sole channel mediating sodium transport in many tissues and the diversity of its functions probably underlie the complexity of its regulation. This brief review describes some aspects of ENaC regulation, comments on evidence about ENaC participation in wound healing, and suggests possible regulatory mechanisms involved in this participation.
Collapse
|
41
|
Qian X, Sands JM, Song X, Chen G. Modulation of kidney urea transporter UT-A3 activity by alpha2,6-sialylation. Pflugers Arch 2016; 468:1161-1170. [PMID: 26972907 PMCID: PMC4945389 DOI: 10.1007/s00424-016-1802-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.
Collapse
Affiliation(s)
- Xiaoqian Qian
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
- Cardiovascular Center, the 4 affiliated hospital, Harbin Medical University, Heilongjiang 150001, China
| | - Jeff M. Sands
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xiang Song
- Cardiovascular Center, the 4 affiliated hospital, Harbin Medical University, Heilongjiang 150001, China
| | - Guangping Chen
- Department of Physiology, Emory University, Atlanta, GA 30322, USA
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
42
|
Little R, Cartwright EJ, Neyses L, Austin C. Plasma membrane calcium ATPases (PMCAs) as potential targets for the treatment of essential hypertension. Pharmacol Ther 2016; 159:23-34. [PMID: 26820758 DOI: 10.1016/j.pharmthera.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The incidence of hypertension, the major modifiable risk factor for cardiovascular disease, is increasing. Thus, there is a pressing need for the development of new and more effective strategies to prevent and treat hypertension. Development of these relies on a continued evolution of our understanding of the mechanisms which control blood pressure (BP). Resistance arteries are important in the regulation of total peripheral resistance and BP; changes in their structure and function are strongly associated with hypertension. Anti-hypertensives which both reduce BP and reverse changes in resistance arterial structure reduce cardiovascular risk more than therapies which reduce BP alone. Hence, identification of novel potential vascular targets which modify BP is important. Hypertension is a multifactorial disorder which may include a genetic component. Genome wide association studies have identified ATP2B1, encoding the calcium pump plasma membrane calcium ATPase 1 (PMCA1), as having a strong association with BP and hypertension. Knockdown or reduced PMCA1 expression in mice has confirmed a physiological role for PMCA1 in BP and resistance arterial regulation. Altered expression or inhibition of PMCA4 has also been shown to modulate these parameters. The mechanisms whereby PMCA1 and 4 can modulate vascular function remain to be fully elucidated but may involve regulation of intracellular calcium homeostasis and/or comprise a structural role. However, clear physiological links between PMCA and BP, coupled with experimental studies directly linking PMCA1 and 4 to changes in BP and arterial function, suggest that they may be important targets for the development of new pharmacological modulators of BP.
Collapse
Affiliation(s)
- Robert Little
- The Institute of Cardiovascular Sciences, The University of Manchester, UK
| | | | - Ludwig Neyses
- The Institute of Cardiovascular Sciences, The University of Manchester, UK
| | - Clare Austin
- Faculty of Health and Social Care, Edge Hill University, UK.
| |
Collapse
|