1
|
Barger LN, El Naggar OS, Ha B, Romano G. Melanoma in people living with HIV: Immune landscape dynamics and the role of immuno- and antiviral therapies. Cancer Metastasis Rev 2024; 44:9. [PMID: 39609320 PMCID: PMC11604825 DOI: 10.1007/s10555-024-10230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
The intersection of HIV and melanoma presents a complex and unique challenge, marked by distinct patterns in incidence, mortality, and treatment response. Higher mortality rates among people with HIV who develop melanoma underscore an urgent need to identify the factors influencing these outcomes. Investigating immune system dynamics, the effects of anti-retroviral drugs, and the evolving landscape of cancer immunotherapy in this population holds promise for new insights, though significant uncertainties remain. Over the past 25 years, melanoma research has demonstrated that a robust immune response is critical for effective treatment. In the context of chronic HIV infection, viral reservoirs enable the virus to persist despite anti-retroviral therapy and foster dysregulated myeloid and T cell compartments. The resulting chronic inflammation weakens the immune system and damages tissues, potentially creating "cold" tumor microenvironments that are less responsive to therapy. In this challenging context, animal models become invaluable for uncovering underlying biological mechanisms. While these models do not fully replicate human HIV infection, they provide essential insights into critical questions and inform the development of tailored treatments for this patient population. Clinically, increasing trial participation and creating a centralized, accessible repository for HIV and cancer samples and data are vital. Achieving these goals requires institutions to address barriers to research participation among people with HIV, focusing on patient-centered initiatives that leverage biomedical research to improve their outcomes and extend their lives.
Collapse
Affiliation(s)
- Lindsay N Barger
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Olivia S El Naggar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binh Ha
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gabriele Romano
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Immune Cell Regulation & Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Rahman MA, Bissa M, Scinto H, Howe SE, Sarkis S, Ma ZM, Gutowska A, Jiang X, Luo CC, Schifanella L, Moles R, Silva de Castro I, Basu S, N'guessan KF, Williams LD, Becerra-Flores M, Doster MN, Hoang T, Choo-Wosoba H, Woode E, Sui Y, Tomaras GD, Paquin-Proulx D, Rao M, Talton JD, Kong XP, Zolla-Pazner S, Cardozo T, Franchini G, Berzofsky JA. Loss of HIV candidate vaccine efficacy in male macaques by mucosal nanoparticle immunization rescued by V2-specific response. Nat Commun 2024; 15:9102. [PMID: 39438480 PMCID: PMC11496677 DOI: 10.1038/s41467-024-53359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Systemic vaccination of macaques with V1-deleted (ΔV1) envelope immunogens reduce the risk of SIVmac251 acquisition by approximately 60%, with protective roles played by V2-specific ADCC and envelope-specific mucosal IL-17+NKp44+ innate lymphoid cells (ILCs). We investigated whether increased mucosal responses to V2 benefit vaccine efficacy by delivering oral nanoparticles (NPs) that release V2-scaffolded on Typhoid Toxin B (TTB) to the large intestine. Strikingly, mucosal immunization of male macaques abrogated vaccine efficacy with control TTB or empty NPs, but vaccine efficacy of up to 47.6% was preserved with V2-TTB NPs. The deleterious effects of NPs were linked to preferential recruitment of mucosal plasmacytoid dendritic cells (pDCs), reduction of protective mucosal NKp44+ ILCs, increased non-protective mucosal PMA/Ionomycin-induced IFN-γ+NKG2A-NKp44-ILCs, and increased levels of mucosal activated Ki67+CD4+ T cells, a potential target for virus infection. V2-TTB NP mucosal boosting rescued vaccine efficacy, likely via high avidity V2-specific antibodies mediating ADCC, and higher frequencies of mucosal NKp44+ ILCs and of ∆V1gp120 binding antibody-secreting B cells in the rectal mucosa. These findings emphasize the central role of systemic immunization and mucosal V2-specific antibodies in the protection afforded by ΔV1 envelope immunogens and encourage careful evaluation of vaccine delivery platforms to avoid inducing immune responses favorable to HIV transmission.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Scinto
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Savannah E Howe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhong-Min Ma
- California National Primate Research Center, University of California, Davis, Davis, USA
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Christina C Luo
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shraddha Basu
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kombo F N'guessan
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - LaTonya D Williams
- Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tanya Hoang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Office of Collaborative Biostatistics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Emmanuel Woode
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dominic Paquin-Proulx
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Mangala Rao
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Timothy Cardozo
- New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Naidoo KK, Altfeld M. The Role of Natural Killer Cells and Their Metabolism in HIV-1 Infection. Viruses 2024; 16:1584. [PMID: 39459918 PMCID: PMC11512232 DOI: 10.3390/v16101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Natural killer (NK) cells are multifaceted innate effector cells that critically influence antiviral immunity, and several protective NK cell features that modulate HIV-1 acquisition and viral control have been described. Chronic HIV-1 infection leads to NK cell impairment that has been associated with metabolic dysregulations. Therapeutic approaches targeting cellular immune metabolism represent potential novel interventions to reverse defective NK cell function in people living with HIV.
Collapse
Affiliation(s)
- Kewreshini K. Naidoo
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Marcus Altfeld
- Department of Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- German Center for Infection Disease (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20251 Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
4
|
Rahman MA, Silva de Castro I, Schifanella L, Bissa M, Franchini G. Vaccine induced mucosal and systemic memory NK/ILCs elicit decreased risk of SIV/SHIV acquisition. Front Immunol 2024; 15:1441793. [PMID: 39301032 PMCID: PMC11410642 DOI: 10.3389/fimmu.2024.1441793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024] Open
Abstract
SIV and HIV-based envelope V1-deleted (ΔV1) vaccines, delivered systemically by the DNA/ALVAC/gp120 platform, decrease the risk of mucosal SIV or SHIV acquisition more effectively than V1-replete vaccines. Here we investigated the induction of mucosal and systemic memory-like NK cells as well as antigen-reactive ILC response by DNA/ALVAC/gp120-based vaccination and their role against SIV/SHIV infection. ΔV1 HIV vaccination elicited a higher level of mucosal TNF-α+ and CD107+ memory-like NK cells than V1-replete vaccination, suggesting immunogen dependence. Mucosal memory-like NK cells, systemic granzyme B+ memory NK cells, and vaccine-induced mucosal envelope antigen-reactive IL-17+ NKp44+ ILCs, IL-17+ ILC3s, and IL-13+ ILC2 subsets were linked to a lower risk of virus acquisition. Additionally, mucosal memory-like NK cells and mucosal env-reactive IFN-γ+ ILC1s and env- reactive IL-13+ ILC2 subsets correlated with viral load control. We further observed a positive correlation between post-vaccination systemic and mucosal memory-like NK cells, suggesting vaccination enhances the presence of these cells in both compartments. Mucosal and systemic memory-like NK cells positively correlated with V2-specific ADCC responses, a reproducible correlate of reduced risk of SIV/HIV infection. In contrast, an increased risk was associated with the level of mucosal PMA/Ionomycin-induced IFN-γ+ and CD107+ NKG2A-NKp44- ILCs. Plasma proteomic analyses demonstrated that suppression of mucosal memory-like NK cells was linked to the level of CCL-19, LT-α, TNFSF-12, and IL-15, suppression of systemic env-reactive granzyme B+ memory-like NK cells was associated with the level of OLR1, CCL-3, and OSM, and suppression of IL-17+ ILCs immunity was correlated with the level of IL-6 and CXCL-9. In contrast, FLT3 ligand was associated with promotion of protective mucosal env-reactive IL-17+ responses. These findings emphasize the importance of mucosal memory-like NK cell and envelope- reactive ILC responses for protection against mucosal SIV/SHIV acquisition.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
5
|
Ghanooni D, Flentje A, Hirshfield S, Horvath KJ, Moreno PI, Harkness A, Ross EJ, Dilworth SE, Pahwa S, Pallikkuth S, Carrico AW. Structural Determinants of Health and Markers of Immune Activation and Systemic Inflammation in Sexual Minority Men With and Without HIV. J Urban Health 2024; 101:867-877. [PMID: 38831153 PMCID: PMC11329474 DOI: 10.1007/s11524-024-00882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Among sexual minority men (SMM), HIV and use of stimulants such as methamphetamine are linked with immune activation and systemic inflammation. Throughout the COVID-19 pandemic, SMM encountered financial challenges and structural obstacles that might have uniquely contributed to immune dysregulation and systemic inflammation, beyond the impacts of HIV and stimulant use. Between August 2020 and February 2022, 72 SMM with and without HIV residing in South Florida enrolled in a COVID-19 prospective cohort study. Multiple linear regression analyses examined unemployment, homelessness, and history of arrest as structural correlates of soluble markers of immune activation (i.e., sCD14 and sCD163) and inflammation (i.e., sTNF-α receptors I and II) at baseline after adjusting for HIV status, stimulant use, and recent SARS-CoV-2 infection. Enrolled participants were predominantly Latino (59%), gay-identified (85%), and with a mean age of 38 (SD, 12) years with approximately one-third (38%) of participants living with HIV. After adjusting for HIV status, SARS-CoV-2 infection, and recent stimulant use, unemployment independently predicted higher levels of sCD163 (β = 0.24, p = 0.04) and sTNF-α receptor I (β = 0.26, p = 0.02). Homelessness (β = 0.25, p = 0.02) and history of arrest (β = 0.24, p = 0.04) independently predicted higher levels of sCD14 after adjusting for HIV status, SARS-CoV-2 infection, and recent stimulant use. Independent associations exist between structural barriers and immune activation and systemic inflammation in SMM with and without HIV. Future longitudinal research should further elucidate complex bio-behavioral mechanisms linking structural factors with immune activation and inflammation.
Collapse
Affiliation(s)
- Delaram Ghanooni
- Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 S.W. 8Th Street, AHC5, #414, Miami, FL, 33199, USA.
| | - Annesa Flentje
- Community Health Systems, San Francisco School of Nursing and Alliance Health Project, School of Medicine, University of California, San Francisco, CA, USA
| | - Sabina Hirshfield
- Department of Medicine, STAR Program Brooklyn, State University of New York - Downstate Health Sciences University, Brooklyn, NY, USA
| | - Keith J Horvath
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Patricia I Moreno
- Miller School of Medicine, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Audrey Harkness
- School of Nursing and Health Sciences, University of Miami, Coral Gables, FL, USA
| | - Emily J Ross
- Miller School of Medicine, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Samantha E Dilworth
- Miller School of Medicine, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Savita Pahwa
- Miller School of Medicine, Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Suresh Pallikkuth
- Miller School of Medicine, Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Adam W Carrico
- Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 S.W. 8Th Street, AHC5, #414, Miami, FL, 33199, USA
| |
Collapse
|
6
|
Cronin S, de Vries-Egan A, Vahlas Z, Czernikier A, Melucci C, Pereyra Gerber P, O’Neil T, Gloss B, Sharabas M, Turk G, Verollet C, Balboa L, Palmer S, Duette G. The immunosuppressive tuberculosis-associated microenvironment inhibits viral replication and promotes HIV-1 latency in CD4 + T cells. iScience 2024; 27:110324. [PMID: 39055929 PMCID: PMC11269811 DOI: 10.1016/j.isci.2024.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is the most common coinfection among people living with HIV-1. This coinfection is associated with accelerated HIV-1 disease progression and reduced survival. However, the impact of the HIV-1/TB coinfection on HIV-1 replication and latency in CD4+ T cells remains poorly studied. Using the acellular fraction of tuberculous pleural effusion (TB-PE), we investigated whether viral replication and HIV-1 latency in CD4+ T cells are affected by a TB-associated microenvironment. Our results revealed that TB-PE impaired T cell receptor-dependent cell activation and decreased HIV-1 replication in CD4+ T cells. Moreover, this immunosuppressive TB microenvironment promoted viral latency and inhibited HIV-1 reactivation. This study indicates that the TB-induced immune response may contribute to the persistence of the viral reservoir by silencing HIV-1 expression, allowing the virus to persist undetected by the immune system, and increasing the size of the latent HIV-1 reservoir.
Collapse
Affiliation(s)
- Samantha Cronin
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW 2050, Australia
| | - Anneke de Vries-Egan
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
| | - Zoï Vahlas
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de La Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), 31077 Toulouse, France
- International Research Project CNRS “MAC-TB/HIV”, Toulouse, France and Buenos Aires, Argentina
| | - Alejandro Czernikier
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
| | - Claudia Melucci
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
| | - Pehuén Pereyra Gerber
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Thomas O’Neil
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW 2050, Australia
| | - Brian Gloss
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
| | - Mayssa Sharabas
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
| | - Gabriela Turk
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de La Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), 31077 Toulouse, France
- International Research Project CNRS “MAC-TB/HIV”, Toulouse, France and Buenos Aires, Argentina
| | - Luciana Balboa
- International Research Project CNRS “MAC-TB/HIV”, Toulouse, France and Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
- Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires C1425ASU, Argentina
| | - Sarah Palmer
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW 2050, Australia
| | - Gabriel Duette
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW 2050, Australia
| |
Collapse
|
7
|
Murray CH, Javanbakht M, Cho GD, Gorbach PM, Fulcher JA, Cooper ZD. Changes in Immune-Related Biomarkers and Endocannabinoids as a Function of Frequency of Cannabis Use in People Living With and Without HIV. Cannabis Cannabinoid Res 2024; 9:e897-e906. [PMID: 37093248 PMCID: PMC11295663 DOI: 10.1089/can.2022.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Background: Cannabis use is common among people living with HIV (PLWH). Some observational studies of PLWH have linked cannabis use to lower immune markers; however, this is yet to be confirmed. In addition, whether HIV affects the endogenous cannabinoid system has not been studied. Our objective was to examine changes in immune-related biomarkers and endocannabinoids as a function of cannabis use frequency in people living with and without HIV. Materials and Methods: Data were obtained from a longitudinal study of men who have sex with men living in Los Angeles with, or at risk for, HIV. By design, half were PLWH. Those eligible for the parent study were willing and able to return for follow-up every 6 months. Those eligible for inclusion in this study reported varying levels of current cannabis use at follow-up. Specifically, one visit corresponded to a period of daily use and another to a period of infrequent use (weekly, monthly, or less than monthly). Banked serum from all eligible participants was analyzed for immune-related biomarkers, endocannabinoids, and paracannabinoids. Results: The analysis included 36 men, 19 of whom were PLWH. PLWH reported greater lifetime methamphetamine or amphetamine use (68% vs. 0%) and current cigarette use (55% vs. 20%) than people without HIV. Serum levels of HIV-related immune biomarkers including tumor necrosis factor receptor 2 (TNFR2; p=0.013) and CD27 (p=0.004) were greater in PLWH, alongside lower anandamide (AEA) (F1,34=5.337, p=0.027) and oleoylethanolamide (OEA) (F1,34=8.222, p=0.007) levels relative to people without HIV. Frequency of cannabis use did not impact the serum analytes in our study. Conclusions: Higher levels of TNFR2 and CD27 and lower levels of AEA and OEA in PLWH underscore the role of the TNF/TNFR superfamily in HIV, while highlighting a new role for the enzymatic activity of fatty acid amide hydrolase (the enzyme that hydrolyzes AEA and OEA) in HIV. Findings that cannabis frequency did not impact the immune phenotype may not generalize to other populations of PLWH. Additional work is required to further clarify the relationship between immune markers and endocannabinoids as a function of cannabis use frequency in PLWH. ClinicalTrials.gov ID: NCT01201083.
Collapse
Affiliation(s)
- Conor H. Murray
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Marjan Javanbakht
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Grace D. Cho
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Pamina M. Gorbach
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Ziva D. Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
8
|
Dehghan Z, Mirmotalebisohi SA, Mozafar M, Sameni M, Saberi F, Derakhshanfar A, Moaedi J, Zohrevand H, Zali H. Deciphering the similarities and disparities of molecular mechanisms behind respiratory epithelium response to HCoV-229E and SARS-CoV-2 and drug repurposing, a systems biology approach. Daru 2024; 32:215-235. [PMID: 38652363 PMCID: PMC11087451 DOI: 10.1007/s40199-024-00507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/08/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Identifying the molecular mechanisms behind SARS-CoV-2 disparities and similarities will help find new treatments. The present study determines networks' shared and non-shared (specific) crucial elements in response to HCoV-229E and SARS-CoV-2 viruses to recommend candidate medications. METHODS We retrieved the omics data on respiratory cells infected with HCoV-229E and SARS-CoV-2, constructed PPIN and GRN, and detected clusters and motifs. Using a drug-gene interaction network, we determined the similarities and disparities of mechanisms behind their host response and drug-repurposed. RESULTS CXCL1, KLHL21, SMAD3, HIF1A, and STAT1 were the shared DEGs between both viruses' protein-protein interaction network (PPIN) and gene regulatory network (GRN). The NPM1 was a specific critical node for HCoV-229E and was a Hub-Bottleneck shared between PPI and GRN in HCoV-229E. The HLA-F, ADCY5, TRIM14, RPF1, and FGA were the seed proteins in subnetworks of the SARS-CoV-2 PPI network, and HSPA1A and RPL26 proteins were the seed in subnetworks of the PPI network of HCOV-229E. TRIM14, STAT2, and HLA-F played the same role for SARS-CoV-2. Top enriched KEGG pathways included cell cycle and proteasome in HCoV-229E and RIG-I-like receptor, Chemokine, Cytokine-cytokine, NOD-like receptor, and TNF signaling pathways in SARS-CoV-2. We suggest some candidate medications for COVID-19 patient lungs, including Noscapine, Isoetharine mesylate, Cycloserine, Ethamsylate, Cetylpyridinium, Tretinoin, Ixazomib, Vorinostat, Venetoclax, Vorinostat, Ixazomib, Venetoclax, and epoetin alfa for further in-vitro and in-vivo investigations. CONCLUSION We suggested CXCL1, KLHL21, SMAD3, HIF1A, and STAT1, ADCY5, TRIM14, RPF1, and FGA, STAT2, and HLA-F as critical genes and Cetylpyridinium, Cycloserine, Noscapine, Ethamsylate, Epoetin alfa, Isoetharine mesylate, Ribavirin, and Tretinoin drugs to study further their importance in treating COVID-19 lung complications.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mozafar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saberi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Derakhshanfar
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Javad Moaedi
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Zohrevand
- Student Research Committee, Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Savenkova DA, Gudymo AS, Korablev AN, Taranov OS, Bazovkina DV, Danilchenko NV, Perfilyeva ON, Ivleva EK, Moiseeva AA, Bulanovich YA, Roshchina EV, Serova IA, Battulin NR, Kulikova EA, Yudkin DV. Knockout of the Tnfa Gene Decreases Influenza Virus-Induced Histological Reactions in Laboratory Mice. Int J Mol Sci 2024; 25:1156. [PMID: 38256229 PMCID: PMC10816899 DOI: 10.3390/ijms25021156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a cytokine that is responsible for many processes associated with immune response and inflammation. It is involved in the development of an antiviral response to many virus infections. This factor was shown to be activated in influenza A virus infection, which enhances production of other cytokines. The overexpression of these cytokines can lead to a cytokine storm. To study the role of TNF-α in the development of pathologies associated with viral infection, we generated a Tnfa knockout mouse strain. We demonstrated that these mice were characterized by a significant increase in the number of viral genomes compared to that in the parental strain, but the amount of live virus did not differ. A histopathology of the lungs in the genetically modified animals was significantly lower in terms of interalveolar septal infiltration. The generated model may be used to further study pathological processes in viral infections.
Collapse
Affiliation(s)
- Darya A. Savenkova
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo 630559, Russia; (D.A.S.); (A.S.G.); (A.N.K.); (O.S.T.); (O.N.P.); (E.K.I.); (A.A.M.); (Y.A.B.); (E.V.R.)
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia;
| | - Andrey S. Gudymo
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo 630559, Russia; (D.A.S.); (A.S.G.); (A.N.K.); (O.S.T.); (O.N.P.); (E.K.I.); (A.A.M.); (Y.A.B.); (E.V.R.)
| | - Alexey N. Korablev
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo 630559, Russia; (D.A.S.); (A.S.G.); (A.N.K.); (O.S.T.); (O.N.P.); (E.K.I.); (A.A.M.); (Y.A.B.); (E.V.R.)
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia; (D.V.B.); (I.A.S.); (E.A.K.)
| | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo 630559, Russia; (D.A.S.); (A.S.G.); (A.N.K.); (O.S.T.); (O.N.P.); (E.K.I.); (A.A.M.); (Y.A.B.); (E.V.R.)
| | - Darya V. Bazovkina
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia; (D.V.B.); (I.A.S.); (E.A.K.)
| | - Nataliya V. Danilchenko
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo 630559, Russia; (D.A.S.); (A.S.G.); (A.N.K.); (O.S.T.); (O.N.P.); (E.K.I.); (A.A.M.); (Y.A.B.); (E.V.R.)
| | - Olga N. Perfilyeva
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo 630559, Russia; (D.A.S.); (A.S.G.); (A.N.K.); (O.S.T.); (O.N.P.); (E.K.I.); (A.A.M.); (Y.A.B.); (E.V.R.)
| | - Elena K. Ivleva
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo 630559, Russia; (D.A.S.); (A.S.G.); (A.N.K.); (O.S.T.); (O.N.P.); (E.K.I.); (A.A.M.); (Y.A.B.); (E.V.R.)
| | - Anastasiya A. Moiseeva
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo 630559, Russia; (D.A.S.); (A.S.G.); (A.N.K.); (O.S.T.); (O.N.P.); (E.K.I.); (A.A.M.); (Y.A.B.); (E.V.R.)
| | - Yulia A. Bulanovich
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo 630559, Russia; (D.A.S.); (A.S.G.); (A.N.K.); (O.S.T.); (O.N.P.); (E.K.I.); (A.A.M.); (Y.A.B.); (E.V.R.)
| | - Elena V. Roshchina
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo 630559, Russia; (D.A.S.); (A.S.G.); (A.N.K.); (O.S.T.); (O.N.P.); (E.K.I.); (A.A.M.); (Y.A.B.); (E.V.R.)
| | - Irina A. Serova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia; (D.V.B.); (I.A.S.); (E.A.K.)
| | - Nariman R. Battulin
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia;
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia; (D.V.B.); (I.A.S.); (E.A.K.)
| | - Elizabeth A. Kulikova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia; (D.V.B.); (I.A.S.); (E.A.K.)
| | - Dmitry V. Yudkin
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), Koltsovo 630559, Russia; (D.A.S.); (A.S.G.); (A.N.K.); (O.S.T.); (O.N.P.); (E.K.I.); (A.A.M.); (Y.A.B.); (E.V.R.)
| |
Collapse
|
10
|
Saini S, Gangwar A, Sharma R. Harnessing host-pathogen interactions for innovative drug discovery and host-directed therapeutics to tackle tuberculosis. Microbiol Res 2023; 275:127466. [PMID: 37531813 DOI: 10.1016/j.micres.2023.127466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Tuberculosis (TB) is a highly contagious bacterial infection caused by Mycobacterium tuberculosis (Mtb), which has been ranked as the second leading cause of death worldwide from a single infectious agent. As an intracellular pathogen, Mtb has well adapted to the phagocytic host microenvironment, influencing diverse host processes such as gene expression, trafficking, metabolism, and signaling pathways of the host to its advantage. These responses are the result of dynamic interactions of the bacteria with the host cell signaling pathways, whereby the bacteria attenuate the host cellular processes for their survival. Specific host genes and the mechanisms involved in the entry and subsequent stabilization of M. tuberculosis intracellularly have been identified in various genetic and chemical screens recently. The present understanding of the co-evolution of Mtb and macrophage system presented us the new possibilities for exploring host-directed therapeutics (HDT). Here, we discuss the host-pathogen interaction for Mtb, including the pathways adapted by Mtb to escape immunity. The review sheds light on different host-directed therapies (HDTs) such as repurposed drugs and vitamins, along with their targets such as granuloma, autophagy, extracellular matrix, lipids, and cytokines, among others. The article also examines the available clinical data on these drug molecules. In conclusion, the review presents a perspective on the current knowledge in the field of HDTs and the need for additional research to overcome the challenges associated HDTs.
Collapse
Affiliation(s)
- Sapna Saini
- Infectious Diseases Division, CSIR, Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjali Gangwar
- Infectious Diseases Division, CSIR, Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR, Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Haddaji A, Ouladlahsen A, Lkhider M, Bensghir R, Jebbar S, Hilmi S, Abbadi I, Sodqi M, Marih L, Pineau P, El Filali KM, Ezzikouri S. Impact of the first-line antiretroviral therapy on soluble markers of inflammation in cohort of human immunodeficiency virus type 1 in Moroccan patients: a prospective study. Arch Microbiol 2023; 205:223. [PMID: 37154966 DOI: 10.1007/s00203-023-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/04/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Chronic inflammation and immune activation are a hallmark of HIV-1 infection. In this study, we assessed inflammation biomarkers in a cohort of people living with HIV-1 (PLWH) before and after long-term suppressive combined antiretroviral therapy (cART). A single-center prospective cohort study was conducted to assess inflammatory biomarkers in 86 cART-naive PLWH and after receiving suppressive cART and 50 uninfected controls. Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and soluble CD14 (sCD14) were measured using enzyme-linked immunosorbent assay (ELISA). No significant difference was found in IL-6 levels between cART-naïve PLWH and controls (p = 0.753). In contrast, TNF-α level showed a significant difference between cART naïve-PLWH and controls (p = 0.019). Interestingly, IL-6 and TNF-α levels were significantly decreased in PLWH after cART (p < 0.0001). The sCD14 showed no significant difference between cART-naïve patients and controls (p = 0.839) and similar levels were observed in pre- and post-treatment (p = 0.719). Our results highlight the critical importance of early treatment to reduce inflammation and its consequences during HIV infection.
Collapse
Affiliation(s)
- Asmaa Haddaji
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Ahd Ouladlahsen
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Mustapha Lkhider
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Rajaa Bensghir
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Sanaa Jebbar
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Soufiane Hilmi
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco
| | - Islam Abbadi
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques of Mohammedia, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Mustapha Sodqi
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Latifa Marih
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Kamal Marhoum El Filali
- Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco
- Service Des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, 1, Place Louis Pasteur, 20360, Casablanca, Morocco.
| |
Collapse
|
12
|
Hong JJ, Hadeler EK, Mosca ML, Brownstone ND, Bhutani T, Liao WJ. TNF-alpha inhibitors and ustekinumab for the treatment of psoriasis: therapeutic utility in the era of IL-17 and IL-23 inhibitors. JOURNAL OF PSORIASIS AND PSORIATIC ARTHRITIS 2022; 7:79-92. [PMID: 35757187 PMCID: PMC9229820 DOI: 10.1177/24755303211047479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Psoriasis is a chronic inflammatory condition for which eleven FDA-approved biologic therapies are approved. Over the past decade, studies have documented the higher efficacy of IL-17 and IL-23 inhibitors for the treatment of psoriasis compared to the TNF-alpha inhibitors and ustekinumab, an IL-12/23 inhibitor. Despite this, there remains an important role for the use of TNF-alpha inhibitors and ustekinumab in the treatment of psoriasis. Here, we review how considerations of infection and malignancy risk, patient demographics, treatment resistance, and co-morbidities may make certain TNF-alpha inhibitors or ustekinumab an excellent choice for therapy in particular patient subgroups.
Collapse
Affiliation(s)
- Julie J Hong
- University of California San Francisco, Department of Dermatology, Psoriasis and Skin Treatment Center
| | - Edward K Hadeler
- University of California San Francisco, Department of Dermatology, Psoriasis and Skin Treatment Center
| | - Megan L Mosca
- University of California San Francisco, Department of Dermatology, Psoriasis and Skin Treatment Center
| | - Nicholas D Brownstone
- University of California San Francisco, Department of Dermatology, Psoriasis and Skin Treatment Center
| | - Tina Bhutani
- University of California San Francisco, Department of Dermatology, Psoriasis and Skin Treatment Center
| | - Wilson J Liao
- University of California San Francisco, Department of Dermatology, Psoriasis and Skin Treatment Center
| |
Collapse
|
13
|
Guillo L, Uzzan M, Beaugerie L, Gornet JM, Amiot A, Pelletier AL, Altwegg R, Laharie D, Abitbol V, Filippi J, Goutorbe F, Nachury M, Nancey S, Viennot S, Reenaers C, Amil M, Caillo L, Buisson A, Collins M, Picon L, Vidon M, Benezech A, Rabaud C, Baumann C, Rousseau H, Dubourg G, Serrero M, Peyrin-Biroulet L. Impact of HIV Infection on the Course of Inflammatory Bowel Disease and Drug Safety Profile: A Multicenter GETAID Study. Clin Gastroenterol Hepatol 2022; 20:787-797.e2. [PMID: 33359726 DOI: 10.1016/j.cgh.2020.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), and human immunodeficiency virus (HIV) both impact innate and adaptive immunity in the intestinal mucosa. As it is a rare situation, the intersection between HIV and IBD remains unclear, especially the impact of HIV infection on the course of IBD, and the drug safety profile is unknown. METHODS We conducted a multicenter retrospective cohort study between January 2019 and August 2020. All adult patients with IBD and concomitant HIV infection were included. Each IBD patient with HIV was matched to two HIV-uninfected IBD patients. RESULTS Overall, 195 patients with IBD were included, including 65 HIV-infected patients and 130 without HIV infection. Of the 65 infected patients, 22 (33.8%) required immunosuppressants and 31 (47.7%) biologics. In the HIV-infected group, the need for immunosuppressants (p = 0.034 for CD and p = 0.012 for UC) and biologics (p = 0.004 for CD and p = 0.008 for UC) was significantly lower. The disease course, using a severity composite criterion, was not significantly different between the two groups for CD (hazard ration (HR) = 1.3 [0.7; 2.4], p = 0.45) and UC (HR, 1.1 [0.5; 2.7], p = 0.767). The overall drug safety profile was statistically similar between the two groups. CONCLUSION Although HIV-infected patients receive less treatments, the course of their IBD did not differ than uninfected, suggesting that HIV infection might attenuate IBD. The drug safety profile is reassuring, allowing physician to treat these patients according to current recommendations.
Collapse
Affiliation(s)
- Lucas Guillo
- Department of Gastroenterology, University Hospital of Marseille Nord, Aix-Marseille, Marseille University, Marseille, France; French Institute of Health and Medical Research Nutrition-Genetics and Exposure to Environmental Risks U1256, Department of Gastroenterology, University Hospital of Nancy, University of Lorraine, Vandœuvre-lès-Nancy, France
| | - Mathieu Uzzan
- IBD Unit, Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Laurent Beaugerie
- Department of Gastroenterology, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Jean-Marc Gornet
- Department of Gastroenterology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélien Amiot
- EC2M3-EA7375, Department of Gastroenterology, Groupe Hospitalier Henri Mondor-Albert Chennevier, Assistance Publique-Hôpitaux de Paris, University of Paris Est Créteil, Créteil, France
| | - Anne-Laure Pelletier
- Department of Gastroenterology, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Romain Altwegg
- Department of Gastroenterology, Saint-Eloi Hospital, University Hospital of Montpellier, Montpellier, France
| | - David Laharie
- Service d'Hépato-gastroentérologie et oncologie digestive, Hôpital Haut-Lévêque, Centre Hospitalier Universitaire de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Vered Abitbol
- Departement of Gastroenterology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Jérôme Filippi
- Department of Gastroenterology, Archet 2 University Hospital, Nice, France
| | - Felix Goutorbe
- Department of Gastroenterology, Hospital of Bayonne, Bayonne, France
| | - Maria Nachury
- U1286 Institute for Translational Research in Inflammation, French Institute of Health and Medical Research, Centre Hospitalier Universitaire de Lille, University of Lille, Lille, France
| | - Stéphane Nancey
- French Institute of Health and Medical Research U1111-CIRI, Department of Gastroenterology, Lyon-Sud University Hospital, Hospices Civils de Lyon, Pierre Bénite, France
| | - Stéphanie Viennot
- Departement of Gastroenterology, University Hospital of Caen, Caen, France
| | - Catherine Reenaers
- Departement of Gastroenterology, University Hospital of Liège, Liège, Belgium
| | - Morgane Amil
- Departement of Gastroenterology, Les Oudairies Hospital, La Roche-sur-Yon, France
| | - Ludovic Caillo
- Department of Gastroenterology, University Hospital of Nîmes, Nîmes, France
| | - Anthony Buisson
- Infection, Inflammation et Interaction Hôtes Pathogènes, French Institute of Health and Medical Research U1071, Service d'Hépato-Gastroentérologie, Centre Hospitalier Universitaire de Clermont-Ferrand, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Michael Collins
- Department of Gastroenterology, Bicêtre University Hospital, Le Kremlin-Bicêtre, France
| | - Laurence Picon
- Department of Gastroenterology, University Hospital of Tours, Tours, France
| | - Mathias Vidon
- Department of gastroenterology, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Alban Benezech
- Departement of Gastroenterology, Henri Duffaut Hospital, Avignon, France
| | - Christian Rabaud
- Department of Infectious Disease, University Hospital of Nancy, University of Lorraine, Vandœuvre-lès-Nancy, France
| | - Cédric Baumann
- Methodology, Data Management and Statistic Unit, Délégation à la Recherche Clinique et à l'Innovation, Methodology Promotion Investigation Department, University Hospital of Nancy, Vandœuvre-Lès-Nancy, France
| | - Hélène Rousseau
- Methodology, Data Management and Statistic Unit, Délégation à la Recherche Clinique et à l'Innovation, Methodology Promotion Investigation Department, University Hospital of Nancy, Vandœuvre-Lès-Nancy, France
| | - Grégory Dubourg
- Institut Hospitalo-Universitaire en Maladies Infectieuses de Marseille, Marseille, France; Microbes, Evolution Phylogénie et Infections, Institute de la Recherche pour le Développement, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Mélanie Serrero
- Department of Gastroenterology, University Hospital of Marseille Nord, Aix-Marseille, Marseille University, Marseille, France
| | - Laurent Peyrin-Biroulet
- French Institute of Health and Medical Research Nutrition-Genetics and Exposure to Environmental Risks U1256, Department of Gastroenterology, University Hospital of Nancy, University of Lorraine, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
14
|
Kaur B, Mishra S, Kaur R, Kalotra S, Singh P. Rationally designed TNF-α inhibitors: Identification of promising cytotoxic agents. Bioorg Med Chem Lett 2021; 41:127982. [PMID: 33766762 DOI: 10.1016/j.bmcl.2021.127982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
Design and synthesis of new indole derivatives as tumor growth inhibiting agents via inhibiting the TNF-α is described. The preliminary results showed the inhibition of LPS induced production of NO, TNF-α and IL-6 by these compounds out of which compounds 2d and 2g exhibited appreciable cytotoxicity against the 60 cell lines panel of human cancer. The rationale behind the design of the molecules and the results of their biological studies are presented. 2009 Elsevier Ltd. All rights reserved.
Collapse
Affiliation(s)
- Baljit Kaur
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India
| | - Sahil Mishra
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India
| | - Ramandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, India
| | - Shikha Kalotra
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, India
| | - Palwinder Singh
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
15
|
Moron-Lopez S, Urrea V, Dalmau J, Lopez M, Puertas MC, Ouchi D, Gómez A, Passaes C, Mothe B, Brander C, Saez-Cirion A, Clotet B, Esteller M, Berdasco M, Martinez-Picado J. The Genome-wide Methylation Profile of CD4+ T Cells From Individuals With Human Immunodeficiency Virus (HIV) Identifies Distinct Patterns Associated With Disease Progression. Clin Infect Dis 2021; 72:e256-e264. [PMID: 32712664 PMCID: PMC8096268 DOI: 10.1093/cid/ciaa1047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human genetic variation-mostly in the human leukocyte antigen (HLA) and C-C chemokine receptor type 5 (CCR5) regions-explains 25% of the variability in progression of human immunodeficiency virus (HIV) infection. However, it is also known that viral infections can modify cellular DNA methylation patterns. Therefore, changes in the methylation of cytosine-guanine (CpG) islands might modulate progression of HIV infection. METHODS In total, 85 samples were analyzed: 21 elite controllers (EC), 21 subjects with HIV before combination antiretroviral therapy (cART) (viremic, 93 325 human immunodeficiency virus type 1 [HIV-1] RNA copies/mL) and under suppressive cART (cART, median of 17 months, <50 HIV-1 RNA copies/mL), and 22 HIV-negative donors (HIVneg). We analyzed the methylation pattern of 485 577 CpG in DNA from peripheral CD4+ T lymphocytes. We selected the most differentially methylated gene (TNF) and analyzed its specific methylation, messenger RNA (mRNA) expression, and plasma protein levels in 5 individuals before and after initiation of cART. RESULTS We observed 129 methylated CpG sites (associated with 43 gene promoters) for which statistically significant differences were recorded in viremic versus HIVneg, 162 CpG sites (55 gene promoters) in viremic versus cART, 441 CpG sites (163 gene promoters) in viremic versus EC, but none in EC versus HIVneg. The TNF promoter region was hypermethylated in viremic versus HIVneg, cART, and EC. Moreover, we observed greater plasma levels of TNF in viremic individuals than in EC, cART, and HIVneg. CONCLUSIONS Our study shows that genome methylation patterns vary depending on HIV infection status and progression profile and that these variations might have an impact on controlling HIV infection in the absence of cART.
Collapse
Affiliation(s)
| | - Victor Urrea
- AIDS Research Institute IrsiCaixa, Badalona, Spain
| | | | - Miguel Lopez
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain.,Epigenetic Therapies Group, Experimental and Clinical Hematology Program, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Dan Ouchi
- AIDS Research Institute IrsiCaixa, Badalona, Spain
| | - Antonio Gómez
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistence, Paris, France
| | - Beatriz Mothe
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,Fundació Lluita Contra la Sida, University Hospital "Germans Trias i Pujol," Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Christian Brander
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistence, Paris, France
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,Fundació Lluita Contra la Sida, University Hospital "Germans Trias i Pujol," Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Manel Esteller
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.,Centro de Investigación Biomédica en Red Cancer (CIBERONC), Madrid, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Badalona, Spain
| | - Maria Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain.,Epigenetic Therapies Group, Experimental and Clinical Hematology Program, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
16
|
Sood N, Verma DK, Paria A, Yadav SC, Yadav MK, Bedekar MK, Kumar S, Swaminathan TR, Mohan CV, Rajendran KV, Pradhan PK. Transcriptome analysis of liver elucidates key immune-related pathways in Nile tilapia Oreochromis niloticus following infection with tilapia lake virus. FISH & SHELLFISH IMMUNOLOGY 2021; 111:208-219. [PMID: 33577877 DOI: 10.1016/j.fsi.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is one of the most important aquaculture species farmed worldwide. However, the recent emergence of tilapia lake virus (TiLV) disease, also known as syncytial hepatitis of tilapia, has threatened the global tilapia industry. To gain more insight regarding the host response against the disease, the transcriptional profiles of liver in experimentally-infected and control tilapia were compared. Analysis of RNA-Seq data identified 4640 differentially expressed genes (DEGs), which were involved among others in antigen processing and presentation, MAPK, apoptosis, necroptosis, chemokine signaling, interferon, NF-kB, acute phase response and JAK-STAT pathways. Enhanced expression of most of the DEGs in the above pathways suggests an attempt by tilapia to resist TiLV infection. However, upregulation of some of the key genes such as BCL2L1 in apoptosis pathway; NFKBIA in NF-kB pathway; TRFC in acute phase response; and SOCS, EPOR, PI3K and AKT in JAK-STAT pathway and downregulation of the genes, namely MAP3K7 in MAPK pathway; IFIT1 in interferon; and TRIM25 in NF-kB pathway suggested that TiLV was able to subvert the host immune response to successfully establish the infection. The study offers novel insights into the cellular functions that are affected following TiLV infection and will serve as a valuable genomic resource towards our understanding of susceptibility of tilapia to TiLV infection.
Collapse
Affiliation(s)
- Neeraj Sood
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Dev Kumar Verma
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Anutosh Paria
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Shrish Chandra Yadav
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Manoj Kumar Yadav
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Megha Kadam Bedekar
- ICAR-Central Institute of Fisheries Education, Versova, Andheri (W), Mumbai, 400 061, Maharashtra, India
| | - Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Versova, Andheri (W), Mumbai, 400 061, Maharashtra, India
| | - Thangaraj Raja Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-NBFGR, CMFRI Campus, Kochi, 682 018, Kerala, India
| | | | - K V Rajendran
- ICAR-Central Institute of Fisheries Education, Versova, Andheri (W), Mumbai, 400 061, Maharashtra, India
| | - Pravata Kumar Pradhan
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
17
|
Alves NMP, de Moura RR, Bernardo LC, Agrelli A, de Oliveira ASLE, da Silva NP, Crovella S, Brandão LAC. In silico analysis of molecular interactions between HIV-1 glycoprotein gp120 and TNF receptors. INFECTION GENETICS AND EVOLUTION 2021; 92:104837. [PMID: 33813078 DOI: 10.1016/j.meegid.2021.104837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
Proinflammatory microenvironmental is crucial for the Human Immunodeficiency Virus Type 1 (HIV-1) pathogenesis. The viral glycoprotein 120 (gp120) must interact with the CD4+ T cell chemokine receptor (CCR5) and a co-receptor C-X-C chemokine receptor type 4 (CXCR4) to let the virus entry into the host cells. However, the interaction of the viral particle with other cell surface receptors is mandatory for its attachment and subsequently entry. Tumor Necrosis Factor receptor type I (TNFR1), type II (TNFR2) and Fas are a superfamily of transmembrane proteins involved in canonical inflammatory pathway and cell death by apoptosis as responses against viral pathogens. In our study, we performed an in silico evaluation of the molecular interactions between viral protein gp120 and TNF receptors (TNFR1, TNFR2 and Fas). Protein structures were retrieved from Protein Databank (PDB), and Molecular Docking and dynamics were performed using ClusPro 2.0 server and GROMACS software, respectively. We observed that gp120 is able to bind TNFR1, TNFR2 and Fas receptors, although only the TNFR2-gp120 complex demonstrated to produce a stable and durable binding. Our findings suggest that gp120 may act as an agonist to TNF-α and also function as an attachment factor in HIV-1 entry process. These molecular interaction by gp120 may be the key to HIV-1 immunopathogenesis. In conclusion, gp120 may stimulate pro-inflammatory and apoptotic signaling transduction pathways mediated by TNFR2 and may act as an attachment factor retaining HIV-1 viral particles on the host cell surface.
Collapse
Affiliation(s)
| | - Ronald Rodrigues de Moura
- Department of Advanced Diagnostics, IRCCS Materno Infantile Burlo Garofolo, Trieste, Friuli Venezia Giulia, Italy.
| | - Lucas Coêlho Bernardo
- Department of Pathology, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Almerinda Agrelli
- Department of Pathology, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil; Laboratory of Advanced Nanomaterials (LANO), Center for Strategic Technologies Northeastern (CETENE), Recife, Pernambuco, Brazil.
| | | | | | - Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, P.O. Box 2713, Doha, Qatar.
| | - Lucas André Cavalcanti Brandão
- Department of Pathology, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
18
|
Chan L, Chung CC, Chen JH, Yu RC, Hong CT. Cytokine Profile in Plasma Extracellular Vesicles of Parkinson's Disease and the Association with Cognitive Function. Cells 2021; 10:cells10030604. [PMID: 33803292 PMCID: PMC7999703 DOI: 10.3390/cells10030604] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/22/2022] Open
Abstract
Plasma extracellular vesicles (EVs) containing various molecules, including cytokines, can reflect the intracellular condition and participate in cell-to-cell signaling, thus emerging as biomarkers for Parkinson’s disease (PD). Inflammation may be a crucial risk factor for PD development and progression. The present study investigated the role of plasma EV cytokines as the biomarkers of PD. This cross-sectional study recruited 113 patients with PD, with mild to moderate stage disease, and 48 controls. Plasma EVs were isolated, and the levels of cytokines, including pro-interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β1, were evaluated. Patients with PD had significantly increased plasma EV pro-IL-1β and TNF-α levels compared with controls after adjustment for age and sex. Despite the lack of a significant association between plasma EV cytokines and motor symptom severity in patients with PD, cognitive dysfunction severity, assessed using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment, was significantly associated with plasma EV pro-IL-1β, IL-6, IL-10, and TNF-α levels. This association was PD specific and not found in controls. Furthermore, patients with PD cognitive deficit (MMSE < 26) exhibited a distinguished EV cytokine profile compared to those without cognitive deficit. The findings support the concept of inflammatory pathogenesis in the development and progression of PD and indicate that plasma EV cytokines may serve as PD biomarkers in future.
Collapse
Affiliation(s)
- Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (L.C.); (C.-C.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chen-Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (L.C.); (C.-C.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 11031, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (L.C.); (C.-C.C.); (J.-H.C.)
| | - Ruan-Ching Yu
- Division of Psychiatry, University College London, London W1T 7NF, UK;
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (L.C.); (C.-C.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2249-0088 (ext. 8112)
| |
Collapse
|
19
|
Du P, Arpadi SM, Muscat J, Richie JP. Glutathione Deficiency in HIV-1-Infected Children with Short Stature. J PEDIAT INF DIS-GER 2021. [DOI: 10.1055/s-0041-1722973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Objective This study was aimed to determine if glutathione (GSH) deficiency occurs in children with HIV infection and whether GSH deficiency is associated with HIV-related short stature.
Methods We conducted a cross-sectional study with two age-matched comparison groups in an inner city hospital-based pediatric AIDS/HIV outpatient clinic. Ten perinatally HIV-infected children aged 6 to 49 months with short stature (height–age percentile ≤5) were studied together with age-matched 10 HIV-infected children with normal height and 10 HIV-seronegative children with normal height. Total erythrocyte GSH (GSH and GSH disulfide) levels were determined by a modification of the 5,5′-dithiobis-2-nitrobenzoic acid glutathione disulfide reductase method. Other measures included complete blood counts, lymphocyte subset analysis, plasma albumin, cholesterol, vitamins A and E, and determination of HIV disease stage.
Discussion Erythrocyte GSH levels were lower in HIV-infected children with short stature (mean ± standard deviation [SD]: 0.639 µmol/mL ± 0.189) compared with HIV-infected children with normal height (mean ± SD: 0.860 µmol/mL ± 0.358; p < 0.05) and HIV-negative controls (mean ± SD: 0.990 µmol/mL ± 0.343; p < 0.05). Plasma levels of cholesterol, albumin, and vitamins A and E did not differ between the short-stature group and either the HIV-infected normal-height group or HIV-negative controls.
Conclusion These results demonstrate a GSH deficiency in HIV-infected children with short stature and support the hypothesis that GSH balance is important in growth among HIV-infected children.
Collapse
Affiliation(s)
- Ping Du
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, United States
| | - Stephen M. Arpadi
- Department of Pediatrics, Mailman School of Public Health, Columbia University, New York, New York, United States
| | - Joshua Muscat
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, United States
| | - John P. Richie
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
20
|
Edwar L, Ha P, Ariyanto IA, Estiasari R, Sitompul R, Lee S, Price P. A TNF Block Genotype may Influence CMV Retinitis in HIV Patients without Affecting Systemic Viral Replication. Curr HIV Res 2021; 19:96-99. [PMID: 32914715 DOI: 10.2174/1570162x18666200910151050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND A conserved TNF block haplotype marked by the minor alleles of rs1800629 (TNFA-308*A) and rs9281523 [BAT1(intron 10)*C] has been linked with several immunopathological conditions and with rapid progression of HIV disease. Reported associations with cytomegalovirus (CMV) retinitis in HIV patients before or during early antiretroviral therapy (ART) may therefore reflect greater replication of CMV in advanced HIV disease or an immunopathological response to CMV in the retina. OBJECTIVE As all Indonesian HIV patients display high levels of CMV replication, we evaluated whether TNF block genotypes alter markers of their burden of CMV and/or associate with retinitis. METHODS We assessed 79 consecutive HIV patients beginning ART, 25 HIV patients with a history of CMV-retinitis and 63 healthy adults. HIV RNA, CD4 T-cell counts, CMV-reactive antibody and CMV DNA were measured and alleles of TNFA-308, BAT1(intron 10) and TNFA-1031 (rs1799964) were determined. RESULTS TNFA-308 and BAT1(intron 10) were in complete linkage disequilibrium. Patients carrying minor alleles at both loci had higher levels of CMV-reactive antibody after one month on ART (p=0.01), but not at other time points spanning 1 year on ART. 50% of patients had detectable CMV DNA before ART, irrespective of TNF block genotypes. However, the TNFA-308*A/- BAT1(intron 10)*C haplotype was more common in CMV-retinitis patients than other patients or healthy controls (p<0.01). CONCLUSION The TNFA-308*A/BAT1(intron 10)*C haplotype appears to affect CMV-induced pathology rather than CMV replication.
Collapse
Affiliation(s)
- Lukman Edwar
- Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Phuongnhi Ha
- School of Pharmacy & Biomedical Science, Curtin University, Bentley, Australia
| | - Ibnu A Ariyanto
- Virology and Cancer Pathobiology Research Center, Universitas Indonesia, Jakarta, Indonesia
| | | | | | - Silvia Lee
- School of Pharmacy & Biomedical Science, Curtin University, Bentley, Australia
| | - Patricia Price
- School of Pharmacy & Biomedical Science, Curtin University, Bentley, Australia
| |
Collapse
|
21
|
Teer E, Joseph DE, Glashoff RH, Faadiel Essop M. Monocyte/Macrophage-Mediated Innate Immunity in HIV-1 Infection: From Early Response to Late Dysregulation and Links to Cardiovascular Diseases Onset. Virol Sin 2021; 36:565-576. [PMID: 33400091 DOI: 10.1007/s12250-020-00332-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Although monocytes and macrophages are key mediators of the innate immune system, the focus has largely been on the role of the adaptive immune system in the context of human immunodeficiency virus (HIV) infection. Thus more attention and research work regarding the innate immune system-especially the role of monocytes and macrophages during early HIV-1 infection-is required. Blood monocytes and tissue macrophages are both susceptible targets of HIV-1 infection, and the early host response can determine whether the nature of the infection becomes pathogenic or not. For example, monocytes and macrophages can contribute to the HIV reservoir and viral persistence, and influence the initiation/extension of immune activation and chronic inflammation. Here the expansion of monocyte subsets (classical, intermediate and non-classical) provide an increased understanding of the crucial role they play in terms of chronic inflammation and also by increasing the risk of coagulation during HIV-1 infection. This review discusses the role of monocytes and macrophages during HIV-1 pathogenesis, starting from the early response to late dysregulation that occurs as a result of persistent immune activation and chronic inflammation. Such changes are also linked to downstream targets such as increased coagulation and the onset of cardiovascular diseases.
Collapse
Affiliation(s)
- Eman Teer
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Danzil E Joseph
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Richard H Glashoff
- Division of Medical Microbiology & Immunology, Department of Pathology, Stellenbosch University and NHLS, Cape Town, 7505, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
22
|
Kettelhut A, Bowman E, Funderburg NT. Immunomodulatory and Anti-Inflammatory Strategies to Reduce Comorbidity Risk in People with HIV. Curr HIV/AIDS Rep 2020; 17:394-404. [PMID: 32535769 DOI: 10.1007/s11904-020-00509-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW In this review, we will discuss treatment interventions targeting drivers of immune activation and chronic inflammation in PWH. RECENT FINDINGS Potential treatment strategies to prevent the progression of comorbidities in PWH have been identified. These studies include, among others, the use of statins to modulate lipid alterations and subsequent innate immune receptor activation, probiotics to restore healthy gut microbiota and reduce microbial translocation, hydroxychloroquine to reduce immune activation by altering Toll-like receptors function and expression, and canakinumab to block the action of a major pro-inflammatory cytokine IL-1β. Although many of the treatment strategies discussed here show promise, due to the complex nature of chronic inflammation and comorbidities in PWH, larger clinical studies are needed to understand and target the prominent drivers and inflammatory cascades underlying these end-organ diseases.
Collapse
Affiliation(s)
- Aaren Kettelhut
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, Ohio State University College of Medicine, Columbus, OH, USA
| | - Emily Bowman
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, Ohio State University College of Medicine, Columbus, OH, USA
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
23
|
Attallah MA, Jarrin Jara MD, Gautam AS, Peesapati VSR, Khan S. A Review of the Use of Biological Agents in Human Immunodeficiency Virus Positive Patients With Rheumatological Diseases. Cureus 2020; 12:e10970. [PMID: 33209528 PMCID: PMC7667623 DOI: 10.7759/cureus.10970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/15/2020] [Indexed: 11/05/2022] Open
Abstract
After approval, initial biologics etanercept, infliximab, and adalimumab became useful in the therapeutic armamentarium to treat rheumatoid arthritis (RA) patients who had an inadequate response to disease-modifying anti-rheumatic drugs (DMARDs). However, all phase-III clinical trials submitted to the FDA, by design, excluded patients who were human immunodeficiency virus (HIV) positive. They are another subset of patients with low immunity due to their HIV-positive status. Very little information is available about the use of biologics in this new group of patients if they fail to respond to DMARDS. The available literature is limited to case reports about HIV-positive RA patients with reported side effects. These side effects range from no opportunistic infections (OIs) in some to acute respiratory distress syndrome (ARDS) and disseminated intravascular coagulopathy (DIC) reported in others. Some HIV cases may initially present with rheumatological manifestations. With growing epidemiologic evidence of frequent joint manifestations in HIV-positive patients, HIV testing should be done more frequently in patients with RA, even those who deny risk factors for HIV. This review may help develop future guidelines on how to manage HIV-positive RA patients.
Collapse
Affiliation(s)
- Marline A Attallah
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | | | - Avneesh S Gautam
- Medicine and Surgery, Bharati Vidyapeeth Medical College, Pune, IND
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | | | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
24
|
Management of psoriatic patients in biologic treatment associated with infectious comorbidities. Postepy Dermatol Alergol 2020; 37:417-421. [PMID: 32792886 PMCID: PMC7394172 DOI: 10.5114/ada.2020.96155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/17/2018] [Indexed: 12/28/2022] Open
Abstract
Introduction Psoriasis is a chronic inflammatory disease affecting about 2% of population, involving both acquired and innate immunity. Psoriasis affects mainly skin, presenting multiple co-morbidities; among them infective ones. Re-activation of tuberculosis or viral hepatitis (HBV and HCV) still represents a therapeutic challenge in patients receiving treatment with biological drugs, as well as HIV infection. For this reason, a multidisciplinary approach with global treatment resulting from active collaboration of different specialists is highly recommended. Aim To investigate the most common infective diseases as co-morbidities associated with psoriasis and to provide algorithms for screening, follow-up and therapeutic management in psoriatic patients. Material and methods We examined the main infectious comorbidities that can affect moderate to severe psoriatic patients, influencing the therapeutic choice as during the biological treatment both viral and tuberculosis re-activation may occur. We have therefore evaluated the main diseases (TB, Hepatitis B and C, HIV) and the monitoring of patients during treatment with biological agents. Results Regular monitoring of psoriatic patients is recommended during long-term treatment with biological drugs in order to identify cases of re-activation of the latent infective agent or de novo acquired infection. Conclusions Here we report the state of art regarding management of psoriatic patients with these co-morbidities suggesting a specific screening and management for infectious diseases in patients with moderate to severe plaque psoriasis.
Collapse
|
25
|
Perricone C, Triggianese P, Bartoloni E, Cafaro G, Bonifacio AF, Bursi R, Perricone R, Gerli R. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19. J Autoimmun 2020; 111:102468. [PMID: 32317220 PMCID: PMC7164894 DOI: 10.1016/j.jaut.2020.102468] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed the world at a pandemic risk. Coronavirus-19 disease (COVID-19) is an infectious disease caused by SARS-CoV-2, which causes pneumonia, requires intensive care unit hospitalization in about 10% of cases and can lead to a fatal outcome. Several efforts are currently made to find a treatment for COVID-19 patients. So far, several anti-viral and immunosuppressive or immunomodulating drugs have demonstrated some efficacy on COVID-19 both in vitro and in animal models as well as in cases series. In COVID-19 patients a pro-inflammatory status with high levels of interleukin (IL)-1B, IL-1 receptor (R)A and tumor necrosis factor (TNF)-α has been demonstrated. Moreover, high levels of IL-6 and TNF-α have been observed in patients requiring intensive-care-unit hospitalization. This provided rationale for the use of anti-rheumatic drugs as potential treatments for this severe viral infection. Other agents, such as hydroxychloroquine and chloroquine might have a direct anti-viral effect. The anti-viral aspect of immunosuppressants towards a variety of viruses has been known since long time and it is herein discussed in the view of searching for a potential treatment for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Angelo F Bonifacio
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy.
| |
Collapse
|
26
|
Huante MB, Saito TB, Nusbaum RJ, Naqvi KF, Chauhan S, Hunter RL, Actor JK, Rudra JS, Endsley MA, Lisinicchia JG, Gelman BB, Endsley JJ. Small Animal Model of Post-chemotherapy Tuberculosis Relapse in the Setting of HIV Co-infection. Front Cell Infect Microbiol 2020; 10:150. [PMID: 32373548 PMCID: PMC7176873 DOI: 10.3389/fcimb.2020.00150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/23/2020] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis relapse following drug treatment of active disease is an important global public health problem due to the poorer clinical outcomes and increased risk of drug resistance development. Concurrent infection with HIV, including in those receiving anti-retroviral therapy (ART), is an important risk factor for relapse and expansion of drug resistant Mycobacterium tuberculosis (Mtb) isolates. A greater understanding of the HIV-associated factors driving TB relapse is important for development of interventions that support immune containment and complement drug therapy. We employed the humanized mouse to develop a new model of post-chemotherapy TB relapse in the setting of HIV infection. Paucibacillary TB infection was observed following treatment with Rifampin and Isoniazid and subsequent infection with HIV-1 was associated with increased Mtb burden in the post-drug phase. Organized granulomas were observed during development of acute TB and appeared to resolve following TB drug therapy. At relapse, granulomatous pathology in the lung was infrequent and mycobacteria were most often observed in the interstitium and at sites of diffuse inflammation. Compared to animals with HIV mono-infection, higher viral replication was observed in the lung and liver, but not in the periphery, of animals with post-drug TB relapse. The results demonstrate a potential role for the humanized mouse as an experimental model of TB relapse in the setting of HIV. Long term, the model could facilitate discovery of disease mechanisms and development of clinical interventions.
Collapse
Affiliation(s)
- Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rebecca J Nusbaum
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Kubra F Naqvi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Jai S Rudra
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Joshua G Lisinicchia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
27
|
Aiello A, Giannessi F, Percario ZA, Affabris E. An emerging interplay between extracellular vesicles and cytokines. Cytokine Growth Factor Rev 2019; 51:49-60. [PMID: 31874738 DOI: 10.1016/j.cytogfr.2019.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are small membrane-bound particles that are naturally released from cells. They are recognized as potent vehicles of intercellular communication both in prokaryotes and eukaryotes. Because of their capacity to carry biological macromolecules such as proteins, lipids and nucleic acids, EVs influence different physiological and pathological functions of both parental and recipient cells. Although multiple pathways have been proposed for cytokine secretion beyond the classical ER/Golgi route, EVs have recently recognized as an alternative secretory mechanism. Interestingly, cytokines/chemokines exploit these vesicles to be released into the extracellular milieu, and also appear to modulate their release, trafficking and/or content. In this review, we provide an overview of the cytokines/chemokines that are known to be associated with EVs or their regulation with a focus on TNFα, IL-1β and IFNs.
Collapse
|
28
|
Kruize Z, Kootstra NA. The Role of Macrophages in HIV-1 Persistence and Pathogenesis. Front Microbiol 2019; 10:2828. [PMID: 31866988 PMCID: PMC6906147 DOI: 10.3389/fmicb.2019.02828] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Current antiretroviral therapy (ART) effectively suppresses Human Immunodeficiency Virus type 1 (HIV-1) in infected individuals. However, even long term ART does not eradicate HIV-1 infected cells and the virus persists in cellular reservoirs. Beside memory CD4+ T cells, cells of the myeloid lineage, especially macrophages, are believed to be an important sanctuary for HIV-1. Monocytes and macrophages are key players in the innate immune response to pathogens and are recruited to sites of infection and inflammation. Due to their long life span and ability to reside in virtually every tissue, macrophages have been proposed to play a critical role in the establishment and persistence of the HIV-1 reservoir. Current HIV-1 cure strategies mainly focus on the concept of “shock and kill” to purge the viral reservoir. This approach aims to reactivate viral protein production in latently infected cells, which subsequently are eliminated as a consequence of viral replication, or recognized and killed by the immune system. Macrophage susceptibility to HIV-1 infection is dependent on the local microenvironment, suggesting that molecular pathways directing differentiation and polarization are involved. Current latency reversing agents (LRA) are mainly designed to reactivate the HIV-1 provirus in CD4+ T cells, while their ability to abolish viral latency in macrophages is largely unknown. Moreover, the resistance of macrophages to HIV-1 mediated kill and the presence of infected macrophages in immune privileged regions including the central nervous system (CNS), may pose a barrier to elimination of infected cells by current “shock and kill” strategies. This review focusses on the role of monocytes/macrophages in HIV-1 persistence. We will discuss mechanisms of viral latency and persistence in monocytes/macrophages. Furthermore, the role of these cells in HIV-1 tissue distribution and pathogenesis will be discussed.
Collapse
Affiliation(s)
- Zita Kruize
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Tan DHS, Rolon MJ, Figueroa MI, Sued O, Gun A, Kaul R, Raboud JM, Szadkowski L, Hull MW, Walmsley SL, Cahn P. Inflammatory biomarker levels over 48 weeks with dual vs triple lopinavir/ritonavir-based therapy: Substudy of a randomized trial. PLoS One 2019; 14:e0221653. [PMID: 31490959 PMCID: PMC6730918 DOI: 10.1371/journal.pone.0221653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022] Open
Abstract
Background Inflammation has been associated with increased morbidity and mortality in HIV-positive patients. We compared inflammatory biomarkers with dual therapy using lopinavir/ritonavir plus lamivudine (LPV/r+3TC) versus triple therapy using LPV/r plus two nucleoside reverse transcriptase inhibitors (LPV/r+2NRTIs) in treatment-naïve HIV-positive adults. Methods This was a substudy among Argentinian participants in the randomized trial GARDEL. We measured hsCRP, IL-6, MCP-1, TNF, D-dimer and sCD14 from plasma collected at baseline, week 24 and week 48. Generalized estimating equations with an identity/logit link were used to model the average impact of dual versus triple therapy on each biomarker over time, controlling for baseline levels. Additional models estimated the average effect of virologic suppression on biomarker levels over time, adjusting for age, sex, and baseline CD4 count. Results Of 191 trial participants enrolled in Argentina, 172 had baseline and follow-up measurements and were included. Median (IQR) age was 35.5 (28.5, 45) years and CD4 cell count was 310 (219, 414) cells/mm3. Dual therapy was not associated with significantly different biomarker levels over 48 weeks relative to triple therapy. Virologic suppression was associated with statistically significant decreases in MCP-1, TNF and D-dimer levels and an unexpected increase in sCD14 levels. No change was observed in hsCRP or the proportion of participants with undetectable IL-6 levels. Conclusions In addition to having virologic non-inferiority, LPV/r+3TC dual therapy is generally associated with similar inflammatory biomarker levels over 48 weeks compared to LPV/r+2NRTIs triple therapy in treatment-naïve adults. Further study of dual treatment regimens is warranted.
Collapse
Affiliation(s)
- Darrell H. S. Tan
- St. Michael’s Hospital Division of Infectious Diseases, Toronto, ON, Canada
- University Health Network Division of Infectious Diseases, Toronto, ON, Canada
- University of Toronto Department of Medicine, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- * E-mail:
| | - Maria Jose Rolon
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Ines Figueroa
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Gun
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rupert Kaul
- University Health Network Division of Infectious Diseases, Toronto, ON, Canada
- University of Toronto Department of Medicine, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- University of Toronto Department of Immunology, Toronto, ON, Canada
| | - Janet M. Raboud
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Leah Szadkowski
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Sharon L. Walmsley
- University Health Network Division of Infectious Diseases, Toronto, ON, Canada
- University of Toronto Department of Medicine, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Pedro Cahn
- Fundación Huésped, Pasaje Angel Peluffo 3932 (C1202ABB), Ciudad Autónoma de Buenos Aires, Argentina
| | | |
Collapse
|
30
|
Borrajo A, Ranazzi A, Pollicita M, Bellocchi MC, Salpini R, Mauro MV, Ceccherini-Silberstein F, Perno CF, Svicher V, Aquaro S. Different Patterns of HIV-1 Replication in MACROPHAGES is Led by Co-Receptor Usage. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E297. [PMID: 31234437 PMCID: PMC6630780 DOI: 10.3390/medicina55060297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Background and objectives: To enter the target cell, HIV-1 binds not only CD4 but also a co-receptor β-chemokine receptor 5 (CCR5) or α chemokine receptor 4 (CXCR4). Limited information is available on the impact of co-receptor usage on HIV-1 replication in monocyte-derived macrophages (MDM) and on the homeostasis of this important cellular reservoir. Materials and Methods: Replication (measured by p24 production) of the CCR5-tropic 81A strain increased up to 10 days post-infection and then reached a plateau. Conversely, the replication of the CXCR4-tropic NL4.3 strain (after an initial increase up to day 7) underwent a drastic decrease becoming almost undetectable after 10 days post-infection. The ability of CCR5-tropic and CXCR4-tropic strains to induce cell death in MDM was then evaluated. While for CCR5-tropic 81A the rate of apoptosis in MDM was comparable to uninfected MDM, the infection of CXCR4-tropic NL4.3 in MDM was associated with a rate of 14.3% of apoptotic cells at day 6 reaching a peak of 43.5% at day 10 post-infection. Results: This suggests that the decrease in CXCR4-tropic strain replication in MDM can be due to their ability to induce cell death in MDM. The increase in apoptosis was paralleled with a 2-fold increase in the phosphorylated form of p38 compared to WT. Furthermore, microarray analysis showed modulation of proapoptotic and cancer-related genes induced by CXCR4-tropic strains starting from 24 h after infection, whereas CCR5 viruses modulated the expression of genes not correlated with apoptotic-pathways. Conclusions: In conclusion, CXCR4-tropic strains can induce a remarkable depletion of MDM. Conversely, MDM can represent an important cellular reservoir for CCR5-tropic strains supporting the role of CCR5-usage in HIV-1 pathogenesis and as a pharmacological target to contribute to an HIV-1 cure.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur)-Complexo Hospitalario Universitario de Vigo, SERGAS-UVigo, 36312 Vigo, Spain.
| | - Alessandro Ranazzi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Michela Pollicita
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Maria Concetta Bellocchi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Romina Salpini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Maria Vittoria Mauro
- Department of Microbiology and Virology, Complex Operative Unit (UOC), Hospital of Cosenza, 87100 Cosenza, Italy.
| | | | - Carlo Federico Perno
- Department of Microbiology and Clinic Microbiology, University of Milan, 20162 Milan, Italy.
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
31
|
Gerena Y, Menéndez-Delmestre R, Delgado-Nieves A, Vélez J, Méndez-Álvarez J, Sierra-Pagan JE, Skolasky RL, Henderson L, Nath A, Wojna V. Release of Soluble Insulin Receptor From Neurons by Cerebrospinal Fluid From Patients With Neurocognitive Dysfunction and HIV Infection. Front Neurol 2019; 10:285. [PMID: 30972014 PMCID: PMC6443904 DOI: 10.3389/fneur.2019.00285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/05/2019] [Indexed: 01/03/2023] Open
Abstract
Previously, we found that high levels of soluble insulin receptor (sIR) in the cerebrospinal fluid (CSF) of an HIV-infected women cohort were associated with the presence and severity of HIV-associated neurocognitive disorders (HAND). In this study we investigated if CSF from this population, HIV-1 Tat, and selected cytokines induces sIR secretion from human neuronal cells. Twenty-three (23) HIV-seropositive women stratified by cognitive status and five HIV- seronegative women were evaluated. Soluble IR levels were measured in the extracellular medium of neuronal cells (SH-SY5Y) that were exposed (for 24 h) to the CSF of patients. The levels of sIR, HIV-1 Tat, and cytokine levels (IL-2, IL4, IL-6, IFNγ, TNFα, and IL-10) were quantified in the CSF of participants by ELISA and flow cytometry. Neuronal secretion of sIR was measured after exposure (24 h) to HIV-1 Tat (0.5–250 nM), or specific cytokines. The effects of TNFα and HIV-1 Tat on sIR secretion were also evaluated in the presence of R7050 (TNFα antagonist; 10 nM). Neurons exposed to the CSF of HIV-infected women had higher sIR levels according to the severity of neurocognitive impairment of the participant. Increased CSF sIR levels were associated with the presence and severity of HAND and were positively correlated with CSF HIV-1 Tat levels in HIV-infected women with cognitive impairment. CSF levels of IL-2, IFNγ, and TNFα were significantly increased with HAND. However, only TNFα (5 pg/mL) and HIV-1 Tat (100 nM) induced a significant increase in neuronal sIR secretion after 24 h exposure, an effect that was antagonized when each were combined with R7050. Our data suggests that TNFα and HIV-1 Tat from the CSF of HIV-infected women may regulate the secretion of sIR from neuronal cells and that the effect of HIV-1 Tat on sIR secretion may depend on TNFα receptor activation.
Collapse
Affiliation(s)
- Yamil Gerena
- NeuroHIV Research Program, Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| | - Raissa Menéndez-Delmestre
- NeuroHIV Research Program, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| | - Andrea Delgado-Nieves
- NeuroHIV Research Program, Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| | - Joyce Vélez
- NeuroHIV Research Program, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| | | | - Javier E Sierra-Pagan
- NeuroHIV Research Program, Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| | - Richard L Skolasky
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Lisa Henderson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Valerie Wojna
- NeuroHIV Research Program, Division of Neurology, Internal Medicine Department, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| |
Collapse
|
32
|
Coulibaly FS, Ezoulin MJM, Dim DC, Molteni A, Youan BBC. Preclinical Safety Evaluation of HIV-1 gp120 Responsive Microbicide Delivery System in C57BL/6 Female Mice. Mol Pharm 2019; 16:595-606. [PMID: 30525661 DOI: 10.1021/acs.molpharmaceut.8b00872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many novel vaginal/rectal microbicide formulations failed clinically due to safety concerns, indicating the need for the early investigation of lead microbicide formulations. In this study, the preclinical safety of an HIV-1 gp120 and mannose responsive microbicide delivery system (MRP) is evaluated in C57BL/6 mice. MRP was engineered through the layer-by-layer coating of calcium carbonate (CaCO3) with Canavalia ensiformis lectin (Con A) and glycogen. MRP mean particle diameter and zeta potential were 857.8 ± 93.1 nm and 2.37 ± 4.12 mV, respectively. Tenofovir (TFV) encapsulation and loading efficiencies in MRP were 70.1% and 16.3% w/w, respectively. When exposed to HIV-1 rgp120 (25 μg/mL), MRP released a significant amount of TFV (∼5-fold higher) in vaginal and seminal fluid mixture compared to the control (pre-exposure) level (∼59 μg/mL) in vaginal fluid alone. Unlike the positive control treated groups (e.g., nonoxynol-9), no significant histological damages and CD45+ cells infiltration were observed in the vaginal and major reproductive organ epithelial layers. This was probably due to MRP biocompatibility and its isosmolality (304.33 ± 0.58 mOsm/kg). Furthermore, compared to negative controls, there was no statistically significant increase in pro-inflammatory cytokines such as IL1α, Ilβ, IL7, IP10, and TNFα. Collectively, these data suggest that MRP is a relatively safe nanotemplate for HIV-1 gp120 stimuli responsive vaginal microbicide delivery system.
Collapse
Affiliation(s)
- Fohona S Coulibaly
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , 2464 Charlotte , Kansas City , Missouri 64108 , United States
| | - Miezan J M Ezoulin
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , 2464 Charlotte , Kansas City , Missouri 64108 , United States
| | - Daniel C Dim
- School of Medicine , University of Missouri-Kansas City School of Medicine , Kansas City , Missouri 64108 , United States
| | - Agostino Molteni
- School of Medicine , University of Missouri-Kansas City School of Medicine , Kansas City , Missouri 64108 , United States
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , 2464 Charlotte , Kansas City , Missouri 64108 , United States
| |
Collapse
|
33
|
Abstract
Current antiretroviral therapy (ART) effectively suppresses Human Immunodeficiency Virus type 1 (HIV-1) in infected individuals. However, even long term ART does not eradicate HIV-1 infected cells and the virus persists in cellular reservoirs. Beside memory CD4+ T cells, cells of the myeloid lineage, especially macrophages, are believed to be an important sanctuary for HIV-1. Monocytes and macrophages are key players in the innate immune response to pathogens and are recruited to sites of infection and inflammation. Due to their long life span and ability to reside in virtually every tissue, macrophages have been proposed to play a critical role in the establishment and persistence of the HIV-1 reservoir. Current HIV-1 cure strategies mainly focus on the concept of "shock and kill" to purge the viral reservoir. This approach aims to reactivate viral protein production in latently infected cells, which subsequently are eliminated as a consequence of viral replication, or recognized and killed by the immune system. Macrophage susceptibility to HIV-1 infection is dependent on the local microenvironment, suggesting that molecular pathways directing differentiation and polarization are involved. Current latency reversing agents (LRA) are mainly designed to reactivate the HIV-1 provirus in CD4+ T cells, while their ability to abolish viral latency in macrophages is largely unknown. Moreover, the resistance of macrophages to HIV-1 mediated kill and the presence of infected macrophages in immune privileged regions including the central nervous system (CNS), may pose a barrier to elimination of infected cells by current "shock and kill" strategies. This review focusses on the role of monocytes/macrophages in HIV-1 persistence. We will discuss mechanisms of viral latency and persistence in monocytes/macrophages. Furthermore, the role of these cells in HIV-1 tissue distribution and pathogenesis will be discussed.
Collapse
Affiliation(s)
- Zita Kruize
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Montes-Torres A, Aparicio G, Rivera R, Vilarrasa E, Marcellán M, Notario J, Soria C, Belinchón I, de la Cueva P, Ferrán M, Carrascosa JM, Gómez FJ, Salgado L, Velasco M, Descalzo MÁ, García-Doval I, Daudén E. Safety and effectiveness of conventional systemic therapy and biological drugs in patients with moderate to severe psoriasis and HIV infection: a retrospective multicenter study. J DERMATOL TREAT 2018; 30:461-465. [PMID: 30307344 DOI: 10.1080/09546634.2018.1535690] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: The management of HIV-positive patients with psoriasis is controversial and limited to individual cases or short series of patients. Objectives: To evaluate the safety and effectiveness of conventional and biologic immunosuppressive drugs in the treatment of patients with psoriasis and concomitant HIV infection. Methods: A retrospective multicenter study was conducted. The study included data from 2008 to 2016. Inclusion criteria were: HIV adult patients with moderate-to-severe psoriasis, HIV viral load determinations at baseline and at least after 6 months of treatment, and systemic immunosuppressive treatment for at least 6 months. A descriptive analysis was performed. Results: Twenty-three patients with plaque-type psoriasis and HIV infection (five with AIDS) were included. Median follow-up time was 3.2 years. The main drugs used were etanercept, methotrexate, and ustekinumab. In most cases, viral load and CD4 cell count not only remained stable but also improved throughout the follow-up. Six patients presented severe adverse events during the follow-up, four of them in the AIDS stage. At the end of the follow-up period, 76.5% of the patients had achieved a PASI 75. Conclusion: Biologic drugs, both anti-TNF alpha agents and ustekinumab, seem to have an acceptable safety profile and high effectiveness in HIV-positive patients.
Collapse
Affiliation(s)
- Andrea Montes-Torres
- a Department of Dermatology , Hospital Universitario de La Princesa , Madrid , Spain.,b Department of Dermatology , Hospital Central de la Defensa Gómez Ulla , Madrid , Spain
| | - Gloria Aparicio
- c Department of Dermatology , Hospital Universitario Vall d'Hebron , Barcelona , Spain
| | - Raquel Rivera
- d Department of Dermatology , Hospital Universitario Doce de Octubre , Madrid , Spain
| | - Eva Vilarrasa
- e Department of Dermatology , Hospital Universitario de la Santa Creu i Sant Pau , Barcelona , Spain
| | - María Marcellán
- f Department of Dermatology , Hospital Universitario Marqués de Valdecilla , Santander , Spain
| | - Jaume Notario
- g Department of Dermatology , Hospital Universitario de Bellvitge , L'Hospitalet de Llobregat , Spain
| | - Caridad Soria
- h Department of Dermatology , Hospital General Universitario Reina Sofía , Murcia , Spain
| | - Isabel Belinchón
- i Department of Dermatology , Hospital General Universitario de Alicante , Alicante , Spain
| | - Pablo de la Cueva
- j Department of Dermatology , Hospital Universitario Infanta Leonor , Madrid , Spain
| | - Marta Ferrán
- k Department of Dermatology , Hospital del Mar, Parc de Salut Mar , Barcelona , Spain
| | - Jose Manuel Carrascosa
- l Department of Dermatology , Hospital Universitario Germans Trias i Pujol , Badalona , Spain
| | - Francisco J Gómez
- m Department of Dermatology , Hospital Universitario Reina Sofía , Córdoba , Spain
| | - Laura Salgado
- n Department of Dermatology , Complejo Hospitalario Universitario de Pontevedra , Pontevedra , Spain
| | - Manuel Velasco
- o Department of Dermatology , Hospital Universitario Arnau de Vilanova , Valencia , Spain
| | | | - Ignacio García-Doval
- p Research Unit. Fundación Piel Sana AEDV , Madrid , Spain.,q Department of Dermatology , Complejo Hospitalario Universitario de Vigo , Vigo , Spain
| | - Esteban Daudén
- a Department of Dermatology , Hospital Universitario de La Princesa , Madrid , Spain
| | | |
Collapse
|
35
|
Dysregulation of the Immune System in HIV/HCV-Coinfected Patients According to Liver Stiffness Status. Cells 2018; 7:cells7110196. [PMID: 30400258 PMCID: PMC6262386 DOI: 10.3390/cells7110196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/21/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Advanced cirrhosis is related to alterations in immunity. We aimed to evaluate the levels of peripheral CD4+ T cells (Tregs) and plasma cytokine in patients coinfected with human immunodeficiency virus and hepatitis C virus (HIV/HCV) according to liver fibrosis stages [evaluated as liver stiffness measure (LSM)] and their linear relationship. Methods: We performed a cross-sectional study on 238 HIV/HCV-coinfected patients (119 had <12.5 kPa, 73 had 12.5–25 kPa, and 46 had >25 kPa). Peripheral T-cell subsets were phenotyped by flow cytometry, plasma biomarkers were assessed by multiplex immunoassays, and LSM was assessed by transient elastography. Results: We found HIV/HCV-coinfected patients had higher values of CD4+ Tregs (p < 0.001), memory Tregs (p ≤ 0.001), and plasma cytokine levels [IFN-γ (p ≤ 0.05) and IL-10 (p ≤ 0.01)] compared with healthy donors and HIV-monoinfected patients. In the multivariate analysis, higher LSM values were associated with reduced levels of IL-10 (adjusted arithmetic mean ratio (aAMR) = 0.83; p = 0.019), IL-2 (aAMR = 0.78; p = 0.017), TNF-α (aAMR = 0.67; p < 0.001), and IL-17A (aAMR = 0.75; p = 0.006). When we focus on HIV/HCV-coinfected patients analyzed by LSM strata, patients with ≥25 kPa had lower values of IL-2 (aAMR = 0.66; p = 0.021), TNF-α (aAMR = 0.565; p = 0.003), and IL-17A (aAMR = 0.58; p = 0.003) than patients with <12.5 kPa. Conclusion: HIV/HCV-coinfected patients showed an immunosuppressive profile compared to healthy controls and HIV-monoinfected patients. Additionally, HIV/HCV-coinfected patients with advanced cirrhosis (LSM ≥ 25 kPa) had the lowest plasma values of cytokines related to Th1 (IL-2 and TNF-α) and Th17 (IL-17A) response.
Collapse
|
36
|
Flórez-Álvarez L, Hernandez JC, Zapata W. NK Cells in HIV-1 Infection: From Basic Science to Vaccine Strategies. Front Immunol 2018; 9:2290. [PMID: 30386329 PMCID: PMC6199347 DOI: 10.3389/fimmu.2018.02290] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
NK cells play a key role in immune response against HIV infection. These cells can destroy infected cells and contribute to adequate and strong adaptive immune responses, by acting on dendritic, T, B, and even epithelial cells. Increased NK cell activity reflected by higher cytotoxic capacity, IFN-γ and chemokines (CCL3, CCL4, and CCL5) production, has been associated with resistance to HIV infection and delayed AIDS progression, demonstrating the importance of these cells in the antiviral response. Recently, a subpopulation of NK cells with adaptive characteristics has been described and associated with lower HIV viremia and control of infection. These evidences, together with some degree of protection shown in vaccine trials based on boosting NK cell activity, suggest that these cells can be a feasible option for new treatment and vaccination strategies to overcome limitations that, classical vaccination approaches, might have for this virus. This review is focus on the NK cells role during the immune response against HIV, including all the effector mechanisms associated to these cells; in addition, changes including phenotypic, functional and frequency modifications during HIV infection will be pointed, highlighting opportunities to vaccine development based in NK cells effector functions.
Collapse
Affiliation(s)
- Lizdany Flórez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Wildeman Zapata
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| |
Collapse
|
37
|
Tuyishime S, Haut LH, Kurupati RK, Billingsley JM, Carnathan D, Gangahara S, Styles TM, Xiang Z, Li Y, Zopfs M, Liu Q, Zhou X, Lewis MG, Amara RR, Bosinger S, Silvestri G, Ertl HCJ. Correlates of Protection Against SIV mac251 Infection in Rhesus Macaques Immunized With Chimpanzee-Derived Adenovirus Vectors. EBioMedicine 2018; 31:25-35. [PMID: 29685793 PMCID: PMC6013748 DOI: 10.1016/j.ebiom.2018.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
We report on prime-boost vaccine regimens with two simian adenovirus (Ad) vectors (SAdV) or two human serotype Ad vectors (HAdV) expressing Gag and gp160 of simian immunodeficiency virus (SIV)mac239 tested in HAdV-seropositive rhesus macaques (RMs) repeatedly challenged rectally with low doses of SIVmac251. Both vaccine regimens reduced set point and peak viral loads (PVL) and accelerated viral clearance. In SAdV-vaccinated controller genotype RMs resistance against infection correlated with levels of envelope (Env)-specific antibody (Ab) titers. In both vaccine groups CD8+T cells controlled viral loads (VL) upon infection. Circulating CD4+ and CD8+ T cells showed significant changes in their transcriptome over time following vaccination, which differed between the vaccine groups. T cells from SIV-resistant RMs had unique transcriptional profiles indicating that both follicular T helper (TFH) cell responses and highly activated CD8+ T cells may play a role in protection.
Collapse
Affiliation(s)
- Steven Tuyishime
- Wistar Institute, Philadelphia, PA, United States; Gene Therapy and Vaccines Graduate Group of the University of PA, Philadelphia, PA, United States
| | | | | | - James M Billingsley
- Emory University and Yerkes National Primate Center, Atlanta, GA, United States
| | - Diane Carnathan
- Emory University and Yerkes National Primate Center, Atlanta, GA, United States
| | - Sailaja Gangahara
- Emory University and Yerkes National Primate Center, Atlanta, GA, United States
| | - Tiffany M Styles
- Emory University and Yerkes National Primate Center, Atlanta, GA, United States
| | | | - Yan Li
- Wistar Institute, Philadelphia, PA, United States
| | - Malte Zopfs
- Harvard University, Cambridge, MA, United States
| | - Qin Liu
- Wistar Institute, Philadelphia, PA, United States
| | | | | | - Rama R Amara
- Emory University and Yerkes National Primate Center, Atlanta, GA, United States
| | - Steven Bosinger
- Emory University and Yerkes National Primate Center, Atlanta, GA, United States
| | - Guido Silvestri
- Emory University and Yerkes National Primate Center, Atlanta, GA, United States
| | | |
Collapse
|
38
|
Primary HIV infection in a Crohn's disease patient receiving infliximab maintenance therapy. AIDS 2018; 32:130-131. [PMID: 29210780 DOI: 10.1097/qad.0000000000001670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Zhang W, Ambikan AT, Sperk M, van Domselaar R, Nowak P, Noyan K, Russom A, Sönnerborg A, Neogi U. Transcriptomics and Targeted Proteomics Analysis to Gain Insights Into the Immune-control Mechanisms of HIV-1 Infected Elite Controllers. EBioMedicine 2018; 27:40-50. [PMID: 29269040 PMCID: PMC5828548 DOI: 10.1016/j.ebiom.2017.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022] Open
Abstract
A small subset of HIV-1 infected individuals, the "Elite Controllers" (EC), can control viral replication and restrain progression to immunodeficiency without antiretroviral therapy (ART). In this study, a cross-sectional transcriptomics and targeted proteomics analysis were performed in a well-defined Swedish cohort of untreated EC (n=19), treatment naïve patients with viremia (VP, n=32) and HIV-1-negative healthy controls (HC, n=23). The blood transcriptome identified 151 protein-coding genes that were differentially expressed (DE) in VP compared to EC. Genes like CXCR6 and SIGLEC1 were downregulated in EC compared to VP. A definite distinction in gene expression between males and females among all patient-groups were observed. The gene expression profile between female EC and the healthy females was similar but did differ between male EC and healthy males. At targeted proteomics analysis, 90% (29/32) of VPs clustered together while EC and HC clustered separately from VP. Among the soluble factors, 33 were distinctive to be statistically significant (False discovery rate=0.02). Cell surface receptor signaling pathway, programmed cell death, response to cytokine and cytokine-mediated signaling seem to synergistically play an essential role in HIV-1 control in EC.
Collapse
Affiliation(s)
- Wang Zhang
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Solna, Stockholm, Sweden
| | - Anoop T Ambikan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maike Sperk
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Faculty of Medicine, University of Tuebingen, Tuebingen, Germany
| | - Robert van Domselaar
- Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Piotr Nowak
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kajsa Noyan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aman Russom
- Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Solna, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Solna, Stockholm, Sweden.
| |
Collapse
|
40
|
Cingi Yirün M, Yirün O, Ünal K, Yüksel RN, Altunsoy N, Tatlidil Yaylaci E, Aydemir MÇ, Göka E. Serum TNF-related weak inducer of apoptosis (TWEAK) and TNF-related apoptosis-inducing ligand (TRAIL) levels of patients with bipolar disorder in manic episode, in remission and healthy controls. Psychiatry Res 2017; 257:338-345. [PMID: 28800513 DOI: 10.1016/j.psychres.2017.07.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/27/2017] [Accepted: 07/29/2017] [Indexed: 12/13/2022]
Abstract
TNF-related weak inducer of apoptosis (TWEAK) and TNF-related apoptosis-inducing ligand (TRAIL) are members of TNF superfamily, which has various roles in immunologic and inflammatory reactions in the organism. Pathophysiology in bipolar disorder is still under investigation and altered serum levels of cytokines are often encountered. Aim of this study is to detect serum TWEAK and TRAIL levels of patients with bipolar disorder and healthy controls. For this purpose, 55 patients with bipolar disorder -27 manic episode (ME), 28 remission (RE) and 29 healthy controls (HC) were included. TWEAK levels of ME and RE groups were significantly lower than HC. TWEAK levels of bipolar patients (BP) were also lower than HC. TRAIL levels of ME, RE, HC groups and BP, HC groups were statistically similar. In our knowledge, this is the first study concerning about TWEAK and TRAIL levels in bipolar disorder and our results pointed that TWEAK-related immune response might be impaired in bipolar disorder, but our study fails to eradicate the confounders such as medication, smoking and body mass index. Studies having larger samples and limited confounders are needed to be able to evaluate these changes better and detect possible alterations about TRAIL and other TNF superfamily members.
Collapse
Affiliation(s)
- Merve Cingi Yirün
- Ankara Numune Education and Research Hospital, Psychiatry Department, Ankara, Turkey.
| | - Onur Yirün
- Ankara Numune Education and Research Hospital, Psychiatry Department, Ankara, Turkey.
| | - Kübranur Ünal
- Ankara Numune Education and Research Hospital, Biochemistry Department, Ankara, Turkey.
| | - Rabia Nazik Yüksel
- Ankara Numune Education and Research Hospital, Psychiatry Department, Ankara, Turkey.
| | - Neslihan Altunsoy
- Ankara Numune Education and Research Hospital, Psychiatry Department, Ankara, Turkey.
| | - Elif Tatlidil Yaylaci
- Ankara Numune Education and Research Hospital, Psychiatry Department, Ankara, Turkey.
| | | | - Erol Göka
- Ankara Numune Education and Research Hospital, Psychiatry Department, Ankara, Turkey.
| |
Collapse
|
41
|
Coulibaly FS, Ezoulin MJM, Purohit SS, Ayon NJ, Oyler NA, Youan BBC. Layer-by-Layer Engineered Microbicide Drug Delivery System Targeting HIV-1 gp120: Physicochemical and Biological Properties. Mol Pharm 2017; 14:3512-3527. [PMID: 28830144 DOI: 10.1021/acs.molpharmaceut.7b00555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to engineer a model anti-HIV microbicide (tenofovir) drug delivery system targeting HIV-1 envelope glycoprotein gp120 (HIV-1 g120) for the prevention of HIV sexual transmission. HIV-1 g120 and mannose responsive particles (MRP) were prepared through the layer-by-layer coating of calcium carbonate (CaCO3) with concanavalin A (Con A) and glycogen. MRP average particle size ranged from 881.7 ± 15.45 nm to 1130 ± 15.72 nm, depending on the number of Con A layers. Tenofovir encapsulation efficiency in CaCO3 was 74.4% with drug loading of 16.3% (w/w). MRP was non-cytotoxic to Lactobacillus crispatus, human vaginal keratinocytes (VK2), and murine macrophage RAW 264.7 cells and did not induce any significant proinflammatory nitric oxide release. Overall, compared to control, no statistically significant increase in proinflammatory cytokine IL-1α, IL-1β, IL-6, MKC, IL-7, and interferon-γ-inducible protein 10 (IP10) levels was observed. Drug release profiles in the presence of methyl α-d-mannopyranoside and recombinant HIV-1 envelope glycoprotein gp120 followed Hixson-Crowell and Hopfenberg kinetic models, indicative of a surface-eroding system. The one Con A layer containing system was found to be the most sensitive (∼2-fold increase in drug release vs control SFS:VFS) at the lowest HIV gp120 concentration tested (25 μg/mL). Percent mucoadhesion, tested ex vivo on porcine vaginal tissue, ranged from 10% to 21%, depending on the number of Con A layers in the formulation. Collectively, these data suggested that the proposed HIV-1 g120 targeting, using MRP, potentially represent a safe and effective template for vaginal microbicide drug delivery, if future preclinical studies are conclusive.
Collapse
Affiliation(s)
- Fohona S Coulibaly
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , 2464 Charlotte, Kansas City, Missouri 64108, United States
| | - Miezan J M Ezoulin
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , 2464 Charlotte, Kansas City, Missouri 64108, United States
| | - Sudhaunshu S Purohit
- Department of Chemistry, University of Missouri-Kansas City , 5100 Rockhill Road, Kansas City, Missouri 64110, United States
| | - Navid J Ayon
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , 2464 Charlotte, Kansas City, Missouri 64108, United States
| | - Nathan A Oyler
- Department of Chemistry, University of Missouri-Kansas City , 5100 Rockhill Road, Kansas City, Missouri 64110, United States
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , 2464 Charlotte, Kansas City, Missouri 64108, United States
| |
Collapse
|
42
|
Haga T, Efird JT, Tugizov S, Palefsky JM. Increased TNF-alpha and sTNFR2 levels are associated with high-grade anal squamous intraepithelial lesions in HIV-positive patients with low CD4 level. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2017; 3:1-6. [PMID: 28720441 PMCID: PMC5883208 DOI: 10.1016/j.pvr.2016.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/17/2016] [Accepted: 11/18/2016] [Indexed: 01/28/2023]
Abstract
Compared with HIV-negative individuals, HIV-positive individuals have a higher prevalence of anogenital human papillomavirus (HPV) infection, the causative agent of anogenital cancer. TNF-alpha is a major proinflammatory cytokine. sTNFR2 is the soluble form of one of its receptors and is strongly expressed on stimulated lymphocytes. To further understand the role of TNF-alpha, sTNFR2 and other cytokines in the pathogenesis in HPV-related neoplasia, the profiles of serum cytokines in high-risk patients were analyzed for association with anal lesion status. Patients were categorized into 4 groups based on HIV status (HIV-negative vs. HIV-positive with a CD4+ level <200/uL) and anal lesion status [no lesion, low-grade anal squamous intraepithelial lesion (LSIL) vs. high-grade squamous intraepithelial lesion (HSIL)] based on high resolution anoscopy-guided biopsy. Following adjustment for multiplicity, HIV-negative men with HSIL had lower levels of sTNFR2 than HIV-positive men with low CD4 level and HSIL (p=0.02). HIV-positive men with HSIL had higher levels of TNF-alpha than HIV-negative men with HSIL (p<0.001), as well as HIV-positive men with no lesion or LSIL (p=0.03). The levels of other factors, including IL-1beta, IL-2, IL-4, IL-8, IFN-gamma, GM-CSF, sTNFR1 and DR5, were not significantly different between groups. Although the sample size was small, these results suggest that systemic activation of TNF-alpha/sTNFR2 in HIV-positive patients with a low CD4 level may promote the development of HSIL and possibly anal cancer.
Collapse
Affiliation(s)
- Takeshi Haga
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, University of Tokyo, Tokyo 113-8657, Japan; Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Jimmy T Efird
- Center for Health Disparities and College of Nursing, East Carolina University, Greenville, NC 27858, USA; School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Sharof Tugizov
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Joel M Palefsky
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
43
|
Liang SJ, Zheng QY, Yang YL, Yang Y, Liu CY. Use of etanercept to treat rheumatoid arthritis in an HIV-positive patient: a case-based review. Rheumatol Int 2017; 37:1207-1212. [PMID: 28255643 DOI: 10.1007/s00296-017-3690-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/22/2017] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is a relatively common autoimmune disease that is associated with progressive disability and systemic complications, with a relatively high socioeconomic burden. The treatment of RA has been revolutionized by the use of biological drugs, such as anti-tumor necrosis factor (TNF) agents. A wide spectrum of RA disease severity has been reported among patients with human immunodeficiency virus (HIV) infection. Yet, only a few cases using anti-TNF therapy have been described in this clinical population. Therefore, the aim of our case-based review was to describe the successful use of etanercept in a 38-year-old female patient with RA concomitant with HIV infection, who had been resistant to the first-line anti-rheumatic therapies. As per routine care guidelines, the patient was screened for hepatitis virus infection, latent tuberculosis, and other infectious conditions, prior to the initiation of etanercept treatment. CD4 cell count, HIV viral load, and adverse effects were closely monitored during the treatment. The HIV infection remained stable with etanercept treatment, without the need for anti-retrovirus agents. No adverse effects and serious infections were identified during the treatment. Therefore, anti-TNF therapy is a viable alternative for the treatment of RA in patients with HIV, who do not respond to conventional anti-rheumatic therapies. The relationship between TNF-α and HIV infection, as well as cautionary guidelines regarding the utilization of anti-TNF therapy in this clinical population, is discussed.
Collapse
Affiliation(s)
- Shen-Ju Liang
- Division of Rheumatology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Quan-You Zheng
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yan-Long Yang
- Division of Rheumatology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yi Yang
- Division of Rheumatology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Chong-Yang Liu
- Division of Rheumatology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
44
|
Yoder AC, Guo K, Dillon SM, Phang T, Lee EJ, Harper MS, Helm K, Kappes JC, Ochsenbauer C, McCarter MD, Wilson CC, Santiago ML. The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria. PLoS Pathog 2017; 13:e1006226. [PMID: 28241075 PMCID: PMC5344538 DOI: 10.1371/journal.ppat.1006226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/09/2017] [Accepted: 02/08/2017] [Indexed: 01/01/2023] Open
Abstract
Global transcriptome studies can help pinpoint key cellular pathways exploited by viruses to replicate and cause pathogenesis. Previous data showed that laboratory-adapted HIV-1 triggers significant gene expression changes in CD4+ T cell lines and mitogen-activated CD4+ T cells from peripheral blood. However, HIV-1 primarily targets mucosal compartments during acute infection in vivo. Moreover, early HIV-1 infection causes extensive depletion of CD4+ T cells in the gastrointestinal tract that herald persistent inflammation due to the translocation of enteric microbes to the systemic circulation. Here, we profiled the transcriptome of primary intestinal CD4+ T cells infected ex vivo with transmitted/founder (TF) HIV-1. Infections were performed in the presence or absence of Prevotella stercorea, a gut microbe enriched in the mucosa of HIV-1-infected individuals that enhanced both TF HIV-1 replication and CD4+ T cell death ex vivo. In the absence of bacteria, HIV-1 triggered a cellular shutdown response involving the downregulation of HIV-1 reactome genes, while perturbing genes linked to OX40, PPAR and FOXO3 signaling. However, in the presence of bacteria, HIV-1 did not perturb these gene sets or pathways. Instead, HIV-1 enhanced granzyme expression and Th17 cell function, inhibited G1/S cell cycle checkpoint genes and triggered downstream cell death pathways in microbe-exposed gut CD4+ T cells. To gain insights on these differential effects, we profiled the gene expression landscape of HIV-1-uninfected gut CD4+ T cells exposed to bacteria. Microbial exposure upregulated genes involved in cellular proliferation, MAPK activation, Th17 cell differentiation and type I interferon signaling. Our findings reveal that microbial exposure influenced how HIV-1 altered the gut CD4+ T cell transcriptome, with potential consequences for HIV-1 susceptibility, cell survival and inflammation. The HIV-1- and microbe-altered pathways unraveled here may serve as a molecular blueprint to gain basic insights in mucosal HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Alyson C. Yoder
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Stephanie M. Dillon
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Tzu Phang
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- The Cancer Center, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Eric J. Lee
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Michael S. Harper
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Karen Helm
- The Cancer Center, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Martin D. McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Cara C. Wilson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- * E-mail: (MLS); (CCW)
| | - Mario L. Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- * E-mail: (MLS); (CCW)
| |
Collapse
|
45
|
HIV Nef- and Notch1-dependent Endocytosis of ADAM17 Induces Vesicular TNF Secretion in Chronic HIV Infection. EBioMedicine 2016; 13:294-304. [PMID: 27773542 PMCID: PMC5264432 DOI: 10.1016/j.ebiom.2016.10.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 12/30/2022] Open
Abstract
Tumor necrosis factor (TNF) is a key cytokine in HIV replication and pathogenesis. For reasons that are not entirely clear, the cytokine remains upregulated despite anti-retroviral therapy (ART). Here we demonstrate that HIV Nef induces an alternative TNF secretion mechanism that remains active in chronic infection. Ingestion of Nef-containing plasma extracellular vesicles (pEV) from ART patients by primary immune cells, but also Nef expression, induced intracellular proTNF cleavage and secretion of vesicular TNF endosomes. Key event was the Nef-mediated routing of the TNF-converting enzyme ADAM17 into Rab4 + early endosomes and the Rab27 + secretory pathway. Analysis of lymph-node tissue by multi-epitope-ligand-cartography (MELC) confirmed a vesicular TNF secretion phenotype that co-localized with persistent Nef expression, and implicated Notch1 as an essential co-factor. Surprisingly Notch1 had no transcriptional effect but was required for the endosomal trafficking of ADAM17. We conclude that Nef expression and Nef-containing pEV mobilize TNF from endosomal compartments in acute and chronic infection. Nef/ADAM17 containing extracellular vesicles induce an endosomal TNF secretion type in primary target cells. The mechanism required the shuttling of ADAM17 into Rab4 + endosomal compartments in a Notch1-dependent manner. The mechanism could be demonstrated in tissue by multi-epitope-ligand-cartography (MELC) technology.
Despite antiviral therapy, plasma levels of TNF remain upregulated and likely play a role in many comorbidities seen in chronic HIV infection. We found that this is due to high levels of HIV-induced plasma extracellular vesicles (pEV) containing the TNF processing ADAM17 protease. Interestingly these vesicles induced a different TNF secretion type. Whereas TNF is usually shed from the plasma membrane, pEV mobilized intracellular TNF storage compartments, secreting endosomal vesicles. We could confirm this mechanism analyzing lymph node tissue sections by a novel immunostaining technology. Our report supports our previous publication implying ongoing viral activity despite successful antiretroviral therapy.
Collapse
|
46
|
Yang DW, Kang OH, Lee YS, Han SH, Lee SW, Cha SW, Seo YS, Mun SH, Gong R, Shin DW, Kwon DY. Anti-inflammatory effect of salidroside on phorbol-12-myristate-13-acetate plus A23187-mediated inflammation in HMC-1 cells. Int J Mol Med 2016; 38:1864-1870. [PMID: 27779653 DOI: 10.3892/ijmm.2016.2781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/27/2016] [Indexed: 11/05/2022] Open
Abstract
Salidroside [2-(4-hydroxyphenyl)ethyl β-D-gluco-pyranoside (SAS)] has been identified as the most potent ingredient of the plant Rhodiola rosea L. Previous studies have demonstrated that it possesses a number of pharmacological properties, including anti-aging, anti-fatigue, antioxidant, anticancer and anti-inflammatory properties. In this study, to ascertain the molecular mechanisms responsible for the anti-inflammatory activity of SAS, we used phorbol-12-myristate-13-acetate (PMA) plus A23187 to induce inflammation in human mast cell line-1 (HMC-1). The HMC-1 cells were treated with SAS prior to being stimulated with PMA plus A23187. Pro-inflammatory cytokine production was measured by enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR). Western blot analysis was used to examine the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB). SAS inhibited the mRNA expression and production of interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF). In cells stimulated with PMA plus A23187, SAS suppressed the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and c-jun N-terminal kinase 1/2 (JNK1/2), but not that of p38 MAPK. SAS suppressed the expression of NF-κB in the nucleus. On the whole, our results suggest that SAS exerts an anti-inflammatory effect by inhibiting the production of pro-inflammatory cytokines through the blocking of the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Da-Wun Yang
- BK21 Plus Team, Professional Graduate School of Oriental Medicine,Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 369-873, Republic of Korea
| | - Sin-Hee Han
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 369-873, Republic of Korea
| | - Sang-Won Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 369-873, Republic of Korea
| | - Seon-Woo Cha
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 369-873, Republic of Korea
| | - Yun-Soo Seo
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| | - Su-Hyun Mun
- BK21 Plus Team, Professional Graduate School of Oriental Medicine,Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Ryong Gong
- BK21 Plus Team, Professional Graduate School of Oriental Medicine,Wonkwang University, Iksan, Jeonbuk 570‑749, Republic of Korea
| | - Dong-Won Shin
- Department of Oriental Medicine Resources, Sunchon National University, Jeonnam 540-742, Republic of Korea
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
| |
Collapse
|
47
|
TNFα Impairs Rhabdoviral Clearance by Inhibiting the Host Autophagic Antiviral Response. PLoS Pathog 2016; 12:e1005699. [PMID: 27351838 PMCID: PMC4924823 DOI: 10.1371/journal.ppat.1005699] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/20/2016] [Indexed: 11/19/2022] Open
Abstract
TNFα is a pleiotropic pro-inflammatory cytokine with a key role in the activation of the immune system to fight viral infections. Despite its antiviral role, a few viruses might utilize the host produced TNFα to their benefit. Some recent reports have shown that anti-TNFα therapies could be utilized to treat certain viral infections. However, the underlying mechanisms by which TNFα can favor virus replication have not been identified. Here, a rhabdoviral infection model in zebrafish allowed us to identify the mechanism of action by which Tnfa has a deleterious role for the host to combat certain viral infections. Our results demonstrate that Tnfa signals through its receptor Tnfr2 to enhance viral replication. Mechanistically, Tnfa does not affect viral adhesion and delivery from endosomes to the cytosol. In addition, the host interferon response was also unaffected by Tnfa levels. However, Tnfa blocks the host autophagic response, which is required for viral clearance. This mechanism of action provides new therapeutic targets for the treatment of SVCV-infected fish, and advances our understanding of the previously enigmatic deleterious role of TNFα in certain viral infections. Tumor necrosis factor alpha (TNFα) is one of the main pro-inflammatory cytokines produced in response to a broad type of infections [1]. Although TNFα has a crucial role in protecting the host organism from pathogens, its deregulation can promote susceptibility to pathogens by impairing pathogen clearance and, ultimately, promoting maintenance of infection and death. In addition, some viruses might utilize the host produced TNFα to their benefit. Thus, anti-TNFα therapies could be utilized to treat certain viral infections. However, the underlying mechanisms by which TNFα can favor certain virus replication have not been identified. Here, we have used a viral infection model in zebrafish to identify the mechanism of action by which TNFα has a deleterious role for the host to combat certain viral infections. Our results demonstrate that Tnfa does not affect viral ability to infect host cells or to antagonize the main host antiviral pathway, namely the interferon pathway. However, Tnfa impairs viral clearance by blocking the host autophagy response, which is usually used by host cells to degrade unnecessary or dysfunctional cellular components, and that we found to be critical to eliminate intracellular viral particles. This mechanism of action provides new therapeutic targets for the treatment of SVCV-infected fish in aquaculture and probably to other viral infection affecting cattle industry and human.
Collapse
|
48
|
Frischknecht F, Fackler OT. Experimental systems for studying Plasmodium/HIV coinfection. FEBS Lett 2016; 590:2000-13. [PMID: 27009943 DOI: 10.1002/1873-3468.12151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/30/2022]
Abstract
Coinfections with Human Immunodeficiency Virus (HIV) and Plasmodium, the causative agents of AIDS and malaria, respectively, are frequent and their comorbidity especially in sub-Saharan Africa is high. While clinical studies suggest an influence of the two pathogens on the outcome of the respective infections, experimental studies on the molecular and immunological impact of coinfections are rare. This reflects the limited availability of suitable model systems that reproduce key properties of both pathologies. Here, we discuss key aspects of coinfection with a focus on currently established experimental systems, their limitations for coinfection studies and potential strategies for their improvement.
Collapse
Affiliation(s)
- Friedrich Frischknecht
- Center for Infectious Diseases, Integrative Parasitology, University Hospital Heidelberg, Germany
| | - Oliver T Fackler
- Center for Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Germany
| |
Collapse
|
49
|
Gallitano SM, McDermott L, Brar K, Lowenstein E. Use of tumor necrosis factor (TNF) inhibitors in patients with HIV/AIDS. J Am Acad Dermatol 2016; 74:974-80. [PMID: 26774690 DOI: 10.1016/j.jaad.2015.11.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/11/2015] [Accepted: 11/26/2015] [Indexed: 01/03/2023]
Abstract
Patients with HIV and AIDS are living longer because of advancements in antiretroviral therapy. These patients are often susceptible to debilitating inflammatory disorders that are refractory to standard treatment. We discuss the relationship of tumor necrosis factor-alpha and HIV and then review 27 published cases of patients with HIV being treated with tumor necrosis factor-alpha inhibitors. This review is limited because no randomized controlled trials have been performed with this patient population. Regardless, we propose that reliable seropositive patients, who are adherent to medication regimens and frequent monitoring and have failed other treatment modalities, should be considered for treatment with tumor necrosis factor-alpha inhibitors.
Collapse
Affiliation(s)
- Stephanie M Gallitano
- Department of Dermatology, State University of New York-Downstate, Brooklyn, New York.
| | - Laura McDermott
- Department of Dermatology, State University of New York-Downstate, Brooklyn, New York
| | - Kanwaljit Brar
- Division of Pediatric Allergy and Immunology, National Jewish Health, Denver, Colorado
| | - Eve Lowenstein
- Department of Dermatology, State University of New York-Downstate, Brooklyn, New York
| |
Collapse
|
50
|
Timilsina U, Gaur R. Modulation of apoptosis and viral latency - an axis to be well understood for successful cure of human immunodeficiency virus. J Gen Virol 2016; 97:813-824. [PMID: 26764023 DOI: 10.1099/jgv.0.000402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) is the causative agent of the deadly disease AIDS, which is characterized by the progressive decline of CD4(+)T-cells. HIV-1-encoded proteins such as envelope gp120 (glycoprotein gp120), Tat (trans-activator of transcription), Nef (negative regulatory factor), Vpr (viral protein R), Vpu (viral protein unique) and protease are known to be effective in modulating host cell signalling pathways that lead to an alteration in apoptosis of both HIV-infected and uninfected bystander cells. Depending on the stage of the virus life cycle and host cell type, these viral proteins act as mediators of pro- or anti-apoptotic signals. HIV latency in viral reservoirs is a persistent phenomenon that has remained beyond the control of the human immune system. To cure HIV infections completely, it is crucial to reactivate latent HIV from cellular pools and to drive these apoptosis-resistant cells towards death. Several previous studies have reported the role of HIV-encoded proteins in apoptosis modulation, but the molecular basis for apoptosis evasion of some chronically HIV-infected cells and reactivated latently HIV-infected cells still needs to be elucidated. The current review summarizes our present understanding of apoptosis modulation in HIV-infected cells, uninfected bystander cells and latently infected cells, with a focus on highlighting strategies to activate the apoptotic pathway to kill latently infected cells.
Collapse
Affiliation(s)
- Uddhav Timilsina
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi- 110021, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi- 110021, India
| |
Collapse
|