1
|
Chim SM, Howell K, Dronzek J, Wu W, Van Hout C, Ferreira MAR, Ye B, Li A, Brydges S, Arunachalam V, Marcketta A, Locke AE, Bovijn J, Verweij N, De T, Lotta L, Mitnaul L, LeBlanc M, Center RG, Carey DJ, Melander O, Shuldiner A, Karalis K, Economides AN, Nistala H. Genetic inactivation of zinc transporter SLC39A5 improves liver function and hyperglycemia in obesogenic settings. eLife 2024; 12:RP90419. [PMID: 39671241 DOI: 10.7554/elife.90419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Recent studies have revealed a role for zinc in insulin secretion and glucose homeostasis. Randomized placebo-controlled zinc supplementation trials have demonstrated improved glycemic traits in patients with type II diabetes (T2D). Moreover, rare loss-of-function variants in the zinc efflux transporter SLC30A8 reduce T2D risk. Despite this accumulated evidence, a mechanistic understanding of how zinc influences systemic glucose homeostasis and consequently T2D risk remains unclear. To further explore the relationship between zinc and metabolic traits, we searched the exome database of the Regeneron Genetics Center-Geisinger Health System DiscovEHR cohort for genes that regulate zinc levels and associate with changes in metabolic traits. We then explored our main finding using in vitro and in vivo models. We identified rare loss-of-function (LOF) variants (MAF <1%) in Solute Carrier Family 39, Member 5 (SLC39A5) associated with increased circulating zinc (p=4.9 × 10-4). Trans-ancestry meta-analysis across four studies exhibited a nominal association of SLC39A5 LOF variants with decreased T2D risk. To explore the mechanisms underlying these associations, we generated mice lacking Slc39a5. Slc39a5-/- mice display improved liver function and reduced hyperglycemia when challenged with congenital or diet-induced obesity. These improvements result from elevated hepatic zinc levels and concomitant activation of hepatic AMPK and AKT signaling, in part due to zinc-mediated inhibition of hepatic protein phosphatase activity. Furthermore, under conditions of diet-induced non-alcoholic steatohepatitis (NASH), Slc39a5-/- mice display significantly attenuated fibrosis and inflammation. Taken together, these results suggest SLC39A5 as a potential therapeutic target for non-alcoholic fatty liver disease (NAFLD) due to metabolic derangements including T2D.
Collapse
Affiliation(s)
| | | | - John Dronzek
- Regeneron Genetics Center, New York, United States
| | - Weizhen Wu
- Regeneron Genetics Center, New York, United States
| | | | | | - Bin Ye
- Regeneron Genetics Center, New York, United States
| | - Alexander Li
- Regeneron Genetics Center, New York, United States
| | | | | | | | - Adam E Locke
- Regeneron Genetics Center, New York, United States
| | - Jonas Bovijn
- Regeneron Genetics Center, New York, United States
| | - Niek Verweij
- Regeneron Genetics Center, New York, United States
| | - Tanima De
- Regeneron Genetics Center, New York, United States
| | - Luca Lotta
- Regeneron Genetics Center, New York, United States
| | | | | | | | | | | | | | | | - Aris N Economides
- Regeneron Genetics Center, New York, United States
- Regeneron Pharmaceuticals, New York, United States
| | | |
Collapse
|
2
|
Gao J, Cang X, Liu L, Lin J, Zhu S, Liu L, Liu X, Zhu J, Xu C. Farrerol alleviates insulin resistance and hepatic steatosis of metabolic associated fatty liver disease by targeting PTPN1. J Cell Mol Med 2024; 28:e70096. [PMID: 39289804 PMCID: PMC11408267 DOI: 10.1111/jcmm.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide, characterized by excess lipid deposition. Insulin resistance (IR) serves as a fundamental pathogenic factor in MAFLD. However, currently, there are no approved specific agents for its treatment. Farrerol, a novel compound with antioxidant and anti-inflammatory effects, has garnered significant attention in recent years due to its hepatoprotective properties. Despite this, the precise underlying mechanisms of action remain unclear. In this study, a network pharmacology approach predicted protein tyrosine phosphatase non-receptor type 1 (PTPN1) as a potential target for farrerol's action in the liver. Subsequently, the administration of farrerol improved insulin sensitivity and glucose tolerance in MAFLD mice. Furthermore, farrerol alleviated lipid accumulation by binding to PTPN1 and reducing the dephosphorylation of the insulin receptor (INSR) in HepG2 cells and MAFLD mice. Thus, the phosphoinositide 3-kinase/serine/threonine-protein kinases (PI3K/AKT) signalling pathway was active, leading to downstream protein reduction. Overall, the study demonstrates that farrerol alleviates insulin resistance and hepatic steatosis of MAFLD by targeting PTPN1.
Collapse
Affiliation(s)
- Jingwen Gao
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Suzhou Clinical Center of Digestive DiseasesSuzhouChina
| | - Xiaomin Cang
- Department of EndocrinologyAffiliated Hospital 2 of Nantong University and First People's Hospital of Nantong CityNantongChina
| | - Lu Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Suzhou Clinical Center of Digestive DiseasesSuzhouChina
| | - Jiaxi Lin
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Suzhou Clinical Center of Digestive DiseasesSuzhouChina
| | - Shiqi Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Suzhou Clinical Center of Digestive DiseasesSuzhouChina
| | - Lihe Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Suzhou Clinical Center of Digestive DiseasesSuzhouChina
| | - Xiaolin Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Suzhou Clinical Center of Digestive DiseasesSuzhouChina
| | - Jinzhou Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Suzhou Clinical Center of Digestive DiseasesSuzhouChina
| | - Chunfang Xu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Suzhou Clinical Center of Digestive DiseasesSuzhouChina
| |
Collapse
|
3
|
Kołodziej-Sobczak D, Sobczak Ł, Łączkowski KZ. Protein Tyrosine Phosphatase 1B (PTP1B): A Comprehensive Review of Its Role in Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:7033. [PMID: 39000142 PMCID: PMC11241624 DOI: 10.3390/ijms25137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer's disease, Parkinson's disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction.
Collapse
Affiliation(s)
- Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Łukasz Sobczak
- Hospital Pharmacy, Multidisciplinary Municipal Hospital in Bydgoszcz, Szpitalna 19, 85-826 Bydgoszcz, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Delibegović M, Dall'Angelo S, Dekeryte R. Protein tyrosine phosphatase 1B in metabolic diseases and drug development. Nat Rev Endocrinol 2024; 20:366-378. [PMID: 38519567 DOI: 10.1038/s41574-024-00965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B), a non-transmembrane phosphatase, has a major role in a variety of signalling pathways, including direct negative regulation of classic insulin and leptin signalling pathways, and is implicated in the pathogenesis of several cardiometabolic diseases and cancers. As such, PTP1B has been a therapeutic target for over two decades, with PTP1B inhibitors identified either from natural sources or developed throughout the years. Some of these inhibitors have reached phase I and/or II clinical trials in humans for the treatment of type 2 diabetes mellitus, obesity and/or metastatic breast cancer. In this Review, we summarize the cellular processes and regulation of PTP1B, discuss evidence from in vivo preclinical and human studies of the association between PTP1B and different disorders, and discuss outcomes of clinical trials. We outline challenges associated with the targeting of this phosphatase (which was, until the past few years, viewed as difficult to target), the current state of the field of PTP1B inhibitors (and dual phosphatase inhibitors) and future directions for manipulating the activity of this key metabolic enzyme.
Collapse
Affiliation(s)
- Mirela Delibegović
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK.
| | - Sergio Dall'Angelo
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| | - Ruta Dekeryte
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| |
Collapse
|
5
|
Association between PTPN1 polymorphisms and obesity-related phenotypes in European adolescents: influence of physical activity. Pediatr Res 2022:10.1038/s41390-022-02377-1. [PMID: 36369476 DOI: 10.1038/s41390-022-02377-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND To study the associations of Protein Tyrosine Phosphatase-N1 (PTPN1) polymorphisms with obesity-related phenotypes in European adolescents, and the influence of physical activity on these relationships. METHODS Five polymorphisms of PTPN1 were genotyped in 1057 European adolescents (12-18 years old). We measured several phenotypes related to obesity, such as adiposity markers, and biochemical and clinical parameters. Physical activity was objectively measured by accelerometry. RESULTS The T, A, T, T and G alleles of the rs6067472, rs10485614, rs2143511, rs6020608 and rs968701 polymorphisms, respectively, were associated with lower levels of obesity-related phenotypes (i.e., body mass index, body fat percentage, hip circumference, fat mass index, systolic blood pressure and leptin) in European adolescents. In addition, the TATTG haplotype was associated with lower body fat percentage and fat mass index compared to the AACCA haplotype. Finally, when physical activity levels were considered, alleles of the rs6067472, rs2143511, rs6020608 and rs968701 polymorphisms were only associated with lower adiposity in active adolescents. CONCLUSIONS PTPN1 polymorphisms were associated with adiposity in European adolescents. Specifically, alleles of these polymorphisms were associated with lower adiposity only in physically active adolescents. Therefore, meeting the recommendations of daily physical activity may reduce obesity risk by modulating the genetic predisposition to obesity. IMPACT Using gene-phenotype and gene*environment analyses, we detected associations between polymorphisms of the Protein Tyrosine Phosphatase-N1 (PTPN1) gene and obesity-related phenotypes, suggesting a mechanism that can be modulated by physical activity. This study shows that genetic variability of PTPN1 is associated with adiposity, while physical activity seems to modulate the genetic predisposition. This brings insights about the mechanisms by which physical activity positively influences obesity.
Collapse
|
6
|
Ito Y, Sun R, Yagimuma H, Taki K, Mizoguchi A, Kobayashi T, Sugiyama M, Onoue T, Tsunekawa T, Takagi H, Hagiwara D, Iwama S, Suga H, Konishi H, Kiyama H, Arima H, Banno R. Protein Tyrosine Phosphatase 1B Deficiency Improves Glucose Homeostasis in Type 1 Diabetes Treated With Leptin. Diabetes 2022; 71:1902-1914. [PMID: 35748319 PMCID: PMC9862406 DOI: 10.2337/db21-0953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 06/19/2022] [Indexed: 02/05/2023]
Abstract
Leptin, a hormone secreted by adipocytes, exhibits therapeutic potential for the treatment of type 1 diabetes (T1D). Protein tyrosine phosphatase 1B (PTP1B) is a key enzyme that negatively regulates leptin receptor signaling. Here, the role of PTP1B in the treatment of T1D was investigated using PTP1B-deficient (knockout [KO]) mice and a PTP1B inhibitor. T1D wild-type (WT) mice induced by streptozotocin showed marked hyperglycemia compared with non-T1D WT mice. KO mice displayed significantly improved glucose metabolism equivalent to non-T1D WT mice, whereas peripheral or central administration of leptin partially improved glucose metabolism in T1D WT mice. Peripheral combination therapy of leptin and a PTP1B inhibitor in T1D WT mice improved glucose metabolism to the same level as non-T1D WT mice. Leptin was shown to act on the arcuate nucleus in the hypothalamus to suppress gluconeogenesis in liver and enhance glucose uptake in both brown adipose tissue and soleus muscle through the sympathetic nervous system. These effects were enhanced by PTP1B deficiency. Thus, treatment of T1D with leptin, PTP1B deficiency, or a PTP1B inhibitor was shown to enhance leptin activity in the hypothalamus to improve glucose metabolism. These findings suggest a potential alternative therapy for T1D.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Runan Sun
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Yagimuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keigo Taki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Mizoguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
- Corresponding author: Ryoichi Banno,
| |
Collapse
|
7
|
Developing New Treatment Options for Castration-Resistant Prostate Cancer and Recurrent Disease. Biomedicines 2022; 10:biomedicines10081872. [PMID: 36009418 PMCID: PMC9405166 DOI: 10.3390/biomedicines10081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is a major diagnosed cancer among men globally, and about 20% of patients develop metastatic prostate cancer (mPCa) in the initial diagnosis. PCa is a typical androgen-dependent disease; thus, hormonal therapy is commonly used as a standard care for mPCa by inhibiting androgen receptor (AR) activities, or androgen metabolism. Inevitably, almost all PCa will acquire resistance and become castration-resistant PCa (CRPC) that is associated with AR gene mutations or amplification, the presence of AR variants, loss of AR expression toward neuroendocrine phenotype, or other hormonal receptors. Treating CRPC poses a great challenge to clinicians. Research efforts in the last decade have come up with several new anti-androgen agents to prolong overall survival of CRPC patients. In addition, many potential targeting agents have been at the stage of being able to translate many preclinical discoveries into clinical practices. At this juncture, it is important to highlight the emerging strategies including small-molecule inhibitors to AR variants, DNA repair enzymes, cell survival pathway, neuroendocrine differentiation pathway, radiotherapy, CRPC-specific theranostics and immune therapy that are underway or have recently been completed.
Collapse
|
8
|
Liu R, Mathieu C, Berthelet J, Zhang W, Dupret JM, Rodrigues Lima F. Human Protein Tyrosine Phosphatase 1B (PTP1B): From Structure to Clinical Inhibitor Perspectives. Int J Mol Sci 2022; 23:ijms23137027. [PMID: 35806030 PMCID: PMC9266911 DOI: 10.3390/ijms23137027] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation is an essential process in biological events and is considered critical for biological functions. In tissues, protein phosphorylation mainly occurs on tyrosine (Tyr), serine (Ser) and threonine (Thr) residues. The balance between phosphorylation and dephosphorylation is under the control of two super enzyme families, protein kinases (PKs) and protein phosphatases (PPs), respectively. Although there are many selective and effective drugs targeting phosphokinases, developing drugs targeting phosphatases is challenging. PTP1B, one of the most central protein tyrosine phosphatases (PTPs), is a key player in several human diseases and disorders, such as diabetes, obesity, and hematopoietic malignancies, through modulation of different signaling pathways. However, due to high conservation among PTPs, most PTP1B inhibitors lack specificity, raising the need to develop new strategies targeting this enzyme. In this mini-review, we summarize three classes of PTP1B inhibitors with different mechanisms: (1) targeting multiple aryl-phosphorylation sites including the catalytic site of PTP1B; (2) targeting allosteric sites of PTP1B; (3) targeting specific mRNA sequence of PTP1B. All three types of PTP1B inhibitors present good specificity over other PTPs and are promising for the development of efficient small molecules targeting this enzyme.
Collapse
Affiliation(s)
- Rongxing Liu
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
| | | | - Jérémy Berthelet
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
- Centre Epigénétique et Destin Cellulaire, Université Paris Cité, CNRS, F-75013 Paris, France
| | - Wenchao Zhang
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jean-Marie Dupret
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
| | - Fernando Rodrigues Lima
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France; (R.L.); (J.B.); (W.Z.); (J.-M.D.)
- Correspondence:
| |
Collapse
|
9
|
Vander Velden JW, Osborne DM. Prolonged diet-induced obesity modifies DNA methylation and gene expression in the hippocampus. Neurosci Lett 2022; 780:136656. [DOI: 10.1016/j.neulet.2022.136656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
10
|
Teimouri M, Hosseini H, ArabSadeghabadi Z, Babaei-Khorzoughi R, Gorgani-Firuzjaee S, Meshkani R. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. J Physiol Biochem 2022; 78:307-322. [PMID: 34988903 DOI: 10.1007/s13105-021-00860-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Insulin resistance, the most important characteristic of the type 2 diabetes mellitus (T2DM), is mostly caused by impairment in the insulin receptor (IR) signal transduction pathway. Protein tyrosine phosphatase 1B (PTP1B), one of the main negative regulators of the IR signaling pathway, is broadly expressed in various cells and tissues. PTP1B decreases the phosphorylation of the IR resulting in insulin resistance in various tissues. The evidence for the physiological role of PTP1B in regulation of metabolic pathways came from whole-body PTP1B-knockout mice. Whole-body and tissue-specific PTP1B-knockout mice showed improvement in adiposity, insulin resistance, and glucose tolerance. In addition, the key role of PTP1B in the pathogenesis of T2DM and its complications was further investigated in mice models of PTP1B deficient/overexpression. In recent years, targeting PTP1B using PTP1B inhibitors is being considered an attractive target to treat T2DM. PTP1B inhibitors improve the sensitivity of the insulin receptor and have the ability to cure insulin resistance-related diseases. We herein summarized the biological functions of PTP1B in different tissues in vivo and in vitro. We also describe the effectiveness of potent PTP1B inhibitors as pharmaceutical agents to treat T2DM.
Collapse
Affiliation(s)
- Maryam Teimouri
- Department of Clinical Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra ArabSadeghabadi
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Reyhaneh Babaei-Khorzoughi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Beddows CA, Dodd GT. Insulin on the brain: The role of central insulin signalling in energy and glucose homeostasis. J Neuroendocrinol 2021; 33:e12947. [PMID: 33687120 DOI: 10.1111/jne.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Insulin signals to the brain where it coordinates multiple physiological processes underlying energy and glucose homeostasis. This review explores where and how insulin interacts within the brain parenchyma, how brain insulin signalling functions to coordinate energy and glucose homeostasis and how this contributes to the pathogenesis of metabolic disease.
Collapse
Affiliation(s)
- Cait A Beddows
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Garron T Dodd
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Rocha RF, Rodrigues T, Menegatti ACO, Bernardes GJL, Terenzi H. The antidiabetic drug lobeglitazone has the potential to inhibit PTP1B activity. Bioorg Chem 2020; 100:103927. [PMID: 32422389 DOI: 10.1016/j.bioorg.2020.103927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/03/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is considered a potential therapeutic target for the treatment of type 2 diabetes mellitus (T2DM), since this enzyme plays a significant role to down-regulate insulin and leptin signalling and its over expression has been implicated in the development of insulin resistance, T2DM and obesity. Some thiazolidinediones (TZD) derivatives have been reported as promising PTP1B inhibitors with anti hyperglycemic effects. Recently, lobeglitazone, a new TZD, was described as an antidiabetic drug that targets the PPAR-γ (peroxisome γ proliferator-activated receptor) pathway, but no information on its effects on PTP1B have been reported to date. We investigated the effects of lobeglitazone on PTP1B activity in vitro. Surprisingly, lobeglitazone led to moderate inhibition on PTP1B (IC50 42.8 ± 3.8 µM) activity and to a non-competitive reversible mechanism of action. As lobeglitazone inhibits PTP1B activity in vitro, we speculate that it could also target PTP1B signalling pathway in vivo and thus contribute to potentiate its antidiabetic effects.
Collapse
Affiliation(s)
- Ruth F Rocha
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Tiago Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Angela C O Menegatti
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC, Brazil; Universidade Federal do Piauí, CPCE, 64900-000 Bom Jesus, PI, Brazil.
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal; Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
13
|
Popović M, Matana A, Torlak V, Boutin T, Brdar D, Gunjača I, Kaličanin D, Kolčić I, Boraska Perica V, Punda A, Polašek O, Barbalić M, Hayward C, Zemunik T. Genome-wide meta-analysis identifies novel loci associated with free triiodothyronine and thyroid-stimulating hormone. J Endocrinol Invest 2019; 42:1171-1180. [PMID: 30843173 DOI: 10.1007/s40618-019-01030-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/27/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Thyroid hormones are essential for the normal function of almost all human tissues, and have critical roles in metabolism, differentiation and growth. Free triiodothyronine (fT3), free thyroxine (fT4) and thyroid-stimulating hormone (TSH) levels are under strong genetic influence; however, most of the heritability is yet unexplained. METHODS In order to identify novel loci associated with fT3, fT4 and TSH serum levels we performed a genome-wide meta-analysis of 7 411 206 polymorphisms in up to 1731 euthyroid individuals from three Croatian cohorts from Dalmatia region: two genetically isolated island populations and one mainland population. Additionally, we also performed a bivariate analysis of fT3 and fT4 levels. RESULTS The EPHB2 gene variant rs67142165 reached genome-wide significance for association with fT3 plasma levels (P = 9.27 × 10-9) and its significance was confirmed in bivariate analysis (P = 9.72 × 10-9). We also found a genome-wide significant association for variant rs13037502 upstream of the PTPN1 gene and TSH plasma levels (P = 1.67 × 10-8). CONCLUSION We identified a first genome-wide significant variant associated with fT3 plasma levels, as well as a novel locus associated with TSH plasma levels. These findings are biologically relevant and enrich our knowledge about the genetic basis of pituitary-thyroid axis function.
Collapse
Affiliation(s)
- M Popović
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - A Matana
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - V Torlak
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, Split, Croatia
| | - T Boutin
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, United Kingdom
| | - D Brdar
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, Split, Croatia
| | - I Gunjača
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - D Kaličanin
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - I Kolčić
- Department of Public Health, University of Split, School of Medicine Split, Šoltanska 2, Split, Croatia
| | - V Boraska Perica
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - A Punda
- Department of Nuclear Medicine, University Hospital Split, Spinčićeva 1, Split, Croatia
| | - O Polašek
- Department of Public Health, University of Split, School of Medicine Split, Šoltanska 2, Split, Croatia
| | - M Barbalić
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia
| | - C Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, United Kingdom
| | - T Zemunik
- Department of Medical Biology, University of Split, School of Medicine, Šoltanska 2, Split, Croatia.
| |
Collapse
|
14
|
García-Carrizo F, Picó C, Rodríguez AM, Palou A. High-Esterified Pectin Reverses Metabolic Malprogramming, Improving Sensitivity to Adipostatic/Adipokine Hormones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3633-3642. [PMID: 30855142 DOI: 10.1021/acs.jafc.9b00296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Detrimental metabolic programming has become a determinant factor in obesity propensity and the development of metabolic disorders; therefore, the search of nutritional strategies to reverse it is very relevant. Pectin is a prebiotic with health-promoting effects, such as control of glucose homeostasis and lipid metabolism, although other possible health effects and the prevention of obesity have been poorly studied. We studied the effects of chronic physiological supplementation with high-esterified pectin (HEP) in the reversion of metabolic nutrition-sensitive malprogramming associated with gestational undernutrition. As a model of nutrition-sensitive malprogramming, we used the progeny of rats with mild calorie restriction (CR) during pregnancy and analyzed their performance under metabolic stress (high-sucrose diet). We focused on the study of the sensitivity to the main adipostatic/adipokine hormones, i.e., leptin, insulin, and adiponectin, at both peripheral (liver and circulating parameters) and central (hypothalamus) levels. Our main findings suggest that chronic HEP supplementation is able to prevent weight/fat gain, to substantially reverse the detrimental malprogramming caused by the CR condition, to improve general health circulating markers, to modulate oxidative/lipogenic balance in the liver and energy metabolism regulators in the hypothalamus, and to restore/improve adipostatic/adipokine sensitivity affected by maternal calorie restriction, both peripherally and centrally. HEP stands out as a food component potentially useful against the development of metabolic disorders and obesity.
Collapse
Affiliation(s)
- Francisco García-Carrizo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics) , University of the Balearic Islands (UIB) and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , 07122 Palma de Mallorca , Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics) , University of the Balearic Islands (UIB) and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , 07122 Palma de Mallorca , Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa) , 07120 Palma de Mallorca , Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics) , University of the Balearic Islands (UIB) and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , 07122 Palma de Mallorca , Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa) , 07120 Palma de Mallorca , Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics) , University of the Balearic Islands (UIB) and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , 07122 Palma de Mallorca , Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa) , 07120 Palma de Mallorca , Spain
| |
Collapse
|
15
|
Adela R, Reddy PNC, Ghosh TS, Aggarwal S, Yadav AK, Das B, Banerjee SK. Serum protein signature of coronary artery disease in type 2 diabetes mellitus. J Transl Med 2019; 17:17. [PMID: 30674322 PMCID: PMC6345069 DOI: 10.1186/s12967-018-1755-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Background Coronary artery disease (CAD) is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). The purpose of the present study was to discriminate the Indian CAD patients with or without T2DM by using multiple pathophysiological biomarkers. Methods Using sensitive multiplex protein assays, we assessed 46 protein markers including cytokines/chemokines, metabolic hormones, adipokines and apolipoproteins for evaluating different pathophysiological conditions of control, T2DM, CAD and T2DM with CAD patients (T2DM_CAD). Network analysis was performed to create protein-protein interaction networks by using significantly (p < 0.05) altered protein markers in each disease using STRING 10.5 database. We used two supervised analysis methods i.e., between class analysis (BCA) and principal component analysis (PCA) to reveals distinct biomarkers profiles. Further, random forest classification (RF) was used to classify the diseases by the panel of markers. Results Our two supervised analysis methods BCA and PCA revealed a distinct biomarker profiles and high degree of variability in the marker profiles for T2DM_CAD and CAD. Thereafter, the present study identified multiple potential biomarkers to differentiate T2DM, CAD, and T2DM_CAD patients based on their relative abundance in serum. RF classified T2DM based on the abundance patterns of nine markers i.e., IL-1β, GM-CSF, glucagon, PAI-I, rantes, IP-10, resistin, GIP and Apo-B; CAD by 14 markers i.e., resistin, PDGF-BB, PAI-1, lipocalin-2, leptin, IL-13, eotaxin, GM-CSF, Apo-E, ghrelin, adipsin, GIP, Apo-CII and IP-10; and T2DM _CAD by 12 markers i.e., insulin, resistin, PAI-1, adiponectin, lipocalin-2, GM-CSF, adipsin, leptin, Apo-AII, rantes, IL-6 and ghrelin with respect to the control subjects. Using network analysis, we have identified several cellular network proteins like PTPN1, AKT1, INSR, LEPR, IRS1, IRS2, IL1R2, IL6R, PCSK9 and MYD88, which are responsible for regulating inflammation, insulin resistance, and atherosclerosis. Conclusion We have identified three distinct sets of serum markers for diabetes, CAD and diabetes associated with CAD in Indian patients using nonparametric-based machine learning approach. These multiple marker classifiers may be useful for monitoring progression from a healthy person to T2DM and T2DM to T2DM_CAD. However, these findings need to be further confirmed in the future studies with large number of samples. Electronic supplementary material The online version of this article (10.1186/s12967-018-1755-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ramu Adela
- Drug Discovery Research Center, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India.,Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, NIPER, Guwahati, Assam, India
| | | | - Tarini Shankar Ghosh
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Suruchi Aggarwal
- Drug Discovery Research Center, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India
| | - Amit Kumar Yadav
- Drug Discovery Research Center, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India
| | - Bhabatosh Das
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Sanjay K Banerjee
- Drug Discovery Research Center, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India.
| |
Collapse
|
16
|
Krishnan N, Bonham CA, Rus IA, Shrestha OK, Gauss CM, Haque A, Tocilj A, Joshua-Tor L, Tonks NK. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development. Nat Commun 2018; 9:283. [PMID: 29348454 PMCID: PMC5773487 DOI: 10.1038/s41467-017-02252-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
The protein tyrosine phosphatase PTP1B is a major regulator of glucose homeostasis and energy metabolism, and a validated target for therapeutic intervention in diabetes and obesity. Nevertheless, it is a challenging target for inhibitor development. Previously, we generated a recombinant antibody (scFv45) that recognizes selectively the oxidized, inactive conformation of PTP1B. Here, we provide a molecular basis for its interaction with reversibly oxidized PTP1B. Furthermore, we have identified a small molecule inhibitor that mimics the effects of scFv45. Our data provide proof-of-concept that stabilization of PTP1B in an inactive, oxidized conformation by small molecules can promote insulin and leptin signaling. This work illustrates a novel paradigm for inhibiting the signaling function of PTP1B that may be exploited for therapeutic intervention in diabetes and obesity. The activity of protein tyrosine phosphatase PTP1B, a major metabolic regulator, depends on its oxidation state. Here the authors identify and characterize a small molecule that targets the oxidized, inactive form of PTP1B, suggesting a new therapeutic approach to diabetes and obesity.
Collapse
Affiliation(s)
- Navasona Krishnan
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Christopher A Bonham
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Ioana A Rus
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,Graduate Program in Genetics and Medical Scientist Training Program, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Om Kumar Shrestha
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Carla M Gauss
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Aftabul Haque
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Ante Tocilj
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
17
|
Krishnan N, Konidaris KF, Gasser G, Tonks NK. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. J Biol Chem 2017; 293:1517-1525. [PMID: 29217773 DOI: 10.1074/jbc.c117.819110] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
The protein-tyrosine phosphatase PTP1B is a negative regulator of insulin and leptin signaling and a highly validated therapeutic target for diabetes and obesity. Conventional approaches to drug development have produced potent and specific PTP1B inhibitors, but these inhibitors lack oral bioavailability, which limits their potential for drug development. Here, we report that DPM-1001, an analog of the specific PTP1B inhibitor trodusquemine (MSI-1436), is a potent, specific, and orally bioavailable inhibitor of PTP1B. DPM-1001 also chelates copper, which enhanced its potency as a PTP1B inhibitor. DPM-1001 displayed anti-diabetic properties that were associated with enhanced signaling through insulin and leptin receptors in animal models of diet-induced obesity. Therefore, DPM-1001 represents a proof of concept for a new approach to therapeutic intervention in diabetes and obesity. Although the PTPs have been considered undruggable, the findings of this study suggest that allosteric PTP inhibitors may help reinvigorate drug development efforts that focus on this important family of signal-transducing enzymes.
Collapse
Affiliation(s)
- Navasona Krishnan
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Konstantis F Konidaris
- the Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, and
| | - Gilles Gasser
- ChimieParisTech, PSL Research University, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Nicholas K Tonks
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724,
| |
Collapse
|
18
|
Li GS, Liu XH, Zhu H, Huang L, Liu YL, Ma CM. Skeletal muscle insulin resistance in hamsters with diabetes developed from obesity is involved in abnormal skeletal muscle LXR, PPAR and SREBP expression. Exp Ther Med 2016; 11:2259-2269. [PMID: 27284309 PMCID: PMC4887951 DOI: 10.3892/etm.2016.3209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/26/2016] [Indexed: 01/14/2023] Open
Abstract
Diabetic ‘lipotoxicity’ theory suggests that fat-induced skeletal muscle insulin resistance (FISMIR) in obesity induced by a high-fat diet (HFD), which leads to ectopic lipid accumulation in insulin-sensitive tissues, may play a pivotal role in the pathogenesis of type 2 diabetes. However, the changes in gene expression and the molecular mechanisms associated with the pathogenesis of FISMIR have not yet been fully elucidated. In the present study the changes in skeletal muscle gene expression were examined in FISMIR in obese insulin-resistant and diabetic hamster models induced by HFD with or without low-dose streptozotocin-treatment. Microarray technology and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to explore the potential underlying molecular mechanisms. The pathophysiological and metabolic features of obesity and type 2 diabetes in humans are closely resembled by these hamster models. The results of microarray analysis showed that the differentially expressed genes associated with metabolism were mostly related to the abnormal regulation and changes in the gene expression of liver X receptor (LXR), peroxisome proliferator-activated receptor (PPAR) and sterol regulatory element-binding protein (SREBP) transcriptional programs in the skeletal muscle from insulin-resistant and diabetic hamsters. The microarray findings confirmed by RT-qPCR indicated that the increased expression of SREBPs and LXRβ and the decreased expression of LXRα and PPARs were involved in the molecular mechanisms of FISMIR pathogenesis in insulin-resistant and diabetic hamsters. A significant difference in the abnormal expression of skeletal muscle LXRs, PPARs and SREBPs was found between insulin-resistant and diabetic hamsters. It may be concluded that the combined abnormal expression of LXR, PPAR and SREBP transcriptional programs may contribute to the development of FISMIR mediated by skeletal muscle lipid accumulation resulting from abnormal skeletal muscle glucose and lipid metabolism in these HFD- and streptozotocin injection-induced insulin-resistant and diabetic hamsters.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, P.R. China
| | - Hua Zhu
- Department of Pathology, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, P.R. China
| | - Lan Huang
- Department of Pathology, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, P.R. China
| | - Ya-Li Liu
- Department of Pathology, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, P.R. China
| | - Chun-Mei Ma
- Department of Pathology, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, P.R. China
| |
Collapse
|
19
|
Murashov AK, Pak ES, Koury M, Ajmera A, Jeyakumar M, Parker M, Williams O, Ding J, Walters D, Neufer PD. Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice. FASEB J 2015; 30:775-84. [PMID: 26506979 DOI: 10.1096/fj.15-274274] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023]
Abstract
Obesity has more than doubled in children and tripled in adolescents in the past 30 yr. The association between metabolic disorders in offspring of obese mothers with diabetes has long been known; however, a growing body of research indicates that fathers play a significant role through presently unknown mechanisms. Recent observations have shown that changes in paternal diet may result in transgenerational inheritance of the insulin-resistant phenotype. Although diet-induced epigenetic reprogramming via paternal lineage has recently received much attention in the literature, the effect of paternal physical activity on offspring metabolism has not been adequately addressed. In the current study, we investigated the effects of long-term voluntary wheel-running in C57BL/6J male mice on their offspring's predisposition to insulin resistance. Our observations revealed that fathers subjected to wheel-running for 12 wk produced offspring that were more susceptible to the adverse effects of a high-fat diet, manifested in increased body weight and adiposity, impaired glucose tolerance, and elevated insulin levels. Long-term paternal exercise also altered expression of several metabolic genes, including Ogt, Oga, Pdk4, H19, Glut4, and Ptpn1, in offspring skeletal muscle. Finally, prolonged exercise affected gene methylation patterns and micro-RNA content in the sperm of fathers, providing a potential mechanism for the transgenerational inheritance. These findings suggest that paternal exercise produces offspring with a thrifty phenotype, potentially via miRNA-induced modification of sperm.
Collapse
Affiliation(s)
- Alexander K Murashov
- *Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Elena S Pak
- *Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Michael Koury
- *Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Ajay Ajmera
- *Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Maneesh Jeyakumar
- *Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Matthew Parker
- *Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Oksana Williams
- *Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Jian Ding
- *Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Dianne Walters
- *Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - P Darrell Neufer
- *Department of Physiology and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
20
|
Gurzov EN, Stanley WJ, Brodnicki TC, Thomas HE. Protein tyrosine phosphatases: molecular switches in metabolism and diabetes. Trends Endocrinol Metab 2015; 26:30-9. [PMID: 25432462 DOI: 10.1016/j.tem.2014.10.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are a large family of enzymes that generally oppose the actions of protein tyrosine kinases (PTKs). Genetic polymorphisms for particular PTPs are associated with altered risk of both type 1 diabetes (T1D) and type 2 diabetes (T2D). Moreover, recent evidence suggests that PTPs play crucial roles in metabolism. They can act as regulators of liver homeostasis, food intake, or immune-mediated pancreatic b cell death. In this review we describe the mechanisms by which different members of the non-receptor PTP (PTPN) family influence metabolic physiology. This 'metabolic job' of PTPs is discussed in depth and the role of these proteins in different cell types compared. Understanding the pathways regulated by PTPs will provide novel therapeutic strategies for the treatment of diabetes.
Collapse
|
21
|
Transcriptome analysis on the inflammatory cell infiltration of nonalcoholic steatohepatitis in bama minipigs induced by a long-term high-fat, high-sucrose diet. PLoS One 2014; 9:e113724. [PMID: 25415189 PMCID: PMC4240652 DOI: 10.1371/journal.pone.0113724] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/28/2014] [Indexed: 01/07/2023] Open
Abstract
Long-term adherence to a high-fat, high-calorie diet influences human health and causes obesity, metabolic syndrome and nonalcoholic steatohepatitis (NASH). Inflammation plays a key role in the development of NASH; however, the mechanism of inflammation induced by over-nutrition remains largely unknown. In this study, we fed Bama minipigs a high-fat, high-sucrose diet (HFHSD) for 23 months. The pigs exhibited characteristics of metabolic syndrome and developed steatohepatitis with greatly increased numbers of inflammatory cells, such as lymphocytes (2.27-fold, P<0.05), Kupffer cells (2.59-fold, P<0.05), eosinophils (1.42-fold, P<0.05) and neutrophils (2.77-fold, P<0.05). High-throughput RNA sequencing (RNA-seq) was performed to explore the systemic transcriptome of the pig liver during inflammation. Approximately 18.2 gigabases of raw sequence data were generated, and over 303 million high-quality reads were assembled into 21,126 unigenes. RNA-seq data analysis showed that 822 genes were differentially expressed in liver (P<0.05) between the HFHSD and control groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the process of inflammation involved the inflammatory signal transduction-related toll-like receptor, MAPK, and PPAR signaling pathways; the cytokine-related chemokine signaling, cytokine-cytokine receptor interaction, and IL2, IL4, IL6, and IL12 signaling pathways; the leukocyte receptor signaling-related T cell, B cell, and natural killer cell signaling pathways; inflammatory cell migration and invasion- related pathways; and other pathways. Moreover, we identified several differentially expressed inflammation-related genes between the two groups, including FOS, JUN, TLR7, MYC, PIK3CD, VAV3, IL2RB and IL4R, that could be potential targets for further investigation. Our study suggested that long-term HFHSD induced obesity and liver inflammation, providing basic insight into the molecular mechanism of this condition and laying the groundwork for further studies on obesity and steatohepatitis.
Collapse
|
22
|
Agouni A, Tual-Chalot S, Chalopin M, Duluc L, Mody N, Martinez MC, Andriantsitohaina R, Delibegović M. Hepatic protein tyrosine phosphatase 1B (PTP1B) deficiency protects against obesity-induced endothelial dysfunction. Biochem Pharmacol 2014; 92:607-17. [PMID: 25451690 DOI: 10.1016/j.bcp.2014.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 11/26/2022]
Abstract
Growing evidence suggests that hepatic-insulin resistance is sufficient to promote progression to cardiovascular disease. We have shown previously that liver-specific protein-tyrosine-phosphatase 1B (PTP1B) deficiency improves hepatic-insulin sensitivity and whole-body glucose homeostasis. The aim of this study was to investigate the impact of liver-specific PTP1B-deficiency (L-PTP1B-/-) on cardiac and peripheral vascular function, with special emphasis on endothelial function in the context of high-fat diet (HFD)-induced obesity. L-PTP1B-/- mice exhibited an improved glucose and lipid homeostasis and increased insulin sensitivity, without changes in body weight. HFD-feeding increased systolic blood pressure (BP) in both L-PTP1B-/- and control littermates; however, this was significantly lower in L-PTP1B-/- mice. HFD-feeding increased diastolic BP in control mice only, whilst the L-PTP1B-/- mice were completely protected. The analysis of the function of the left ventricle (LV) revealed that HFD-feeding decreased LV fractional shortening in control animals, which was not observed in L-PTP1B-/- mice. Importantly, HFD feeding significantly impaired endothelium-dependent vasorelaxation in response to acetylcholine in aortas from control mice, whilst L-PTP1B-/- mice were fully protected. This was associated with alterations in eNOS phosphorylation. Selective inhibition of COX-2, using NS-398, decreased the contractile response in response to serotonin (5-HT) only in vessels from control mice. HFD-fed control mice released enhanced levels of prostaglandin E, a vasoconstrictor metabolite; whilst both chow- and HFD-fed L-PTP1B-/- mice released higher levels of prostacylin, a vasorelaxant metabolite. Our data indicate that hepatic-PTP1B inhibition protects against HFD-induced endothelial dysfunction, underscoring the potential of peripheral PTP1B inhibitors in reduction of obesity-associated cardiovascular risk in addition to its anti-diabetic effects.
Collapse
Affiliation(s)
- Abdelali Agouni
- University of Aberdeen, Institute of Medical Sciences, School of Medical Sciences, Foresterhill Health Campus, Aberdeen AB25 2ZD, United Kingdom; University of Surrey, Faculty of Health and Medical Sciences, Department of Biochemistry and Physiology, Guildford GU2 7XH, United Kingdom
| | - Simon Tual-Chalot
- LUNAM Université, Angers, France; INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
| | - Matthieu Chalopin
- LUNAM Université, Angers, France; INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
| | - Lucie Duluc
- LUNAM Université, Angers, France; INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
| | - Nimesh Mody
- University of Aberdeen, Institute of Medical Sciences, School of Medical Sciences, Foresterhill Health Campus, Aberdeen AB25 2ZD, United Kingdom
| | - M Carmen Martinez
- LUNAM Université, Angers, France; INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France; CHU Angers, France
| | - Ramaroson Andriantsitohaina
- LUNAM Université, Angers, France; INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France; CHU Angers, France.
| | - Mirela Delibegović
- University of Aberdeen, Institute of Medical Sciences, School of Medical Sciences, Foresterhill Health Campus, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|
23
|
Ozek C, Kanoski SE, Zhang ZY, Grill HJ, Bence KK. Protein-tyrosine phosphatase 1B (PTP1B) is a novel regulator of central brain-derived neurotrophic factor and tropomyosin receptor kinase B (TrkB) signaling. J Biol Chem 2014; 289:31682-31692. [PMID: 25288805 DOI: 10.1074/jbc.m114.603621] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neuronal protein-tyrosine phosphatase 1B (PTP1B) deficiency in mice results in enhanced leptin signaling and protection from diet-induced obesity; however, whether additional signaling pathways in the brain contribute to the metabolic effects of PTP1B deficiency remains unclear. Here, we show that the tropomyosin receptor kinase B (TrkB) receptor is a direct PTP1B substrate and implicate PTP1B in the regulation of the central brain-derived neurotrophic factor (BDNF) signaling. PTP1B interacts with activated TrkB receptor in mouse brain and human SH-SY5Y neuroblastoma cells. PTP1B overexpression reduces TrkB phosphorylation and activation of downstream signaling pathways, whereas PTP1B inhibition augments TrkB signaling. Notably, brains of Ptpn1(-/-) mice exhibit enhanced TrkB phosphorylation, and Ptpn1(-/-) mice are hypersensitive to central BDNF-induced increase in core temperature. Taken together, our findings demonstrate that PTP1B is a novel physiological regulator of TrkB and that enhanced BDNF/TrkB signaling may contribute to the beneficial metabolic effects of PTP1B deficiency.
Collapse
Affiliation(s)
- Ceren Ozek
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California 90089, and
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana 46202
| | - Harvey J Grill
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kendra K Bence
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,.
| |
Collapse
|
24
|
Nguyen XTA, Le L. Suggestion of suitable animal models for in vivo studies of protein tyrosine phosphatase 1b (PTP1B) inhibitors using computational approaches. SPRINGERPLUS 2014; 3:380. [PMID: 25133088 PMCID: PMC4132456 DOI: 10.1186/2193-1801-3-380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/16/2014] [Indexed: 11/23/2022]
Abstract
PTP1B is a prototypic enzyme of the superfamily protein tyrosine phosphatases (PTPs) which are critical regulators of tyrosine phosphorylation-dependent signaling events. It is a highly plausible candidate for designing therapeutic inhibitors of obesity and type 2 diabetes (T2D). In this study, a detailed comparative analysis to reveal the evolutionary relationship of human PTP1B among related vertebrates has been addressed. The phylogenetic trees were constructed with maximum likelihood algorithm by PhyML package on the basis of multiple sequence alignment (MSA) by ClustalΩ and T-coffee. Mutational variability of the sequences corresponding to the 3D structure (pdb: 2vev) was analyzed with Consurf software. The comparative analysis by inhibitor docking to different models was made to confirm the suitability of models. As a result, the PTP1B or PTP non-receptor type 1 homologies show high conservativity where about 70% positions on primary structures are conserved. Within PTP domain (3–277), the most variable positions are 12, 13, 19 and 24 which is a part of the second aryl binding site. Moreover, there are important evolutional mutations that can change the conformation of the proteins, for instance, hydrophilic N139 changed to hydrophobic Gly (mPTP1B); E132 to proline in the hydrophobic core structure or Y46 to cystein in pTyr recognition loop. These variations/differences should be taken into account for rational inhibitor design and in choosing suitable animal models for drug testing and evaluation. Moreover, our study suggests critically potential models which are Heterocephalus glaber, Tupaia chinensis, Sus scrofa, and Rattus norvegicus in addition to the best one Macaca fascicularis. Among these models, the H.glaber and R.norvegicus are preferable over M.musculus thanks to their similarity in binding affinity and binding modes to investigated PTP1B inhibitors.
Collapse
Affiliation(s)
- Xuan Thi-Anh Nguyen
- School of Biotechnology, International University-Vietnam National University, Ward 6, Linh Trung, Thu Duc District Ho Chi Minh City, Vietnam
| | - Ly Le
- School of Biotechnology, International University-Vietnam National University, Ward 6, Linh Trung, Thu Duc District Ho Chi Minh City, Vietnam ; Life Science Laboratory, Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| |
Collapse
|
25
|
Lindtner C, Scherer T, Zielinski E, Filatova N, Fasshauer M, Tonks NK, Puchowicz M, Buettner C. Binge drinking induces whole-body insulin resistance by impairing hypothalamic insulin action. Sci Transl Med 2013; 5:170ra14. [PMID: 23363978 DOI: 10.1126/scitranslmed.3005123] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Individuals with a history of binge drinking have an increased risk of developing the metabolic syndrome and type 2 diabetes. Whether binge drinking impairs glucose homeostasis and insulin action is unknown. To test this, we treated Sprague-Dawley rats daily with alcohol (3 g/kg) for three consecutive days to simulate human binge drinking and found that these rats developed and exhibited insulin resistance even after blood alcohol concentrations had become undetectable. The animals were resistant to insulin for up to 54 hours after the last dose of ethanol, chiefly a result of impaired hepatic and adipose tissue insulin action. Because insulin regulates hepatic glucose production and white adipose tissue lipolysis, in part through signaling in the central nervous system, we tested whether binge drinking impaired brain control of nutrient partitioning. Rats that had consumed alcohol exhibited impaired hypothalamic insulin action, defined as the ability of insulin infused into the mediobasal hypothalamus to suppress hepatic glucose production and white adipose tissue lipolysis. Insulin signaling in the hypothalamus, as assessed by insulin receptor and AKT phosphorylation, decreased after binge drinking. Quantitative polymerase chain reaction showed increased hypothalamic inflammation and expression of protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signaling. Intracerebroventricular infusion of CPT-157633, a small-molecule inhibitor of PTP1B, prevented binge drinking-induced glucose intolerance. These results show that, in rats, binge drinking induces systemic insulin resistance by impairing hypothalamic insulin action and that this effect can be prevented by inhibition of brain PTP1B.
Collapse
Affiliation(s)
- Claudia Lindtner
- Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
The brain Renin-Angiotensin system and mitochondrial function: influence on blood pressure and baroreflex in transgenic rat strains. Int J Hypertens 2013; 2013:136028. [PMID: 23401750 PMCID: PMC3564433 DOI: 10.1155/2013/136028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/23/2012] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is implicated in many cardiovascular diseases, including hypertension, and may be associated with an overactive renin-angiotensin system (RAS). Angiotensin (Ang) II, a potent vasoconstrictor hormone of the RAS, also impairs baroreflex and mitochondrial function. Most deleterious cardiovascular actions of Ang II are thought to be mediated by NADPH-oxidase- (NOX-) derived reactive oxygen species (ROS) that may also stimulate mitochondrial oxidant release and alter redox-sensitive signaling pathways in the brain. Within the RAS, the actions of Ang II are counterbalanced by Ang-(1–7), a vasodilatory peptide known to mitigate against increased oxidant stress. A balance between Ang II and Ang-(1–7) within the brain dorsal medulla contributes to maintenance of normal blood pressure and proper functioning of the arterial baroreceptor reflex for control of heart rate. We propose that Ang-(1–7) may negatively regulate the redox signaling pathways activated by Ang II to maintain normal blood pressure, baroreflex, and mitochondrial function through attenuating ROS (NOX-generated and/or mitochondrial).
Collapse
|