1
|
Parikh D, Jayakumar S, Oliveira-Paula GH, Almonte V, Riascos-Bernal DF, Sibinga NE. Allograft inflammatory factor-1-like is a situational regulator of leptin levels, hyperphagia, and obesity. iScience 2022; 25:105058. [PMID: 36134334 PMCID: PMC9483794 DOI: 10.1016/j.isci.2022.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 01/05/2023] Open
Abstract
Mouse models enable the study of genetic factors affecting the complex pathophysiology of metabolic disorders. Here, we identify reductions in leptin levels, food intake, and obesity due to high-fat diet, accompanied by increased leptin sensitivity, in mice that harbor the E2a-Cre transgene within Obrq2, an obesity quantitative trait locus (QTL) that includes the leptin gene. Interestingly, loss of allograft inflammatory factor-1-like (AIF1L) protein in these transgenic mice leads to similar leptin sensitivity, yet marked reversal of the obesity phenotype, with accelerated weight gain and increased food intake. Transgenic mice lacking AIF1L also have low circulating leptin, which suggests that benefits of enhanced leptin sensitivity are lost with further impairment of leptin expression due to loss of AIF1L. Together, our results identify AIF1L as a genetic modifier of Obrq2 and leptin that affects leptin levels, food intake, and obesity during the metabolic stress imposed by HFD.
Collapse
Affiliation(s)
- Dippal Parikh
- Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Smitha Jayakumar
- Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gustavo H. Oliveira-Paula
- Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Vanessa Almonte
- Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Dario F. Riascos-Bernal
- Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E.S. Sibinga
- Department of Medicine (Cardiology), and Department of Developmental and Molecular Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Abstract
Inbred mice are the most popular animals used for in vivo liver research. These mice are genetically defined, readily available, less expensive to maintain than larger animals, and enjoy a broad array of commercial reagents for scientific characterization. C57BL/6 mice are the most commonly used strain. However, other strains discussed, including BALB/c, C3H, A/J, and FVB/N, may be better suited to a particular disease model or line of investigation. Understanding the phenotypes of different inbred mouse strains facilitates informed decision making during experimental design. Model systems influenced by strain-dependent phenotype include tissue regeneration, drug-induced liver injury (DILI; e.g., acetaminophen), fibrosis (e.g., carbon tetrachloride, CCl₄), Fas-induced apoptosis, cholestasis, alcohol-induced liver disease and cirrhosis, nonalcoholic fatty liver disease and steatohepatitis (NAFLD/NASH), and hepatocellular carcinoma (HCC). Thoughtful consideration of the strengths and weaknesses of each inbred strain in a given model system will lead to more robust data and a clearer understanding of translational relevance to human liver disease.
Collapse
Affiliation(s)
- Arlin B. Rogers
- Department of Early Development, Alnylam Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|
3
|
Karunakaran S, Clee SM. Genetics of metabolic syndrome: potential clues from wild-derived inbred mouse strains. Physiol Genomics 2018; 50:35-51. [DOI: 10.1152/physiolgenomics.00059.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The metabolic syndrome (MetS) is a complex constellation of metabolic abnormalities including obesity, abnormal glucose metabolism, dyslipidemia, and elevated blood pressure that together substantially increase risk for cardiovascular disease and Type 2 diabetes. Both genetic and environmental factors contribute to the development of MetS, but this process is still far from understood. Human studies have revealed only part of the underlying basis. Studies in mice offer many strengths that can complement human studies to help elucidate the etiology and pathophysiology of MetS. Here we review the ways mice can contribute to MetS research. In particular, we focus on the information that can be obtained from studies of the inbred strains, with specific focus on the phenotypes of the wild-derived inbred strains. These are newly derived inbred strains that were created from wild-caught mice. They contain substantial genetic variation that is not present in the classical inbred strains, have phenotypes of relevance for MetS, and various mouse strain resources have been created to facilitate the mining of this new genetic variation. Thus studies using wild-derived inbred strains hold great promise for increasing our understanding of MetS.
Collapse
Affiliation(s)
- Subashini Karunakaran
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanne M. Clee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Chen A, Liu Y, Williams SM, Morris N, Buchner DA. Widespread epistasis regulates glucose homeostasis and gene expression. PLoS Genet 2017; 13:e1007025. [PMID: 28961251 PMCID: PMC5636166 DOI: 10.1371/journal.pgen.1007025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/11/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023] Open
Abstract
The relative contributions of additive versus non-additive interactions in the regulation of complex traits remains controversial. This may be in part because large-scale epistasis has traditionally been difficult to detect in complex, multi-cellular organisms. We hypothesized that it would be easier to detect interactions using mouse chromosome substitution strains that simultaneously incorporate allelic variation in many genes on a controlled genetic background. Analyzing metabolic traits and gene expression levels in the offspring of a series of crosses between mouse chromosome substitution strains demonstrated that inter-chromosomal epistasis was a dominant feature of these complex traits. Epistasis typically accounted for a larger proportion of the heritable effects than those due solely to additive effects. These epistatic interactions typically resulted in trait values returning to the levels of the parental CSS host strain. Due to the large epistatic effects, analyses that did not account for interactions consistently underestimated the true effect sizes due to allelic variation or failed to detect the loci controlling trait variation. These studies demonstrate that epistatic interactions are a common feature of complex traits and thus identifying these interactions is key to understanding their genetic regulation. Most complex traits and diseases are regulated by the combined influence of multiple genetic variants. However, it remains controversial whether these genetic variants independently influence complex traits, and therefore the impact of each variant could be simply added together (additivity), or whether the variants work together to influence trait variation, in which case the combined impact of multiple variants would differ from the summed impact of each individual variant (epistasis). In this study in mice, we discovered that the genetic regulation of blood sugar levels and gene expression in the liver were predominantly controlled by non-additive interactions, whereas body weight was predominantly controlled by additive interactions. Remarkably, the expression level of nearly 25% of all genes in the liver was controlled by non-additive interactions. The non-additive interactions typically acted to return trait values to the levels detected in control mice, thus contributing to a reduction in trait variation. We also demonstrated that not accounting for non-additive interactions significantly underestimated the phenotypic effect of a genetic variant on a particular genetic background, suggesting that many previously identified risk loci may have significantly larger effects on disease susceptibility in a subset of individuals. These studies highlight the importance of understanding interactions between genetic variants to better understand disease risk and personalize clinical care.
Collapse
Affiliation(s)
- Anlu Chen
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States of America
| | - Yang Liu
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States of America
| | - Scott M. Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Nathan Morris
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - David A. Buchner
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States of America
- * E-mail:
| |
Collapse
|
5
|
Tyler AL, Donahue LR, Churchill GA, Carter GW. Weak Epistasis Generally Stabilizes Phenotypes in a Mouse Intercross. PLoS Genet 2016; 12:e1005805. [PMID: 26828925 PMCID: PMC4734753 DOI: 10.1371/journal.pgen.1005805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/21/2015] [Indexed: 01/11/2023] Open
Abstract
The extent and strength of epistasis is commonly unresolved in genetic studies, and observed epistasis is often difficult to interpret in terms of biological consequences or overall genetic architecture. We investigated the prevalence and consequences of epistasis by analyzing four body composition phenotypes—body weight, body fat percentage, femoral density, and femoral circumference—in a large F2 intercross of B6-lit/lit and C3.B6-lit/lit mice. We used Combined Analysis of Pleiotropy and Epistasis (CAPE) to examine interactions for the four phenotypes simultaneously, which revealed an extensive directed network of genetic loci interacting with each other, circulating IGF1, and sex to influence these phenotypes. The majority of epistatic interactions had small effects relative to additive effects of individual loci, and tended to stabilize phenotypes towards the mean of the population rather than extremes. Interactive effects of two alleles inherited from one parental strain commonly resulted in phenotypes closer to the population mean than the additive effects from the two loci, and often much closer to the mean than either single-locus model. Alternatively, combinations of alleles inherited from different parent strains contribute to more extreme phenotypes not observed in either parental strain. This class of phenotype-stabilizing interactions has effects that are close to additive and are thus difficult to detect except in very large intercrosses. Nevertheless, we found these interactions to be useful in generating hypotheses for functional relationships between genetic loci. Our findings suggest that while epistasis is often weak and unlikely to account for a large proportion of heritable variance, even small-effect genetic interactions can facilitate hypotheses of underlying biology in well-powered studies. The role of statistical epistasis in the genetic architecture of complex traits has been of great interest to the genetics community since Fisher introduced the concept in 1918. However, assessing epistasis in human and model organism populations has been impeded by limited statistical power. To mitigate this limitation, we analyzed bone and body composition traits in an unusually large mouse intercross population of over 2000 mice, paired with a recently-developed computational approach that leverages information to detect interactions across multiple phenotypes. We discovered a large network of highly significant genetic interactions between variants that influence complex body composition traits. Although epistasis was abundant, the interaction network was dominated by epistasis that stabilizes phenotypes by reducing phenotypic deviation from the parent strains. Nevertheless, the observed network provides an overview of genetic architecture and specific hypotheses of how QTL combine to affect phenotypes. These findings suggest that epistatic effects are generally of lesser magnitude than main QTL effects, and therefore are unlikely to account for major components of variance, but also reinforce genetic interaction analysis as a potent tool for dissecting the biology of complex traits.
Collapse
Affiliation(s)
- Anna L. Tyler
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Leah Rae Donahue
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Gregory W. Carter
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Type 2 diabetes is a fast-growing epidemic in industrialized countries, associated with obesity, lack of physical exercise, aging, family history, and ethnic background. Diagnostic criteria are elevated fasting or postprandial blood glucose levels, a consequence of insulin resistance. Early intervention can help patients to revert the progression of the disease together with lifestyle changes or monotherapy. Systemic glucose toxicity can have devastating effects leading to pancreatic beta cell failure, blindness, nephropathy, and neuropathy, progressing to limb ulceration or even amputation. Existing treatments have numerous side effects and demonstrate variability in individual patient responsiveness. However, several emerging areas of discovery research are showing promises with the development of novel classes of antidiabetic drugs.The mouse has proven to be a reliable model for discovering and validating new treatments for type 2 diabetes mellitus. We review here commonly used methods to measure endpoints relevant to glucose metabolism which show good translatability to the diagnostic of type 2 diabetes in humans: baseline fasting glucose and insulin, glucose tolerance test, insulin sensitivity index, and body type composition. Improvements on these clinical values are essential for the progression of a novel potential therapeutic molecule through a preclinical and clinical pipeline.
Collapse
Affiliation(s)
- Helene Baribault
- Ardelyx Inc., 34175 Ardenwood Blvd, Suite 200, Fremont, CA, 94555, USA.
| |
Collapse
|
7
|
Lee HJ, Yeon JE, Ko EJ, Yoon EL, Suh SJ, Kang K, Kim HR, Kang SH, Yoo YJ, Je J, Lee BJ, Kim JH, Seo YS, Yim HJ, Byun KS. Peroxisome proliferator-activated receptor-delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease. World J Gastroenterol 2015; 21:12787-12799. [PMID: 26668503 PMCID: PMC4671034 DOI: 10.3748/wjg.v21.i45.12787] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/24/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the inflammasome activation and the effect of peroxisome proliferator-activated receptors (PPAR)-δ agonist treatment in nonalcoholic fatty liver disease (NAFLD) models.
METHODS: Male C57BL/6J mice were classified according to control or high fat diet (HFD) with or without PPAR-δ agonist (GW) over period of 12 wk [control, HFD, HFD + lipopolysaccharide (LPS), HFD + LPS + GW group]. HepG2 cells were exposed to palmitic acid (PA) and/or LPS in the absence or presence of GW.
RESULTS: HFD caused glucose intolerance and hepatic steatosis. In mice fed an HFD with LPS, caspase-1 and interleukin (IL)-1β in the liver were significantly increased. Treatment with GW ameliorated the steatosis and inhibited overexpression of pro-inflammatory cytokines. In HepG2 cells, PA and LPS treatment markedly increased mRNA of several nucleotide-binding and oligomerization domain-like receptor family members (NLRP3, NLRP6, and NLRP10), caspase-1 and IL-1β. PA and LPS also exaggerated reactive oxygen species production. All of the above effects of PA and LPS were reduced by GW. GW also enhanced the phosphorylation of AMPK-α.
CONCLUSION: PPAR-δ agonist reduces fatty acid-induced inflammation and steatosis by suppressing inflammasome activation. Targeting the inflammasome by the PPAR-δ agonist may have therapeutic implication for NAFLD.
Collapse
|
8
|
Lin C, Fesi BD, Marquis M, Bosak NP, Theodorides ML, Avigdor M, McDaniel AH, Duke FF, Lysenko A, Khoshnevisan A, Gantick BR, Arayata CJ, Nelson TM, Bachmanov AA, Reed DR. Body Composition QTLs Identified in Intercross Populations Are Reproducible in Consomic Mouse Strains. PLoS One 2015; 10:e0141494. [PMID: 26551037 PMCID: PMC4638354 DOI: 10.1371/journal.pone.0141494] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/07/2015] [Indexed: 12/16/2022] Open
Abstract
Genetic variation contributes to individual differences in obesity, but defining the exact relationships between naturally occurring genotypes and their effects on fatness remains elusive. As a step toward positional cloning of previously identified body composition quantitative trait loci (QTLs) from F2 crosses of mice from the C57BL/6ByJ and 129P3/J inbred strains, we sought to recapture them on a homogenous genetic background of consomic (chromosome substitution) strains. Male and female mice from reciprocal consomic strains originating from the C57BL/6ByJ and 129P3/J strains were bred and measured for body weight, length, and adiposity. Chromosomes 2, 7, and 9 were selected for substitution because previous F2 intercross studies revealed body composition QTLs on these chromosomes. We considered a QTL confirmed if one or both sexes of one or both reciprocal consomic strains differed significantly from the host strain in the expected direction after correction for multiple testing. Using these criteria, we confirmed two of two QTLs for body weight (Bwq5-6), three of three QTLs for body length (Bdln3-5), and three of three QTLs for adiposity (Adip20, Adip26 and Adip27). Overall, this study shows that despite the biological complexity of body size and composition, most QTLs for these traits are preserved when transferred to consomic strains; in addition, studying reciprocal consomic strains of both sexes is useful in assessing the robustness of a particular QTL.
Collapse
Affiliation(s)
- Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
| | - Brad D. Fesi
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
| | - Michael Marquis
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
| | - Natalia P. Bosak
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
| | - Maria L. Theodorides
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
| | - Mauricio Avigdor
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
| | - Amanda H. McDaniel
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
| | - Fujiko F. Duke
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
| | - Anna Lysenko
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
| | - Amin Khoshnevisan
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
| | - Brian R. Gantick
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
| | - Charles J. Arayata
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
| | - Theodore M. Nelson
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
| | | | - Danielle R. Reed
- Monell Chemical Senses Center, Philadelphia, PA, 19104, United States of America
- * E-mail:
| |
Collapse
|
9
|
Sinasac DS, Riordan JD, Spiezio SH, Yandell BS, Croniger CM, Nadeau JH. Genetic control of obesity, glucose homeostasis, dyslipidemia and fatty liver in a mouse model of diet-induced metabolic syndrome. Int J Obes (Lond) 2015; 40:346-55. [PMID: 26381349 DOI: 10.1038/ijo.2015.184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Both genetic and dietary factors contribute to the metabolic syndrome (MetS) in humans and animal models. Characterizing their individual roles as well as relationships among these factors is critical for understanding MetS pathogenesis and developing effective therapies. By studying phenotypic responsiveness to high-risk versus control diet in two inbred mouse strains and their derivatives, we estimated the relative contributions of diet and genetic background to MetS, characterized strain-specific combinations of MetS conditions, and tested genetic and phenotypic complexity on a single substituted chromosome. METHODS Ten measures of metabolic health were assessed in susceptible C57BL/6 J and resistant A/J male mice fed either a control or a high-fat, high-sucrose (HFHS) diet, permitting estimates of the relative influences of strain, diet and strain-diet interactions for each trait. The same traits were measured in a panel of C57BL/6 J (B6)-Chr(A/J) chromosome substitution strains (CSSs) fed the HFHS diet, followed by characterization of interstrain relationships, covariation among metabolic traits and quantitative trait loci (QTLs) on Chromosome 10. RESULTS We identified significant genetic contributions to nine of ten metabolic traits and significant dietary influence on eight. Significant strain-diet interaction effects were detected for four traits. Although a range of HFHS-induced phenotypes were observed among the CSSs, significant associations were detected among all traits but one. Strains were grouped into three clusters based on overall phenotype and specific CSSs were identified with distinct and reproducible trait combinations. Finally, several Chr10 regions were shown to control the severity of MetS conditions. CONCLUSIONS Generally strong genetic and dietary effects validate these CSSs as a multifactorial model of MetS. Although traits tended to segregate together, considerable phenotypic heterogeneity suggests that underlying genetic factors influence their co-occurrence and severity. Identification of multiple QTLs within and among strains highlights both the complexity of genetically regulated, diet-induced MetS and the ability of CSSs to prioritize candidate loci for mechanistic studies.
Collapse
Affiliation(s)
- D S Sinasac
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - J D Riordan
- Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| | - S H Spiezio
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - B S Yandell
- Department of Statistics, University of Wisconsin, Madison, WI, USA
| | - C M Croniger
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - J H Nadeau
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.,Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| |
Collapse
|
10
|
Spiezio SH, Amon LM, McMillen TS, Vick CM, Houston BA, Caldwell M, Ogimoto K, Morton GJ, Kirk EA, Schwartz MW, Nadeau JH, LeBoeuf RC. Genetic determinants of atherosclerosis, obesity, and energy balance in consomic mice. Mamm Genome 2014; 25:549-63. [PMID: 25001233 DOI: 10.1007/s00335-014-9530-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/11/2014] [Indexed: 12/18/2022]
Abstract
Metabolic diseases such as obesity and atherosclerosis result from complex interactions between environmental factors and genetic variants. A panel of chromosome substitution strains (CSSs) was developed to characterize genetic and dietary factors contributing to metabolic diseases and other biological traits and biomedical conditions. Our goal here was to identify quantitative trait loci (QTLs) contributing to obesity, energy expenditure, and atherosclerosis. Parental strains C57BL/6 and A/J together with a panel of 21 CSSs derived from these progenitors were subjected to chronic feeding of rodent chow and atherosclerotic (females) or diabetogenic (males) test diets, and evaluated for a variety of metabolic phenotypes including several traits unique to this report, namely fat pad weights, energy balance, and atherosclerosis. A total of 297 QTLs across 35 traits were discovered, two of which provided significant protection from atherosclerosis, and several dozen QTLs modulated body weight, body composition, and circulating lipid levels in females and males. While several QTLs confirmed previous reports, most QTLs were novel. Finally, we applied the CSS quantitative genetic approach to energy balance, and identified three novel QTLs controlling energy expenditure and one QTL modulating food intake. Overall, we identified many new QTLs and phenotyped several novel traits in this mouse model of diet-induced metabolic diseases.
Collapse
Affiliation(s)
- Sabrina H Spiezio
- Institute for Systems Biology, 401 North Terry Ave, Seattle, WA, 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Alcohol-induced liver injury is modulated by Nlrp3 and Nlrc4 inflammasomes in mice. Mediators Inflamm 2013; 2013:751374. [PMID: 24453428 PMCID: PMC3876912 DOI: 10.1155/2013/751374] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/20/2022] Open
Abstract
Alcoholic liver disease (ALD) is characterized by increased hepatic lipid accumulation (steatosis) and inflammation with increased expression of proinflammatory cytokines. Two of these cytokines, interleukin-1β (IL-1β) and IL-18, require activation of caspase-1 via members of the NOD-like receptor (NLR) family. These NLRs form an inflammasome that is activated by pathogens and signals released through local tissue injury or death. NLR family pyrin domain containing 3 (Nlrp3) and NLR family CARD domain containing protein 4 (Nlrc4) have been studied minimally for their role in the development of ALD. Using mice with gene targeted deletions for Nlrp3 (Nlrp3−/−) and Nlrc4 (Nlrc4−/−), we analyzed the response to chronic alcohol consumption. We found that Nlrp3−/− mice have more severe liver injury with higher plasma alanine aminotransferase (ALT) levels, increased activation of IL-18, and reduced activation of IL-1B. In contrast, the Nlrc4−/− mice had similar alcohol-induced liver injury compared to C57BL/6J (B6) mice but had greatly reduced activation of IL-1β. This suggests that Nlrp3 and Nlrc4 inflammasomes activate IL-1β and IL-18 via caspase-1 in a differential manner. We conclude that the Nlrp3 inflammasome is protective during alcohol-induced liver injury.
Collapse
|
12
|
Genetic dissection of quantitative trait Loci for hemostasis and thrombosis on mouse chromosomes 11 and 5 using congenic and subcongenic strains. PLoS One 2013; 8:e77539. [PMID: 24147020 PMCID: PMC3798288 DOI: 10.1371/journal.pone.0077539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/06/2013] [Indexed: 12/25/2022] Open
Abstract
Susceptibility to thrombosis varies in human populations as well as many inbred mouse strains. Only a small portion of this variation has been identified, suggesting that there are unknown modifier genes. The objective of this study was to narrow the quantitative trait locus (QTL) intervals previously identified for hemostasis and thrombosis on mouse distal chromosome 11 (Hmtb6) and on chromosome 5 (Hmtb4 and Hmtb5). In a tail bleeding/rebleeding assay, a reporter assay for hemostasis and thrombosis, subcongenic strain (6A-2) had longer clot stability time than did C57BL/6J (B6) mice but a similar time to the B6-Chr11A/J consomic mice, confirming the Hmtb6 phenotype. Six congenic and subcongenic strains were constructed for chromosome 5, and the congenic strain, 2A-1, containing the shortest A/J interval (16.6 cM, 26.6 Mbp) in the Hmtb4 region, had prolonged clot stability time compared to B6 mice. In the 3A-2 and CSS-5 mice bleeding time was shorter than for B6, mice confirming the Hmtb5 QTL. An increase in bleeding time was identified in another congenic strain (3A-1) with A/J interval (24.8 cM, 32.9 Mbp) in the proximal region of chromosome 5, confirming a QTL for bleeding previously mapped to that region and designated as Hmtb10. The subcongenic strain 4A-2 with the A/J fragment in the proximal region had a long occlusion time of the carotid artery after ferric chloride injury and reduced dilation after injury to the abdominal aorta compared to B6 mice, suggesting an additional locus in the proximal region, which was designated Hmtb11 (5 cM, 21.4 Mbp). CSS-17 mice crossed with congenic strains, 3A-1 and 3A-2, modified tail bleeding. Using congenic and subcongenic analysis, candidate genes previously identified and novel genes were identified as modifiers of hemostasis and thrombosis in each of the loci Hmtb6, Hmtb4, Hmtb10, and Hmtb11.
Collapse
|
13
|
Cheng X, Guo S, Liu Y, Chu H, Hakimi P, Berger NA, Hanson RW, Kao HY. Ablation of promyelocytic leukemia protein (PML) re-patterns energy balance and protects mice from obesity induced by a Western diet. J Biol Chem 2013; 288:29746-59. [PMID: 23986437 DOI: 10.1074/jbc.m113.487595] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The promyelocytic leukemia protein is a well known tumor suppressor, but its role in metabolism is largely unknown. Mice with a deletion in the gene for PML (KO mice) exhibit altered gene expression in liver, adipose tissue, and skeletal muscle, an accelerated rate of fatty acid metabolism, abnormal glucose metabolism, constitutive AMP-activating kinase (AMPK) activation, and insulin resistance in skeletal muscle. Last, an increased rate of energy expenditure protects PML KO mice from the effects of obesity induced by a Western diet. Collectively, our study uncovers a previously unappreciated role of PML in the regulation of metabolism and energy balance in mice.
Collapse
|
14
|
DeSantis DA, Lee P, Doerner SK, Ko CW, Kawasoe JH, Hill-Baskin AE, Ernest SR, Bhargava P, Hur KY, Cresci GA, Pritchard MT, Lee CH, Nagy LE, Nadeau JH, Croniger CM. Genetic resistance to liver fibrosis on A/J mouse chromosome 17. Alcohol Clin Exp Res 2013; 37:1668-79. [PMID: 23763294 DOI: 10.1111/acer.12157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 03/03/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Because the histological and biochemical progression of liver disease is similar in alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH), we hypothesized that the genetic susceptibility to these liver diseases would be similar. To identify potential candidate genes that regulate the development of liver fibrosis, we studied a chromosome substitution strain (CSS-17) that contains chromosome 17 from the A/J inbred strain substituted for the corresponding chromosome on the C57BL/6J (B6) genetic background. Previously, we identified quantitative trait loci (QTLs) in CSS-17, namely obesity-resistant QTL 13 and QTL 15 (Obrq13 and Obrq15, respectively), that were associated with protection from diet-induced obesity and hepatic steatosis on a high-fat diet. METHODS To test whether these or other CSS-17 QTLs conferred resistance to alcohol-induced liver injury and fibrosis, B6, A/J, CSS-17, and congenics 17C-1 and 17C-6 were either fed Lieber-DeCarli ethanol (EtOH)-containing diet or had carbon tetrachloride (CCl4 ) administered chronically. RESULTS The congenic strain carrying Obrq15 showed resistance from alcohol-induced liver injury and liver fibrosis, whereas Obrq13 conferred susceptibility to liver fibrosis. From published deep sequencing data for chromosome 17 in the B6 and A/J strains, we identified candidate genes in Obrq13 and Obrq15 that contained single-nucleotide polymorphisms (SNPs) in the promoter region or within the gene itself. NADPH oxidase organizer 1 (Noxo1) and NLR family, CARD domain containing 4 (Nlrc4) showed altered hepatic gene expression in strains with the A/J allele at the end of the EtOH diet study and after CCl4 treatment. CONCLUSIONS Aspects of the genetics for the progression of ASH are unique compared to NASH, suggesting that the molecular mechanisms for the progression of disease are at least partially distinct. Using these CSSs, we identified 2 candidate genes, Noxo1 and Nlrc4, which modulate genetic susceptibility in ASH.
Collapse
Affiliation(s)
- David A DeSantis
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nadeau JH, Forejt J, Takada T, Shiroishi T. Chromosome substitution strains: gene discovery, functional analysis, and systems studies. Mamm Genome 2012; 23:693-705. [PMID: 22961226 DOI: 10.1007/s00335-012-9426-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
Abstract
Laboratory mice are valuable in biomedical research in part because of the extraordinary diversity of genetic resources that are available for studies of complex genetic traits and as models for human biology and disease. Chromosome substitution strains (CSSs) are important in this resource portfolio because of their demonstrated use for gene discovery, genetic and epigenetic studies, functional characterizations, and systems analysis. CSSs are made by replacing a single chromosome in a host strain with the corresponding chromosome from a donor strain. A complete CSS panel involves a total of 22 engineered inbred strains, one for each of the 19 autosomes, one each for the X and Y chromosomes, and one for mitochondria. A genome survey simply involves comparing each phenotype for each of the CSSs with the phenotypes of the host strain. The CSS panels that are available for laboratory mice have been used to dissect a remarkable variety of phenotypes and to characterize an impressive array of disease models. These surveys have revealed considerable phenotypic diversity even among closely related progenitor strains, evidence for strong epistasis and for heritable epigenetic changes. Perhaps most importantly, and presumably because of their unique genetic constitution, CSSs, and congenic strains derived from them, the genetic variants underlying quantitative trait loci (QTLs) are readily identified and functionally characterized. Together these studies show that CSSs are important resource for laboratory mice.
Collapse
Affiliation(s)
- Joseph H Nadeau
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA.
| | | | | | | |
Collapse
|
16
|
Tarantino LM, Eisener-Dorman AF. Forward genetic approaches to understanding complex behaviors. Curr Top Behav Neurosci 2012; 12:25-58. [PMID: 22297575 PMCID: PMC6989028 DOI: 10.1007/7854_2011_189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Assigning function to genes has long been a focus of biomedical research.Even with complete knowledge of the genomic sequences of humans, mice and other experimental organisms, there is still much to be learned about gene function and control. Ablation or overexpression of single genes using knockout or transgenic technologies has provided functional annotation for many genes, but these technologies do not capture the extensive genetic variation present in existing experimental mouse populations. Researchers have only recently begun to truly appreciate naturally occurring genetic variation resulting from single nucleotide substitutions,insertions, deletions, copy number variation, epigenetic changes (DNA methylation,histone modifications, etc.) and gene expression differences and how this variation contributes to complex phenotypes. In this chapter, we will discuss the benefits and limitations of different forward genetic approaches that capture the genetic variation present in inbred mouse strains and present the utility of these approaches for mapping QTL that influence complex behavioral phenotypes.
Collapse
|
17
|
Hines IN, Hartwell HJ, Feng Y, Theve EJ, Hall GA, Hashway S, Connolly J, Fecteau M, Fox JG, Rogers AB. Insulin resistance and metabolic hepatocarcinogenesis with parent-of-origin effects in A×B mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2855-65. [PMID: 21967816 DOI: 10.1016/j.ajpath.2011.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/24/2011] [Accepted: 08/16/2011] [Indexed: 01/01/2023]
Abstract
Insulin resistance is a defining feature of metabolic syndrome and type 2 diabetes mellitus but also may occur independently of these conditions. Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of these disorders, increases the risk of hepatocellular carcinoma (HCC). However, mechanisms linking hyperinsulinemia to NAFLD and HCC require clarification. We describe a novel model of primary insulin resistance and HCC with strong parent-of-origin effects. Male AB6F1 (A/JCr dam × C57BL/6 sire) but not B6AF1 (B6 dam × A/J sire) mice developed spontaneous insulin resistance, NAFLD, and HCC without obesity or diabetes. A survey of mitochondrial, imprinted, and sex-linked traits revealed modest associations with X-linked genes. However, a diet-induced obesity study, including B6.A chromosome substitution-strain (consomic) mice, showed no segregation by sex chromosome. Thus, parent-of-origin effects were specified within the autosomal genome. Next, we interrogated mechanisms of insulin-associated hepatocarcinogenesis. Steatotic hepatocytes exhibited adipogenic transition characterized by vacuolar metaplasia and up-regulation of vimentin, adipsin, fatty acid translocase (CD36), peroxisome proliferator-activated receptor-γ, and related products. This profile was largely recapitulated in insulin-supplemented primary mouse hepatocyte cultures. Importantly, pyruvate kinase M2, a fetal anabolic enzyme implicated in the Warburg effect, was activated by insulin in vivo and in vitro. Thus, our study reveals parent-of-origin effects in heritable insulin resistance, implicating adipogenic transition with acquired anabolic metabolism in the progression from NAFLD to HCC.
Collapse
Affiliation(s)
- Ian N Hines
- Department of Nutrition Sciences, East Carolina University, Greenville, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Buchner DA, Yazbek SN, Solinas P, Burrage LC, Morgan MG, Hoppel CL, Nadeau JH. Increased mitochondrial oxidative phosphorylation in the liver is associated with obesity and insulin resistance. Obesity (Silver Spring) 2011; 19:917-24. [PMID: 20885388 PMCID: PMC3749733 DOI: 10.1038/oby.2010.214] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Obesity is the result of excess energy intake relative to expenditure, however little is known about why some individuals are more prone to weight gain than others. Inbred strains of mice also vary in their susceptibility to obesity and therefore represent a valuable model to study the genetics and physiology of weight gain and its co-morbidities such as type 2 diabetes. C57BL/6J mice are susceptible to obesity and insulin resistance when fed an obesogenic diet, whereas A/J mice are resistant despite increased caloric intake. Analysis of B6- and A/J-derived chromosome substitution strains and congenic strains revealed a complex genetic and physiological basis for this phenotype. To improve our understanding of the molecular mechanisms underlying susceptibility to metabolic disease we analyzed global gene expression patterns in 6C1 and 6C2 congenic strains. 6C1 is susceptible whereas 6C2 is resistant to diet-induced obesity. In addition, we demonstrate that 6C1 is glucose intolerant and insulin resistant relative to 6C2. Pathway analysis of global gene expression patterns in muscle, adipose, and liver identified expression level differences between 6C1 and 6C2 in pathways related to basal transcription factors, endocytosis, and mitochondrial oxidative phosphorylation (OxPhos). The OxPhos expression differences were subtle but evident in each complex of the electron transport chain and were associated with a marked increase in mitochondrial oxidative capacity in the livers of the obese strain 6C1 relative to the obesity-resistant strain 6C2. These data suggests the importance of hepatic mitochondrial function in the development of obesity and insulin resistance.
Collapse
Affiliation(s)
- David A Buchner
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Yazbek SN, Buchner DA, Geisinger JM, Burrage LC, Spiezio SH, Zentner GE, Hsieh CW, Scacheri PC, Croniger CM, Nadeau JH. Deep congenic analysis identifies many strong, context-dependent QTLs, one of which, Slc35b4, regulates obesity and glucose homeostasis. Genome Res 2011; 21:1065-73. [PMID: 21507882 DOI: 10.1101/gr.120741.111] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although central to many studies of phenotypic variation and disease susceptibility, characterizing the genetic architecture of complex traits has been unexpectedly difficult. For example, most of the susceptibility genes that contribute to highly heritable conditions such as obesity and type 2 diabetes (T2D) remain to be identified despite intensive study. We took advantage of mouse models of diet-induced metabolic disease in chromosome substitution strains (CSSs) both to characterize the genetic architecture of diet-induced obesity and glucose homeostasis and to test the feasibility of gene discovery. Beginning with a survey of CSSs, followed with genetic and phenotypic analysis of congenic, subcongenic, and subsubcongenic strains, we identified a remarkable number of closely linked, phenotypically heterogeneous quantitative trait loci (QTLs) on mouse chromosome 6 that have unexpectedly large phenotypic effects. Although fine-mapping reduced the genomic intervals and gene content of these QTLs over 3000-fold, the average phenotypic effect on body weight was reduced less than threefold, highlighting the "fractal" nature of genetic architecture in mice. Despite this genetic complexity, we found evidence for 14 QTLs in only 32 recombination events in less than 3000 mice, and with an average of four genes located within the three body weight QTLs in the subsubcongenic strains. For Obrq2a1, genetic and functional studies collectively identified the solute receptor Slc35b4 as a regulator of obesity, insulin resistance, and gluconeogenesis. This work demonstrated the unique power of CSSs as a platform for studying complex genetic traits and identifying QTLs.
Collapse
Affiliation(s)
- Soha N Yazbek
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Reed DR, Duke FF, Ellis HK, Rosazza MR, Lawler MP, Alarcon LK, Tordoff MG. Body fat distribution and organ weights of 14 common strains and a 22-strain consomic panel of rats. Physiol Behav 2011; 103:523-9. [PMID: 21504752 DOI: 10.1016/j.physbeh.2011.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 12/14/2022]
Abstract
The goal of this study was to determine the adiposity of a range of rat strains, including a panel of consomics, to estimate heritability. To that end, we assessed the body fat distribution and organ weights of groups of adult male rats from 3 outbred strains, 11 inbred strains and 22 consomic strains. We measured the weights of the gonadal, retroperitoneal, mesenteric, femoral, subscapular and pericardial white fat depots, the subscapular brown fat depot, the kidneys, liver, heart, spleen, and brain. Strains were compared for the measured weight of each of these adipose depots and organs, and also for these weights adjusted statistically for body size. All individual adipose depot and organ weights were highly heritable, in most cases h(2)>0.50. The fourteen inbred and outbred rat strains were not very different in body length but there was a three-fold difference in body weight, and up to a twenty-fold difference in the weight of some adipose depots. Comparison of the FHH-Chr n(BN) consomic strains with the FHH host strain revealed 98 quantitative trait loci (QTLs) for body composition and organ weight, with the introgressed chromosome reducing weight or adiposity in most cases. These results can be used to guide the choice of appropriate rat strains for future studies of the genetic architecture of obesity and body size.
Collapse
Affiliation(s)
- Danielle R Reed
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104-3308, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Yazbek SN, Spiezio SH, Nadeau JH, Buchner DA. Ancestral paternal genotype controls body weight and food intake for multiple generations. Hum Mol Genet 2010; 19:4134-44. [PMID: 20696673 DOI: 10.1093/hmg/ddq332] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Current treatments have largely failed to slow the rapidly increasing world-wide prevalence of obesity and its co-morbidities. Despite a strong genetic contribution to obesity (40-70%), only a small percentage of heritability is explained with current knowledge of monogenic abnormalities, common sequence variants and conventional modes of inheritance. Epigenetic effects are rarely tested in humans because of difficulties arranging studies that distinguish conventional and transgenerational inheritance while simultaneously controlling environmental factors and learned behaviors. However, growing evidence from model organisms implicates genetic and environmental factors in one generation that affect phenotypes in subsequent generations. In this report, we provide the first evidence for paternal transgenerational genetic effects on body weight and food intake. This test focused on the obesity-resistant 6C2d congenic strain, which carries the Obrq2a(A/J) allele on an otherwise C57BL/6J background. Various crosses between 6C2d and the control C57BL/6J strain showed that the Obrq2a(A/J) allele in the paternal or grandpaternal generation was sufficient to inhibit diet-induced obesity and reduce food intake in the normally obesity-susceptible, high food intake C57BL/6J strain. These obesity-resistant and reduced food intake phenotypes were transmitted through the paternal lineage but not the maternal lineage with equal strength for at least two generations. Eliminating social interaction between the father and both his offspring and the pregnant dam did not significantly affect food intake levels, demonstrating that the phenotype is transmitted through the male germline rather than through social interactions. Persistence of these phenotypes across multiple generations raises the possibility that transgenerational genetic effects contribute to current metabolic conditions.
Collapse
Affiliation(s)
- Soha N Yazbek
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Type II diabetes is a fast-growing epidemic in industrialized countries. Many recent advances have led to the discovery and marketing of efficient novel therapeutic medications. Yet, because of side effects of these medications and the variability in individual patient responsiveness, unmet needs subsist for the discovery of new drugs. The mouse has proven to be a reliable model for discovering and validating new treatments for type II diabetes mellitus. We review here the most common mouse models used for drug discovery for the treatment of type II diabetes. The methods presented focus on measuring the equivalent end points in mice to the clinical values of glucose metabolism used for the diagnostic of type II diabetes in humans: i.e., baseline fasting glucose and insulin, glucose tolerance test, and insulin sensitivity index. Improvements on these clinical values are essential for the progression of a novel potential therapeutic molecule through a preclinical and clinical pipeline.
Collapse
Affiliation(s)
- Helene Baribault
- Department of Metabolic Disorders, Amgen, South San Francisco, CA, USA
| |
Collapse
|
23
|
Burrage LC, Baskin-Hill AE, Sinasac DS, Singer JB, Croniger CM, Kirby A, Kulbokas EJ, Daly MJ, Lander ES, Broman KW, Nadeau JH. Genetic resistance to diet-induced obesity in chromosome substitution strains of mice. Mamm Genome 2010; 21:115-29. [PMID: 20127486 DOI: 10.1007/s00335-010-9247-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 11/02/2009] [Indexed: 10/19/2022]
Abstract
Discovery of genes that confer resistance to diseases such as diet-induced obesity could have tremendous therapeutic impact. We previously demonstrated that the C57BL/6J-Chr(A/J)/NaJ panel of chromosome substitution strains (CSSs) is a unique model for studying resistance to diet-induced obesity. In the present study, three replicate CSS surveys showed remarkable consistency, with 13 A/J-derived chromosomes reproducibly conferring resistance to high-fat-diet-induced obesity. Twenty CSS intercrosses, one derived from each of the 19 autosomes and chromosome X, were used to determine the number and location of quantitative trait loci (QTLs) on individual chromosomes and localized six QTLs. However, analyses of mean body weight in intercross progeny versus C57BL/6J provided strong evidence that many QTLs discovered in the CSS surveys eluded detection in these CSS intercrosses. Studies of the temporal effects of these QTLs suggest that obesity resistance was dynamic, with QTLs acting at different ages or after different durations of diet exposure. Thus, these studies provide insight into the genetic architecture of complex traits such as resistance to diet-induced obesity in the C57BL/6J-Chr(A/J)/NaJ CSSs. Because some of the QTLs detected in the CSS intercrosses were not detected using a traditional C57BL/6J x A/J intercross, our results demonstrate that surveys of CSSs and congenic strains derived from them are useful complementary tools for analyzing complex traits.
Collapse
Affiliation(s)
- Lindsay C Burrage
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Anderson PD, Nelson VR, Tesar PJ, Nadeau JH. Genetic factors on mouse chromosome 18 affecting susceptibility to testicular germ cell tumors and permissiveness to embryonic stem cell derivation. Cancer Res 2009; 69:9112-7. [PMID: 19934337 DOI: 10.1158/0008-5472.can-09-3342] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite strong heritability, little is known about the genetic control of susceptibility to testicular germ cell tumors (TGCT) in humans or mice. Although the mouse model of spontaneous TGCTs has been extensively studied, conventional linkage analysis has failed to locate the factors that control teratocarcinogenesis in the susceptible 129 family of inbred strains. As an alternative approach, we used both chromosome substitution strains (CSS) to identify individual chromosomes that harbor susceptibility genes and a panel of congenic strains derived from a selected CSS to determine the number and location of susceptibility variants on the substituted chromosome. We showed that 129-Chr 18(MOLF) males are resistant to spontaneous TGCTs and that at least four genetic variants control susceptibility in males with this substituted chromosome. In addition, early embryonic cells from this strain fail to establish embryonic stem cell lines as efficiently as those from the parental 129/Sv strain. For the first time, 129-derived genetic variants that control TGCT susceptibility and fundamental aspects of embryonic stem cell biology have been localized in a genetic context in which the genes can be identified and functionally characterized.
Collapse
Affiliation(s)
- Philip D Anderson
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
25
|
Leussis MP, Frayne ML, Saito M, Berry EM, Aldinger KA, Rockwell GN, Hammer RP, Baskin-Hill AE, Singer JB, Nadeau JH, Sklar P, Petryshen TL. Genomic survey of prepulse inhibition in mouse chromosome substitution strains. GENES BRAIN AND BEHAVIOR 2009; 8:806-16. [PMID: 19694817 DOI: 10.1111/j.1601-183x.2009.00526.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Prepulse inhibition (PPI) is a measure of sensorimotor gating, a pre-attentional inhibitory brain mechanism that filters extraneous stimuli. Prepulse inhibition is correlated with measures of cognition and executive functioning, and is considered an endophenotype of schizophrenia and other psychiatric illnesses in which patients show PPI impairments. As a first step toward identifying genes that regulate PPI, we performed a quantitative trait locus (QTL) screen of PPI phenotypes in a panel of mouse chromosome substitution strains (CSSs). We identified five CSSs with altered PPI compared with the host C57BL/6J strain: CSS-4 exhibited decreased PPI, whereas CSS-10, -11, -16 and -Y exhibited higher PPI compared with C57BL/6J. These data indicate that A/J chromosomes 4, 10, 11, 16 and Y harbor at least one QTL region that modulates PPI in these CSSs. Quantitative trait loci for the acoustic startle response were identified on seven chromosomes. Like PPI, habituation of the startle response is also disrupted in schizophrenia, and in the present study CSS-7 and -8 exhibited deficits in startle habituation. Linkage analysis of an F(2) intercross identified a highly significant QTL for PPI on chromosome 11 between positions 101.5 and 114.4 Mb (peak LOD = 4.54). Future studies will map the specific genes contributing to these QTLs using congenic strains and other genomic approaches. Identification of genes that modulate PPI will provide insight into the neural mechanisms underlying sensorimotor gating, as well as the psychopathology of disorders characterized by gating deficits.
Collapse
Affiliation(s)
- M P Leussis
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Millward CA, Burrage LC, Shao H, Sinasac DS, Kawasoe JH, Hill-Baskin AE, Ernest SR, Gornicka A, Hsieh CW, Pisano S, Nadeau JH, Croniger CM. Genetic factors for resistance to diet-induced obesity and associated metabolic traits on mouse chromosome 17. Mamm Genome 2009; 20:71-82. [PMID: 19137372 PMCID: PMC3831881 DOI: 10.1007/s00335-008-9165-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/02/2008] [Indexed: 01/01/2023]
Abstract
Obesity is associated with increased susceptibility to dyslipidemia, insulin resistance, and hypertension, a combination of traits that comprise the traditional definition of the metabolic syndrome. Recent evidence suggests that obesity is also associated with the development of nonalcoholic fatty liver disease (NAFLD). Despite the high prevalence of obesity and its related conditions, their etiologies and pathophysiology remains unknown. Both genetic and environmental factors contribute to the development of obesity and NAFLD. Previous genetic analysis of high-fat, diet-induced obesity in C57BL/6J (B6) and A/J male mice using a panel of B6-Chr(A/J)/NaJ chromosome substitution strains (CSSs) demonstrated that 17 CSSs conferred resistance to high-fat, diet-induced obesity. One of these CSS strains, CSS-17, which is homosomic for A/J-derived chromosome 17, was analyzed further and found to be resistant to diet-induced steatosis. In the current study we generated seven congenic strains derived from CCS-17, fed them either a high-fat, simple-carbohydrate (HFSC) or low-fat, simple-carbohydrate (LFSC) diet for 16 weeks and then analyzed body weight and related traits. From this study we identified several quantitative trait loci (QTLs). On a HFSC diet, Obrq13 protects against diet-induced obesity, steatosis, and elevated fasting insulin and glucose levels. On the LFSC diet, Obrq13 confers lower hepatic triglycerides, suggesting that this QTL regulates liver triglycerides regardless of diet. Obrq15 protects against diet-induced obesity and steatosis on the HFSC diet, and Obrq14 confers increased final body weight and results in steatosis and insulin resistance on the HFSC diet. In addition, on the LFSC diet, Obrq 16 confers decreased hepatic triglycerides and Obrq17 confers lower plasma triglycerides on the LFSC diet. These congenic strains provide mouse models to identify genes and metabolic pathways that are involved in the development of NAFLD and aspects of diet-induced metabolic syndrome.
Collapse
Affiliation(s)
- Carrie A. Millward
- Department of Nutrition, Case Western Reserve University, School of Medicine, Biomedical Research Building 925, 2109 Adelbert Road, Cleveland, OH 44106–4955, USA
| | - Lindsay C. Burrage
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Haifeng Shao
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - David S. Sinasac
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Jean H. Kawasoe
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Annie E. Hill-Baskin
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Sheila R. Ernest
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Aga Gornicka
- Department of Nutrition, Case Western Reserve University, School of Medicine, Biomedical Research Building 925, 2109 Adelbert Road, Cleveland, OH 44106–4955, USA
| | - Chang-Wen Hsieh
- Department of Nutrition, Case Western Reserve University, School of Medicine, Biomedical Research Building 925, 2109 Adelbert Road, Cleveland, OH 44106–4955, USA
| | - Sorana Pisano
- Department of Nutrition, Case Western Reserve University, School of Medicine, Biomedical Research Building 925, 2109 Adelbert Road, Cleveland, OH 44106–4955, USA
| | - Joseph H. Nadeau
- Department of Genetics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Colleen M. Croniger
- Department of Nutrition, Case Western Reserve University, School of Medicine, Biomedical Research Building 925, 2109 Adelbert Road, Cleveland, OH 44106–4955, USA
| |
Collapse
|