1
|
Wang YL, Liu C, Yang YY, Zhang L, Guo X, Niu C, Zhang NP, Ding J, Wu J. Dynamic changes of gut microbiota in mouse models of metabolic dysfunction-associated steatohepatitis and its transition to hepatocellular carcinoma. FASEB J 2024; 38:e23766. [PMID: 38967214 DOI: 10.1096/fj.202400573rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Dysbiosis of gut microbiota may account for pathobiology in simple fatty liver (SFL), metabolic dysfunction-associated steatohepatitis (MASH), fibrotic progression, and transformation to MASH-associated hepatocellular carcinoma (MASH-HCC). The aim of the present study is to investigate gut dysbiosis in this progression. Fecal microbial rRNA-16S sequencing, absolute quantification, histopathologic, and biochemical tests were performed in mice fed high fat/calorie diet plus high fructose and glucose in drinking water (HFCD-HF/G) or control diet (CD) for 2, 16 weeks, or 14 months. Histopathologic examination verified an early stage of SFL, MASH, fibrotic, or MASH-HCC progression with disturbance of lipid metabolism, liver injury, and impaired gut mucosal barrier as indicated by loss of occludin in ileum mucosa. Gut dysbiosis occurred as early as 2 weeks with reduced α diversity, expansion of Kineothrix, Lactococcus, Akkermansia; and shrinkage in Bifidobacterium, Lactobacillus, etc., at a genus level. Dysbiosis was found as early as MAHS initiation, and was much more profound through the MASH-fibrotic and oncogenic progression. Moreover, the expansion of specific species, such as Lactobacillus johnsonii and Kineothrix alysoides, was confirmed by an optimized method for absolute quantification. Dynamic alterations of gut microbiota were characterized in three stages of early SFL, MASH, and its HCC transformation. The findings suggest that the extent of dysbiosis was accompanied with MASH progression and its transformation to HCC, and the shrinking or emerging of specific microbial species may account at least in part for pathologic, metabolic, and immunologic alterations in fibrogenic progression and malignant transition in the liver.
Collapse
Affiliation(s)
- Yu-Li Wang
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Chang Liu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yong-Yu Yang
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Li Zhang
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiao Guo
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Chen Niu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Ning-Ping Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Jia Ding
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Jian Wu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
2
|
Cai J, Huang J, Li D, Zhang X, Shi B, Liu Q, Fang C, Xu S, Zhang Z. Hippo-YAP/TAZ-ROS signaling axis regulates metaflammation induced by SelenoM deficiency in high-fat diet-derived obesity. J Adv Res 2024:S2090-1232(24)00229-7. [PMID: 38879122 DOI: 10.1016/j.jare.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/21/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Metabolic inflammation (metaflammation) in obesity is primarily initiated by proinflammatory macrophage infiltration into adipose tissue. SelenoM contributes to the modulation of antioxidative stress and inflammation in multiple pathological processes; however, its roles in metaflammation and the proinflammatory macrophage (M1)-like state in adipose tissue have not been determined. OBJECTIVES We hypothesize that SelenoM could effectively regulate metaflammation via the Hippo-YAP/TAZ-ROS signaling axis in obesity derived from a high-fat diet. METHODS Morphological changes in adipose tissue were examined by hematoxylin-eosin (H&E) staining and fluorescence microscopy. The glucose tolerance test (GTT) and insulin tolerance test (ITT) were used to evaluate the impact of SelenoM deficiency on blood glucose levels. RNA-Seq analysis, LC-MS analysis, Mass spectrometry analysis and western blotting were performed to detect the levels of genes and proteins related to glycolipid metabolism in adipose tissue. RESULTS Herein, we evaluated the inflammatory features and metabolic microenvironment of mice with SelenoM-deficient adipose tissues by multi-omics analyses. The deletion of SelenoM resulted in glycolipid metabolic disturbances and insulin resistance, thereby accelerating weight gain, adiposity, and hyperglycemia. Mice lacking SelenoM in white adipocytes developed severe adipocyte hypertrophy via impaired lipolysis. SelenoM deficiency aggravated the generation of ROS by reducing equivalents (NADPH and glutathione) in adipocytes, thereby promoting inflammatory cytokine production and the M1-proinflammatory reaction, which was related to a change in nuclear factor kappa-B (NF-κB) levels in macrophages. Mechanistically, SelenoM deficiency promoted metaflammation via Hippo-YAP/TAZ-ROS-mediated transcriptional regulation by targeting large tumor suppressor 2 (LATS2). Moreover, supplementation with N-acetyl cysteine (NAC) to reduce excessive oxidative stress partially rescued adipocyte inflammatory responses and macrophage M1 activation. CONCLUSION Our data indicate that SelenoM ameliorates metaflammation mainly via the Hippo-YAP/TAZ-ROS signaling axis in obesity. The identification of SelenoM as a key regulator of metaflammation presents opportunities for the development of novel therapeutic interventions targeting adipose tissue dysfunction in obesity.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Di Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bendong Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Cheng Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, China.
| |
Collapse
|
3
|
Khan F, Elsori D, Verma M, Pandey S, Obaidur Rab S, Siddiqui S, Alabdallah NM, Saeed M, Pandey P. Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front Cell Dev Biol 2024; 12:1399065. [PMID: 38933330 PMCID: PMC11199418 DOI: 10.3389/fcell.2024.1399065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Lipids, the primary constituents of the cell membrane, play essential roles in nearly all cellular functions, such as cell-cell recognition, signaling transduction, and energy provision. Lipid metabolism is necessary for the maintenance of life since it regulates the balance between the processes of synthesis and breakdown. Increasing evidence suggests that cancer cells exhibit abnormal lipid metabolism, significantly affecting their malignant characteristics, including self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. Prominent oncogenic signaling pathways that modulate metabolic gene expression and elevate metabolic enzyme activity include phosphoinositide 3-kinase (PI3K)/AKT, MAPK, NF-kB, Wnt, Notch, and Hippo pathway. Conversely, when metabolic processes are not regulated, they can lead to malfunctions in cellular signal transduction pathways. This, in turn, enables uncontrolled cancer cell growth by providing the necessary energy, building blocks, and redox potentials. Therefore, targeting lipid metabolism-associated oncogenic signaling pathways could be an effective therapeutic approach to decrease cancer incidence and promote survival. This review sheds light on the interactions between lipid reprogramming and signaling pathways in cancer. Exploring lipid metabolism as a target could provide a promising approach for creating anticancer treatments by identifying metabolic inhibitors. Additionally, we have also provided an overview of the drugs targeting lipid metabolism in cancer in this review.
Collapse
Affiliation(s)
- Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Samra Siddiqui
- Department of Health Service Management, College of Public Health and Health Informatics, University of Hail, Haʼil, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Haʼil, Saudi Arabia
| | - Pratibha Pandey
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
4
|
Fu R, Xue W, Liang J, Li X, Zheng J, Wang L, Zhang M, Meng J. SOAT1 regulates cholesterol metabolism to induce EMT in hepatocellular carcinoma. Cell Death Dis 2024; 15:325. [PMID: 38724499 PMCID: PMC11082151 DOI: 10.1038/s41419-024-06711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Cholesterol metabolism reprogramming is one of the significant characteristics of hepatocellular carcinoma (HCC). Cholesterol increases the risk of epithelial-mesenchymal transition (EMT) in cancer. Sterol O-acyltransferases 1 (SOAT1) maintains the cholesterol homeostasis. However, the exact mechanistic contribution of SOAT1 to EMT in HCC remains unclear. Here we demonstrated that SOAT1 positively related to poor prognosis of HCC, EMT markers and promoted cell migration and invasion in vitro, which was mediated by the increased cholesterol in plasmalemma and cholesterol esters accumulation. Furthermore, we reported that SOAT1 disrupted cholesterol metabolism homeostasis to accelerate tumorigenesis and development in HCC xenograft and NAFLD-HCC. Also, we detected that nootkatone, a sesquiterpene ketone, inhibited EMT by targeting SOAT1 in vitro and in vivo. Collectively, our finding indicated that SOAT1 promotes EMT and contributes to hepatocarcinogenesis by increasing cholesterol esterification, which is suppressed efficiently by nootkatone. This study demonstrated that SOAT1 is a potential biomarker and therapeutic target in NAFLD-HCC and SOAT1-targeting inhibitors are expected to be the potential new therapeutic treatment for HCC.
Collapse
Affiliation(s)
- Rongrong Fu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenqing Xue
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingjie Liang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinran Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China.
- China-Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Tianjin, China.
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China.
- Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
5
|
Jang BK. Correspondence on Letter regarding "Both liver parenchymal and non-parenchymal cells express JCAD proteins under various circumstances". Clin Mol Hepatol 2024; 30:297-298. [PMID: 38606426 PMCID: PMC11016488 DOI: 10.3350/cmh.2024.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Affiliation(s)
- Byoung Kuk Jang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
6
|
Xie L, Chen H, Zhang L, Ma Y, Zhou Y, Yang YY, Liu C, Wang YL, Yan YJ, Ding J, Teng X, Yang Q, Liu XP, Wu J. JCAD deficiency attenuates activation of hepatic stellate cells and cholestatic fibrosis. Clin Mol Hepatol 2024; 30:206-224. [PMID: 38190829 PMCID: PMC11016487 DOI: 10.3350/cmh.2023.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND/AIMS Cholestatic liver diseases including primary biliary cholangitis (PBC) are associated with active hepatic fibrogenesis, which ultimately progresses to cirrhosis. Activated hepatic stellate cells (HSCs) are the main fibrogenic effectors in response to cholangiocyte damage. JCAD regulates cell proliferation and malignant transformation in nonalcoholic steatoheaptitis-associated hepatocellular carcinoma (NASH-HCC). However, its participation in cholestatic fibrosis has not been explored yet. METHODS Serial sections of liver tissue of PBC patients were stained with immunofluorescence. Hepatic fibrosis was induced by bile duct ligation (BDL) in wild-type (WT), global JCAD knockout mice (JCAD-KO) and HSC-specific JCAD knockout mice (HSC-JCAD-KO), and evaluated by histopathology and biochemical tests. In situ-activated HSCs isolated from BDL mice were used to determine effects of JCAD on HSC activation. RESULTS In consistence with staining of liver sections from PBC patients, immunofluorescent staining revealed that JCAD expression was identified in smooth muscle α-actin (α-SMA)-positive fibroblast-like cells and was significantly up-regulated in WT mice with BDL. JCAD deficiency remarkably ameliorated BDL-induced hepatic injury and fibrosis, as documented by liver hydroxyproline content, when compared to WT mice with BDL. Histopathologically, collagen deposition was dramatically reduced in both JCAD-KO and HSC-JCAD-KO mice compared to WT mice, as visualized by Trichrome staining and semi-quantitative scores. Moreover, JCAD deprivation significantly attenuated in situ HSC activation and reduced expression of fibrotic genes after BDL. CONCLUSION JCAD deficiency effectively suppressed hepatic fibrosis induced by BDL in mice, and the underlying mechanisms are largely through suppressed Hippo-YAP signaling activity in HSCs.
Collapse
Affiliation(s)
- Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Li Zhang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yue Ma
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuan Zhou
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yong-Yu Yang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Chang Liu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu-Li Wang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Ya-Jun Yan
- Department of Pathology, Shanghai Fifth People’s Hospital, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jia Ding
- Department of Gastroenterology, Jing’an District Central Hospital, Fudan University, Shanghai, China
| | - Xiao Teng
- HistoIndex Pte Ltd, Singapore, Singapore
| | - Qiang Yang
- Hangzhou Choutu Technology Co., Ltd., Hangzhou, China
| | - Xiu-Ping Liu
- Department of Pathology, Shanghai Fifth People’s Hospital, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
7
|
Jang BK. JCAD, a new potential therapeutic target in cholestatic liver disease. Clin Mol Hepatol 2024; 30:166-167. [PMID: 38454802 PMCID: PMC11016482 DOI: 10.3350/cmh.2024.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Affiliation(s)
- Byoung Kuk Jang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
8
|
Zhang L, Yang Y, Xie L, Zhou Y, Zhong Z, Ding J, Wang Z, Wang Y, Liu X, Yu F, Wu J. JCAD deficiency delayed liver regenerative repair through the Hippo-YAP signalling pathway. Clin Transl Med 2024; 14:e1630. [PMID: 38509842 PMCID: PMC10955226 DOI: 10.1002/ctm2.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND AND AIMS Liver regeneration retardation post partial hepatectomy (PH) is a common clinical problem after liver transplantation. Identification of key regulators in liver regeneration post PH may be beneficial for clinically improving the prognosis of patients after liver transplantation. This study aimed to clarify the function of junctional protein-associated with coronary artery disease (JCAD) in liver regeneration post PH and to reveal the underlying mechanisms. METHODS JCAD knockout (JCAD-KO), liver-specific JCAD-KO (Jcad△Hep) mice and their control group were subjected to 70% PH. RNA sequencing was conducted to unravel the related signalling pathways. Primary hepatocytes from KO mice were treated with epidermal growth factor (EGF) to evaluate DNA replication. Fluorescent ubiquitination-based cell cycle indicator (FUCCI) live-imaging system was used to visualise the phases of cell cycle. RESULTS Both global and liver-specific JCAD deficiency postponed liver regeneration after PH as indicated by reduced gene expression of cell cycle transition and DNA replication. Prolonged retention in G1 phase and failure to transition over the cell cycle checkpoint in JCAD-KO cell line was indicated by a FUCCI live-imaging system as well as pharmacologic blockage. JCAD replenishment by adenovirus reversed the impaired DNA synthesis in JCAD-KO primary hepatocyte in exposure to EGF, which was abrogated by a Yes-associated protein (YAP) inhibitor, verteporfin. Mechanistically, JCAD competed with large tumour suppressor 2 (LATS2) for WWC1 interaction, leading to LATS2 inhibition and thereafter YAP activation, and enhanced expression of cell cycle-associated genes. CONCLUSION JCAD deficiency led to delayed regeneration after PH as a result of blockage in cell cycle progression through the Hippo-YAP signalling pathway. These findings uncovered novel functions of JCAD and suggested a potential strategy for improving graft growth and function post liver transplantation. KEY POINTS JCAD deficiency leads to an impaired liver growth after PH due to cell division blockage. JCAD competes with LATS2 for WWC1 interaction, resulting in LATS2 inhibition, YAP activation and enhanced expression of cell cycle-associated genes. Delineation of JCADHippoYAP signalling pathway would facilitate to improve prognosis of acute liver failure and graft growth in living-donor liver transplantation.
Collapse
Affiliation(s)
- Li Zhang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Yong‐Yu Yang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Li Xie
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Yuan Zhou
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Zhenxing Zhong
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghai Key Laboratory of Medical EpigeneticsInternational Co‐Laboratory of Medical Epigenetics and MetabolismInstitutes of Biomedical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Jia Ding
- Jing'an Central District HospitalShanghaiChina
| | - Zhong‐Hua Wang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Yu‐Li Wang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Xiu‐Ping Liu
- Department of Pathology and Laboratory MedicineSchool of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Fa‐Xing Yu
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghai Key Laboratory of Medical EpigeneticsInternational Co‐Laboratory of Medical Epigenetics and MetabolismInstitutes of Biomedical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Jian Wu
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
- Department of Gastroenterology & HepatologyZhongshan Hospital of Fudan UniversityShanghaiChina
- Shanghai Institute of Liver DiseasesFudan University Shanghai Medical CollegeShanghaiChina
| |
Collapse
|
9
|
Schiavoni G, Messina B, Scalera S, Memeo L, Colarossi C, Mare M, Blandino G, Ciliberto G, Bon G, Maugeri-Saccà M. Role of Hippo pathway dysregulation from gastrointestinal premalignant lesions to cancer. J Transl Med 2024; 22:213. [PMID: 38424512 PMCID: PMC10903154 DOI: 10.1186/s12967-024-05027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND First identified in Drosophila melanogaster, the Hippo pathway is considered a major regulatory cascade controlling tissue homeostasis and organ development. Hippo signaling components include kinases whose activity regulates YAP and TAZ final effectors. In response to upstream stimuli, YAP and TAZ control transcriptional programs involved in cell proliferation, cytoskeletal reorganization and stemness. MAIN TEXT While fine tuning of Hippo cascade components is essential for maintaining the balance between proliferative and non-proliferative signals, pathway signaling is frequently dysregulated in gastrointestinal cancers. Also, YAP/TAZ aberrant activation has been described in conditions characterized by chronic inflammation that precede cancer development, suggesting a role of Hippo effectors in triggering carcinogenesis. In this review, we summarize the architecture of the Hippo pathway and discuss the involvement of signaling cascade unbalances in premalignant lesions of the gastrointestinal tract, providing a focus on the underlying molecular mechanisms. CONCLUSIONS The biology of premalignant Hippo signaling dysregulation needs further investigation in order to elucidate the evolutionary trajectories triggering cancer inititation and develop effective early therapeutic strategies targeting the Hippo/YAP pathway.
Collapse
Affiliation(s)
- Giulia Schiavoni
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Beatrice Messina
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
| | | | - Marzia Mare
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
10
|
Wu Y, Yang Y, Yi X, Song L. The circSNX14 functions as a tumor suppressor via the miR-562/ LATS2 pathway in hepatocellular carcinoma cells. J Mol Histol 2023; 54:593-607. [PMID: 37861952 DOI: 10.1007/s10735-023-10157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
Circular RNAs (circRNAs) play critical roles in the initiation and progression of various cancers. However, the potential functional roles of circSNX14 in hepatocellular carcinoma (HCC) remain largely unknown. CircSNX14 expression pattern was analyzed in HCC tissues and cell lines via qRT-PCR. The effects of circSNX14 on cell proliferation, invasion, angiogenesis, and Epithelial-mesenchymal transition (EMT) were investigated by overexpression experiments. The role of circSNX14 in the tumorigenesis of HCC cells was examined using in vivo xenograft mouse model. The interaction between circSNX14, miR-562, and Large Tumor Suppressor Kinase 2 (LATS2) mRNA was confirmed by Luciferase reporter assay and RNA immunoprecipitation (RIP) analysis. CircSNX14 was significantly down-regulated in HCC tissues and cell lines, and its down-regulation was correlated with a poor prognosis in HCC patients. In the following functional experiments, circSNX14 overexpression remarkably suppressed the proliferation and invasion of HCC cells, and attenuated the mesenchymall status. circSNX14 overexpression also suppressed the tumorigenesis of HCC cells in the mouse model. We further revealed the interaction of circSNX14 and miR-562, and miR-562 could suppress the expression of LATS2 by interacting with its mRNA. The negative correlation of circSNX14 and miR-562, negative correlation of miR-562 and LATS2, and positive correlation of circSNX14 and LATS2 have been confirmed by Pearson correlation in the HCC samples. Collectively, these results reveal a novel role of circSNX14/miR-562/LATS2 axis in regulating the malignant progression of HCC cancer progression, indicating the tumor suppressor role of circSNX14 and its potential as a prognostic biomarker.
Collapse
Affiliation(s)
- Yan Wu
- Department of General Surgery, University-Town Hospital of Chongqing Medical University, No.55 University Town Middle Road, Shapingba District, Chongqing, 401331, China
| | - Yaowei Yang
- Department of General Surgery, University-Town Hospital of Chongqing Medical University, No.55 University Town Middle Road, Shapingba District, Chongqing, 401331, China
| | - Xin Yi
- Department of General Surgery, University-Town Hospital of Chongqing Medical University, No.55 University Town Middle Road, Shapingba District, Chongqing, 401331, China
| | - Liwen Song
- Department of General Surgery, University-Town Hospital of Chongqing Medical University, No.55 University Town Middle Road, Shapingba District, Chongqing, 401331, China.
| |
Collapse
|
11
|
Lampimukhi M, Qassim T, Venu R, Pakhala N, Mylavarapu S, Perera T, Sathar BS, Nair A. A Review of Incidence and Related Risk Factors in the Development of Hepatocellular Carcinoma. Cureus 2023; 15:e49429. [PMID: 38149129 PMCID: PMC10750138 DOI: 10.7759/cureus.49429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy, ranking as the seventh most common cancer globally and the second leading cause of deaths due to cancer. This review examines the incidence of HCC, its associated risk factors, and constantly changing global trends. Incidence has been noted to be varying worldwide, particularly due to environmental and infectious risk factors. Chronic hepatitis B (HBV) and C (HCV) virus infections, alcohol abuse, aflatoxin exposure, diabetes, obesity, and tobacco consumption are some of the leading risk factors noted. Eastern Asia and sub-Saharan Africa were noted to have the highest disease burden for HCC, with China representing a considerably large majority. On the contrary, the United States reports a lower HCC incidence overall due to improved vaccination programs against HBV; however, with a rising incidence of prominent risk factor in non-alcoholic fatty liver disease (NAFLD), the trend may very well change. Gender disparities were noted to be evident with men experiencing higher rates of HCC compared to women, which may be due to various environmental and biological factors, including alcohol intake, smoking, and androgen hormone levels. Currently, efforts to reduce the overall incidence of HCC include universal HBV vaccinations, antiviral therapies, aflatoxin prevention measures, genetic screening for hereditary hemochromatosis, and early ultrasound evaluation in patients with liver cirrhosis. Understanding these evolving trends and risk factors is essential in combating the rising HCC incidence, especially in Western countries, where risk factors, such as obesity, diabetes, and metabolic disorders, are on the rise.
Collapse
Affiliation(s)
| | - Tabarak Qassim
- School of Medicine, Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, BHR
| | - Rakshaya Venu
- College of Medicine, Saveetha Medical College, Chennai, IND
| | - Nivedita Pakhala
- College of Medicine, Sri Padmavathi Medical College for Women, Tirupati, IND
| | - Suchita Mylavarapu
- College of Medicine, Malla Reddy Medical College for Women, Hyderabad, IND
| | - Tharindu Perera
- General Medicine, Grodno State Medical University, Grodno, BLR
| | - Beeran S Sathar
- College of Medicine, Jagadguru Jayadeva Murugarajendra Medical College, Davanagere, IND
| | - Arun Nair
- Pediatrics, Saint Peter's University Hospital, Somerset, USA
| |
Collapse
|
12
|
Liu Z, Mao S, Hu Y, Liu F, Shao X. Hydrogel platform facilitating astrocytic differentiation through cell mechanosensing and YAP-mediated transcription. Mater Today Bio 2023; 22:100735. [PMID: 37576868 PMCID: PMC10413151 DOI: 10.1016/j.mtbio.2023.100735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Astrocytes are multifunctional glial cells that are essential for brain functioning. Most existing methods to induce astrocytes from stem cells are inefficient, requiring couples of weeks. Here, we designed an alginate hydrogel-based method to realize high-efficiency astrocytic differentiation from human neural stem cells. Comparing to the conventional tissue culture materials, the hydrogel drastically promoted astrocytic differentiation within three days. We investigated the regulatory mechanism underlying the enhanced differentiation, and found that the stretch-activated ion channels and Yes-associated protein (YAP), a mechanosensitive transcription coactivator, were both indispensable. In particular, the Piezo1 Ca2+ channel, but not transient receptor potential vanilloid 4 (TRPV4) channel, was necessary for promoting the astrocytic differentiation. The stretch-activated channels regulated the nuclear localization of YAP, and inhibition of the channels down-regulated the expression of YAP as well as its target genes. When blocking the YAP/TEAD-mediated transcription, astrocytic differentiation on the hydrogel significantly declined. Interestingly, cells on the hydrogel showed a remarkable filamentous actin assembly together with YAP nuclear translocation during the differentiation, while a progressive gel rupture at the cell-hydrogel interface along with a change in the gel elasticity was detected. These findings suggest that spontaneous decrosslinking of the hydrogel alters its mechanical properties, delivering mechanical stimuli to the cells. These mechanical signals activate the Piezo1 Ca2+ channel, facilitate YAP nuclear transcription via actomyosin cytoskeleton, and eventually provoke the astrocytic differentiation. While offering an efficient approach to obtain astrocytes, our work provides novel insights into the mechanism of astrocytic development through mechanical regulation.
Collapse
Affiliation(s)
- Zhongqian Liu
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shijie Mao
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yubin Hu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Feng Liu
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaowei Shao
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
13
|
He J, Zhang X, Chen X, Xu Z, Chen X, Xu J. Shared Genes and Molecular Mechanisms between Nonalcoholic Fatty Liver Disease and Hepatocellular Carcinoma Established by WGCNA Analysis. Glob Med Genet 2023; 10:144-158. [PMID: 37501756 PMCID: PMC10370469 DOI: 10.1055/s-0043-1768957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the leading causes of death from cancer worldwide. The histopathological features, risk factors, and prognosis of HCC caused by nonalcoholic fatty liver disease (NAFLD) appear to be significantly different from those of HCC caused by other etiologies of liver disease. Objective This article explores the shared gene and molecular mechanism between NAFLD and HCC through bioinformatics technologies such as weighted gene co-expression network analysis (WGCNA), so as to provide a reference for comprehensive understanding and treatment of HCC caused by NAFLD. Methods NAFLD complementary deoxyribonucleic acid microarrays (GSE185051) from the Gene Expression Omnibus database and HCC ribonucleic acid (RNA)-sequencing data (RNA-seq data) from The Cancer Genome Atlas database were used to analyze the differentially expressed genes (DEGs) between NAFLD and HCC. Then, the clinical traits and DEGs in the two disease data sets were analyzed by WGCNA to obtain W-DEGs, and cross-W-DEGs were obtained by their intersection. We performed subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analyses of the cross-W-DEGs and established protein-protein interaction networks. Then, we identified the hub genes in them by Cytoscape and screened out the final candidate genes. Finally, we validated candidate genes by gene expression, survival, and immunohistochemical analyses. Results The GO analysis of 79 cross-W-DEGs showed they were related mainly to RNA polymerase II (RNAP II) and its upstream transcription factors. KEGG analysis revealed that they were enriched predominantly in inflammation-related pathways (tumor necrosis factor and interleukin-17). Four candidate genes (JUNB, DUSP1, NR4A1, and FOSB) were finally screened out from the cross-W-DEGs. Conclusion JUNB, DUSP1, NR4A1, and FOSB inhibit NAFLD and HCC development and progression. Thus, they can serve as potential useful biomarkers for predicting and treating NAFLD progression to HCC.
Collapse
Affiliation(s)
- Juan He
- Traditional Chinese Medicine (ZHONG JING) School, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xin Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xi Chen
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Zongyao Xu
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Xiaoqi Chen
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| | - Jiangyan Xu
- Traditional Chinese Medicine (ZHONG JING) School, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
14
|
Wang F, Jin F, Peng S, Li C, Wang L, Wang S. Adipocyte-derived CCDC3 promotes tumorigenesis in epithelial ovarian cancer through the Wnt/ß-catenin signalling pathway. Biochem Biophys Rep 2023; 35:101507. [PMID: 37601453 PMCID: PMC10439399 DOI: 10.1016/j.bbrep.2023.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/22/2023] [Accepted: 06/28/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Epithelial ovarian cancer (EOC) is a highly aggressive disease whose unique metastatic site is the omentum. Coiled-coil domain containing 3 (CCDC3) is an adipocyte-derived secreted protein that is specifically elevated in omental adipose tissue. However, its function is still unknown. Material and methods Initially, a Kaplan-Meier plot was applied to evaluate the prognostic value of CCDC3 expression in patients with EOC. A bioinformatics analysis was next used to explore the biological function of CCDC3 in EOC. Western blot, quantitative real-time polymerase chain reaction, and in vitro invasion and migration assays were performed using SKOV3 cells and CCDC3 secreted by rat adipocytes to analyzes the impact of CCDC3 on EOC and the underlying mechanism. Results Overexpression of CCDC3 was associated with poor prognosis of EOC. CCDC3 interacted with multiple key signalling pathways, including the Wnt/β-catenin pathway. EOC cellular proliferation, migration, and invasion were promoted in vitro when co-cultured with CCDC3 enriched conditioned medium, and this tumour-promoting effect was induced by activating the Wnt/β-catenin pathway. Furthermore, the epithelial-mesenchymal transition of EOC cells was reversed after CCDC3 silencing. Conclusions Our results support that CCDC3 promotes EOC tumorigenesis through the Wnt/β-catenin pathway and that CCDC3 may serve as a novel prognostic biomarker and therapeutic target for metastatic EOC.
Collapse
Affiliation(s)
- Fen Wang
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Feng Jin
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Shanshan Peng
- Department of Gynecology, Shenzhen Baoan Maternal and Child Healthcare Hospital, Shenzhen 518000, China
| | - Chen Li
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Li Wang
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Shubin Wang
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| |
Collapse
|
15
|
Gordan JD, Keenan BP, Lim HC, Yarchoan M, Kelley RK. New Opportunities to Individualize Frontline Therapy in Advanced Stages of Hepatocellular Carcinoma. Drugs 2023; 83:1091-1109. [PMID: 37402062 DOI: 10.1007/s40265-023-01907-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death globally and is rising in incidence. Until recently, treatment options for patients with advanced stages of HCC have been limited to antiangiogenic therapies with modest improvements in overall survival. The emerging role of immunotherapy with immune checkpoint inhibitors (ICI) in oncology has led to a rapid expansion in treatment options and improvements in outcomes for patients with advanced stages of HCC. Recent clinical trials have shown meaningful survival improvement in patients treated with the combination of bevacizumab and atezolizumab, as well as with the combination of tremelimumab with durvalumab, resulting in regulatory approvals of these regimens as frontline therapy. Beyond improvements in overall survival, ICI-based combination regimens achieve higher rates of durable treatment response than multikinase inhibitors and have favorable side effect profiles. With the emergence of doublet anti-angiogenic and immune checkpoint inhibitor (ICI) and dual ICI combinations, individualized therapy is now possible for patients based on co-morbidity profiles and other factors. These more potent systemic therapies are also being tested in earlier stages of disease and in combination with loco-regional therapies such as trans-arterial chemoembolization and stereotactic body radiotherapy. We summarize these advances and emerging therapeutic combinations currently in clinical trials.
Collapse
Affiliation(s)
- John D Gordan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, UC San Francisco, San Francisco, CA, USA.
| | - Bridget P Keenan
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
- Cancer Immunotherapy Program, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
| | - Huat Chye Lim
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, UC San Francisco, San Francisco, CA, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Katie Kelley
- Division of Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
- Cancer Immunotherapy Program, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Liberale L, Puspitasari YM, Ministrini S, Akhmedov A, Kraler S, Bonetti NR, Beer G, Vukolic A, Bongiovanni D, Han J, Kirmes K, Bernlochner I, Pelisek J, Beer JH, Jin ZG, Pedicino D, Liuzzo G, Stellos K, Montecucco F, Crea F, Lüscher TF, Camici GG. JCAD promotes arterial thrombosis through PI3K/Akt modulation: a translational study. Eur Heart J 2023; 44:1818-1833. [PMID: 36469488 PMCID: PMC10200023 DOI: 10.1093/eurheartj/ehac641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 09/14/2022] [Accepted: 10/26/2022] [Indexed: 12/11/2022] Open
Abstract
AIMS Variants of the junctional cadherin 5 associated (JCAD) locus associate with acute coronary syndromes. JCAD promotes experimental atherosclerosis through the large tumor suppressor kinase 2 (LATS2)/Hippo pathway. This study investigates the role of JCAD in arterial thrombosis. METHODS AND RESULTS JCAD knockout (Jcad-/-) mice underwent photochemically induced endothelial injury to trigger arterial thrombosis. Primary human aortic endothelial cells (HAECs) treated with JCAD small interfering RNA (siJCAD), LATS2 small interfering RNA (siLATS2) or control siRNA (siSCR) were employed for in vitro assays. Plasma JCAD was measured in patients with chronic coronary syndrome or ST-elevation myocardial infarction (STEMI). Jcad-/- mice displayed reduced thrombogenicity as reflected by delayed time to carotid occlusion. Mechanisms include reduced activation of the coagulation cascade [reduced tissue factor (TF) expression and activity] and increased fibrinolysis [higher thrombus embolization episodes and D-dimer levels, reduced vascular plasminogen activator inhibitor (PAI)-1 expression]. In vitro, JCAD silencing inhibited TF and PAI-1 expression in HAECs. JCAD-silenced HAECs (siJCAD) displayed increased levels of LATS2 kinase. Yet, double JCAD and LATS2 silencing did not restore the control phenotype. si-JCAD HAECs showed increased levels of phosphoinositide 3-kinases (PI3K)/ proteinkinase B (Akt) activation, known to downregulate procoagulant expression. The PI3K/Akt pathway inhibitor-wortmannin-prevented the effect of JCAD silencing on TF and PAI-1, indicating a causative role. Also, co-immunoprecipitation unveiled a direct interaction between JCAD and Akt. Confirming in vitro findings, PI3K/Akt and P-yes-associated protein levels were higher in Jcad-/- animals. Lastly, as compared with chronic coronary syndrome, STEMI patients showed higher plasma JCAD, which notably correlated positively with both TF and PAI-1 levels. CONCLUSIONS JCAD promotes arterial thrombosis by modulating coagulation and fibrinolysis. Herein, reported translational data suggest JCAD as a potential therapeutic target for atherothrombosis.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine,
University of Genoa, 6 viale Benedetto XV, 16132
Genoa, Italy
| | - Yustina M Puspitasari
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Stefano Ministrini
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Internal Medicine, Angiology and Atherosclerosis, Department of Medicine
and Surgery, University of Perugia, piazzale Gambuli 1, 06124
Perugia, Italy
| | - Alexander Akhmedov
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Simon Kraler
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Nicole R Bonetti
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital
Zurich, Rämistrasse 100, 8092 Zurich, Switzerland
| | - Georgia Beer
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Ana Vukolic
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Dario Bongiovanni
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero
Cantonale (EOC), Lugano, Switzerland
- Department of Biomedical Sciences, Humanitas University, Pieve
Emanuele, Milan, Italy
- Department of Cardiovascular Medicine, IRCCS Humanitas Research
Hospital, Rozzano, Milan, Italy
- Department of Internal Medicine I, School of Medicine, University Hospital
rechts der Isar, Technical University of Munich,
Munich, Germany
| | - Jiaying Han
- Department of Internal Medicine I, School of Medicine, University Hospital
rechts der Isar, Technical University of Munich,
Munich, Germany
| | - Kilian Kirmes
- Department of Internal Medicine I, School of Medicine, University Hospital
rechts der Isar, Technical University of Munich,
Munich, Germany
| | - Isabell Bernlochner
- Department of Internal Medicine I, School of Medicine, University Hospital
rechts der Isar, Technical University of Munich,
Munich, Germany
| | - Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zurich,
Zurich, Switzerland
| | - Jürg H Beer
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital of Baden,
Im Ergel 1, 5404 Baden, Switzerland
| | - Zheng-Gen Jin
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Daniela Pedicino
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario
A. Gemelli-IRCCS, Largo A. Gemelli 8, Rome 00168,
Italy
- Cardiovascular and Pulmonary Sciences, Catholic University,
Largo G. Vito, 1 - 00168 Rome, Italy
| | - Giovanna Liuzzo
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario
A. Gemelli-IRCCS, Largo A. Gemelli 8, Rome 00168,
Italy
- Cardiovascular and Pulmonary Sciences, Catholic University,
Largo G. Vito, 1 - 00168 Rome, Italy
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of
Medical Sciences, Newcastle University, Newcastle Upon
Tyne, UK
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals
NHS Foundation Trust, Newcastle Upon Tyne,
UK
- Department of Cardiovascular Research, European Center for Angioscience
(ECAS), Medical Faculty Mannheim, Heidelberg University,
Mannheim, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für
Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site,
Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim,
Mannheim, Germany
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine,
University of Genoa, 6 viale Benedetto XV, 16132
Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular
Network, L.go R. Benzi 10, 16132 Genoa, Italy
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario
A. Gemelli-IRCCS, Largo A. Gemelli 8, Rome 00168,
Italy
- Cardiovascular and Pulmonary Sciences, Catholic University,
Largo G. Vito, 1 - 00168 Rome, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Heart Division, Royal Brompton and Harefield Hospitals and Nationl Heart
and Lung Institute, Imperial College, London,
United Kingdom
| | - Giovanni G Camici
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Research and Education, University Hospital
Zurich, Rämistrasse 100, 8092 Zurich, Switzerland
| |
Collapse
|
17
|
Guzik TJ, Channon KM. JCAD: a new GWAS target to reduce residual cardiovascular risk? Eur Heart J 2023; 44:1834-1836. [PMID: 36514298 PMCID: PMC10200022 DOI: 10.1093/eurheartj/ehac708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Tomasz J Guzik
- Centre for Cardiovascular Sciences, British Heart Foundation Centre of Research Excellence, Queen’s Medical Research Institute, Edinburgh Royal Infirmary, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Keith M Channon
- Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Lee KC, Wu PS, Lin HC. Pathogenesis and treatment of non-alcoholic steatohepatitis and its fibrosis. Clin Mol Hepatol 2023; 29:77-98. [PMID: 36226471 PMCID: PMC9845678 DOI: 10.3350/cmh.2022.0237] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/11/2022] [Indexed: 02/02/2023] Open
Abstract
The initial presentation of non-alcoholic steatohepatitis (NASH) is hepatic steatosis. The dysfunction of lipid metabolism within hepatocytes caused by genetic factors, diet, and insulin resistance causes lipid accumulation. Lipotoxicity, oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum stress would further contribute to hepatocyte injury and death, leading to inflammation and immune dysfunction in the liver. During the healing process, the accumulation of an excessive amount of fibrosis might occur while healing. During the development of NASH and liver fibrosis, the gut-liver axis, adipose-liver axis, and renin-angiotensin system (RAS) may be dysregulated and impaired. Translocation of bacteria or its end-products entering the liver could activate hepatocytes, Kupffer cells, and hepatic stellate cells, exacerbating hepatic steatosis, inflammation, and fibrosis. Bile acids regulate glucose and lipid metabolism through Farnesoid X receptors in the liver and intestine. Increased adipose tissue-derived non-esterified fatty acids would aggravate hepatic steatosis. Increased leptin also plays a role in hepatic fibrogenesis, and decreased adiponectin may contribute to hepatic insulin resistance. Moreover, dysregulation of peroxisome proliferator-activated receptors in the liver, adipose, and muscle tissues may impair lipid metabolism. In addition, the RAS may contribute to hepatic fatty acid metabolism, inflammation, and fibrosis. The treatment includes lifestyle modification, pharmacological therapy, and non-pharmacological therapy. Currently, weight reduction by lifestyle modification or surgery is the most effective therapy. However, vitamin E, pioglitazone, and obeticholic acid have also been suggested. In this review, we will introduce some new clinical trials and experimental therapies for the treatment of NASH and related fibrosis.
Collapse
Affiliation(s)
- Kuei-Chuan Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Corresponding author : Kuei-Chuan Lee Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan Tel: +886 2 2871 2121, Fax: +886 2 2873 9318, E-mail:
| | - Pei-Shan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Corresponding author : Kuei-Chuan Lee Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan Tel: +886 2 2871 2121, Fax: +886 2 2873 9318, E-mail:
| |
Collapse
|
19
|
Gutiérrez-Cuevas J, Lucano-Landeros S, López-Cifuentes D, Santos A, Armendariz-Borunda J. Epidemiologic, Genetic, Pathogenic, Metabolic, Epigenetic Aspects Involved in NASH-HCC: Current Therapeutic Strategies. Cancers (Basel) 2022; 15:23. [PMID: 36612019 PMCID: PMC9818030 DOI: 10.3390/cancers15010023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the sixth most frequent cancer in the world, being the third cause of cancer-related deaths. Nonalcoholic steatohepatitis (NASH) is characterized by fatty infiltration, oxidative stress and necroinflammation of the liver, with or without fibrosis, which can progress to advanced liver fibrosis, cirrhosis and HCC. Obesity, metabolic syndrome, insulin resistance, and diabetes exacerbates the course of NASH, which elevate the risk of HCC. The growing prevalence of obesity are related with increasing incidence of NASH, which may play a growing role in HCC epidemiology worldwide. In addition, HCC initiation and progression is driven by reprogramming of metabolism, which indicates growing appreciation of metabolism in the pathogenesis of this disease. Although no specific preventive pharmacological treatments have recommended for NASH, dietary restriction and exercise are recommended. This review focuses on the molecular connections between HCC and NASH, including genetic and risk factors, highlighting the metabolic reprogramming and aberrant epigenetic alterations in the development of HCC in NASH. Current therapeutic aspects of NASH/HCC are also reviewed.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Silvia Lucano-Landeros
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Daniel López-Cifuentes
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
20
|
Li ZR, Xu G, Zhu LY, Chen H, Zhu JM, Wu J. GPM6A expression is suppressed in hepatocellular carcinoma through miRNA-96 production. J Transl Med 2022; 102:1280-1291. [PMID: 36775453 DOI: 10.1038/s41374-022-00818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
GPM6A is a glycoprotein in endothelial cells, and its biological function in the development of hepatocellular carcinoma (HCC) is unknown. Through Affymetrix gene expression microarray and bioinformatic analysis, very low GPM6A expression was found in HCC tissue. The present study aims to explore the function and regulatory mechanism of GPM6A in HCC development and progression. Levels of GPM6A expression in HCC specimens from different disorders and various hepatoma cell lines were determined, and its role on cell proliferation was evaluated in hepatoma cells stably overexpressing GPM6A. Modulation of a specific microRNA (miRNA) on its expression and function was evaluated with miRNA mimetic transfection. Herein, it is reported that much lower GPM6A levels were found in HCC tissues than pericancerous liver tissues and correlated to a poor prognosis. GPM6A overexpression inhibited cell proliferation, suppressed colony formation, migration and invasion in two hepatoma cell types. Available evidence does not support that genetic and epigenetic dysregulation contributes significantly to GPM6A inactivation in HCC. Additional findings demonstrated that miR-96-5p acted directly on the 3'-UTR of the GPM6A gene and significantly decreased its mRNA and protein levels. MiR-96-5p transfection promoted proliferation, migration and invasion of SMMC-7721 and MHCC-97H hepatoma cells; whereas the function of oncogenic microRNA-96 was significantly inhibited in GPM6A-overexpressed hepatoma cells. In conclusion, GPM6A expression in HCC is commonly suppressed regardless its base disease types, and its low expression in HCC tissues is most likely attributed to upregulated miR-96-5p. GPM6A may function as a valuable biomarker for HCC progression and prognosis.
Collapse
Affiliation(s)
- Zong-Rui Li
- Dept. of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Gang Xu
- Dept. of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liu-Yan Zhu
- Dept. of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hui Chen
- Dept. of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ji-Min Zhu
- Dept. of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Jian Wu
- Dept. of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China. .,Dept. of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China. .,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
21
|
Zhang YR, Zheng PS. NEK2 inactivates the Hippo pathway to advance the proliferation of cervical cancer cells by cooperating with STRIPAK complexes. Cancer Lett 2022; 549:215917. [PMID: 36115593 DOI: 10.1016/j.canlet.2022.215917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022]
Abstract
The never in mitosis gene A (NIMA)-related kinase 2 (NEK2) protein has been reported to be an oncoprotein that plays different oncogenic roles in multiple cancers. Here, we confirmed that NEK2 highly expressed in cervical cancer cells rather than in normal epithelial basal layer cells in cervical tissues and correlated with worse outcomes. We also demonstrated that NEK2 promoted the in vivo growth of subcutaneous xenograft tumors stemming from cervical cancer cells and the in vitro cell proliferation by decreasing Ser127-phosphorylation of the YAP protein retained in the cytoplasm while increasing the levels of active nucleus-associated YAP protein, which was followed by increases in the targeted proteins CTGF, CYR61 and GLI2. Furthermore, the Hippo signaling pathway was inactivated in manipulated NEK2-overexpressing cervical cancer cells by regulating the levels of MST1/2 dephosphorylation. Additionally, mass spectrometric sequencing and bilateral coimmunoprecipitation were employed suggested that NEK2 acted at an early upstream step to promote dephosphorylation of MST2 and inactivate the Hippo signaling cascade by cooperating with STRIPAK complexes. We conjecture that NEK2 may be a future target for cervical cancer therapy.
Collapse
Affiliation(s)
- Yan-Ru Zhang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China; Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
22
|
Mranda GM, Xiang ZP, Liu JJ, Wei T, Ding Y. Advances in prognostic and therapeutic targets for hepatocellular carcinoma and intrahepatic cholangiocarcinoma: The hippo signaling pathway. Front Oncol 2022; 12:937957. [PMID: 36033517 PMCID: PMC9411807 DOI: 10.3389/fonc.2022.937957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023] Open
Abstract
Primary liver cancer is the sixth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death. The majority of the primary liver cancer cases are hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Worldwide, there is an increasing incidence of primary liver cancer cases due to multiple risk factors ranging from parasites and viruses to metabolic diseases and lifestyles. Often, patients are diagnosed at advanced stages, depriving them of surgical curability benefits. Moreover, the efficacy of the available chemotherapeutics is limited in advanced stages. Furthermore, tumor metastases and recurrence make primary liver cancer management exceptionally challenging. Thus, exploring the molecular mechanisms for the development and progression of primary liver cancer is critical in improving diagnostic, treatment, prognostication, and surveillance modalities. These mechanisms facilitate the discovery of specific targets that are critical for novel and more efficient treatments. Consequently, the Hippo signaling pathway executing a pivotal role in organogenesis, hemostasis, and regeneration of tissues, regulates liver cells proliferation, and apoptosis. Cell polarity or adhesion molecules and cellular metabolic status are some of the biological activators of the pathway. Thus, understanding the mechanisms exhibited by the Hippo pathway is critical to the development of novel targeted therapies. This study reviews the advances in identifying therapeutic targets and prognostic markers of the Hippo pathway for primary liver cancer in the past six years.
Collapse
|
23
|
Benhammou JN, Sinnett-Smith J, Pisegna JR, Rozengurt EJ. Interplay Between Fatty Acids, Stearoyl-Co-A Desaturase, Mechanistic Target of Rapamycin, and Yes-Associated Protein/Transcriptional Coactivator With PDZ-Binding Motif in Promoting Hepatocellular Carcinoma. GASTRO HEP ADVANCES 2022; 2:232-241. [PMID: 39132609 PMCID: PMC11308718 DOI: 10.1016/j.gastha.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/17/2022] [Indexed: 08/13/2024]
Abstract
Nonalcoholic fatty liver disease has reached pandemic proportions with one of its most consequential complications being hepatocellular carcinoma (HCC). Nonalcoholic fatty liver disease-related HCC is becoming the leading indication for liver transplantation in the United States. Given the scarcity of available organs, early detection and prevention remain key in prevention and management of the disease. Over the years, the yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) pathway emerged as a key signal transduction pathway in the pathogenesis of HCC. In this review, we explore the interplay between the YAP/TAZ pathway as a point of convergence in HCC pathogenesis. We review the evidence of how lipid reprogramming and key lipid pathways, saturated and monounsaturated fatty acids (through the rate-limiting enzyme stearoyl Co-A desaturase), the mevalonic acid pathway (the role of statins), and mechanistic target of rapamycin all play critical roles in intricate and complex networks that tightly regulate the YAP/TAZ pro-oncogenic pathway.
Collapse
Affiliation(s)
- Jihane N. Benhammou
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, California
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| | - Jim Sinnett-Smith
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Joseph R. Pisegna
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, California
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| | - Enrique J. Rozengurt
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, California
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
| |
Collapse
|
24
|
Hany NM, Eissa S, Basyouni M, Hasanin AH, Aboul-Ela YM, Elmagd NMA, Montasser IF, Ali MA, Skipp PJ, Matboli M. Modulation of hepatic stellate cells by Mutaflor ® probiotic in non-alcoholic fatty liver disease management. Lab Invest 2022; 20:342. [PMID: 35907883 PMCID: PMC9338485 DOI: 10.1186/s12967-022-03543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND NAFLD and NASH are emerging as primary causes of chronic liver disease, indicating a need for an effective treatment. Mutaflor® probiotic, a microbial treatment of interest, was effective in sustaining remission in ulcerative colitis patients. OBJECTIVE To construct a genetic-epigenetic network linked to HSC signaling as a modulator of NAFLD/NASH pathogenesis, then assess the effects of Mutaflor® on this network. METHODS First, in silico analysis was used to construct a genetic-epigenetic network linked to HSC signaling. Second, an investigation using rats, including HFHSD induced NASH and Mutaflor® treated animals, was designed. Experimental procedures included biochemical and histopathologic analysis of rat blood and liver samples. At the molecular level, the expression of genetic (FOXA2, TEAD2, and LATS2 mRNAs) and epigenetic (miR-650, RPARP AS-1 LncRNA) network was measured by real-time PCR. PCR results were validated with immunohistochemistry (α-SMA and LATS2). Target effector proteins, IL-6 and TGF-β, were estimated by ELISA. RESULTS Mutaflor® administration minimized biochemical and histopathologic alterations caused by NAFLD/NASH. HSC activation and expression of profibrogenic IL-6 and TGF-β effector proteins were reduced via inhibition of hedgehog and hippo pathways. Pathways may have been inhibited through upregulation of RPARP AS-1 LncRNA which in turn downregulated the expression of miR-650, FOXA2 mRNA and TEAD2 mRNA and upregulated LATS2 mRNA expression. CONCLUSION Mutaflor® may slow the progression of NAFLD/NASH by modulating a genetic-epigenetic network linked to HSC signaling. The probiotic may be a useful modality for the prevention and treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Noha M Hany
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381, Egypt
| | - Sanaa Eissa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381, Egypt. .,MASRI Research Institue, Ain Shams University, Cairo, Egypt.
| | - Manal Basyouni
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381, Egypt
| | - Amany H Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmin M Aboul-Ela
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nagwa M Abo Elmagd
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Iman F Montasser
- Department of Gastroenterology, Hepatology and Infectious Diseases, Tropical Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud A Ali
- Department of Molecular Microbiology, Military Medical Academy, Cairo, Egypt
| | - Paul J Skipp
- Centre for Proteomic Research, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Abbassia, P.O. box, Cairo, 11381, Egypt
| |
Collapse
|
25
|
Zhang J, Tong Y, Lu X, Dong F, Ma X, Yin S, He Y, Liu Y, Liu Q, Fan D. A derivant of ginsenoside CK and its inhibitory effect on hepatocellular carcinoma. Life Sci 2022; 304:120698. [PMID: 35690105 DOI: 10.1016/j.lfs.2022.120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022]
Abstract
Epidemiological studies have shown that hepatocellular carcinoma (HCC) is a main cause of tumor death worldwide. Accumulating data indicate that ginsenoside CK is an effective compound for preventing HCC growth and development. However, improvement of pharmaceutical effect of the ginsenoside CK is still needed. In our study, we performed acetylation of ginsenoside CK (CK-3) and investigated the antitumor effects of the derivative in vitro and in vivo. The cytotoxicity analysis revealed that compared with CK, CK-3 could inhibit the proliferation of multiple tumor cell lines at a lower concentration. Treating with CK-3 on HCC cells arrested cell cycle in G2/M phase and induced cell apoptosis through AO/EB staining, TUNEL analysis and flow cytometry. Meanwhile, CK-3 significantly inhibited tumor growth in an HCC xenograft model and showed no side effect on the function of the main organs. Mechanistically, whole transcriptome analysis revealed that the antitumor effect of CK-3 was involved in the Hippo signaling pathway. The immunoblotting and immunofluorescence results illustrated that CK-3 directly facilitated the phosphorylation of YAP1 and decreased the expression of the main transcription factor TEAD2 in HCC cell lines and tumor tissue sections. Collectively, our results demostrate the formation of a new derivative of ginsenoside CK and its regulatory mechanism in HCC, which could activate the Hippo-YAP1-TEAD2 signaling pathway to regulate HCC progression. This research could provide a new direction for traditional Chinese medicine in the therapy of tumors.
Collapse
Affiliation(s)
- Jingjing Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yangliu Tong
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xun Lu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Fangming Dong
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Shiyu Yin
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Ying He
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Yonghong Liu
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
26
|
Lee U, Cho EY, Jho EH. Regulation of Hippo signaling by metabolic pathways in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119201. [PMID: 35026349 DOI: 10.1016/j.bbamcr.2021.119201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022]
Abstract
Hippo signaling is known to maintain balance between cell proliferation and apoptosis via tight regulation of factors, such as metabolic cues, cell-cell contact, and mechanical cues. Cells directly recognize glucose, lipids, and other metabolic cues and integrate multiple signaling pathways, including Hippo signaling, to adjust their proliferation and apoptosis depending on nutrient conditions. Therefore, the dysregulation of the Hippo signaling pathway can promote tumor initiation and progression. Alteration in metabolic cues is considered a major factor affecting the risk of cancer formation and progression. It has recently been shown that the dysregulation of the Hippo signaling pathway, through diverse routes activated by metabolic cues, can lead to cancer with a poor prognosis. In addition, unique crosstalk between metabolic pathways and Hippo signaling pathways can inhibit the effect of anticancer drugs and promote drug resistance. In this review, we describe an integrated perspective of the relationship between the Hippo signaling pathway and metabolic signals in the context of cancer. We also characterize the mechanisms involved in changes in metabolism that are linked to the Hippo signaling pathway in the cancer microenvironment and propose several novel targets for anticancer drug treatment.
Collapse
Affiliation(s)
- Ukjin Lee
- Department of Life Science, University of Seoul, 02504 Seoul, Republic of Korea
| | - Eun-Young Cho
- Department of Life Science, University of Seoul, 02504 Seoul, Republic of Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, 02504 Seoul, Republic of Korea.
| |
Collapse
|
27
|
Hao L, Guo Y, Peng Q, Zhang Z, Ji J, Liu Y, Xue Y, Li C, Zheng K, Shi X. Dihydroartemisinin reduced lipid droplet deposition by YAP1 to promote the anti-PD-1 effect in hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153913. [PMID: 35026515 DOI: 10.1016/j.phymed.2021.153913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/04/2021] [Accepted: 12/24/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Anti-PD-1 was used to treat for many cancers, but the overall response rate of monoclonal antibodies blocking the inhibitory PD-1/PD-L1 was less than 20%. Lipid droplet (LD) deposition reduced chemotherapy efficacy, but whether LD deposition affects anti-PD-1 treatment and its mechanism remains unclear. Dihydroartemisinin (DHA) was FDA proved antimalarial medicine, but its working mechanism on LD deposition has not been clarified. PURPOSE This study aimed to elucidate the mechanism of DHA reducing LDs deposition and improving the efficacy of anti-PD-1. METHODS LD numbers and area were separately detected by electron microscopy and oil Red O staining. The expression of YAP1 and PLIN2 was detected by immunohistochemical staining in liver cancer tissues. Transcription and protein expression levels of YAP1 and PLIN2 in cells were detected by qRT-PCR and Western blot after DHA treated HepG2215 cells and Yap1LKO mice. RESULTS LD accumulation was found in the liver tumor cells of DEN/TOPBCOP-induced liver tumor mice with anti-PD-1 treatment. But DHA treatment or YAP1 knockdown reduced LD deposition and PLIN2 expression in HepG2215 cells. Furthermore, DHA reduced the LD deposition, PLIN2 expression and triglycerides (TG) content in the liver tumor cells of Yap1LKO mice with liver tumor. CONCLUSION Anti-PD-1 promoted LD deposition, while YAP1 knockdown/out reduced LD deposition in HCC. DHA reduced LD deposition by inhibiting YAP1, enhancing the effect of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Zhiqin Zhang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jingmin Ji
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Caige Li
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Kangning Zheng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
28
|
Kim MJ, Choi B, Kim JY, Min Y, Kwon DH, Son J, Lee JS, Lee JS, Chun E, Lee KY. USP8 regulates liver cancer progression via the inhibition of TRAF6-mediated signal for NF-κB activation and autophagy induction by TLR4. Transl Oncol 2022; 15:101250. [PMID: 34688043 PMCID: PMC8546492 DOI: 10.1016/j.tranon.2021.101250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Herein, we aimed to elucidate the molecular and cellular mechanism in which ubiquitin-specific protease 8 (USP8) is implicated in liver cancer progression via TRAF6-mediated signal. USP8 induces the deubiquitination of TRAF6, TAB2, TAK1, p62, and BECN1, which are pivotal roles for NF-κB activation and autophagy induction. Notably, the LIHC patient with low USP8 mRNA expression showed markedly shorter survival time, whereas there was no significant difference in the other 18-human cancers. Importantly, the TCGA data analysis on LIHC and transcriptome analysis on the USP8 knockout (USP8KO) SK-HEP-1 cells revealed a significant correlation between USP8 and TRAF6, TAB2, TAK1, p62, and BECN1, and enhanced NF-κB-dependent and autophagy-related cancer progression/metastasis-related genes in response to LPS stimulation. Furthermore, USP8KO SK-HEP-1 cells showed an increase in cancer migration and invasion by TLR4 stimulation, and a marked increase of tumorigenicity and metastasis in xenografted NSG mice. The results demonstrate that USP8 is negatively implicated in the LIHC progression through the regulation of TRAF6-mediated signal for the activation of NF-κB activation and autophagy induction. Our findings provide useful insight into the LIHC pathogenesis of cancer progression.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Bongkum Choi
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji Young Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Yoon Min
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Do Hee Kwon
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Juhee Son
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Ji Su Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Joo Sang Lee
- Department of Precision medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Eunyoung Chun
- CHA Vaccine Institute, 560 Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do 13230, Republic of Korea.
| | - Ki-Young Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
The YAP/TAZ Signaling Pathway in the Tumor Microenvironment and Carcinogenesis: Current Knowledge and Therapeutic Promises. Int J Mol Sci 2021; 23:ijms23010430. [PMID: 35008857 PMCID: PMC8745604 DOI: 10.3390/ijms23010430] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
The yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators, members of the Hippo signaling pathway, which play a critical role in cell growth regulation, embryonic development, regeneration, proliferation, and cancer origin and progression. The mechanism involves the nuclear binding of the un-phosphorylated YAP/TAZ complex to release the transcriptional enhanced associate domain (TEAD) from its repressors. The active ternary complex is responsible for the aforementioned biological effects. Overexpression of YAP/TAZ has been reported in cancer stem cells and tumor resistance. The resistance involves chemotherapy, targeted therapy, and immunotherapy. This review provides an overview of YAP/TAZ pathways’ role in carcinogenesis and tumor microenvironment. Potential therapeutic alternatives are also discussed.
Collapse
|
30
|
Gadallah SH, Eissa S, Ghanem HM, Ahmed EK, Hasanin AH, El Mahdy MM, Matboli M. Probiotic-prebiotic-synbiotic modulation of (YAP1, LATS1 and NF2 mRNAs/miR-1205/lncRNA SRD5A3-AS1) panel in NASH animal model. Biomed Pharmacother 2021; 140:111781. [PMID: 34090052 DOI: 10.1016/j.biopha.2021.111781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/02/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
AIM To investigate the prophylactic efficacy of gut microbiota-based treatments on nonalcoholic steatohepatitis (NASH) management via modulation of Hippo signaling pathway-related genes (YAP1, LATS1 and NF2), and their epigenetic regulators (miR-1205 and lncRNA SRD5A3-AS1) retrieved from in-silico data analysis. MATERIALS & METHODS Histopathological, biochemical, molecular and immunohistochemistry analyses were used to assess the effects of multistrain probiotic mixture and prebiotic inulin fiber on high sucrose high fat (HSHF) diet-induced NASH in rats. These treatments were administered orally either alone or in combination, along with HSHF diet. RESULTS Both probiotic mixture and prebiotic inulin fiber attenuated steatosis, inflammation and fibrosis grades in HSHF diet-induced NASH rats. Moreover, the applied treatments significantly prevented the elevation of serum liver enzymes and improved lipid panel. At the molecular level, both treatments down-regulated hepatic YAP1 mRNA and miR-1205 expressions, and concomitantly up-regulated the expression of hepatic LATS1& NF2 mRNAs and the lncRNA SRD5A3-AS1. At the protein level, both treatments decreased the hepatic content of the inflammatory marker IL6 and the fibrotic marker TGFβ1. Moreover, an observable reduction in α-SMA together with noticeable elevation in LATS1/2 protein expression levels were detected in liver sections compared to the untreated rats. CONCLUSION Probiotic mixture and prebiotic inulin fiber, either alone or in combination, attenuated NASH progression and ameliorated both fibrosis and hepatic inflammation in the applied animal model. The produced effect was correlated with modulation of the retrieved (YAP1, LATS1 and NF2) - (miR-1205) - (lncRNA SRD5A3-AS1) RNA panel.
Collapse
Affiliation(s)
- Shaimaa H Gadallah
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Sanaa Eissa
- The Department of Medicinal Biochemistry and Molecular Biology, The School of Medicine, Ain Shams University, Egypt.
| | - Hala M Ghanem
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Emad K Ahmed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Amany Helmy Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Manal M El Mahdy
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Marwa Matboli
- The Department of Medicinal Biochemistry and Molecular Biology, The School of Medicine, Ain Shams University, Egypt.
| |
Collapse
|
31
|
Matboli M, Gadallah SH, Rashed WM, Hasanin AH, Essawy N, Ghanem HM, Eissa S. mRNA-miRNA-lncRNA Regulatory Network in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms22136770. [PMID: 34202571 PMCID: PMC8269036 DOI: 10.3390/ijms22136770] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
AIM we aimed to construct a bioinformatics-based co-regulatory network of mRNAs and non coding RNAs (ncRNAs), which is implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), followed by its validation in a NAFLD animal model. MATERIALS AND METHODS The mRNAs-miRNAs-lncRNAs regulatory network involved in NAFLD was retrieved and constructed utilizing bioinformatics tools. Then, we validated this network using an NAFLD animal model, high sucrose and high fat diet (HSHF)-fed rats. Finally, the expression level of the network players was assessed in the liver tissues using reverse transcriptase real-time polymerase chain reaction. RESULTS in-silico constructed network revealed six mRNAs (YAP1, FOXA2, AMOTL2, TEAD2, SMAD4 and NF2), two miRNAs (miR-650 and miR-1205), and two lncRNAs (RPARP-AS1 and SRD5A3-AS1) that play important roles as a co-regulatory network in NAFLD pathogenesis. Moreover, the expression level of these constructed network-players was significantly different between NAFLD and normal control. Conclusion and future perspectives: this study provides new insight into the molecular mechanism of NAFLD pathogenesis and valuable clues for the potential use of the constructed RNA network in effective diagnostic or management strategies of NAFLD.
Collapse
Affiliation(s)
- Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt
- Correspondence: (M.M.); (S.E.)
| | - Shaimaa H. Gadallah
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11382, Egypt; (S.H.G.); (H.M.G.)
| | - Wafaa M. Rashed
- Department of Research, Children’s Cancer Hospital-57357, Cairo 11382, Egypt;
| | - Amany Helmy Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt;
| | - Nada Essawy
- Institut Pasteur, CEDEX 15, 75724 Paris, France;
| | - Hala M. Ghanem
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11382, Egypt; (S.H.G.); (H.M.G.)
| | - Sanaa Eissa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11382, Egypt
- Correspondence: (M.M.); (S.E.)
| |
Collapse
|
32
|
Zhu LY, Liu C, Li ZR, Niu C, Wu J. NLRP3 deficiency did not attenuate NASH development under high fat calorie diet plus high fructose and glucose in drinking water. J Transl Med 2021; 101:588-599. [PMID: 33526807 DOI: 10.1038/s41374-021-00535-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022] Open
Abstract
NOD-like receptor protein 3 (NLRP3) promotes the inflammatory response during progression of nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH). This study aimed to further delineate the role of NLRP3 in NASH development by abolishing its expression in mice. A high-fat and calorie diet plus high fructose and glucose in drinking water (HFCD-HF/G) was used to establish NASH in both wild-type (WT) and NLRP3 knock-out (KO) mice. Hepatocellular injury, hepatic steatosis and fibrosis, as well as inflammatory response and insulin resistance in the liver and epidydimal white adipose tissue (eWAT) were determined. Elevated body weight, liver weight and serum alanine transaminase level, increased hepatic triglyceride accumulation and collagen deposition, and worsened systemic insulin resistance were observed in Nlrp3-/- mice compared to WT mice under HFCD-HF/G feeding. Upregulated hepatic transcription of tumor necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1), and enhanced infiltration of inducible nitric oxide synthase-positive (iNOS+) M1 macrophages were also documented in HFCD-HF/G-fed Nlrp3-/- mice in comparison to HFCD-HF/G-fed WT mice. Moreover, transcription of TNF-α and MCP-1 and infiltration of iNOS+ M1 macrophages were increased in the liver of Nlrp3-/- mice under control diet. NLRP3 deficiency did not attenuate, but instead aggravated NASH development under HFCD-HF/G feeding. The worsened extent of NASH might be attributed to enhanced hepatic MCP-1 expression and M1 macrophage infiltration in Nlrp3-/- mice. Our study points to additional caution when NLRP3 blockade is considered as a therapeutic strategy in the treatment of human NASH.
Collapse
Affiliation(s)
- Liu-Yan Zhu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Chang Liu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Zong-Rui Li
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Chen Niu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Jian Wu
- Department of Medical Microbiology and Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
33
|
Wegermann K, Hyun J, Diehl AM. Molecular Mechanisms Linking Nonalcoholic Steatohepatitis to Cancer. Clin Liver Dis (Hoboken) 2021; 17:6-10. [PMID: 33552478 PMCID: PMC7849296 DOI: 10.1002/cld.1006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/29/2020] [Accepted: 07/12/2020] [Indexed: 02/04/2023] Open
Abstract
Watch a video presentation of this article Watch an interview with the author Answer questions and earn CME.
Collapse
Affiliation(s)
- Kara Wegermann
- Division of GastroenterologyDepartment of MedicineDuke University Medical CenterDurhamNC
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN) and College of Science and TechnologyDankook UniversityCheonanRepublic of Korea
| | - Anna Mae Diehl
- Division of GastroenterologyDepartment of MedicineDuke University Medical CenterDurhamNC
| |
Collapse
|
34
|
Ibar C, Irvine KD. Integration of Hippo-YAP Signaling with Metabolism. Dev Cell 2021; 54:256-267. [PMID: 32693058 DOI: 10.1016/j.devcel.2020.06.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-Yes-associated protein (YAP) signaling network plays a central role as an integrator of signals that control cellular proliferation and differentiation. The past several years have provided an increasing appreciation and understanding of the diverse mechanisms through which metabolites and metabolic signals influence Hippo-YAP signaling, and how Hippo-YAP signaling, in turn, controls genes that direct cellular and organismal metabolism. These connections enable Hippo-YAP signaling to coordinate organ growth and homeostasis with nutrition and metabolism. In this review, we discuss the current understanding of some of the many interconnections between Hippo-YAP signaling and metabolism and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
35
|
Ding J, Li HY, Zhang L, Zhou Y, Wu J. Hedgehog Signaling, a Critical Pathway Governing the Development and Progression of Hepatocellular Carcinoma. Cells 2021; 10:cells10010123. [PMID: 33440657 PMCID: PMC7826706 DOI: 10.3390/cells10010123] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 02/08/2023] Open
Abstract
Hedgehog (Hh) signaling is a classic morphogen in controlling embryonic development and tissue repairing. Aberrant activation of Hh signaling has been well documented in liver cancer, including hepatoblastoma, hepatocellular carcinoma (HCC) and cholangiocarcinoma. The present review aims to update the current understanding on how abnormal Hh signaling molecules modulate initiation, progression, drug resistance and metastasis of HCC. The latest relevant literature was reviewed with our recent findings to provide an overview regarding the molecular interplay and clinical relevance of the Hh signaling in HCC management. Hh signaling molecules are involved in the transformation of pre-carcinogenic lesions to malignant features in chronic liver injury, such as nonalcoholic steatohepatitis. Activation of GLI target genes, such as ABCC1 and TAP1, is responsible for drug resistance in hepatoma cells, with a CD133−/EpCAM− surface molecular profile, and GLI1 and truncated GLI1 account for the metastatic feature of the hepatoma cells, with upregulation of matrix metalloproteinases. A novel bioassay for the Sonic Hh ligand in tissue specimens may assist HCC diagnosis with negative α-fetoprotein and predict early microvascular invasion. In-depth exploration of the Hh signaling deepens our understanding of its molecular modulation in HCC initiation, drug sensitivity and metastasis, and guides precise management of HCC on an individual basis.
Collapse
Affiliation(s)
- Jia Ding
- Department of Gastroenterology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China;
| | - Hui-Yan Li
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Li Zhang
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Yuan Zhou
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
| | - Jian Wu
- Department of Medical Microbiology and Parasitology, MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; (H.-Y.L.); (L.Z.); (Y.Z.)
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-215-423-7705; Fax: +86-216-422-7201
| |
Collapse
|
36
|
Gu Y, Wang Y, Wang Y, Luo J, Wang X, Ma M, Hua W, Liu Y, Yu FX. Hypermethylation of LATS2 Promoter and Its Prognostic Value in IDH-Mutated Low-Grade Gliomas. Front Cell Dev Biol 2020; 8:586581. [PMID: 33195240 PMCID: PMC7642219 DOI: 10.3389/fcell.2020.586581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the enzyme isocitrate dehydrogenase 1/2 (IDH1/2) are the most common somatic mutations in low-grade glioma (LGG). The Hippo signaling pathway is known to play a key role in organ size control, and its dysregulation is involved in the development of diverse cancers. Large tumor suppressor 1/2 (LATS1/2) are core Hippo pathway components that phosphorylate and inactivate Yes-associated protein (YAP), a transcriptional co-activator that regulates expression of genes involved in tumorigenesis. A recent report from The Cancer Genome Atlas (TCGA) has highlighted a frequent hypermethylation of LATS2 in IDH-mutant LGG. However, it is unclear if LATS2 hypermethylation is associated with YAP activation and prognosis of LGG patients. Here, we performed a network analysis of the status of the Hippo pathway in IDH-mutant LGG samples and determined its association with cancer prognosis. Combining TCGA data with our biochemical assays, we found hypermethylation of LATS2 promoter in IDH-mutant LGG. LATS2 hypermethylation, however, did not translate into YAP activation but highly correlated with IDH mutation. LATS2 hypermethylation may thus serve as an alternative for IDH mutation in diagnosis and a favorable prognostic factor for LGG patients.
Collapse
Affiliation(s)
- Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yebin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaqian Luo
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingyue Ma
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
37
|
JCAD expression and localization in human blood endothelial cells. Heliyon 2020; 6:e05121. [PMID: 33083606 PMCID: PMC7550929 DOI: 10.1016/j.heliyon.2020.e05121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/11/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022] Open
Abstract
Background Junctional Cadherin 5 Associated (JCAD) is an endothelial, cell-cell junction protein, and its expression is associated with cardiovascular diseases including atherosclerosis and hypertension. However, to date, there are few studies confirming JCAD expression and precise localization in human tissues by immunohistochemical staining. Methods JCAD expression and localization was assessed in four human submandibular gland (SMG) specimens by immunohistochemical staining. One specimen of SMG with sialoadenitis was accompanied by severe inflammation and fibrosis, while the other was largely normal. Other two SMGs were accompanied by severe fibrosis because of irradiation. Results Immunohistochemical analysis of human SMGs revealed JCAD localization at the blood endothelial cell-cell junctions. JCAD expression was more evident in microvessels and arteries in areas affected by inflammation. Conclusions The localization of JCAD at endothelial cell-cell junctions was confirmed in human tissues. JCAD expression may be affected by pathological conditions.
Collapse
|
38
|
Liu Y, Wang X, Yang Y. Hepatic Hippo signaling inhibits development of hepatocellular carcinoma. Clin Mol Hepatol 2020; 26:742-750. [PMID: 32981290 PMCID: PMC7641559 DOI: 10.3350/cmh.2020.0178] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Primary liver cancer is one of the most common cancer worldwide. Hepatocellular carcinoma (HCC) in particular, is the second leading cause of cancer deaths in the world. The Hippo signaling pathway has emerged as a major oncosuppressive pathway that plays critical roles inhibiting hepatocyte proliferation, survival, and HCC formation. A key component of the Hippo pathway is the inhibition of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) transcription factors by the Hippo kinase cascade. Aberrant activation of YAP or TAZ has been found in several human cancers including HCC. It is also well established that YAP/TAZ activation in hepatocytes causes HCC in mouse models, indicating that YAP/TAZ are potential therapeutic targets for human liver cancer. In this review, we summarize the recent findings regarding the multifarious roles of Hippo/YAP/TAZ in HCC development, and focus on their cell autonomous roles in controlling hepatocyte proliferation, differentiation, survival and metabolism as well as their non-cell autonomous in shaping the tumor microenvironment.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Xiaohui Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.,Harvard Stem Cell Institute, Boston, MA, USA.,Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
39
|
Douglas G, Mehta V, Al Haj Zen A, Akoumianakis I, Goel A, Rashbrook VS, Trelfa L, Donovan L, Drydale E, Chuaiphichai S, Antoniades C, Watkins H, Kyriakou T, Tzima E, Channon KM. A key role for the novel coronary artery disease gene JCAD in atherosclerosis via shear stress mechanotransduction. Cardiovasc Res 2020; 116:1863-1874. [PMID: 31584065 PMCID: PMC7449560 DOI: 10.1093/cvr/cvz263] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS Genome-wide association studies (GWAS) have consistently identified an association between coronary artery disease (CAD) and a locus on chromosome 10 containing a single gene, JCAD (formerly KIAA1462). However, little is known about the mechanism by which JCAD could influence the development of atherosclerosis. METHODS AND RESULTS Vascular function was quantified in subjects with CAD by flow-mediated dilatation (FMD) and vasorelaxation responses in isolated blood vessel segments. The JCAD risk allele identified by GWAS was associated with reduced FMD and reduced endothelial-dependent relaxations. To study the impact of loss of Jcad on atherosclerosis, Jcad-/- mice were crossed to an ApoE-/- background and fed a high-fat diet from 6 to16 weeks of age. Loss of Jcad did not affect blood pressure or heart rate. However, Jcad-/-ApoE-/- mice developed significantly less atherosclerosis in the aortic root and the inner curvature of the aortic arch. En face analysis revealed a striking reduction in pro-inflammatory adhesion molecules at sites of disturbed flow on the endothelial cell layer of Jcad-/- mice. Loss of Jcad lead to a reduced recovery perfusion in response to hind limb ischaemia, a model of altered in vivo flow. Knock down of JCAD using siRNA in primary human aortic endothelial cells significantly reduced the response to acute onset of flow, as evidenced by reduced phosphorylation of NF-КB, eNOS, and Akt. CONCLUSION The novel CAD gene JCAD promotes atherosclerotic plaque formation via a role in the endothelial cell shear stress mechanotransduction pathway.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/physiopathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/physiopathology
- Aortic Diseases/prevention & control
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/physiopathology
- Atherosclerosis/prevention & control
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Coronary Artery Disease/genetics
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/physiopathology
- Coronary Circulation
- Coronary Vessels/metabolism
- Coronary Vessels/physiopathology
- Disease Models, Animal
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Genome-Wide Association Study
- Hindlimb/blood supply
- Humans
- Ischemia/genetics
- Ischemia/metabolism
- Ischemia/physiopathology
- Male
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phosphorylation
- Plaque, Atherosclerotic
- Proto-Oncogene Proteins c-akt
- Stress, Mechanical
Collapse
Affiliation(s)
- Gillian Douglas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Vedanta Mehta
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ayman Al Haj Zen
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Anuj Goel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Victoria S Rashbrook
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lucy Trelfa
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lucy Donovan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Edward Drydale
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Surawee Chuaiphichai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Theodosios Kyriakou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ellie Tzima
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
40
|
Zheng Q, Martin RC, Shi X, Pandit H, Yu Y, Liu X, Guo W, Tan M, Bai O, Meng X, Li Y. Lack of FGF21 promotes NASH-HCC transition via hepatocyte-TLR4-IL-17A signaling. Theranostics 2020; 10:9923-9936. [PMID: 32929325 PMCID: PMC7481424 DOI: 10.7150/thno.45988] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Hepatocellular carcinoma (HCC) has been increasingly recognized in nonalcoholic steatohepatitis (NASH) patients. Fibroblast growth factor 21 (FGF21) is reported to prevent NASH and delay HCC development. In this study, the effects of FGF21 on NASH progression and NASH-HCC transition and the potential mechanism(s) were investigated. Methods: NASH models and NASH-HCC models were established in FGF21Knockout (KO) mice to evaluate NASH-HCC transition. IL-17A signaling was investigated in the isolated hepatic parenchymal cells, splenocytes, and hepatocyte and HCC cell lines. Results: Lack of FGF21 caused significant up-regulation of the hepatocyte-derived IL-17A via Toll-like receptor 4 (TLR4) and NF-κB signaling. Restoration of FGF21 alleviated the high NAFLD activity score (NAS) and attenuated the TLR4-triggered hepatocyte-IL-17A expression. The HCC nodule number and tumor size were significantly alleviated by treatments of anti-IL-17A antibody. Conclusion: This study revealed a novel anti-inflammatory mechanism of FGF21 via inhibiting the hepatocyte-TLR4-IL-17A signaling in NASH-HCC models. The negative feedback loop on the hepatocyte-TLR4-IL-17A axis could be a potential anti-carcinogenetic mechanism for FGF21 to prevent NASH-HCC transition.
Collapse
Affiliation(s)
- Qianqian Zheng
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pathophysiology, Basic Medicine College, China Medical University, Shenyang 110122, China
| | - Robert C. Martin
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Xiaoju Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Harshul Pandit
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Youxi Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Wei Guo
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Min Tan
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang 110122, China
| | - Yan Li
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
41
|
Werneburg N, Gores GJ, Smoot RL. The Hippo Pathway and YAP Signaling: Emerging Concepts in Regulation, Signaling, and Experimental Targeting Strategies With Implications for Hepatobiliary Malignancies. Gene Expr 2020; 20:67-74. [PMID: 31253203 PMCID: PMC7284105 DOI: 10.3727/105221619x15617324583639] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Hippo pathway and its effector protein YAP (a transcriptional coactivator) have been identified as important in the biology of both hepatocellular carcinoma and cholangiocarcinoma. First identified as a tumor suppressor pathway in Drosophila, the understanding of the mammalian YAP signaling and its regulation continues to expand. In its "on" function, the canonical regulatory Hippo pathway, a well-described serine/threonine kinase module, regulates YAP function by restricting its subcellular localization to the cytoplasm. In contrast, when the Hippo pathway is "off," YAP translocates to the nucleus and drives cotranscriptional activity. Given the role of Hippo/YAP signaling in hepatic malignancies, investigators have sought to target these molecules; however, standard approaches have not been successful based on the pathways' negative regulatory role. More recently, additional regulatory mechanisms, such as tyrosine phosphorylation, of YAP have been described. These represent positive regulatory events that may be targetable. Additionally, several groups have identified potentiating feed-forward signaling for YAP in multiple contexts, suggesting other experimental therapeutic approaches to interrupt these signaling loops. Herein we explore the current data supporting alternative YAP regulatory pathways, review the described feed-forward signaling cascades that are YAP dependent, and explore targeting strategies that have been employed in preclinical models of hepatic malignancies.
Collapse
Affiliation(s)
- Nathan Werneburg
- *Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Gregory J. Gores
- *Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Rory L. Smoot
- †Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
42
|
Liu Y, Song J, Liu Y, Zhou Z, Wang X. Transcription activation of circ-STAT3 induced by Gli2 promotes the progression of hepatoblastoma via acting as a sponge for miR-29a/b/c-3p to upregulate STAT3/Gli2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:101. [PMID: 32493490 PMCID: PMC7268652 DOI: 10.1186/s13046-020-01598-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hepatoblastoma (HB) is a common liver malignancy in children. Our previous study has disclosed the crucial role of STAT3 (signal transducer and activator of transcription 3) in HB. AIM OF THE STUDY Present study was designed to study the circular RNA (circRNA) STAT3 in HB. METHODS Gel electrophoresis revealed the circular characteristics of circ-STAT3. Function assays like EdU, transwell and sphere formation assay disclosed the function of circ-STAT3 in HB cells. Mechanism assays including ChIP, RIP, RNA pull down assay demonstrated the macular mechanism underlying circ-STAT3. RESULTS Circ_0043800, which was originated from STAT3, was up-regulated in HB tissues and cells. More importantly, silencing of circ-STAT3 led to the inhibition on HB cell growth, migration and stem-cell characteristics. Circ_0043800 was predominantly located in the cytoplasm of HB cells. Then, circ_0043800 was found to up-regulate STAT3 via sponging miR-29a/b/c-3p. Besides, we identified that STAT3 overexpression partially rescued silenced circ_0043800, while miR-29a/b/c-3p inhibition completely rescued silenced circ_0043800 on HB cellular biological behaviors. Subsequently, Gli2 (GLI family zinc finger 2) was identified as another target of miR-29a/b/c-3p. Circ_0043800 served as a competing endogenous RNA (ceRNA) to up-regulate both Gli2 and STAT3 via sponging miR-29a/b/c-3p. Moreover, we figured out that Gli2 overexpression completely rescued silenced circ_0043800 on HB cell malignant behaviors. After that, we discovered that Gli2 transcriptionally activated circ_0043800. The in-vivo assays further revealed that circ_0043800 promoted HB tumor growth by up-regulation of Gli2 and STAT3. CONCLUSION Gli2-induced circ_0043800 served as the ceRNA to promote HB by up-regulation of STAT3 and Gli2 at a miR-29a/b/c-3p dependent manner.
Collapse
Affiliation(s)
- Yanfeng Liu
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, No.107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
| | - Jianping Song
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, No.107 Wenhuaxi Road, Jinan, 250012, Shandong Province, China
| | - Yu Liu
- Department of General Surgery, 96602 Military Hospital, No.462 Chuanjin Road, Kunming, 650224, Yunnan Province, China
| | - Zhipeng Zhou
- Second Department of Hepatobiliary Surgery, PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Xianqiang Wang
- Department of Pediatric Surgery, PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
43
|
ACADL plays a tumor-suppressor role by targeting Hippo/YAP signaling in hepatocellular carcinoma. NPJ Precis Oncol 2020; 4:7. [PMID: 32219176 PMCID: PMC7096519 DOI: 10.1038/s41698-020-0111-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/14/2020] [Indexed: 12/25/2022] Open
Abstract
Long-chain acyl-CoA dehydrogenase (ACADL) is a mitochondrial enzyme that catalyzes the initial step of fatty acid oxidation, but the role of ACADL in tumor biology remains largely unknown. Here, we found that ACADL was frequently downregulated in hepatocellular carcinoma (HCC), and its low expression was significantly correlated with poor clinical prognosis of HCC patients. Restoring the expression of ACADL in HCC cells resulted cell cycle arrest and growth suppression through suppressing Hippo/YAP signaling evidenced by decreased YAP nuclear accumulation and downstream target genes expression. Reactivation of YAP by XMU-MP-1 diminished the inhibitory effect of ACADL on HCC growth. More importantly, the nuclear accumulation of YAP was negatively correlated with ACADL expression levels in HCC specimens, and YAP inhibitor verteporfin effectively suppressed growth of HCC organoids with low ACADL expression. Together, our findings highlight a novel function of ACADL in regulating HCC growth and targeting ACADL/Yap may be a potential strategy for HCC precise treatment.
Collapse
|
44
|
Zhou XT, Ding J, Li HY, Zuo JL, Ge SY, Jia HL, Wu J. Hedgehog signalling mediates drug resistance through targeting TAP1 in hepatocellular carcinoma. J Cell Mol Med 2020; 24:4298-4311. [PMID: 32108992 PMCID: PMC7171417 DOI: 10.1111/jcmm.15090] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/18/2019] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance is one of the reasons for low survival of advanced hepatocellular carcinoma (HCC). Our previous studies indicate that the hedgehog signalling is involved in hepatic carcinogenesis, metastasis and chemo‐resistance. The present study aims to uncover molecular mechanisms underlying hepatoma chemo‐resistance. TAP1 and GLI1/2 gene expression was assessed in both poorly differentiated hepatoma cells and HCC specimens. Potential GLI‐binding site in the TAP1 promoter sequence was validated by molecular assays. Approximately 75% HCC specimens exhibited an elevated expression of hedgehog GLI1 transcription factor compared with adjacent liver tissue. Both GLI1/2 and TAP1 protein levels were significantly elevated in poorly differentiated hepatoma cells. Both Huh‐7‐trans and Huh‐7‐DN displayed more karyotypic abnormalities and differential gene expression profiles than their native Huh‐7 cells. Sensitivity to Sorafenib, doxorubicin and cisplatin was remarkably improved after either GLI1 or TAP1 gene was inhibited by an RNAi approach or by a specific GLI1/2 inhibitor, GANT61. Further experiments confirmed that hedgehog transcription factor GLI1/2 binds to the TAP1 promoter, indicating that TAP1 is one of GLI1/2 target genes. In conclusion, TAP1 is under direct transcriptional control of the hedgehog signalling. Targeting hedgehog signalling confers a novel insight into alleviating drug resistance in the treatment of refractory HCC.
Collapse
Affiliation(s)
- Xiao-Tian Zhou
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Ding
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Hui-Yan Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie-Liang Zuo
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Sheng-Yang Ge
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Jian Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Zhang S, Zhou D. Role of the transcriptional coactivators YAP/TAZ in liver cancer. Curr Opin Cell Biol 2019; 61:64-71. [DOI: 10.1016/j.ceb.2019.07.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
46
|
Profile of Dr. Jia Fan. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1136-1137. [PMID: 31446552 DOI: 10.1007/s11427-019-9574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Xu S, Xu Y, Liu P, Zhang S, Liu H, Slavin S, Kumar S, Koroleva M, Luo J, Wu X, Rahman A, Pelisek J, Jo H, Si S, Miller CL, Jin ZG. The novel coronary artery disease risk gene JCAD/KIAA1462 promotes endothelial dysfunction and atherosclerosis. Eur Heart J 2019; 40:2398-2408. [PMID: 31539914 PMCID: PMC6698662 DOI: 10.1093/eurheartj/ehz303] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 12/30/2018] [Accepted: 05/03/2019] [Indexed: 01/12/2023] Open
Abstract
AIMS Recent genome-wide association studies (GWAS) have identified that the JCAD locus is associated with risk of coronary artery disease (CAD) and myocardial infarction (MI). However, the mechanisms whereby candidate gene JCAD confers disease risk remain unclear. We addressed whether and how JCAD affects the development of atherosclerosis, the common cause of CAD. METHODS AND RESULTS By mining data in the Genotype-Tissue Expression (GTEx) database, we found that CAD-associated risk variants at the JCAD locus are linked to increased JCAD gene expression in human arteries, implicating JCAD as a candidate causal CAD gene. We therefore generated global and endothelial cell (EC) specific-JCAD knockout mice, and observed that JCAD deficiency attenuated high fat diet-induced atherosclerosis in ApoE-deficient mice. JCAD-deficiency in mice also improved endothelium-dependent relaxation. Genome-wide transcriptional profiling of JCAD-depleted human coronary artery ECs showed that JCAD depletion inhibited the activation of YAP/TAZ pathway, and the expression of downstream pro-atherogenic genes, including CTGF and Cyr61. As a result, JCAD-deficient ECs attracted fewer monocytes in response to lipopolysaccharide (LPS) stimulation. Moreover, JCAD expression in ECs was decreased under unidirectional laminar flow in vitro and in vivo. Proteomics studies suggest that JCAD regulates YAP/TAZ activation by interacting with actin-binding protein TRIOBP, thereby stabilizing stress fiber formation. Finally, we observed that endothelial JCAD expression was increased in mouse and human atherosclerotic plaques. CONCLUSION The present study demonstrates that the GWAS-identified CAD risk gene JCAD promotes endothelial dysfunction and atherosclerosis, thus highlighting the possibility of new therapeutic strategies for CAD by targeting JCAD.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Yanni Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Peng Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Shuya Zhang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - Huan Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - Spencer Slavin
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sandeep Kumar
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Cardiology, Emory University, Atlanta, GA, USA
| | - Marina Koroleva
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jinque Luo
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xiaoqian Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Arshad Rahman
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Cardiology, Emory University, Atlanta, GA, USA
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Sciences, University of Virginia, Charlottesville, VA, USA
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
48
|
Jones PD, Kaiser MA, Ghaderi Najafabadi M, Koplev S, Zhao Y, Douglas G, Kyriakou T, Andrews S, Rajmohan R, Watkins H, Channon KM, Ye S, Yang X, Björkegren JLM, Samani NJ, Webb TR. JCAD, a Gene at the 10p11 Coronary Artery Disease Locus, Regulates Hippo Signaling in Endothelial Cells. Arterioscler Thromb Vasc Biol 2019; 38:1711-1722. [PMID: 29794114 DOI: 10.1161/atvbaha.118.310976] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective- A large number of genetic loci have been associated with risk of coronary artery disease (CAD) through genome-wide association studies, however, for most loci the underlying biological mechanism is unknown. Determining the molecular pathways and cellular processes affected by these loci will provide new insights into CAD pathophysiology and may lead to new therapies. The CAD-associated variants at 10p11.23 fall in JCAD, which encodes an endothelial junction protein, however, its molecular function in endothelial cells is not known. In this study, we characterize the molecular role of JCAD (junctional cadherin 5 associated) in endothelial cells. Approach and Results- We show that JCAD knockdown in endothelial cells affects key phenotypes related to atherosclerosis including proliferation, migration, apoptosis, tube formation, and monocyte binding. We demonstrate that JCAD interacts with LATS2 (large tumor suppressor kinase 2) and negatively regulates Hippo signaling leading to increased activity of YAP (yes-associated protein), the transcriptional effector of the pathway. We also show by double siRNA knockdown that the phenotypes caused by JCAD knockdown require LATS2 and that JCAD is involved in transmission of RhoA-mediated signals into the Hippo pathway. In human tissues, we find that the CAD-associated lead variant, rs2487928, is associated with expression of JCAD in arteries, including atherosclerotic arteries. Gene co-expression analyses across disease-relevant tissues corroborate our phenotypic findings and support the link between JCAD and Hippo signaling. Conclusions- Our results show that JCAD negatively regulates Hippo signaling in endothelial cells and we suggest that JCAD contributes to atherosclerosis by mediating YAP activity and contributing to endothelial dysfunction.
Collapse
Affiliation(s)
- Peter D Jones
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Michael A Kaiser
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Maryam Ghaderi Najafabadi
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (S.K., J.L.M.B.)
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles (Y.Z., X.Y.)
| | - Gillian Douglas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence (G.D., T.K., H.W., K.M.C.)
| | - Theodosios Kyriakou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence (G.D., T.K., H.W., K.M.C.).,Wellcome Trust Centre for Human Genetics (T.K.), University of Oxford, United Kingdom
| | - Sarah Andrews
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Rathinasabapathy Rajmohan
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence (G.D., T.K., H.W., K.M.C.)
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence (G.D., T.K., H.W., K.M.C.)
| | - Shu Ye
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (Y.Z., X.Y.)
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (S.K., J.L.M.B.).,Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden (J.L.M.B.).,Department of Physiology, Institute of Biomedicine and Translation Medicine, University of Tartu, Estonia (J.LM.B.)
| | - Nilesh J Samani
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| | - Tom R Webb
- From the Department of Cardiovascular Sciences (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.).,National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre (P.D.J., M.A.K., M.G.N., S.A., R.R., S.Y., N.J.S., T.R.W.), Glenfield Hospital, University of Leicester, United Kingdom
| |
Collapse
|
49
|
Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. J Transl Med 2019; 99:749-763. [PMID: 30700851 DOI: 10.1038/s41374-018-0177-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023] Open
Abstract
Activation of inflammation is an important mechanism in the development of nonalcoholic steatohepatitis (NASH). This study aims to delineate how mitophagy affects NLRP3 inflammasome activation in hepatic lipotoxicity. Mice were fed a high fat/calorie diet (HFCD) for 24 weeks. Primary rat hepatocytes were treated with palmitic acid (PA) for various periods of time. Mitophagy was measured by protein levels of LC3II and P62. NLRP3, caspase-1, interleukin (IL)-18, and IL-1β at mRNA and protein levels were used as indicators of inflammasome activation. Along with steatotic progression in HFCD-fed mice, ratio of LC3II/β-actin was decreased concurrently with increased levels of liver P62, NLRP3, caspase-1, IL-1β, IL-18, and serum IL-1β levels in late-stage NASH. PA treatment resulted in mitochondrial oxidative stress and initiated mitophagy in primary hepatocytes. The addition of cyclosporine A did not change LC3II/Τοmm20 ratios; but P62 levels were increased after an extended duration of PA exposure, indicating a defect in autophagic activity. Along with impaired mitophagy, mRNA and protein levels of NLRP3, caspase-1, IL-18 and IL-1β were upregulated by PA treatment. Pretreatment with MCC950, N-acetyl cysteine or acetyl-L-carnitine reversed inflammasome activation and a pyroptotic cascade. Additionally, mitophagic flux was partially recovered as indicated by increases in LC3II/Tomm20 ratio, parkin, and PINK1 expression, and decreased P62 expression. The findings suggest that impaired mitophagy triggers hepatic NLRP3 inflammasome activation in a murine NASH model and primary hepatocytes. The new insights into inflammasome activation through mitophagy advance our understanding of how fatty acids elicit lipotoxicity through oxidant stress and autophagy in mitochondria.
Collapse
|
50
|
Manmadhan S, Ehmer U. Hippo Signaling in the Liver - A Long and Ever-Expanding Story. Front Cell Dev Biol 2019; 7:33. [PMID: 30931304 PMCID: PMC6423448 DOI: 10.3389/fcell.2019.00033] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/25/2019] [Indexed: 12/27/2022] Open
Abstract
The first description of Hippo signaling in mammals a little more than 10 years ago showed a striking phenotype in the liver, linking the role of this signaling pathway to organ size control and carcinogenesis. Even though Hippo signaling has been extensively studied in the liver and other organs over the recent years, many open questions remain in our understanding of its role in hepatic physiology and disease. The functions of Hippo signaling extend well beyond cancer and organ size determination: components of upstream Hippo signaling and the downstream effectors YAP and TAZ are involved in a multitude of cell and non-cell autonomous functions including cell proliferation, survival, development, differentiation, metabolism, and cross-talk with the immune system. Moreover, regulation and biological functions of Hippo signaling are often organ or even cell type specific – making its role even more complex. Here, we give a concise overview of the role of Hippo signaling in the liver with a focus on cell-type specific functions. We outline open questions and future research directions that will help to improve our understanding of this important pathway in liver disease.
Collapse
Affiliation(s)
- Saumya Manmadhan
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Ursula Ehmer
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|