1
|
Georgiou GD, Antoniou K, Antoniou S, Michelekaki EA, Zare R, Ali Redha A, Prokopidis K, Christodoulides E, Clifford T. Effect of Beta-Alanine Supplementation on Maximal Intensity Exercise in Trained Young Male Individuals: A Systematic Review and Meta-Analysis. Int J Sport Nutr Exerc Metab 2024; 34:397-412. [PMID: 39032921 DOI: 10.1123/ijsnem.2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Beta-alanine is a nonessential amino acid that is commonly used to improve exercise performance. It could influence the buffering of hydrogen ions produced during intense exercise and delay fatigue, providing a substrate for increased synthesis of intramuscular carnosine. This systematic review evaluates the effects of beta-alanine supplementation on maximal intensity exercise in trained, young, male individuals. Six databases were searched on August 10, 2023, to identify randomized, double-blinded, placebo-controlled trials investigating the effect of chronic beta-alanine supplementation in trained male individuals with an age range of 18-40 years. Studies evaluating exercise performance through maximal or supramaximal intensity efforts falling within the 0.5-10 min duration were included. A total of 18 individual studies were analyzed, employing 18 exercise test protocols and 15 outcome measures in 331 participants. A significant (p = .01) result was observed with an overall effect size of 0.39 (95% confidence interval [CI] [0.09, 0.69]), in favor of beta-alanine supplementation versus placebo. Results indicate significant effects at 4 weeks of supplementation, effect size 0.34 (95% CI [0.02, 0.67], p = .04); 4-10 min of maximal effort, effect size 0.55 (95% CI [0.07, 1.04], p = .03); and a high beta-alanine dosage of 5.6-6.4 g per day, effect size 0.35 (95% CI [0.09, 0.62], p = .009). The results provide insights into which exercise modality will benefit the most, and which dosage protocols and durations stand to provide the greatest ergogenic effects. This may be used to inform further research, and professional or recreational training design, and optimization of supplementation strategies.
Collapse
Affiliation(s)
| | | | | | | | - Reza Zare
- Meshkat Sports Complex, Karaj, Iran
- Arses Sports Complex, Karaj, Iran
| | - Ali Ali Redha
- University of Exeter, Exeter, United Kingdom
- The University of Queensland, Brisbane, QLD, Australia
| | | | | | - Tom Clifford
- Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
2
|
Antonio J, Pereira F, Curtis J, Rojas J, Evans C. The Top 5 Can't-Miss Sport Supplements. Nutrients 2024; 16:3247. [PMID: 39408214 PMCID: PMC11479151 DOI: 10.3390/nu16193247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Sports supplements have become popular among fitness enthusiasts for enhancing the adaptive response to exercise. This review analyzes five of the most effective ergogenic aids: creatine, beta-alanine, nitrates, caffeine, and protein. Methods: We conducted a narrative review of the literature with a focus on the sport supplements with the most robust evidence for efficacy and safety. Results: Creatine, one of the most studied ergogenic aids, increases phosphocreatine stores in skeletal muscles, improving ATP production during high-intensity exercises like sprinting and weightlifting. Studies show creatine supplementation enhances skeletal muscle mass, strength/power, and muscular endurance. The typical dosage is 3-5 g per day and is safe for long-term use. Beta-alanine, when combined with the amino acid histidine, elevates intramuscular carnosine, which acts as a buffer in skeletal muscles and delays fatigue during high-intensity exercise by neutralizing hydrogen ions. Individuals usually take 2-6 g daily in divided doses to minimize paresthesia. Research shows significant performance improvements in activities lasting 1-4 min. Nitrates, found in beetroot juice, enhance aerobic performance by increasing oxygen delivery to muscles, enhancing endurance, and reducing oxygen cost during exercise. The recommended dosage is approximately 500 milligrams taken 2-3 h before exercise. Caffeine, a central nervous system stimulant, reduces perceived pain while enhancing focus and alertness. Effective doses range from 3 to 6 milligrams per kilogram of body weight, typically consumed an hour before exercise. Protein supplementation supports muscle repair, growth, and recovery, especially after resistance training. The recommended intake for exercise-trained men and women varies depending on their specific goals. Concluions: In summary, creatine, beta-alanine, nitrates, caffeine, and protein are the best ergogenic aids, with strong evidence supporting their efficacy and safety.
Collapse
Affiliation(s)
- Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL 33328, USA
| | - Flavia Pereira
- Exercise and Sport Science, Keiser University, West Palm Beach, FL 33309, USA
| | - Jason Curtis
- Exercise and Sport Science, Keiser University, West Palm Beach, FL 33309, USA
| | - Jose Rojas
- Exercise and Sport Science, Keiser University, West Palm Beach, FL 33309, USA
| | - Cassandra Evans
- Exercise and Sport Science, Nova Southeastern University, Davie, FL 33328, USA
| |
Collapse
|
3
|
Fu T, Liu H, Shi C, Zhao H, Liu F, Xia Y. Global hotspots and trends of nutritional supplements in sport and exercise from 2000 to 2024: a bibliometric analysis. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:146. [PMID: 39267150 PMCID: PMC11397053 DOI: 10.1186/s41043-024-00638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Nutritional supplements for sports and exercise (NSSE) can facilitate the exogenous replenishment of the body. This study provides the first extensive overview of NSSE research through bibliometric and visual analyses. METHODS We searched the Web of Science Core Collection database for literature related to "NSSE" from 1st January 2000 to 8th March 2024. A total of 1744 articles were included. CiteSpace, VOSviewer, and Bibliometrix R package software were used to analyze the data. RESULTS Research in the NSSE can be divided into steady growth, exponential growth, fluctuating stage, and surge stages. The United States is the most active country in this field. In recent years, the leading countries have been Croatia, Colombia, Slovenia, Chile, Egypt, China, and Thailand. The Australian Institute of Sports is the top research institution in terms of number of publications. Burke, LM from Australia published the most articles. Research in this area has primarily been published in Nutrients in Switzerland. The study population mainly consisted of men, and postmenopausal women were the main focus of the female group. Coronary heart and cardiovascular diseases continue to dominate research. CONCLUSION Research on the NSSE is developing rapidly, with an annual growth trend. Insulin resistance, sports nutrition, inflammation, alpha-linolenic acid, limb strength performance, female sex, and gut microbiota are the focus of the current research and trends for future research. Future research should focus on improving the scientific training system for athletes and quality of training and life for the general public.
Collapse
Affiliation(s)
- Te Fu
- College of Physical Education, Henan University, Kaifeng, Henan, 475001, China
| | - Haitao Liu
- College of Physical Education, Henan University, Kaifeng, Henan, 475001, China.
- Research Center of Sports Reform and Development, Henan University, Kaifeng, Henan, 475001, China.
- Institute of Physical Fitness and Health, Henan University, Kaifeng, Henan, 475001, China.
| | - Chaofan Shi
- College of Physical Education, Henan University, Kaifeng, Henan, 475001, China
| | - Haichang Zhao
- College of Physical Education, Henan University, Kaifeng, Henan, 475001, China
| | - Feiyue Liu
- College of Physical Education, Henan University, Kaifeng, Henan, 475001, China
| | - Yingjian Xia
- College of Physical Education, Henan University, Kaifeng, Henan, 475001, China
| |
Collapse
|
4
|
Baba SP, Amraotkar AR, Hoetker D, Gao H, Gomes D, Zhao J, Wempe MF, Rice PJ, DeFilippis AP, Rai SN, Pope CA, Bhatnagar A, O'Toole TE. Evaluation of supplementary carnosine accumulation and distribution: an initial analysis of participants in the Nucleophilic Defense Against PM Toxicity (NEAT) clinical trial. Amino Acids 2024; 56:55. [PMID: 39215872 PMCID: PMC11365863 DOI: 10.1007/s00726-024-03414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Carnosine is an endogenous dipeptide that buffers intracellular pH and quenches toxic products of lipid peroxidation. Used as a dietary supplement, it also supports exercise endurance. However, the accumulation and distribution of carnosine after supplementation has not been rigorously evaluated. To do this, we randomized a cohort to receive daily supplements of either placebo or carnosine (2 g/day). Blood and urine samples were collected twice over the subsequent 12 week supplementation period and we measured levels of red blood cell (RBC) carnosine, urinary carnosine, and urinary carnosine-propanol and carnosine-propanal conjugates by LC/MS-MS. We found that, when compared with placebo, supplementation with carnosine for 6 or 12 weeks led to an approximate twofold increase in RBC carnosine, while levels of urinary carnosine increased nearly sevenfold. Although there were no changes in the urinary levels of carnosine propanol, carnosine propanal increased nearly twofold. RBC carnosine levels were positively associated with urinary carnosine and carnosine propanal levels. No adverse reactions were reported by those in the carnosine or placebo arms, nor did carnosine supplementation have any effect on kidney, liver, and cardiac function or blood electrolytes. In conclusion, irrespective of age, sex, or BMI, oral carnosine supplementation in humans leads to its increase in RBC and urine, as well as an increase in urinary carnosine-propanal. RBC carnosine may be a readily accessible pool to estimate carnosine levels. Clinical trial registration: This study is registered with ClinicalTrials.gov (Nucleophilic Defense Against PM Toxicity (NEAT Trial)-Full Text View-ClinicalTrials.gov), under the registration: NCT03314987.
Collapse
Affiliation(s)
- Shahid P Baba
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Center for Cardiometabolic Science, University of Louisville, Louisville, KY, USA
| | - Alok R Amraotkar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - David Hoetker
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Hong Gao
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Daniel Gomes
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Jingjing Zhao
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Michael F Wempe
- Department of Chemistry, Kentucky State University, Frankfort, KY, 40601, USA
| | - Peter J Rice
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Andrew P DeFilippis
- Department of Medicine, Vanderbilt University Medical Center, University of Vanderbilt, Nashville, TN, USA
| | - Shesh N Rai
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - C Arden Pope
- Department of Economics, Brigham Young University, Provo, UT, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Timothy E O'Toole
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA.
- Division of Environmental Medicine, Department of Medicine, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA.
| |
Collapse
|
5
|
Lopez Kolkovsky AL, Matot B, Baudin PY, Caldas de Almeida Araujo E, Reyngoudt H, Marty B, Fromes Y. Multiparametric Aging Study Across Adulthood in the Leg Through Quantitative MR Imaging, 1H Spectroscopy, and 31P Spectroscopy at 3T. J Magn Reson Imaging 2024. [PMID: 38593265 DOI: 10.1002/jmri.29368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Improved characterization of healthy muscle aging is needed to establish early biomarkers in age-related diseases. PURPOSE To quantify age-related changes on multiple MRI and clinical variables evaluated in the same cohort and identify correlations among them. STUDY TYPE Prospective. POPULATION 70 healthy subjects (30 men) from 20 to 81 years old. FIELD STRENGTH/SEQUENCE 3T/water T2 (multiecho SE, multi-TE STEAM), water T1 (GRE MR Fingerprinting), fat-fraction (multiecho GRE, multi-TE STEAM), carnosine (PRESS), multicomponent water T2 (ISIS-CPMG SE train), and 31P pulse-acquire spectroscopy. ASSESSMENT Age- and sex-related changes on: Imaging: fat-fraction (FFMRI), water T1 (T1-H2O), and T2 (T2-H2O-MRI) and their heterogeneities ΔT1-H2O and ΔT2-H2O-MRI in the posterior compartment (PC) and anterior compartment (AC) of the leg. 1H spectroscopy: Carnosine concentration, pH, water T2 components (T2-H2O-CPMG), fat-fraction (FFMRS), and water T2 (T2-H2O-MRS) in the gastrocnemius medialis. 31P spectroscopy: Phosphodiesters (PDE), phosphomonoesters, inorganic phosphates (Pi), and phosphocreatine (PCr) normalized to adenosine triphosphate (ATP) and pH in the calf. Clinical evaluation: Body-mass index (BMI), gait speed (GS), plantar flexion strength, handgrip strength (HS), HS normalized to wrist circumference (HSnorm), physical activity assessment. STATISTICAL TESTS Multilinear regressions with sex and age as fixed factors. Spearman correlations calculated between variables. Benjamini-Hochberg procedure for false positives reduction (5% rate). A P < 0.05 significance level was used. RESULTS Significant age-related increases were found for BMI (ρAge = 0.04), HSnorm (ρAge = -0.01), PDE/ATP (ρAge = 2.8 × 10-3), Pi/ATP (ρAge = 2.0 × 10-3), Pi/PCr (ρAge = 0.3 × 10-3), T2-H2O-MRS (ρAge = 0.051 msec), FFMRS (ρAge = 0.036) the intermediate T2-H2O-CPMG component time (ρAge = 0.112 msec), and fraction (ρAge = -0.3 × 10-3); and in both compartments for FFMRI (ρAge = 0.06, PC; ρAge = 0.06, AC), T2-H2O-MRI (ρAge = 0.05, PC; ρAge = 0.05, AC; msec), ΔT2-H2O-MRI (ρAge = 0.02, PC; ρAge = 0.02, AC; msec), T1-H2O (ρAge = 1.08, PC; ρAge = 1.06, AC; msec), and ΔT1-H2O (ρAge = 0.22, PC; ρAge = 0.37, AC; msec). The best age predictors, accounting for sex-related differences, were HSnorm (R2 = 0.52) and PDE/ATP (R2 = 0.44). In both leg compartments, the imaging measures and HSnorm were intercorrelated. In PC, T2-H2O-MRS and FFMRS also showed numerous correlations to the imaging measures. PDE/ATP correlated to T1-H2O, T2-H2O-MRI, ΔT2-H2O-MRI, FFMRI, FFMRS, the intermediate T2-H2O-CPMG, BMI, Pi/PCr, and HSnorm. DATA CONCLUSION Our multiparametric MRI approach provided an integrative view of age-related changes in the leg and revealed multiple correlations between these parameters and the normalized HS. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
| | - Beatrice Matot
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Pierre-Yves Baudin
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | | | - Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Yves Fromes
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| |
Collapse
|
6
|
Amraotkar AR, Hoetker D, Negahdar MJ, Ng CK, Lorkiewicz P, Owolabi US, Baba SP, Bhatnagar A, O’Toole TE. Comparative evaluation of different modalities for measuring in vivo carnosine levels. PLoS One 2024; 19:e0299872. [PMID: 38536838 PMCID: PMC10971688 DOI: 10.1371/journal.pone.0299872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/16/2024] [Indexed: 08/30/2024] Open
Abstract
Carnosine is an endogenous di-peptide (β-alanine -L- histidine) involved in maintaining tissue homeostasis. It is most abundant in skeletal muscle where its concentration has been determined in biopsy samples using tandem mass spectrometry (MS-MS). Carnosine levels can also be assessed in intact leg muscles by proton magnetic resonance spectroscopy (1H-MRS) or in blood and urine samples using mass spectrometry. Nevertheless, it remains uncertain how carnosine levels from these distinct compartments are correlated with each other when measured in the same individual. Furthermore, it is unclear which measurement modality might be most suitable for large-scale clinical studies. Hence, in 31 healthy volunteers, we assessed carnosine levels in skeletal muscle, via 1H-MRS, and in erythrocytes and urine by MS-MS. While muscle carnosine levels were higher in males (C2 peak, p = 0.010; C4 peak, p = 0.018), there was no sex-associated difference in urinary (p = 0.433) or erythrocyte (p = 0.858) levels. In a linear regression model adjusted for age, sex, race, and diet, there was a positive association between erythrocyte and urinary carnosine. However, no association was observed between 1H-MRS and erythrocytes or urinary measures. In the relationship between muscle versus urinary and erythrocyte measures, females had a positive association, while males did not show any association. We also found that 1H-MRS measures were highly sensitive to location of measurement. Thus, it is uncertain whether 1H-MRS can accurately and reliably predict endogenous carnosine levels. In contrast, urinary and erythrocyte carnosine measures may be stable and in greater synchrony, and given financial and logistical concerns, may be a feasible alternative for large-scale clinical studies.
Collapse
Affiliation(s)
- Alok R. Amraotkar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - David Hoetker
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Mohammad J. Negahdar
- Department of Radiology, University of Louisville, Louisville, KY, United States of America
| | - Chin K. Ng
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Department of Chemistry, University of Louisville, Louisville, KY, United States of America
| | - Ugochukwu S. Owolabi
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
| | - Shahid P. Baba
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Timothy E. O’Toole
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States of America
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| |
Collapse
|
7
|
West S, Monteyne AJ, van der Heijden I, Stephens FB, Wall BT. Nutritional Considerations for the Vegan Athlete. Adv Nutr 2023; 14:774-795. [PMID: 37127187 PMCID: PMC10334161 DOI: 10.1016/j.advnut.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023] Open
Abstract
Accepting a continued rise in the prevalence of vegan-type diets in the general population is also likely to occur in athletic populations, it is of importance to assess the potential impact on athletic performance, adaptation, and recovery. Nutritional consideration for the athlete requires optimization of energy, macronutrient, and micronutrient intakes, and potentially the judicious selection of dietary supplements, all specified to meet the individual athlete's training and performance goals. The purpose of this review is to assess whether adopting a vegan diet is likely to impinge on such optimal nutrition and, where so, consider evidence based yet practical and pragmatic nutritional recommendations. Current evidence does not support that a vegan-type diet will enhance performance, adaptation, or recovery in athletes, but equally suggests that an athlete can follow a (more) vegan diet without detriment. A clear caveat, however, is that vegan diets consumed spontaneously may induce suboptimal intakes of key nutrients, most notably quantity and/or quality of dietary protein and specific micronutrients (eg, iron, calcium, vitamin B12, and vitamin D). As such, optimal vegan sports nutrition requires (more) careful consideration, evaluation, and planning. Individual/seasonal goals, training modalities, athlete type, and sensory/cultural/ethical preferences, among other factors, should all be considered when planning and adopting a vegan diet.
Collapse
Affiliation(s)
- Sam West
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ino van der Heijden
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
8
|
Held S, Rappelt L, Donath L. Acute and Chronic Performance Enhancement in Rowing: A Network Meta-analytical Approach on the Effects of Nutrition and Training. Sports Med 2023; 53:1137-1159. [PMID: 37097415 DOI: 10.1007/s40279-023-01827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION This systematic review and network meta-analysis assessed via direct and indirect comparison the occurrence and magnitude of effects following different nutritional supplementation strategies and exercise interventions on acute and chronic rowing performance and its surrogates. METHODS PubMed, Web of Science, PsycNET and SPORTDiscus searches were conducted until March 2022 to identify studies that met the following inclusion criteria: (a) controlled trials, (b) rowing performance and its surrogate parameters as outcomes, and (c) peer-reviewed and published in English. Frequentist network meta-analytical approaches were calculated based on standardized mean differences (SMD) using random effects models. RESULTS 71 studies with 1229 healthy rowers (aged 21.5 ± 3.0 years) were included and two main networks (acute and chronic) with each two subnetworks for nutrition and exercise have been created. Both networks revealed low heterogeneity and non-significant inconsistency (I2 ≤ 35.0% and Q statistics: p ≥ 0.12). Based on P-score rankings, while caffeine (P-score 84%; SMD 0.43) revealed relevantly favorable effects in terms of acute rowing performance enhancement, whilst prior weight reduction (P-score 10%; SMD - 0.48) and extensive preload (P-score 18%; SMD - 0.34) impaired acute rowing performance. Chronic blood flow restriction training (P-score 96%; SMD 1.26) and the combination of β-hydroxy-β-methylbutyrate and creatine (P-score 91%; SMD 1.04) induced remarkably large positive effects, while chronic spirulina (P-score 7%; SMD - 1.05) and black currant (P-score 9%; SMD - 0.88) supplementation revealed impairment effects. CONCLUSION Homogeneous and consistent findings from numerous studies indicate that the choice of nutritional supplementation strategy and exercise training regimen are vital for acute and chronic performance enhancement in rowing.
Collapse
Affiliation(s)
- Steffen Held
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany.
- Department of Sport and Management, IST University of Applied Sciences, Duesseldorf, Germany.
| | - Ludwig Rappelt
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany
- Department of Movement and Training Science, University of Wuppertal, Wuppertal, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University, Cologne, Germany
| |
Collapse
|
9
|
Safety of beta-alanine supplementation in humans: a narrative review. SPORT SCIENCES FOR HEALTH 2023. [DOI: 10.1007/s11332-023-01052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
10
|
Ostfeld I, Ben-Zeev T, Zamir A, Levi C, Gepner Y, Springer S, Hoffman JR. Role of β-Alanine Supplementation on Cognitive Function, Mood, and Physical Function in Older Adults; Double-Blind Randomized Controlled Study. Nutrients 2023; 15:nu15040923. [PMID: 36839281 PMCID: PMC9960300 DOI: 10.3390/nu15040923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
This study investigated 10 weeks of β-alanine (BA) supplementation on changes in cognitive function, mood, and physical performance in 100 older adults (70.6 ± 8.7 y). Participants were randomized into a BA (2.4 g·d-1) or placebo (PL) group. Testing occurred prior to supplementation (PRE), at the midpoint (MID), and at week-10 (POST). Participants completed cognitive function assessments, including the Montreal cognitive assessment (MOCA) and the Stroop pattern recognition test, at each testing session. Behavioral questionnaires [i.e., the profile of mood states, geriatric depression scale (GDS), and geriatric anxiety scale (GAS)] and physical function assessments (grip strength and timed sit-to-stand) were also conducted. No difference between groups was noted in MoCA scores (p = 0.19). However, when examining participants whose MOCA scores at PRE were at or below normal (i.e., ≤26), participants in BA experienced significant improvements in MOCA scores at MID (13.6%, p = 0.009) and POST (11.8%, p = 0.016), compared to PL. No differences were noted in mood scores, GAS, or any of the physical performance measures. A significant decrease was observed in the GDS for participants consuming BA but not in PL. Results suggested that BA supplementation can improve cognitive function in older adults whose cognitive function at baseline was at or below normal and possibly reduce depression scores.
Collapse
Affiliation(s)
- Ishay Ostfeld
- School of Health Science, Ariel University, Ariel 40700, Israel
| | - Tavor Ben-Zeev
- School of Health Science, Ariel University, Ariel 40700, Israel
| | - Amit Zamir
- School of Health Science, Ariel University, Ariel 40700, Israel
| | - Chagai Levi
- School of Health Science, Ariel University, Ariel 40700, Israel
| | - Yftach Gepner
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shmuel Springer
- School of Health Science, Ariel University, Ariel 40700, Israel
| | - Jay R. Hoffman
- School of Health Science, Ariel University, Ariel 40700, Israel
- Correspondence:
| |
Collapse
|
11
|
Vega G, Ricaurte G, Estrada-Castrillón M, Reyngoudt H, Cardona OM, Gallo-Villegas JA, Narvaez-Sanchez R, Calderón JC. In vivo absolute quantification of carnosine in the vastus lateralis muscle with 1H MRS using a surface coil and water as internal reference. Skeletal Radiol 2023; 52:157-165. [PMID: 35978163 DOI: 10.1007/s00256-022-04149-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To standardize a method for 1H MRS intramuscular absolute quantification of carnosine in the thigh, using a surface coil and water as internal reference. MATERIALS AND METHODS Carnosine spectra were acquired in phantoms (5, 10, and 15 mM) as well as in the right gastrocnemius medialis (GM) and right vastus lateralis (VLM) muscles of young team sports athletes, using volume (VC) and surface (SC) coils on a 3 T scanner, with the same receiver gain. Water spectra were used as internal reference for the absolute quantification of carnosine. RESULTS Phantom's experiments showed a maximum error of 7%, highlighting the validity of the measurements in the study setup. The carnosine concentrations (mmol/kg ww, mean ± SD) measured in the GM were 6.8 ± 2.2 with the VC (CcarVC) and 10.2 ± 3.0 with the SC (CcarSC) (P = 0.013; n = 9). Therefore, a correction was applied to these measurements (CcarVC = 0.6582*CcarSC), to make coils performance comparable (6.8 ± 2.2 for VC and 6.7 ± 2.0 for SC, P = 0.97). After that, only the SC was used to quantify carnosine in the VLM, where a concentration of 5.4 ± 1.5 (n = 30) was found, with significant differences between men (6.2 ± 1.3; n = 15) and women (4.6 ± 1.2; n = 15). The error in quantitation was 5.3-5.5% with both coils. CONCLUSION The method using the SC and water as internal reference can be used to quantify carnosine in voluminous muscles and regions of the body in humans, where the VC is not suitable, such as the VLM.
Collapse
Affiliation(s)
- Gloria Vega
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Germán Ricaurte
- Group of Biophysics, University of Antioquia, Medellín, Colombia
| | - Mauricio Estrada-Castrillón
- Pablo Tobón Uribe Hospital, Medellín, Colombia.,Group of Sports Medicine GRINMADE, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | | | - Jaime A Gallo-Villegas
- Group of Sports Medicine GRINMADE, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Juan C Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
| |
Collapse
|
12
|
Wang Z, Qiu B, Gao J, Del Coso J. Effects of Caffeine Intake on Endurance Running Performance and Time to Exhaustion: A Systematic Review and Meta-Analysis. Nutrients 2022; 15:148. [PMID: 36615805 PMCID: PMC9824573 DOI: 10.3390/nu15010148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Caffeine (1,3,7-trimethylxanthine) is one of the most widely consumed performance-enhancing substances in sport due to its well-established ergogenic effects. The use of caffeine is more common in aerobic-based sports due to the ample evidence endorsing the benefits of caffeine supplementation on endurance exercise. However, most of this evidence was established with cycling trials in the laboratory, while the effects of the acute intake of caffeine on endurance running performance have not been properly reviewed and meta-analyzed. The purpose of this study was to perform a systematic review and meta-analysis of the existing literature on the effects of caffeine intake on endurance running performance. A systematic review of published studies was performed in four different scientific databases (Medline, Scopus, Web of Science, and SportDiscus) up until 5 October 2022 (with no year restriction applied to the search strategy). The selected studies were crossover experimental trials in which the ingestion of caffeine was compared to a placebo situation in a single- or double-blind randomized manner. The effect of caffeine on endurance running was measured by time to exhaustion or time trials. We assessed the methodological quality of each study using Cochrane’s risk-of-bias (RoB 2) tool. A subsequent meta-analysis was performed using the random effects model to calculate the standardized mean difference (SMD) estimated by Hedges’ g and 95% confidence intervals (CI). Results: A total of 21 randomized controlled trials were included in the analysis, with caffeine doses ranging between 3 and 9 mg/kg. A total of 21 studies were included in the systematic review, with a total sample of 254 participants (220 men, 19 women and 15 participants with no information about gender; 167 were categorized as recreational and 87 were categorized as trained runners.). The overall methodological quality of studies was rated as unclear-to-low risk of bias. The meta-analysis revealed that the time to exhaustion in running tests was improved with caffeine (g = 0.392; 95% CI = 0.214 to 0.571; p < 0.001, magnitude = medium). Subgroup analysis revealed that caffeine was ergogenic for time to exhaustion trials in both recreational runners (g = 0.469; 95% CI = 0.185 to 0.754; p = 0.001, magnitude = medium) and trained runners (g = 0.344; 95% CI = 0.122 to 0.566; p = 0.002, magnitude = medium). The meta-analysis also showed that the time to complete endurance running time trials was reduced with caffeine in comparison to placebo (g = −0.101; 95% CI = −0.190 to −0.012, p = 0.026, magnitude = small). In summary, caffeine intake showed a meaningful ergogenic effect in increasing the time to exhaustion in running trials and improving performance in running time trials. Hence, caffeine may have utility as an ergogenic aid for endurance running events. More evidence is needed to establish the ergogenic effect of caffeine on endurance running in women or the best dose to maximize the ergogenic benefits of caffeine supplementation.
Collapse
Affiliation(s)
- Ziyu Wang
- Graduate School, Beijing Sport University, Beijing 100084, China
- College of Swimming, Beijing Sport University, Beijing 100084, China
| | - Bopeng Qiu
- College of Swimming, Beijing Sport University, Beijing 100084, China
| | - Jie Gao
- Graduate School, Beijing Sport University, Beijing 100084, China
- College of Swimming, Beijing Sport University, Beijing 100084, China
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
| |
Collapse
|
13
|
Samadi M, Askarian A, Shirvani H, Shamsoddini A, Shakibaee A, Forbes SC, Kaviani M. Effects of Four Weeks of Beta-Alanine Supplementation Combined with One Week of Creatine Loading on Physical and Cognitive Performance in Military Personnel. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137992. [PMID: 35805647 PMCID: PMC9265371 DOI: 10.3390/ijerph19137992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 01/25/2023]
Abstract
The purpose was to investigate the effects of a 7-day creatine (Cr) loading protocol at the end of four weeks of β-alanine supplementation (BA) on physical performance, blood lactate, cognitive performance, and resting hormonal concentrations compared to BA alone. Twenty male military personnel (age: 21.5 ± 1.5 yrs; height: 1.78 ± 0.05 m; body mass: 78.5 ± 7.0 kg; BMI: 23.7 ± 1.64 kg/m2) were recruited and randomized into two groups: BA + Cr or BA + placebo (PL). Participants in each group (n = 10 per group) were supplemented with 6.4 g/day of BA for 28 days. After the third week, the BA + Cr group participants were also supplemented with Cr (0.3 g/kg/day), while the BA + PL group ingested an isocaloric placebo for 7 days. Before and after supplementation, each participant performed a battery of physical and cognitive tests and provided a venous blood sample to determine resting testosterone, cortisol, and IGF-1. Furthermore, immediately after the last physical test, blood lactate was assessed. There was a significant improvement in physical performance and mathematical processing in the BA + Cr group over time (p < 0.05), while there was no change in the BA + PL group. Vertical jump performance and testosterone were significantly higher in the BA + Cr group compared to BA + PL. These results indicate that Cr loading during the final week of BA supplementation (28 days) enhanced muscular power and appears to be superior for muscular strength and cognitive performance compared to BA supplementation alone.
Collapse
Affiliation(s)
- Mohammad Samadi
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Ali Askarian
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Hossein Shirvani
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Alireza Shamsoddini
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Abolfazl Shakibaee
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran 14155-6437, Iran; (M.S.); (A.A.); (H.S.); (A.S.); (A.S.)
| | - Scott C. Forbes
- Faculty of Education, Department of Physical Education Studies, Brandon University, Brandon, MB R7A 6A9, Canada;
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Faculty of Pure and Applied Science, Acadia University, Wolfville, NS B4P 2R6, Canada
- Correspondence:
| |
Collapse
|
14
|
da Eira Silva V, Matthews J, Gualano B, de Salles Painelli V, Concepción Otaduy M, Sale C, Giannini Artioli G. Comment on "Cores of Reproducibility in Physiology (CORP): quantification of human skeletal muscle carnosine concentration by proton magnetic resonance spectroscopy". J Appl Physiol (1985) 2021; 131:1613-1614. [PMID: 34766837 DOI: 10.1152/japplphysiol.00573.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Vinicius da Eira Silva
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Joseph Matthews
- Sport, Health, and Performance Enhancement Research Centre, Musculoskeletal Physiology Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Department of Sport and Exercise, Research Centre for Life and Sport Sciences, School of Health and Life Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Vitor de Salles Painelli
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, Sao Paulo, Brazil
| | - Maria Concepción Otaduy
- LIM44-Laboratory of Magnetic Resonance in Neuroimaging; Department of Radiology and Oncology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Craig Sale
- Sport, Health, and Performance Enhancement Research Centre, Musculoskeletal Physiology Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | | |
Collapse
|
15
|
Lievens E, Van Vossel K, Van de Casteele F, Baguet A, Derave W. Sex-specific maturation of muscle metabolites carnosine, creatine, and carnitine over puberty: a longitudinal follow-up study. J Appl Physiol (1985) 2021; 131:1241-1250. [PMID: 34473575 DOI: 10.1152/japplphysiol.00380.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Due to the invasiveness of a muscle biopsy, there is fragmentary information on the existence and possible origin of a sexual dimorphism in the skeletal muscle concentrations of the energy delivery-related metabolites carnosine, creatine, and carnitine. As these metabolites can be noninvasively monitored by proton magnetic resonance spectroscopy, this technique offers the possibility to investigate if sexual dimorphisms are present in an adult reference population and if these dimorphisms originated during puberty using a longitudinal design. Concentrations of carnosine, creatine, and carnitine were examined using proton magnetic resonance spectroscopy in the soleus and gastrocnemius muscles of an adult reference population of female (n = 50) and male adults (n = 50). For the longitudinal follow-up over puberty, 29 boys and 28 girls were scanned prepuberty. Six years later, 24 boys and 24 girls were rescanned postpuberty. A sexual dimorphism was present in carnosine and creatine, but not carnitine, in the adult reference population. Carnosine was 28.5% higher in the gastrocnemius (P < 0.001) and carnosine and creatine were respectively 19.9% (P < 0.001) and 18.2% (P < 0.001) higher in the soleus of male when compared with female adults. Through puberty, carnosine increased more in male subjects compared with female subjects, both in the gastrocnemius (+10.43% and -10.83%, respectively; interaction effect: P = 0.002) and in the soleus (+24.30% and +5.49%, respectively; interaction effect: P = 0.012). No significant effect of puberty was found in either creatine (interaction effect: P = 0.307) or carnitine (interaction effect: P = 0.066). A sexual dimorphism in the adult human muscle is present in carnosine and creatine, but not in carnitine.NEW & NOTEWORTHY This is the first study to investigate sexual dimorphisms in skeletal muscle carnosine, creatine, and carnitine concentrations in a substantial adult reference population (n = 100). A sexual dimorphism is present in both carnosine and creatine at adult age. The origin of the sexual dimorphisms is investigated using a longitudinal design over puberty in 24 males and 24 females. The sexual dimorphism in carnosine originated partly during puberty for carnosine, but not for creatine.
Collapse
Affiliation(s)
- Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Kim Van Vossel
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | | | - Audrey Baguet
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Muscle Fibre Typology as a Novel Risk Factor for Hamstring Strain Injuries in Professional Football (Soccer): A Prospective Cohort Study. Sports Med 2021; 52:177-185. [PMID: 34515974 DOI: 10.1007/s40279-021-01538-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Hamstring strain injuries (HSI) are prevalent in team sports and occur frequently in the later phase of matches. In the search for interindividual factors that determine muscle fatigue and possibly injury risk, muscle fibre typology is a likely candidate. OBJECTIVE The aim of the study was to determine whether muscle fibre typology is a risk factor for HSI. METHODS A prospective cohort study was conducted over three seasons in professional football players competing in the Belgian Jupiler Pro League (n = 118) and in the English Premier League (n = 47). A total of 27 HSI were sustained during this period. Muscle fibre typology was non-invasively estimated using proton magnetic resonance spectroscopy and was characterized as a fast, slow, or intermediate typology based on the carnosine concentration in the soleus. A multivariate Cox model was used to identify risk factors for HSI. RESULTS Football players exhibited a wide variety of muscle typologies (slow 44.9%, intermediate 39.8%, fast 15.3%). In the combined cohort, players with a fast typology displayed a 5.3-fold (95% confidence interval [CI] 1.92-14.8; P = 0.001) higher risk of sustaining an index HSI than slow typology players. This was also independently observed in both leagues separately as, respectively, a 6.7-fold (95% CI 1.3-34.1; P = 0.023) and a 5.1-fold (95% CI 1.2-20.4; P = 0.023) higher chance was found in fast typology players than in slow typology players of the Jupiler Pro League and the Premier League cohort. CONCLUSION We identified muscle fibre typology as a novel and potent risk factor for HSI in team sports.
Collapse
|
17
|
Carnosine Content and Its Association with Carnosine-Related Gene Expression in Breast Meat of Thai Native and Black-Bone Chicken. Animals (Basel) 2021; 11:ani11071987. [PMID: 34359114 PMCID: PMC8300356 DOI: 10.3390/ani11071987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
This study aimed to investigate the carnosine content and ATP-grasp domain-containing protein 1 (CARNS1) gene expression and their relationship with breast meat of Black Chinese (BC), KU-Phuparn (KP), Pradu Hang Dam (PD), and Black Chinese × Pradu Hang Dam (Sri Mok: SM) to aid in the selection and mating programs for developing functional meat in Thai chicken populations. The results show that the carnosine content in each breed and breed group varied from 428.08 to 553.93 mg/100 g, whereas the relative expression of CARNS1 ranged from 0.84 to 1.56. The BC and KP chicken breeds had a higher carnosine content (p < 0.01) and higher CARNS1 expression level (p < 0.05) than the SM and PD chicken breeds. The carnosine content and relative gene expression for each age ranged from 423.02 to 577.83 mg/100 g and 0.68 to 1.83, respectively. At 4 weeks of age, the carnosine content (p < 0.01) and gene expression (p < 0.05) were the highest. However, they decreased as chicken age increased further. The carnosine content and gene expression linearly decreased as chicken age increased (p < 0.01). The correlation coefficient between the level of gene expression and carnosine content was moderately positive. The results from this study showed that different breeds and ages of chickens have different amounts of carnosine, and CARNS1 could act as a biomarker to study marker-assisted selection to improve functional meat in the chicken population in Thailand.
Collapse
|
18
|
Lievens E, Van Vossel K, Van de Casteele F, Krššák M, Murdoch JB, Befroy DE, Derave W. CORP: quantification of human skeletal muscle carnosine concentration by proton magnetic resonance spectroscopy. J Appl Physiol (1985) 2021; 131:250-264. [PMID: 33982593 DOI: 10.1152/japplphysiol.00056.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Noninvasive techniques to quantify metabolites in skeletal muscle provide unique insight into human physiology and enable the translation of research into practice. Proton magnetic resonance spectroscopy (1H-MRS) permits the assessment of several abundant muscle metabolites in vivo, including carnosine, a dipeptide composed of the amino acids histidine and beta-alanine. Muscle carnosine loading, accomplished by chronic oral beta-alanine supplementation, improves muscle function and exercise capacity and has pathophysiological relevance in multiple diseases. Moreover, the marked difference in carnosine content between fast-twitch and slow-twitch muscle fibers has rendered carnosine an attractive candidate to estimate human muscle fiber type composition. However, the quantification of carnosine with 1H-MRS requires technical expertise to obtain accurate and reproducible data. In this review, we describe the technical and physiological factors that impact the detection, analysis, and quantification of carnosine in muscle with 1H-MRS. We discuss potential sources of error during the acquisition and preprocessing of the 1H-MRS spectra and present best practices to enable the accurate, reliable, and reproducible application of this technique.
Collapse
Affiliation(s)
- E Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - K Van Vossel
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - F Van de Casteele
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - M Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III and High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | | | - W Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Krššák M, Lindeboom L, Schrauwen‐Hinderling V, Szczepaniak LS, Derave W, Lundbom J, Befroy D, Schick F, Machann J, Kreis R, Boesch C. Proton magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4266. [PMID: 32022964 PMCID: PMC8244035 DOI: 10.1002/nbm.4266] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 05/02/2023]
Abstract
1 H-MR spectroscopy of skeletal muscle provides insight into metabolism that is not available noninvasively by other methods. The recommendations given in this article are intended to guide those who have basic experience in general MRS to the special application of 1 H-MRS in skeletal muscle. The highly organized structure of skeletal muscle leads to effects that change spectral features far beyond simple peak heights, depending on the type and orientation of the muscle. Specific recommendations are given for the acquisition of three particular metabolites (intramyocellular lipids, carnosine and acetylcarnitine) and for preconditioning of experiments and instructions to study volunteers.
Collapse
Affiliation(s)
- Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III & High Field MR Centre, Department of Biomedical Imaging and Image guided TherapyMedical University of ViennaViennaAustria
| | - Lucas Lindeboom
- Department of Radiology and Nuclear Medicine and Department of Nutrition and Movement ScienceMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Vera Schrauwen‐Hinderling
- Department of Radiology and Nuclear Medicine and Department of Nutrition and Movement ScienceMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Lidia S. Szczepaniak
- Biomedical Research Consulting in Magnetic Resonance SpectroscopyAlbuquerqueNew Mexico
| | - Wim Derave
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Jesper Lundbom
- Department of Diagnostics and TherapeuticsUniversity of HelsinkiHelsinkiFinland
| | | | - Fritz Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional RadiologyUniversity Hospital TübingenTübingenGermany
| | - Jürgen Machann
- Section on Experimental Radiology, Department of Diagnostic and Interventional RadiologyUniversity Hospital TübingenTübingenGermany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of TübingenTübingenGermany
- German Center for Diabetes Research (DZD)TübingenGermany
| | - Roland Kreis
- Departments of Radiology and Biomedical ResearchUniversity and InselspitalBernSwitzerland
| | - Chris Boesch
- Departments of Radiology and Biomedical ResearchUniversity and InselspitalBernSwitzerland
| |
Collapse
|
20
|
de Meeûs d’Argenteuil C, Boshuizen B, Oosterlinck M, van de Winkel D, De Spiegelaere W, de Bruijn CM, Goethals K, Vanderperren K, Delesalle CJG. Flexibility of equine bioenergetics and muscle plasticity in response to different types of training: An integrative approach, questioning existing paradigms. PLoS One 2021; 16:e0249922. [PMID: 33848308 PMCID: PMC8043414 DOI: 10.1371/journal.pone.0249922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Equine bioenergetics have predominantly been studied focusing on glycogen and fatty acids. Combining omics with conventional techniques allows for an integrative approach to broadly explore and identify important biomolecules. Friesian horses were aquatrained (n = 5) or dry treadmill trained (n = 7) (8 weeks) and monitored for: evolution of muscle diameter in response to aquatraining and dry treadmill training, fiber type composition and fiber cross-sectional area of the M. pectoralis, M. vastus lateralis and M. semitendinosus and untargeted metabolomics of the M. pectoralis and M. vastus lateralis in response to dry treadmill training. Aquatraining was superior to dry treadmill training to increase muscle diameter in the hindquarters, with maximum effect after 4 weeks. After dry treadmill training, the M. pectoralis showed increased muscle diameter, more type I fibers, decreased fiber mean cross sectional area, and an upregulated oxidative metabolic profile: increased β-oxidation (key metabolites: decreased long chain fatty acids and increased long chain acylcarnitines), TCA activity (intermediates including succinyl-carnitine and 2-methylcitrate), amino acid metabolism (glutamine, aromatic amino acids, serine, urea cycle metabolites such as proline, arginine and ornithine) and xenobiotic metabolism (especially p-cresol glucuronide). The M. vastus lateralis expanded its fast twitch profile, with decreased muscle diameter, type I fibers and an upregulation of glycolytic and pentose phosphate pathway activity, and increased branched-chain and aromatic amino acid metabolism (cis-urocanate, carnosine, homocarnosine, tyrosine, tryptophan, p-cresol-glucuronide, serine, methionine, cysteine, proline and ornithine). Trained Friesians showed increased collagen and elastin turn-over. Results show that branched-chain amino acids, aromatic amino acids and microbiome-derived xenobiotics need further study in horses. They feed the TCA cycle at steps further downstream from acetyl CoA and most likely, they are oxidized in type IIA fibers, the predominant fiber type of the horse. These study results underline the importance of reviewing existing paradigms on equine bioenergetics.
Collapse
Affiliation(s)
- Constance de Meeûs d’Argenteuil
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, The Netherlands
| | - Maarten Oosterlinck
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Klara Goethals
- Department of Nutrition, Genetics and Ethology, Research Group Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Vanderperren
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cathérine John Ghislaine Delesalle
- Department of Virology, Parasitology and Immunology, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
21
|
Lievens E, Bellinger P, Van Vossel K, Vancompernolle J, Bex T, Minahan C, Derave W. Muscle Typology of World-Class Cyclists across Various Disciplines and Events. Med Sci Sports Exerc 2021; 53:816-824. [PMID: 33105386 DOI: 10.1249/mss.0000000000002518] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Classic track-and-field studies demonstrated that elite endurance athletes exhibit a slow muscle typology, whereas elite sprint athletes have a predominant fast muscle typology. In elite cycling, conclusive data on muscle typology are scarce, which may be due to the invasive nature of muscle biopsies. The noninvasive estimation of muscle typology through the measurement of muscle carnosine enabled to explore the muscle typology of 80 world-class cyclists of different disciplines. METHODS The muscle carnosine content of 80 cyclists (4 bicycle motor cross racing [BMX], 33 track, 8 cyclo-cross, 24 road, and 11 mountain bike) was measured in the soleus and gastrocnemius by proton magnetic resonance spectroscopy and expressed as a z-score relative to a reference population. Track cyclists were divided into track sprint and endurance cyclists based on their Union Cycliste Internationale (UCI) ranking. Moreover, road cyclists were further characterized based on the percentage of UCI points earned during either single and multistage races. RESULTS BMX cyclists (carnosine aggregate z-score of 1.33) are characterized by a faster muscle typology than track, cyclo-cross, road, and mountain bike cyclists (carnosine aggregate z-score of -0.08, -0.76, -0.96, and -1.02, respectively; P < 0.05). Track cyclists also possess a faster muscle typology compared with mountain bikers (P = 0.033) and road cyclists (P = 0.005). Moreover, track sprinters show a significant faster muscle typology (carnosine aggregate z-score of 0.87) compared with track endurance cyclists (carnosine aggregate z-score of -0.44) (P < 0.001). In road cyclists, the higher the carnosine aggregate z-score, the higher the percentage of UCI points gained during single-stage races (r = 0.517, P = 0.010). CONCLUSIONS Prominent differences in the noninvasively determined muscle typology exist between elite cyclists of various disciplines, which opens opportunities for application in talent orientation and transfer.
Collapse
Affiliation(s)
- Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | | | - Kim Van Vossel
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | | | - Tine Bex
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | - Clare Minahan
- Griffith Sports Physiology and Performance, School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, AUSTRALIA
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| |
Collapse
|
22
|
Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G. Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 2021; 95:1161-1178. [DOI: 10.1007/s00204-021-02974-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
|
23
|
Possamai LT, Borszcz FK, de Aguiar RA, de Lucas RD, Turnes T. Agreement of maximal lactate steady state with critical power and physiological thresholds in rowing. Eur J Sport Sci 2021; 22:371-380. [PMID: 33428539 DOI: 10.1080/17461391.2021.1874541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this study was threefold: (a) to compare the maximal lactate steady state (MLSS) with critical power (CP); (b) to describe the relationship of MLSS with rowing performances; and (c) to verify the agreement of MLSS with several exercise intensity thresholds in rowers. Fourteen male rowers (mean [SD]: age = 26 [13] years; height = 1.82 [0.05] m; body mass = 81.0 [7.6] kg) performed on a rowing ergometer: (I) discontinuous incremental test with 3 min stages and 30-s recovery intervals (INC3min); (II) continuous incremental test with 60-s stages (INC1min); (III) two to four constant workload tests to determine MLSS; and (IV) performance tests of 500, 1000, 2000 and 6000 m to determine CP. Twenty-seven exercise intensity thresholds based on blood lactate, heart rate and ventilatory responses were determined by incremental tests, and then compared with MLSS. CP (257 [38] W) was higher than MLSS (187 [25] W; p < 0.001), with a very large mean difference (37%), large typical error of estimate (14%) and moderate correlation (r = 0.48). Despite the correlations between MLSS and most intensity thresholds (r > 0.70), all presented low correspondence (TEE > 5%), with a lower bias found between MLSS and the first intensity thresholds (-12.5% to 4.1%). MLSS was correlated with mean power during 500 m (r = 0.65), 1000 m (r = 0.86) and 2000 m (r = 0.78). In conclusion, MLSS intensity is substantially lower than CP and presented low agreement with 27 incremental-derived thresholds, questioning their use to estimate MLSS during rowing ergometer exercise.Highlights MLSS was substantially lower than CP in rowing exercise with a mean difference of 37%, much larger than the difference commonly found in running and cycling exercise (i.e., ?10%).A clear disagreement was reported between MLSS and 27 physiological thresholds determined in different incremental tests.There is a positive association of MLSS with 500, 1000 and 2000 m rowing ergometer performance tests.
Collapse
Affiliation(s)
| | - Fernando Klitzke Borszcz
- Sports Center, Physical Effort Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Alves de Aguiar
- Human Performance Research Group, Center for Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil
| | - Ricardo Dantas de Lucas
- Sports Center, Physical Effort Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Tiago Turnes
- Sports Center, Physical Effort Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
24
|
Zhang L, Zhang Y, Zhang X, Li X, He M, Qiao S. Combining bioinformatics analysis and experiments to explore CARNS1 as a prognostic biomarker for breast cancer. Mol Genet Genomic Med 2021; 9:e1586. [PMID: 33533160 PMCID: PMC8077083 DOI: 10.1002/mgg3.1586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Breast cancer is a heterogeneous malignant disease, which has variation in clinical behaviors. High-throughput technologies have added important genetic alternative and biological change information for breast cancer. CARNS1 is an important ATPases. It can catalyze the synthesis of carnosine, which has antiproliferative activity in cancer. Here, we hypothesize that CARNS1 plays an essential role in the development of breast cancer. METHODS The expressions of CARNS1 in breast cancer were data-mined and analyzed from TCGA (the Cancer Genome Atlas) and GEO (the Gene Expression Omnibus) databases. The correlation of CARNS1 expression with clinical characteristics and the diagnostic capability of CARNS1 were assessed. Experimental studies were conducted in two cohorts (n = 60) of breast cancer patients by qRT-PCR and immunohistochemical analysis. RESULTS CARNS1 was significantly downregulated in breast cancer. The expression was correlated with tumor molecular and histological types, T and M stages, and vital status. Kaplan-Meier survival analysis showed that the downregulation of CARNS1 was significantly related to poor overall survival and relapse-free survival. Moreover, these scenarios have been extended to ER, PR, and HER2 positive patients. Univariate and multivariate analysis showed that CARNS1 can be considered as an independent prognostic predictor for patients with breast cancer. Experimental data supported that the protein and mRNA levels of CARNS1 in breast cancer are indeed significantly downregulated. CONCLUSION Our findings have demonstrated that CARNS1 acts as a tumor suppressor gene and may be an independent prognostic indicator for breast cancer patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, China
| | - Yan Zhang
- Departmnet of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xin Zhang
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, China
| | - Xinyu Li
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, China
| | - Miao He
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, China
| | - Shixing Qiao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Domínguez R, López-Domínguez R, López-Samanes Á, Gené P, González-Jurado JA, Sánchez-Oliver AJ. Analysis of Sport Supplement Consumption and Body Composition in Spanish Elite Rowers. Nutrients 2020; 12:nu12123871. [PMID: 33352860 PMCID: PMC7765834 DOI: 10.3390/nu12123871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to analyze the anthropometric characteristics and sport supplement (SS) consumption patterns of heavyweight and lightweight international rowers. Methods: The 13 heavyweights (11 males) and seven lightweights (five males) of the Spanish National Rowing Team were recruited for the study. Body composition was measured by bio-impedance analysis, and the questionnaire used in this investigation was previously validated to assess SS consumption. According to anthropometrics parameters, it was reported that male heavyweight rowers were heavier (p < 0.001) and taller (p < 0.001), but no statistical differences were reported for % body fat (p = 0.104) or % lean body mass (p = 0.161). All rowers reported consumption of at least one SS. Based on the Australian Institute of Sport's classification, higher medical supplement consumption was observed when comparing heavyweight rowers to lightweight rowers (2.5 ± 1.1 vs. 1.7 ± 0.5, p = 0.040). There were no differences in the totals of group A (strong scientific evidence for sports scenarios, p = 0.069), group B (emerging scientific support, deserving of further research, p = 0.776), or group C (scientific evidence not supportive of benefit and/or security amongst athletes, p = 0.484). The six most consumed SSs were iron (85%), caffeine (85%), β-alanine (85%), energy bars (85%), vitamin supplements (80%), and isotonic drinks (80%), with no statistical differences between heavyweight and lightweight rowers (p > 0.05). These results suggest that the absence of differences in body composition (expressed as a percentage) do not represent anthropometric disadvantages for heavyweight rowers. In addition, SS consumption was similar between rowers, reporting only higher medical supplement consumption in heavyweight rowers.
Collapse
Affiliation(s)
- Raúl Domínguez
- Escuela Universitaria de Osuna (Centro Adscrito a la Universidad de Sevilla), 41640 Osuna, Spain;
- Departamento de Educación Física y Deporte, Universidad de Sevilla, 41013 Sevilla, Spain
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| | - Rubén López-Domínguez
- Facultad del Deporte, Universidad Pablo Olavide, 41013 Sevilla, Spain; (R.L.-D.); (P.G.); (J.A.G.-J.)
| | - Álvaro López-Samanes
- Exercise Physiology Group, Faculty of Health Sciences, School of Physiotherapy, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
| | - Pol Gené
- Facultad del Deporte, Universidad Pablo Olavide, 41013 Sevilla, Spain; (R.L.-D.); (P.G.); (J.A.G.-J.)
- Federación Española de Remo, 28008 Madrid, Spain
| | | | - Antonio Jesús Sánchez-Oliver
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, 41013 Sevilla, Spain
- Correspondence: ; Tel.: +34-656305480
| |
Collapse
|
26
|
An integrated metagenomics and metabolomics approach implicates the microbiota-gut-brain axis in the pathogenesis of Huntington's disease. Neurobiol Dis 2020; 148:105199. [PMID: 33249136 DOI: 10.1016/j.nbd.2020.105199] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder with onset and severity of symptoms influenced by various environmental factors. Recent discoveries have highlighted the importance of the gastrointestinal microbiome in mediating the gut-brain-axis bidirectional communication via circulating factors. Using shotgun sequencing, we investigated the gut microbiome composition in the R6/1 transgenic mouse model of HD from 4 to 12 weeks of age (early adolescent through to adult stages). Targeted metabolomics was also performed on the blood plasma of these mice (n = 9 per group) at 12 weeks of age to investigate potential effects of gut dysbiosis on the plasma metabolome profile. RESULTS Modelled time profiles of each species, KEGG Orthologs and bacterial genes, revealed heightened volatility in the R6/1 mice, indicating potential early effects of the HD mutation in the gut. In addition to gut dysbiosis in R6/1 mice at 12 weeks of age, gut microbiome function was perturbed. In particular, the butanoate metabolism pathway was elevated, suggesting increased production of the protective SCFA, butyrate, in the gut. No significant alterations were found in the plasma butyrate and propionate levels in the R6/1 mice at 12 weeks of age. The statistical integration of the metagenomics and metabolomics unraveled several Bacteroides species that were negatively correlated with ATP and pipecolic acid in the plasma. CONCLUSIONS The present study revealed the instability of the HD gut microbiome during the pre-motor symptomatic stage of the disease which may have dire consequences on the host's health. Perturbation of the HD gut microbiome function prior to significant cognitive and motor dysfunction suggest the potential role of the gut in modulating the pathogenesis of HD, potentially via specific altered plasma metabolites which mediate gut-brain signaling.
Collapse
|
27
|
Effects of Beta-Alanine Supplementation on Physical Performance in Aerobic-Anaerobic Transition Zones: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12092490. [PMID: 32824885 PMCID: PMC7551186 DOI: 10.3390/nu12092490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Beta-alanine supplementation (BA) has a positive impact on physical performance. However, evidence showing a benefit of this amino acid in aerobic-anaerobic transition zones is scarce and the results controversial. The aim of this systematic review and meta-analysis is to analyze the effects of BA supplementation on physical performance in aerobic-anaerobic transition zones. At the same time, the effect of different dosages and durations of BA supplementation were identified. The search was designed in accordance with the PRISMA® guidelines for systematic reviews and meta-analyses and performed in Web of Science (WOS), Scopus, SPORTDiscus, PubMed, and MEDLINE between 2010 and 2020. The methodological quality and risk of bias were evaluated with the Cochrane Collaboration tool. The main variables were the Time Trial Test (TTT) and Time to Exhaustion (TTE) tests, the latter separated into the Limited Time Test (LTT) and Limited Distance Test (LDT). The analysis was carried out with a pooled standardized mean difference (SMD) through Hedges' g test (95% CI). Nineteen studies were included in the systematic review and meta-analysis, revealing a small effect for time in the TTT (SMD, -0.36; 95% CI, -0.87-0.16; I2 = 59%; p = 0.010), a small effect for LTT (SMD, 0.25; 95% CI, -0.01-0.51; I2 = 0%; p = 0.53), and a large effect for LDT (SMD, 4.27; 95% CI, -0.25-8.79; I2 = 94%; p = 0.00001). BA supplementation showed small effects on physical performance in aerobic-anaerobic transition zones. Evidence on acute supplementation is scarce (one study); therefore, exploration of acute supplementation with different dosages and formats on physical performance in aerobic-anaerobic transition zones is needed.
Collapse
|
28
|
Rezende NS, Swinton P, de Oliveira LF, da Silva RP, da Eira Silva V, Nemezio K, Yamaguchi G, Artioli GG, Gualano B, Saunders B, Dolan E. The Muscle Carnosine Response to Beta-Alanine Supplementation: A Systematic Review With Bayesian Individual and Aggregate Data E-Max Model and Meta-Analysis. Front Physiol 2020; 11:913. [PMID: 32922303 PMCID: PMC7456894 DOI: 10.3389/fphys.2020.00913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023] Open
Abstract
Beta-alanine (BA) supplementation increases muscle carnosine content (MCarn), and has many proven, and purported, ergogenic, and therapeutic benefits. Currently, many questions on the nature of the MCarn response to supplementation are open, and the response to these has considerable potential to enhance the efficacy and application of this supplementation strategy. To address these questions, we conducted a systematic review with Bayesian-based meta-analysis of all published aggregate data using a dose response (Emax) model. Meta-regression was used to consider the influence of potential moderators (including dose, sex, age, baseline MCarn, and analysis method used) on the primary outcome. The protocol was designed according to PRISMA guidelines and a three-step screening strategy was undertaken to identify studies that measured the MCarn response to BA supplementation. Additionally, we conducted an original analysis of all available individual data on the MCarn response to BA supplementation from studies conducted within our lab (n = 99). The Emax model indicated that human skeletal muscle has large capacity for non-linear MCarn accumulation, and that commonly used BA supplementation protocols may not come close to saturating muscle carnosine content. Neither baseline values, nor sex, appeared to influence subsequent response to supplementation. Analysis of individual data indicated that MCarn is relatively stable in the absence of intervention, and effectually all participants respond to BA supplementation (99.3% response [95%CrI: 96.2–100]).
Collapse
Affiliation(s)
- Nathália Saffioti Rezende
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Paul Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Luana Farias de Oliveira
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Pires da Silva
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Vinicius da Eira Silva
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Kleiner Nemezio
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme Yamaguchi
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme Giannini Artioli
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Food Research Center, University of São Paulo, São Paulo, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Nutritional Strategies to Optimize Performanceand Recovery in Rowing Athletes. Nutrients 2020; 12:nu12061685. [PMID: 32516908 PMCID: PMC7352678 DOI: 10.3390/nu12061685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
Rowing is a high-intensity sport requiring a high level of aerobic and anaerobic capacity. Although good nutrition is essential for successful performance in a rowing competition, its significance is not sufficiently established. This review aimed to provide nutritional strategies to optimize performance and recovery in rowing athletes based on a literature review. Following the guidelines given in the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA), we performed web searches using online databases (Pubmed, Web of Science, Wiley Online Library, ACS Publications, and SciFinder). Typically, a rowing competition involves a 6–8-min high-intensity exercise on a 2000-m course. The energy required for the exercise is supplied by muscle-stored glycogens, which are derived from carbohydrates. Therefore, rowing athletes can plan their carbohydrate consumption based on the intensity, duration, and type of training they undergo. For effective and safe performance enhancement, rowing athletes can take supplements such as β-alanine, caffeine, β-hydroxy-β-methylbutyric acid (HMB), and beetroot juice (nitrate). An athlete may consume carbohydrate-rich foods or use a carbohydrate mouth rinse. Recovery nutrition is also very important to minimize the risk of injury or unexplained underperformance syndrome (UUPS) from overuse. It must take into account refueling (carbohydrate), rehydration (fluid), and repair (protein). As lightweight rowing athletes often attempt acute weight loss by limiting food and fluid intake to qualify for a competition, they require personalized nutritional strategies and plans based on factors such as their goals and environment. Training and competition performance can be maximized by including nutritional strategies in training plans.
Collapse
|
30
|
Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020; 52:329-360. [PMID: 32072297 PMCID: PMC7088015 DOI: 10.1007/s00726-020-02823-6] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022]
Abstract
Taurine (a sulfur-containing β-amino acid), creatine (a metabolite of arginine, glycine and methionine), carnosine (a dipeptide; β-alanyl-L-histidine), and 4-hydroxyproline (an imino acid; also often referred to as an amino acid) were discovered in cattle, and the discovery of anserine (a methylated product of carnosine; β-alanyl-1-methyl-L-histidine) also originated with cattle. These five nutrients are highly abundant in beef, and have important physiological roles in anti-oxidative and anti-inflammatory reactions, as well as neurological, muscular, retinal, immunological and cardiovascular function. Of particular note, taurine, carnosine, anserine, and creatine are absent from plants, and hydroxyproline is negligible in many plant-source foods. Consumption of 30 g dry beef can fully meet daily physiological needs of the healthy 70-kg adult human for taurine and carnosine, and can also provide large amounts of creatine, anserine and 4-hydroxyproline to improve human nutrition and health, including metabolic, retinal, immunological, muscular, cartilage, neurological, and cardiovascular health. The present review provides the public with the much-needed knowledge of nutritionally and physiologically significant amino acids, dipeptides and creatine in animal-source foods (including beef). Dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline are beneficial for preventing and treating obesity, cardiovascular dysfunction, and ageing-related disorders, as well as inhibiting tumorigenesis, improving skin and bone health, ameliorating neurological abnormalities, and promoting well being in infants, children and adults. Furthermore, these nutrients may promote the immunological defense of humans against infections by bacteria, fungi, parasites, and viruses (including coronavirus) through enhancing the metabolism and functions of monocytes, macrophages, and other cells of the immune system. Red meat (including beef) is a functional food for optimizing human growth, development and health.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
31
|
Perim P, Marticorena FM, Ribeiro F, Barreto G, Gobbi N, Kerksick C, Dolan E, Saunders B. Can the Skeletal Muscle Carnosine Response to Beta-Alanine Supplementation Be Optimized? Front Nutr 2019; 6:135. [PMID: 31508423 PMCID: PMC6718727 DOI: 10.3389/fnut.2019.00135] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Carnosine is an abundant histidine-containing dipeptide in human skeletal muscle and formed by beta-alanine and L-histidine. It performs various physiological roles during exercise and has attracted strong interest in recent years with numerous investigations focused on increasing its intramuscular content to optimize its potential ergogenic benefits. Oral beta-alanine ingestion increases muscle carnosine content although large variation in response to supplementation exists and the amount of ingested beta-alanine converted into muscle carnosine appears to be low. Understanding of carnosine and beta-alanine metabolism and the factors that influence muscle carnosine synthesis with supplementation may provide insight into how beta-alanine supplementation may be optimized. Herein we discuss modifiable factors that may further enhance the increase of muscle carnosine in response to beta-alanine supplementation including, (i) dose; (ii) duration; (iii) beta-alanine formulation; (iv) dietary influences; (v) exercise; and (vi) co-supplementation with other substances. The aim of this narrative review is to outline the processes involved in muscle carnosine metabolism, discuss theoretical and mechanistic modifiable factors which may optimize the muscle carnosine response to beta-alanine supplementation and to make recommendations to guide future research.
Collapse
Affiliation(s)
- Pedro Perim
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Felipe Miguel Marticorena
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Felipe Ribeiro
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Gabriel Barreto
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Nathan Gobbi
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Chad Kerksick
- Exercise and Performance Nutrition Laboratory, Lindenwood University, St. Charles, MO, United States
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.,Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
The Impact of Preconditioning Strategies Designed to Improve 2000-m Rowing Ergometer Performance in Trained Rowers: A Systematic Review and Meta-Analysis. Int J Sports Physiol Perform 2019; 14:871-879. [PMID: 31034295 DOI: 10.1123/ijspp.2019-0247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE The 2000-m rowing-ergometer test is the most common measure of rowing performance. Because athletes use different intervention strategies for enhancing performance, investigating the effect of preconditioning strategies on the 2000-m test is of great relevance. This study evaluated the effects of different preconditioning strategies on 2000-m rowing-ergometer performance in trained rowers. METHODS A search of electronic databases (PubMed, Google Scholar, and Web of Science) identified 27 effects of different preconditioning strategies from 17 studies. Outcomes were calculated as percentage differences between control and experimental interventions, and data were presented as mean ± 90% confidence interval. Performance data were converted to the same metrics, that is, mean power. Meta-regression analyses were conducted to assess whether performance level or caffeine dose could affect the percentage change. RESULTS The overall beneficial effect on 2000-m mean power was 2.1% (90% confidence limit [CL] ±0.6%). Training status affected the percentage change with interventions, with a -1.1% (90% CL ±1.2%) possible small decrease for 1.0-W·kg-1 increment in performance baseline. Caffeine consumption most likely improves performance, with superior effect in higher doses (≥6 mg·kg-1). Sodium bicarbonate and beta-alanine consumption resulted in likely (2.6% [90% CL ±1.5%]) and very likely (1.4% [90% CL ±1.2%]) performance improvements, respectively. However, some preconditioning strategies such as heat acclimation, rehydration, and creatine resulted in small to moderate enhancements in 2000-m performance. CONCLUSIONS Supplementation of caffeine and beta-alanine is a popular and effective strategy to improve 2000-m ergometer performance in trained rowers. Additional research is warranted to confirm the benefit of other strategies to 2000-m rowing-ergometer performance.
Collapse
|
33
|
Viallon M, Leporq B, Drinda S, Wilhelmi de Toledo F, Galusca B, Ratiney H, Croisille P. Chemical-Shift-Encoded Magnetic Resonance Imaging and Spectroscopy to Reveal Immediate and Long-Term Multi-Organs Composition Changes of a 14-Days Periodic Fasting Intervention: A Technological and Case Report. Front Nutr 2019; 6:5. [PMID: 30881957 PMCID: PMC6407435 DOI: 10.3389/fnut.2019.00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
Objectives: The aim of this study was to investigate the feasibility of measuring the effects of a 14-day Periodic Fasting (PF) intervention (<200 cal) on multi-organs of primary interest (liver, visceral/subcutaneous/bone marrow fat, muscle) using non-invasive advanced magnetic resonance spectroscopic (MRS) and imaging (MRI) methods. Methods: One subject participated in a 14-day PF under daily supervision of nurses and specialized physicians, ingesting a highly reduced intake: 200 Kcal/day coupled with active walking and drinking at least 3 L of liquids/day. The fasting was preceded by a 7-day pre-fasting vegetarian period and followed by 14 days of stepwise reintroduction of food. The longitudinal study collected imaging and biological data before the fast, at peak fasting, and 7 days, 1 month, and 4 months after re-feeding. Body fat mass in the trunk, abdomen, and thigh, liver and muscle mass, were respectively computed using advanced MRI and MRS signal modeling. Fat fraction, MRI relativity index T2* and susceptibility (Chi), as well as Fatty acid composition, were calculated at all-time points. Results: A decrease in body weight (BW: −9.5%), quadriceps muscle volume (−3.2%), Subcutaneous and Visceral Adipose Tissue (SAT −34.4%; VAT −20.8%), liver fat fraction (PDFF = 1.4 vs. 2.6 % at baseline) but increase in Spine Bone Marrow adipose tissue (BMAT) associated with a 10% increase in global adiposity fraction (PDFF: 54.4 vs. 50.9%) was observed. Femoral BMAT showed minimal changes compared to spinal level, with a slight decrease (−3.1%). Interestingly, fatty acid (FA) pattern changes differed depending on the AT locations. In muscle, all lipids increased after fasting, with a greater increase of intramyocellular lipid (IMCL: from 2.7 to 6.3 mmol/kg) after fasting compared to extramyocellular lipid (EMCL: from 6.2 to 9.5 mmol/kg) as well as Carnosine (6.9 to 8.1 mmol/kg). Heterogenous and reverse changes were also observed after re-feeding depending on the organ. Conclusion: These results suggest that investigating the effects of a 14-day PF intervention using advanced MRI and MRS is feasible. Quantitative MR indexes are a crucial adjunct to further understanding the effective changes in multiple crucial organs especially liver, spin, and muscle, differences between adipose tissue composition and the interplay that occurs during periodic fasting.
Collapse
Affiliation(s)
- Magalie Viallon
- Université de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Benjamin Leporq
- Université de Lyon, Lyon, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Stephan Drinda
- Klinik St. Katharinental, Diessenhofen, Switzerland.,Buchinger Wilhelmi Clinic, Uberlingen, Germany
| | | | - Bogdan Galusca
- Université de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France.,Eating Disorders, Addictions & Extreme Bodyweight Research Group (TAPE) EA, Saint-Étienne, France
| | - Helene Ratiney
- Université de Lyon, Lyon, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Pierre Croisille
- Université de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| |
Collapse
|
34
|
Sports Foods and Dietary Supplements for Optimal Function and Performance Enhancement in Track-and-Field Athletes. Int J Sport Nutr Exerc Metab 2019; 29:198-209. [PMID: 30299192 DOI: 10.1123/ijsnem.2018-0271] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Athletes are exposed to numerous nutritional products, attractively marketed with claims of optimizing health, function, and performance. However, there is limited evidence to support many of these claims, and the efficacy and safety of many products is questionable. The variety of nutritional aids considered for use by track-and-field athletes includes sports foods, performance supplements, and therapeutic nutritional aids. Support for sports foods and five evidence-based performance supplements (caffeine, creatine, nitrate/beetroot juice, β-alanine, and bicarbonate) varies according to the event, the specific scenario of use, and the individual athlete's goals and responsiveness. Specific challenges include developing protocols to manage repeated use of performance supplements in multievent or heat-final competitions or the interaction between several products which are used concurrently. Potential disadvantages of supplement use include expense, false expectancy, and the risk of ingesting banned substances sometimes present as contaminants. However, a pragmatic approach to the decision-making process for supplement use is recommended. The authors conclude that it is pertinent for sports foods and nutritional supplements to be considered only where a strong evidence base supports their use as safe, legal, and effective and that such supplements are trialed thoroughly by the individual before committing to use in a competition setting.
Collapse
|
35
|
Kim KJ, Song HS, Yoon DH, Fukuda DH, Kim SH, Park DH. The effects of 10 weeks of β-alanine supplementation on peak power, power drop, and lactate response in Korean national team boxers. J Exerc Rehabil 2019; 14:985-992. [PMID: 30656159 PMCID: PMC6323321 DOI: 10.12965/jer.1836462.231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/14/2018] [Indexed: 11/22/2022] Open
Abstract
This study was designed to investigate the effects of β-alanine (BA) supplementation on peak power, power drop, and lactate response in elite male amateur boxers. Nineteen male Korean national team boxers were divided into groups with either BA (n=9) or placebo (PL, n=10) supplementation. BA consumed 4.9–5.4 g/day of BA with training for 10 weeks and PL took PL in a similar manner. Physical fitness and lactate changes in sparring were measured before and after the 10-week intervention. Significant interactions (P<0.05) were shown for lower body peak power (P=0.049) and upper body power drop (P=0.042). Positive effects for the BA group were shown for lower body peak power (Cohen d=0.72; 95% confidence interval [CI], 0.09–1.35) and the maintenance of upper body power output (d=−0.91; 95% CI, −1.61 to −0.17). These findings suggest that Korean national amateur boxers who consumed BA demonstrated differential responses following a training intervention in specific physical fitness when compared to boxing athletes who consumed a PL.
Collapse
Affiliation(s)
- Kwang-Jun Kim
- Division of Sports Science, Korea Institute of Sport Science, Seoul, Korea
| | - Hong-Sun Song
- Division of Sports Science, Korea Institute of Sport Science, Seoul, Korea
| | - Dong Hyun Yoon
- Institute of Sports Science, Seoul National University, Seoul, Korea
| | - David H Fukuda
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, USA
| | - Soon Hee Kim
- Department of Golf, Yongin University, Yongin, Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, Korea
| |
Collapse
|
36
|
Roveratti MC, Jacinto JL, Oliveira DB, da Silva RA, Andraus RAC, de Oliveira EP, Ribeiro AS, Aguiar AF. Effects of beta-alanine supplementation on muscle function during recovery from resistance exercise in young adults. Amino Acids 2019; 51:589-597. [PMID: 30627787 DOI: 10.1007/s00726-018-02686-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/06/2018] [Indexed: 01/03/2023]
Abstract
β-Alanine supplementation has been shown to increase muscle carnosine levels and exercise performance. However, its effects on muscle recovery from resistance exercise (RE) remains unknown. The purpose of this study was to investigate the effects of β-alanine supplementation on muscle function during recovery from a single session of high-intensity RE. Twenty-four untrained young adults (22.1 ± 4.6 years old) were assigned to one of two groups (N = 12 per group): a placebo-supplement group (4.8 g/day) or an β-alanine-supplement group (4.8 g/day). The groups completed a single session of high-intensity RE after 28 days of supplementation and were then evaluated for muscle function on the three subsequent days (at 24, 48, and 72 h postexercise) to assess the time course of muscle recovery. The following indicators of muscle recovery were assessed: number of repetitions until failure, rating of perceived exertion, muscle soreness, and blood levels of creatine kinase (CK). Number of repetitions until failure increased from 24 to 48 h and 72 h of recovery (time P < 0.01), with no difference between groups. There was a significant increase in the rating of perceived exertion among the sets during the RE session (time P < 0.01), with no difference between the groups. No difference was observed over time and between groups in rating of perceived exertion in the functional tests during recovery period. Blood CK levels and muscle soreness increased at 24 h postexercise and then progressively declined at 48 and 72 h postexercise, respectively (time P < 0.05), with no difference between groups. In conclusion, our data indicate that β-alanine supplementation does not improve muscle recovery following a high-intensity RE session in untrained young adults.
Collapse
Affiliation(s)
- Mirela Casonato Roveratti
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, PR, CEP: 86041-120, Brazil
| | - Jeferson Lucas Jacinto
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, PR, CEP: 86041-120, Brazil
| | - Douglas Bendito Oliveira
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, PR, CEP: 86041-120, Brazil
| | - Rubens Alexandre da Silva
- Département des Sciences de la Santé, Programme de Physiothérapie de L'université McGill Offert em Extension à L'UNIVERSITÉ du Québec à Chicoutimi (UQAC), 555 boul. De L'université, ville du Saguenay, Québec, QC, G7H 5B8, Canada
| | - Rodrigo Antonio Carvalho Andraus
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, PR, CEP: 86041-120, Brazil
| | | | - Alex Silva Ribeiro
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, PR, CEP: 86041-120, Brazil
| | - Andreo Fernando Aguiar
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, PR, CEP: 86041-120, Brazil.
| |
Collapse
|
37
|
Consumption of meat, eggs and dairy products is associated with aerobic and anaerobic performance in Brazilian athletes – A cross-sectional study. NUTR HOSP 2019; 36:1375-1383. [DOI: 10.20960/nh.02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
38
|
Beasley L, Smith L, Antonio J, Gordon D, Johnstone J, Roberts J. The effect of two β-alanine dosing strategies on 30-minute rowing performance: a randomized, controlled trial. J Int Soc Sports Nutr 2018; 15:59. [PMID: 30563538 PMCID: PMC6299666 DOI: 10.1186/s12970-018-0266-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/27/2018] [Indexed: 11/12/2022] Open
Abstract
Background β-alanine (βA) supplementation has been shown to increase intramuscular carnosine content and subsequent high-intensity performance in events lasting < 4 minutes (min), which may be dependent on total, as opposed to daily, dose. The ergogenic effect of βA has also been demonstrated for 2000-m rowing performance prompting interest in whether βA may be beneficial for sustained aerobic exercise. This study therefore investigated the effect of two βA dosing strategies on 30-min rowing and subsequent sprint performance. Methods Following University Ethics approval, twenty-seven healthy, male rowers (age: 24 ± 2 years; body-height: 1.81 ± 0.02 m; body-mass: 82.3 ± 2.5 kg; body-fat: 14.2 ± 1.0%) were randomised in a double-blind manner to 4 weeks of: i) βA (2.4 g·d− 1, βA1); ii) matched total βA (4.8 g on alternate days, βA2); or iii) cornflour placebo (2.4 g·d− 1, PL). Participants completed a laboratory 30-min rowing time-trial, followed by 3x30-seconds (s) maximal sprint efforts at days 0, 14 and 28 (T1-T3). Total distance (m), average power (W), relative average power (W·kg− 1), cardio-respiratory measures and perceived exertion were assessed for each 10-min split. Blood lactate ([La-]b mmol·L− 1) was monitored pre-post time-trial and following maximal sprint efforts. A 3-way repeated measures ANOVA was employed for main analyses, with Bonferonni post-hoc assessment (P ≤ 0.05). Results Total 30-min time-trial distance significantly increased from T1-T3 within βA1 only (7397 ± 195 m to 7580 ± 171 m, P = 0.002, ƞp2 = 0.196), including absolute average power (194.8 ± 18.3 W to 204.2 ± 15.5 W, P = 0.04, ƞp2 = 0.115) and relative average power output (2.28 ± 0.15 W·kg− 1 to 2.41 ± 0.12 W·kg− 1, P = 0.031, ƞp2 = 0.122). These findings were potentially explained by within-group significance for the same variables for the first 10 min split (P ≤ 0.01), and for distance covered (P = 0.01) in the second 10-min split. However, no condition x time interactions were observed. No significant effects were found for sprint variables (P > 0.05) with comparable values at T3 for mean distance (βA1: 163.9 ± 3.8 m; βA2: 161.2 ± 3.5 m; PL: 162.7 ± 3.6 m), average power (βA1: 352.7 ± 14.5 W; βA2: 342.2 ± 13.5 W; PL: 348.2 ± 13.9 W) and lactate (βA1: 10.0 ± 0.9 mmol·L− 1; βA2: 9.2 ± 1.1 mmol·L− 1; PL: 8.7 ± 0.9 mmol·L− 1). Conclusions Whilst daily βA may confer individual benefits, these results demonstrate limited impact of βA (irrespective of dosing strategy) on 30-min rowing or subsequent sprint performance. Further investigation of βA dosage > 2.4 g·d− 1 and/or chronic intervention periods (> 4–8 weeks) may be warranted based on within-group observations.
Collapse
Affiliation(s)
- Liam Beasley
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Lee Smith
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Jose Antonio
- College of Health Care Sciences, Nova Southeastern University, Florida, USA
| | - Dan Gordon
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - James Johnstone
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK.
| |
Collapse
|
39
|
Brisola GMP, Zagatto AM. Ergogenic Effects of β-Alanine Supplementation on Different Sports Modalities: Strong Evidence or Only Incipient Findings? J Strength Cond Res 2018; 33:253-282. [PMID: 30431532 DOI: 10.1519/jsc.0000000000002925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Brisola, GMP and Zagatto, AM. Ergogenic effects of β-alanine supplementation on different sports modalities: strong evidence or only incipient findings? J Strength Cond Res 33(1): 253-282, 2019-β-Alanine supplementation is a popular nutritional ergogenic aid among the sports community. Due to its efficacy, already proven in the literature, to increase the intramuscular carnosine content (β-alanyl-L-histidine), whose main function is intramuscular buffering, β-alanine supplementation has become a nutritional strategy to improve performance, mainly in high-intensity efforts. However, although many studies present evidence of the efficacy of β-alanine supplementation in high-intensity efforts, discrepancies in outcomes are still present and the performance enhancing effects seem to be related to the specificities of each sport discipline, making it difficult for athletes/coaches to interpret the efficacy of β-alanine supplementation. Thus, this study carried out a review of the literature on this topic and summarized, analyzed, and critically discussed the findings with the objective of clarifying the current evidence found in the literature on different types of efforts and sport modalities. The present review revealed that inconsistencies are still found in aerobic parameters determined in incremental tests, except for physical working capacity at the neuromuscular fatigue threshold. Inconsistencies are also found for strength exercises and intermittent high-intensity efforts, whereas in supramaximal continuous mode intermittent exercise, the beneficial evidence is strong. In sports modalities, the evidence should be analyzed separately for each sporting modality. Thus, sports modalities that have strong evidence of the ergogenic effects of β-alanine supplementation are: cycling race of 4 km, rowing race of 2,000 m, swimming race of 100 and 200 m, combat modalities, and water polo. Finally, there is some evidence of slight additional effects on physical performance from cosupplementation with sodium bicarbonate.
Collapse
Affiliation(s)
- Gabriel M P Brisola
- Department of Physical Education, Post-Graduate Program in Movement Sciences, School of Sciences, Sao Paulo State University (Unesp), Bauru, Brazil.,Department of Physical Education, Laboratory of Physiology and Sport Performance (LAFIDE), School of Sciences, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Alessandro M Zagatto
- Department of Physical Education, Laboratory of Physiology and Sport Performance (LAFIDE), School of Sciences, Sao Paulo State University (Unesp), Bauru, Brazil
| |
Collapse
|
40
|
A kinetic model of carnosine synthesis in human skeletal muscle. Amino Acids 2018; 51:115-121. [DOI: 10.1007/s00726-018-2646-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022]
|
41
|
Varanoske AN, Hoffman JR, Church DD, Coker NA, Baker KM, Dodd SJ, Harris RC, Oliveira LP, Dawson VL, Wang R, Fukuda DH, Stout JR. Comparison of sustained-release and rapid-release β-alanine formulations on changes in skeletal muscle carnosine and histidine content and isometric performance following a muscle-damaging protocol. Amino Acids 2018; 51:49-60. [PMID: 30003336 DOI: 10.1007/s00726-018-2609-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
β-alanine supplementation increases muscle carnosine content and improves anaerobic exercise performance by enhancing intracellular buffering capacity. β-alanine ingestion in its traditional rapid-release formulation (RR) is associated with the symptoms of paresthesia. A sustained-release formulation (SR) of β-alanine has been shown to circumvent paresthesia and extend the period of supply to muscle for carnosine synthesis. The purpose of this investigation was to compare 28 days of SR and RR formulations of β-alanine (6 g day-1) on changes in carnosine content of the vastus lateralis and muscle fatigue. Thirty-nine recreationally active men and women were assigned to one of the three groups: SR, RR, or placebo (PLA). Participants supplementing with SR and RR formulations increased muscle carnosine content by 50.1% (3.87 mmol kg-1ww) and 37.9% (2.62 mmol kg-1ww), respectively. The change in muscle carnosine content in participants consuming SR was significantly different (p = 0.010) from those consuming PLA, but no significant difference was noted between RR and PLA (p = 0.077). Although participants ingesting SR experienced a 16.4% greater increase in muscle carnosine than RR, fatigue during maximal voluntary isometric contractions was significantly attenuated in both SR and RR compared to PLA (p = 0.002 and 0.024, respectively). Symptoms of paresthesia were significantly more frequent in RR compared to SR, the latter of which did not differ from PLA. Results of this study demonstrated that only participants consuming the SR formulation experienced a significant increase in muscle carnosine. Differences in the muscle carnosine response between these formulations may have practical significance for athletic populations in which small changes may have important implications on performance.
Collapse
Affiliation(s)
- Alyssa N Varanoske
- Sport and Exercise Science, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816-1250, USA
| | - Jay R Hoffman
- Sport and Exercise Science, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816-1250, USA.
| | - David D Church
- Sport and Exercise Science, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816-1250, USA
| | - Nicholas A Coker
- Sport and Exercise Science, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816-1250, USA
| | - Kayla M Baker
- Sport and Exercise Science, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816-1250, USA
| | - Sarah J Dodd
- Sport and Exercise Science, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816-1250, USA
| | | | - Leonardo P Oliveira
- Department of Orthopedics and Rehabilitation Medicine, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Virgil L Dawson
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Ran Wang
- Sport and Exercise Science, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816-1250, USA
| | - David H Fukuda
- Sport and Exercise Science, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816-1250, USA
| | - Jeffrey R Stout
- Sport and Exercise Science, University of Central Florida, 12494 University Blvd, Orlando, FL, 32816-1250, USA
| |
Collapse
|
42
|
Qiu J, Hauske SJ, Zhang S, Rodriguez-Niño A, Albrecht T, Pastene DO, van den Born J, van Goor H, Ruf S, Kohlmann M, Teufel M, Krämer BK, Hammes HP, Peters V, Yard BA, Kannt A. Identification and characterisation of carnostatine (SAN9812), a potent and selective carnosinase (CN1) inhibitor with in vivo activity. Amino Acids 2018; 51:7-16. [DOI: 10.1007/s00726-018-2601-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/05/2018] [Indexed: 12/30/2022]
|
43
|
Goron A, Moinard C. Amino acids and sport: a true love story? Amino Acids 2018; 50:969-980. [PMID: 29855718 DOI: 10.1007/s00726-018-2591-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/17/2018] [Indexed: 12/28/2022]
Abstract
Among a plethora of dietary supplements, amino acids are very popular with athletes for several reasons (e.g., to prevent nutritional deficiency, improve muscle function, and decrease muscle damages) whose purpose is to improve performance. However, it is difficult to get a clear idea of which amino acids have real ergogenic impact. Here, we review and analyze the clinical studies evaluating specific amino acids (glutamine, arginine, leucine, etc.) in athletes. Only english-language clinical studies evaluating a specific effect of one amino acid were considered. Despite promising results, many studies have methodological limits or specific flaws that do not allow definitive conclusions. To date, only chronic β-alanine supplementation demonstrated an ergogenic effect in athletes. Much research is still needed to gain evidence-based data before any other specific amino acid can be recommended for use in athletes.
Collapse
Affiliation(s)
- Arthur Goron
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France.
| | - Christophe Moinard
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), INSERM U 1055 and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France
| |
Collapse
|
44
|
Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, Rawson ES, Walsh NP, Garthe I, Geyer H, Meeusen R, van Loon LJC, Shirreffs SM, Spriet LL, Stuart M, Vernec A, Currell K, Ali VM, Budgett RG, Ljungqvist A, Mountjoy M, Pitsiladis YP, Soligard T, Erdener U, Engebretsen L. IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med 2018; 52:439-455. [PMID: 29540367 PMCID: PMC5867441 DOI: 10.1136/bjsports-2018-099027] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2018] [Indexed: 12/24/2022]
Abstract
Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition programme. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including (1) the management of micronutrient deficiencies, (2) supply of convenient forms of energy and macronutrients, and (3) provision of direct benefits to performance or (4) indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can benefit the athlete, but others may harm the athlete's health, performance, and/or livelihood and reputation (if an antidoping rule violation results). A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome and habitual diet. Supplements intended to enhance performance should be thoroughly trialled in training or simulated competition before being used in competition. Inadvertent ingestion of substances prohibited under the antidoping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete's health and awareness of the potential for harm must be paramount; expert professional opinion and assistance is strongly advised before an athlete embarks on supplement use.
Collapse
Affiliation(s)
| | - Louise M Burke
- Sports Nutrition, Australian Institute of Sport, Canberra, Australia
- Mary MacKillop Institute for Health Research, Melbourne, Australia
| | - Jiri Dvorak
- Department of Neurology, Schulthess Clinic, Zurich, Switzerland
| | - D Enette Larson-Meyer
- Department of Family & Consumer Sciences (Human Nutrition), University of Wyoming, Laramie, Wyoming, USA
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
- Western Australian Institute of Sport, Mount Claremont, Australia
| | | | - Eric S Rawson
- Department of Health, Nutrition, and Exercise Science, Messiah College, Mechanicsburg, Pennsylvania, USA
| | - Neil P Walsh
- College of Health and Behavioural Sciences, Bangor University, Bangor, UK
| | - Ina Garthe
- The Norwegian Olympic and Paralympic Committee and Confederation of Sport, Oslo, Norway
| | - Hans Geyer
- Institute of Biochemistry, Center for Preventive Doping Research, German Sport University, Cologne, Germany
| | - Romain Meeusen
- Human Physiology Research Group, Vrije Universiteit Brussel, Brussel, Belgium
| | - Lucas J C van Loon
- Mary MacKillop Institute for Health Research, Melbourne, Australia
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - Lawrence L Spriet
- Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | | | - Alan Vernec
- Department of Science and Medicine, World Anti-Doping Agency (WADA), Montreal, Canada
| | | | - Vidya M Ali
- Medical and Scientific Commission, International Olympic Committee, Lausanne, Switzerland
| | - Richard Gm Budgett
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | | | - Margo Mountjoy
- Human Health and Nutritional Sciences, Health and Performance, Centre University of Guelph, Guelph, Ontario, Canada
- Medical and Scientific Commission Games Group, International Olympic Committee, Lausanne, Switzerland
| | - Yannis P Pitsiladis
- Medical and Scientific Commission, International Olympic Committee, Lausanne, Switzerland
| | - Torbjørn Soligard
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Uğur Erdener
- Medical and Scientific Commission, International Olympic Committee, Lausanne, Switzerland
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| |
Collapse
|
45
|
IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Int J Sport Nutr Exerc Metab 2018; 28:104-125. [PMID: 29589768 DOI: 10.1123/ijsnem.2018-0020] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition program. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including the management of micronutrient deficiencies, supply of convenient forms of energy and macronutrients, and provision of direct benefits to performance or indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can offer benefits to the athlete, but others may be harmful to the athlete's health, performance, and/or livelihood and reputation if an anti-doping rule violation results. A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome, and habitual diet. Supplements intended to enhance performance should be thoroughly trialed in training or simulated competition before implementation in competition. Inadvertent ingestion of substances prohibited under the anti-doping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete's health and awareness of the potential for harm must be paramount, and expert professional opinion and assistance is strongly advised before embarking on supplement use.
Collapse
|
46
|
Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial. Br J Nutr 2018; 119:759-770. [DOI: 10.1017/s000711451800017x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractBalanced vegetarian diets are popular, although they are nearly absent in creatine and carnosine and contain considerably less carnitine than non-vegetarian diets. Few longitudinal intervention studies investigating the effect of a vegetarian diet on the availability of these compounds currently exist. We aimed to investigate the effect of transiently switching omnivores onto a vegetarian diet for 6 months on muscle and plasma creatine, carnitine and carnosine homeostasis. In a 6-month intervention, forty omnivorous women were ascribed to three groups: continued omnivorous diet (control,n10), vegetarian diet without supplementation (Veg+Pla,n15) and vegetarian diet combined with dailyβ-alanine (0·8–0·4 g/d) and creatine supplementation (1 g creatine monohydrate/d) (Veg+Suppl,n15). Before (0 months; 0M), after 3 months (3M) and 6 months (6M), a fasted venous blood sample and 24-h urine was collected, and muscle carnosine content was determined by proton magnetic resonance spectroscopy (1H-MRS). Muscle biopsies were obtained at 0M and 3M. Plasma creatine and muscle total creatine content declined from 0M to 3M in Veg+Pla (P=0·013 andP=0·009, respectively), whereas plasma creatine increased from 0M in Veg+Suppl (P=0·004). None of the carnitine-related compounds in plasma or muscle showed a significant time×group interaction effect.1H-MRS-determined muscle carnosine content was unchanged over 6M in control and Veg+Pla, but increased in Veg+Suppl in soleus (P<0·001) and gastrocnemius (P=0·001) muscle. To conclude, the body creatine pool declined over a 3-month vegetarian diet in omnivorous women, which was ameliorated when accompanied by low-dose dietary creatine supplementation. Carnitine and carnosine homeostasis was unaffected by a 3- or 6-month vegetarian diet, respectively.
Collapse
|
47
|
Black MI, Jones AM, Morgan PT, Bailey SJ, Fulford J, Vanhatalo A. The Effects of β-Alanine Supplementation on Muscle pH and the Power-Duration Relationship during High-Intensity Exercise. Front Physiol 2018. [PMID: 29515455 PMCID: PMC5826376 DOI: 10.3389/fphys.2018.00111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose: To investigate the influence of β-alanine (BA) supplementation on muscle carnosine content, muscle pH and the power-duration relationship (i.e., critical power and W′). Methods: In a double-blind, randomized, placebo-controlled study, 20 recreationally-active males (22 ± 3 y, V°O2peak 3.73 ± 0.44 L·min−1) ingested either BA (6.4 g/d for 28 d) or placebo (PL) (6.4 g/d) for 28 d. Subjects completed an incremental test and two 3-min all-out tests separated by 1-min on a cycle ergometer pre- and post-supplementation. Muscle pH was assessed using 31P-magnetic resonance spectroscopy (MRS) during incremental (INC KEE) and intermittent knee-extension exercise (INT KEE). Muscle carnosine content was determined using 1H-MRS. Results: There were no differences in the change in muscle carnosine content from pre- to post-intervention (PL: 1 ± 16% vs. BA: −4 ± 25%) or in muscle pH during INC KEE or INT KEE (P > 0.05) between PL and BA, but blood pH (PL: −0.06 ± 0.10 vs. BA: 0.09 ± 0.13) during the incremental test was elevated post-supplementation in the BA group only (P < 0.05). The changes from pre- to post-supplementation in critical power (PL: −8 ± 18 W vs. BA: −6 ± 17 W) and W′ (PL: 1.8 ± 3.3 kJ vs. BA: 1.5 ± 1.7 kJ) were not different between groups. No relationships were detected between muscle carnosine content and indices of exercise performance. Conclusions: BA supplementation had no significant effect on muscle carnosine content and no influence on intramuscular pH during incremental or high-intensity intermittent knee-extension exercise. The small increase in blood pH following BA supplementation was not sufficient to significantly alter the power-duration relationship or exercise performance.
Collapse
Affiliation(s)
- Matthew I Black
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Paul T Morgan
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Jonathan Fulford
- NIHR Exeter Clinical Research Facility, University of Exeter, Exeter, United Kingdom
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
48
|
Abstract
A strong foundation in physical conditioning and sport-specific experience, in addition to a bespoke and periodized training and nutrition program, are essential for athlete development. Once these underpinning factors are accounted for, and the athlete reaches a training maturity and competition level where marginal gains determine success, a role may exist for the use of evidence-based performance supplements. However, it is important that any decisions surrounding performance supplements are made in consideration of robust information that suggests the use of a product is safe, legal, and effective. The following review focuses on the current evidence-base for a number of common (and emerging) performance supplements used in sport. The supplements discussed here are separated into three categories based on the level of evidence supporting their use for enhancing sports performance: (1) established (caffeine, creatine, nitrate, beta-alanine, bicarbonate); (2) equivocal (citrate, phosphate, carnitine); and (3) developing. Within each section, the relevant performance type, the potential mechanisms of action, and the most common protocols used in the supplement dosing schedule are summarized.
Collapse
|
49
|
Hoffman JR, Varanoske A, Stout JR. Effects of β-Alanine Supplementation on Carnosine Elevation and Physiological Performance. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 84:183-206. [PMID: 29555069 DOI: 10.1016/bs.afnr.2017.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
β-Alanine is one of the more popular sport supplements used by strength/power athletes today. The popularity of β-alanine stems from its ability to enhance intracellular muscle-buffering capacity thereby delaying fatigue during high-intensity exercise by increasing muscle carnosine content. Recent evidence also suggests that elevated carnosine levels may enhance cognitive performance and increase resiliency to stress. These benefits are thought to result from carnosine's potential role as an antioxidant. This review will discuss these new findings including recent investigations examining β-alanine supplementation and increased resiliency to posttraumatic stress and mild traumatic brain injury. This review will focus on the physiology of carnosine, the effect of β-alanine ingestion on carnosine elevations, and the potential ergogenic benefits it has for competitive and tactical athletes.
Collapse
Affiliation(s)
- Jay R Hoffman
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, United States.
| | - Alyssa Varanoske
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, United States
| | - Jeffrey R Stout
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
50
|
Varanoske AN, Hoffman JR, Church DD, Coker NA, Baker KM, Dodd SJ, Oliveira LP, Dawson VL, Wang R, Fukuda DH, Stout JR. β -Alanine supplementation elevates intramuscular carnosine content and attenuates fatigue in men and women similarly but does not change muscle l -histidine content. Nutr Res 2017; 48:16-25. [DOI: 10.1016/j.nutres.2017.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 01/06/2023]
|