1
|
Darvishzadeh Mahani F, Raji-Amirhasani A, Khaksari M, Mousavi MS, Bashiri H, Hajializadeh Z, Alavi SS. Caloric and time restriction diets improve acute kidney injury in experimental menopausal rats: role of silent information regulator 2 homolog 1 and transforming growth factor beta 1. Mol Biol Rep 2024; 51:812. [PMID: 39007943 DOI: 10.1007/s11033-024-09716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Estrogen has a protective impact on acute kidney injury (AKI); moreover, reducing the daily intake of calories impedes developing diseases. The present study aimed to determine the effects of calorie restriction (CR) and time restriction (TR) diets on the expression of silent information regulator 2 homolog 1 (SIRT1), transforming growth factor beta 1 (TGF-β1), and other indicators in the presence and absence of ovaries in AKI female rats. METHODS The female rats were divided into two groups, ovariectomized (OVX) and sham, and were placed on CR and TR diets for eight weeks; afterward, AKI was induced by injecting glycerol, and kidney injury indicators and biochemical parameters were measured before and after AKI. RESULTS After AKI, the levels of urine albumin excretion rate, urea, and creatinine in serum, and TGF-β1 increased, while creatinine clearance and SIRT1 decreased in kidney tissue. CR improved kidney indicators and caused a reduction in TGF-β1 and an increase in SIRT1 in ovary-intact rats. Moreover, CR prevented total antioxidant capacity (TAC) decrease and malondialdehyde (MDA) increase resulting from AKI. Before AKI, an increase in body weight, fasting blood sugar (FBS), low-density lipoprotein (LDL), triglyceride (TG), and total cholesterol (TC), and a decrease in high-density lipoprotein (HDL) were observed in OVX rats compared to sham rats, but CR prevented these changes. The effects of TR were similar to those of CR in all indicators except for TGF-β1, SIRT1, urea, creatinine, and albumin. CONCLUSION The present study indicated that CR is more effective than TR in preventing AKI, probably by increasing SIRT1 and decreasing TGF-β1 in ovary-intact animals.
Collapse
Affiliation(s)
- Fatemeh Darvishzadeh Mahani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Raji-Amirhasani
- Endocrinology and Metabolism Research Center, Kerman University of Medical SciencesKerman, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical SciencesKerman, Kerman, Iran.
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Physiology Research Center, Department of Physiology and Pharmacology, 22 Bahman Blvd, Kerman, Iran.
| | - Maryam Sadat Mousavi
- Clinical Research Development Unit, Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamideh Bashiri
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Sadat Alavi
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Mineiro R, Cardoso MR, Pinheiro JV, Cipolla-Neto J, do Amaral FG, Quintela T. Overlapping action of melatonin and female reproductive hormones-Understand the impact in pregnancy and menopause. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:163-190. [PMID: 39059985 DOI: 10.1016/bs.apcsb.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Melatonin is an indolamine secreted to circulation by the pineal gland according to a circadian rhythm. Melatonin levels are higher during nighttime, and the principal function of this hormone is to organize the temporal night and day distribution of physiological adaptive processes. Besides hormonal pineal production, melatonin is synthesized in various organs and tissues like the ovaries or the placenta for local utilization. In addition to its function as a circadian messenger, melatonin is also associated with many physiological functions. For example, melatonin has antioxidant properties and is involved in the regulation of energy and bone metabolism, and reproduction. Melatonin impacts several stages of reproduction and the action across the hypothalamus-pituitary-gonadal axis is well described. However, it is not well understood how those actions impact the female reproductive hormones secretion nor the consequent physiological outcomes. Thus, the first part of this chapter describes the regulation of female reproductive hormone synthesis by melatonin. Moreover, melatonin and female reproductive hormones have coincident physiological functions. Life stages like pregnancy or menopause are characterized by alterations in the reproductive hormones secretion that may be associated with certain physiological stages. Therefore, the second part discusses whether melatonin fluctuations could have an overlapping role with reproductive hormones in contributing to clinical outcomes associated with pregnancy and menopause.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | | | - João Vieira Pinheiro
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
3
|
Lee E, Nissinen TA, Ylä-Outinen L, Jalkanen A, Karppinen JE, Vieira-Potter VJ, Lipponen A, Karvinen S. Estrogen deficiency reduces maximal running capacity and affects serotonin levels differently in the hippocampus and nucleus accumbens in response to acute exercise. Front Neurosci 2024; 18:1399229. [PMID: 38983274 PMCID: PMC11231437 DOI: 10.3389/fnins.2024.1399229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Estrogen deficiency is associated with unfavorable changes in body composition and metabolic health. While physical activity ameliorates several of the negative effects, loss of ovarian function is associated with decreased physical activity levels. It has been proposed that the changes in brain neurochemical levels and /or impaired skeletal muscle function may underlie this phenomenon. Methods We studied the effect of estrogen deficiency induced via ovariectomy (OVX) in female Wistar rats (n = 64). Rats underwent either sham or OVX surgery and were allocated thereafter into four groups matched for body mass and maximal running capacity: sham/control, sham/max, OVX/control, and OVX/max, of which the max groups had maximal running test before euthanasia to induce acute response to exercise. Metabolism, spontaneous activity, and maximal running capacity were measured before (PRE) and after (POST) the surgeries. Three months following the surgery, rats were euthanized, and blood and tissue samples harvested. Proteins were analyzed from gastrocnemius muscle and retroperitoneal adipose tissue via Western blot. Brain neurochemical markers were measured from nucleus accumbens (NA) and hippocampus (HC) using ultra-high performance liquid chromatography. Results OVX had lower basal energy expenditure and higher body mass and retroperitoneal adipose tissue mass compared with sham group (p ≤ 0.005). OVX reduced maximal running capacity by 17% (p = 0.005) with no changes in muscle mass or phosphorylated form of regulatory light chain (pRLC) in gastrocnemius muscle. OVX was associated with lower serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) level in the NA compared with sham (p = 0.007). In response to acute exercise, OVX was associated with low serotonin level in the HC and high level in the NA (p ≤ 0.024). Discussion Our results highlight that OVX reduces maximal running capacity and affects the response of brain neurochemical levels to acute exercise in a brain region-specific manner. These results may offer mechanistic insight into why OVX reduces willingness to exercise.
Collapse
Affiliation(s)
- Earric Lee
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Montreal Heart Institute, Montréal, QC, Canada
- School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, QC, Canada
| | - Tuuli A. Nissinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Laura Ylä-Outinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Aaro Jalkanen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jari E. Karppinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Victoria Jeanne Vieira-Potter
- Division of Foods, Nutrition and Exercise Sciences, Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Arto Lipponen
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Sira Karvinen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
4
|
Marková I, Hüttl M, Miklánková D, Šedová L, Šeda O, Malínská H. The Effect of Ovariectomy and Estradiol Substitution on the Metabolic Parameters and Transcriptomic Profile of Adipose Tissue in a Prediabetic Model. Antioxidants (Basel) 2024; 13:627. [PMID: 38929066 PMCID: PMC11200657 DOI: 10.3390/antiox13060627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Menopause brings about profound physiological changes, including the acceleration of insulin resistance and other abnormalities, in which adipose tissue can play a significant role. This study analyzed the effect of ovariectomy and estradiol substitution on the metabolic parameters and transcriptomic profile of adipose tissue in prediabetic females of hereditary hypertriglyceridemic rats (HHTgs). The HHTgs underwent ovariectomy (OVX) or sham surgery (SHAM), and half of the OVX group received 17β-estradiol (OVX+E2) post-surgery. Ovariectomy resulted in weight gain, an impaired glucose tolerance, ectopic triglyceride (TG) deposition, and insulin resistance exemplified by impaired glycogenesis and lipogenesis. Estradiol alleviated some of the disorders associated with ovariectomy; in particular, it improved insulin sensitivity and reduced TG deposition. A transcriptomic analysis of perimetrial adipose tissue revealed 809 differentially expressed transcripts in the OVX vs. SHAM groups, mostly pertaining to the regulation of lipid and glucose metabolism, and oxidative stress. Estradiol substitution affected 1049 transcripts with overrepresentation in the signaling pathways of lipid metabolism. The principal component and hierarchical clustering analyses of transcriptome shifts corroborated the metabolic data, showing a closer resemblance between the OVX+E2 and SHAM groups compared to the OVX group. Changes in the adipose tissue transcriptome may contribute to metabolic abnormalities accompanying ovariectomy-induced menopause in HHTg females. Estradiol substitution may partially mitigate some of these disorders.
Collapse
Affiliation(s)
- Irena Marková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (D.M.); (H.M.)
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (D.M.); (H.M.)
| | - Denisa Miklánková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (D.M.); (H.M.)
| | - Lucie Šedová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.Š.); (O.Š.)
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic; (L.Š.); (O.Š.)
| | - Hana Malínská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (M.H.); (D.M.); (H.M.)
| |
Collapse
|
5
|
Rahim HA, Damirchi A, Babaei P. Comparison of HIIT and MICT and further detraining on metabolic syndrome and asprosin signaling pathway in metabolic syndrome model of rats. Sci Rep 2024; 14:11313. [PMID: 38760452 PMCID: PMC11101655 DOI: 10.1038/s41598-024-61842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
Physical activity promotes various metabolic benefits by balancing pro and anti-inflammatory adipokines. Recent studies suggest that asprosin might be involved in progression of metabolic syndrome (MetS), however, the underlying mechanisms have not been understood yet. This study aimed to evaluate the effects of high-intensity interval training (HIIT), moderate-intensity continuous training (MICT), and further detraining on MetS indices, insulin resistance, serum and the liver levels of asprosin, and AMP-activated protein kinase (AMPK) pathway in menopause-induced MetS model of rats. A total of 64 Wistar rats were used in this study and divided into eight groups: Sham1, OVX1 (ovariectomized), Sham2, OVX2, OVX + HIIT, OVX + MICT, OVX + HIIT + Det (detraining), and OVX + MICT + Det. Animals performed the protocols, and then serum concentrations of asprosin, TNF-α, insulin, fasting blood glucose, and lipid profiles (TC, LDL, TG, and HDL) were assessed. Additionally, the liver expression of asprosin, AMPK, and P-AMPK was measured by western blotting. Both HIIT and MICT caused a significant decrease in weight, waist circumference, BMI (P = 0.001), and serum levels of glucose, insulin, asprosin (P = 0.001), triglyceride, total cholesterol, low-density lipoprotein (LDL), and TNF-α (P = 0.001), but an increase in the liver AMPK, P-AMPK, and P-AMPK/AMPK (P = 0.001), compared with OVX2 noexercised group. MICT was superior to HIIT in reducing serum asprosin, TNF-a, TG, LDL (P = 0.001), insulin, fasting blood glucose, HOMA-IR, and QUEKI index (P = 0.001), but an increase in the liver AMPK, and p-AMPK (P = 0.001). Although after two months of de-training almost all indices returned to the pre exercise values (P < 0.05). The findings suggest that MICT effectively alleviates MetS induced by menopause, at least partly through the activation of liver signaling of P-AMPK and the reduction of asprosin and TNF-α. These results have practical implications for the development of exercise interventions targeting MetS in menopausal individuals, emphasizing the potential benefits of MICT in mitigating MetS-related complications.
Collapse
Affiliation(s)
- Hiwa Ahmed Rahim
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
- College of Physical Education and Sports Sciences, University of Halabja, Halabja, Iraq
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Damirchi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Parvin Babaei
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Inoue BKN, Paludetto LV, Monteiro NG, Batista FRDS, Kitagawa IL, da Silva RS, Antoniali C, Lisboa Filho PN, Okamoto R. Synergic Action of Systemic Risedronate and Local Rutherpy in Peri-implantar Repair of Ovariectomized Rats: Biomechanical and Molecular Analysis. Int J Mol Sci 2023; 24:16153. [PMID: 38003342 PMCID: PMC10671386 DOI: 10.3390/ijms242216153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Postmenopausal osteoporosis and poor dietary habits can lead to overweightness and obesity. Bisphosphonates are the first-line treatment for osteoporosis. However, some studies show that they may increase the risk of osteonecrosis of the jaw. Considering the antimicrobial, angiogenic and vasodilatory potential of nitric oxide, this study aims to evaluate the local activity of this substance during the placement of surface-treated implants. Seventy-two Wistar rats were divided into three groups: SHAM (SHAM surgery), OVX + HD (ovariectomy + cafeteria diet), and OVX + HD + RIS (ovariectomy + cafeteria diet + sodium risedronate treatment), which were further subdivided according to the surface treatment of the future implant: CONV (conventional), TE10, or TE100 (TERPY at 10 or 100 μM concentration); n = 8 per subgroup. The animals underwent surgery for implant installation in the proximal tibia metaphysis and were euthanized after 28 days. Data obtained from removal torque and RT-PCR (OPG, RANKL, ALP, IBSP and VEGF expression) were subjected to statistical analysis at 5% significance level. For biomechanical analysis, TE10 produced better results in the OVX + HD group (7.4 N/cm, SD = 0.6819). Molecular analysis showed: (1) significant increase in OPG gene expression in OVX groups with TE10; (2) decreased RANKL expression in OVX + HD + RIS compared to OVX + HD; (3) significantly increased expressions of IBSP and VEGF for OVX + HD + RIS TE10. At its lowest concentration, TERPY has the potential to improve peri-implant conditions.
Collapse
Affiliation(s)
- Bruna Kaori Namba Inoue
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Laura Vidoto Paludetto
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Naara Gabriela Monteiro
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Fábio Roberto de Souza Batista
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Igor Lebedenco Kitagawa
- Federal Institute of Education, Science and Technology of São Paulo (IFSP), Birigui 16201-407, SP, Brazil;
| | - Roberto Santana da Silva
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo—USP, Ribeirão Preto 14040-403, SP, Brazil;
| | - Cristina Antoniali
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| | - Paulo Noronha Lisboa Filho
- Department of Physics and Meteorology, Bauru Sciences School, São Paulo State University Júlio de Mesquita Filho—UNESP, Bauru 17033-360, SP, Brazil;
| | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015-050, SP, Brazil; (B.K.N.I.); (L.V.P.); (N.G.M.); (F.R.d.S.B.); (C.A.)
| |
Collapse
|
7
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
8
|
Ovariectomy Increases Circulating Retinol-Binding Protein Concentrations Independently of Sex-Dependent Differences in Retinol Concentrations in Rats. J Nutr 2023; 153:1019-1028. [PMID: 36870537 DOI: 10.1016/j.tjnut.2023.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND There is a sex-dependent difference in blood retinol and RBP concentrations, and plasma RBP is associated with insulin resistance. OBJECTIVES We aimed to clarify sex-dependent variations in body concentrations of retinol and RBPs and their association with sex hormones in rats. METHODS Plasma and liver retinol concentrations and hepatic mRNA and plasma concentrations of RBP4 were analyzed in 3- and 8-wk-old male and female Wistar rats before and after sexual maturity (experiment 1) and in orchiectomized male Wistar rats (experiment 2) and ovariectomized female Wistar rats (experiment 3). Furthermore, the mRNA and protein concentrations of RBP4 in adipose tissue were measured in ovariectomized female rats (experiment 3). RESULTS There were no sex-dependent differences in liver retinyl palmitate and retinol concentrations; however, the plasma retinol concentration was significantly higher in male rats than that in female rats after sexual maturity. Furthermore, the plasma retinol concentrations did not differ between the ovariectomized or orchiectomized rats and the control rats. Plasma Rbp4 mRNA concentrations were higher in male rats than those in female rats but not in castrated and control rats, a change consistent with plasma retinol concentration. Plasma RBP4 concentrations were also higher in male rats than those in female rats; however, unlike liver Rbp4 gene expression, plasma RBP4 concentrations were 7-fold higher in the ovariectomized rats than those in the control rats. Moreover, the Rbp4 mRNA concentrations in inguinal white adipose tissue was significantly higher in the ovariectomized rats than those in the control rats and correlated with plasma RBP4 concentrations. CONCLUSIONS Hepatic Rbp4 mRNA is higher in male rats through a sex hormone-independent mechanism, which may contribute to sex differences in blood retinol concentrations. Furthermore, ovariectomy leads to an increase in adipose tissue Rbp4 mRNA and blood RBP4 concentrations, which may contribute to insulin resistance in ovariectomized rats and postmenopausal women.
Collapse
|
9
|
Liu J, Liu Z, Sun W, Luo L, An X, Yu D, Wang W. Role of sex hormones in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1135530. [PMID: 37143724 PMCID: PMC10151816 DOI: 10.3389/fendo.2023.1135530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/22/2023] [Indexed: 05/06/2023] Open
Abstract
Diabetic nephropathy (DN) is the most common microvascular complication in diabetes and one of the leading causes of end-stage renal disease. The standard treatments for patients with classic DN focus on blood glucose and blood pressure control, but these treatments can only slow the progression of DN instead of stopping or reversing the disease. In recent years, new drugs targeting the pathological mechanisms of DN (e.g., blocking oxidative stress or inflammation) have emerged, and new therapeutic strategies targeting pathological mechanisms are gaining increasing attention. A growing number of epidemiological and clinical studies suggest that sex hormones play an important role in the onset and progression of DN. Testosterone is the main sex hormone in males and is thought to accelerate the occurrence and progression of DN. Estrogen is the main sex hormone in females and is thought to have renoprotective effects. However, the underlying molecular mechanism by which sex hormones regulate DN has not been fully elucidated and summarized. This review aims to summarize the correlation between sex hormones and DN and evaluate the value of hormonotherapy in DN.
Collapse
Affiliation(s)
- Jiahui Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhe Liu
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Nephrology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Dehai Yu, ; Wanning Wang,
| | - Wanning Wang
- Nephrology Department, First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Dehai Yu, ; Wanning Wang,
| |
Collapse
|
10
|
Heart Failure in Menopause: Treatment and New Approaches. Int J Mol Sci 2022; 23:ijms232315140. [PMID: 36499467 PMCID: PMC9735523 DOI: 10.3390/ijms232315140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Aging is an important risk factor for the development of heart failure (HF) and half of patients with HF have preserved ejection fraction (HFpEF) which is more common in elderly women. In general, sex differences that lead to discrepancies in risk factors and to the development of cardiovascular disease (CVD) have been attributed to the reduced level of circulating estrogen during menopause. Estrogen receptors adaptively modulate fibrotic, apoptotic, inflammatory processes and calcium homeostasis, factors that are directly involved in the HFpEF. Therefore, during menopause, estrogen depletion reduces the cardioprotection. Preclinical menopause models demonstrated that several signaling pathways and organ systems are closely involved in the development of HFpEF, including dysregulation of the renin-angiotensin system (RAS), chronic inflammatory process and alteration in the sympathetic nervous system. Thus, this review explores thealterations observed in the condition of HFpEF induced by menopause and the therapeutic targets with potential to interfere with the disease progress.
Collapse
|
11
|
Gutiérrez-Lara EJ, Sánchez-López A, Murbartián J, Acosta-Cota SJ, Centurión D. Effect of chronic administration of 17β-estradiol on the vasopressor responses induced by the sympathetic nervous system in insulin resistance rats. Steroids 2022; 188:109132. [PMID: 36273542 DOI: 10.1016/j.steroids.2022.109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Several studies have demonstrated that the underlying mechanism of insulin resistance (IR) is linked with developing diseases like diabetes mellitus, hypertension, metabolic syndrome, and polycystic ovary syndrome. In turn, the dysfunction of female gonadal hormones (especially 17β-estradiol) may be related to the development of IR complications since different studies have shown that 17β-estradiol has a cardioprotector and vasorelaxant effect. This study aimed was to determine the effect of the 17β-estradiol administration in insulin-resistant rats and its effects on cardiovascular responses in pithed rats. Thus, the vasopressor responses are induced by sympathetic stimulation or i.v. bolus injections of noradrenaline (α1/2), methoxamine (α1), and UK 14,304 (α2) adrenergic agonist were determined in female pithed rats with fructose-induced insulin resistance or control rats treated with: 1) 17β-estradiol or 2) its vehicle (oil) for 5 weeks. Thus, 17β-estradiol decreased heart rate, prevented the increase of blood pressure induced by ovariectomy, but with the opposite effect on sham-operated rats; and decreased vasopressor responses induced by i.v. bolus injections of noradrenaline on sham-operated (control and fructose group) and ovariectomized (control) rats, and those induced by i.v. bolus injections of methoxamine (α1 adrenergic agonist). Overall, these results suggest 17β-estradiol has a cardioprotective effect, and its effect on vasopressor responses could be mediated mainly by the α1 adrenergic receptor. In contrast, IR with ovariectomy 17β-estradiol decreases or loses its cardioprotector effect, this could suggest a possible link between the adrenergic receptors and the insulin pathway.
Collapse
Affiliation(s)
- Erika J Gutiérrez-Lara
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330 México City, México
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330 México City, México
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330 México City, México
| | - Selene J Acosta-Cota
- Departamento de Ciencias de la Salud, Universidad Autónoma de Occidente, Blv. Lola Beltrán y Blv. Rolando Arjona. S/N, Col. 4 de marzo, C.P. 80020 Culiacán, Sinaloa, México
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P. 14330 México City, México.
| |
Collapse
|
12
|
Chattopadhyay S, Joharapurkar A, Das N, Khatoon S, Kushwaha S, Gurjar AA, Singh AK, Shree S, Ahmed MZ, China SP, Pal S, Kumar H, Ramachandran R, Patel V, Trivedi AK, Lahiri A, Jain MR, Chattopadhyay N, Sanyal S. Estradiol overcomes adiponectin-resistance in diabetic mice by regulating skeletal muscle adiponectin receptor 1 expression. Mol Cell Endocrinol 2022; 540:111525. [PMID: 34856343 DOI: 10.1016/j.mce.2021.111525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/19/2022]
Abstract
Adiponectin and insulin resistance creates a vicious cycle that exacerbates type 2 diabetes. Earlier, we observed that female leptin receptor-deficient BLKS mice (BKS-db/db) were more sensitive to an adiponectin mimetic GTDF than males, which led us to explore if E2 plays a crucial role in modulation of adiponectin-sensitivity. Male but not female BKS-db/db mice were resistant to metabolic effects of globular adiponectin treatment. Male BKS-db/db displayed reduced skeletal muscle AdipoR1 protein expression, which was consequent to elevated polypyrimidine tract binding protein 1 (PTB) and miR-221. E2 treatment in male BKS-db/db, and ovariectomized BALB/c mice rescued AdipoR1 protein expression via downregulation of PTB and miR-221, and also directly increased AdipoR1 mRNA by its classical nuclear receptors. Estrogen receptor regulation via dietary or pharmacological interventions may improve adiponectin resistance and consequently ameliorate insulin resistance in type 2 diabetes.
Collapse
MESH Headings
- Adiponectin/metabolism
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Drug Resistance/genetics
- Estradiol/pharmacology
- Female
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Muscle, Skeletal/metabolism
- Receptors, Adiponectin/genetics
- Receptors, Adiponectin/metabolism
- Receptors, Leptin/genetics
- Sex Characteristics
Collapse
Affiliation(s)
- Sourav Chattopadhyay
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | | | - Nabanita Das
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shamima Khatoon
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sapana Kushwaha
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anagha Ashok Gurjar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | - Abhishek Kumar Singh
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sonal Shree
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Md Zohaib Ahmed
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shyamsundar Pal China
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Harish Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ravishankar Ramachandran
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India
| | - Vishal Patel
- Zydus Research Center, Moraiya, Ahmedabad, 382213, Gujarat, India
| | - Arun Kumar Trivedi
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India; Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Amit Lahiri
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Naibedya Chattopadhyay
- AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; AcSIR, CSIR-Central Drug Research Institute Campus, Lucknow, 226031, India.
| |
Collapse
|
13
|
Abdelgawad MA, Elmowafy M, Musa A, Al-Sanea MM, Nayl AA, Ghoneim MM, Ahmed YM, Hassan HM, AboulMagd AM, Salem HF, Abdelwahab NS. Development and Greenness Assessment of HPLC Method for Studying the Pharmacokinetics of Co-Administered Metformin and Papaya Extract. Molecules 2022; 27:375. [PMID: 35056687 PMCID: PMC8778412 DOI: 10.3390/molecules27020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
Foods with medical value have been proven to be beneficial, and they are extensively employed since they integrate two essential elements: food and medication. Accordingly, diabetic patients can benefit from papaya because the fruit is low in sugar and high in antioxidants. An RP-HPLC method was designed for studying the pharmacokinetics of metformin (MET) when concurrently administered with papaya extract. A mobile phase of 0.5 mM of KH2PO4 solution and methanol (65:35, v/v), pH = 5 ± 0.2 using aqueous phosphoric acid and NaOH, and guaifenesin (GUF) were used as an internal standard. To perform non-compartmental pharmacokinetic analysis, the Pharmacokinetic program (PK Solver) was used. The method's greenness was analyzed using two tools: the Analytical GREEnness calculator and the RGB additive color model. Taking papaya with MET improved the rate of absorption substantially (time for reaching maximum concentration (Tmax) significantly decreased by 75% while maximum plasma concentration (Cmax) increased by 7.33%). The extent of absorption reduced by 22.90%. Furthermore, the amount of medication distributed increased (30.83 L for MET concurrently used with papaya extract versus 24.25 L for MET used alone) and the clearance rate rose by roughly 13.50%. The results of the greenness assessment indicated that the method is environmentally friendly. Taking papaya with MET changed the pharmacokinetics of the drug dramatically. Hence, this combination will be particularly effective in maintaining quick blood glucose control.
Collapse
Affiliation(s)
- Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (M.A.A.); (M.M.A.-S.)
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia; (M.A.A.); (M.M.A.-S.)
| | - AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, Collage of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Yasmine M. Ahmed
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef 62521, Egypt;
| | - Hossam M. Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt;
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef 62521, Egypt
| | - Asmaa M. AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef 62521, Egypt;
| | - Heba F. Salem
- Pharmaceutics Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Nada S. Abdelwahab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef 62521, Egypt;
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
14
|
Estrogen Impairs Adipose Tissue Expansion and Cardiometabolic Profile in Obese-Diabetic Female Rats. Int J Mol Sci 2021; 22:ijms222413573. [PMID: 34948369 PMCID: PMC8705713 DOI: 10.3390/ijms222413573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
It has been reported that 17β-estradiol (E2) can exert beneficial effects against the development of obesity, providing women with a healthier metabolic profile and conferring cardiovascular protection. However, a growing body of evidence questions this role in the context of obesity and diabetes. We focus on the adipose tissue–heart axis to address the question of whether E2 can have metabolically detrimental effects in an obese-diabetic rat model. Female Zucker Diabetic Fatty rats were used: LEAN, fa/+; SHAM, sham-operated fa/fa; OVA, ovariectomized fa/fa, and OVA+E2, ovariectomized and E2 treated fa/fa. The secretory expression profile, tissue expansion parameters and composition of visceral adipose tissue, as well as systemic and cardiac parameters related to insulin resistance, fibrosis, and inflammation were analyzed. Ovariectomy induced an attenuation of both diabetic condition and metabolic dysfunction of adipose tissue and cardiac muscle in fa/fa rats, suggesting that E2, in the context of diabetes and obesity, loses its cardioprotective role and could even contribute to greater metabolic alterations. Adipose tissue from OVA rats showed a healthier hyperplastic expansion pattern, which could help maintain tissue function, increase adiponectin expression, and decrease pro-inflammatory adipokines. These findings should be taken into account when considering hormone replacement therapy for obese-diabetic women.
Collapse
|
15
|
Yousefzadeh N, Jeddi S, Shokri M, Afzali H, Norouzirad R, Kashfi K, Ghasemi A. Long Term Sodium Nitrate Administration Positively Impacts Metabolic and Obesity Indices in Ovariectomized Rats. Arch Med Res 2021; 53:147-156. [PMID: 34696904 DOI: 10.1016/j.arcmed.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND In postmenopausal women, nitric oxide (NO) deficiency is associated with obesity and type 2 diabetes (T2D). This study aims at determining the long-term effects of low-dose nitrate administration on metabolic and obesity indices in ovariectomized (OVX) rats. METHODS OVX rat model was induced using the two dorsolateral skin incision method. Two months after ovariectomy, rats were divided into three groups (n = 10/group): Control, OVX, and OVX+nitrate, and the latter received sodium nitrate at a dose of 100 mg/L in their drinking water for nine months. Fasting serum glucose and lipid profile were measured every month. A glucose tolerance test was performed at months 1, 3, and 9 (the end of the study). Obesity indices were calculated, and histological analyses were performed on the gonadal adipose tissues at month 9. RESULTS OVX rats had impaired fasting glucose, glucose intolerance, and dyslipidemia with higher obesity indices at month 9. Nitrate improved glucose and lipid metabolism in OVX rats and decreased body weight (6.9%), body mass index (12.5%), Lee index (5.4%), adiposity index (23.9%), abdominal circumference (10.5%), and thoracic circumference (17.1%). Also, nitrate decreased adipocyte area by 49% and increased adipocyte density by 193% in gonadal adipose tissue. CONCLUSION Long-term low-dose nitrate administration improves glucose and lipid metabolism in OVX rats in association with decreasing OVX-induced adiposity, increasing adipocyte density, and decreasing adipocyte area. These findings provide support for a potential therapeutic role of nitrate in postmenopausal women with some features of metabolic syndrome.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Shokri
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Norouzirad
- School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Jafari Khorchani M, Samare-Najaf M, Abbasi A, Vakili S, Zal F. Effects of quercetin, vitamin E, and estrogen on Metabolic-Related factors in uterus and serum of ovariectomized rat models. Gynecol Endocrinol 2021; 37:764-768. [PMID: 33525940 DOI: 10.1080/09513590.2021.1879784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AIMS Estrogen (E2) deficiency has been related to uterine metabolic dysfunction, which could be accompanied by infertility in the reproductive ages. Despite having adverse effects, estrogen replacement therapy is considered the fundamental treatment strategy for this problem. The current study sought to determine the palliative effects of quercetin (Q) and vitamin E (Vit.E) on some of the uterine's metabolism-related factors in ovariectomized (OVX) rats and compare them with the effects of estrogen. MATERIALS AND METHODS Sixty-four rats were divided into eight groups. OVX animals were treated with Q (15 mg/kg/day), Vit.E (60 mg/kg/day), E2 (10 µg/kg/day), and Q (7.5 mg/kg/day) + Vit.E (30 mg/kg/day) for 10 weeks. Glucose and adiponectin were measured using glucose oxidase and ELISA, respectively. Furthermore, the present study investigated the alterations in the expression of AdipoR1, nesfatin1, and GluT4 genes. RESULTS Antioxidants suppress the weight gain of OVX animals. Also, Q, Vit.E, and E2 cause a significant decline in glucose and adiponectin levels (p-value < .05). Finally, the expression of AdipoR1, nesfatin1, and GLUT4 genes was significantly increased in treated OVX rats' uterus. CONCLUSION The present findings suggest that the administration of Q and Vit.E could demonstrate promising characteristics in a similar approach with estradiol and thus be considered as alternatives for estrogen replacement therapy.
Collapse
Affiliation(s)
- Majid Jafari Khorchani
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Samare-Najaf
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Abbasi
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Malinská H, Hüttl M, Miklánková D, Trnovská J, Zapletalová I, Poruba M, Marková I. Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia. Int J Mol Sci 2021; 22:ijms22094527. [PMID: 33926097 PMCID: PMC8123580 DOI: 10.3390/ijms22094527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian hormone deficiency leads to increased body weight, visceral adiposity, fatty liver and disorders associated with menopausal metabolic syndrome. To better understand the underlying mechanisms of these disorders in their early phases of development, we investigated the effect of ovariectomy on lipid and glucose metabolism. Compared to sham-operated controls, ovariectomized Wistar female rats markedly increased whole body and visceral adipose tissue weight (p ˂ 0.05) and exhibited insulin resistance in peripheral tissues. Severe hepatic triglyceride accumulation (p ˂ 0.001) after ovariectomy preceded changes in both serum lipids and glucose intolerance, reflecting alterations in some CYP proteins. Increased CYP2E1 (p ˂ 0.05) and decreased CYP4A (p ˂ 0.001) after ovariectomy reduced fatty acid oxidation and induced hepatic steatosis. Decreased triglyceride metabolism and secretion from the liver contributed to hepatic triglyceride accumulation in response to ovariectomy. In addition, interscapular brown adipose tissue of ovariectomized rats exhibited decreased fatty acid oxidation (p ˂ 0.01), lipogenesis (p ˂ 0.05) and lipolysis (p ˂ 0.05) despite an increase in tissue weight. The results provide evidence that impaired hepatic triglycerides and dysregulation of some CYP450 proteins may have been involved in the development of hepatic steatosis. The low metabolic activity of brown adipose tissue may have contributed to visceral adiposity as well as triglyceride accumulation during the postmenopausal period.
Collapse
Affiliation(s)
- Hana Malinská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
- Correspondence: ; Tel.: +420-261-365-369; Fax: +420-261-363-027
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
| | - Denisa Miklánková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
| | - Jaroslava Trnovská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
| | - Iveta Zapletalová
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.)
| | - Martin Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (I.Z.); (M.P.)
| | - Irena Marková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (M.H.); (D.M.); (J.T.); (I.M.)
| |
Collapse
|
18
|
The lignan-rich fraction from Sambucus Williamsii Hance ameliorates dyslipidemia and insulin resistance and modulates gut microbiota composition in ovariectomized rats. Biomed Pharmacother 2021; 137:111372. [PMID: 33761598 DOI: 10.1016/j.biopha.2021.111372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Menopausal women are susceptible to have high risk of cardiovascular diseases, type II diabetes and osteoporosis due to the metabolic disorder caused by estrogen deficiency. Accumulating evidence supports that gut microbiota is a key regulator of metabolic diseases. Our previous metabolomics study interestingly demonstrated that the anti-osteoporotic effects of lignan-rich fraction (SWCA) from Sambucus wialliamsii Hance were related to the restoration of a series of lipid and glucose metabolites. This study aims to investigate how SWCA modulates lipid and glucose metabolism and the underlying mechanism. Our results show that oral administration of SWCA (140 mg/kg and 280 mg/kg) for 10 weeks alleviated dyslipidemia, improved liver functions, prevented glucose tolerance and insulin actions, attenuated system inflammation and improved intestinal barrier in OVX rats. It also induced a high abundance of Actinobacteria, and restored microbial composition. We are the first to report the protective effects of the lignan-rich fraction from S. williamsii on dyslipidemia and insulin resistance. Our findings provide strong evidence for the application of this lignan-rich fraction to treat menopausal lipid disorder and insulin resistance-related diseases.
Collapse
|
19
|
Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol Cell Biochem 2020; 475:261-276. [PMID: 32852713 DOI: 10.1007/s11010-020-03879-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Bilateral ovariectomy is the best characterized and the most reported animal model of human menopause. Ovariectomized rodents develop insulin resistance (IR) and visceral obesity, the main risk factors in the pathophysiology of metabolic syndrome (MS). These alterations are a consequence of hypoestrogenic status, which produces an augment of visceral fat, high testosterone levels (hyperandrogenism), as well as inflammation, oxidative stress, and metabolic complications, such as dyslipidemia, hepatic steatosis, and endothelial dysfunction, among others. Clinical trials have reported that menopause per se increases the severity and incidence of MS, and causes the highest mortality due to cardiovascular disease in women. Despite all the evidence, there are no reports that clarify the influence of estrogenic deficiency as a cause of MS. In this review, we provide evidence that ovariectomized rodents can be used as a menopausal metabolic syndrome model for evaluating and discovering new, safe, and effective therapeutic approaches in the treatment of cardiometabolic complications associated to MS during menopause.
Collapse
|
20
|
Jiang Q, Xu H, Yan J, Xu Q, Zheng Y, Li C, Zhao L, Gao H, Zheng H. Sex-specific metabolic alterations in the type 1 diabetic brain of mice revealed by an integrated method of metabolomics and mixed-model. Comput Struct Biotechnol J 2020; 18:2063-2074. [PMID: 32802278 PMCID: PMC7419581 DOI: 10.1016/j.csbj.2020.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) can cause brain region-specific metabolic disorders, but whether gender influences T1D-related brain metabolic changes is rarely reported. Therefore, here we examined metabolic changes in six different brain regions of male and female mice under normal and T1D conditions using an integrated method of NMR-based metabolomics and linear mixed-model, and aimed to explore sex-specific metabolic changes from normal to T1D. The results demonstrate that metabolic differences occurred in all brain regions between two genders, while the hippocampal metabolism is more likely to be affected by T1D. At the 4th week after streptozotocin treatment, brain metabolic disorders mainly occurred in the cortex and hippocampus in female T1D mice, but the striatum and hippocampus in male T1D mice. In addition, anaerobic glycolysis was significantly altered in male mice, mainly in the striatum, midbrain, hypothalamus and hippocampus, but not in female mice. We also found that female mice exhibited a hypometabolism status relative to male mice from normal to T1D. Collectively, this study suggests that T1D affected brain region-specific metabolic alterations in a sex-specific manner, and may provide a metabolic view on diabetic brain diseases between genders.
Collapse
Key Words
- ADP, adenosine diphosphate
- AMP, adenosine monophosphate
- Ala, alanine
- Asp, aspartate
- Cho, choline
- Cortex
- Cre/pCre, creatine/phosphocreatine
- Diabetes
- GABA, γ-Aminobutyric acid
- Gender
- Gln, glutamine
- Glu, glutamate
- Gly, glycine
- Hippocampus
- IMP, inosine monophosphate
- Ino, inosine
- Lac, lactate
- Metabolomics
- Myo, myo-inositol
- NAA, N-acetylaspartate
- NAD+, nicotinamide adeninedinucleotide
- Neurotransmitter
- Suc, succinate
- Tau, taurine
Collapse
Affiliation(s)
- Qiaoying Jiang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hangying Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Junjie Yan
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingqing Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yafei Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
21
|
Sasso GRDS, Florencio-Silva R, da Fonseca CCN, Cezar LC, Carbonel AAF, Gil CD, Simões MDJ, Girão MJBC. Effects of estrogen deficiency followed by streptozotocin-induced diabetes on periodontal tissues of female rats. J Mol Histol 2020; 51:353-365. [PMID: 32488735 DOI: 10.1007/s10735-020-09885-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/29/2020] [Indexed: 01/18/2023]
Abstract
Although both estrogen deficiency and diabetes contribute to periodontal tissue deterioration, the combined effects of these conditions on periodontium is unknown. Thus, we analyzed the combined effects of ovariectomy followed by streptozotocin (STZ)-induced diabetes on periodontal tissues of rats. Twenty adult rats were ovariectomized (OVX) or SHAM-operated (SHAM). After 3 weeks, the rats received an intraperitoneal injection of STZ (60 mg/kg/body weight) to induce diabetes or vehicle (blank) solution. The groups were assigned as follows (n = 5): SHAM-vehicle (SHAM), OVX-vehicle (OVX), SHAM + STZ (SHAM-Di), and OVX + STZ (OVX-Di). Seven weeks post-diabetes induction, the rats were euthanized. Blood samples were collected for glucose measurements and maxillae were processed for paraffin embedding. Sections stained with hematoxylin/eosin, Masson's trichrome, and picrosirius-red were used for alveolar bone loss and collagen fiber analysis in the lamina propria. Immunohistochemistry was performed for runt-related transcription factor 2 (Runx2), matrix metalloproteinase 9 (MMP-9), and tryptase detection. Alveolar bone loss and fewer collagen fibers were observed in the OVX-Di group, collagen fibers with irregular organization, and MMP-9 immunoreactivity were more evident in diabetic groups, and MMP-9-positive osteoclasts on alveolar bone surface were noticed in all groups. The OVX-Di group showed lower Runx2 immunoreactivity (osteoblast formation marker), and more tryptase-positive cells (mast cell marker) in the alveolar bone marrow. Our results indicate that estrogen depletion, followed by STZ-induced diabetes, promotes periodontal tissue deterioration that is more evident than both interventions applied alone. Furthermore, our results points to a possible participation of bone-derived mast cells in this process.
Collapse
Affiliation(s)
- Gisela Rodrigues da Silva Sasso
- Departamento de Ginecologia, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil.
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil.
| | - Rinaldo Florencio-Silva
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Caio Cesar Navarrete da Fonseca
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Luana Carvalho Cezar
- Faculdade de Medicina Veterinária e Zootecnia, Patologia Experimental e Comparada, Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Aparecida Ferraz Carbonel
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Cristiane Damas Gil
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | - Manuel de Jesus Simões
- Departamento de Ginecologia, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, Brazil
| | | |
Collapse
|
22
|
Jang HH, Bae JH, Kim MJ, Park MY, Kim HR, Lee YM. Agrimonia pilosa Ledeb. Ameliorates Hyperglycemia and Hepatic Steatosis in Ovariectomized Rats Fed a High-Fat Diet. Nutrients 2020; 12:nu12061631. [PMID: 32492866 PMCID: PMC7352636 DOI: 10.3390/nu12061631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Estrogen deficiency is associated with obesity, dyslipidemia, and increased insulin resistance in postmenopausal women. An efficient therapeutic agent prevents or improves postmenopausal conditions induced by estrogen deficiency. Here, we investigated the effects of aqueous Agrimonia pilosa Ledeb. extract on glucose and lipid metabolism in ovariectomized rats fed a high-fat diet (HFD). Female Sprague-Dawley rats were sham-operated or ovariectomized, and 3 weeks later were assigned to the following groups: sham-operated + HFD (S); ovariectomized + HFD (OVX); and ovariectomized + HFD with 0.5% A. pilosa aqueous extract (OVX + 0.5A) groups. Ovariectomy significantly increased body weight and dietary intake relative to the S group. However, A. pilosa treatment did not significantly affect weight gain or dietary intake. Blood triacylglycerol, total cholesterol, and low-density lipoprotein cholesterol levels tended to decrease in the A. pilosa-supplemented group. Blood glucose levels were significantly lower in the OVX + 0.5A group than those in the OVX group. Blood adiponectin and insulin concentrations increased significantly after A. pilosa treatment in the ovariectomized group. A. pilosa supplementation tended to decrease liver weights and prevented lipid accumulation. These effects correlated with reduced hepatic expression of lipogenesis-related genes (fatty acid synthase, acetyl-coenzyme A carboxylase alpha, and 3-hydroxy-3-methylglutaryl-coenzyme A reductase). Therefore, A. pilosa may improve metabolic disorders in ovariectomized rats.
Collapse
Affiliation(s)
- Hwan-Hee Jang
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.-H.J.); (J.H.B.); (M.-J.K.); (M.Y.P.); (H.R.K.)
| | - Ji Hyun Bae
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.-H.J.); (J.H.B.); (M.-J.K.); (M.Y.P.); (H.R.K.)
| | - Mi-Ju Kim
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.-H.J.); (J.H.B.); (M.-J.K.); (M.Y.P.); (H.R.K.)
| | - Mi Young Park
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.-H.J.); (J.H.B.); (M.-J.K.); (M.Y.P.); (H.R.K.)
| | - Haeng Ran Kim
- Functional Food Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.-H.J.); (J.H.B.); (M.-J.K.); (M.Y.P.); (H.R.K.)
| | - Young-Min Lee
- Division of Applied Food System, Major of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea
- Correspondence: ; Tel.: +82-2-970-5642
| |
Collapse
|
23
|
Esmailidehaj M, Kuchakzade F, Rezvani ME, Farhadi Z, Esmaeili H, Azizian H. 17β-Estradiol improves insulin signalling and insulin resistance in the aged female hearts: Role of inflammatory and anti-inflammatory cytokines. Life Sci 2020; 253:117673. [PMID: 32311377 DOI: 10.1016/j.lfs.2020.117673] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 01/09/2023]
Abstract
Aging effects in energy balance in all tissues and organs, including the cardiovascular. The risk of cardiovascular disease is drastically higher in postmenopausal women than in premenopausal women. Estrogen plays an important role in the cardiac function and body's metabolism. The aim of this study was to determine whether 17β-estradiol (E2) has beneficial effects on insulin resistance and some key stages of the insulin signalling pathway in the aged hearts. Young and aged female Wistar rats were ovariectomized and were randomly divided into three groups: young (YS) and aged (AS) sham, young (YV) and aged (AV) vehicle, and young (YE2) and aged (AE2) E2 treatment groups. E2 (1 mg/kg) was administrated every four days for four weeks. Results showed that ovariectomy increased fasting blood glucose, insulin, and HOMAIR in young, while none of these parameters was affected in aged animals. On the other hand, aging itself increased these variables. Furthermore, E2 therapy alleviated these changes in both young and aged animals. Moreover, aging also decreased the p-IRS1, p-Akt level, and translocation of GLUT4 to the plasma membrane. E2 reduced the negative impact of menopause and aging on insulin sensitivity by favoring increase in the level of IL-10 and decrease in the levels of TNF-α and IL-1β. Our results indicated that the heart response to E2 depended on age, and E2 increased insulin sensitivity in the heart of both young and aged animals by altering inflammatory conditions. Determining the exact mechanism of this action is suggested in future studies.
Collapse
Affiliation(s)
- Mansour Esmailidehaj
- Neurobiomedical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Kuchakzade
- Neurobiomedical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Zeinab Farhadi
- Neurobiomedical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Esmaeili
- Department of Heart, School of Medicine, Gorgan University of Medical Sciences, Gorgan, Iran
| | - Hossein Azizian
- Neurobiomedical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
24
|
Ali MA, Kamel MA. Modulation of the hepatic expression of miR-33 and miR-34a possibly mediates the metabolic effects of estrogen in ovariectomized female rats. Eur J Pharmacol 2020; 873:173006. [PMID: 32045601 DOI: 10.1016/j.ejphar.2020.173006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022]
Abstract
Estrogen and the estrogen receptors (ERs) are well-known regulators of several aspects of glucose and lipid metabolism. Meanwhile, the underlying mechanistic role of estrogens in regulating metabolic health remains largely unknown. Hence, the study was designed to tackle the possible contribution of the hepatic expression of miR-33, miR-21 and miR-34a and their target genes as the underlying mechanism of the metabolic effects of estrogen in ovariectomized rats. Forty female rats were ovariectomized (OVX), treated with estrogen and/or fulvestrant for 28 days and compared with untreated or treated sham operated rats. Estradiol amended the metabolic abnormalities in the OVX rats, witnessed by decreasing blood sugar, insulin and HOMA-IR as well as correcting the disrupted serum and hepatic lipids. Estradiol increased the hepatic expression of miR-33 and inhibited that of miR-34a and miR-21, leading to adjusting the gene expression and the protein level of their targets, sterol regulatory element-binding proteins-1c (SREBP-1c), fatty acid synthase (FASN), high mobility group (HMG) Box Transcription Factor 1 (HBP1) and Sirtuin 1 (SIRT1), receptively. However, estrogen had no significant effects on HBP1 protein. These effects were almost completely inhibited by fulvestrant, an estrogen receptor blocker, to the extent that fulvestrant had similar metabolic disorders to that of ovariectomization. In conclusion, estrogen replacement therapy in OVX females significantly ameliorated the metabolic derangements of insulin resistance, dyslipidemia and hepatic fat accumulation possibly via corrections of hepatic expression of miR-33 and miR-34a; effects that were mediated through the receptor-mediated signaling of ERs as confirmed by fulvestrant.
Collapse
Affiliation(s)
- Mennatallah A Ali
- Department of Pharmacology &Therapeutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt.
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
25
|
Elgawish RA, El-Beltagy MA, El-Sayed RM, Gaber AA, Abdelrazek HMA. Protective role of lycopene against metabolic disorders induced by chronic bisphenol A exposure in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9192-9201. [PMID: 31916151 DOI: 10.1007/s11356-019-07509-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
This study was conducted to elucidate the ameliorative potential of lycopene (LYC) against the metabolic toxicity induced by bisphenol A (BPA) in rats. Male rats (n = 28) were divided into 4 equal groups: control group, LYC group was given lycopene (10 mg/kg BW), BPA group was given 10 mg/kg BW of BPA, and the last group was administered BPA and LYC at 10 mg/kg via gavage for 90 consecutive days. Body weight (BW) gain, lipid profile, and total antioxidant capacity (TAC) were assessed. Oral glucose tolerance test (OGTT), homeostasis model assessment-estimated insulin resistance (HOMA-IR), thyroid hormones, interleukin-1 beta (IL-1β), leptin, and resistin were assayed. Moreover, immunohistochemistry of TNF-α was performed in adipose tissue. BPA-treated rats showed significant reduction in BW gain and deteriorations in lipid profile, TAC, OGTT, and thyroid hormones as well as significant increases in HOMA-IR, IL-1β, leptin, and resistin. While, improvement of metabolic parameters was observed when LYC was administrated with BPA. Intense TNF-α immunostaining was detected in the fat of BPA-treated rats but the intensity decreased when LYC was administrated with BPA. In conclusion, LYC ameliorated the adverse effects of BPA on metabolism through its antioxidant potential and its reduction of TNF-α expression in adipose tissue.
Collapse
Affiliation(s)
- Rania Abdelrahman Elgawish
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Marwa A El-Beltagy
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-, Arish, Egypt
| | - Aya A Gaber
- Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
26
|
Tyler KA, Habermehl TL, Mason JB. Manipulation of ovarian function influenced glucose metabolism in CBA/J mice. Exp Gerontol 2019; 126:110686. [PMID: 31400440 PMCID: PMC10720389 DOI: 10.1016/j.exger.2019.110686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/18/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023]
Abstract
Menopause is associated with a decline in overall health in women. One health aspect impacted is glucose metabolism. As women experience menopause, their metabolism declines dramatically. The current study addressed the influence of ovarian somatic cells on the improvement of metabolic health through transplantations of young, germ cell-depleted ovaries. The purpose of this study is to expand the understanding of female reproductive health on metabolism. Control mice were grouped by age and treatment mice were age-matched. Treatment mice were placed into one of three groups: 1) mice received germ cell-depleted ovaries, 2) mice received germ cell-containing ovaries, and 3) mice received ovarian somatic cells via injection directly to their original ovary. All mice were subject to a glucose tolerance test, during which a bolus of dextrose was administered, and blood glucose levels were collected and recorded. Mice were euthanized between 680 and 700 days. Metabolic results showed an improvement of glucose metabolism in both germ cell-depleted and germ cell-containing groups compared to controls. No significance difference was noted between the germ cell-containing and germ cell-depleted groups. Somatic cell injection groups also showed improved glucose metabolism compared to controls. This experiment has shown that post-reproductive health is positively influenced by reproductive status. Additionally, somatic cells play an important role in the restoration of health to post-reproductive mice.
Collapse
Affiliation(s)
- Kyleigh A Tyler
- Department of Animal, Dairy, and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, 4700 Old Main Hill, Logan, UT 84322-4700, USA.
| | - Tracy L Habermehl
- Department of Animal, Dairy, and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, 4700 Old Main Hill, Logan, UT 84322-4700, USA.
| | - Jeffrey B Mason
- Department of Animal, Dairy, and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, 4700 Old Main Hill, Logan, UT 84322-4700, USA.
| |
Collapse
|
27
|
Valicherla GR, Gupta AP, Hossain Z, Riyazuddin M, Syed AA, Husain A, Lahiri S, Dave KM, Gayen JR. Pancreastatin inhibitor, PSTi8 ameliorates metabolic health by modulating AKT/GSK-3β and PKCλ/ζ/SREBP1c pathways in high fat diet induced insulin resistance in peri-/post-menopausal rats. Peptides 2019; 120:170147. [PMID: 31473204 DOI: 10.1016/j.peptides.2019.170147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/03/2023]
Abstract
Increase in the prevalence of insulin resistance (IR) in peri-/post-menopause women is mainly due to hormone deficiency and lifestyle. PSTi8 (PEGKGEQEHSQQKEEEEEMAV-amide) is a pancreastatin inhibitor peptide which showed potent antidiabetic activity in genetic and lifestyle induced type 2 diabetic mice. In the present work, we have investigated the antidiabetic activity of PSTi8 in rat models of peri-/post-menopausal IR. 4-vinylcyclohexenediepoxide treated and ovariectomized rats were fed with high fat diet for 12 weeks to develop the peri-/post-menopausal IR. PSTi8 peptide was administered after the development of peri-/post-menopausal IR rats. PSTi8 (1 mg/kg, i.p) improved the glucose homeostasis which is characterized by elevated glycogenesis, enhanced glycolysis and reduced gluconeogenesis. PSTi8 suppressed palmitate- and PST- induced IR in HepG2 cells. PSTi8 treatment enhanced energy expenditure in peri-/post-menopausal IR rats. PSTi8 treatment increased insulin sensitivity in peri-/post-menopausal IR rats, may be mediated by modulating IRS1-2-phosphatidylinositol-3-kinase-AKT-GSK3β and IRS1-2-phosphatidylinositol-3-kinase-PKCλ/ζ-SREBP1c signaling pathways in the liver. PSTi8 can act as a potential therapeutic peptide for the treatment of peri-/post-menopausal IR.
Collapse
Affiliation(s)
- Guru R Valicherla
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anand P Gupta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Zakir Hossain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Mohammed Riyazuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anees A Syed
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Athar Husain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shibani Lahiri
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kandarp M Dave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raibarelly, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
28
|
Pérez-Torres I, Gutiérrez-Alvarez Y, Guarner-Lans V, Díaz-Díaz E, Manzano Pech L, Caballero-Chacón SDC. Intra-Abdominal Fat Adipocyte Hypertrophy through a Progressive Alteration of Lipolysis and Lipogenesis in Metabolic Syndrome Rats. Nutrients 2019; 11:nu11071529. [PMID: 31284400 PMCID: PMC6683042 DOI: 10.3390/nu11071529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022] Open
Abstract
This study evaluates the progressive participation of enzymes involved in lipolysis and lipogenesis, leading to adipocyte hypertrophy in a metabolic syndrome (MS) rat model caused by chronic consumption of 30% sucrose in drinking water. A total of 70 male Wistar rats were divided into two groups: C and MS. Each of these groups were then subdivided into five groups which were sacrificed as paired groups every month from the beginning of the treatment until 5 months. The intra-abdominal fat was dissected, and the adipocytes were extracted. Lipoprotein lipase (LPL), hormone-sensitive lipase (HSL), protein kinases A (PKA), and perilipin A expressions were determined. The LPL and HSL activities were evaluated by spectrophotometry. Histological staining was performed in adipose tissue. Significant increases were observed in blood pressure, HOMA-IR, leptin, triglycerides, insulin, intra-abdominal fat, and number of fat cells per field (p = 0.001) and in advanced glycosylation products, adipocyte area, LPL, HSL activities and/or expression (p ≤ 0.01) in the MS groups progressively from the third month onward. Lipogenesis and lipolysis were increased by LPL activity and HSL activity and/or expression. This was associated with hyperinsulinemia and release of non-esterified fatty acids causing a positive feedback loop that contributes to the development of adipocyte hypertrophy.
Collapse
Affiliation(s)
- Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico.
| | - Yolanda Gutiérrez-Alvarez
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Sección XVI, Tlalpan, México City 14000, Mexico
| | - Linaloe Manzano Pech
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Sara Del Carmen Caballero-Chacón
- Facultad de Medicina y Veterinaria y Zootecnia, Department of Physiology and Pharmacology UNAM, Av. Universidad 3000, Coyoacán, México City 04510, Mexico
| |
Collapse
|
29
|
Maffei S, Guiducci L, Cugusi L, Cadeddu C, Deidda M, Gallina S, Sciomer S, Gastaldelli A, Kaski JC. Women-specific predictors of cardiovascular disease risk - new paradigms. Int J Cardiol 2019; 286:190-197. [DOI: 10.1016/j.ijcard.2019.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/19/2018] [Accepted: 02/04/2019] [Indexed: 01/19/2023]
|
30
|
Fahmy MK, Sayyed HG, Abd Elrahim EA, Farag RT. Superimposed effect of ovariectomy on type 2 diabetes mellitus in Wistar rats. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Minerva K. Fahmy
- Medical Physiology Department, Faculty of Medicine, Assiut University, EgyptMedical Physiology Department, Faculty of Medicine, Assiut University, Egypt
| | - Hayam G. Sayyed
- Medical Physiology Department, Faculty of Medicine, Assiut University, EgyptMedical Physiology Department, Faculty of Medicine, Assiut University, Egypt
| | - Eman A. Abd Elrahim
- Medical Histology Department, Faculty of Medicine, South Vally University, EgyptMedical Histology Department, Faculty of Medicine, South Vally University, Egypt
| | - Rana T.A. Farag
- Medical Physiology Department, Faculty of Medicine, South Vally University, EgyptMedical Physiology Department, Faculty of Medicine, South Vally University, Egypt
| |
Collapse
|
31
|
Fayaz E, Damirchi A, Zebardast N, Babaei P. Cinnamon extract combined with high-intensity endurance training alleviates metabolic syndrome via non-canonical WNT signaling. Nutrition 2019; 65:173-178. [PMID: 31170681 DOI: 10.1016/j.nut.2019.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/29/2019] [Accepted: 03/20/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The incidence of metabolic syndrome (MetS) in menopausal women is one of the main health care concerns. MetS clusters are related to an imbalance in pro- and anti-inflammatory adipokines such as secreted frizzled-related protein 5 (SFRP5) and wingless-type mammary tumor virus integration site family, member 5A (WNT5A). WNT5A induces an inflammatory state to induce insulin resistance and further pathologic consequences. Recent strategies to prevent progression of MetS to diabetes have focused on conservative treatments such as exercise and herbal medicine. The aim of this study was to investigate the mechanistic effects of cotreatment with cinnamon extract and 12-wk high-intensity endurance training on MetS components considering the non-canonical WNT5A signaling. METHOD Thirty-two female ovariectomized Wistar rats were divided into the following four groups (n = 8/group): exercise (Ova+Exe), cinnamon extract (Ova+Cin), exercise with cinnamon extract (Ova+Exe+Cin) and saline (Ova+Sal). One group of rats undergoing surgery without removal of the ovaries was considered as a sham. After 3 mo of experimental intervention, waist circumference, serum concentrations of glucose, insulin, lipid profile, tumor necrosis factor-α, WNT5A, and SFRP5 were measured. RESULTS Data showed a significant reduction in serum glucose, low-density lipoprotein, homeostasis model assessment estimate of insulin resistance, and tumor necrosis factor-α, but an increase in SFRP5 level in Ova+Exe, Ova+Cin and Ova +Exe+Cin groups compared with Ova+Sal group (P < 0.05). Serum WNT5A significantly was reduced only in Ova+Exe+Cin group (P = 0.02). CONCLUSION The present study indicated that high-endurance training combined with aqueous cinnamon extract supplementation for 12 wk more efficiently alleviated insulin resistance and metabolic dysfunctions via reduction in noncanonical WNT signaling in ovariectomized rats.
Collapse
Affiliation(s)
- Elham Fayaz
- Department of Medical Physiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Damirchi
- Department of Sports Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran
| | - Nozhat Zebardast
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Medical Physiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
32
|
Zych M, Kaczmarczyk-Sedlak I, Wojnar W, Folwarczna J. Effect of Rosmarinic Acid on the Serum Parameters of Glucose and Lipid Metabolism and Oxidative Stress in Estrogen-Deficient Rats. Nutrients 2019; 11:E267. [PMID: 30691017 PMCID: PMC6412204 DOI: 10.3390/nu11020267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 12/25/2022] Open
Abstract
Rosmarinic acid is found in medicinal and spice plants such as rosemary, lemon balm, and mint. The aim of the study was to investigate the effect of rosmarinic acid on parameters of glucose and lipid metabolism and parameters of oxidative stress in rats in the early phase of estrogen deficiency. The study was carried out on mature female Wistar rats divided into the following groups: sham-operated control rats, ovariectomized control rats, and ovariectomized rats treated orally with rosmarinic acid at a dose of 10 mg/kg or 50 mg/kg daily for 28 days. The concentration of sex hormones, parameters related to glucose and lipid metabolism as well as parameters of antioxidant abilities and oxidative damage were determined in the blood serum. In the ovariectomized control rats, the homeostasis model assessment of insulin resistance (HOMA-IR) index and cholesterol concentration increased, the superoxide dismutase activity increased, and the reduced glutathione concentration decreased. Administration of rosmarinic acid at both doses induced decreases in the fructosamine concentration and HOMA-IR, an increase in the concentration of reduced glutathione, and a decrease in the concentration of advanced oxidation protein products in ovariectomized rats. Moreover, rosmarinic acid at a dose of 50 mg/kg induced a decrease in the total cholesterol and triglyceride concentrations. The results indicate that rosmarinic acid may be useful in the prevention of metabolic disorders associated with estrogen deficiency, however further studies are necessary.
Collapse
Affiliation(s)
- Maria Zych
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Weronika Wojnar
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| | - Joanna Folwarczna
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland.
| |
Collapse
|
33
|
Kouhestani S, Zare S, Babaei P. Flavonoids Fraction of Mespilus Germanica Alleviates Insulin Resistance in Metabolic Syndrome Model of Ovariectomized Rats via Reduction in Tumor Necrosis Factor-α. J Menopausal Med 2018; 24:169-175. [PMID: 30671409 PMCID: PMC6336565 DOI: 10.6118/jmm.2018.24.3.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 12/01/2022] Open
Abstract
Objectives The rate of metabolic syndrome (MetS) in women diagnosed as they age is one of the main concerns of health cares. Recently new strategies used to prevent progressions of MetS toward the diagnosis of diabetes have focused on plant flavonoids. This study was aimed to investigate the beneficial effects of flavonoids fraction of Mespilus germanica leaves (MGL) on MetS in ovariectomized (OVX) rats. Methods Twenty-four adult female Wistar rats, weighing 200 to 250 g, were divided into 3 groups: Sham surgery, OVX + Salin, or OVX + Flavonoid. Three weeks after ovariectomy, animals displayed MetS criteria received flavonoid injection (10 mg/kg, intraperitoneally) for 21 days. Then the body weight, body mass index, waist circumference, visceral fat, fasting blood glucose, serum insulin, lipid profiles and tumor necrosis factor-α (TNF-α) were measured. Results Treatment with flavonoids fraction of MGL significantly decreased serum level of insulin (P = 0.011), glucose (P = 0.024), TNF-α (P = 0.010), also MetS Z score (P = 0.020) and homeostasis model assessment of insulin resistance (P = 0.007). Lipid profiles and visceral fat showed insignificant reduction. Conclusions Flavonoids of MGL attenuates some of the MetS components possibly via reduction in TNF-α inflammatory cytokine.
Collapse
Affiliation(s)
- Somayeh Kouhestani
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Physiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Biology, Faculty of Basic Sciences, Urmia University, Urmia, Iran
| | - Samad Zare
- Department of Biology, Faculty of Basic Sciences, Urmia University, Urmia, Iran
| | - Parvin Babaei
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Physiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
34
|
Namjou A, Heidarian E, Rafieian-Kopaei M. Effects of Urtica dioica hydro-alcoholic extract on blood serum glucose and lipid profiles of female Wistar rats with long-term estrogen deficiency. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2018; 9:349-355. [PMID: 30713614 PMCID: PMC6346492 DOI: 10.30466/vrf.2018.33079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 03/12/2018] [Indexed: 11/21/2022]
Abstract
In this study, the effects of Urtica dioica hydro-alcoholic extract were investigated on the blood glucose and lipid profiles of female ovariectomized and non-ovariectomized rats. In total, 32 adult female rats were divided into four groups (eight each) including control and ovariectomy groups as well as non-ovariectomy and ovariectomy groups treated with 200 mg kg-1 of Urtica dioica extract orally in the last five weeks of the study starting from the week 56th. The duration of the study was 60 weeks. Glucose, serum lipid profiles and pancreatic pathological alterations were determined in these groups at the end of experiment. Serum glucose, triglyceride (TG), very-low-density lipoprotein (VLDL), and TG/high-density lipoprotein (HDL) ratio indicated a significant increase in the healthy female rats under treatment with Urtica dioica extract compared to others. The TG, cholesterol, HDL, low-density lipoprotein (LDL) and VLDL showed a significant increase in menopaused rats compared to others. The interaction of consuming Urtica dioica extract and ovariectomy caused significant decreases in glucose, TG, VLDL, HDL/LDL ratio and TG/HDL ratio. Consumption of Urtica dioica extract by non-menopaused rats damaged the beta cells in Langerhans islets. Results of the present study revealed that the consumption of Urtica dioica extract is not beneficial and has diabetogenic effects in female non-ovariectomized rats compared to ovariectomized ones.
Collapse
Affiliation(s)
- Abdolrasoul Namjou
- Department of Pathology, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
35
|
Azizian H, Khaksari M, Asadi karam G, Esmailidehaj M, Farhadi Z. Cardioprotective and anti-inflammatory effects of G-protein coupled receptor 30 (GPR30) on postmenopausal type 2 diabetic rats. Biomed Pharmacother 2018; 108:153-164. [PMID: 30218860 DOI: 10.1016/j.biopha.2018.09.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
|
36
|
do Carmo JM, da Silva AA, Moak SP, Browning JR, Dai X, Hall JE. Increased sleep time and reduced energy expenditure contribute to obesity after ovariectomy and a high fat diet. Life Sci 2018; 212:119-128. [PMID: 30273560 PMCID: PMC6240909 DOI: 10.1016/j.lfs.2018.09.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Abstract
In this study we examined if sleep time, caloric intake and energy expenditure are important contributors to development of ovariectomy-induced obesity in mice fed control or high fat diet (HFD). Twelve female mice at 6 weeks of age were divided into 2 groups: Sham (n = 5) and ovariectomized (OVX, n = 7). Mice were fed control diet for 9 weeks and shifted to HFD for additional 9 weeks. Food intake and body weight were measured daily and body composition was measured weekly by EchoMRI. Energy expenditure (EE), oxygen consumption (VO2), motor activity (MA) and sleep time were monitored at week 9 during control diet and HFD. OVX did not alter caloric intake, body weight or body composition, MA, sleep time or fasting blood glucose, but slightly reduced EE compared to Sham mice on control diet. After HFD feeding, OXV mice had similar caloric intake, lean mass, MA, and blood glucose levels but had significantly greater weight gain (8.2 ± 1.0 vs. 4.8 ± 1.2 g, p < 0.05), increased fat mass and sleep time, and reduced EE (3.3 ± 0.4 vs. 5.5 ± 0.2 kcal/h) and VO2 (1.12 ± 0.01 vs. 1.83 ± 0.05 ml/min) compared to Sham group. Daytime blood pressure was higher while nighttime heart rate was lower in OVX group. These results suggest that OVX may not substantially alter body weight or body composition in mice fed a normal diet, but when combined with HFD it increases sleep time and reduces EE, leading to greater weight gain and adiposity without altering food intake.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States of America.
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Sydney P Moak
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Jackson R Browning
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Xuemei Dai
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States of America
| |
Collapse
|
37
|
Association between insulin resistance and the magnetic resonance spectroscopy-determined marrow fat fraction in nondiabetic postmenopausal women. Menopause 2018; 25:676-682. [DOI: 10.1097/gme.0000000000001063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Schüller ÁK, Mena Canata DA, Hackenhaar FS, Engers VK, Heemann FM, Putti JS, Salomon TB, Benfato MS. Effects of lipoic acid and n-3 long-chain polyunsaturated fatty acid on the liver ovariectomized rat model of menopause. Pharmacol Rep 2017; 70:263-269. [PMID: 29475009 DOI: 10.1016/j.pharep.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bilateral ovariectomy is an experimental model used to analyse the effects of menopause and develop strategies to mitigate the deleterious effects of this condition. Supplementation of the diet with antioxidants has been used to reduce potential oxidative stress caused by menopause. The purpose of the study was to analyse the effects of α-lipoic acid (LA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), dietary supplementation on oxidative stress in the livers of ovariectomized rats. METHODS In this study, we evaluated the effect of dietary supplementation with LA, DHA and EPA for a period of 16 weeks on oestrogen levels and oxidative stress biomarkers in the livers of ovariectomized 25 three-month-old rats. RESULTS Serum oestrogen levels were lower after ovariectomy but were not altered by dietary treatments. LA was capable of acting in the liver, recovering the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase, and reducing protein oxidative damage. Moreover, LA supplementation reduced nitrite and nitrate levels. DHA and EPA recovered the antioxidant activity of cytosolic and mitochondrial superoxide dismutase, decreasing protein oxidation. Protection against lipid oxidation differed between treatments. The DHA-treated group showed increased levels of the lipid peroxidation biomarker malondialdehyde compared to the ovariectomized group. However, malondialdehyde levels were not altered by EPA treatment. CONCLUSIONS The results suggest that the antioxidant response varies among evaluated supplementations and all supplements were able to alter enzymatic and non-enzymatic antioxidants in the livers of ovariectomized rats. DHA presented the most evident antioxidant effect, decreasing protein and lipid damage.
Collapse
Affiliation(s)
- Ártur Krumberg Schüller
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Antonio Mena Canata
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Schäfer Hackenhaar
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa Krüger Engers
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Maciel Heemann
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jordana Salete Putti
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Boeira Salomon
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mara Silveira Benfato
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
39
|
Estrogen deprivation aggravates cardiac hypertrophy in nonobese Type 2 diabetic Goto-Kakizaki (GK) rats. Biosci Rep 2017; 37:BSR20170886. [PMID: 28923829 PMCID: PMC5643740 DOI: 10.1042/bsr20170886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022] Open
Abstract
Both Type 2 diabetes mellitus (T2DM) and estrogen deprivation have been shown to be associated with the development of cardiovascular disease and adverse cardiac remodeling. However, the role of estrogen deprivation on adverse cardiac remodeling in nonobese T2DM rats has not been clearly elucidated. We hypothesized that estrogen-deprivation aggravates adverse cardiac remodeling in Goto–Kakizaki (GK) rats. Wild-type (WT) and GK rats at the age of 9 months old were divided into two subgroups to have either a sham operation (WTS, GKS) or a bilateral ovariectomy (WTO, GKO) (n = 6/subgroup). Four months after the operation, the rats were killed, and the heart was excised rapidly. Metabolic parameters, cardiomyocytes hypertrophy, cardiac fibrosis, and biochemical parameters were determined. GK rats had hyperglycemia with hypoinsulinemia, and estrogen deprivation did not increase the severity of T2DM. Cardiac hypertrophy, cardiac oxidative stress, and phosphor-antinuclear factor κB were higher in WTO and GKS rats than WTS rats, and they markedly increased in GKO rats compared with GKS rats. Furthermore, cardiac fibrosis, transforming growth factor-β, Bax, phosphor-p38, and peroxisome proliferator- activated receptor γ coactivator-1α expression were increased in GKS and GKO rats compared with the lean rats. However, mitochondrial dynamics proteins including dynamin-related protein 1 and mitofusin-2 were not altered by T2DM and estrogen deprivation. Although estrogen deprivation did not aggravate T2DM in GK rats, it increased the severity of cardiac hypertrophy by provoking cardiac inflammation and oxidative stress in nonobese GK rats.
Collapse
|
40
|
Moussa YY, Tawfik SH, Haiba MM, Saad MI, Hanafi MY, Abdelkhalek TM, Oriquat GA, Kamel MA. Disturbed nitric oxide and homocysteine production are involved in the increased risk of cardiovascular diseases in the F1 offspring of maternal obesity and malnutrition. J Endocrinol Invest 2017; 40:611-620. [PMID: 28028785 DOI: 10.1007/s40618-016-0600-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 12/11/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE The present study aimed to evaluate the changes in levels of different independent risk factors for vascular diseases in the rat offspring of maternal obesity and malnutrition as maternal health disturbances are thought to have direct consequences on the offspring health. The effect of postnatal diet on the offspring was also assessed. METHODS Three groups of female Wistar rats were used (control, obese and malnourished). After the pregnancy and delivery, the offspring were weaned to control diet or high-caloric (HCD) diet and followed up for 30 weeks. Every 5 weeks postnatal, 20 pups (10 males and 10 females) of each subgroup were sacrificed after overnight fasting, the blood sample was obtained, and the rats were dissected out to obtain heart muscle. The following parameters were assessed; lipid profile, NEFA, homocysteine (Hcy), nitric oxide end product (NOx) and myocardial triglyceride content. RESULTS Maternal obesity and malnutrition caused significant elevation in the body weight, triglycerides, NEFA, Hcy and NOx in the F1 offspring especially those maintained under HCD. Also, the male offspring showed more prominent changes than female offspring. CONCLUSIONS Maternal malnutrition and obesity may increase the risk of the development of cardiovascular diseases in the offspring, especially the male ones.
Collapse
Affiliation(s)
- Y Y Moussa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - S H Tawfik
- Molecular Medicine Department, Padova University, Padua, Italy
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - M M Haiba
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - M I Saad
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Melbourne, VIC, Australia.
| | - M Y Hanafi
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - T M Abdelkhalek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - G A Oriquat
- Faculty of Pharmacy and Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - M A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
41
|
Tawfik SH, Haiba MM, Saad MI, Abdelkhalek TM, Hanafi MY, Kamel MA. Intrauterine diabetic milieu instigates dysregulated adipocytokines production in F1 offspring. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2017; 59:1. [PMID: 28078101 PMCID: PMC5220612 DOI: 10.1186/s40781-016-0125-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/02/2016] [Indexed: 01/22/2023]
Abstract
Background Intrauterine environment plays a pivotal role in the origin of fatal diseases such as the metabolic syndrome. Diabetes is associated with low-grade inflammatory state and dysregulated adipokines production. The aim of this study is to investigate the effect of maternal diabetes on adipocytokines (adiponectin, leptin and TNF-α) production in F1 offspring in rats. Methods The offspring groups were as follows: F1 offspring of control mothers under control diet (CD) (CF1-CD), F1 offspring of control mothers under high caloric diet (HCD) (CF1-HCD), F1 offspring of diabetic mothers under CD (DF1-CD), and F1 offspring of diabetic mothers under HCD (DF1-HCD). Every 5 weeks post-natal, 10 pups of each subgroup were culled to obtain blood samples for biochemical analysis. Results The results indicate that DF1-CD and DF1-HCD groups exhibited hyperinsulinemia, dyslipidemia, insulin resistance and impaired glucose homeostasis compared to CF1-CD (p > 0.05). DF1-CD and DF1-HCD groups had high hepatic and muscular depositions of TGs. The significant elevated NEFA level only appeared in offspring of diabetic mothers that was fed HCD. DF1-CD and DF1-HCD groups demonstrated low serum levels of adiponectin, high levels of leptin, and elevated levels of TNF-α compared to CF1-CD (p > 0.05). These results reveal the disturbed metabolic lipid profile of offspring of diabetic mothers and could guide further characterization of the mechanisms involved. Conclusion Dysregulated adipocytokines production could be a possible mechanism for the transgenerational transmittance of diabetes, especially following a postnatal diabetogenic environment. Moreover, the exacerbating effects of postnatal HCD on NEFA in rats might be prone to adipcytokine dysregulation. Furthermore, dysregulation of serum adipokines is a prevalent consequence of maternal diabetes and could guide further investigations to predict the development of metabolic disturbances.
Collapse
Affiliation(s)
- Shady H Tawfik
- Department of Biochemistry, Medical Research Institute, Alexandria University, P.O. Box 21561, 165 Elhorreya Avenue, Alexandria, Egypt
| | - Maha M Haiba
- Department of Biochemistry, Medical Research Institute, Alexandria University, P.O. Box 21561, 165 Elhorreya Avenue, Alexandria, Egypt
| | - Mohamed I Saad
- Department of Biochemistry, Medical Research Institute, Alexandria University, P.O. Box 21561, 165 Elhorreya Avenue, Alexandria, Egypt
| | - Taha M Abdelkhalek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mervat Y Hanafi
- Department of Biochemistry, Medical Research Institute, Alexandria University, P.O. Box 21561, 165 Elhorreya Avenue, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, P.O. Box 21561, 165 Elhorreya Avenue, Alexandria, Egypt
| |
Collapse
|
42
|
Hanafi MY, Saad MI, Abdelkhalek TM, Saleh MM, Kamel MA. In Utero Nutritional Manipulation Provokes Dysregulated Adipocytokines Production in F1 Offspring in Rats. SCIENTIFICA 2016; 2016:3892890. [PMID: 27200209 PMCID: PMC4855010 DOI: 10.1155/2016/3892890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Background. Intrauterine environment plays a pivotal role in the origin of fatal diseases such as diabetes. Diabetes and obesity are associated with low-grade inflammatory state and dysregulated adipokines production. This study aims to investigate the effect of maternal obesity and malnutrition on adipokines production (adiponectin, leptin, and TNF-α) in F1 offspring in rats. Materials and Methods. Wistar rats were allocated in groups: F1 offspring of control mothers under control diet (CF1-CD) and under high-fat diet (CF1-HCD), F1 offspring of obese mothers under CD (OF1-CD) and under HCD (OF1-HCD), and F1 offspring of malnourished mothers under CD (MF1-CD) and under HCD (MF1-HCD). Every 5 weeks postnatally, blood samples were obtained for biochemical analysis. Results. At the end of the 30-week follow-up, OF1-HCD and MF1-HCD exhibited hyperinsulinemia, moderate dyslipidemia, insulin resistance, and impaired glucose homeostasis compared to CF1-CD and CF1-HCD. OF1-HCD and MF1-HCD demonstrated low serum levels of adiponectin and high levels of leptin compared to CF1-CD and CF1-HCD. OF1-CD, OF1-HCD, and MF1-HCD had elevated serum levels of TNF-α compared to CF1-CD and CF1-HCD (p < 0.05). Conclusion. Maternal nutritional manipulation predisposes the offspring to development of insulin resistance in their adult life, probably via instigating dysregulated adipokines production.
Collapse
Affiliation(s)
- Mervat Y. Hanafi
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed I. Saad
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Melbourne, VIC, Australia
| | - Taha M. Abdelkhalek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Moustafa M. Saleh
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maher A. Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
43
|
Saad MI, Abdelkhalek TM, Saleh MM, Kamel MA, Youssef M, Tawfik SH, Dominguez H. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells. Endocrine 2015; 50:537-67. [PMID: 26271514 DOI: 10.1007/s12020-015-0709-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/25/2015] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a heterogeneous, multifactorial, chronic disease characterized by hyperglycemia owing to insulin insufficiency and insulin resistance (IR). Recent epidemiological studies showed that the diabetes epidemic affects 382 million people worldwide in 2013, and this figure is expected to be 600 million people by 2035. Diabetes is associated with microvascular and macrovascular complications resulting in accelerated endothelial dysfunction (ED), atherosclerosis, and cardiovascular disease (CVD). Unfortunately, the complex pathophysiology of diabetic cardiovascular damage is not fully understood. Therefore, there is a clear need to better understand the molecular pathophysiology of ED in diabetes, and consequently, better treatment options and novel efficacious therapies could be identified. In the light of recent extensive research, we re-investigate the association between diabetes-associated metabolic disturbances (IR, subclinical inflammation, dyslipidemia, hyperglycemia, dysregulated production of adipokines, defective incretin and gut hormones production/action, and oxidative stress) and ED, focusing on oxidative stress and endothelial progenitor cells (EPCs). In addition, we re-emphasize that oxidative stress is the final common pathway that transduces signals from other conditions-either directly or indirectly-leading to ED and CVD.
Collapse
Affiliation(s)
- Mohamed I Saad
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
- Hudson Institute of Medical Research, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia.
| | - Taha M Abdelkhalek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Moustafa M Saleh
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shady H Tawfik
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Helena Dominguez
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|