1
|
Xu C. CRISPR/Cas9-mediated knockout strategies for enhancing immunotherapy in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8561-8601. [PMID: 38907847 DOI: 10.1007/s00210-024-03208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Breast cancer, a prevalent disease with significant mortality rates, often presents treatment challenges due to its complex genetic makeup. This review explores the potential of combining Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene knockout strategies with immunotherapeutic approaches to enhance breast cancer treatment. The CRISPR/Cas9 system, renowned for its precision in inducing genetic alterations, can target and eliminate specific cancer cells, thereby minimizing off-target effects. Concurrently, immunotherapy, which leverages the immune system's power to combat cancer, has shown promise in treating breast cancer. By integrating these two strategies, we can potentially augment the effectiveness of immunotherapies by knocking out genes that enable cancer cells to evade the immune system. However, safety considerations, such as off-target effects and immune responses, necessitate careful evaluation. Current research endeavors aim to optimize these strategies and ascertain the most effective methods to stimulate the immune response. This review provides novel insights into the integration of CRISPR/Cas9-mediated knockout strategies and immunotherapy, a promising avenue that could revolutionize breast cancer treatment as our understanding of the immune system's interplay with cancer deepens.
Collapse
Affiliation(s)
- Chenchen Xu
- Department of Gynecology and Obstetrics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
2
|
Ma S, Long G, Jiang Z, Zhang Y, Sun L, Pan Y, You Q, Guo X. Recent advances in targeting histone H3 lysine 36 methyltransferases for cancer therapy. Eur J Med Chem 2024; 274:116532. [PMID: 38805937 DOI: 10.1016/j.ejmech.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Histone H3 lysine 36 (H3K36) methylation is a typical epigenetic histone modification that is involved in various biological processes such as DNA transcription, repair and recombination in vivo. Mutations, translocations, and aberrant gene expression associated with H3K36 methyltransferases have been implicated in different malignancies such as acute myeloid leukemia, lung cancer, multiple myeloma, and others. Herein, we provided a comprehensive overview of the latest advances in small molecule inhibitors targeting H3K36 methyltransferases. We analyzed the structures and biological functions of the H3K36 methyltransferases family members. Additionally, we discussed the potential directions for future development of inhibitors targeting H3K36 methyltransferases.
Collapse
Affiliation(s)
- Sai Ma
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guanlu Long
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Liangkui Sun
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun Pan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Piao L, Gao Y, Xu X, Su Y, Wang YD, Zhou J, Gao Y, Fang J, Li Q, Chang S, Kong R. Discovery of potent small molecule inhibitors of histone lysine methyltransferase NSDs. Eur J Med Chem 2024; 268:116264. [PMID: 38412693 DOI: 10.1016/j.ejmech.2024.116264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Nuclear receptor binding SET domain (NSD) proteins are a class of histone lysine methyltransferases and implicated in multiple cancer types with aberrant expression and involvement of cancer related signaling pathways. In this study, a series of small-molecule compounds including compound 2 and 3 are identified against the SET domain of NSDs through structure-based virtual screening. Our lead compound 3 exhibits potent inhibitory activities in vitro towards the NSD2-SET and NSD3-SET with an IC50 of 0.81 μM and 0.84 μM, respectively, and efficiently inhibits histone H3 lysine 36 dimethylation and decreases the expression of NSDs-targeted genes in non-small cell lung cancer cells at 100 nM. Compound 3 suppresses cell proliferation and reduces the clonogenicity in H460 and H1299 non-small cell lung cancer cells, and induces s-phase cell cycle arrest and apoptosis. These data establish our compounds as a valuable tool-kit for the study of the biological roles of NSDs in cancer.
Collapse
Affiliation(s)
- Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China
| | - Ying Gao
- Primary Biotechnology Co., Ltd., Changzhou, 213125, China
| | - Xiaoshuang Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China
| | - Yangyang Su
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China
| | | | - Jie Zhou
- Suzhou Medinoah Co., Ltd., Suzhou, 215125, China
| | - Yang Gao
- Suzhou Medinoah Co., Ltd., Suzhou, 215125, China
| | - Jin Fang
- Suzhou Medinoah Co., Ltd., Suzhou, 215125, China
| | - Qihui Li
- Primary Biotechnology Co., Ltd., Changzhou, 213125, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China.
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, China.
| |
Collapse
|
4
|
Nuñez Y, Vera S, Baeza V, Gonzalez-Pecchi V. NSD3 in Cancer: Unraveling Methyltransferase-Dependent and Isoform-Specific Functions. Int J Mol Sci 2024; 25:944. [PMID: 38256018 PMCID: PMC10815784 DOI: 10.3390/ijms25020944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
NSD3 (nuclear receptor-binding SET domain protein 3) is a member of the NSD histone methyltransferase family of proteins. In recent years, it has been identified as a potential oncogene in certain types of cancer. The NSD3 gene encodes three isoforms, the long version (NSD3L), a short version (NSD3S) and the WHISTLE isoforms. Importantly, the NSD3S isoform corresponds to the N-terminal region of the full-length protein, lacking the methyltransferase domain. The chromosomal location of NSD3 is frequently amplified across cancer types, such as breast, lung, and colon, among others. Recently, this amplification has been correlated to a chromothripsis event, that could explain the different NSD3 alterations found in cancer. The fusion proteins containing NSD3 have also been reported in leukemia (NSD3-NUP98), and in NUT (nuclear protein of the testis) midline carcinoma (NSD3-NUT). Its role as an oncogene has been described by modulating different cancer pathways through its methyltransferase activity, or the short isoform of the protein, through protein interactions. Specifically, in this review we will focus on the functions that have been characterized as methyltransferase dependent, and those that have been correlated with the expression of the NSD3S isoform. There is evidence that both the NSD3L and NSD3S isoforms are relevant for cancer progression, establishing NSD3 as a therapeutic target. However, further functional studies are needed to differentiate NSD3 oncogenic activity as dependent or independent of the catalytic domain of the protein, as well as the contribution of each isoform and its clinical significance in cancer progression.
Collapse
Affiliation(s)
- Yanara Nuñez
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
- Biochemistry, Faculty of Pharmacy, Universidad de Concepción, Concepción 4070383, Chile
| | - Sebastian Vera
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| | - Victor Baeza
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| | - Valentina Gonzalez-Pecchi
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| |
Collapse
|
5
|
Xiao B, Xiang Q, Deng Z, Chen D, Wu S, Zhang Y, Liang Y, Wei S, Luo G, Li L. KCNN1 promotes proliferation and metastasis of breast cancer via ERLIN2-mediated stabilization and K63-dependent ubiquitination of Cyclin B1. Carcinogenesis 2023; 44:809-823. [PMID: 37831636 PMCID: PMC10818095 DOI: 10.1093/carcin/bgad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Potassium Calcium-Activated Channel Subfamily N1 (KCNN1), an integral membrane protein, is thought to regulate neuronal excitability by contributing to the slow component of synaptic after hyperpolarization. However, the role of KCNN1 in tumorigenesis has been rarely reported, and the underlying molecular mechanism remains unclear. Here, we report that KCNN1 functions as an oncogene in promoting breast cancer cell proliferation and metastasis. KCNN1 was overexpressed in breast cancer tissues and cells. The pro-proliferative and pro-metastatic effects of KCNN1 were demonstrated by CCK8, clone formation, Edu assay, wound healing assay and transwell experiments. Transcriptomic analysis using KCNN1 overexpressing cells revealed that KCNN1 could regulate key signaling pathways affecting the survival of breast cancer cells. KCNN1 interacts with ERLIN2 and enhances the effect of ERLIN2 on Cyclin B1 stability. Overexpression of KCNN1 promoted the protein expression of Cyclin B1, enhanced its stability and promoted its K63 dependent ubiquitination, while knockdown of KCNN1 had the opposite effects on Cyclin B1. Knockdown (or overexpression) ERLNI2 partially restored Cyclin B1 stability and K63 dependent ubiquitination induced by overexpression (or knockdown) of KCNN1. Knockdown (or overexpression) ERLIN2 also partially neutralizes the effects of overexpression (or knockdown) KCNN1-induced breast cancer cell proliferation, migration and invasion. In paired breast cancer clinical samples, we found a positive expression correlations between KCNN1 and ERLIN2, KCNN1 and Cyclin B1, as well as ERLIN2 and Cyclin B1. In conclusion, this study reveals, for the first time, the role of KCNN1 in tumorigenesis and emphasizes the importance of KCNN1/ERLIN2/Cyclin B1 axis in the development and metastasis of breast cancer.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Zihua Deng
- Department of General Surgery Section 5, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China
| | - Daxiang Chen
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Yanxia Zhang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Yaru Liang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| | - Shi Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guoqing Luo
- Department of General Surgery Section 5, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511518, China
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong 511518, China
| |
Collapse
|
6
|
Tzeng YDT, Hsiao JH, Chu PY, Tseng LM, Hou MF, Tsang YL, Shao AN, Sheu JJC, Li CJ. The role of LSM1 in breast cancer: Shaping metabolism and tumor-associated macrophage infiltration. Pharmacol Res 2023; 198:107008. [PMID: 37995895 DOI: 10.1016/j.phrs.2023.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
LSM1 is part of the cytoplasmic protein complex Lsm1-7-Pat1 and is likely involved in pre-mRNA degradation by aiding U4/U6 snRNP formation. More research is needed to uncover LSM1's potential in breast cancer (BRCA) clinical pathology, the tumor immune microenvironment, and precision oncology. We discovered LSM1 as a diagnostic marker for advanced BRCA with poor survival, using a multi-omics approach. We studied LSM1 expression across BRCA regions and its link to immune cells through various methods, including spatial transcriptomics and single-cell RNA-sequencing. We also examined how silencing LSM1 affects mitochondrial function and energy metabolism in the tumor environment. These findings were confirmed using 54 BRCA patient biopsies and tissue microarrays. Immunofluorescence and bioinformatics assessed LSM1's connection to clinicopathological features and prognosis. This study uncovers gene patterns linked to breast cancer, with LSM1 linked to macrophage energy processes. Silencing LSM1 in breast cancer cells disrupts mitochondria and energy metabolism. Spatial analysis aligns with previous results, showing LSM1's connection to macrophages. Biopsies confirm LSM1 elevation in advanced breast cancer with increased macrophage presence. To summarize, LSM1 changes may drive BRCA progression, making it a potential diagnostic and prognostic marker. It also influences energy metabolism and the tumor's immune environment during metastasis, showing promise for precision medicine and drug screening in BRCA.
Collapse
Affiliation(s)
- Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung 802, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan
| | - Yi-Ling Tsang
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany
| | - Ai-Ning Shao
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
7
|
Ding Y, Zhao Z, Cai H, Zhou Y, Chen H, Bai Y, Liu Z, Liu S, Zhou W. Single-cell sequencing analysis related to sphingolipid metabolism guides immunotherapy and prognosis of skin cutaneous melanoma. Front Immunol 2023; 14:1304466. [PMID: 38077400 PMCID: PMC10701528 DOI: 10.3389/fimmu.2023.1304466] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Background We explore sphingolipid-related genes (SRGs) in skin melanoma (SKCM) to develop a prognostic indicator for patient outcomes. Dysregulated lipid metabolism is linked to aggressive behavior in various cancers, including SKCM. However, the exact role and mechanism of sphingolipid metabolism in melanoma remain partially understood. Methods We integrated scRNA-seq data from melanoma patients sourced from the GEO database. Through the utilization of the Seurat R package, we successfully identified distinct gene clusters associated with patient survival in the scRNA-seq data. Key prognostic genes were identified through single-factor Cox analysis and used to develop a prognostic model using LASSO and stepwise regression algorithms. Additionally, we evaluated the predictive potential of these genes within the immune microenvironment and their relevance to immunotherapy. Finally, we validated the functional significance of the high-risk gene IRX3 through in vitro experiments. Results Analysis of scRNA-seq data identified distinct expression patterns of 4 specific genes (SRGs) in diverse cell subpopulations. Re-clustering cells based on increased SRG expression revealed 7 subgroups with significant prognostic implications. Using marker genes, lasso, and Cox regression, we selected 11 genes to construct a risk signature. This signature demonstrated a strong correlation with immune cell infiltration and stromal scores, highlighting its relevance in the tumor microenvironment. Functional studies involving IRX3 knockdown in A375 and WM-115 cells showed significant reductions in cell viability, proliferation, and invasiveness. Conclusion SRG-based risk signature holds promise for precise melanoma prognosis. An in-depth exploration of SRG characteristics offers insights into immunotherapy response. Therapeutic targeting of the IRX3 gene may benefit melanoma patients.
Collapse
Affiliation(s)
- Yantao Ding
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Zhijie Zhao
- Department of Plastic Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Huabao Cai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Zhou
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - He Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yun Bai
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhenran Liu
- Department of Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shengxiu Liu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Wenming Zhou
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
8
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
9
|
Ma Z, Bolinger AA, Chen H, Zhou J. Drug Discovery Targeting Nuclear Receptor Binding SET Domain Protein 2 (NSD2). J Med Chem 2023; 66:10991-11026. [PMID: 37578463 PMCID: PMC11092389 DOI: 10.1021/acs.jmedchem.3c00948] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear receptor binding SET domain proteins (NSDs) catalyze the mono- or dimethylation of histone 3 lysine 36 (H3K36me1 and H3K36me2), using S-adenosyl-l-methionine (SAM) as a methyl donor. As a key member of the NSD family of proteins, NSD2 plays an important role in the pathogenesis and progression of various diseases such as cancers, inflammations, and infectious diseases, serving as a promising drug target. Developing potent and specific NSD2 inhibitors may provide potential novel therapeutics. Several NSD2 inhibitors and degraders have been discovered while remaining in the early stage of drug development. Excitingly, KTX-1001, a selective NSD2 inhibitor, has entered clinical trials. In this Perspective, the structures and functions of NSD2, its roles in various human diseases, and the recent advances in drug discovery strategies targeting NSD2 have been summarized. The challenges, opportunities, and future directions for developing NSD2 inhibitors and degraders are also discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
10
|
Li D, Tian T, Ko CN, Yang C. Prospect of targeting lysine methyltransferase NSD3 for tumor therapy. Pharmacol Res 2023; 194:106839. [PMID: 37400043 DOI: 10.1016/j.phrs.2023.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
Nuclear receptor binding SET domain protein 3 (NSD3) has recently been recognized as a new epigenetic target in the fight against cancer. NSD3, which is amplified, overexpressed or mutated in a variety of tumors, promotes tumor development by regulating the cell cycle, apoptosis, DNA repair and EMT. Therefore, the inhibition, silencing or knockdown of NSD3 are highly promising antitumor strategies. This paper summarizes the structure and biological functions of NSD3 with an emphasis on its carcinogenic or cancer-promoting activity. The development of NSD3-specific inhibitors or degraders is also discussed and reviewed in this paper.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Tiantian Tian
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, Guangdong Province, 519087, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China.
| | - Chao Yang
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China.
| |
Collapse
|
11
|
Xiu S, Chi X, Jia Z, Shi C, Zhang X, Li Q, Gao T, Zhang L, Liu Z. NSD3: Advances in cancer therapeutic potential and inhibitors research. Eur J Med Chem 2023; 256:115440. [PMID: 37182335 DOI: 10.1016/j.ejmech.2023.115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Nuclear receptor-binding SET domain 3, otherwise known as NSD3, is a member of the group of lysine methyltransferases and is involved in a variety of cellular processes, including transcriptional regulation, DNA damage repair, non-histone related functions and several others. NSD3 gene is mutated or loss of function in a variety of cancers, including breast, lung, pancreatic, and osteosarcoma. These mutations produce dysfunction of the corresponding tumor tissue proteins, leading to tumorigenesis, progression, chemoresistance, and unfavorable prognosis, which suggests that the development of NSD3 probe molecules is important for understanding the specific role of NSD3 in disease and drug discovery. In recent years, NSD3 has been increasingly reported, demonstrating that this target is a very hot epigenetic target. However, the number of NSD3 inhibitors available for cancer therapy is limited and none of the drugs that target NSD3 are currently available on the market. In addition, there are very few reviews describing NSD3. Within this review, we highlight the role of NSD3 in tumorigenesis and the development of NSD3 targeted small-molecule inhibitors over the last decade. We hope that this publication can serve as a guide for the development of potential drug candidates for various diseases in the field of epigenetics, especially for the NSD3 target.
Collapse
Affiliation(s)
- Siyu Xiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaowei Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Zhenyu Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiangyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Tongfei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
12
|
Murali M, Saloura V. Understanding the Roles of the NSD Protein Methyltransferases in Head and Neck Squamous Cell Carcinoma. Genes (Basel) 2022; 13:2013. [PMID: 36360250 PMCID: PMC9689908 DOI: 10.3390/genes13112013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 09/18/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent non-skin cancer in the world. While immunotherapy has revolutionized the standard of care treatment in patients with recurrent/metastatic HNSCC, more than 70% of patients do not respond to this treatment, making the identification of novel therapeutic targets urgent. Recently, research endeavors have focused on how epigenetic modifications may affect tumor initiation and progression of HNSCC. The nuclear receptor binding SET domain (NSD) family of protein methyltransferases NSD1-NSD3 is of particular interest for HNSCC, with NSD1 and NSD3 being amongst the most commonly mutated or amplified genes respectively in HNSCC. Preclinical studies have identified both oncogenic and tumor-suppressing properties across NSD1, NSD2, and NSD3 within the context of HNSCC. The purpose of this review is to provide a better understanding of the contribution of the NSD family of protein methyltransferases to the pathogenesis of HNSCC, underscoring their promise as novel therapeutic targets in this devastating disease.
Collapse
Affiliation(s)
- Madhavi Murali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- School of Medicine, The University of Missouri-Kansas City, Kansas City, MO 64018, USA
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
The role of NSD1, NSD2, and NSD3 histone methyltransferases in solid tumors. Cell Mol Life Sci 2022; 79:285. [PMID: 35532818 PMCID: PMC9520630 DOI: 10.1007/s00018-022-04321-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
NSD1, NSD2, and NSD3 constitute the nuclear receptor-binding SET Domain (NSD) family of histone 3 lysine 36 (H3K36) methyltransferases. These structurally similar enzymes mono- and di-methylate H3K36, which contribute to the maintenance of chromatin integrity and regulate the expression of genes that control cell division, apoptosis, DNA repair, and epithelial-mesenchymal transition (EMT). Aberrant expression or mutation of members of the NSD family is associated with developmental defects and the occurrence of some types of cancer. In this review, we discuss the effect of alterations in NSDs on cancer patient's prognosis and response to treatment. We summarize the current understanding of the biological functions of NSD proteins, focusing on their activities and the role in the formation and progression in solid tumors biology, as well as how it depends on tumor etiologies. This review also discusses ongoing efforts to develop NSD inhibitors as a promising new class of cancer therapeutic agents.
Collapse
|
14
|
Shrestha A, Kim N, Lee SJ, Jeon YH, Song JJ, An H, Cho SJ, Kadayat TM, Chin J. Targeting the Nuclear Receptor-Binding SET Domain Family of Histone Lysine Methyltransferases for Cancer Therapy: Recent Progress and Perspectives. J Med Chem 2021; 64:14913-14929. [PMID: 34488340 DOI: 10.1021/acs.jmedchem.1c01116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear receptor-binding SET domain (NSD) proteins are a class of histone lysine methyltransferases (HKMTases) that are amplified, mutated, translocated, or overexpressed in various types of cancers. Several campaigns to develop NSD inhibitors for cancer treatment have begun following recent advances in knowledge of NSD1, NSD2, and NSD3 structures and functions as well as the U.S. FDA approval of the first HKMTase inhibitor (tazemetostat, an EZH2 inhibitor) to treat follicular lymphoma and epithelioid sarcoma. This perspective highlights recent findings on the structures of catalytic su(var), enhancer-of-zeste, trithorax (SET) domains and other functional domains of NSD methyltransferases. In addition, recent progress and efforts to discover NSD-specific small molecule inhibitors against cancer-targeting catalytic SET domains, plant homeodomains, and proline-tryptophan-tryptophan-proline domains are summarized.
Collapse
Affiliation(s)
- Aarajana Shrestha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Nayeon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Su-Jeong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hongchan An
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Sung Jin Cho
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| |
Collapse
|
15
|
Ta HDK, Wang WJ, Phan NN, An Ton NT, Anuraga G, Ku SC, Wu YF, Wang CY, Lee KH. Potential Therapeutic and Prognostic Values of LSM Family Genes in Breast Cancer. Cancers (Basel) 2021; 13:4902. [PMID: 34638387 PMCID: PMC8508234 DOI: 10.3390/cancers13194902] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/26/2022] Open
Abstract
In recent decades, breast cancer (BRCA) has become one of the most common diseases worldwide. Understanding crucial genes and their signaling pathways remain an enormous challenge in evaluating the prognosis and possible therapeutics. The "Like-Smith" (LSM) family is known as protein-coding genes, and its member play pivotal roles in the progression of several malignancies, although their roles in BRCA are less clear. To discover biological processes associated with LSM family genes in BRCA development, high-throughput techniques were applied to clarify expression levels of LSMs in The Cancer Genome Atlas (TCGA)-BRCA dataset, which was integrated with the cBioPortal database. Furthermore, we investigated prognostic values of LSM family genes in BCRA patients using the Kaplan-Meier database. Among genes of this family, LSM4 expression levels were highly associated with poor prognostic outcomes with a hazard ratio of 1.35 (95% confidence interval 1.21-1.51, p for trend = 3.4 × 10-7). MetaCore and GlueGo analyses were also conducted to examine transcript expression signatures of LSM family members and their coexpressed genes, together with their associated signaling pathways, such as "Cell cycle role of APC in cell cycle regulation" and "Immune response IL-15 signaling via MAPK and PI3K cascade" in BRCA. Results showed that LSM family members, specifically LSM4, were significantly correlated with oncogenesis in BRCA patients. In summary, our results suggested that LSM4 could be a prospective prognosticator of BRCA.
Collapse
Affiliation(s)
- Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wei-Jan Wang
- Department of Biological Science and Technology, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan;
| | - Nam Nhut Phan
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam;
| | - Nu Thuy An Ton
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam;
| | - Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia
| | - Su-Chi Ku
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yung-Fu Wu
- National Defense Medical Center, Department of Medical Research, School of Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
16
|
Gholamalizadeh M, Mokhtari Z, Doaei S, Jalili V, Davoodi SH, Jonoush M, Akbari ME, Hajipour A, Bahar B, Tabesh GA, Omidi S, Mosavi Jarrahi SA. The association between fat mass and obesity-associated (FTO) genotype and serum vitamin D level in breast cancer patients. J Cell Mol Med 2021; 25:9627-9633. [PMID: 34490746 PMCID: PMC8505832 DOI: 10.1111/jcmm.16908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
The preventive effect of vitamin D against breast cancer can be influenced by gene polymorphisms. This study aimed to investigate the association between serum level of 25(OH) vitamin D and FTO genotype in breast cancer patients. A cross‐sectional study was carried out on 180 newly diagnosed patients with breast cancer in Tehran, Iran. The blood samples were collected from the participants in order to assess the FTO gene rs9939609 polymorphism by the tetra‐primer amplification refractory mutation system (Tetra‐ARMS) PCR method. The serum level of 25(OH) vitamin D was measured using the direct competitive enzyme‐linked immunosorbent assay (ELISA) method. The association between vitamin D and the FTO genotype in patients with breast cancer was assessed after adjustment for cofounders. The frequency of TT, AT and AA genotypes in the breast cancer patients were 43% (n = 77), 49% (n = 89) and 8% (n = 14), respectively. All patients with higher than 40 ng/dl of serum 25(OH) vitamin D had one or two copies of FTO rs9939609 risk allele (p = 0.019). No linear association was found between the number of FTO risk allele and the level of serum vitamin D. All patients with high serum level of 25(OH) vitamin D had one or two copies of FTO rs9939609 risk allele. FTO gene polymorphisms may counteract the beneficial effects of vitamin D in breast cancer prevention. Further studies can help to better understand the genetic factors predisposing to breast cancer and their effect on the association between vitamin D and breast cancer.
Collapse
Affiliation(s)
- Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mokhtari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
| | - Vahideh Jalili
- Faculty of Medicine, Urmia University of Medical sciences, Urmia, Iran
| | - Sayed Hossein Davoodi
- Departments of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Jonoush
- Department of Nutrition, School of Medicine, Mashahd University of Medical Sciences, Mashahad, Iran
| | | | - Azadeh Hajipour
- School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, UK
| | - Ghasem Azizi Tabesh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Omidi
- Department of Health Education and Promotion, Research Center of Health and Environment, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | | |
Collapse
|
17
|
High WHSC1L1 Expression Reduces Survival Rates in Operated Breast Cancer Patients with Decreased CD8+ T Cells: Machine Learning Approach. J Pers Med 2021; 11:jpm11070636. [PMID: 34357103 PMCID: PMC8303194 DOI: 10.3390/jpm11070636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptor-binding SET domain protein (NSD), a histone methyltransferase, is known to play an important role in cancer pathogenesis. The WHSC1L1 (Wolf-Hirschhorn syndrome candidate 1-like 1) gene, encoding NSD3, is highly expressed in breast cancer, but its role in the development of breast cancer is still unknown. The purpose of this study was to analyze the survival rates and immune responses of breast cancer patients with high WHSC1L1 expression and to validate the results using gradient boosting machine (GBM) in breast cancer. We investigated the clinicopathologic parameters, proportions of immune cells, pathway networks and in vitro drug responses according to WHSC1L1 expression in 456, 1500 and 776 breast cancer patients from the Hanyang University Guri Hospital, METABRIC and TCGA, respectively. High WHSC1L1 expression was associated with poor prognosis, decreased CD8+ T cells and high CD274 expression (encoding PD-L1). In the pathway networks, WHSC1L1 was indirectly linked to the regulation of the lymphocyte apoptotic process. The GBM model with WHSC1L1 showed improved prognostic performance compared with the model without WHSC1L1. We found that VX-11e, CZC24832, LY2109761, oxaliplatin and erlotinib were effective in inhibiting breast cancer cell lines with high WHSC1L1 expression. High WHSC1L1 expression could play potential roles in the progression of breast cancer and targeting WHSC1L1 could be a potential strategy for the treatment of breast cancer.
Collapse
|
18
|
Profiling NSD3-dependent neural crest gene expression reveals known and novel candidate regulatory factors. Dev Biol 2021; 475:118-130. [PMID: 33705737 DOI: 10.1016/j.ydbio.2021.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
The lysine methyltransferase NSD3 is required for the expression of key neural crest transcription factors and the migration of neural crest cells. Nevertheless, a complete view of the genes dependent upon NSD3 for expression and the developmental processes impacted by NSD3 in the neural crest was lacking. We used RNA sequencing (RNA-seq) to profile transcripts differentially expressed after NSD3 knockdown in chick premigratory neural crest cells, identifying 674 genes. Gene Ontology and gene set enrichment analyses further support a requirement for NSD3 during neural crest development and show that NSD3 knockdown also upregulates ribosome biogenesis. To validate our results, we selected three genes not previously associated with neural crest development, Astrotactin 1 (Astn1), Dispatched 3 (Disp3), and Tropomyosin 1 (Tpm1). Using whole mount in situ hybridization, we show that premigratory neural crest cells express these genes and that NSD3 knockdown downregulates (Astn1 and Disp3) and upregulates (Tpm1) their expression, consistent with RNA-seq results. Altogether, this study identifies novel putative regulators of neural crest development and provides insight into the transcriptional consequences of NSD3 in the neural crest, with implications for cancer.
Collapse
|
19
|
Yuan G, Flores NM, Hausmann S, Lofgren SM, Kharchenko V, Angulo-Ibanez M, Sengupta D, Lu X, Czaban I, Azhibek D, Vicent S, Fischle W, Jaremko M, Fang B, Wistuba II, Chua KF, Roth JA, Minna JD, Shao NY, Jaremko Ł, Mazur PK, Gozani O. Elevated NSD3 histone methylation activity drives squamous cell lung cancer. Nature 2021; 590:504-508. [PMID: 33536620 PMCID: PMC7895461 DOI: 10.1038/s41586-020-03170-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023]
Abstract
Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)1-3. The FGFR1 gene is the main candidate driver of tumorigenesis within this region4. However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful5. Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate. Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.
Collapse
Affiliation(s)
- Gang Yuan
- Department of Biology, Stanford University, Stanford, CA 94305, USA,These authors contributed equally to the work
| | - Natasha M. Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA,These authors contributed equally to the work
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shane M. Lofgren
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vladlena Kharchenko
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Maria Angulo-Ibanez
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA,Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | - Xiaoyin Lu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Iwona Czaban
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Dulat Azhibek
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Silvestre Vicent
- University of Navarra, Center for Applied Medical Research, Pamplona, 31008, Spain
| | - Wolfgang Fischle
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katrin F. Chua
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA,Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research and Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Macau SAR, China,To whom correspondence should be addressed: ; ; ;
| | - Łukasz Jaremko
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia,To whom correspondence should be addressed: ; ; ;
| | - Pawel K. Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA,To whom correspondence should be addressed: ; ; ;
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA,To whom correspondence should be addressed: ; ; ;
| |
Collapse
|
20
|
Voutsadakis IA. Amplification of 8p11.23 in cancers and the role of amplicon genes. Life Sci 2020; 264:118729. [PMID: 33166592 DOI: 10.1016/j.lfs.2020.118729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Copy number alterations are widespread in cancer genomes and are part of the genomic instability underlying the pathogenesis of neoplastic diseases. Recurrent copy number alterations of specific chromosomal loci may result in gains of oncogenes or losses of tumor suppressor genes and become entrenched in the genomic framework of certain types of cancers. The locus at chromosome 8p11.23 presents recurrent amplifications most commonly in squamous lung carcinomas, breast cancers, squamous esophageal carcinomas, and urothelial carcinomas. Amplification is rare in other cancers. The amplified segment involves several described oncogenes that may promote cancer cell survival and proliferation, as well as less well characterized genes that could also contribute to neoplastic processes. Genes proposed to be "drivers" in 8p11.23 amplifications include ZNF703, FGFR1 and PLPP5. Additional genes in the locus that could be functionally important in neoplastic networks include co-chaperone BAG4, lysine methyltransferase NSD3, ASH2L, a member of another methyltransferase complex, MLL and the mRNA processing and translation regulators LSM1 and EIF4EBP1. In this paper, genes located in the amplified segment of 8p11.23 will be examined for their role in cancer and data arguing for their importance for cancers with the amplification will be presented.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada; Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
21
|
Jeong GY, Park MK, Choi HJ, An HW, Park YU, Choi HJ, Park J, Kim HY, Son T, Lee H, Min KW, Oh YH, Lee JY, Kong G. NSD3-Induced Methylation of H3K36 Activates NOTCH Signaling to Drive Breast Tumor Initiation and Metastatic Progression. Cancer Res 2020; 81:77-90. [PMID: 32967925 DOI: 10.1158/0008-5472.can-20-0360] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
Histone methyltransferase NSD3 is frequently dysregulated in human cancers, yet the epigenetic role of NSD3 during cancer development remains elusive. Here we report that NSD3-induced methylation of H3K36 is crucial for breast tumor initiation and metastasis. In patients with breast cancer, elevated expression of NSD3 was associated with recurrence, distant metastasis, and poor survival. In vivo, NSD3 promoted malignant transformation of mammary epithelial cells, a function comparable to that of HRAS. Furthermore, NSD3 expanded breast cancer-initiating cells and promoted epithelial-mesenchymal transition to trigger tumor invasion and metastasis. Mechanistically, the long isoform (full-length transcript) of NSD3, but not its shorter isoform lacking a catalytic domain, cooperated with EZH2 and RNA polymerase II to stimulate H3K36me2/3-dependent transactivation of genes associated with NOTCH receptor cleavage, leading to nuclear accumulation of NICD and NICD-mediated transcriptional repression of E-cadherin. Furthermore, mice harboring primary and metastatic breast tumors with overexpressed NSD3 showed sensitivity to NOTCH inhibition. Together, our findings uncover the critical epigenetic role of NSD3 in the modulation of NOTCH-dependent breast tumor progression, providing a rationale for targeting the NSD3-NOTCH signaling regulatory axis in aggressive breast cancer. SIGNIFICANCE: This study demonstrates the functional significance of histone methyltransferase NSD3 in epigenetic regulation of breast cancer stemness, EMT, and metastasis, suggesting NSD3 as an actionable therapeutic target in metastatic breast cancer.
Collapse
Affiliation(s)
- Ga-Young Jeong
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Mi Kyung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | - Hee-Joo Choi
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea.,Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, Republic of Korea
| | - Hee Woon An
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Young-Un Park
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hyung-Jun Choi
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jin Park
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hyung-Yong Kim
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Taekwon Son
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | - Kyueng-Whan Min
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Young-Ha Oh
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jeong-Yeon Lee
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea. .,Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Republic of Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea. .,Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Xu Y, Ye S, Zhang N, Zheng S, Liu H, Zhou K, Wang L, Cao Y, Sun P, Wang T. The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer. Cancer Commun (Lond) 2020; 40:484-500. [PMID: 32805088 PMCID: PMC7571404 DOI: 10.1002/cac2.12075] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/22/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022] Open
Abstract
Background N6‐methyladenosine (m6A) RNA modification has been demonstrated to be a significant regulatory process in the progression of various tumors, including breast cancer. Fat mass and obesity‐associated (FTO) enzyme, initially known as the obesity‐related protein, is the first identified m6A demethylase. However, the relationship between FTO and breast cancer remains controversial. In this study, we aimed to elucidate the role and clinical significance of FTO in breast cancer and to explore the underlying mechanism. Methods We first investigated the expression of FTO in breast cancer cell lines and tissues by quantitative reverse transcription‐PCR (qRT‐PCR), Western blotting, and immunohistochemistry. Wound healing assay and Transwell assay were performed to determine the migration and invasion abilities of SKBR3 and MDA‐MB453 cells with either knockdown or overexpression of FTO. RNA sequencing (RNA‐seq) was conducted to decipher the downstream targets of FTO. qRT‐PCR, luciferase reporter assay, and Western blotting were employed to confirm the existence of the FTO/miR‐181b‐3p/ARL5B axis. The biological function of ADP ribosylation factor like GTPase 5B (ARL5B) in breast cancer cells was evaluated by wound healing assay and Transwell invasion assay. Results High FTO expression was observed in human epidermal growth factor receptor 2 (HER2)‐positive breast cancer, predicting advanced progression (tumor size [P < 0.001], nuclear grade [P = 0.001], peritumoral lymphovascular invasion [P < 0.001), lymph node metastasis [P = 0.002], and TNM stage [P = 0.001]) and poor prognosis. Moreover, FTO promoted cell invasion and migration in vitro. Mechanistically, RNA‐seq and further confirmation studies suggested that FTO up‐regulated ARL5B by inhibiting miR‐181b‐3p. We further verified that ARL5B also displayed carcinogenic activity in breast cancer cells. Conclusion Our work demonstrated the carcinogenic activity of FTO in promoting the invasion and migration of breast cancer cells via the FTO/miR‐181b‐3p/ARL5B signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Shuang Ye
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Nan Zhang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Huatao Liu
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Kewen Zhou
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Ling Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Yue Cao
- Department of Basic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Peng Sun
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Tinghuai Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| |
Collapse
|
23
|
Luen SJ, Asher R, Lee CK, Savas P, Kammler R, Dell'Orto P, Biasi OM, Demanse D, Hackl W, Thuerlimann B, Viale G, Di Leo A, Colleoni M, Regan MM, Loi S. Identifying oncogenic drivers associated with increased risk of late distant recurrence in postmenopausal, estrogen receptor-positive, HER2-negative early breast cancer: results from the BIG 1-98 study. Ann Oncol 2020; 31:1359-1365. [PMID: 32652112 DOI: 10.1016/j.annonc.2020.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/08/2020] [Accepted: 06/28/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In postmenopausal, estrogen receptor-positive, human epidermal growth factor receptor 2 (HER2)-negative early breast cancer, the risk for distant recurrence can extend beyond 5 years of adjuvant endocrine therapy. This study aims to identify genomic driver alterations associated with late distant recurrence. PATIENTS AND METHODS Next generation sequencing was used to characterize driver alterations in primary tumors from a subset of 764 postmenopausal estrogen receptor-positive/HER2-negative patients from the BIG 1-98 randomized trial. Late distant recurrence events were defined as ≥5 years from time of randomization). The association of driver alterations with distant recurrence-free interval in early and late time periods was assessed using Cox regression models. Multivariable analyses were carried out to adjust for clinicopathological factors. Weighted analysis methods were used in order to correct for over-sampling of distant recurrences. RESULTS A total of 538 of 764 (70%) samples were successfully sequenced including 88 (63%) early and 52 (37%) late distant recurrence events after a median follow up of 8.1 years. In univariable analysis for late distant recurrence, PIK3CA mutations (58.8%) were significantly associated with reduced risk [hazard ratio (HR) 0.40, 95% confidence interval (CI) 0.20-0.82, P = 0.012], whereas amplifications on chromosome 8p11 (10.9%) (HR 4.79, 95% CI 2.30-9.97, P < 0.001) and BRCA2 mutations (2.3%) (HR 5.39, 95% CI 1.51-19.29, P = 0.010) were significantly associated with an increased risk. In multivariable analysis, only amplifications on 8p11 (P = 0.002) and BRCA2 mutations (P = 0.013) remained significant predictors. CONCLUSIONS In estrogen receptor-positive/HER2-negative postmenopausal early breast cancer, PIK3CA mutations were associated with reduced risk of late distant recurrence, whereas amplifications on 8p11 and BRCA2 mutations were associated with increased risk of late distant recurrence. The characterization of oncogenic driver alterations may aid in refining treatment choices in the late disease setting, and help identify potential drug targets for testing in future trials.
Collapse
Affiliation(s)
- S J Luen
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Australia
| | - R Asher
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - C K Lee
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - P Savas
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Australia
| | - R Kammler
- International Breast Cancer Study Group, Coordinating Center, Central Pathology Office, Bern, Switzerland
| | - P Dell'Orto
- International Breast Cancer Study Group Central Pathology Office, Department of Pathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - O M Biasi
- Division of Pathology and Laboratory Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - D Demanse
- Novartis Pharma AG, Basel, Switzerland
| | - W Hackl
- OncogenomX Inc., Allschwil, Basel, Switzerland
| | - B Thuerlimann
- Breast Center, Cantonal Hospital, St Gallen, Switzerland; Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
| | - G Viale
- Department of Pathology, University of Milan, Milan, Italy; IEO European Institute of Oncology IRCCS, Milan, Italy
| | - A Di Leo
- Sandro Pitigliani Department of Medical Oncology, Hospital of Prato, Prato, Italy
| | - M Colleoni
- Division of Medical Senology, European Institute of Oncology, Milan, Italy
| | - M M Regan
- International Breast Cancer Study Group Statistical Center, Division of Biostatistics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - S Loi
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
24
|
D'Afonseca V, Gónzalez G, Salazar M, Arencibia AD. Computational analyses on genetic alterations in the NSD genes family and the implications for colorectal cancer development. Ecancermedicalscience 2020; 14:1001. [PMID: 32153656 PMCID: PMC7032942 DOI: 10.3332/ecancer.2020.1001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is a prevalent tumour throughout the world. CRC symptoms appear only in advanced stages causing decrease in survival of patients. Therefore, it is necessary to establish new strategies to detect CRC through subclinical screening. Genetic alterations and differential expression of genes that codify histone methyltransferases (HMTs) are linked to tumourigenesis of CRC. One important group of genes that codify HMTs are the NSD family composed of NSD1, NSD2 and NSD3 genes. This family participates in several cancer processes as oncogenes, harbouring several genetic alterations and presenting differential expression in tumour cells. To investigate the implications of NSD genes in CRC cancer, we described the genomic landscape of all NSD family members in a cohort of CRC patients from publicly available cancer datasets. We identified associations among recurrent copy number alterations (CNAs), mutations and differential gene expression concerning clinical outcome. We found in CRC repositories that NSD1 harbours a missense mutation in SET domain—the catalytic region—that probably could decrease its activity. In addition, we found an association between the low expressions of NSD1 and NSD2 and decrease of survival probability in CRC patients. Finally, we reported that NSD3 showed the highest rate of gene amplification, which was highly correlated to its mRNA expression, a common feature of many cancer drivers. Our results highlight the potential use of the NSD1 and NSD2 gene as prognostic markers of poor prognosis in CRC patients. Additionally, we appointed the use of the NSD3 gene as a putative cancer driver gene in CRC given that this gene harbours the highest rate of genetic amplification. All our findings are leading to novel strategies to predict and control CRC, however, some studies need to be conducted to validate these findings.
Collapse
Affiliation(s)
- Vívian D'Afonseca
- Vicerectory in Research and Postgraduation, University Catholic of Maule, Talca 3605, Chile.,Center of Biotechnology in Naturals Research, University Catholic of Maule, Talca 3605, Chile
| | - Glória Gónzalez
- Center of Biotechnology in Naturals Research, University Catholic of Maule, Talca 3605, Chile
| | - Marcela Salazar
- Vicerectory in Research and Postgraduation, University Catholic of Maule, Talca 3605, Chile.,Center of Biotechnology in Naturals Research, University Catholic of Maule, Talca 3605, Chile
| | - Ariel D Arencibia
- Center of Biotechnology in Naturals Research, University Catholic of Maule, Talca 3605, Chile
| |
Collapse
|
25
|
Gholamalizadeh M, Jarrahi AM, Akbari ME, Bourbour F, Mokhtari Z, Salahshoornezhad S, Doaei S. Association between FTO gene polymorphisms and breast cancer: the role of estrogen. Expert Rev Endocrinol Metab 2020; 15:115-121. [PMID: 32089015 DOI: 10.1080/17446651.2020.1730176] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
Introduction: The fat mass and obesity-associated (FTO) gene may be associated with breast cancer risk. This study aimed to systematically investigate the association between FTO gene polymorphisms and breast cancer and the possible role of estrogen in this association.Areas covered: We performed an extensive search of electronic databases such as PubMed, Science Direct, Scopus, and Cochran for published original studies on the association of FTO gene polymorphisms with breast cancer risk. Keywords such as breast cancer and/or FTO gene and/or polymorphism were used in order to identify the related articles. We excluded studies unrelated to the FTO genotype and the outcome of breast cancer.Expert opinion: FTO gene may have a significant association with the risk of breast cancer. The association between FTO gene polymorphisms and breast cancer was influenced by the status of estrogen receptors. Estrogen may promote breast cancer cell proliferation through up-regulation of FTO gene expression and activation of the PI3 K/Akt signaling pathway in estrogen receptor positive patients. Further studies are warranted to identify the underlying mechanisms and signaling pathways involved in the interactions between FTO gene, estrogen, and the risk of breast cancer.
Collapse
Affiliation(s)
- Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Esmail Akbari
- Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bourbour
- Department of Clinical Nutrition and Dietetics, Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Zohreh Mokhtari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Salahshoornezhad
- Department of Public Health Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Doaei
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
26
|
Shen Y, Morishita M, di Luccio E. High yield recombinant expression and purification of oncogenic NSD1, NSD2, and NSD3 with human influenza hemagglutinin tag. Protein Expr Purif 2019; 166:105506. [PMID: 31563542 DOI: 10.1016/j.pep.2019.105506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/05/2019] [Accepted: 09/25/2019] [Indexed: 02/02/2023]
Abstract
The nuclear receptor-binding SET Domain (NSD) family consists of NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1 histone methyltransferases that are crucial for chromatin remodeling. NSDs are implicated in developmental disorders such as Wolf-Hirschhorn and Sotos syndromes as well as various cancers including t(4; 14)(p16; q32) myeloma, an incurable cancer in plasma cells. NSDs have been the target of intensive study to understand their biological functions more fully and inform anti-cancer drug design. Recombinant protein expression and purification of human NSDs using an E. coli expression system are notoriously challenging, but the production of pure, stable, and active NSDs is essential for further studies. To overcome production challenges, we propose a cost-efficient approach optimized to produce a high yield of NSDs using a modified E. coli expression system. We found that tagging the NSDs with a human influenza hemagglutinin (HA) tag greatly improved the quality of the recombinant NSDs, resulting in more than 95% pure, stable, and active NSD-HAs, with an increase in production yield up to 22.4-fold and up to 6.25 mg/L from LB E. coli culture, and without further purification such as ion-exchange or size-exclusion chromatography.
Collapse
Affiliation(s)
- Yunpeng Shen
- Department of Genetic Engineering, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea; School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Masayo Morishita
- Department of Genetic Engineering, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea; Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Eric di Luccio
- Department of Genetic Engineering, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
27
|
Rutkovsky AC, Yeh ES, Guest ST, Findlay VJ, Muise-Helmericks RC, Armeson K, Ethier SP. Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer. BMC Cancer 2019; 19:491. [PMID: 31122207 PMCID: PMC6533768 DOI: 10.1186/s12885-019-5667-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/01/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBP1 is located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict poor prognosis and resistance to endocrine therapy. METHODS Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes, including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic 4EBP1. RESULTS Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of EIF4EBP1 expression in breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free patient survival across all breast tumor subtypes. CONCLUSIONS These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent translation.
Collapse
Affiliation(s)
- Alexandria C. Rutkovsky
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Elizabeth S. Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, MSC 509, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Stephen T. Guest
- Department of Computational Medicine and Bioinformatics, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109 USA
| | - Victoria J. Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
| | - Robin C. Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, BSB 601, MSC 508, Charleston, SC 29425 USA
| | - Kent Armeson
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street Suite 303 MSC 835, Charleston, USA
| | - Stephen P. Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| |
Collapse
|
28
|
Yi L, Yi L, Liu Q, Li C. Downregulation of NSD3 (WHSC1L1) inhibits cell proliferation and migration via ERK1/2 deactivation and decreasing CAPG expression in colorectal cancer cells. Onco Targets Ther 2019; 12:3933-3943. [PMID: 31190890 PMCID: PMC6535100 DOI: 10.2147/ott.s191732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose: NSD3 (WHSC1L1) is a protein lysine methyltransferase that is recurrently amplified (8p11.23) in several cancer types, and its upregulation is involved in tumor cell proliferation, metastasis, and epithelial-mesenchymal transition (EMT). We aimed to evaluate its potential function as an oncogenic force in colorectal cancer (CRC), and to elucidate relevant mechanisms of its oncogenic activity. Materials and methods: NSD3 levels were analyzed in human CRC and adjacent normal tissues or cells by Western blot analysis and RT-qPCR. Expression levels of the proteins were detected by Western blot analysis and RT-qPCR. Results: NSD3 was significantly upregulated in both CRC tissues and cell lines. Knockdown of NSD3 expression resulted in significant decreases in CRC cell proliferation, migration, and EMT process marker proteins vimentin, simultaneously reducing E-cadherin and N-cadherin expression. The opposite results were observed when NSD3 was overexpressed. Additionally, overexpressing of NSD3 dramatically activated the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway and enhanced actin-capping protein (CAPG) expression. Furthermore, the proliferation and migration abilities evidently facilitated by pcDNA3.1(+) expression vector containing full-length CDS of NSD3 (pcDNA3.1(+)-NSD3, or NSD3) were partially decreased after incubation with ERK1/2 signaling pathway inhibitor (PD98059) and/or specific siRNA against CAPG (siCAPG) in SW480 and HT-29 CRC cells. Conclusion: NSD3 overexpression stimulated CRC cell proliferation and migration through targeting the ERK1/2 signaling pathway and downstream CAPG. Thus, NSD3 could serve as a promising target for anticancer drug development for patients with CRC.
Collapse
Affiliation(s)
- Lanjuan Yi
- Department of gastroenterology, Yantai Shan Hospital, Yantai, Shandong264001, People’s Republic of China
| | - Lanjie Yi
- Research Office of Clinical literature, Nanjing University of Chinese Medicine, Nanjing, Jiangsu210023, People’s Republic of China
| | - Qing Liu
- Department of Nosocomial Infection Control, Xuzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu310015, People’s Republic of China
| | - Chen Li
- Department of Gastroenterology, Xuzhou Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu310015, People’s Republic of China
| |
Collapse
|
29
|
Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current Challenges and Opportunities in Treating Glioblastoma. Pharmacol Rev 2018; 70:412-445. [PMID: 29669750 PMCID: PMC5907910 DOI: 10.1124/pr.117.014944] [Citation(s) in RCA: 504] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and aggressive primary brain tumor, has a high mortality rate despite extensive efforts to develop new treatments. GBM exhibits both intra- and intertumor heterogeneity, lending to resistance and eventual tumor recurrence. Large-scale genomic and proteomic analysis of GBM tumors has uncovered potential drug targets. Effective and “druggable” targets must be validated to embark on a robust medicinal chemistry campaign culminating in the discovery of clinical candidates. Here, we review recent developments in GBM drug discovery and delivery. To identify GBM drug targets, we performed extensive bioinformatics analysis using data from The Cancer Genome Atlas project. We discovered 20 genes, BOC, CLEC4GP1, ELOVL6, EREG, ESR2, FDCSP, FURIN, FUT8-AS1, GZMB, IRX3, LITAF, NDEL1, NKX3-1, PODNL1, PTPRN, QSOX1, SEMA4F, TH, VEGFC, and C20orf166AS1 that are overexpressed in a subpopulation of GBM patients and correlate with poor survival outcomes. Importantly, nine of these genes exhibit higher expression in GBM versus low-grade glioma and may be involved in disease progression. In this review, we discuss these proteins in the context of GBM disease progression. We also conducted computational multi-parameter optimization to assess the blood-brain barrier (BBB) permeability of small molecules in clinical trials for GBM treatment. Drug delivery in the context of GBM is particularly challenging because the BBB hinders small molecule transport. Therefore, we discuss novel drug delivery methods, including nanoparticles and prodrugs. Given the aggressive nature of GBM and the complexity of targeting the central nervous system, effective treatment options are a major unmet medical need. Identification and validation of biomarkers and drug targets associated with GBM disease progression present an exciting opportunity to improve treatment of this devastating disease.
Collapse
Affiliation(s)
- Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Armand Bankhead
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Urarika Luesakul
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Nongnuj Muangsin
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| |
Collapse
|
30
|
Rona GB, Almeida NP, Santos GC, Fidalgo TKS, Almeida FCL, Eleutherio ECA, Pinheiro AS. 1
H NMR metabolomics reveals increased glutaminolysis upon overexpression of NSD3s or Pdp3 in
Saccharomyces cerevisiae. J Cell Biochem 2018; 120:5377-5385. [DOI: 10.1002/jcb.27816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Germana B Rona
- Department of Biochemistry Institute of Chemistry, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Natalia P Almeida
- Department of Biochemistry Institute of Chemistry, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Gilson C Santos
- National Center for Nuclear Magnetic Resonance Jiri Jonas (CNRMN), Structural Biology Program, Medical Biochemistry Institute and Center for Structural Biology and Bioimaging I (CENABIO I), Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Tatiana KS Fidalgo
- Department of Preventive and Community Dentistry, School of Dentistry, State University of Rio de Janeiro Rio de Janeiro Brazil
| | - Fabio CL Almeida
- National Center for Nuclear Magnetic Resonance Jiri Jonas (CNRMN), Structural Biology Program, Medical Biochemistry Institute and Center for Structural Biology and Bioimaging I (CENABIO I), Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Elis CA Eleutherio
- Department of Biochemistry Institute of Chemistry, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry Institute of Chemistry, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
31
|
Holy P, Kloudova A, Soucek P. Importance of genetic background of oxysterol signaling in cancer. Biochimie 2018; 153:109-138. [DOI: 10.1016/j.biochi.2018.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/27/2018] [Indexed: 12/14/2022]
|
32
|
Han X, Piao L, Zhuang Q, Yuan X, Liu Z, He X. The role of histone lysine methyltransferase NSD3 in cancer. Onco Targets Ther 2018; 11:3847-3852. [PMID: 30013365 PMCID: PMC6038882 DOI: 10.2147/ott.s166006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The growing number of findings demonstrate that nuclear receptor suppressor of variegation, enhancer of zeste, and trithorax domain-containing 3 (NSD3) is amplified and overexpressed in multiple cancer types. Nevertheless, the biological roles of NSD3 in carcinogenesis have not been well understood. In this review, we summarize the current knowledge on the mechanisms underlying NSD3 regulation in different cancers. In addition, NSD3 may serve as a potential druggable target for selective cancer therapy in the future.
Collapse
Affiliation(s)
- Xu Han
- Department of Urology, The Third Affiliated Hospital of Soochow University,
| | - Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University,
| | - Xiaofeng Yuan
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Zhiwei Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University,
| |
Collapse
|
33
|
Morrison MJ, Boriack-Sjodin PA, Swinger KK, Wigle TJ, Sadalge D, Kuntz KW, Scott MP, Janzen WP, Chesworth R, Duncan KW, Harvey DM, Lampe JW, Mitchell LH, Copeland RA. Identification of a peptide inhibitor for the histone methyltransferase WHSC1. PLoS One 2018; 13:e0197082. [PMID: 29742153 PMCID: PMC5942779 DOI: 10.1371/journal.pone.0197082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023] Open
Abstract
WHSC1 is a histone methyltransferase that is responsible for mono- and dimethylation of lysine 36 on histone H3 and has been implicated as a driver in a variety of hematological and solid tumors. Currently, there is a complete lack of validated chemical matter for this important drug discovery target. Herein we report on the first fully validated WHSC1 inhibitor, PTD2, a norleucine-containing peptide derived from the histone H4 sequence. This peptide exhibits micromolar affinity towards WHSC1 in biochemical and biophysical assays. Furthermore, a crystal structure was solved with the peptide in complex with SAM and the SET domain of WHSC1L1. This inhibitor is an important first step in creating potent, selective WHSC1 tool compounds for the purposes of understanding the complex biology in relation to human disease.
Collapse
Affiliation(s)
| | | | | | - Tim J. Wigle
- Epizyme Inc., Cambridge, Massachusetts, United States of America
| | - Dipti Sadalge
- Epizyme Inc., Cambridge, Massachusetts, United States of America
| | - Kevin W. Kuntz
- Epizyme Inc., Cambridge, Massachusetts, United States of America
| | | | | | | | | | - Darren M. Harvey
- Epizyme Inc., Cambridge, Massachusetts, United States of America
| | - John W. Lampe
- Epizyme Inc., Cambridge, Massachusetts, United States of America
| | | | | |
Collapse
|
34
|
Parris TZ, Rönnerman EW, Engqvist H, Biermann J, Truvé K, Nemes S, Forssell-Aronsson E, Solinas G, Kovács A, Karlsson P, Helou K. Genome-wide multi-omics profiling of the 8p11-p12 amplicon in breast carcinoma. Oncotarget 2018; 9:24140-24154. [PMID: 29844878 PMCID: PMC5963621 DOI: 10.18632/oncotarget.25329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
Genomic instability contributes to the neoplastic phenotype by deregulating key cancer-related genes, which in turn can have a detrimental effect on patient outcome. DNA amplification of the 8p11-p12 genomic region has clinical and biological implications in multiple malignancies, including breast carcinoma where the amplicon has been associated with tumor progression and poor prognosis. However, oncogenes driving increased cancer-related death and recurrent genetic features associated with the 8p11-p12 amplicon remain to be identified. In this study, DNA copy number and transcriptome profiling data for 229 primary invasive breast carcinomas (corresponding to 185 patients) were evaluated in conjunction with clinicopathological features to identify putative oncogenes in 8p11-p12 amplified samples. Illumina paired-end whole transcriptome sequencing and whole-genome SNP genotyping were subsequently performed on 23 samples showing high-level regional 8p11-p12 amplification to characterize recurrent genetic variants (SNPs and indels), expressed gene fusions, gene expression profiles and allelic imbalances. We now show previously undescribed chromothripsis-like patterns spanning the 8p11-p12 genomic region and allele-specific DNA amplification events. In addition, recurrent amplification-specific genetic features were identified, including genetic variants in the HIST1H1E and UQCRHL genes and fusion transcripts containing MALAT1 non-coding RNA, which is known to be a prognostic indicator for breast cancer and stimulated by estrogen. In summary, these findings highlight novel candidate targets for improved treatment of 8p11-p12 amplified breast carcinomas.
Collapse
Affiliation(s)
- Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Pathology and Genetics, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jana Biermann
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Katarina Truvé
- Bioinformatics Core Facility, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Szilárd Nemes
- Swedish Hip Arthroplasty Register, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Giovanni Solinas
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Sahlgrenska University Hospital, Department of Clinical Pathology and Genetics, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Saloura V, Vougiouklakis T, Zewde M, Kiyotani K, Park JH, Gao G, Karrison T, Lingen M, Nakamura Y, Hamamoto R. WHSC1L1 drives cell cycle progression through transcriptional regulation of CDC6 and CDK2 in squamous cell carcinoma of the head and neck. Oncotarget 2018; 7:42527-42538. [PMID: 27285764 PMCID: PMC5173153 DOI: 10.18632/oncotarget.9897] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/15/2016] [Indexed: 12/20/2022] Open
Abstract
Wolf-Hisrchhorn Syndrome Candidate 1-Like 1 (WHSC1L1) is a protein lysine methyltransferase that is recurrently amplified (8p11.23) in patients with squamous cell carcinoma of the head and neck (SCCHN). In this study, we investigated the oncogenic role of WHSC1L1 in SCCHN. Using immunohistochemistry on tissue microarrays of patients with locoregionally advanced SCCHN, we found that WHSC1L1 is significantly overexpressed in patients with SCCHN, and is associated with poor grade and heavy smoking history. Knockdown of WHSC1L1 expression resulted in significant growth suppression and reduction of H3K36 dimethylation (H3K36me2) in SCCHN cells. Chromatin immunoprecipitation analysis showed that WHSC1L1 and H3K36me2 are enriched in the gene bodies of the cell cycle-related genes CDC6 and CDK2, implying that WHSC1L1 directly regulates the transcription of these genes. According to the importance of CDC6 and CDK2 for G1 to S transition, WHSC1L1 knockdown induced strong G0/G1 arrest which was rescued by introduction of wild-type WHSC1L1 but not by that of enzyme-inactive WHSC1L1. Our results imply that WHSC1L1 and its product H3K36me2 are essential for the transition from G1 to S phase in SCCHN cells and that WHSC1L1 could serve as a rational target for anticancer drug development for patients with head and neck cancer.
Collapse
Affiliation(s)
| | | | - Makda Zewde
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Kazuma Kiyotani
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jae-Hyun Park
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Theodore Karrison
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Mark Lingen
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Yusuke Nakamura
- Department of Medicine, University of Chicago, Chicago, IL, USA.,Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Ryuji Hamamoto
- Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
36
|
Akbari ME, Gholamalizadeh M, Doaei S, Mirsafa F. FTO Gene Affects Obesity and Breast Cancer Through Similar Mechanisms: A New Insight into the Molecular Therapeutic Targets. Nutr Cancer 2017; 70:30-36. [PMID: 29220587 DOI: 10.1080/01635581.2018.1397709] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES This review focused on the possible mediatory role of the FTO in the association between obesity and breast cancer. METHOD All articles published in English from June 1990 to January 2017 were studied. The search terms used were FTO gene, FTO polymorphism, breast cancer, and obesity. Inclusion criteria consisted of assessment of the relationship between FTO polymorphisms and/or FTO expression level with obesity and/or breast cancer as a primary outcome. RESULTS The FTO gene may have a role in the cellular sensing of macronutrients. Over expression of the FTO gene increases the levels of mammalian target of rapamycin (mTOR) signaling that is a key regulator of cell growth. Moreover, some SNPs in intron locations of the FTO gene exert their effects on body mass index, body composition and breast cancer risk through change of the homeobox transcription factor iriquois 3 (IRX3) gene expression level. CONCLUSION The FTO gene may has a critical role in obesity and breast cancer. Similar molecular mechanisms may play a role in the development of breast cancer and obesity. If this result is correct then, it will be interesting to examine the FTO gene as a molecular therapeutics target.
Collapse
Affiliation(s)
- M E Akbari
- a Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - M Gholamalizadeh
- b Student Research Committee, Cancer Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - S Doaei
- c Student Research Committee, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - F Mirsafa
- d National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
37
|
Li Y, Ng HQ, Ngo A, Liu S, Tan YW, Kwek PZ, Hung AW, Joy J, Hill J, Keller TH, Kang C. Backbone resonance assignments for the SET domain of human methyltransferase NSD3 in complex with its cofactor. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:225-229. [PMID: 28808922 DOI: 10.1007/s12104-017-9753-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
NSD3 is a histone H3 methyltransferase that plays an important role in chromatin biology. A construct containing the methyltransferase domain encompassing residues Q1049-K1299 of human NSD3 was obtained and biochemical activity was demonstrated using histone as a substrate. Here we report the backbone HN, N, Cα, C', and side chain Cβ assignments of the construct in complex with S-adenosyl-L-methionine (SAM). Based on these assignments, secondary structures of NSD3/SAM complex in solution were determined.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - Hui Qi Ng
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - Anna Ngo
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - Shuang Liu
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - Yih Wan Tan
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - Perlyn Zekui Kwek
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - Alvin W Hung
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - Joma Joy
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - Jeffrey Hill
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - Thomas H Keller
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore.
| |
Collapse
|
38
|
Liu Z, Piao L, Zhuang M, Qiu X, Xu X, Zhang D, Liu M, Ren D. Silencing of histone methyltransferase NSD3 reduces cell viability in osteosarcoma with induction of apoptosis. Oncol Rep 2017; 38:2796-2802. [PMID: 28901481 PMCID: PMC5780032 DOI: 10.3892/or.2017.5936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023] Open
Abstract
NSD3 is a histone lysine methyltransferase that methylates histone H3 at lysine 36. NSD3 is located at chromosome 8p11.23, the locus that exhibits strong cancer relevance. Thus, NSD3 is likely involved in multiple human cancers. Nevertheless, its roles in human carcinogenesis remain unknown. In the present study, we demonstrated that silencing of NSD3 in osteosarcoma, the most common primary bone cancer in children and adolescents, results in a marked decrease in the number of viable cancer cells, accompanied by increases in the cell population at the G2/M phase and the number of apoptotic cells. In addition, 549 NSD3‑regulated genes were identified and a set of selected candidate genes were validated. Bioinformatic analysis revealed that NSD3 negatively regulates a number of genes that are involved in the process of negative regulation of signal transduction as well as negative regulation of signaling and cell communication. Our results indicate the oncogenic roles of NSD3 in the development and progression of human osteosarcoma, and implicate NSD3 as a potential molecular target for selective therapy for human osteosarcoma.
Collapse
Affiliation(s)
- Zhiwei Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, P.R. China
| | - Ming Zhuang
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Xubin Qiu
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Xiaoshuang Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, P.R. China
| | - Dawei Zhang
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, P.R. China
| | - Mengmeng Liu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, P.R. China
| | - Ding Ren
- Out-Patient Department, PLA No. 85th Hospital, Shanghai 200006, P.R. China
| |
Collapse
|
39
|
Rona GB, Almeida DSG, Pinheiro AS, Eleutherio ECA. The PWWP domain of the human oncogene WHSC1L1/NSD3 induces a metabolic shift toward fermentation. Oncotarget 2017; 8:54068-54081. [PMID: 28903324 PMCID: PMC5589563 DOI: 10.18632/oncotarget.11253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 07/26/2016] [Indexed: 01/10/2023] Open
Abstract
WHSC1L1/NSD3, one of the most aggressive human oncogenes, has two isoforms derived from alternative splicing. Overexpression of long or short NSD3 is capable of transforming a healthy into a cancer cell. NSD3s, the short isoform, contains only a PWWP domain, a histone methyl-lysine reader involved in epigenetic regulation of gene expression. With the aim of understanding the NSD3s PWWP domain role in tumorigenesis, we used Saccharomyces cerevisiae as an experimental model. We identified the yeast protein Pdp3 that contains a PWWP domain that closely resembles NSD3s PWWP. Our results indicate that the yeast protein Pdp3 and human NSD3s seem to play similar roles in energy metabolism, leading to a metabolic shift toward fermentation. The swapping domain experiments suggested that the PWWP domain of NSD3s functionally substitutes that of yeast Pdp3, whose W21 is essential for its metabolic function.
Collapse
Affiliation(s)
- Germana B. Rona
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Diego S. G. Almeida
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Anderson S. Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Elis C. A. Eleutherio
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
40
|
Luo J, Liu S, Leung S, Gru AA, Tao Y, Hoog J, Ho J, Davies SR, Allred DC, Salavaggione AL, Snider J, Mardis ER, Nielsen TO, Ellis MJ. An mRNA Gene Expression-Based Signature to Identify FGFR1-Amplified Estrogen Receptor-Positive Breast Tumors. J Mol Diagn 2017; 19:147-161. [PMID: 27993329 DOI: 10.1016/j.jmoldx.2016.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) amplification drives poor prognosis and is an emerging therapeutic target. We sought to construct a multigene mRNA expression signature to efficiently identify FGFR1-amplified estrogen receptor-positive (ER+) breast tumors. Five independent breast tumor series were analyzed. Genes discriminative for FGFR1 amplification were screened transcriptome-wide by receiver operating characteristic analyses. The METABRIC series was leveraged to construct/evaluate four approaches to signature composition. A locked-down signature was validated with 651 ER+ formalin-fixed, paraffin-embedded tissues (the University of British Columbia-tamoxifen cohort). A NanoString nCounter assay was designed to profile selected genes. For a gold standard, FGFR1 amplification was determined by fluorescent in situ hybridization (FISH). Prognostic effects of FGFR1 amplification were assessed by survival analyses. Eight 8p11-12 genes (ASH2L, BAG4, BRF2, DDHD2, LSM1, PROSC, RAB11FIP1, and WHSC1L1) together with the a priori selected FGFR1 gene, highly discriminated FGFR1 amplification (area under the receiver operating characteristic curve ≥0.82, all genes and all cohorts). The nine-gene signature Call-FGFR1-amp accurately identified FGFR1 FISH-amplified ER+ tumors in the University of British Columbia-tamoxifen cohort (specificity, 0.94; sensitivity, 0.96) and exhibited prognostic effects (disease-specific survival hazard ratio, 1.57; 95% CI, 1.14-2.16; P = 0.005). Call-FGFR1-amp includes several understudied 8p11-12 amplicon-driven oncogenes and accurately identifies FGFR1-amplified ER+ breast tumors. Our study demonstrates an efficient approach to diagnosing rare amplified therapeutic targets with FISH as a confirmatory assay.
Collapse
Affiliation(s)
- Jingqin Luo
- Division of Public Health Sciences, Washington University School of Medicine, St. Louis, Missouri; Department of Surgery, the Siteman Cancer Center Biostatistics Shared Resource, Washington University School of Medicine, St. Louis, Missouri
| | - Shuzhen Liu
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel Leung
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alejandro A Gru
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Yu Tao
- Division of Public Health Sciences, Washington University School of Medicine, St. Louis, Missouri; Department of Surgery, the Siteman Cancer Center Biostatistics Shared Resource, Washington University School of Medicine, St. Louis, Missouri
| | - Jeremy Hoog
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Julie Ho
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sherri R Davies
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - D Craig Allred
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Andrea L Salavaggione
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jacqueline Snider
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Elaine R Mardis
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor School of Medicine, Houston, Texas.
| |
Collapse
|
41
|
Jones DH, Lin DI. Amplification of the NSD3-BRD4-CHD8 pathway in pelvic high-grade serous carcinomas of tubo-ovarian and endometrial origin. Mol Clin Oncol 2017; 7:301-307. [PMID: 28781807 DOI: 10.3892/mco.2017.1289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/03/2017] [Indexed: 11/05/2022] Open
Abstract
Identification of novel therapeutics in pelvic high-grade serous carcinoma (HGSC) has been hampered by a paucity of actionable point mutations in target genes. The aim of the present study was to investigate the extent of amplification of the therapeutically targetable NSD3-CHD8-BRD4 pathway in pelvic HGSC, and to determine whether amplification is associated with worse prognosis. The Cancer Genome Atlas (TCGA) ovarian and endometrial cancer cohorts were retrospectively analyzed via online data-mining tools to test the association of NSD3, CHD8 and BRD4 genomic alterations with survival of pelvic HGSC patients. It was demonstrated that amplification of the NSD3-CHD8-BRD4 pathway in the ovarian HGSC cohort (observed in 18% of the cases, 88/489) was significantly associated with worse overall and progression-free survival compared with non-amplified cases. In addition, amplification of NSD3, CHD8 and BRD4 also occurred in 9% (21/232) of overall endometrial cancer TCGA cases, which was associated with worse overall survival. In the endometrial cancer TCGA cohort, NSD3, CHD8 and BRD4 amplification occurred specifically in the serous carcinoma (25%, 13/53) and 'serous-like' copy number high endometrial carcinoma (33%, 20/60) subgroups, compared with the polymerase e (0%, 0/17), microsatellite instability high (0%, 0/65) or low copy number (1%, 1/90) subgroups. These findings support the hypothesis that amplification of the NSD3-BRD4-CDH8 axis is frequent in pelvic HGSC of both ovarian and endometrial origin, and that this pathway is potentially targetable in a subset of HGSC patients.
Collapse
Affiliation(s)
- Derek H Jones
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Douglas I Lin
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
42
|
Wang S, Ding Z. Fibroblast growth factor receptors in breast cancer. Tumour Biol 2017; 39:1010428317698370. [PMID: 28459213 DOI: 10.1177/1010428317698370] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.
Collapse
Affiliation(s)
- Shuwei Wang
- Department of General Surgery, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, P.R. China
| | - Zhongyang Ding
- Department of General Surgery, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, P.R. China
| |
Collapse
|
43
|
Bennett RL, Swaroop A, Troche C, Licht JD. The Role of Nuclear Receptor-Binding SET Domain Family Histone Lysine Methyltransferases in Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026708. [PMID: 28193767 DOI: 10.1101/cshperspect.a026708] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The nuclear receptor-binding SET Domain (NSD) family of histone H3 lysine 36 methyltransferases is comprised of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1). These enzymes recognize and catalyze methylation of histone lysine marks to regulate chromatin integrity and gene expression. The growing number of reports demonstrating that alterations or translocations of these genes fundamentally affect cell growth and differentiation leading to developmental defects illustrates the importance of this family. In addition, overexpression, gain of function somatic mutations, and translocations of NSDs are associated with human cancer and can trigger cellular transformation in model systems. Here we review the functions of NSD family members and the accumulating evidence that these proteins play key roles in tumorigenesis. Because epigenetic therapy is an important emerging anticancer strategy, understanding the function of NSD family members may lead to the development of novel therapies.
Collapse
Affiliation(s)
- Richard L Bennett
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| | - Alok Swaroop
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| | - Catalina Troche
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| | - Jonathan D Licht
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, Florida 32610
| |
Collapse
|
44
|
Development of mammary hyperplasia, dysplasia, and invasive ductal carcinoma in transgenic mice expressing the 8p11 amplicon oncogene NSD3. Breast Cancer Res Treat 2017; 164:349-358. [PMID: 28484924 DOI: 10.1007/s10549-017-4258-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE NSD3 has been implicated as a candidate driver oncogene from the 8p11-p12 locus, and we have previously published evidence for its amplification and overexpression in human breast cancer. This aim of this study was to further characterize the transforming function of NSD3 in vivo. METHODS We generated a transgenic mouse model in which NSD3 gene expression was driven by the MMTV promoter and expressed in mammary epithelium of FVB mice. Mammary glands were fixed and whole mounts were stained with carmine to visualize gland structure. Mammary tumors were formalin-fixed, and paraffin embedded (FFPE) tumors were stained with hematoxylin and eosin. RESULTS Pups born to transgenic females were significantly underdeveloped compared to pups born to WT females due to a lactation defect in transgenic female mice. Whole mount analysis of the mammary glands of transgenic female mice revealed a profound defect in functional differentiation of mammary gland alveoli that resulted in the lactation defect. We followed parous and virgin NSD3 transgenic and control mice to 50 weeks of age and observed that several NSD3 parous females developed mammary tumors. Whole mount analysis of the mammary glands of tumor-bearing mice revealed numerous areas of mammary hyperplasia and ductal dysplasia. Histological analysis showed that mammary tumors were high-grade ductal carcinomas, and lesions present in other mammary glands exhibited features of alveolar hyperplasia, ductal dysplasia, and carcinoma in situ. CONCLUSIONS Our results are consistent with our previous studies and demonstrate that NSD3 is a transforming breast cancer oncogene.
Collapse
|
45
|
Yu H, Jiang Y, Liu L, Shan W, Chu X, Yang Z, Yang ZQ. Integrative genomic and transcriptomic analysis for pinpointing recurrent alterations of plant homeodomain genes and their clinical significance in breast cancer. Oncotarget 2017; 8:13099-13115. [PMID: 28055972 PMCID: PMC5355080 DOI: 10.18632/oncotarget.14402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022] Open
Abstract
A wide range of the epigenetic effectors that regulate chromatin modification, gene expression, genomic stability, and DNA repair contain structurally conserved domains called plant homeodomain (PHD) fingers. Alternations of several PHD finger-containing proteins (PHFs) due to genomic amplification, mutations, deletions, and translocations have been linked directly to various types of cancer. However, little is known about the genomic landscape and the clinical significance of PHFs in breast cancer. Hence, we performed a large-scale genomic and transcriptomic analysis of 98 PHF genes in breast cancer using TCGA and METABRIC datasets and correlated the recurrent alterations with clinicopathological features and survival of patients. Different subtypes of breast cancer had different patterns of copy number and expression for each PHF. We identified a subset of PHF genes that was recurrently altered with high prevalence, including PYGO2 (pygopus family PHD finger 2), ZMYND8 (zinc finger, MYND-type containing 8), ASXL1 (additional sex combs like 1) and CHD3 (chromodomain helicase DNA binding protein 3). Copy number increase and overexpression of ZMYND8 were more prevalent in Luminal B subtypes and were significantly associated with shorter survival of breast cancer patients. ZMYND8 was also involved in a positive feedback circuit of the estrogen receptor (ER) pathway, and the expression of ZMYND8 was repressed by the bromodomain and extra terminal (BET) inhibitor in breast cancer. Our findings suggest a promising avenue for future research-to focus on a subset of PHFs to better understand the molecular mechanisms and to identify therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Huimei Yu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- College of Basic Medicine, Jilin University, Changchun, China
| | - Yuanyuan Jiang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lanxin Liu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Wenqi Shan
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xiaofang Chu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zeng-Quan Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| |
Collapse
|
46
|
Balko JM, Schwarz LJ, Luo N, Estrada MV, Giltnane JM, Dávila-González D, Wang K, Sánchez V, Dean PT, Combs SE, Hicks D, Pinto JA, Landis MD, Doimi FD, Yelensky R, Miller VA, Stephens PJ, Rimm DL, Gómez H, Chang JC, Sanders ME, Cook RS, Arteaga CL. Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence. Sci Transl Med 2016; 8:334ra53. [PMID: 27075627 DOI: 10.1126/scitranslmed.aad3001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/16/2016] [Indexed: 12/27/2022]
Abstract
Amplifications at 9p24 have been identified in breast cancer and other malignancies, but the genes within this locus causally associated with oncogenicity or tumor progression remain unclear. Targeted next-generation sequencing of postchemotherapy triple-negative breast cancers (TNBCs) identified a group of 9p24-amplified tumors, which contained focal amplification of the Janus kinase 2 (JAK2) gene. These patients had markedly inferior recurrence-free and overall survival compared to patients with TNBC without JAK2 amplification. Detection of JAK2/9p24 amplifications was more common in chemotherapy-treated TNBCs than in untreated TNBCs or basal-like cancers, or in other breast cancer subtypes. Similar rates of JAK2 amplification were confirmed in patient-derived TNBC xenografts. In patients for whom longitudinal specimens were available, JAK2 amplification was selected for during neoadjuvant chemotherapy and eventual metastatic spread, suggesting a role in tumorigenicity and chemoresistance, phenotypes often attributed to a cancer stem cell-like cell population. In TNBC cell lines with JAK2 copy gains or amplification, specific inhibition of JAK2 signaling reduced mammosphere formation and cooperated with chemotherapy in reducing tumor growth in vivo. In these cells, inhibition of JAK1-signal transducer and activator of transcription 3 (STAT3) signaling had little effect or, in some cases, counteracted JAK2-specific inhibition. Collectively, these results suggest that JAK2-specific inhibitors are more efficacious than dual JAK1/2 inhibitors against JAK2-amplified TNBCs. Furthermore, JAK2 amplification is a potential biomarker for JAK2 dependence, which, in turn, can be used to select patients for clinical trials with JAK2 inhibitors.
Collapse
Affiliation(s)
- Justin M Balko
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA. Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA. Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| | - Luis J Schwarz
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Na Luo
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Mónica V Estrada
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA. Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jennifer M Giltnane
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA. Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Kai Wang
- Foundation Medicine, Cambridge, MA 02142, USA
| | - Violeta Sánchez
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Phillip T Dean
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Susan E Combs
- Departments of Pathology and Medicine, Yale University, New Haven, CT 06520, USA
| | - Donna Hicks
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | - Franco D Doimi
- Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima 34, Perú
| | | | | | | | - David L Rimm
- Departments of Pathology and Medicine, Yale University, New Haven, CT 06520, USA
| | - Henry Gómez
- Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima 34, Perú
| | - Jenny C Chang
- Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Melinda E Sanders
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA. Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Rebecca S Cook
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA. Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Carlos L Arteaga
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA. Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA. Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
47
|
Kim JA, Tan Y, Wang X, Cao X, Veeraraghavan J, Liang Y, Edwards DP, Huang S, Pan X, Li K, Schiff R, Wang XS. Comprehensive functional analysis of the tousled-like kinase 2 frequently amplified in aggressive luminal breast cancers. Nat Commun 2016; 7:12991. [PMID: 27694828 PMCID: PMC5064015 DOI: 10.1038/ncomms12991] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
More aggressive and therapy-resistant oestrogen receptor (ER)-positive breast cancers remain a great clinical challenge. Here our integrative genomic analysis identifies tousled-like kinase 2 (TLK2) as a candidate kinase target frequently amplified in ∼10.5% of ER-positive breast tumours. The resulting overexpression of TLK2 is more significant in aggressive and advanced tumours, and correlates with worse clinical outcome regardless of endocrine therapy. Ectopic expression of TLK2 leads to enhanced aggressiveness in breast cancer cells, which may involve the EGFR/SRC/FAK signalling. Conversely, TLK2 inhibition selectively inhibits the growth of TLK2-high breast cancer cells, downregulates ERα, BCL2 and SKP2, impairs G1/S cell cycle progression, induces apoptosis and significantly improves progression-free survival in vivo. We identify two potential TLK2 inhibitors that could serve as backbones for future drug development. Together, amplification of the cell cycle kinase TLK2 presents an attractive genomic target for aggressive ER-positive breast cancers. Luminal B oestrogen receptor positive breast cancers are generally aggressive tumors with poor outcomes. Here, the authors show that the kinase TLK2 is amplified and overexpressed in these tumors and correlates with reduced survival, TLK2 inhibition induces apoptosis in vitro and improves survival in mice.
Collapse
Affiliation(s)
- Jin-Ah Kim
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ying Tan
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xian Wang
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Xixi Cao
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jamunarani Veeraraghavan
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yulong Liang
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dean P Edwards
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pathology &Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shixia Huang
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xuewen Pan
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kaiyi Li
- Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rachel Schiff
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiao-Song Wang
- Lester &Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
48
|
Dysregulation of histone methyltransferases in breast cancer - Opportunities for new targeted therapies? Mol Oncol 2016; 10:1497-1515. [PMID: 27717710 DOI: 10.1016/j.molonc.2016.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 01/24/2023] Open
Abstract
Histone methyltransferases (HMTs) catalyze the methylation of lysine and arginine residues on histone tails and non-histone targets. These important post-translational modifications are exquisitely regulated and affect chromatin compaction and transcriptional programs leading to diverse biological outcomes. There is accumulating evidence that genetic alterations of several HMTs impinge on oncogenic or tumor-suppressor functions and influence both cancer initiation and progression. HMTs therefore represent an opportunity for therapeutic targeting in those patients with tumors in which HMTs are dysregulated, to reverse the histone marks and transcriptional programs associated with aggressive tumor behavior. In this review, we describe the known histone methyltransferases and their emerging roles in breast cancer tumorigenesis.
Collapse
|
49
|
H3K36 methyltransferases as cancer drug targets: rationale and perspectives for inhibitor development. Future Med Chem 2016; 8:1589-607. [PMID: 27548565 DOI: 10.4155/fmc-2016-0071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Methylation at histone 3, lysine 36 (H3K36) is a conserved epigenetic mark regulating gene transcription, alternative splicing and DNA repair. Genes encoding H3K36 methyltransferases (KMTases) are commonly overexpressed, mutated or involved in chromosomal translocations in cancer. Molecular biology studies have demonstrated that H3K36 KMTases regulate oncogenic transcriptional programs. Structural studies of the catalytic SET domain of H3K36 KMTases have revealed intriguing opportunities for design of small molecule inhibitors. Nevertheless, potent inhibitors for most H3K36 KMTases have not yet been developed, underlining the challenges associated with this target class. As we now have strong evidence linking H3K36 KMTases to cancer, drug development efforts are predicted to yield novel compounds in the near future.
Collapse
|
50
|
WANG PEI, ZHUANG CHUNBO, HUANG DA, XU KESHU. Downregulation of miR-377 contributes to IRX3 deregulation in hepatocellular carcinoma. Oncol Rep 2016; 36:247-52. [DOI: 10.3892/or.2016.4815] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/26/2016] [Indexed: 11/06/2022] Open
|