1
|
Li C, Pan Y, Wang Y, Li X, Tie Y, Li S, Wang R, Zhao X, Fan J, Yan X, Wang Y, Sun X. Single-cell RNA sequencing of the carotid artery and femoral artery of rats exposed to hindlimb unloading. Cell Mol Life Sci 2025; 82:50. [PMID: 39833543 PMCID: PMC11747068 DOI: 10.1007/s00018-024-05572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Prolonged spaceflight is known to cause vascular deconditioning and remodeling. Tail suspension, a widely used spaceflight analog, is reported to result in vascular remodeling of rats. However, little is known about the cellular atlas of the heterogeneous cells of CA and FA from hindlimb-unloaded rats. METHODS Firstly, we leveraged scRNA-seq to perform clustering analysis to identify diverse cell populations and sub-clusters within CA and FA from rats subjected to 3 months of hindlimb unloading. The dysregulated genes specific for artery types and cell types in HU group compared to Con were unraveled. Then R package "Cellchat" was used to reveal ligand-receptor cellular communication. At last, the TF network analysis was performed using the SCENIC R package to predict the pivotal TFs in rat artery remodeling induced by hindlimb unloading. RESULTS Clustering analysis identified ECs, SMCs, fibroblasts, and a spectrum of immune cells, as well as neuronal and stem cells. Notably, an increased percentage of ECs in the CA and a diminished proportion of SMCs in both CA and FA were observed following tail suspension. Intersection of dysregulated genes specific for artery type and cell type after tail suspension revealed several gene sets involved in ECM remodeling, inflammation, vasoconstriction, etc. Fibroblasts, in particular, exhibited the most significant gene expression variability, highlighting their plasticity. Subclustering within ECs, SMCs and fibroblasts revealed specialized subsets engaged in processes such as EndoMT and cell cycle checkpoint regulation. Additionally, enhanced intercellular interactions among major cell types, especially between SMC and fibroblast, underscored the importance of cell communication in vascular remodeling. Several TFs were identified as potentially influential in the vascular remodeling process under simulated microgravity conditions. CONCLUSIONS This study presents the first cellular atlas of the conductive arteries in hindlimb-unloaded rats, revealing a spectrum of dysregulated gene profiles. The identification of the subclusters of ECs, SMCs and fibroblasts, cellular communication analysis and transcription factors prediction are also included in this work. The findings provide a reference for future research on vascular deconditioning following long-duration spaceflight.
Collapse
Affiliation(s)
- Chengfei Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yikai Pan
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yuan Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Xi Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yateng Tie
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Shuhan Li
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Ruonan Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Xingcheng Zhao
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Jieyi Fan
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
| | - Yongchun Wang
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
| | - Xiqing Sun
- Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
| |
Collapse
|
2
|
Azariah J, Terranova U. Microgravity and Cardiovascular Health in Astronauts: A Narrative Review. Health Sci Rep 2025; 8:e70316. [PMID: 39777279 PMCID: PMC11705478 DOI: 10.1002/hsr2.70316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/16/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background Space exploration has become a major interest for scientific and medical research. With increasing duration and frequency of manned space missions, it is crucial to understand the impact of microgravity on the cardiovascular health of astronauts. We focus on this relationship by reviewing literature that explores how microgravity affects several hemodynamic parameters and cardiovascular biomarkers. Methods We conducted a search updated to November 2024 across several databases, including PubMed, Cochrane Library, ESA, NASA and DLR, using relevant MeSH terms and selection criteria. Results The 22 selected articles detail how microgravity impacts the cardiovascular system and its adaptations. We identify some clear patterns, such as loss of ventricular mass and increased QT intervals (corrected for heart rate) indicating increased risk of arrhythmias. Our analysis confirms that head-down tilt is an accurate analog of microgravity. Conclusions While a direct link between microgravity and cardiovascular disease, such as coronary heart disease and myocardial infarction, remains elusive, the documented physiological changes pose a potential threat to the astronauts' health. We suggest that future research focus on long-term effects, particularly on female subjects.
Collapse
Affiliation(s)
- John Azariah
- Faculty of Medicine and Health ScienceCrewe Campus, University of BuckinghamCreweUK
| | - Umberto Terranova
- Faculty of Medicine and Health ScienceCrewe Campus, University of BuckinghamCreweUK
| |
Collapse
|
3
|
Elsangeedy E, Yamaleyeva DN, Edenhoffer NP, Deak A, Soloshenko A, Ray J, Sun X, Shaltout OH, Cruz-Diaz N, Westwood B, Kim-Shapiro D, Diz DI, Soker S, Pulgar VM, Ronca A, Willey JS, Yamaleyeva LM. Sex-specific cardiovascular adaptations to simulated microgravity in Sprague-Dawley rats. NPJ Microgravity 2024; 10:110. [PMID: 39702444 DOI: 10.1038/s41526-024-00450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024] Open
Abstract
Men and women have different cardiovascular responses to spaceflight; however, few studies have focused on direct comparisons between sexes. We investigated the mechanisms of aortic stiffening in socially and sexually mature 20-week-old male and female Sprague Dawley (SD) rats exposed to hindlimb unloading (HLU) for 14 days. Pulse wave velocity (PWV) was greater in the aortic arch of females after HLU versus control females (n = 6-8). HLU had no effect on aortic PWV in males (n = 5-6). Aortic α smooth muscle actin, myosin, collagen, elastin, and collagen-to-elastin ratio were not different in rats of either sex following HLU. The levels of G protein-coupled estrogen receptor (GPER) were lower in the aorta of SD females exposed to HLU compared with female controls but were not altered in males. HLU females also had lower aortic PPARγ, increased oxidative stress markers, and diastolic dysfunction compared with control females. GPER agonist G1 prevented the increase in PWV and 8-hydroxy-2'-deoxyguanosine without altering PPARγ or p47phox in HLU females (n = 4 in each group) suggesting that lower GPER may contribute to arterial stiffening in the setting of simulated microgravity. This study highlights sex-specific vascular adaptations to the state of simulated microgravity.
Collapse
Affiliation(s)
- Ebrahim Elsangeedy
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dina N Yamaleyeva
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nicholas P Edenhoffer
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allyson Deak
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anna Soloshenko
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jonathan Ray
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xuming Sun
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Omar H Shaltout
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nildris Cruz-Diaz
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brian Westwood
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Debra I Diz
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Victor M Pulgar
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pharmaceutical & Clinical Sciences, Campbell University, Buies Creek, NC, USA
| | - April Ronca
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Liliya M Yamaleyeva
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
4
|
Louwies T, De Boever P, Hasso R, Tremblay MF, Xu D, Blaber AP, Goswami N. Retinal blood vessel diameter changes with 60-day head-down bedrest are unaffected by antioxidant nutritional cocktail. NPJ Microgravity 2024; 10:105. [PMID: 39548129 PMCID: PMC11568155 DOI: 10.1038/s41526-024-00443-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Long-term human spaceflight can lead to cardiovascular deconditioning, but little is known about how weightlessness affects microcirculation. In this study, we examined how the retinal microvessels and cerebrovascular regulation of 19 healthy male participants responded to long-term head-down bedrest (HDBR), an earth-based analog for weightlessness. In addition, we examined whether an anti-inflammatory/antioxidant cocktail could prevent the vascular changes caused by HDBR. In all study participants, we found a decrease in retinal arteriolar diameter by HDBR day 8 and an increase in retinal venular diameter by HDBR day 16. Concurrently, blood pressure at the level of the middle cerebral artery and the cerebrovascular resistance index were higher during HDBR, while cerebral blood flow velocity was lower. None of these changes were reversed in participants receiving the anti-inflammatory/antioxidant cocktail, indicating that this cocktail was insufficient to restore the microvascular and cerebral blood flow changes induced by HDBR.
Collapse
Affiliation(s)
- Tijs Louwies
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Patrick De Boever
- Center of Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Antwerp University Hospital, Edegem, Belgium
| | - Robin Hasso
- Gravitational Physiology and Medicine Research Unit, Division of Physiology and Pathophysiology, Otto Loewi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| | - Malcom F Tremblay
- Aerospace Physiology Laboratory, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Da Xu
- Aerospace Physiology Laboratory, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Andrew P Blaber
- Aerospace Physiology Laboratory, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Division of Physiology and Pathophysiology, Otto Loewi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria.
- Department of Health Sciences, Alma Mater Europaea, Maribor, Slovenia.
- Center for Space and Aviation Health, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|
5
|
Pohlen M. Space Radiology: Emerging Nonsonographic Medical Imaging Techniques and the Potential Applications for Human Spaceflight. Wilderness Environ Med 2024:10806032241283380. [PMID: 39360501 DOI: 10.1177/10806032241283380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Space medicine is a multidisciplinary field that requires the integration of medical imaging techniques and expertise in diagnosing and treating a wide range of acute and chronic conditions to maintain astronaut health. Medical imaging within this domain has been viewed historically through the lens of inflight point-of-care ultrasound and predominantly research uses of cross-sectional imaging before and after flight. However, space radiology, a subfield defined here as the applications of imaging before, during, and after spaceflight, will grow to necessitate the involvement of more advanced imaging techniques and subspecialist expertise as missions increase in length and complexity. While the performance of imaging in spaceflight is limited by equipment mass and volume, power supply, radiation exposure, communication delays, and personnel training, recent developments in nonsonographic modalities have opened the door to their potential for in-mission use. Additionally, improved exam protocols and scanner technology in combination with artificial intelligence algorithms have greatly advanced the utility of possible pre- and postflight studies. This article reviews the past and present of space radiology and discusses possible use cases, knowledge gaps, and future research directions for radiography, fluoroscopy, computed tomography, and magnetic resonance imaging within space medicine, including both the performance of new exam types for new indications and the increased extraction of information from exams already routinely obtained. Through thoughtfully augmenting the use of these tools, medical mission risk may be reduced substantially through preflight screening, inflight diagnosis and management, and inflight and postflight surveillance.
Collapse
Affiliation(s)
- Michael Pohlen
- Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Kozbenko T, Adam N, Grybas VS, Smith BJ, Alomar D, Hocking R, Abdelaziz J, Pace A, Boerma M, Azimzadeh O, Blattnig S, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to abnormal vascular remodeling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:4-30. [PMID: 39440813 DOI: 10.1002/em.22636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular diseases (CVDs) are complex, encompassing many types of heart pathophysiologies and associated etiologies. Radiotherapy studies have shown that fractionated radiation exposure at high doses (3-17 Gy) to the heart increases the incidence of CVD. However, the effects of low doses of radiation on the cardiovascular system or the effects from space travel, where radiation and microgravity are important contributors to damage, are not clearly understood. Herein, the adverse outcome pathway (AOP) framework was applied to develop an AOP to abnormal vascular remodeling from the deposition of energy. Following the creation of a preliminary pathway with the guidance of field experts and authoritative reviews, a scoping review was conducted that informed final key event (KE) selection and evaluation of the Bradford Hill criteria for the KE relationships (KERs). The AOP begins with a molecular initiating event of deposition of energy; ionization events increase oxidative stress, which when persistent concurrently causes the release of pro-inflammatory mediators, suppresses anti-inflammatory mechanisms and alters stress response signaling pathways. These KEs alter nitric oxide levels leading to endothelial dysfunction, and subsequent abnormal vascular remodeling (the adverse outcome). The work identifies evidence needed to strengthen understanding of the causal associations for the KERs, emphasizing where there are knowledge gaps and uncertainties in both qualitative and quantitative understanding. The AOP is anticipated to direct future research to better understand the effects of space on the human body and potentially develop countermeasures to better protect future space travelers.
Collapse
Affiliation(s)
- Tatiana Kozbenko
- Health Canada, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | - Amanda Pace
- Carleton University, Ottawa, Ontario, Canada
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, Neuherberg, Germany
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
7
|
Garmany A, Yamada S, Park S, Terzic A. Plasma Biomarkers of First All-Civilian Space Flight to the International Space Station. Mayo Clin Proc 2024; 99:1523-1525. [PMID: 39232623 PMCID: PMC11378876 DOI: 10.1016/j.mayocp.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 09/06/2024]
Affiliation(s)
- Armin Garmany
- Mayo Clinic Alix School of Medicine, Regenerative Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN; Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Satsuki Yamada
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Sungjo Park
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Andre Terzic
- Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
8
|
Seidler RD, Mao XW, Tays GD, Wang T, Zu Eulenburg P. Effects of spaceflight on the brain. Lancet Neurol 2024; 23:826-835. [PMID: 38945144 DOI: 10.1016/s1474-4422(24)00224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
The number of long duration human spaceflights has increased substantially over the past 15 years, leading to the discovery of numerous effects on the CNS. Microgravity results in headward fluid shifts, ventricular expansion, an upward shift of the brain within the skull, and remodelling of grey and white matter. The fluid changes are correlated with changes to perivascular space and spaceflight associated neuro-ocular syndrome. Microgravity alters the vestibular processing of head tilt and results in reduced tactile and proprioceptive inputs during spaceflight. Sensory adaptation is reflected in postflight effects, evident as transient sensorimotor impairment. Another major concern is that galactic cosmic radiation, which spacefarers will be exposed to when going beyond the magnetosphere around Earth, might have a negative effect on CNS function. Research with rodents points to the potential disruptive effects of space radiation on blood-brain barrier integrity and brain structures. More work is needed to understand and mitigate these effects on the CNS before humans travel to Mars, as the flight durations will be longer than anyone has previously experienced.
Collapse
Affiliation(s)
- Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Grant D Tays
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Tianyi Wang
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Peter Zu Eulenburg
- Institute for Neuroradiology, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
9
|
Mendes Zambetta R, Signini ÉDF, Ocamoto GN, Catai AM, Uliam NR, Santarnecchi E, Russo TL. Effects of weightlessness on the cardiovascular system: a systematic review and meta-analysis. Front Physiol 2024; 15:1438089. [PMID: 39129756 PMCID: PMC11310543 DOI: 10.3389/fphys.2024.1438089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Background: The microgravity environment has a direct impact on the cardiovascular system due to the fluid shift and weightlessness that results in cardiac dysfunction, vascular remodeling, and altered Cardiovascular autonomic modulation (CAM), deconditioning and poor performance on space activities, ultimately endangering the health of astronauts. Objective: This study aimed to identify the acute and chronic effects of microgravity and Earth analogues on cardiovascular anatomy and function and CAM. Methods: CINAHL, Cochrane Library, Scopus, Science Direct, PubMed, and Web of Science databases were searched. Outcomes were grouped into cardiovascular anatomic, functional, and autonomic alterations, and vascular remodeling. Studies were categorized as Spaceflight (SF), Chronic Simulation (CS), or Acute Simulation (AS) based on the weightlessness conditions. Meta-analysis was performed for the most frequent outcomes. Weightlessness and control groups were compared. Results: 62 articles were included with a total of 963 participants involved. The meta-analysis showed that heart rate increased in SF [Mean difference (MD) = 3.44; p = 0.01] and in CS (MD = 4.98; p < 0.0001), whereas cardiac output and stroke volume decreased in CS (MD = -0.49; p = 0.03; and MD = -12.95; p < 0.0001, respectively), and systolic arterial pressure decreased in AS (MD = -5.20; p = 0.03). According to the qualitative synthesis, jugular vein cross-sectional area (CSA) and volume were greater in all conditions, and SF had increased carotid artery CSA. Heart rate variability and baroreflex sensitivity, in general, decreased in SF and CS, whereas both increased in AS. Conclusion: This review indicates that weightlessness impairs the health of astronauts during and after spaceflight, similarly to the effects of aging and immobility, potentially increasing the risk of cardiovascular diseases. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42020215515.
Collapse
Affiliation(s)
| | - Étore De Favari Signini
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| | - Gabriela Nagai Ocamoto
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
- Brain4care Inc., São Carlos, SP, Brazil
| | - Aparecida Maria Catai
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| | - Nicoly Ribeiro Uliam
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| | | | - Thiago Luiz Russo
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| |
Collapse
|
10
|
Overbey EG, Ryon K, Kim J, Tierney BT, Klotz R, Ortiz V, Mullane S, Schmidt JC, MacKay M, Damle N, Najjar D, Matei I, Patras L, Garcia Medina JS, Kleinman AS, Wain Hirschberg J, Proszynski J, Narayanan SA, Schmidt CM, Afshin EE, Innes L, Saldarriaga MM, Schmidt MA, Granstein RD, Shirah B, Yu M, Lyden D, Mateus J, Mason CE. Collection of biospecimens from the inspiration4 mission establishes the standards for the space omics and medical atlas (SOMA). Nat Commun 2024; 15:4964. [PMID: 38862509 PMCID: PMC11166662 DOI: 10.1038/s41467-024-48806-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from four crew members longitudinally before (Launch: L-92, L-44, L-3 days), during (Flight Day: FD1, FD2, FD3), and after (Return: R + 1, R + 45, R + 82, R + 194 days) spaceflight, spanning a total of 289 days across 2021-2022. The collection process included venous whole blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies. Venous whole blood was further processed to obtain aliquots of serum, plasma, extracellular vesicles and particles, and peripheral blood mononuclear cells. In total, 2,911 sample aliquots were shipped to our central lab at Weill Cornell Medicine for downstream assays and biobanking. This paper provides an overview of the extensive biospecimen collection and highlights their processing procedures and long-term biobanking techniques, facilitating future molecular tests and evaluations.As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can aid future human spaceflight and space biology experiments.
Collapse
Affiliation(s)
- Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, Inc, New York, NY, USA
- Center for STEM, University of Austin, Austin, TX, 78701, USA
| | - Krista Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sean Mullane
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Julian C Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - J Sebastian Garcia Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - S Anand Narayanan
- Florida State University, College of Education, Health, and Human Sciences, Department of Health, Nutrition, and Food Sciences, Tallahassee, FL, USA
| | - Caleb M Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lucinda Innes
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Michael A Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | | | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- BioAstra, Inc, New York, NY, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
11
|
Ferraro S, Dave A, Cereda C, Verduci E, Marcovina S, Zuccotti G. Space research to explore novel biochemical insights on Earth. Clin Chim Acta 2024; 558:119673. [PMID: 38621588 DOI: 10.1016/j.cca.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Travel to space has overcome unprecedent technological challenges and this has resulted in transfer of these technological results on Earth to better our lives. Health technology, medical devices, and research advancements in human biology are the first beneficiaries of this transfer. The real breakthrough came with the International Space Station, which endorsed multidisciplinary international scientific collaborations and boosted the research on pathophysiological adaptation of astronauts to life on space. These studies evidenced that life in space appeared to have exposed the astronauts to an accelerated aging-related pathophysiological dysregulation across multiple systems. In this review we emphasize the interaction between several biomarkers and their alteration in concentrations/expression/function by space stress factors. These altered interactions, suggest that different biochemical and hormonal factors, and cell signals, contribute to a complex network of pathophysiological mechanisms, orchestrating the homeostatic dysregulation of various organs/metabolic pathways. The main effects of space travel on altering cell organelles biology, ultrastructure, and cross-talk, have been observed in cell aging as well as in the disruption of metabolic pathways, which are also the causal factor of rare inherited metabolic disorders, one of the major pediatric health issue. The pathophysiologic breakthrough from space research could allow the development of precision health both on Earth and Space by promoting the validation of improved biomarker-based risk scores and the exploration of new pathophysiologic hypotheses and therapeutic targets. Nonstandard abbreviations: International Space Station (ISS), Artificial Intelligence (AI), European Space Agency (ESA), National Aeronautics and Space Agency (NASA), Low Earth Orbit (LEO), high sensitive troponin (hs-cTn), high sensitive troponin I (hs-cTn I), high sensitive troponin T, Brain Natriuretic Peptide (BNP), N terminal Brain Natriuretic Peptide (NT-BNP), cardiovascular disease (CVD), parathyroid hormone (PTH), urinary hydroxyproline (uHP), urinary C- and N-terminal telopeptides (uCTX and uNTX), pyridinoline (PYD), deoxypyridinoline (DPD), half-time (HF), serum Bone Alkaline Phosphatase (sBSAP), serum Alkaline Phosphatase (sAP), Carboxy-terminal Propeptide of Type 1 Procollagen (P1CP), serum Osteocalcin (sOC)), advanced glycation end products (AGEs), glycated hemoglobin A1c (HbA1c), Insulin-like growth factor 1 (IGF1), Growth Hormone (GH), amino acid (AA), β-hydroxy-β methyl butyrate (HMB), maple syrup urine disease (MSUD), non-communicable diseases (NCDs).
Collapse
Affiliation(s)
- Simona Ferraro
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy.
| | - Anilkumar Dave
- Space Economy and Open Innovation, Darwix srl, Venice, Italy
| | - Cristina Cereda
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Center of Functional Genomics and Rare Diseases
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, Milan, Italy; Metabolic Diseases Unit, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | | | - Gianvincenzo Zuccotti
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Zhang J, Wang X, Fu Z, Xing C, Wang Z, Yang H, Li J, Liu M, Dong L, Zhang X, Li Y, Wang J, Long J, Liu J, Wang S, Li J, Gao F. Long-term simulated microgravity fosters carotid aging-like changes via Piezo1. Cardiovasc Res 2024; 120:548-559. [PMID: 38271270 DOI: 10.1093/cvr/cvae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/05/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024] Open
Abstract
AIMS Elucidating the impacts of long-term spaceflight on cardiovascular health is urgently needed in face of the rapid development of human space exploration. Recent reports including the NASA Twins Study on vascular deconditioning and aging of astronauts in spaceflight are controversial. The aims of this study were to elucidate whether long-term microgravity promotes vascular aging and the underlying mechanisms. METHODS AND RESULTS Hindlimb unloading (HU) by tail suspension was used to simulate microgravity in rats and mice. The dynamic changes of carotid stiffness in rats during 8 weeks of HU were determined. Simulated microgravity led to carotid artery aging-like changes as evidenced by increased stiffness, thickness, fibrosis, and elevated senescence biomarkers in the HU rats. Specific deletion of the mechanotransducer Piezo1 in vascular smooth muscles significantly blunted these aging-like changes in mice. Mechanistically, mechanical stretch-induced activation of Piezo1 elevated microRNA-582-5p in vascular smooth muscle cells, with resultant enhanced synthetic cell phenotype and increased collagen deposition via PTEN/PI3K/Akt signalling. Importantly, inhibition of miRNA-582-5p alleviated carotid fibrosis and stiffness not only in HU rats but also in aged rats. CONCLUSIONS Long-term simulated microgravity induces carotid aging-like changes via the mechanotransducer Piezo1-initiated and miRNA-mediated mechanism.
Collapse
MESH Headings
- Animals
- Aging/metabolism
- Aging/pathology
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Arteries/physiopathology
- Cells, Cultured
- Disease Models, Animal
- Fibrosis
- Hindlimb Suspension
- Ion Channels/metabolism
- Ion Channels/genetics
- Mechanotransduction, Cellular/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- PTEN Phosphohydrolase/metabolism
- PTEN Phosphohydrolase/genetics
- Rats, Sprague-Dawley
- Signal Transduction
- Time Factors
- Vascular Remodeling
- Vascular Stiffness
- Weightlessness Simulation
Collapse
Affiliation(s)
- Jiaxin Zhang
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Xinpei Wang
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Zihao Fu
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Changyang Xing
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen Wang
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Hongyan Yang
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Jiahui Li
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Meijie Liu
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Ling Dong
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Xing Zhang
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Yongzhi Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Jiaping Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Jiangang Long
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shengpeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Jia Li
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
- Key Laboratory of Hazard Assessment and Control in Special Operational Environment of Ministry of Education, School of Public Health, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, 169 Changlexi Road, Xi'an 710032, China
| |
Collapse
|
13
|
Jogdand A, Landolina M, Chen Y. Organs in orbit: how tissue chip technology benefits from microgravity, a perspective. FRONTIERS IN LAB ON A CHIP TECHNOLOGIES 2024; 3:1356688. [PMID: 38915901 PMCID: PMC11195915 DOI: 10.3389/frlct.2024.1356688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Tissue chips have become one of the most potent research tools in the biomedical field. In contrast to conventional research methods, such as 2D cell culture and animal models, tissue chips more directly represent human physiological systems. This allows researchers to study therapeutic outcomes to a high degree of similarity to actual human subjects. Additionally, as rocket technology has advanced and become more accessible, researchers are using the unique properties offered by microgravity to meet specific challenges of modeling tissues on Earth; these include large organoids with sophisticated structures and models to better study aging and disease. This perspective explores the manufacturing and research applications of microgravity tissue chip technology, specifically investigating the musculoskeletal, cardiovascular, and nervous systems.
Collapse
Affiliation(s)
- Aditi Jogdand
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Maxwell Landolina
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
14
|
Siddiqui R, Qaisar R, Al-Dahash K, Altelly AH, Elmoselhi AB, Khan NA. Cardiovascular changes under the microgravity environment and the gut microbiome. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:89-96. [PMID: 38245353 DOI: 10.1016/j.lssr.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 01/22/2024]
Abstract
In view of the critical role the gut microbiome plays in human health, it has become clear that astronauts' gut microbiota composition changes after spending time in space. Astronauts are exposed to several risks in space, including a protracted period of microgravity, radiation, and mechanical unloading of the body. Several deleterious effects of such an environment are reported, including orthostatic intolerance, cardiovascular endothelial dysfunction, cellular and molecular changes, and changes in the composition of the gut microbiome. Herein, the correlation between the gut microbiome and cardiovascular disease in a microgravity environment is evaluated. Additionally, the relationship between orthostatic hypotension, cardiac shrinkage and arrhythmias during spaceflight, and cellular alterations during spaceflight is reviewed. Given its impact on human health in general, modifying the gut microbiota may significantly promote astronaut health and performance. This is merited, given the prospect of augmented human activities in future space missions.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul 34010, Turkey; College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khulood Al-Dahash
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmad Hashem Altelly
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Adel B Elmoselhi
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul 34010, Turkey.
| |
Collapse
|
15
|
Andrade MR, Azeez TA, Montgomery MM, Caldwell JT, Park H, Kwok AT, Borg AM, Narayanan SA, Willey JS, Delp MD, La Favor JD. Neurovascular dysfunction associated with erectile dysfunction persists after long-term recovery from simulations of weightlessness and deep space irradiation. FASEB J 2023; 37:e23246. [PMID: 37990646 DOI: 10.1096/fj.202300506rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 11/23/2023]
Abstract
There has been growing interest within the space industry for long-duration manned expeditions to the Moon and Mars. During deep space missions, astronauts are exposed to high levels of galactic cosmic radiation (GCR) and microgravity which are associated with increased risk of oxidative stress and endothelial dysfunction. Oxidative stress and endothelial dysfunction are causative factors in the pathogenesis of erectile dysfunction, although the effects of spaceflight on erectile function have been unexplored. Therefore, the purpose of this study was to investigate the effects of simulated spaceflight and long-term recovery on tissues critical for erectile function, the distal internal pudendal artery (dIPA), and the corpus cavernosum (CC). Eighty-six adult male Fisher-344 rats were randomized into six groups and exposed to 4-weeks of hindlimb unloading (HLU) or weight-bearing control, and sham (0Gy), 0.75 Gy, or 1.5 Gy of simulated GCR at the ground-based GCR simulator at the NASA Space Radiation Laboratory. Following a 12-13-month recovery, ex vivo physiological analysis of the dIPA and CC tissue segments revealed differential impacts of HLU and GCR on endothelium-dependent and -independent relaxation that was tissue type specific. GCR impaired non-adrenergic non-cholinergic (NANC) nerve-mediated relaxation in the dIPA and CC, while follow-up experiments of the CC showed restoration of NANC-mediated relaxation of GCR tissues following acute incubation with the antioxidants mito-TEMPO and TEMPOL, as well as inhibitors of xanthine oxidase and arginase. These findings indicate that simulated spaceflight exerts a long-term impairment of neurovascular erectile function, which exposes a new health risk to consider with deep space exploration.
Collapse
Affiliation(s)
- Manuella R Andrade
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Tooyib A Azeez
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - McLane M Montgomery
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Jacob T Caldwell
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Hyerim Park
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Andy T Kwok
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alexander M Borg
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - S Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael D Delp
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Justin D La Favor
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
16
|
Overbey EG, Ryon K, Kim J, Tierney B, Klotz R, Ortiz V, Mullane S, Schmidt JC, MacKay M, Damle N, Najjar D, Matei I, Patras L, Medina JSG, Kleinman A, Hirschberg JW, Proszynski J, Narayanan SA, Schmidt CM, Afshin EE, Innes L, Saldarriaga MM, Schmidt MA, Granstein RD, Shirah B, Yu M, Lyden D, Mateus J, Mason CE. Collection of Biospecimens from the Inspiration4 Mission Establishes the Standards for the Space Omics and Medical Atlas (SOMA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539108. [PMID: 37205403 PMCID: PMC10187258 DOI: 10.1101/2023.05.02.539108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from the crew at different stages of the mission, including before (L-92, L-44, L-3 days), during (FD1, FD2, FD3), and after (R+1, R+45, R+82, R+194 days) spaceflight, creating a longitudinal sample set. The collection process included samples such as venous blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies, which were processed to obtain aliquots of serum, plasma, extracellular vesicles, and peripheral blood mononuclear cells. All samples were then processed in clinical and research laboratories for optimal isolation and testing of DNA, RNA, proteins, metabolites, and other biomolecules. This paper describes the complete set of collected biospecimens, their processing steps, and long-term biobanking methods, which enable future molecular assays and testing. As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can also aid future experiments in human spaceflight and space biology.
Collapse
Affiliation(s)
- Eliah G. Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, Inc, New York, NY, USA
| | - Krista Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Braden Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sean Mullane
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Julian C. Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irina Matei
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | | | - Ashley Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Caleb M. Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Evan E. Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lucinda Innes
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Michael A. Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, Colorado, USA
| | | | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation, Hawthorne, CA, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, Inc, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
17
|
Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth. Life (Basel) 2023; 13:life13030757. [PMID: 36983912 PMCID: PMC10051707 DOI: 10.3390/life13030757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Homo sapiens and their predecessors evolved in the context of the boundary conditions of Earth, including a 1 g gravity and a geomagnetic field (GMF). These variables, plus others, led to complex organisms that evolved under a defined set of conditions and define how humans will respond to space flight, a circumstance that could not have been anticipated by evolution. Over the past ~60 years, space flight and living in low Earth orbit (LEO) have revealed that astronauts are impacted to varying degrees by such new environments. In addition, it has been noted that astronauts are quite heterogeneous in their response patterns, indicating that such variation is either silent if one remained on Earth, or the heterogeneity unknowingly contributes to disease development during aging or in response to insults. With the planned mission to deep space, humans will now be exposed to further risks from radiation when traveling beyond the influence of the GMF, as well as other potential risks that are associated with the actual loss of the GMF on the astronauts, their microbiomes, and growing food sources. Experimental studies with model systems have revealed that hypogravity conditions can influence a variety biological and physiological systems, and thus the loss of the GMF may have unanticipated consequences to astronauts’ systems, such as those that are electrical in nature (i.e., the cardiovascular system and central neural systems). As astronauts have been shown to be heterogeneous in their responses to LEO, they may require personalized countermeasures, while others may not be good candidates for deep-space missions if effective countermeasures cannot be developed for long-duration missions. This review will discuss several of the physiological and neural systems that are affected and how the emerging variables may influence astronaut health and functioning.
Collapse
|
18
|
Zhang Y, Huang H, Yao C, Sun X, He Q, Choudharyc MI, Chen S, Liu X, Jiang N. Fresh Gastrodia elata Blume alleviates simulated weightlessness-induced cognitive impairment by regulating inflammatory and apoptosis-related pathways. Front Pharmacol 2023; 14:1173920. [PMID: 37205911 PMCID: PMC10188943 DOI: 10.3389/fphar.2023.1173920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023] Open
Abstract
In aerospace medicine, the influence of microgravity on cognition has always been a risk factor threatening astronauts' health. The traditional medicinal plant and food material Gastrodia elata Blume has been used as a therapeutic drug for neurological diseases for a long time due to its unique neuroprotective effect. To study the effect of fresh Gastrodia elata Blume (FG) on cognitive impairment caused by microgravity, hindlimb unloading (HU) was used to stimulate weightlessness in mice. The fresh Gastrodia elata Blume (0.5 g/kg or 1.0 g/kg) was intragastrically administered daily to mice exposed to HU and behavioral tests were conducted after four weeks to detect the cognitive status of animals. The behavioral tests results showed that fresh Gastrodia elata Blume therapy significantly improved the performance of mice in the object location recognition test, Step-Down test, and Morris Water Maze test, including short-term and long-term spatial memory. According to the biochemical test results, fresh Gastrodia elata Blume administration not only reduced serum factor levels of oxidative stress but also maintained the balance of pro-inflammatory and anti-inflammatory factors in the hippocampus, reversing the abnormal increase of NLRP3 and NF-κB. The apoptosis-related proteins were downregulated which may be related to the activation of the PI3K/AKT/mTOR pathway by fresh Gastrodia elata Blume therapy, and the abnormal changes of synapse-related protein and glutamate neurotransmitter were corrected. These results identify the improvement effect of fresh Gastrodia elata Blume as a new application form of Gastrodia elata Blume on cognitive impairment caused by simulated weightlessness and advance our understanding of the mechanism of fresh Gastrodia elata Blume on the neuroprotective effect.
Collapse
Affiliation(s)
- Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Huang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinran Sun
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghu He
- Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Muhammad Iqbal Choudharyc
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shanguang Chen
- National Laboratory of Human Factors Engineering, The State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xinmin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, Zhejiang, China
- *Correspondence: Xinmin Liu, ; Ning Jiang,
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xinmin Liu, ; Ning Jiang,
| |
Collapse
|
19
|
Gao T, Huang J, Zhang X, Gao F. Exercise counteracts vascular aging in long-term spaceflight: challenges and perspective. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2022.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Endothelial dysfunction markers and immune response indices in cosmonauts' blood after long-duration space flights. NPJ Microgravity 2022; 8:46. [PMID: 36323692 PMCID: PMC9630277 DOI: 10.1038/s41526-022-00237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 10/12/2022] [Indexed: 12/01/2022] Open
Abstract
Space flight factors are known to cause a malfunction in the human immune system and lead to damage to blood vessels. The hemostatic function of endothelium during space missions and its interaction with human immunity has not been determined so far. In this work, we investigated the markers of endothelial activation and damage (plasma concentrations of soluble thrombomodulin fraction (sTM), von Willebrand factor (vWF), highly sensitive C-reactive protein (hs-CRP)), as well as the level of D-dimer and compared them to the immunological parameters characterizing the state of human humoral and cellular immunity. The immune status of long-duration ISS crewmembers was assessed by whole-blood testing, and comprehensive postflight immune assessment included the analysis of leukocyte distribution. Flow cytometry was applied to determine the absolute counts and the percentage of lymphocyte subsets: B cells (CD19+), T cells (CD3+, CD3+CD4+, CD3+CD8+), NK cells (CD3-CD16+CD56+, CD11b+CD56+), and activated subsets (CD3+CD25+ and CD3+HLA-DR+). The in vitro basal cytokine production was investigated in whole blood cell culture. The cytokines IFN-gamma, IL-1-beta, IL-4, IL-6, IL-10, IL-18, and TNF-alpha were measured in plasma and the 24-h supernatants by a sensitive enzyme-linked immunosorbent assay. A significant increase in the plasma levels of vWF and hs-CRP and a decrease in the concentration of sTM after spaceflights were detected. Divergent changes in the parameters characterizing the state of the immune system were observed. We propose that the changes revealed may lead to an increase in the procoagulant activity of blood plasma, suppression of protein C activation and thrombin inhibition, as well as to an increase in the adhesive-aggregate potential of platelets, especially in case of changes in the rheological characteristics of blood flow during re-adaptation to ground conditions. We also speculate that the immune system might play an important role in vessel damage during long-duration missions.
Collapse
|
21
|
Millar-Wilson A, Ward Ó, Duffy E, Hardiman G. Multiscale modeling in the framework of biological systems and its potential for spaceflight biology studies. iScience 2022; 25:105421. [DOI: 10.1016/j.isci.2022.105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Rabineau J, Issertine M, Hoffmann F, Gerlach D, Caiani EG, Haut B, van de Borne P, Tank J, Migeotte PF. Cardiovascular deconditioning and impact of artificial gravity during 60-day head-down bed rest—Insights from 4D flow cardiac MRI. Front Physiol 2022; 13:944587. [PMID: 36277205 PMCID: PMC9586290 DOI: 10.3389/fphys.2022.944587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Microgravity has deleterious effects on the cardiovascular system. We evaluated some parameters of blood flow and vascular stiffness during 60 days of simulated microgravity in head-down tilt (HDT) bed rest. We also tested the hypothesis that daily exposure to 30 min of artificial gravity (1 g) would mitigate these adaptations. 24 healthy subjects (8 women) were evenly distributed in three groups: continuous artificial gravity, intermittent artificial gravity, or control. 4D flow cardiac MRI was acquired in horizontal position before (−9 days), during (5, 21, and 56 days), and after (+4 days) the HDT period. The false discovery rate was set at 0.05. The results are presented as median (first quartile; third quartile). No group or group × time differences were observed so the groups were combined. At the end of the HDT phase, we reported a decrease in the stroke volume allocated to the lower body (−30% [−35%; −22%]) and the upper body (−20% [−30%; +11%]), but in different proportions, reflected by an increased share of blood flow towards the upper body. The aortic pulse wave velocity increased (+16% [+9%; +25%]), and so did other markers of arterial stiffness (CAVI; CAVI0). In males, the time-averaged wall shear stress decreased (−13% [−17%; −5%]) and the relative residence time increased (+14% [+5%; +21%]), while these changes were not observed among females. Most of these parameters tended to or returned to baseline after 4 days of recovery. The effects of the artificial gravity countermeasure were not visible. We recommend increasing the load factor, the time of exposure, or combining it with physical exercise. The changes in blood flow confirmed the different adaptations occurring in the upper and lower body, with a larger share of blood volume dedicated to the upper body during (simulated) microgravity. The aorta appeared stiffer during the HDT phase, however all the changes remained subclinical and probably the sole consequence of reversible functional changes caused by reduced blood flow. Interestingly, some wall shear stress markers were more stable in females than in males. No permanent cardiovascular adaptations following 60 days of HDT bed rest were observed.
Collapse
Affiliation(s)
- Jeremy Rabineau
- LPHYS, Département de Cardiologie, Université Libre de Bruxelles, Brussels, Belgium
- TIPs, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
- *Correspondence: Jeremy Rabineau,
| | - Margot Issertine
- LPHYS, Département de Cardiologie, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabian Hoffmann
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Darius Gerlach
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Enrico G. Caiani
- Electronic, Information and Biomedical Engineering Department, Politecnico di Milano, Milan, Italy
| | - Benoit Haut
- TIPs, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | |
Collapse
|
23
|
Atherogenic potential of microgravity hemodynamics in the carotid bifurcation: a numerical investigation. NPJ Microgravity 2022; 8:39. [PMID: 36085153 PMCID: PMC9463447 DOI: 10.1038/s41526-022-00223-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Long-duration spaceflight poses multiple hazards to human health, including physiological changes associated with microgravity. The hemodynamic adaptations occurring upon entry into weightlessness have been associated with retrograde stagnant flow conditions and thromboembolic events in the venous vasculature but the impact of microgravity on cerebral arterial hemodynamics and function remains poorly understood. The objective of this study was to quantify the effects of microgravity on hemodynamics and wall shear stress (WSS) characteristics in 16 carotid bifurcation geometries reconstructed from ultrasonography images using computational fluid dynamics modeling. Microgravity resulted in a significant 21% increase in flow stasis index, a 22-23% decrease in WSS magnitude and a 16-26% increase in relative residence time in all bifurcation branches, while preserving WSS unidirectionality. In two anatomies, however, microgravity not only promoted flow stasis but also subjected the convex region of the external carotid arterial wall to a moderate increase in WSS bidirectionality, which contrasted with the population average trend. This study suggests that long-term exposure to microgravity has the potential to subject the vasculature to atheroprone hemodynamics and this effect is modulated by subject-specific anatomical features. The exploration of the biological impact of those microgravity-induced WSS aberrations is needed to better define the risk posed by long spaceflights on cardiovascular health.
Collapse
|
24
|
Hedge ET, Patterson CA, Mastrandrea CJ, Sonjak V, Hajj-Boutros G, Faust A, Morais JA, Hughson RL. Implementation of exercise countermeasures during spaceflight and microgravity analogue studies: Developing countermeasure protocols for bedrest in older adults (BROA). Front Physiol 2022; 13:928313. [PMID: 36017336 PMCID: PMC9395735 DOI: 10.3389/fphys.2022.928313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in the development of countermeasures to attenuate the negative consequences of prolonged exposure to microgravity on astronauts’ bodies. Deconditioning of several organ systems during flight includes losses to cardiorespiratory fitness, muscle mass, bone density and strength. Similar deconditioning also occurs during prolonged bedrest; any protracted time immobile or inactive, especially for unwell older adults (e.g., confined to hospital beds), can lead to similar detrimental health consequences. Due to limitations in physiological research in space, the six-degree head-down tilt bedrest protocol was developed as ground-based analogue to spaceflight. A variety of exercise countermeasures have been tested as interventions to limit detrimental changes and physiological deconditioning of the musculoskeletal and cardiovascular systems. The Canadian Institutes of Health Research and the Canadian Space Agency recently provided funding for research focused on Understanding the Health Impact of Inactivity to study the efficacy of exercise countermeasures in a 14-day randomized clinical trial of six-degree head-down tilt bedrest study in older adults aged 55–65 years old (BROA). Here we will describe the development of a multi-modality countermeasure protocol for the BROA campaign that includes upper- and lower-body resistance exercise and head-down tilt cycle ergometry (high-intensity interval and continuous aerobic exercise training). We provide reasoning for the choice of these modalities following review of the latest available information on exercise as a countermeasure for inactivity and spaceflight-related deconditioning. In summary, this paper sets out to review up-to-date exercise countermeasure research from spaceflight and head-down bedrest studies, whilst providing support for the proposed research countermeasure protocols developed for the bedrest study in older adults.
Collapse
Affiliation(s)
- Eric T. Hedge
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | | | | | - Vita Sonjak
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Guy Hajj-Boutros
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andréa Faust
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - José A. Morais
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
- Division of Geriatric Medicine, McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Richard L. Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- *Correspondence: Richard L. Hughson,
| |
Collapse
|
25
|
Charvat JM, Leonard D, Barlow CE, DeFina LF, Willis BL, Lee SMC, Stenger MB, Mercaldo SF, Van Baalen M. Long-term Cardiovascular Risk in Astronauts: Comparing NASA Mission Astronauts With a Healthy Cohort From the Cooper Center Longitudinal Study. Mayo Clin Proc 2022; 97:1237-1246. [PMID: 35787853 DOI: 10.1016/j.mayocp.2022.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To determine the long-term cardiovascular disease risk of astronauts with spaceflight exposure compared with a well-matched cohort. METHODS National Aeronautics and Space Administration (NASA) astronauts are selected into their profession based upon education, unique skills, and health and are exposed to cardiovascular disease risk factors during spaceflight. The Cooper Center Longitudinal Study (CCLS) is a generally healthy cohort from a preventive medicine clinic in Dallas, Texas. Using a matched cohort design, astronauts who were selected beginning April 1, 1959, (and each subsequent selection class through 2009) and exposed to spaceflight were matched to CCLS participants who met astronaut selection criteria; 1514 CCLS participants matched to 303 astronauts in a 5-to-1 ratio on sex, date of birth, and age. The outcome of cardiovascular mortality through December 31, 2016, was determined by death certificate or National Death Index. RESULTS There were 11 deaths caused by cardiovascular disease (CVD) among astronauts and 46 among CCLS participants. There was no evidence of increased mortality risk in astronauts (hazard ratio [HR]=1.10; 95% confidence interval [CI], 0.50 to 2.45) with adjustment for baseline cardiovascular covariates. However, the secondary outcome of CVD events showed an increased adjusted risk in astronauts (HR=2.41; 95% CI, 1.26 to 4.63). CONCLUSION No increased risk of CVD mortality was observed in astronauts with spaceflight exposure compared with a well-matched cohort, but there was evidence of increased total CVD events. Given that the duration of spaceflight will increase, particularly on missions to Mars, continued surveillance and mitigation of CVD risk is needed to ensure the safety of those who venture into space.
Collapse
Affiliation(s)
| | | | | | | | | | - Stuart M C Lee
- JSC Cardiovascular and Vision Laboratory, KBR, Houston, Texas, USA
| | | | - Sarah F Mercaldo
- Lifetime Surveillance of Astronaut Health, KBR, Houston, Texas, USA
| | - Mary Van Baalen
- National Aeronautics and Space Administration, Houston, Texas, USA
| |
Collapse
|
26
|
Huff JL, Plante I, Blattnig SR, Norman RB, Little MP, Khera A, Simonsen LC, Patel ZS. Cardiovascular Disease Risk Modeling for Astronauts: Making the Leap From Earth to Space. Front Cardiovasc Med 2022; 9:873597. [PMID: 35665268 PMCID: PMC9161032 DOI: 10.3389/fcvm.2022.873597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
NASA has recently completed several long-duration missions to the International Space Station and is solidifying plans to return to the Moon, with an eye toward Mars and beyond. As NASA pushes the boundaries of human space exploration, the hazards of spaceflight, including space radiation, levy an increasing burden on astronaut health and performance. The cardiovascular system may be especially vulnerable due to the combined impacts of space radiation exposure, lack of gravity, and other spaceflight hazards. On Earth, the risk for cardiovascular disease (CVD) following moderate to high radiation doses is well-established from clinical, environmental, and occupational exposures (largely from gamma- and x-rays). Less is known about CVD risks associated with high-energy charged ions found in space and increasingly used in radiotherapy applications on Earth, making this a critical area of investigation for occupational radiation protection. Assessing CVD risk is complicated by its multifactorial nature, where an individual's risk is strongly influenced by factors such as family history, blood pressure, and lipid profiles. These known risk factors provide the basis for development of a variety of clinical risk prediction models (CPMs) that inform the likelihood of medical outcomes over a defined period. These tools improve clinical decision-making, personalize care, and support primary prevention of CVD. They may also be useful for individualizing risk estimates for CVD following radiation exposure both in the clinic and in space. In this review, we summarize unique aspects of radiation risk assessment for astronauts, and we evaluate the most widely used CVD CPMs for their use in NASA radiation risk assessment applications. We describe a comprehensive dual-use risk assessment framework that supports both clinical care and operational management of space radiation health risks using quantitative metrics. This approach is a first step in using personalized medicine for radiation risk assessment to support safe and productive spaceflight and long-term quality of life for NASA astronauts.
Collapse
Affiliation(s)
- Janice L. Huff
- National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, United States
- *Correspondence: Janice L. Huff
| | - Ianik Plante
- KBR, Houston, TX, United States
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| | - Steve R. Blattnig
- National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, United States
| | - Ryan B. Norman
- National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, United States
| | - Mark P. Little
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services (DHHS), Radiation Epidemiology Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Amit Khera
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lisa C. Simonsen
- National Aeronautics and Space Administration, NASA Headquarters, Washington, DC, United States
| | - Zarana S. Patel
- KBR, Houston, TX, United States
- National Aeronautics and Space Administration, Johnson Space Center, Houston, TX, United States
| |
Collapse
|
27
|
Zwart SR, Auñón-Chancellor SM, Heer M, Melin MM, Smith SM. Albumin, Oral Contraceptives, and Venous Thromboembolism Risk in Astronauts. J Appl Physiol (1985) 2022; 132:1232-1239. [PMID: 35389755 PMCID: PMC9126217 DOI: 10.1152/japplphysiol.00024.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND A venous thromboembolism (VTE) event occurred in a female astronaut during long-duration spaceflight. Multiple factors may have contributed to this risk, including the use of combined (progestin + estrogen) oral contraceptives (cOC). METHODS Biochemistry data from 65 astronauts were evaluated for associations with cOC use and with sex. RESULTS The female astronauts who used cOCs had lower concentrations of serum albumin and higher concentrations of transferrin, a protein involved in the clotting cascade, than the male astronauts and the female astronauts who were not taking cOCs (P<0.001). The women who used cOCs had higher serum concentrations of the acute phase reactant ceruloplasmin during flight and cortisol (P<0.001) than the men and the women who were not taking cOCs; they also had higher calculated whole blood viscosity than women not taking cOCs (P<0.001). CONCLUSIONS Lower circulating concentrations of albumin, higher concentrations of transferrin, and elevated markers of inflammation all could contribute to an increased risk of VTE during spaceflight. These changes, in association with a higher blood viscosity can directly affect endothelial glycocalyx integrity and hypercoagulability status, both of which contribute to VTE risk in terrestrial populations.
Collapse
Affiliation(s)
- Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, United States
| | - Serena M Auñón-Chancellor
- LSU Health New Orleans School of Medicine, Baton Rouge, LA, United States.,NASA Johnson Space Center, Houston, TX, United States
| | - Martina Heer
- IU International University of Applied Sciences and University of Bonn, Bonn, Germany
| | - M Mark Melin
- M Health Fairview (University of Minnesota Physicians), Edina, MN, United States
| | - Scott M Smith
- NASA Johnson Space Center, Houston, TX, United States
| |
Collapse
|
28
|
Baran R, Marchal S, Garcia Campos S, Rehnberg E, Tabury K, Baselet B, Wehland M, Grimm D, Baatout S. The Cardiovascular System in Space: Focus on In Vivo and In Vitro Studies. Biomedicines 2021; 10:59. [PMID: 35052739 PMCID: PMC8773383 DOI: 10.3390/biomedicines10010059] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
On Earth, humans are subjected to a gravitational force that has been an important determinant in human evolution and function. During spaceflight, astronauts are subjected to several hazards including a prolonged state of microgravity that induces a myriad of physiological adaptations leading to orthostatic intolerance. This review summarises all known cardiovascular diseases related to human spaceflight and focusses on the cardiovascular changes related to human spaceflight (in vivo) as well as cellular and molecular changes (in vitro). Upon entering microgravity, cephalad fluid shift occurs and increases the stroke volume (35-46%) and cardiac output (18-41%). Despite this increase, astronauts enter a state of hypovolemia (10-15% decrease in blood volume). The absence of orthostatic pressure and a decrease in arterial pressures reduces the workload of the heart and is believed to be the underlying mechanism for the development of cardiac atrophy in space. Cellular and molecular changes include altered cell shape and endothelial dysfunction through suppressed cellular proliferation as well as increased cell apoptosis and oxidative stress. Human spaceflight is associated with several cardiovascular risk factors. Through the use of microgravity platforms, multiple physiological changes can be studied and stimulate the development of appropriate tools and countermeasures for future human spaceflight missions in low Earth orbit and beyond.
Collapse
Affiliation(s)
- Ronni Baran
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark; (R.B.); (D.G.)
| | - Shannon Marchal
- Department of Astronomy, Catholic University of Leuven, 3000 Leuven, Belgium;
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
| | - Sebastian Garcia Campos
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.G.C.); (M.W.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Emil Rehnberg
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
- Department of Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.G.C.); (M.W.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark; (R.B.); (D.G.)
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (S.G.C.); (M.W.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Sarah Baatout
- Department of Astronomy, Catholic University of Leuven, 3000 Leuven, Belgium;
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium; (E.R.); (K.T.); (B.B.)
- Department of Molecular Biotechnology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Basirun C, Ferlazzo ML, Howell NR, Liu GJ, Middleton RJ, Martinac B, Narayanan SA, Poole K, Gentile C, Chou J. Microgravity × Radiation: A Space Mechanobiology Approach Toward Cardiovascular Function and Disease. Front Cell Dev Biol 2021; 9:750775. [PMID: 34778261 PMCID: PMC8586646 DOI: 10.3389/fcell.2021.750775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, there has been an increasing interest in space exploration, supported by the accelerated technological advancements in the field. This has led to a new potential environment that humans could be exposed to in the very near future, and therefore an increasing request to evaluate the impact this may have on our body, including health risks associated with this endeavor. A critical component in regulating the human pathophysiology is represented by the cardiovascular system, which may be heavily affected in these extreme environments of microgravity and radiation. This mini review aims to identify the impact of microgravity and radiation on the cardiovascular system. Being able to understand the effect that comes with deep space explorations, including that of microgravity and space radiation, may also allow us to get a deeper understanding of the heart and ultimately our own basic physiological processes. This information may unlock new factors to consider with space exploration whilst simultaneously increasing our knowledge of the cardiovascular system and potentially associated diseases.
Collapse
Affiliation(s)
- Carin Basirun
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Melanie L. Ferlazzo
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon Bérard, Lyon, France
| | - Nicholas R. Howell
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - S. Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
30
|
Okada A, Matsumoto T, Ohshima H, Isomura T, Koga T, Yasui T, Kohri K, LeBlanc A, Spector E, Jones J, Shackelford L, Sibonga J. Bisphosphonate Use May Reduce the Risk of Urolithiasis in Astronauts on Long‐Term Spaceflights. JBMR Plus 2021; 6:e10550. [PMID: 35079672 PMCID: PMC8770998 DOI: 10.1002/jbm4.10550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022] Open
Abstract
Long‐duration spaceflight is associated with an increased risk of urolithiasis, and the pain caused by urinary calculi could result in loss of human performance and mission objectives. The present study investigated the risk of urolithiasis in astronauts during 6 months on the International Space Station, and evaluated whether the suppression of bone resorption by the bisphosphonate, alendronate (ALN), can reduce the risk. A total of 17 astronauts were included into the analysis: exercise using the advanced resistive exercise device (ARED) plus weekly oral 70 mg alendronate (ARED+ALN group, n = 7) was compared to resistive exercise alone (ARED group, n = 10). Urine volume decreased in both groups during spaceflight but recovered after return. The ARED group showed increased urinary calcium excretion from the 15th to 30th day of spaceflight, whereas urinary calcium was slightly decreased in the ARED+ALN group. Urinary N‐terminal telopeptide (NTX) and helical peptide (HP) of type I collagen, as bone resorption markers, were elevated in the ARED group during and until 0 days after spaceflight, while there was no elevation in these parameters in the ARED+ALN group. Urinary oxalate and uric acid excretion tended to be higher in the ARED group than in the ARED+ALN group during spaceflight. These results demonstrate that astronauts on long‐duration spaceflights may be at high risk for the formation of urinary calcium oxalate and calcium phosphate stones through increased urinary excretion of oxalate and uric acid, from degraded type I collagen, as well as of calcium from enhanced bone resorption. Our findings suggest that increased bone resorption during spaceflight, as a risk factor for urinary calculus formation, could be effectively prevented by an inhibitor of bone resorption. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Atsushi Okada
- Department of Nephro‐urology Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences Tokushima University Tokushima Japan
| | | | - Tatsuya Isomura
- Institute of Medical Science Tokyo Medical University Tokyo Japan
| | - Tadashi Koga
- Department of Pharmacology St. Marianna University School of Medicine Kawasaki Japan
| | - Takahiro Yasui
- Department of Nephro‐urology Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Kenjiro Kohri
- Department of Nephro‐urology Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Adrian LeBlanc
- Baylor College of Medicine‐ Center for Space Medicine Houston TX USA
| | | | - Jeffrey Jones
- Baylor College of Medicine‐ Center for Space Medicine Houston TX USA
| | | | | |
Collapse
|
31
|
Abstract
History books are rife with examples of the role of nutrition in determining either the success or the failure of human exploration on Earth. With planetary exploration in our future, it is imperative that we understand the role of nutrition in optimizing health before humans can safely take the next giant leaps in space exploration.
Collapse
Affiliation(s)
- Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, Texas
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
32
|
da Silveira WA, Fazelinia H, Rosenthal SB, Laiakis EC, Kim MS, Meydan C, Kidane Y, Rathi KS, Smith SM, Stear B, Ying Y, Zhang Y, Foox J, Zanello S, Crucian B, Wang D, Nugent A, Costa HA, Zwart SR, Schrepfer S, Elworth RAL, Sapoval N, Treangen T, MacKay M, Gokhale NS, Horner SM, Singh LN, Wallace DC, Willey JS, Schisler JC, Meller R, McDonald JT, Fisch KM, Hardiman G, Taylor D, Mason CE, Costes SV, Beheshti A. Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell 2021; 183:1185-1201.e20. [PMID: 33242417 DOI: 10.1016/j.cell.2020.11.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Spaceflight is known to impose changes on human physiology with unknown molecular etiologies. To reveal these causes, we used a multi-omics, systems biology analytical approach using biomedical profiles from fifty-nine astronauts and data from NASA's GeneLab derived from hundreds of samples flown in space to determine transcriptomic, proteomic, metabolomic, and epigenetic responses to spaceflight. Overall pathway analyses on the multi-omics datasets showed significant enrichment for mitochondrial processes, as well as innate immunity, chronic inflammation, cell cycle, circadian rhythm, and olfactory functions. Importantly, NASA's Twin Study provided a platform to confirm several of our principal findings. Evidence of altered mitochondrial function and DNA damage was also found in the urine and blood metabolic data compiled from the astronaut cohort and NASA Twin Study data, indicating mitochondrial stress as a consistent phenotype of spaceflight.
Collapse
Affiliation(s)
| | - Hossein Fazelinia
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | - Man S Kim
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cem Meydan
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Yared Kidane
- Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | - Komal S Rathi
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Benjamin Stear
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yue Ying
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuanchao Zhang
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Foox
- Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | - Dong Wang
- University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sonja Schrepfer
- University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Robert Meller
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - J Tyson McDonald
- Georgetown University Medical Center, Washington D.C. 20057, USA
| | | | - Gary Hardiman
- Queens University Belfast, Belfast BT9 5DL, UK; Medical University of South Carolina, Charleston, SC 29425, USA
| | - Deanne Taylor
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
33
|
Willey JS, Britten RA, Blaber E, Tahimic CG, Chancellor J, Mortreux M, Sanford LD, Kubik AJ, Delp MD, Mao XW. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:129-179. [PMID: 33902391 PMCID: PMC8274610 DOI: 10.1080/26896583.2021.1885283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Collapse
Affiliation(s)
| | | | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | | | - Marie Mortreux
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Larry D. Sanford
- Department of Radiation Oncology, Eastern Virginia Medical School
| | - Angela J. Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | - Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University
| |
Collapse
|
34
|
Gertz ML, Chin CR, Tomoiaga D, MacKay M, Chang C, Butler D, Afshinnekoo E, Bezdan D, Schmidt MA, Mozsary C, Melnick A, Garrett-Bakelman F, Crucian B, Lee SMC, Zwart SR, Smith SM, Meydan C, Mason CE. Multi-omic, Single-Cell, and Biochemical Profiles of Astronauts Guide Pharmacological Strategies for Returning to Gravity. Cell Rep 2020; 33:108429. [PMID: 33242408 PMCID: PMC9444344 DOI: 10.1016/j.celrep.2020.108429] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/07/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
The National Aeronautics and Space Administration (NASA) Twins Study created an integrative molecular profile of an astronaut during NASA’s first 1-year mission on the International Space Station (ISS) and included comparisons to an identical Earth-bound twin. The unique biochemical profiles observed when landing on Earth after such a long mission (e.g., spikes in interleukin-1 [IL-1]/6/10, c-reactive protein [CRP], C-C motif chemokine ligand 2 [CCL2], IL-1 receptor antagonist [IL-1ra], and tumor necrosis factor alpha [TNF-α]) opened new questions about the human body’s response to gravity and how to plan for future astronauts, particularly around initiation or resolution of inflammation. Here, single-cell, multi-omic (100-plex epitope profile and gene expression) profiling of peripheral blood mononuclear cells (PBMCs) showed changes to blood cell composition and gene expression post-flight, specifically for monocytes and dendritic cell precursors. These were consistent with flight-induced cytokine and immune system stress, followed by skeletal muscle regeneration in response to gravity. Finally, we examined these profiles relative to 6-month missions in 28 other astronauts and detail potential pharmacological interventions for returning to gravity in future missions. Gertz et al. present a re-analysis of the landing data from the NASA Twins Study, suggesting that the biochemical signature reflects muscle regeneration after atrophy rather than a detrimental inflammatory response. This is mediated through muscle-derived IL-6 anti-inflammatory cascades. Single-cell analysis supports this role. Potential pharmacological interventions are also discussed.
Collapse
Affiliation(s)
- Monica L Gertz
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Christopher R Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Delia Tomoiaga
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA; Becton Dickinson & Co., Washington, DC 20001
| | | | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniela Bezdan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, Tübingen 72076, Germany
| | - Michael A Schmidt
- Advanced Pattern Analysis and Countermeasures Group, Boulder, CO 80302, USA; Sovaris Aerospace, Boulder, CO 80302, USA
| | - Christopher Mozsary
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Francine Garrett-Bakelman
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Brian Crucian
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | | | - Sara R Zwart
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
35
|
Luxton JJ, McKenna MJ, Lewis A, Taylor LE, George KA, Dixit SM, Moniz M, Benegas W, Mackay MJ, Mozsary C, Butler D, Bezdan D, Meydan C, Crucian BE, Zwart SR, Smith SM, Mason CE, Bailey SM. Telomere Length Dynamics and DNA Damage Responses Associated with Long-Duration Spaceflight. Cell Rep 2020; 33:108457. [PMID: 33242406 DOI: 10.1016/j.celrep.2020.108457] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Telomere length dynamics and DNA damage responses were assessed before, during, and after one-year or shorter duration missions aboard the International Space Station (ISS) in a comparatively large cohort of astronauts (n = 11). Although generally healthy individuals, astronauts tended to have significantly shorter telomeres and lower telomerase activity than age- and sex-matched ground controls before and after spaceflight. Although telomeres were longer during spaceflight irrespective of mission duration, telomere length shortened rapidly upon return to Earth, and overall astronauts had shorter telomeres after spaceflight than they did before; inter-individual differences were identified. During spaceflight, all crewmembers experienced oxidative stress, which positively correlated with telomere length dynamics. Significantly increased frequencies of chromosomal inversions were observed during and after spaceflight; changes in cell populations were also detected. We propose a telomeric adaptive response to chronic oxidative damage in extreme environments, whereby the telomerase-independent Alternative Lengthening of Telomeres (ALT) pathway is transiently activated in normal somatic cells.
Collapse
Affiliation(s)
- Jared J Luxton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Miles J McKenna
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Aidan Lewis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Sameer M Dixit
- Center for Molecular Dynamics - Nepal (CMDN), Kathmandu, Nepal
| | | | | | - Matthew J Mackay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Mozsary
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Daniela Bezdan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Brian E Crucian
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
36
|
Lee SMC, Laurie SS, Macias BR, Zwart SR, Smith SM, Stenger MB. Reply to Greaves et al. J Appl Physiol (1985) 2020; 129:1113. [DOI: 10.1152/japplphysiol.00757.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Brandon R. Macias
- Lyndon B. Johnson Space Center, National Aeronautics and Space Administration, Houston, Texas
| | - Sara R. Zwart
- University of Texas Medical Branch, Galveston, Texas
| | - Scott M. Smith
- Lyndon B. Johnson Space Center, National Aeronautics and Space Administration, Houston, Texas
| | - Michael B. Stenger
- Lyndon B. Johnson Space Center, National Aeronautics and Space Administration, Houston, Texas
| |
Collapse
|
37
|
Greaves DK, Robertson AD, Patterson CA, Au JS, Hughson RL. Evidence for increased cardiovascular risk to crew during long duration space missions. J Appl Physiol (1985) 2020; 129:1111-1112. [PMID: 33197374 DOI: 10.1152/japplphysiol.00573.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Danielle K Greaves
- Department of Kinesiology, University of Waterloo, Waterloo, Canada.,Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Canada
| | - Andrew D Robertson
- Department of Kinesiology, University of Waterloo, Waterloo, Canada.,Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Canada
| | - Courtney A Patterson
- Department of Kinesiology, University of Waterloo, Waterloo, Canada.,Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Canada
| | - Jason S Au
- Department of Kinesiology, University of Waterloo, Waterloo, Canada
| | - Richard L Hughson
- Department of Kinesiology, University of Waterloo, Waterloo, Canada.,Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Canada
| |
Collapse
|
38
|
Navasiolava N, Yuan M, Murphy R, Robin A, Coupé M, Wang L, Alameddine A, Gauquelin-Koch G, Gharib C, Li Y, Custaud MA. Vascular and Microvascular Dysfunction Induced by Microgravity and Its Analogs in Humans: Mechanisms and Countermeasures. Front Physiol 2020; 11:952. [PMID: 32973543 PMCID: PMC7468431 DOI: 10.3389/fphys.2020.00952] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Weightlessness and physical inactivity have deleterious cardiovascular effects. The space environment and its ground-based models offer conditions to study the cardiovascular effects of physical inactivity in the absence of other vascular risk factors, particularly at the macro- and microcirculatory levels. However, the mechanisms involved in vascular dysfunction and remodeling are not sufficiently studied in the context of weightlessness and its analogs including models of physical inactivity. Here, we summarize vascular and microvascular changes induced by space flight and observed in models of microgravity and physical inactivity and review the effects of prophylactic strategies (i.e., countermeasures) on vascular and microvascular function. We discuss physical (e.g., exercise, vibration, lower body negative pressure, and artificial gravity) and nutritional/pharmacological (e.g., caloric restriction, resveratrol, and other vegetal extracts) countermeasures. Currently, exercise countermeasure appears to be the most effective to protect vascular function. Although pharmacological countermeasures are not currently considered to fight vascular changes due to microgravity, nutritional countermeasures are very promising. Dietary supplements/natural health products, especially plant extracts, should be extensively studied. The best prophylactic strategy is likely a combination of countermeasures that are effective not only at the cardiovascular level but also for the organism as a whole, but this strategy remains to be determined.
Collapse
Affiliation(s)
| | - Ming Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center (ACC), Beijing, China
| | - Ronan Murphy
- School of Health and Human Performance, Faculty of Science & Health, Dublin City University, Dublin, Ireland
| | - Adrien Robin
- Clinical Research Center, CHU d'Angers, Angers, France.,Mitovasc, UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| | - Mickael Coupé
- Mitovasc, UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| | - Linjie Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center (ACC), Beijing, China
| | - Asmaa Alameddine
- Mitovasc, UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| | | | - Claude Gharib
- Institut NeuroMyoGène, Faculté de Médecine Lyon-Est, Université de Lyon, Lyon, France
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center (ACC), Beijing, China
| | - Marc-Antoine Custaud
- Clinical Research Center, CHU d'Angers, Angers, France.,Mitovasc, UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| |
Collapse
|