1
|
Liu R, Juncos LA, Lu Y, Wei J, Zhang J, Wang L, Lai EY, Carlstrom M, Persson AEG. The Role of Macula Densa Nitric Oxide Synthase 1 Beta Splice Variant in Modulating Tubuloglomerular Feedback. Compr Physiol 2023; 13:4215-4229. [PMID: 36715280 PMCID: PMC9990375 DOI: 10.1002/cphy.c210043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1β is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1β-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Molecular Pharmacology & Physiology
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Yan Lu
- Division of Nephrology, University of Alabama at Birmingham, Birmingham AL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A. Erik G Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Eccles JA, Baldwin WS. Detoxification Cytochrome P450s (CYPs) in Families 1-3 Produce Functional Oxylipins from Polyunsaturated Fatty Acids. Cells 2022; 12:82. [PMID: 36611876 PMCID: PMC9818454 DOI: 10.3390/cells12010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
This manuscript reviews the CYP-mediated production of oxylipins and the current known function of these diverse set of oxylipins with emphasis on the detoxification CYPs in families 1-3. Our knowledge of oxylipin function has greatly increased over the past 3-7 years with new theories on stability and function. This includes a significant amount of new information on oxylipins produced from linoleic acid (LA) and the omega-3 PUFA-derived oxylipins such as α-linolenic acid (ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). However, there is still a lack of knowledge regarding the primary CYP responsible for producing specific oxylipins, and a lack of mechanistic insight for some clinical associations between outcomes and oxylipin levels. In addition, the role of CYPs in the production of oxylipins as signaling molecules for obesity, energy utilization, and development have increased greatly with potential interactions between diet, endocrinology, and pharmacology/toxicology due to nuclear receptor mediated CYP induction, CYP inhibition, and receptor interactions/crosstalk. The potential for diet-diet and diet-drug/chemical interactions is high given that these promiscuous CYPs metabolize a plethora of different endogenous and exogenous chemicals.
Collapse
Affiliation(s)
| | - William S. Baldwin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
3
|
Zhang C, Fang X, Zhang H, Gao W, Hsu HJ, Roman RJ, Fan F. Genetic susceptibility of hypertension-induced kidney disease. Physiol Rep 2021; 9:e14688. [PMID: 33377622 PMCID: PMC7772938 DOI: 10.14814/phy2.14688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Hypertension is the second leading cause of end-stage renal disease (ESRD) after diabetes mellitus. The significant differences in the incidence of hypertensive ESRD between different patient populations worldwide and patients with and without family history indicate that genetic determinants play an important role in the onset and progression of this disease. Recent studies have identified genetic variants and pathways that may contribute to the alteration of renal function. Mechanisms involved include affecting renal hemodynamics (the myogenic and tubuloglomerular feedback responses); increasing the production of reactive oxygen species in the tubules; altering immune cell function; changing the number, structure, and function of podocytes that directly cause glomerular damage. Studies with hypertensive animal models using substitution mapping and gene knockout strategies have identified multiple candidate genes associated with the development of hypertension and subsequent renal injury. Genome-wide association studies have implicated genetic variants in UMOD, MYH9, APOL-1, SHROOM3, RAB38, and DAB2 have a higher risk for ESRD in hypertensive patients. These findings provide genetic evidence of potential novel targets for drug development and gene therapy to design individualized treatment of hypertension and related renal injury.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Department of UrologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Xing Fang
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Huawei Zhang
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Wenjun Gao
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Department of UrologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Han Jen Hsu
- Department of UrologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Richard J. Roman
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Fan Fan
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| |
Collapse
|
4
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Agrawal K, Bosviel R, Piccolo BD, Newman JW. Oral ibuprofen differentially affects plasma and sweat lipid mediator profiles in healthy adult males. Prostaglandins Other Lipid Mediat 2018; 137:1-8. [PMID: 29778785 DOI: 10.1016/j.prostaglandins.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/11/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
Sweat contains a variety of lipid mediators, but whether they originate from the plasma filtrate or from the cutaneous sweat glandular tissues themselves is unknown. To explore this knowledge gap, we collected plasma and sweat from healthy men (n = 9) immediately before and 0.5, 2 and 4 h after oral administration of 400 mg ibuprofen. Of the over 100 lipid mediators assayed by liquid chromatography-tandem mass spectrometry, ∼45 were detected in both plasma and sweat, and 36 were common to both matrices. However, baseline concentrations in each matrix were not correlated and metabolite relative abundances between matrices differed. Oral ibuprofen administration altered sweat lipid mediators, reducing prostaglandin E2, linoleoylethanolamide, and oleoylethanolamide, while increasing 11-hydroxyeicosatetraenoic acid, and causing transient changes in 9-nitrooleate, N-arachidonylglycine and 20-hydroxyeicosatetraenoic acid. Meanwhile, plasma N-acylethanolamide concentrations increased with ibuprofen administration. These results suggest that sweat and plasma differentially reflect biochemical changes due to oral ibuprofen administration, and that plasma is unlikely to be the predominant source of the sweat lipid mediator profile.
Collapse
Affiliation(s)
- Karan Agrawal
- Department of Nutrition, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Rémy Bosviel
- West Coast Metabolomics Center, Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center, 15 Children's Way, Little Rock, AR 72202, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR 72205, USA.
| | - John W Newman
- Department of Nutrition, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA; Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, 430 W Health Sciences Drive, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Elshenawy OH, Shoieb SM, Mohamed A, El-Kadi AOS. Clinical Implications of 20-Hydroxyeicosatetraenoic Acid in the Kidney, Liver, Lung and Brain: An Emerging Therapeutic Target. Pharmaceutics 2017; 9:pharmaceutics9010009. [PMID: 28230738 PMCID: PMC5374375 DOI: 10.3390/pharmaceutics9010009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022] Open
Abstract
Cytochrome P450-mediated metabolism of arachidonic acid (AA) is an important pathway for the formation of eicosanoids. The ω-hydroxylation of AA generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in various tissues. In the current review, we discussed the role of 20-HETE in the kidney, liver, lung, and brain during physiological and pathophysiological states. Moreover, we discussed the role of 20-HETE in tumor formation, metabolic syndrome and diabetes. In the kidney, 20-HETE is involved in modulation of preglomerular vascular tone and tubular ion transport. Furthermore, 20-HETE is involved in renal ischemia/reperfusion (I/R) injury and polycystic kidney diseases. The role of 20-HETE in the liver is not clearly understood although it represents 50%-75% of liver CYP-dependent AA metabolism, and it is associated with liver cirrhotic ascites. In the respiratory system, 20-HETE plays a role in pulmonary cell survival, pulmonary vascular tone and tone of the airways. As for the brain, 20-HETE is involved in cerebral I/R injury. Moreover, 20-HETE has angiogenic and mitogenic properties and thus helps in tumor promotion. Several inhibitors and inducers of the synthesis of 20-HETE as well as 20-HETE analogues and antagonists are recently available and could be promising therapeutic options for the treatment of many disease states in the future.
Collapse
Affiliation(s)
- Osama H Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Sherif M Shoieb
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Anwar Mohamed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| |
Collapse
|
7
|
Joseph G, Soler A, Hutcheson R, Hunter I, Bradford C, Hutcheson B, Gotlinger KH, Jiang H, Falck JR, Proctor S, Schwartzman ML, Rocic P. Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction. Am J Physiol Heart Circ Physiol 2016; 312:H528-H540. [PMID: 28011587 PMCID: PMC5402017 DOI: 10.1152/ajpheart.00561.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022]
Abstract
Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of MetS (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which, in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists [collateral-dependent zone (CZ)/normal zone (NZ) flow ratio was 0.76 ± 0.07 in JCR + 20-SOLA, 0.84 ± 0.05 in JCR + 20-HEDGE vs. 0.11 ± 0.02 in JCR vs. 0.84 ± 0.03 in normal rats]. In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration, which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, endothelial nitric oxide synthase (eNOS) Ser1179 phosphorylation, eNOS-dependent NO·- production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS.NEW & NOTEWORTHY Elevated 20-hydroxyeicosatetraenoic acid (20-HETE) impairs coronary collateral growth (CCG) in metabolic syndrome by eliciting endothelial dysfunction and apoptosis via excessive neutrophil infiltration. 20-HETE antagonists completely restore coronary collateral growth in metabolic syndrome. microRNA-145 (miR-145) is an upstream regulator of 20-HETE production in metabolic syndrome; low expression of miR-145 in metabolic syndrome promotes elevated production of 20-HETE.
Collapse
Affiliation(s)
- Gregory Joseph
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Amanda Soler
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Rebecca Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Ian Hunter
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | | | - Brenda Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | | | - Houli Jiang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - John R Falck
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Spencer Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | | | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, New York;
| |
Collapse
|
8
|
Roshanravan H, Kim EY, Dryer SE. 20-Hydroxyeicosatetraenoic Acid (20-HETE) Modulates Canonical Transient Receptor Potential-6 (TRPC6) Channels in Podocytes. Front Physiol 2016; 7:351. [PMID: 27630573 PMCID: PMC5005377 DOI: 10.3389/fphys.2016.00351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023] Open
Abstract
The arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) regulates renal function, including changes in glomerular function evoked during tubuloglomerular feedback (TGF). This study describes the cellular actions of 20-HETE on cultured podocytes, assessed by whole-cell recordings from cultured podocytes combined with pharmacological and cell-biological manipulations of cells. Bath superfusion of 20-HETE activates cationic currents that are blocked by the pan-TRP blocker SKF-96365 and by 50 μM La3+, and which are attenuated after siRNA knockdown of TRPC6 subunits. Similar currents are evoked by a membrane-permeable analog of diacylgycerol (OAG), but OAG does not occlude responses to maximally-activating concentrations of 20-HETE (20 μM). Exposure to 20-HETE also increased steady-state surface abundance of TRPC6 subunits in podocytes as assessed by cell-surface biotinylation assays, and increased cytosolic concentrations of reactive oxygen species (ROS). TRPC6 activation by 20-HETE was eliminated in cells pretreated with TEMPOL, a membrane-permeable superoxide dismutase mimic. Activation of TRPC6 by 20-HETE was also blocked when whole-cell recording pipettes contained GDP-βS, indicating a role for either small or heterotrimeric G proteins in the transduction cascade. Responses to 20-HETE were eliminated by siRNA knockdown of podocin, a protein that organizes NADPH oxidase complexes with TRPC6 subunits in this cell type. In summary, modulation of ionic channels in podocytes may contribute to glomerular actions of 20-HETE.
Collapse
Affiliation(s)
- Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston Houston, TX, USA
| | - Eun Y Kim
- Department of Biology and Biochemistry, University of Houston Houston, TX, USA
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of HoustonHouston, TX, USA; Division of Nephrology, Baylor College of MedicineHouston, TX, USA
| |
Collapse
|
9
|
Savas Ü, Wei S, Hsu MH, Falck JR, Guengerich FP, Capdevila JH, Johnson EF. 20-Hydroxyeicosatetraenoic Acid (HETE)-dependent Hypertension in Human Cytochrome P450 (CYP) 4A11 Transgenic Mice: NORMALIZATION OF BLOOD PRESSURE BY SODIUM RESTRICTION, HYDROCHLOROTHIAZIDE, OR BLOCKADE OF THE TYPE 1 ANGIOTENSIN II RECEPTOR. J Biol Chem 2016; 291:16904-19. [PMID: 27298316 DOI: 10.1074/jbc.m116.732297] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Male and female homozygous 129/Sv mice carrying four copies of the human cytochrome P450 4A11 gene (CYP4A11) under control of its native promoter (B-129/Sv-4A11(+/+)) develop hypertension (142 ± 8 versus 113 ± 7 mm Hg systolic blood pressure (BP)), and exhibit increased 20-hydroxyeicosatetraenoic acid (20-HETE) in kidney and urine. The hypertension is reversible by a low-sodium diet and by the CYP4A inhibitor HET0016. B-129/Sv-4A11(+/+) mice display an 18% increase of plasma potassium (p < 0.02), but plasma aldosterone, angiotensin II (ANGII), and renin activities are unchanged. This phenotype resembles human genetic disorders with elevated activity of the sodium chloride co-transporter (NCC) and, accordingly, NCC abundance is increased by 50% in transgenic mice, and NCC levels are normalized by HET0016. ANGII is known to increase NCC abundance, and renal mRNA levels of its precursor angiotensinogen are increased 2-fold in B-129/Sv-4A11(+/+), and blockade of the ANGII receptor type 1 with losartan normalizes BP. A pro-hypertensive role for 20-HETE was implicated by normalization of BP and reversal of renal angiotensin mRNA increases by administration of the 20-HETE antagonists 2-((6Z,15Z)-20-hydroxyicosa-6,15-dienamido)acetate or (S)-2-((6Z,15Z)-20-hydroxyicosa-6,15-dienamido)succinate. SGK1 expression is also increased in B-129/Sv-4A11(+/+) mice and paralleled increases seen for NCC. Losartan, HET0016, and 20-HETE antagonists each normalized SGK1 mRNA expression. These results point to a potential 20-HETE dependence of intrarenal angiotensinogen production and ANGII receptor type 1 activation that are associated with increases in NCC and SGK1 and identify elevated P450 4A11 activity and 20-HETE as potential risk factors for salt-sensitive human hypertension by perturbation of the renal renin-angiotensin axis.
Collapse
Affiliation(s)
- Üzen Savas
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | | | - Mei-Hui Hsu
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - John R Falck
- the Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - F Peter Guengerich
- Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, and
| | | | - Eric F Johnson
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037,
| |
Collapse
|
10
|
Fan F, Ge Y, Lv W, Elliott MR, Muroya Y, Hirata T, Booz GW, Roman RJ. Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology. Front Biosci (Landmark Ed) 2016; 21:1427-63. [PMID: 27100515 DOI: 10.2741/4465] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytochrome P450s enzymes catalyze the metabolism of arachidonic acid to epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid and hydroxyeicosatetraeonic acid (HETEs). 20-HETE is a vasoconstrictor that depolarizes vascular smooth muscle cells by blocking K+ channels. EETs serve as endothelial derived hyperpolarizing factors. Inhibition of the formation of 20-HETE impairs the myogenic response and autoregulation of renal and cerebral blood flow. Changes in the formation of EETs and 20-HETE have been reported in hypertension and drugs that target these pathways alter blood pressure in animal models. Sequence variants in CYP4A11 and CYP4F2 that produce 20-HETE, UDP-glucuronosyl transferase involved in the biotransformation of 20-HETE and soluble epoxide hydrolase that inactivates EETs are associated with hypertension in human studies. 20-HETE contributes to the regulation of vascular hypertrophy, restenosis, angiogenesis and inflammation. It also promotes endothelial dysfunction and contributes to cerebral vasospasm and ischemia-reperfusion injury in the brain, kidney and heart. This review will focus on the role of 20-HETE in vascular dysfunction, inflammation, ischemic and hemorrhagic stroke and cardiac and renal ischemia reperfusion injury.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Ying Ge
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Matthew R Elliott
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Yoshikazu Muroya
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University School of Medicine, Sendai, Japan
| | - Takashi Hirata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216,
| |
Collapse
|
11
|
Abstract
Arachidonic acid metabolites have a myriad of biological actions including effects on the kidney to alter renal hemodynamics and tubular transport processes. Cyclooxygenase metabolites are products of an arachidonic acid enzymatic pathway that has been extensively studied in regards to renal function. Two lesser-known enzymatic pathways of arachidonic acid metabolism are the lipoxygenase (LO) and cytochrome P450 (CYP) pathways. The importance of LO and CYP metabolites to renal hemodynamics and tubular transport processes is now being recognized. LO and CYP metabolites have actions to alter renal blood flow and glomerular filtration rate. Proximal and distal tubular sodium transport and fluid and electrolyte homeostasis are also significantly influenced by renal CYP and LO levels. Metabolites of the LO and CYP pathways also have renal actions that influence renal inflammation, proliferation, and apoptotic processes at vascular and epithelial cells. These renal LO and CYP pathway actions occur through generation of specific metabolites and cell-signaling mechanisms. Even though the renal physiological importance and actions for LO and CYP metabolites are readily apparent, major gaps remain in our understanding of these lipid mediators to renal function. Future studies will be needed to fill these major gaps regarding LO and CYP metabolites on renal function.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Md Abdul Hye Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Lu Y, Wei J, Stec DE, Roman RJ, Ge Y, Cheng L, Liu EY, Zhang J, Hansen PBL, Fan F, Juncos LA, Wang L, Pollock J, Huang PL, Fu Y, Wang S, Liu R. Macula Densa Nitric Oxide Synthase 1β Protects against Salt-Sensitive Hypertension. J Am Soc Nephrol 2015; 27:2346-56. [PMID: 26647426 DOI: 10.1681/asn.2015050515] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/24/2015] [Indexed: 01/10/2023] Open
Abstract
Nitric oxide (NO) is an important negative modulator of tubuloglomerular feedback responsiveness. We recently found that macula densa expresses α-, β-, and γ-splice variants of neuronal nitric oxide synthase 1 (NOS1), and NOS1β expression in the macula densa increases on a high-salt diet. This study tested whether upregulation of NOS1β expression in the macula densa affects sodium excretion and salt-sensitive hypertension by decreasing tubuloglomerular feedback responsiveness. Expression levels of NOS1β mRNA and protein were 30- and five-fold higher, respectively, than those of NOS1α in the renal cortex of C57BL/6 mice. Furthermore, macula densa NO production was similar in the isolated perfused juxtaglomerular apparatus of wild-type (WT) and nitric oxide synthase 1α-knockout (NOS1αKO) mice. Compared with control mice, mice with macula densa-specific knockout of all nitric oxide synthase 1 isoforms (MD-NOS1KO) had a significantly enhanced tubuloglomerular feedback response and after acute volume expansion, significantly reduced GFR, urine flow, and sodium excretion. Mean arterial pressure increased significantly in MD-NOS1KO mice (P<0.01) but not NOS1flox/flox mice fed a high-salt diet. After infusion of angiotensin II, mean arterial pressure increased by 61.6 mmHg in MD-NOS1KO mice versus 32.0 mmHg in WT mice (P<0.01) fed a high-salt diet. These results indicate that NOS1β is a primary NOS1 isoform expressed in the macula densa and regulates the tubuloglomerular feedback response, the natriuretic response to acute volume expansion, and the development of salt-sensitive hypertension. These findings show a novel mechanism for salt sensitivity of BP and the significance of tubuloglomerular feedback response in long-term control of sodium excretion and BP.
Collapse
Affiliation(s)
- Yan Lu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Departments of Physiology and Biophysics and
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | | | - Richard J Roman
- Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ying Ge
- Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Liang Cheng
- Departments of Physiology and Biophysics and
| | - Eddie Y Liu
- Departments of Physiology and Biophysics and
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | | | - Fan Fan
- Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Jennifer Pollock
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Paul L Huang
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yiling Fu
- Departments of Physiology and Biophysics and
| | - Shaohui Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; Departments of Physiology and Biophysics and
| |
Collapse
|
13
|
Schnermann J. Concurrent activation of multiple vasoactive signaling pathways in vasoconstriction caused by tubuloglomerular feedback: a quantitative assessment. Annu Rev Physiol 2015; 77:301-22. [PMID: 25668021 DOI: 10.1146/annurev-physiol-021014-071829] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tubuloglomerular feedback (TGF) describes the negative relationship between (a) NaCl concentration at the macula densa and (b) glomerular filtration rate or glomerular capillary pressure. TGF-induced vasoconstriction of the afferent arteriole results from the enhanced effect of several vasoconstrictors with an effect size sequence of adenosine = 20-HETE > angiotensin II > thromboxane = superoxide > renal nerves > ATP. TGF-mediated vasoconstriction is limited by the simultaneous release of several vasodilators with an effect size sequence of nitric oxide > carbon monoxide = kinins > adenosine. The sum of the constrictor effects exceeds that of the dilator effects by the magnitude of the TGF response. The validity of the additive model used in this analysis can be tested by determining the effect of combined inhibition of some or all agents contributing to TGF. Multiple independent contributors to TGF are consistent with the variability of TGF and of the factors contributing to TGF resetting.
Collapse
Affiliation(s)
- Jurgen Schnermann
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
14
|
Burke M, Pabbidi MR, Farley J, Roman RJ. Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharmacol 2015; 12:845-58. [PMID: 24066938 PMCID: PMC4416696 DOI: 10.2174/15701611113116660149] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/18/2011] [Accepted: 07/02/2013] [Indexed: 01/10/2023]
Abstract
Diabetes and hypertension are the leading causes of chronic kidney disease and their incidence is increasing at
an alarming rate. Both are associated with impairments in the autoregulation of renal blood flow (RBF) and greater transmission
of fluctuations in arterial pressure to the glomerular capillaries. The ability of the kidney to maintain relatively
constant blood flow, glomerular filtration rate (GFR) and glomerular capillary pressure is mediated by the myogenic response
of afferent arterioles working in concert with tubuloglomerular feedback that adjusts the tone of the afferent arteriole
in response to changes in the delivery of sodium chloride to the macula densa. Despite intensive investigation, the factors
initiating the myogenic response and the signaling pathways involved in the myogenic response and tubuloglomerular
feedback remain uncertain. This review focuses on current thought regarding the molecular mechanisms underlying myogenic
control of renal vascular tone, the interrelationships between the myogenic response and tubuloglomerular feedback,
the evidence that alterations in autoregulation of RBF contributes to hypertension and diabetes-induced nephropathy and
the identification of vascular therapeutic targets for improved renoprotection in hypertensive and diabetic patients.
Collapse
Affiliation(s)
| | | | | | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
15
|
Toth P, Csiszar A, Sosnowska D, Tucsek Z, Cseplo P, Springo Z, Tarantini S, Sonntag WE, Ungvari Z, Koller A. Treatment with the cytochrome P450 ω-hydroxylase inhibitor HET0016 attenuates cerebrovascular inflammation, oxidative stress and improves vasomotor function in spontaneously hypertensive rats. Br J Pharmacol 2015. [PMID: 23194285 DOI: 10.1111/bph.12079] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Hypertension increases cerebrovascular oxidative stress and inflammation and impairs vasomotor function. These pathological alterations lead to dysregulation of cerebral blood flow and exacerbate atherogenesis, increasing the morbidity of ischaemic cerebrovascular diseases and promoting vascular cognitive impairment. We aimed to test the hypothesis that increased production of the arachidonic acid metabolite 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE) contributes to hypertension-induced cerebrovascular alterations. EXPERIMENTAL APPROACH We treated male spontaneously hypertensive rats (SHR) with HET0016 (N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine), an inhibitor of 20-HETE synthesis. In middle cerebral arteries (MCAs) of SHRs, we focused on vasomotor responses and end points that are highly relevant for cellular reactive oxygen species (ROS) production, inflammatory cytokine expression and NF-κB activation. KEY RESULTS SHRs treated with HET0016 remained hypertensive (SHR + HET0016: 149 ± 8 mmHg, Wistar-Kyoto rat: 115 ± 4 mmHg; P < 0.05.), although their systolic blood pressure was decreased compared to untreated SHRs (191 ± 6 mmHg). In MCAs of SHRs, flow-induced constriction was increased, whereas ACh- and ATP-induced dilations were impaired. This functional impairment was reversed by treatment with HET0016. Treatment with HET0016 also significantly decreased oxidative stress in MCAs of SHRs (as shown by dihydroethidium staining and analysis of vascular 5-nitrotyrosine, 4-hydroxynonenal and carbonyl content) and inhibited cerebrovascular inflammation (shown by the reduced mRNA expression of TNFα, IL-1β and IL-6). Treatment of SHRs with HET0016 also attenuated vascular NF-κB activation. In vitro treatment with 20-HETE significantly increased vascular production of ROS and promoted NF-κB activation in cultured cerebromicrovascular endothelial cells. CONCLUSIONS AND IMPLICATIONS Taken together, treatment with HET0016 confers anti-oxidative and anti-inflammatory effects in the cerebral arteries of SHRs by disrupting 20-HETE-mediated autocrine/paracrine signalling pathways in the vascular wall. It is likely that HET0016-induced decreases in blood pressure also potentiate the cerebrovascular protective effects of the drug.
Collapse
Affiliation(s)
- Peter Toth
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Song J, Lu Y, Lai EY, Wei J, Wang L, Chandrashekar K, Wang S, Shen C, Juncos LA, Liu R. Oxidative status in the macula densa modulates tubuloglomerular feedback responsiveness in angiotensin II-induced hypertension. Acta Physiol (Oxf) 2015; 213:249-58. [PMID: 25089004 DOI: 10.1111/apha.12358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/27/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
Abstract
AIM Tubuloglomerular feedback (TGF) is an important mechanism in control of signal nephron glomerular filtration rate. The oxidative stress in the macula densa, primarily determined by the interactions between nitric oxide (NO) and superoxide (O2-), is essential in maintaining the TGF responsiveness. However, few studies examining the interactions between and amount of NO and O2- generated by the macula densa during normal and hypertensive states. METHODS In this study, we used isolated perfused juxtaglomerular apparatus to directly measure the amount and also studied the interactions between NO and O2- in macula densa in both physiological and slow pressor Angiotensin II (Ang II)-induced hypertensive mice. RESULTS We found that slow pressor Ang II at a dose of 600 ng kg(-1) min(-1) for two weeks increased mean arterial pressure by 26.1 ± 5.7 mmHg. TGF response increased from 3.4 ± 0.2 μm in control to 5.2 ± 0.2 μm in hypertensive mice. We first measured O2- generation by the macula densa and found it was undetectable in control mice. However, O2- generation by the macula densa increased to 21.4 ± 2.5 unit min(-1) in Ang II-induced hypertensive mice. We then measured NO generation and found that NO generation by the macula densa was 138.5 ± 9.3 unit min(-1) in control mice. The NO was undetectable in the macula densa in hypertensive mice infused with Ang II. CONCLUSIONS Under physiological conditions, TGF response is mainly controlled by the NO generated in the macula densa; in Ang II induced hypertension, the TGF response is mainly controlled by the O2- generated by the macula densa.
Collapse
Affiliation(s)
- J. Song
- State Key Laboratory of Cardiovascular Disease; Fuwai Hospital; National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - Y. Lu
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - E. Y. Lai
- Department of Physiology; Zhejiang University; Hanzhou China
| | - J. Wei
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - L. Wang
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - K. Chandrashekar
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - S. Wang
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - C. Shen
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
| | - L. A. Juncos
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| | - R. Liu
- Department of Physiology & Biophysics; University of Mississippi Medical Center; Jackson MS USA
- Division of Nephrology; Department of Medicine; University of Mississippi Medical Center; Jackson MS USA
| |
Collapse
|
17
|
Abstract
20-Hydroxy-5, 8, 11, 14-eicosatetraenoic acid (20-HETE) is a cytochrome P450 (CYP)-derived omega-hydroxylation metabolite of arachidonic acid. 20-HETE has been shown to play a complex role in blood pressure regulation. In the kidney tubules, 20-HETE inhibits sodium reabsorption and promotes natriuresis, thus, contributing to antihypertensive mechanisms. In contrast, in the microvasculature, 20-HETE has been shown to play a pressor role by sensitizing smooth muscle cells to constrictor stimuli and increasing myogenic tone, and by acting on the endothelium to further promote endothelial dysfunction and endothelial activation. In addition, 20-HETE induces endothelial angiotensin-converting enzyme, thus, setting forth a potential feed forward prohypertensive mechanism by stimulating the renin-angiotensin-aldosterone system. With the advancement of gene sequencing technology, numerous polymorphisms in the regulatory coding and noncoding regions of 20-HETE-producing enzymes, CYP4A11 and CYP4F2, have been associated with hypertension. This in-depth review article discusses the biosynthesis and function of 20-HETE in the cardiovascular system, the pharmacological agents that affect 20-HETE action, and polymorphisms of CYP enzymes that produce 20-HETE and are associated with systemic hypertension in humans.
Collapse
|
18
|
Ge Y, Murphy SR, Fan F, Williams JM, Falck JR, Liu R, Roman RJ. Role of 20-HETE in the impaired myogenic and TGF responses of the Af-Art of Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2014; 307:F509-15. [PMID: 25007877 DOI: 10.1152/ajprenal.00273.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined whether 20-HETE production is reduced in the renal vasculature and whether this impairs myogenic or tubuloglomerular feedback (TGF) responses of the afferent arteriole (Af-Art). The production of 20-HETE was 73% lower in renal microvessels of Dahl salt-sensitive rats (SS) rats than in SS.5(BN) rats, in which chromosome 5 from the Brown Norway (BN) rat containing the CYP4A genes was transferred into the SS genetic background. The luminal diameter of the Af-Art decreased by 14.7 ± 1.5% in SS.5(BN) rats when the perfusion pressure was increased from 60 to 120 mmHg, but it remained unaltered in SS rats. Administration of an adenosine type 1 receptor agonist (CCPA, 1 μM) reduced the diameter of the Af-Art in the SS.5(BN) rats by 44 ± 2%, whereas the diameter of the Af-Art of SS rats was unaltered. Autoregulation of renal blood flow (RBF) and glomerular capillary pressure (PGC) was significantly impaired in SS rats but was intact in SS.5(BN) rats. Administration of a 20-HETE synthesis inhibitor, HET0016 (1 μM), completely blocked the myogenic and adenosine responses in the Af-Art and autoregulation of RBF and PGC in SS.5(BN) rats, but it had no effect in SS rats. These data indicate that a deficiency in the formation of 20-HETE in renal microvessels impairs the reactivity of the Af-Art of SS rats and likely contributes to the development of hypertension induced renal injury.
Collapse
Affiliation(s)
- Ying Ge
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Sydney R Murphy
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Fan Fan
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Jan Michael Williams
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ruisheng Liu
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Richard J Roman
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|
19
|
Nagasawa T, Imig JD. Afferent Arteriolar Responses to β,γ-methylene ATP and 20-HETE are not Blocked by ENaC Inhibition. Physiol Rep 2013; 1:e00082. [PMID: 24159379 PMCID: PMC3804346 DOI: 10.1002/phy2.82] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Afferent arteriolar myogenic and tubuloglomerular feedback responses are critical for the proper maintenance of renal hemodynamics and water and electrolyte homeostasis. Adenosine triphosphate (ATP) P2X receptor activation and 20-hydroxyeicosatetraenoic acids (20-HETE) have been implicated in afferent arteriolar autoregulatory responses. Besides these two participants, members of the degenerin/epithelial Na+ channel (DEG/ENaC) family have been demonstrated to play a pivotal role in the afferent arteriolar myogenic response. The aim of this study was to determine if ENaC contributes to P2X receptor- or 20-HETE-mediated afferent arteriolar vasoconstriction. As previously demonstrated, afferent arteriolar diameter responses to increasing perfusion pressure from 100 to 160 mmHg were abolished by ENaC inhibitors amiloride or benzamil. Afferent arteriolar diameter decreased by 29% under control conditions and by 1% and 5% in the presence of amiloride or benzamil, respectively. The P2X receptor agonist β,γ-methylene ATP decreased afferent arteriolar diameter by 3 ± 1%, 7 ± 1%, 12 ± 2%, and 17 ± 3% in response to 0.1, 1, 10, and 100 μmol/L, respectively. ENaC inhibition did not alter the afferent arteriolar vasoconstrictor response to the P2X receptor agonist β,γ-methylene ATP. Like P2X receptor activation, 20-HETE dose-dependently decreased afferent arteriolar diameter and this vasoconstrictor response was not altered by the presence of ENaC inhibitors amiloride or benzamil. These results suggest that DEG/ENaC channels are required for afferent arteriolar autoregulatory responses; however, DEG/ENaC channels do not contribute to P2X receptor- or 20-HETE-mediated afferent arteriolar vasoconstriction.
Collapse
Affiliation(s)
- Tasuku Nagasawa
- Department of Pharmacology & Toxicology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
20
|
Ren Y, D'Ambrosio MA, Garvin JL, Wang H, Carretero OA. Mechanism of inhibition of tubuloglomerular feedback by CO and cGMP. Hypertension 2013; 62:99-104. [PMID: 23648700 DOI: 10.1161/hypertensionaha.113.01164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tubuloglomerular feedback (TGF) is a mechanism that senses NaCl in the macula densa (MD) and causes constriction of the afferent arteriole. CO, either endogenous or exogenous, inhibits TGF at least in part via cGMP. We hypothesize that CO in the MD, acting via both cGMP-dependent and -independent mechanisms, attenuates TGF by acting downstream from depolarization and calcium entry into the MD cells. In vitro, microdissected rabbit afferent arterioles and their MD were simultaneously perfused and TGF was measured as the decrease in afferent arteriole diameter. MD depolarization was induced with ionophores, while adding the CO-releasing molecule-3 to the MD perfusate at nontoxic concentrations. CO-releasing molecule-3 blunted depolarization-induced TGF at 50 μmol/L, from 3.6±0.4 to 2.5±0.4 µm (P<0.01), and abolished it at 100 μmol/L, to 0.1±0.1 μm (P<0.001; n=6). When cGMP generation was blocked by guanylyl cyclase inhibitor LY83583 added to the MD, CO-releasing molecule-3 no longer affected depolarization-induced TGF at 50 μmol/L (2.9±0.4 versus 3.0±0.4 µm) but partially inhibited TGF at 100 μmol/L (to 1.3±0.2 μm; P<0.05; n=9). Experiments using eicosatetraynoic acid and indomethacin suggest arachidonic acid metabolites do not mediate the cGMP-independent effect of CO. We then added the calcium ionophore A23187 to the MD, which caused TGF (4.1±0.6 μmol/L); A23187-induced TGF was inhibited by CO-releasing molecule-3 at 50 μmol/L (1.9±0.6 μmol/L; P<0.01) and 100 μmol/L (0.2±0.5 μmol/L; P<0.001; n=6). We conclude that CO inhibits TGF acting downstream from depolarization and calcium entry, acting via cGMP at low concentrations, but additional mechanisms of action may be involved at higher concentrations.
Collapse
Affiliation(s)
- Yilin Ren
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
21
|
Ge Y, Murphy SR, Lu Y, Falck J, Liu R, Roman RJ. Endogenously produced 20-HETE modulates myogenic and TGF response in microperfused afferent arterioles. Prostaglandins Other Lipid Mediat 2013; 102-103:42-8. [PMID: 23500064 DOI: 10.1016/j.prostaglandins.2013.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 01/13/2023]
Abstract
Previous studies have indicated that 20-hydroxyeicosatetraeonic acid (20-HETE) modulates vascular tone in large cerebral and renal arteries through inhibition of the large conductance, calcium sensitive potassium (BK) channel activity. However, the role of 20-HETE in modulating tubuloglomerular feedback (TGF) and the myogenic response in the afferent arteriole (Af-Art) is unknown. The present study examined the effects of inhibitors of the synthesis and action of 20-HETE on the myogenic and TGF responses of isolated rabbit and mouse Af-Arts. Luminal diameter decreased by 9.2±0.5% in mice and 8.9±1.3% in rabbit Af-Art when the perfusion pressure was increased from 60 to 120 mmHg. Administration of a 20-HETE synthesis inhibitor, HET0016 (1 μM), or a selective 20-HETE antagonist, 6, 15-20-hydroxyeicosadienoic acid (6, 15-20-HEDE, 10 μM) completely blocked the myogenic response of both rabbit and mouse Af-Art, while addition of 5, 14-20-HEDE (10 μM), a 20-HETE agonist, restored the myogenic response in vessels treated with HET0016. Increases in NaCl concentration from 10 to 80 mM of the solution perfusing the macula densa constricted the Af-Art of rabbits by 6.0±1.4 μm (n=5). Addition of a 20-HETE agonist to the tubular perfusate potentiated the TGF-mediated vasoconstrictor response. This response was blocked by addition of a 20-HETE antagonist (6, 15-20-HEDE, 10 μM) to the vascular perfusate. These studies indicate that locally produced 20-HETE plays an important role in modulating the myogenic and TGF responsiveness of the Af-Art and may help explain how deficiencies in the renal formation of 20-HETE could promote the development of hypertension induced glomerular injury.
Collapse
Affiliation(s)
- Ying Ge
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
22
|
Imig JD. Epoxyeicosatrienoic acids, 20-hydroxyeicosatetraenoic acid, and renal microvascular function. Prostaglandins Other Lipid Mediat 2013; 104-105:2-7. [PMID: 23333581 DOI: 10.1016/j.prostaglandins.2013.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 12/05/2012] [Accepted: 01/09/2013] [Indexed: 01/16/2023]
Abstract
The development of pharmacological, genetic, and biochemical tools have allowed for detailed studies to determine the contribution of cytochrome P450 (CYP) metabolites of arachidonic acid to renal microvascular function. Renal microvessels can generate CYP hydroxylase metabolites including 20-hydroxyeicosatetraenoic acid (20-HETE) and CYP epoxygenase metabolites, epoxyeicosatrienoic acids (EETs). 20-HETE constricts afferent arterioles and contributes to renal blood flow autoregulation. EETs act as endothelium-dependent hyperpolarizing factors (EDHFs) on the renal microcirculation. 20-HETE inhibits whereas EETs activate renal microvascular smooth muscle cell large-conductance calcium-activated K(+) channels (KCa). Likewise, 20-HETE renal microvascular actions are pro-hypertensive and EET actions are anti-hypertensive. These findings in the renal microvasculature and those of others have provided impetus for the development of enzymatic inhibitors, agonists, and antagonists for 20-HETE and EETs to determine their potential therapeutic value. Initial genetic studies and experimental studies with soluble epoxide hydrolase inhibitors to increase EETs, EET analogs, and 20-HETE inhibitors have demonstrated improved renal microvascular function in hypertension. These findings have demonstrated the important contributions that 20-HETE and EETs play in the regulation of renal microvascular function.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology & Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
23
|
Nakano M, Kelly EJ, Wiek C, Hanenberg H, Rettie AE. CYP4V2 in Bietti's crystalline dystrophy: ocular localization, metabolism of ω-3-polyunsaturated fatty acids, and functional deficit of the p.H331P variant. Mol Pharmacol 2012; 82:679-86. [PMID: 22772592 PMCID: PMC3463217 DOI: 10.1124/mol.112.080085] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/06/2012] [Indexed: 01/08/2023] Open
Abstract
Bietti's crystalline corneoretinal dystrophy (BCD) is a recessive degenerative eye disease caused by germline mutations in the CYP4V2 gene. More than 80% of mutant alleles consist of three mutations, that is, two splice-site alterations and one missense mutation, c.992C>A, which translates to p.H331P. In the present study, we analyzed the expression of CYP4 family members in human tissues and conducted functional studies with the wild-type and p.H331P enzymes, to elucidate the link between CYP4V2 activity and BCD. Expression analysis of 17 CYP1 to CYP4 genes showed CYP4V2 to be a major cytochrome P450 in ARPE-19 cells (a human cell line spontaneously generated from normal human retinal pigmented epithelium) and the only detectable CYP4 transcript. Immunohistochemical analyses demonstrated that CYP4V2 protein was present in epithelial cells of the retina and cornea and the enzyme was localized to endoplasmic reticulum. Recombinant reconstituted CYP4V2 protein metabolized eicosapentaenoic acid and docosahexaenoic acid (an important constituent of the retina) to their respective ω-hydroxylated products at rates similar to those observed with purified CYP4F2, which is an established hepatic polyunsaturated fatty acid (PUFA) hydroxylase. The disease-associated p.H331P variant was undetectable in Western blot analyses of HepG2 cells stably transduced with lentiviral expression vectors. Finally, overexpression of functional CYP4V2 in HepG2 cells altered lipid homeostasis. We demonstrated that CYP4V2 protein is expressed at high levels in ocular target tissues of BCD, that the enzyme is metabolically active toward PUFAs, and that the functional deficit among patients with BCD who carry the H331P variant is most likely a consequence of the instability of the mutant protein.
Collapse
Affiliation(s)
- Mariko Nakano
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Washington, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Arachidonic acid is metabolized by enzymes of the CYP4A and 4F families to 20-hydroxyeicosatetraeonic acid (20-HETE), which plays an important role in the regulation of renal function, vascular tone, and the long-term control of arterial pressure. In the vasculature, 20-HETE is a potent vasoconstrictor, and upregulation of the production of this compound contributes to the elevation in oxidative stress and endothelial dysfunction and the increase in peripheral vascular resistance associated with some forms of hypertension. In kidney, 20-HETE inhibits Na transport in the proximal tubule and thick ascending loop of Henle, and deficiencies in the renal formation of 20-HETE contributes to sodium retention and development of some salt-sensitive forms of hypertension. 20-HETE also has renoprotective actions and opposes the effects of transforming growth factor β to promote proteinuria and renal end organ damage in hypertension. Several new inhibitors of the synthesis of 20-HETE and 20-HETE agonists and antagonists have recently been developed. These compounds along with peroxisome proliferator-activated receptor-α agonists that induce the renal formation of 20-HETE seem to have promise as antihypertensive agents. This review summarizes the rationale for the development of drugs that target the 20-HETE pathway for the treatment of hypertension and associated cardiovascular complications.
Collapse
|
25
|
Abraham NG, Cao J, Sacerdoti D, Li X, Drummond G. Heme oxygenase: the key to renal function regulation. Am J Physiol Renal Physiol 2009; 297:F1137-52. [PMID: 19570878 PMCID: PMC2781329 DOI: 10.1152/ajprenal.90449.2008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 06/09/2009] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase (HO) plays a critical role in attenuating the production of reactive oxygen species through its ability to degrade heme in an enzymatic process that leads to the production of equimolar amounts of carbon monoxide and biliverdin/bilirubin and the release of free iron. The present review examines the beneficial role of HO-1 (inducible form of HO) that is achieved by increased expression of this enzyme in renal tissue. The influence of the HO system on renal physiology, obesity, vascular dysfunction, and blood pressure regulation is reviewed, and the clinical potential of increased levels of HO-1 protein, HO activity, and HO-derived end products of heme degradation is discussed relative to renal disease. The use of pharmacological and genetic approaches to investigate the role of the HO system in the kidney is key to the development of therapeutic approaches to prevent the adverse effects that accrue due to an impairment in renal function.
Collapse
Affiliation(s)
- Nader G Abraham
- New York Medical College, Department of Pharmacology, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|
26
|
Akbulut T, Regner KR, Roman RJ, Avner ED, Falck JR, Park F. 20-HETE activates the Raf/MEK/ERK pathway in renal epithelial cells through an EGFR- and c-Src-dependent mechanism. Am J Physiol Renal Physiol 2009; 297:F662-70. [PMID: 19570883 DOI: 10.1152/ajprenal.00146.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) has been reported to promote mitogenicity in a variety of cell types, including renal epithelial cells. However, the signal transduction pathways activated by 20-HETE have not been fully defined. The present study evaluated the effects of 20-HETE and its more stable agonist analogs 20-hydroxyeicosa-5(Z),14(Z)-dienoic acid (5,14-20-HEDE) and N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (5,14-20-HEDGE) on the Raf/MEK/ERK and phosphatidylinositol 3-kinase (PI3K)-Akt pathway in LLC-PK(1) renal epithelial cells. 20-HETE (20 microM) increased phosphorylation of Raf-1 (2.5 +/- 0.2-fold), MEK1/2 (6.3 +/- 1.6-fold), and ERK1/2 (5.8 +/- 0.3-fold) compared with vehicle-treated cells. Similarly, the 20-HETE analogs also strongly activated ERK1/2 in a Raf-1- and MEK1/2-dependent manner. Moreover, 5,14-20-HEDE increased Akt phosphorylation by 2.2 +/- 0.3-fold. 20-HETE and 5,14-20-HEDE also promoted activation (Y1086) of epidermal growth factor receptor (EGFR; Y1086) by 1.9 +/- 0.2- and 2.5 +/- 0.2-fold, respectively. These effects were completely blocked by the EGFR inhibitor EKB-569 (0.1 microM). Moreover, EKB-569 (0.1 microM), as well as a c-Src inhibitor, SKI-606 (0.05 microM), completely abolished the 20-HETE-mediated activation of the Raf/MEK/ERK and PI3K-Akt pathways. Blockade of PKC with bisindolylmaleimide I had no effect on 20-HETE-induced ERK1/2 activation. This study demonstrated that 20-HETE activated the Raf/MEK/ERK and Akt pathways in renal epithelial cells secondary to the activation of c-Src and EGFR.
Collapse
Affiliation(s)
- Talha Akbulut
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
27
|
Williams JM, Sarkis A, Hoagland KM, Fredrich K, Ryan RP, Moreno C, Lopez B, Lazar J, Fenoy FJ, Sharma M, Garrett MR, Jacob HJ, Roman RJ. Transfer of the CYP4A region of chromosome 5 from Lewis to Dahl S rats attenuates renal injury. Am J Physiol Renal Physiol 2008; 295:F1764-77. [PMID: 18842817 DOI: 10.1152/ajprenal.90525.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study examined the effect of transfer of overlapping regions of chromosome 5 that includes (4A(+)) or excludes (4A(-)) the cytochrome P-450 4A (CYP4A) genes from the Lewis rat on the renal production of 20-hydroxyeicosatetraenoic acid (20-HETE) and the development of hypertension-induced renal disease in congenic strains of Dahl salt-sensitive (Dahl S) rats. The production of 20-HETE was higher in the outer medulla of 4A(+) than in Dahl S or 4A(-) rats. Mean arterial pressure (MAP) rose to 190 +/- 7 and 185 +/- 3 mmHg in Dahl S and 4A(-) rats fed a high-salt (HS) diet for 21 days but only to 150 +/- 5 mmHg in the 4A(+) strain. Protein excretion increased to 423 +/- 40 and 481 +/- 37 mg/day in Dahl S and 4A(-) rats vs. 125 +/- 15 mg/day in the 4A(+) strain. Baseline glomerular capillary pressure (Pgc) was lower in 4A(+) rats (38 +/- 1 mmHg) than in Dahl S rats (42 +/- 1 mmHg). Pgc increased to 50 +/- 1 mmHg in Dahl S rats fed a HS diet, whereas it remained unaltered in 4A(+) rats (39 +/- 1 mmHg). Baseline glomerular permeability to albumin (P(alb)) was lower in 4A(+) rats (0.19 +/- 0.05) than in Dahl S or 4A(-) rats (0.39 +/- 0.02). P(alb) rose to approximately 0.61 +/- 0.03 in 4A(-) and Dahl S rats fed a HS diet for 7 days, but it remained unaltered in the 4A(+) rats. The expression of transforming growth factor-beta2 was higher in glomeruli of Dahl S rats than in 4A(+) rats fed either a low-salt (LS) or HS diet. Chronic administration of a 20-HETE synthesis inhibitor (HET0016; 10 mg.kg(-1).day(-1) sc) reversed the fall in MAP and renoprotection seen in 4A(+) rats. These results indicate that the introgression of the CYP4A genes from Lewis rats into the Dahl S rats increases the renal formation of 20-HETE and attenuates the development of hypertension and renal disease.
Collapse
Affiliation(s)
- Jan Michael Williams
- Kidney Disease Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen YJ, Li J, Quilley J. Deficient renal 20-HETE release in the diabetic rat is not the result of oxidative stress. Am J Physiol Heart Circ Physiol 2008; 294:H2305-12. [PMID: 18326808 DOI: 10.1152/ajpheart.00868.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We confirmed that release of 20-hydroxyeicosatetraenoic acid (20-HETE) from the isolated perfused kidney of diabetic rats is greatly reduced compared with age-matched control rats. The present studies were undertaken to examine potential mechanisms for the deficit in renal 20-HETE in rats with streptozotocin-induced diabetes of 3-4 wk duration. A role for oxidative stress was excluded, inasmuch as treatment of diabetic rats with tempol, an SOD mimetic, for 4 wk did not affect the renal release of 20-HETE. Similarly, chronic inhibition of nitric oxide formation with nitro-l-arginine methyl ester or aldose reductase with zopolrestat failed to alter the release of 20-HETE from the diabetic rat kidney. Inasmuch as 20-HETE may be metabolized by cyclooxygenase (COX), the expression/activity of which is increased in diabetes, we included indomethacin in the perfusate of the isolated kidney to inhibit COX but found no effect on 20-HETE release. Diabetic rats were treated for 3 wk with fenofibrate to increase expression of cytochrome P-450 (CYP4A) in an attempt to find an intervention that would restore release of 20-HETE from the diabetic rat kidney. However, fenofibrate reduced 20-HETE release in diabetic and control rat kidneys but increased expression of CYP4A. Only insulin treatment of diabetic rats for 2 wk to reverse the hyperglycemia and maintain blood glucose levels at <200 mg/dl reversed the renal deficit in 20-HETE. We conclude that oxidative stress, increased aldose reductase activity, or increased COX activity does not contribute to the renal deficit of 20-HETE in diabetes, which may be directly related to insulin deficiency.
Collapse
Affiliation(s)
- Yu-Jung Chen
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
29
|
Roman RJ, Hoagland KM, Lopez B, Kwitek AE, Garrett MR, Rapp JP, Lazar J, Jacob HJ, Sarkis A. Characterization of blood pressure and renal function in chromosome 5 congenic strains of Dahl S rats. Am J Physiol Renal Physiol 2006; 290:F1463-71. [PMID: 16396943 DOI: 10.1152/ajprenal.00360.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined whether transfer of overlapping regions of chromosome 5 that include (4A+) or exclude the cytochrome P-450 (CYP) 4A genes from the Lewis rat alters the renal production of 20-hydroxyeicosatetraenoic acid (20-HETE) and/or the development of hypertension in congenic strains of Dahl salt-sensitive (S) rats. The expression of CYP4A protein and the production of 20-HETE in the renal outer medulla was greater in the 4A+congenic strain than the levels seen in S rats or in overlapping control congenic strains that exclude the CYP4A region. Mean arterial pressure (MAP) rose from 122 ± 2 to 190 ± 7 mmHg in S rats and from 119 ± 2 and 123 ± 2 to 189 ± 7 and 187 ± 3 mmHg in the two control congenic strains fed an 8.0% NaCl diet for 3 wk. In contrast, MAP only increased from 112 ± 2 to 150 ± 5 mmHg in the 4A+congenic strain. Chronic blockade of the formation of 20-HETE with N-(3-chloro-4-morpholin-4-yl) phenyl- N′-hydroxyimido formamide (TS-011; 1 mg/kg bid) restored the salt-sensitive phenotype in the 4A+congenic strain and MAP rose to 181 ± 6 mmHg after an 8.0% NaCl dietary challenge. TS-011 had no effect on the development of hypertension in S rats or the two control congenic strains. The pressure-natriuretic and diuretic responses were fivefold greater in the 4A+congenic strain than in S rats. These results indicate that transfer of the region of chromosome 5 between markers D5Rat108 to D5Rat31 from the Lewis rat into the Dahl S genetic background increases the renal production of 20-HETE, improves pressure-natriuresis and opposes the development of salt-induced hypertension.
Collapse
Affiliation(s)
- Richard J Roman
- Dept. of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kroetz DL, Xu F. Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu Rev Pharmacol Toxicol 2005; 45:413-38. [PMID: 15822183 DOI: 10.1146/annurev.pharmtox.45.120403.100045] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytochrome P450-catalyzed metabolism of arachidonic acid is an important pathway for the formation of paracrine and autocrine mediators of numerous biological effects. The omega-hydroxylation of arachidonic acid generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in numerous tissues, particularly the vasculature and kidney tubules. Members of the cytochrome P450 4A and 4F families are the major omega-hydroxylases, and the substrate selectivity and regulation of these enzymes has been the subject of numerous studies. Altered expression and function of arachidonic acid omega-hydroxylases in models of hypertension, diabetes, inflammation, and pregnancy suggest that 20-HETE may be involved in the pathogenesis of these diseases. Our understanding of the biological significance of 20-HETE has been greatly aided by the development and characterization of selective and potent inhibitors of the arachidonic acid omega-hydroxylases. This review discusses the substrate selectivity and expression of arachidonic acid omega-hydroxylases, regulation of these enzymes during disease, and the application of enzyme inhibitors to study 20-HETE function.
Collapse
Affiliation(s)
- Deanna L Kroetz
- Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143-2911, USA.
| | | |
Collapse
|
31
|
Sacerdoti D, Gatta A, McGiff JC. Role of cytochrome P450-dependent arachidonic acid metabolites in liver physiology and pathophysiology. Prostaglandins Other Lipid Mediat 2004; 72:51-71. [PMID: 14626496 DOI: 10.1016/s1098-8823(03)00077-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arachidonic acid (AA) can undergo monooxygenation or epoxidation by enzymes in the cytochrome P450 (CYP) family in the brain, kidney, lung, vasculature, and the liver. CYP-AA metabolites, 19- and 20-hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs) and diHETEs have different biological properties based on sites of production and can be stored in tissue lipids and released in response to hormonal stimuli. 20-HETE is a vasoconstrictor, causing blockade of Ca(++)-activated K(+) (KCa) channels. Inhibition of the formation of nitric oxide (NO) by 20-HETE mediates most of the cGMP-independent component of the vasodilator response to NO. 20-HETE elicits a potent dilator response in human and rabbit pulmonary vascular and bronchiole rings that is dependent on an intact endothelium and COX. 20-HETE is also a vascular oxygen sensor, inhibits Na(+)/K(+)-ATPase activity, is an endogenous inhibitor of the Na(+)-K(+)-2Cl(-)cotransporter, mediates the mitogenic actions of vasoactive agents and growth factors in many tissues and plays a significant role in angiogenesis. EETs, produced by the vascular endothelium, are potent dilators. EETs hyperpolarize VSM cells by activating KCa channels. Several investigators have proposed that one or more EETs may serve as endothelial-derived hyperpolarizing factors (EDHF). EETs constrict human and rabbit bronchioles, are potent mediators of insulin and glucagon release in isolated rat pancreatic islets, and have anti-inflammatory activity. Compared with other organs, the liver has the highest total CYP content and contains the highest levels of individual CYP enzymes involved in the metabolism of fatty acids. In humans, 50-75% of CYP-dependent AA metabolites formed by liver microsomes are omega/omega-OH-AA, mainly w-OH-AA, i.e. 20HETE, and 13-28% are EETs. Very little information is available on the role of 19- and 20-HETE and EETs in liver function. EETs are involved in vasopressin-induced glycogenolysis, probably via the activation of phosphorylase. In the portal vein, inhibition of EETs exerts profound effects on a variety of K-channel activities in smooth muscles of this vessel. 20-HETE is a weak, COX-dependent, vasoconstrictor of the portal circulation. EETs, particularly 11,12-EET, cause vasoconstriction of the porto-sinusoidal circulation. Increased synthesis of EETs in portal vessels and/or sinusoids or increased levels in blood from the meseneric circulation may participate in the pathophysiology of portal hypertension of cirrhosis. CYP-dependent AA metabolites are involved in the pathophysiology of portal hypertension, not only by increasing resistance in the porto-sinusoidal circulation, but also by increasing portal inflow through mesenteric vasodilatation. In patients with cirrhosis, urinary 20-HETE is several-fold higher than PGs and TxB2, whereas in normal subjects, 20-HETE and PGs are excreted at similar rates. Thus, 20-HETE is probably produced in increased amounts in the preglomerular microcirculation accounting for the functional decrease of flow and increase in sodium reabsorption. In conclusion, CYP-AA metabolites represent a group of compounds that participate in the regulation of liver metabolic activity and hemodynamics. They appear to be deeply involved in abnormalities related to liver diseases, particularly cirrhosis, and play a key role in the pathophysiology of portal hypertension and renal failure.
Collapse
Affiliation(s)
- David Sacerdoti
- Department of Clinical and Experimental Medicine, Azienda Ospedaliera and University of Padova, Clinica Medica 5, Via Giustiniani 2, 35100 Padova, Italy.
| | | | | |
Collapse
|
32
|
Hercule HC, Wang MH, Oyekan AO. Contribution of cytochrome P450 4A isoforms to renal functional response to inhibition of nitric oxide production in the rat. J Physiol 2003; 551:971-9. [PMID: 12857783 PMCID: PMC2343276 DOI: 10.1113/jphysiol.2003.049981] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE), a major renal eicosanoid, regulates renal function and contributes to renal responses following withdrawal of nitric oxide (NO). However, the role of 20-HETE-synthesizing isoforms in renal function resulting from NO inhibition is unknown. The present study evaluated the role of cytochrome (CYP)4A1, -4A2 and -4A3 isoforms on renal function in the presence and absence of NO. Antisense oligonucleotides (ASODN) to CYP4A1, -4A2 and -4A3 reduced 20-HETE synthesis and downregulated the expression of CYP4A isoforms in renal microsomes. Nomega-L-nitromethyl arginine ester (L-NAME, 25 mg kg(-1)), an inhibitor of NO production, increased mean arterial blood pressure (MABP, Delta = +18 to 26 mmHg), reduced renal blood flow (RBF, Delta = -1.8 to 2.9 ml min(-1)), increased renal vascular resistance (RVR, Delta = +47 to 54 mmHg ml(-1) min(-1)), reduced glomerular filtration rate (GFR), but increased sodium excretion (UNaV). ASODN to CYP4A1 and -4A2 but not -4A3 reduced basal MABP and RVR and increased basal GFR, while ASODN to CYP4A2 significantly reduced basal UNaV suggesting a differential role for CYP4A isoforms in the regulation of renal function. ASODN to CYP4A2 but not -4A1 or -4A3 blunted the increase in MABP by L-NAME (38 +/- 9 %, P < 0.05). ASODN to CYP4A1, -4A2 and -4A3 attenuated the reduction in RBF and the consequent increase in RVR by L-NAME with a potency order of CYP4A2 = CYP4A1 > CYP4A3. ASODN to CYP4A1 and -4A2 but not -4A3 attenuated L-NAME-induced reduction in GFR, but ASODN to all three CYP4A isoforms blunted the L-NAME-induced increase in UNaV (CYP4A3 > CYP4A1 >> CYP4A2). We conclude from these data that CYP4A isoforms contribute to different extents to basal renal function. Moreover, CYP4A2 contributes greatest to haemodynamic responses while CYP4A3 contributes greatest to tubular responses following NO inhibition. We therefore propose that NO differentially regulates the function of CYP4A1, -4A2, and -4A3 isoforms in the renal vasculature and the nephron.
Collapse
Affiliation(s)
- Hantz C Hercule
- Center for Cardiovascular Diseases, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | | | | |
Collapse
|
33
|
Cheng MK, McGiff JC, Carroll MA. Renal arterial 20-hydroxyeicosatetraenoic acid levels: regulation by cyclooxygenase. Am J Physiol Renal Physiol 2003; 284:F474-9. [PMID: 12419775 DOI: 10.1152/ajprenal.00239.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
20-HETE, a potent vasoconstrictor, is generated by cytochrome P-450 omega-hydroxylases and is the principal eicosanoid produced by preglomerular microvessels. It is released from preglomerular microvessels by ANG II and is subject to metabolism by cyclooxygenase (COX). Because low-salt (LS) intake stimulates the renin-angiotensin system and induces renal cortical COX-2 expression, we examined 20-HETE release from renal arteries (interlobar and arcuate and interlobular arteries) obtained from 6- to 7-wk-old male Sprague-Dawley rats fed either normal salt (0.4% NaCl) or LS (0.05% NaCl) diets for 10 days. With normal salt intake, the levels of 20-HETE recovered were similar in arcuate and interlobular arteries and interlobar arteries: 30.1 +/- 8.5 vs. 24.6 +/- 5.3 ng. mg protein(-1). 30 min(-1), respectively. An LS diet increased 20-HETE levels in the incubate of either arcuate and interlobular or interlobar renal arteries only when COX was inhibited. Addition of indomethacin (10 microM) to the incubate of arteries obtained from rats fed an LS diet resulted in a two- to threefold increase in 20-HETE release from arcuate and interlobular arteries, from 39.1 +/- 13.2 to 101.8 +/- 42.6 ng. mg protein(-1). 30 min(-1) (P < 0.03), and interlobar arteries, from 31.7 +/- 15.1 to 61.9 +/- 29.4 ng. mg protein(-1). 30 min(-1) (P < 0.05) compared with release of 20-HETE when COX was not inhibited. An LS diet enhanced vascular expression of cytochrome P-4504A and COX-2 in arcuate and interlobular arteries; COX-1 was unaffected. Metabolism of 20-HETE by COX is proposed to represent an important regulatory mechanism in setting preglomerular microvascular tone.
Collapse
Affiliation(s)
- Monica K Cheng
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | |
Collapse
|
34
|
Stec DE, Flasch A, Roman RJ, White JA. Distribution of cytochrome P-450 4A and 4F isoforms along the nephron in mice. Am J Physiol Renal Physiol 2003; 284:F95-102. [PMID: 12388424 DOI: 10.1152/ajprenal.00132.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The production of 20-hydroxyeicosatetraenoic acid (20-HETE) in the kidney is thought to be involved in the control of renal vascular tone and tubular sodium and chloride reabsorption. 20-HETE production in the kidney has been extensively studied in rats and humans and occurs primarily via the actions of P-450 enzymes of the CYP4A and -4F families. Recent advancements in molecular genetics of the mouse have made it possible to disrupt genes in a cell-type-specific fashion. These advances could help in the creation of models that could distinguish between the vascular and tubular actions of 20-HETE. However, isoforms of the CYP4A and -4F families that may be responsible for the production of 20-HETE in the vascular and tubular segments in the kidney of the mouse are presently unknown. The goal of this study was to identify the isoforms of the CYP4A and -4F families along the nephron by RT-PCR of RNA isolated from microdissected renal blood vessels and nephron segments from 16- to 24-wk-old male and female C57BL/6J mice. CYP4A and -4F isoforms were detected in every segment analyzed, with sex differences only observed in the proximal tubule and glomeruli. In the proximal tubular segments from male mice, the 4A10 and -12 isoforms were present, whereas the 4A10 and -14 isoforms were detected in segments from female mice. In glomeruli, sex differences in the expression pattern of CYP4F isoforms were also observed, with male mice expressing the 4F13, -14, and -15 isoforms, whereas female mice expressed the 4F13, -16, and -18 isoforms. These results demonstrate that isolated nephron and renal vessel segments express multiple isoforms of the CYP4A and -4F families; therefore, elimination of a single CYP4A or -4F isoform may not decrease 20-HETE production in all nephron segments or the renal vasculature of male and female mice. However, the importance of CYP4A vs. -4F isoforms to the production of 20-HETE in each of these renal tubular and vascular segments of the mouse remains to be determined.
Collapse
Affiliation(s)
- David E Stec
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson 39216-4505, USA.
| | | | | | | |
Collapse
|
35
|
Xu F, Straub WO, Pak W, Su P, Maier KG, Yu M, Roman RJ, Ortiz De Montellano PR, Kroetz DL. Antihypertensive effect of mechanism-based inhibition of renal arachidonic acid omega-hydroxylase activity. Am J Physiol Regul Integr Comp Physiol 2002; 283:R710-20. [PMID: 12185006 DOI: 10.1152/ajpregu.00522.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytochrome P-450 eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that is implicated in the regulation of blood pressure. The identification of selective inhibitors of renal 20-HETE formation for use in vivo would facilitate studies to determine the systemic effects of this eicosanoid. We characterized the acetylenic fatty acid sodium 10-undecynyl sulfate (10-SUYS) as a potent and selective mechanism-based inhibitor of renal 20-HETE formation. A single dose of 10-SUYS caused an acute reduction in mean arterial blood pressure in 8-wk-old spontaneously hypertensive rats. The decrease in mean arterial pressure was maximal 6 h after 10-SUYS treatment (17.9 +/- 3.2 mmHg; P < 0.05), and blood pressure returned to baseline levels within 24 h after treatment. Treatment with 10-SUYS was associated with a decrease in urinary 20-HETE formation in vivo and attenuation of the vasoconstrictor response of renal interlobar arteries to ANG II in vitro. These results provide further evidence that 20-HETE plays an important role in the regulation of blood pressure in the spontaneously hypertensive rat.
Collapse
Affiliation(s)
- Fengyun Xu
- Department of Biopharmaceutical Sciences, School of Pharmacy, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Alonso-Galicia M, Maier KG, Greene AS, Cowley AW, Roman RJ. Role of 20-hydroxyeicosatetraenoic acid in the renal and vasoconstrictor actions of angiotensin II. Am J Physiol Regul Integr Comp Physiol 2002; 283:R60-8. [PMID: 12069931 DOI: 10.1152/ajpregu.00664.2001] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study examined the effects of ANG II on the renal synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) and its contribution to the renal vasoconstrictor and the acute and chronic pressor effects of ANG II in rats. ANG II (10(-11) to 10(-7) mol/l) reduced the diameter of renal interlobular arteries treated with inhibitors of nitric oxide synthase and cyclooxygenase, lipoxygenase, and epoxygenase by 81 +/- 8%. Subsequent blockade of the synthesis of 20-HETE with 17-octadecynoic acid (1 micromol/l) increased the ED(50) for ANG II-induced constriction by a factor of 15 and diminished the maximal response by 61%. Graded intravenous infusion of ANG II (5-200 ng/min) dose dependently increased mean arterial pressure (MAP) in thiobutylbarbitol-anesthetized rats by 35 mmHg. Acute blockade of the formation of 20-HETE with dibromododecenyl methylsulfimide (DDMS; 10 mg/kg) attenuated the pressor response to ANG II by 40%. An intravenous infusion of ANG II (50 ng. kg(-1). min(-1)) in rats for 5 days increased the formation of 20-HETE and epoxyeicosatrienoic acids (EETs) in renal cortical microsomes by 60 and 400%, respectively, and increased MAP by 78 mmHg. Chronic blockade of the synthesis of 20-HETE with intravenous infusion of DDMS (1 mg. kg(-1). h(-1)) or EETs and 20-HETE with 1-aminobenzotriazole (ABT; 2.2 mg. kg(-1). h(-1)) attenuated the ANG II-induced rise in MAP by 40%. Control urinary excretion of 20-HETE averaged 350 +/- 23 ng/day and increased to 1,020 +/- 105 ng/day in rats infused with ANG II (50 ng. kg(-1). min(-1)) for 5 days. In contrast, urinary excretion of 20-HETE only rose to 400 +/- 40 and 600 +/- 25 ng/day in rats chronically treated with ANG II and ABT or DDMS respectively. These results suggest that acute and chronic elevations in circulating ANG II levels increase the formation of 20-HETE in the kidney and peripheral vasculature and that 20-HETE contributes to the acute and chronic pressor effects of ANG II.
Collapse
Affiliation(s)
- Magdalena Alonso-Galicia
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 59226, USA
| | | | | | | | | |
Collapse
|
37
|
Wang MH, Zand BA, Nasjletti A, Laniado-Schwartzman M. Renal 20-hydroxyeicosatetraenoic acid synthesis during pregnancy. Am J Physiol Regul Integr Comp Physiol 2002; 282:R383-9. [PMID: 11792647 DOI: 10.1152/ajpregu.2002.282.2.r383] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined whether renal 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis is altered during gestation. Renal microsomal arachidonic acid omega-hydroxylase activity increased by 50 and 48% in rats on days 12 and 19 of gestation, respectively. Renal microvessel 20-HETE synthesis increased by 50 and 82% in rats on days 6 and 12 of gestation, respectively, and returned to control levels at day 19 of gestation. In contrast, 20-HETE synthesis in isolated medullary thick ascending limb was unchanged from control levels on days 6 and 12 of gestation, but it increased twofold on day 19 of gestation. This increase on day 19 of gestation was associated with a twofold increase in urinary 20-HETE excretion, and it coincided with a 23-mmHg fall in blood pressure. Moreover, change in the rate of 20-HETE synthesis in microvessels was consistent with the level of expression of cytochrome P450 (CYP)4A proteins. Administration of the CYP4A inhibitor 1-aminobenzotriazole (ABT) for 2 days on day 12 of pregnancy or for 5 days starting on day 15 of pregnancy caused a transient but significant reduction in systolic blood pressure. ABT treatment also decreased urinary sodium, urinary 20-HETE, and renal and microvessel 20-HETE synthesis. This study, to our knowledge, is the first to demonstrate that 20-HETE synthesis in the kidney is altered in time- and site-specific manners during pregnancy. The localized pattern of changes suggests that there are distinct regulatory mechanisms for 20-HETE synthesis in the kidney during pregnancy.
Collapse
Affiliation(s)
- Mong-Heng Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Recent studies have indicated that arachidonic acid is primarily metabolized by cytochrome P-450 (CYP) enzymes in the brain, lung, kidney, and peripheral vasculature to 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) and that these compounds play critical roles in the regulation of renal, pulmonary, and cardiac function and vascular tone. EETs are endothelium-derived vasodilators that hyperpolarize vascular smooth muscle (VSM) cells by activating K(+) channels. 20-HETE is a vasoconstrictor produced in VSM cells that reduces the open-state probability of Ca(2+)-activated K(+) channels. Inhibitors of the formation of 20-HETE block the myogenic response of renal, cerebral, and skeletal muscle arterioles in vitro and autoregulation of renal and cerebral blood flow in vivo. They also block tubuloglomerular feedback responses in vivo and the vasoconstrictor response to elevations in tissue PO(2) both in vivo and in vitro. The formation of 20-HETE in VSM is stimulated by angiotensin II and endothelin and is inhibited by nitric oxide (NO) and carbon monoxide (CO). Blockade of the formation of 20-HETE attenuates the vascular responses to angiotensin II, endothelin, norepinephrine, NO, and CO. In the kidney, EETs and 20-HETE are produced in the proximal tubule and the thick ascending loop of Henle. They regulate Na(+) transport in these nephron segments. 20-HETE also contributes to the mitogenic effects of a variety of growth factors in VSM, renal epithelial, and mesangial cells. The production of EETs and 20-HETE is altered in experimental and genetic models of hypertension, diabetes, uremia, toxemia of pregnancy, and hepatorenal syndrome. Given the importance of this pathway in the control of cardiovascular function, it is likely that CYP metabolites of arachidonic acid contribute to the changes in renal function and vascular tone associated with some of these conditions and that drugs that modify the formation and/or actions of EETs and 20-HETE may have therapeutic benefits.
Collapse
Affiliation(s)
- Richard J Roman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
39
|
Ito O, Omata K, Ito S, Hoagland KM, Roman RJ. Effects of converting enzyme inhibitors on renal P-450 metabolism of arachidonic acid. Am J Physiol Regul Integr Comp Physiol 2001; 280:R822-30. [PMID: 11171663 DOI: 10.1152/ajpregu.2001.280.3.r822] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of blockade of the renin-angiotensin system on the renal metabolism of arachidonic acid (AA) were examined. Male Sprague-Dawley rats were treated with vehicle, captopril (25 mg x kg(-1) x day(-1)), enalapril (10 mg x kg(-1) x day(-1)), or candesartan (1 mg x kg(-1) x day(-1)) for 1 wk. The production of 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) by renal cortical microsomes increased in rats treated with captopril by 59 and 24% and by 90 and 58% in rats treated with enalapril. Captopril and enalapril increased 20-HETE production in the outer medulla by 100 and 143%, respectively. In contrast, blockade of ANG II type 1 receptors with candesartan had no effect on the renal metabolism of AA. Captopril and enalapril increased cytochrome P-450 (CYP450) reductase protein levels in the renal cortex and outer medulla and the expression of CYP450 4A protein in the outer medulla. The effects of captopril on the renal metabolism of AA were prevented by the bradykinin-receptor antagonist, HOE-140, or the nitric oxide (NO) synthase inhibitor, N(G)-nitro-L-arginine methyl ester. These results suggest that angiotensin-converting enzyme inhibitors may increase the formation of 20-HETE and EETs secondary to increases in the intrarenal levels of kinins and NO.
Collapse
Affiliation(s)
- O Ito
- Department of Nephrology, Endocrinology, and Hypertension, Tohoku University Graduate School of Medicine, Sendai 980 - 8574, Japan
| | | | | | | | | |
Collapse
|
40
|
Wang MH, Zhang F, Marji J, Zand BA, Nasjletti A, Laniado-Schwartzman M. CYP4A1 antisense oligonucleotide reduces mesenteric vascular reactivity and blood pressure in SHR. Am J Physiol Regul Integr Comp Physiol 2001; 280:R255-61. [PMID: 11124159 DOI: 10.1152/ajpregu.2001.280.1.r255] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytochrome P-450 4A (CYP4A)-derived arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) affects renal tubular and vascular functions and has been implicated in the control of arterial pressure. We examined the effect of antisense oligonucleotide (ODN) to CYP4A1, the low K(m) arachidonic acid omega-hydroxylating isoform, on vascular 20-HETE synthesis, vascular reactivity, and blood pressure in the spontaneously hypertensive rat (SHR). Administration of CYP4A1 antisense ODN decreased mean arterial blood pressure from 137 +/- 3 to 121 +/- 4 mmHg (P < 0.05) after 5 days of treatment, whereas treatment with scrambled antisense ODN had no effect. Treatment with CYP4A1 antisense ODN reduced the level of CYP4A-immunoreactive proteins along with 20-HETE synthesis in mesenteric arterial vessels. Mesenteric arteries from rats treated with antisense ODN exhibited decreased sensitivity to the constrictor action of phenylephrine (EC(50) 0.69 +/- 0.17 vs. 1.77 +/- 0.40 microM). Likewise, mesenteric arterioles from antisense ODN-treated rats revealed attenuation of myogenic constrictor responses to increases of transmural pressure. The decreased vascular reactivity and myogenic responses were reversible with the addition of 20-HETE. These data suggest that CYP4A1-derived 20-HETE facilitates myogenic constrictor responses in the mesenteric microcirculation and contributes to pressor mechanisms in SHR.
Collapse
Affiliation(s)
- M H Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Even though it has been recognized that arachidonic acid metabolites, eicosanoids, play an important role in the control of renal blood flow and glomerular filtration, several key observations have been made in the past decade. One major finding was that two distinct cyclooxygenase (COX-1 and COX-2) enzymes exist in the kidney. A renewed interest in the contribution of cyclooxygenase metabolites in tubuloglomerular feedback responses has been sparked by the observation that COX-2 is constitutively expressed in the macula densa area. Arachidonic acid metabolites of the lipoxygenase pathway appear to be significant factors in renal hemodynamic changes that occur during disease states. In particular, 12(S)- hydroxyeicosatetraenoic acid may be important for the full expression of the renal hemodynamic actions in response to angiotensin II. Cytochrome P-450 metabolites have been demonstrated to possess vasoactive properties, act as paracrine modulators, and be a critical component in renal blood flow autoregulatory responses. Last, peroxidation of arachidonic acid metabolites to isoprostanes appears to be involved in renal oxidative stress responses. The recent developments of specific enzymatic inhibitors, stable analogs, and gene-disrupted mice and in antisense technology are enabling investigators to understand the complex interplay by which eicosanoids control renal blood flow.
Collapse
Affiliation(s)
- J D Imig
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
42
|
Affiliation(s)
- M A Carroll
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | |
Collapse
|
43
|
Croft KD, McGiff JC, Sanchez-Mendoza A, Carroll MA. Angiotensin II releases 20-HETE from rat renal microvessels. Am J Physiol Renal Physiol 2000; 279:F544-51. [PMID: 10966934 DOI: 10.1152/ajprenal.2000.279.3.f544] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied hydroxyeicosatetraenoic acid (HETE) release in response to ANG II from preglomerular microvessels (PGMVs), the vascular segment governing changes in renal vascular resistance. PGMVs were isolated from Sprague-Dawley rats and incubated with NADPH and hormones at 37 degrees C. Eicosanoids were extracted, and cytochrome P-450 (CYP)-derived HETEs were purified and quantitated by negative chemical ionization gas chromatography-mass spectroscopy. PGMVs produced primarily 20- and 19-HETEs, namely, 7.9 +/- 1.7 and 2.2 +/- 0.5 ng/mg protein, respectively. ANG II (5 nM) increased CYP-HETE release by two- to threefold; bradykinin, phenylephrine, and Ca(2+) ionophore were without effect. [Sar(1)]ANG II (0.1-100 microM) dose dependently stimulated 19- and 20-HETEs, an effect blocked by the AT(2)-receptor antagonist PD-123319 as well as by U-73122, a phospholipase C inhibitor. Microvascular 20-HETE release was increased more than twofold by the third day in response to ANG II (120 ng. kg(-1). min(-1)) infused subcutaneously for 2 wk; it was not further enhanced after 14 days, although blood pressure continued to rise. Thus an AT(2)-phospholipse C effector unit is associated with synthesis of a vasoconstrictor product, 20-HETE, in a key renovascular segment.
Collapse
Affiliation(s)
- K D Croft
- Department of Medicine, University of Western Australia, Perth WA 6847, Australia
| | | | | | | |
Collapse
|
44
|
Quigley R, Baum M, Reddy KM, Griener JC, Falck JR. Effects of 20-HETE and 19(S)-HETE on rabbit proximal straight tubule volume transport. Am J Physiol Renal Physiol 2000; 278:F949-53. [PMID: 10836982 PMCID: PMC4124896 DOI: 10.1152/ajprenal.2000.278.6.f949] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidney has the highest abundance of cytochrome P-450 of all extrahepatic organs. Within the kidney, the highest concentration of cytochrome P-450 is found in the proximal tubule. Whether 20- or 19(S)-hydroxyeicosatetraenoic acid (HETE), the major P-450 metabolites of arachidonic acid in the proximal tubule, affect transport in this segment has not been previously investigated. We examined the direct effects of 20- and 19(S)-HETE on volume absorption (J(v)) in the rabbit proximal straight tubule (PST). Production of 20-HETE by rabbit PST was demonstrated by incubating microdissected tubules with [(3)H]arachidonic acid and separating the lipid extract by HPLC. There was significant conversion of [(3)H]arachidonic acid to 20-HETE in control tubules that was inhibited by 10(-5) M N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS). Addition of exogenous 20-HETE had no effect on PST volume transport. However, inhibition of endogenous production of 20-HETE using DDMS stimulated transport. In the presence of DDMS, 20-HETE inhibited PST J(v). 19(S)-HETE in the bathing solution stimulated PST J(v) alone and in the presence of DDMS. Thus omega- and omega-1-hydroxylase products of arachidonic acid have direct effects on PST transport. Endogenous production of 20-HETE may play a role in tonic suppression of transport and may therefore be an endogenous regulator of transport in the proximal tubule.
Collapse
Affiliation(s)
- R Quigley
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, 75235-9063, USA.
| | | | | | | | | |
Collapse
|
45
|
Oyekan AO, Youseff T, Fulton D, Quilley J, McGiff JC. Renal cytochrome P450 omega-hydroxylase and epoxygenase activity are differentially modified by nitric oxide and sodium chloride. J Clin Invest 1999; 104:1131-7. [PMID: 10525052 PMCID: PMC408575 DOI: 10.1172/jci6786] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Renal function is perturbed by inhibition of nitric oxide synthase (NOS). To probe the basis of this effect, we characterized the effects of nitric oxide (NO), a known suppressor of cytochrome P450 (CYP) enzymes, on metabolism of arachidonic acid (AA), the expression of omega-hydroxylase, and the efflux of 20-hydroxyeicosatetraenoic acid (20-HETE) from the isolated kidney. The capacity to convert [(14)C]AA to HETEs and epoxides (EETs) was greater in cortical microsomes than in medullary microsomes. Sodium nitroprusside (10-100 microM), an NO donor, inhibited renal microsomal conversion of [(14)C]AA to HETEs and EETs in a dose-dependent manner. 8-bromo cGMP (100 microM), the cell-permeable analogue of cGMP, did not affect conversion of [(14)C]AA. Inhibition of NOS with N(omega)-nitro-L-arginine-methyl ester (L-NAME) significantly increased conversion of [(14)C]AA to HETE and greatly increased the expression of omega-hydroxylase protein, but this treatment had only a modest effect on epoxygenase activity. L-NAME induced a 4-fold increase in renal efflux of 20-HETE, as did L-nitroarginine. Oral treatment with 2% sodium chloride (NaCl) for 7 days increased renal epoxygenase activity, both in the cortex and the medulla. In contrast, cortical omega-hydroxylase activity was reduced by treatment with 2% NaCl. Coadministration of L-NAME and 2% NaCl decreased conversion of [(14)C]AA to HETEs without affecting epoxygenase activity. Thus, inhibition of NOS increased omega-hydroxylase activity, CYP4A expression, and renal efflux of 20-HETE, whereas 2% NaCl stimulated epoxygenase activity.
Collapse
Affiliation(s)
- A O Oyekan
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | | | | | |
Collapse
|
46
|
Imig JD, Falck JR, Inscho EW. Contribution of cytochrome P450 epoxygenase and hydroxylase pathways to afferent arteriolar autoregulatory responsiveness. Br J Pharmacol 1999; 127:1399-405. [PMID: 10455289 PMCID: PMC1760652 DOI: 10.1038/sj.bjp.0702662] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Previous studies have demonstrated an important role for the cytochrome P450 (CYT-P450) pathway in afferent arteriole autoregulatory responses but the involvement of specific pathways remains unknown. Experiments were performed to determine the role of CYT-P450 epoxygenase and hydroxylase pathways in pressure mediated preglomerular autoregulatory responses. Afferent arteriolar diameter was measured as renal perfusion pressure was increased from 80-160 mmHg. Afferent arteriolar diameter averaged 19+/-2 microm at a renal perfusion pressure of 80 mmHg and decreased by 15+/-2% when pressure was increased to 160 mmHg. Inhibition of the epoxygenase pathway with 6-(2-proparglyloxyphenyl)hexanoic acid (PPOH), enhanced the microvascular response to increasing renal perfusion pressure. In the presence of 50 microM PPOH, afferent arteriolar diameter decreased by 29+/-4% when pressure was increased from 80-160 mmHg. Likewise, the sulphonimide derivative of PPOH, N-methylsulphonyl-6-(2-proparglyloxyphenyl) hexanamide (MS-PPOH, 50 microM), enhanced the afferent arteriolar response to increasing renal perfusion pressure. In contrast, the selective CYT-P450 hydroxylase inhibitor, N-methylsulphonyl-12,12-dibromododec-11-enamide (DDMS) attenuated the vascular response to increasing renal perfusion pressure. In the pressure of 25 microM DDMS, afferent arteriolar diameter decreased by 4+/-2% when pressure was increased from 80-160 mmHg. These results suggest that CYT-P450 metabolites of the epoxygenase pathway alter afferent arteriolar responsiveness and thereby modify the ability of the preglomerular vasculature to autoregulate renal blood flow. Additionally, these results provide further support to the concept that a metabolite of the hydroxylase pathway is an integral component of the afferent arteriolar response to elevations in perfusion pressure.
Collapse
Affiliation(s)
- J D Imig
- Department of Physiology, SL39 Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | |
Collapse
|
47
|
|
48
|
Affiliation(s)
- K Moore
- Joint Department of Medicine, Royal Free Hospital School of Medicine, London, UK
| |
Collapse
|
49
|
Arima S, Endo Y, Yaoita H, Omata K, Ogawa S, Tsunoda K, Abe M, Takeuchi K, Abe K, Ito S. Possible role of P-450 metabolite of arachidonic acid in vasodilator mechanism of angiotensin II type 2 receptor in the isolated microperfused rabbit afferent arteriole. J Clin Invest 1997; 100:2816-23. [PMID: 9389747 PMCID: PMC508487 DOI: 10.1172/jci119829] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although angiotensin II type 2 (AT2) receptor has recently been cloned, its functional role is not well understood. We tested the hypothesis that selective activation of AT2 receptor causes vasodilation in the preglomerular afferent arteriole (Af-Art), a vascular segment that accounts for most of the preglomerular resistance. We microperfused rabbit Af-Arts at 60 mmHg in vitro, and examined the effect of angiotensin II (Ang II; 10(-11)-10(-8) M) on the luminal diameter in the presence or absence of the Ang II type 1 receptor antagonist CV11974 (CV; 10(-8) M). Ang II was added to both the bath and lumen of preconstricted Af-Arts. Ang II further constricted Af-Arts without CV (by 74+/-7% over the preconstricted level at 10(-8) M; P < 0.01, n = 7). In contrast, in the presence of CV, Ang II caused dose-dependent dilation; Ang II at 10(-8) M increased the diameter by 29+/-2% (n = 7, P < 0.01). This dilation was completely abolished by pretreatment with an AT2 receptor antagonist PD123319 (10(-7) M, n = 6), suggesting that activation of AT2 receptor causes vasodilation in Af-Arts. The dilation was unaffected by inhibiting either nitric oxide synthase (n = 7) or cyclooxygenase (n = 7), however, it was abolished by either disrupting the endothelium (n = 10) or inhibiting the cytochrome P-450 pathway, particularly the synthesis of epoxyeicosatrienoic acids (EETs, n = 7). These results suggest that in the Af-Art activation of the AT2 receptor may cause endothelium-dependent vasodilation via a cytochrome P-450 pathway, possibly by EETs.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Angiotensin Receptor Antagonists
- Animals
- Arachidonic Acid/metabolism
- Arterioles/drug effects
- Arterioles/physiology
- Benzimidazoles/pharmacology
- Biphenyl Compounds
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Enzyme System/metabolism
- Endothelium, Vascular/drug effects
- Humans
- Imidazoles/pharmacology
- In Vitro Techniques
- Kidney Glomerulus/blood supply
- Kidney Glomerulus/physiology
- Large-Conductance Calcium-Activated Potassium Channels
- Male
- Norepinephrine/pharmacology
- Perfusion
- Potassium Channel Blockers
- Potassium Channels/metabolism
- Potassium Channels, Calcium-Activated
- Pyridines/pharmacology
- Rabbits
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/agonists
- Receptors, Angiotensin/metabolism
- Receptors, Angiotensin/physiology
- Tetraethylammonium/pharmacology
- Tetrazoles/pharmacology
- Vasoconstrictor Agents/metabolism
- Vasoconstrictor Agents/pharmacology
- Vasodilator Agents/metabolism
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- S Arima
- The Second Department of Internal Medicine, Tohoku University School of Medicine, Sendai, 980-77, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sacerdoti D, Balazy M, Angeli P, Gatta A, McGiff JC. Eicosanoid excretion in hepatic cirrhosis. Predominance of 20-HETE. J Clin Invest 1997; 100:1264-70. [PMID: 9276745 PMCID: PMC508304 DOI: 10.1172/jci119640] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cytochrome P450 system transforms AA to hydroxyeicosatetraenoic acid (HETE) metabolites that are vasoactive and affect transport in several nephron segments. A principal product of this system, 20-HETE, participates in key mechanisms that regulate the renal circulation and extracellular fluid volume. We hypothesized that excess production of 20-HETE, which constricts the renal vasculature, contributes to the renal functional disturbances in patients with hepatic cirrhosis, particularly the depression of renal hemodynamics. The development of a precise and sensitive gas chromatographic/mass spectrometric method makes it possible to measure 20-HETE and the subterminal HETEs (16-,17-,18-, and 19-HETEs) in biological fluids. As 20-HETE was excreted as the glucuronide conjugate, measurement of 20-HETE required treatment of urine with glucuronidase. We measured HETEs in the urine of patients with cirrhosis, and compared these values to those of normal subjects. Urinary excretion rate of 20-HETE was highest in patients with ascites; 12.5+/-3.2 ng/min vs. 5.0+/-1.5 and 1.6+/-0.2 ng/min in cirrhotic patients without ascites and in normal subjects, respectively. Excretion of 16-, 17-, and 18-HETEs was not increased. In patients with cirrhosis, the excretory rate of 20-HETE was several-fold higher than those of prostaglandins and thromboxane, whereas in normal subjects 20-HETE and prostaglandins were excreted at similar rates. Of the eicosanoids, only increased excretion of 20-HETE in subjects with cirrhosis was correlated (r = -0.61; P < 0.01) with reduction of renal plasma flow (RPF).
Collapse
Affiliation(s)
- D Sacerdoti
- Department of Clinical Medicine, Splenoepatologia, University of Padova, Italy
| | | | | | | | | |
Collapse
|