1
|
Hernández-Galdámez HV, Fattel-Fazenda S, Flores-Téllez TNJ, Aguilar-Chaparro MA, Mendoza-García J, Díaz-Fernández LC, Romo-Medina E, Sánchez-Pérez Y, Arellanes-Robledo J, De la Garza M, Villa-Treviño S, Piña-Vázquez C. Iron-saturated bovine lactoferrin: a promising chemopreventive agent for hepatocellular carcinoma. Food Funct 2024; 15:4586-4602. [PMID: 38590223 DOI: 10.1039/d3fo05184f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is a tumor with minimal chance of cure due to underlying liver diseases, late diagnosis, and inefficient treatments. Thus, HCC treatment warrants the development of additional strategies. Lactoferrin (Lf) is a mammalian multifunctional iron-binding glycoprotein of the innate immune response and can be found as either a native low iron form (native-Lf) or a high iron form (holo-Lf). Bovine Lf (bLf), which shares many functions with human Lf (hLf), is safe for humans and has several anticancer activities, including chemotherapy boost in cancer. We found endogenous hLf is downregulated in HCC tumors compared with normal liver, and decreased hLf levels in HCC tumors are associated with shorter survival of HCC patients. However, the chemoprotective effect of 100% iron saturated holo-bLf on experimental hepatocarcinogenesis has not yet been determined. We aimed to evaluate the chemopreventive effects of holo-bLf in different HCC models. Remarkably, a single dose (200 mg kg-1) of holo-bLf was effective in preventing early carcinogenic events in a diethylnitrosamine induced HCC in vivo model, such as necrosis, ROS production, and the surge of facultative liver stem cells, and eventually, holo-bLf reduced the number of preneoplastic lesions. For an established HCC model, holo-bLf treatment significantly reduced HepG2 tumor burden in xenotransplanted mice. Finally, holo-bLf in combination with sorafenib, the advanced HCC first-line treatment, synergistically decreased HepG2 viability by arresting cells in the G0/G1 phase of the cell cycle. Our findings provide the first evidence suggesting that holo-bLf has the potential to prevent HCC or to be used in combination with treatments for established HCC.
Collapse
Affiliation(s)
| | - Samia Fattel-Fazenda
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Teresita N J Flores-Téllez
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | | | - Jonathan Mendoza-García
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Lidia C Díaz-Fernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Eunice Romo-Medina
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Ciudad de México, México. Dirección de Cátedras, Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México, Mexico
| | - Mireya De la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| |
Collapse
|
2
|
Li B, Zhang B, Zhang F, Liu X, Zhang Y, Peng W, Teng D, Mao R, Yang N, Hao Y, Wang J. Interaction between Dietary Lactoferrin and Gut Microbiota in Host Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7596-7606. [PMID: 38557058 DOI: 10.1021/acs.jafc.3c09050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The gut microbiota are known to play an important role in host health and disease. Alterations in the gut microbiota composition can disrupt the stability of the gut ecosystem, which may result in noncommunicable chronic diseases (NCCDs). Remodeling the gut microbiota through personalized nutrition is a novel therapeutic avenue for both disease control and prevention. However, whether there are commonly used gut microbiota-targeted diets and how gut microbiota-diet interactions combat NCCDs and improve health remain questions to be addressed. Lactoferrin (LF), which is broadly used in dietary supplements, acts not only as an antimicrobial in the defense against enteropathogenic bacteria but also as a prebiotic to propagate certain probiotics. Thus, LF-induced gut microbiota alterations can be harnessed to induce changes in host physiology, and the underpinnings of their relationships and mechanisms are beginning to unravel in studies involving humans and animal models.
Collapse
Affiliation(s)
- Bing Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Bo Zhang
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Fuli Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Yunxia Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Weifeng Peng
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Da Teng
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Ruoyu Mao
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Na Yang
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Ya Hao
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| | - Jianhua Wang
- Gene Engineering Lab, Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, P. R. China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P. R. China
| |
Collapse
|
3
|
Han S, Yao J, Yamazaki H, Streicher SA, Rao J, Nianogo RA, Zhang Z, Huang BZ. Genetically Determined Circulating Lactase/Phlorizin Hydrolase Concentrations and Risk of Colorectal Cancer: A Two-Sample Mendelian Randomization Study. Nutrients 2024; 16:808. [PMID: 38542719 PMCID: PMC10975724 DOI: 10.3390/nu16060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/01/2024] Open
Abstract
Previous research has found that milk is associated with a decreased risk of colorectal cancer (CRC). However, it is unclear whether the milk digestion by the enzyme lactase-phlorizin hydrolase (LPH) plays a role in CRC susceptibility. Our study aims to investigate the direct causal relationship of CRC risk with LPH levels by applying a two-sample Mendelian Randomization (MR) strategy. Genetic instruments for LPH were derived from the Fenland Study, and CRC-associated summary statistics for these instruments were extracted from the FinnGen Study, PLCO Atlas Project, and Pan-UK Biobank. Primary MR analyses focused on a cis-variant (rs4988235) for LPH levels, with results integrated via meta-analysis. MR analyses using all variants were also undertaken. This analytical approach was further extended to assess CRC subtypes (colon and rectal). Meta-analysis across the three datasets illustrated an inverse association between genetically predicted LPH levels and CRC risk (OR: 0.92 [95% CI, 0.89-0.95]). Subtype analyses revealed associations of elevated LPH levels with reduced risks for both colon (OR: 0.92 [95% CI, 0.89-0.96]) and rectal cancer (OR: 0.92 [95% CI, 0.87, 0.98]). Consistency was observed across varied analytical methods and datasets. Further exploration is warranted to unveil the underlying mechanisms and validate LPH's potential role in CRC prevention.
Collapse
Affiliation(s)
- Sihao Han
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA; (J.Y.); (J.R.); (R.A.N.); (Z.Z.)
| | - Jiemin Yao
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA; (J.Y.); (J.R.); (R.A.N.); (Z.Z.)
| | - Hajime Yamazaki
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan;
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima 960-1295, Japan
| | - Samantha A. Streicher
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Jianyu Rao
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA; (J.Y.); (J.R.); (R.A.N.); (Z.Z.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roch A. Nianogo
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA; (J.Y.); (J.R.); (R.A.N.); (Z.Z.)
| | - Zuofeng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA; (J.Y.); (J.R.); (R.A.N.); (Z.Z.)
| | - Brian Z. Huang
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
4
|
Berkowitz RL, Bluhm AP, Knox GW, McCurdy CR, Ostrov DA, Norris MH. Sigma Receptor Ligands Prevent COVID Mortality In Vivo: Implications for Future Therapeutics. Int J Mol Sci 2023; 24:15718. [PMID: 37958703 PMCID: PMC10647780 DOI: 10.3390/ijms242115718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The emergence of lethal coronaviruses follows a periodic pattern which suggests a recurring cycle of outbreaks. It remains uncertain as to when the next lethal coronavirus will emerge, though its eventual emergence appears to be inevitable. New mutations in evolving SARS-CoV-2 variants have provided resistance to current antiviral drugs, monoclonal antibodies, and vaccines, reducing their therapeutic efficacy. This underscores the urgent need to investigate alternative therapeutic approaches. Sigma receptors have been unexpectedly linked to the SARS-CoV-2 life cycle due to the direct antiviral effect of their ligands. Coronavirus-induced cell stress facilitates the formation of an ER-derived complex conducive to its replication. Sigma receptor ligands are believed to prevent the formation of this complex. Repurposing FDA-approved drugs for COVID-19 offers a timely and cost-efficient strategy to find treatments with established safety profiles. Notably, diphenhydramine, a sigma receptor ligand, is thought to counteract the virus by inhibiting the creation of ER-derived replication vesicles. Furthermore, lactoferrin, a well-characterized immunomodulatory protein, has shown antiviral efficacy against SARS-CoV-2 both in laboratory settings and in living organisms. In the present study, we aimed to explore the impact of sigma receptor ligands on SARS-CoV-2-induced mortality in ACE2-transgenic mice. We assessed the effects of an investigational antiviral drug combination comprising a sigma receptor ligand and an immunomodulatory protein. Mice treated with sigma-2 receptor ligands or diphenhydramine and lactoferrin exhibited improved survival rates and rapid rebound in mass following the SARS-CoV-2 challenge compared to mock-treated animals. Clinical translation of these findings may support the discovery of new treatment and research strategies for SARS-CoV-2.
Collapse
Affiliation(s)
- Reed L. Berkowitz
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.B.); (D.A.O.)
| | - Andrew P. Bluhm
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
| | - Glenn W. Knox
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.B.); (D.A.O.)
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL 32610, USA
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (R.L.B.); (D.A.O.)
| | - Michael H. Norris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
5
|
Ohradanova-Repic A, Praženicová R, Gebetsberger L, Moskalets T, Skrabana R, Cehlar O, Tajti G, Stockinger H, Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics 2023; 15:1056. [PMID: 37111542 PMCID: PMC10146187 DOI: 10.3390/pharmaceutics15041056] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Praženicová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tetiana Moskalets
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Ondrej Cehlar
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Gabor Tajti
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| |
Collapse
|
6
|
Vakili B, Jahanian-Najafabadi A. Application of Antimicrobial Peptides in the Design and Production of Anticancer Agents. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
7
|
Ayuningtyas NF, Chea C, Ando T, Saninggar KE, Tanimoto K, Inubushi T, Maishi N, Hida K, Shindoh M, Miyauchi M, Takata T. Bovine Lactoferrin Suppresses Tumor Angiogenesis through NF-κB Pathway Inhibition by Binding to TRAF6. Pharmaceutics 2023; 15:pharmaceutics15010165. [PMID: 36678795 PMCID: PMC9862475 DOI: 10.3390/pharmaceutics15010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Tumor angiogenesis is essential for tumor progression. The inhibition of tumor angiogenesis is a promising therapy for tumors. Bovine lactoferrin (bLF) has been reported as an anti-tumor agent. However, bLF effects on tumor angiogenesis are not well demonstrated. This study evaluated the inhibitory effects of bLF on tumor angiogenesis in vivo and in vitro. Herein, tumor endothelial cells (TECs) and normal endothelial cells (NECs) were used. Proliferation, migration, tube formation assays, RT-PCR, flow cytometry, Western blotting, siRNA experiments and immunoprecipitation were conducted to clarify the mechanisms of bLF-induced effects. CD-31 immunoexpression was examined in tumor tissues of oral squamous cell carcinoma mouse models with or without Liposomal bLF (LbLF)-administration. We confirmed that bLF inhibited proliferation/migration/tube formation and increased apoptosis in TECs but not NECs. TNF receptor-associated factor 6 (TRAF6), p-p65, hypoxia inducible factor-α (HIF-1α) and vascular endothelial growth factor (VEGF) were highly expressed in TECs. In TECs, bLF markedly downregulated VEGF-A, VEGF receptor (VEGFR) and HIF-1α via the inhibition of p-p65 through binding with TRAF6. Since NECs slightly expressed p-p65, bLF-TRAF-6 binding could not induce detectable changes. Moreover, orally administrated LbLF decreased CD31-positive microvascular density only in TECs. Hence, bLF specifically suppressed tumor angiogenesis through p-p65 inhibition by binding to TRAF6 and suppressing HIF-1α activation followed by VEGF/VEGFR down-regulation. Collectively, bLF can be an anti-angiogenic agent for tumors.
Collapse
Affiliation(s)
- Nurina Febriyanti Ayuningtyas
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Prof. Dr. Moestopo 47, Surabaya 60132, Indonesia
| | - Chanbora Chea
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Toshinori Ando
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Center of Oral Clinical Examination, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Karina Erda Saninggar
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Prof. Dr. Moestopo 47, Surabaya 60132, Indonesia
| | - Keiji Tanimoto
- Department of Radiation Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita 565-0871, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Kita-13, Nishi-7, Kita-Ku, Sapporo 060-8586, Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Kita-13, Nishi-7, Kita-Ku, Sapporo 060-8586, Japan
| | - Masanobu Shindoh
- Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo 060-8586, Japan
| | - Mutsumi Miyauchi
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Correspondence: (M.M.); (T.T.); Tel.: +81-82-257-5632 (M.M.); +81-83-428-0411 (T.T.)
| | - Takashi Takata
- Department of Oral & Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Shunan University, 843-4-2 Gakuenndai Syunan, Yamaguchi 745-8566, Japan
- Correspondence: (M.M.); (T.T.); Tel.: +81-82-257-5632 (M.M.); +81-83-428-0411 (T.T.)
| |
Collapse
|
8
|
Santos-Pereira C, Guedes JP, Ferreira D, Rodrigues LR, Côrte-Real M. Lactoferrin perturbs intracellular trafficking, disrupts cholesterol-rich lipid rafts and inhibits glycolysis of highly metastatic cancer cells harbouring plasmalemmal V-ATPase. Int J Biol Macromol 2022; 220:1589-1604. [PMID: 36116593 DOI: 10.1016/j.ijbiomac.2022.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
The milk-derived bovine lactoferrin (bLf) is an iron-binding glycoprotein with remarkable selective anticancer activity towards highly metastatic cancer cells displaying the proton pump V-ATPase at the plasma membrane. As studies aiming to dissect the bLf mechanisms of action are critical to improve its efficacy and boost its targeted clinical use, herein we sought to further uncover the molecular basis of bLf anticancer activity. We showed that bLf co-localizes with V-ATPase and cholesterol-rich lipid rafts at the plasma membrane of highly metastatic cancer cells. Our data also revealed that bLf perturbs cellular trafficking, induces intracellular accumulation of cholesterol and lipid rafts disruption, downregulates PI3K, and AKT or p-AKT and inhibits glycolysis of cancer cells harbouring V-ATPase at the plasma membrane lipid rafts. Altogether, our results can lay the foundation for future bLf-based targeted anticancer strategies as they unravel a novel cascade of molecular events that explains and further reinforces bLf selectivity for cancer cells displaying plasmalemmal V-ATPase.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana P Guedes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Débora Ferreira
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
9
|
Thampy A, Palani Kumar MK, Serva Peddha M, Reddy M. The effectiveness of whey proteins in prevention and treatment of cancer: a review. Crit Rev Food Sci Nutr 2022; 64:2088-2104. [PMID: 36111369 DOI: 10.1080/10408398.2022.2121256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cancer prevalence is rising rapidly around the globe, contributing immensely to the burden on health systems, hence the search for more effective and selective treatments still remains enticing. Whey, as a natural source, has received extensive focus in recent years because of its intriguing applications to health benefits. Growing consumer appreciation of the nutraceutical effects of whey components makes them an attractive field within cancer research. Whey is a valuable source of superior-quality proteins, lactose, vitamins, and minerals that contribute to proper nutrition as well as help hamper illness and even complement certain disease-related therapy prognosis. As a result, industry leaders and dairy producers are devising new ways to valorize it. Great emphasis on cancer prevention and treatment has been given to whey protein (WP) by the scientific community. WP intake has been proven to induce anti-cancer effects in various in vitro and in vivo studies. Nutritionists and dietitians are now enormously endorsing the role of WP in the therapeutic field, notably for cancer cachexia management. However, human intervention studies with WP are in their infancy and remain to be established with different tumor entities to provide valid proof of its ability to act as a coadjuvant in cancer treatment.
Collapse
Affiliation(s)
- Anjana Thampy
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India
| | - Meena Kumari Palani Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Muthukumar Serva Peddha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Madhavi Reddy
- Department of Clinical Nutrition and Dietetics, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India
| |
Collapse
|
10
|
Berthon BS, Williams LM, Williams EJ, Wood LG. Effect of Lactoferrin Supplementation on Inflammation, Immune Function, and Prevention of Respiratory Tract Infections in Humans: A Systematic Review and Meta-analysis. Adv Nutr 2022; 13:1799-1819. [PMID: 35481594 PMCID: PMC9526865 DOI: 10.1093/advances/nmac047] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/01/2022] [Accepted: 04/21/2022] [Indexed: 01/28/2023] Open
Abstract
Lactoferrin (Lf) is a glycoprotein present in human and bovine milk with antimicrobial and immune-modulating properties. This review aimed to examine the evidence for the effect of Lf supplementation on inflammation, immune function, and respiratory tract infections (RTIs) in humans. Online databases were searched up to December 2020 to identify relevant, English-language articles that examined the effect of Lf supplementation in human subjects of all ages, on either inflammation, immune cell populations or activity, or the incidence, duration, or severity of respiratory illness or RTIs. Twenty-five studies (n = 20 studies in adults) were included, of which 8 of 13 studies (61%) in adults reported a decrease in at least 1 systemic inflammatory biomarker. Immune function improved in 6 of 8 studies (75%) in adults, with changes in immune cell populations in 2 of 6 studies (33%), and changes in immune cell activity in 2 of 5 studies (40%). RTI outcomes were reduced in 6 of 10 studies (60%) (n = 5 in adults, n = 5 in children), with decreased incidence in 3 of 9 studies (33%), and either decreased frequency (2/4, 50%) or duration (3/6, 50%) in 50% of studies. In adults, Lf reduced IL-6 [mean difference (MD): -24.9 pg/mL; 95% CI: -41.64, -8.08 pg/mL], but not C-reactive protein (CRP) [standardized mean difference: -0.09; 95% CI: -0.82, 0.65], or NK cell cytotoxicity [MD: 4.84%; 95% CI: -3.93, 13.60%]. RTI incidence was reduced in infants and children (OR: 0.78; 95% CI: 0.61, 0.98) but not in adults (OR: 1.00; 95% CI: 0.76, 1.32). Clinical studies on Lf supplementation are limited, although findings show 200 mg Lf/d reduces systemic inflammation, while formulas containing 35-833 mg Lf/d may reduce RTI incidence in infants and children, suggesting improved immune function. Future research is required to determine optimal supplementation strategies and populations most likely to benefit from Lf supplementation. This trial was registered at PROSPERO (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021232186) as CRD42021232186.
Collapse
Affiliation(s)
| | - Lily M Williams
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Evan J Williams
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| |
Collapse
|
11
|
Bielecka M, Cichosz G, Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Ramírez-Rico G, Drago-Serrano ME, León-Sicairos N, de la Garza M. Lactoferrin: A Nutraceutical with Activity against Colorectal Cancer. Front Pharmacol 2022; 13:855852. [PMID: 35264972 PMCID: PMC8899398 DOI: 10.3389/fphar.2022.855852] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Homeostasis in the human body results from the tight regulation of several events, since too little inflammation disrupts the process of tissue repair and remodeling, whereas too much exerts a collateral effect by causing tissue damage with life-threatening consequences. In some clinical conditions, such as inflammatory bowel disease (IBD), inflammation functions as a double-edged sword by either enabling or inhibiting cancer development and progression. Generally, cancer develops through evasion mechanisms that regulate cell growth, causing a high rate of uncontrolled proliferation, and mechanisms for evading cell death, such as apoptosis. Moreover, chronic inflammation is a factor that contributes to colorectal cancer (CRC), as observed in individuals with IBD; all these conditions favor an increased rate of angiogenesis and eventual metastasis. Lactoferrin (Lf) is a mammalian iron-binding multifunctional glycoprotein regarded as a natural compound that up- and downregulates both humoral and cellular components of immunity involved in regulating the inflammatory response and maintaining gut homeostasis. Human and bovine Lf share high sequence homology and have very similar antimicrobial, anti-inflammatory, and immunomodulatory activities. Bovine Lf from milk is considered a safe molecule and is commercially available in large quantities. This review mainly focuses on the regulatory effects of orally administered bovine Lf on the inflammatory response associated with CRC; this approach indicates that CRC is one of the most frequently diagnosed cancers and affects the intestinal tract with high clinical and epidemiologic relevance. Thus, this review may provide foundations for the potential use of bovine Lf alone or as a natural adjunct agent to increase the effectiveness and reduce the side effects of anticancer chemotherapy.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City, Mexico
| | - Nidia León-Sicairos
- Centro de Investigación Aplicada a La Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
- Hospital Pediátrico de Sinaloa, Culiacán, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
- *Correspondence: Mireya de la Garza,
| |
Collapse
|
13
|
Ranjbar R, Ghasemian M, Maniati M, Hossein Khatami S, Jamali N, Taheri-Anganeh M. Gastrointestinal disorder biomarkers. Clin Chim Acta 2022; 530:13-26. [DOI: 10.1016/j.cca.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 01/19/2023]
|
14
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Plasmalemmal V-ATPase as a Potential Biomarker for Lactoferrin-Based Anticancer Therapy. Biomolecules 2022; 12:119. [PMID: 35053267 PMCID: PMC8773557 DOI: 10.3390/biom12010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/27/2023] Open
Abstract
Lactoferrin (Lf) is a milk-derived protein with well-recognized potential as a therapeutic agent against a wide variety of cancers. This natural protein exhibits health-promoting effects and has several interesting features, including its selectivity towards cancer cells, good tolerability in humans, worldwide availability, and holding a generally recognized as safe (GRAS) status. To prompt the rational clinical application of this promising anticancer compound, previous works aimed to unveil the molecular mechanisms underlying its selective anticancer activity, where plasmalemmal V-ATPase was identified as an Lf target in cancer cells. V-ATPase is a proton pump critical for cellular homeostasis that migrates to the plasma membrane of highly metastatic cancer cells contributing to the acidity of the tumor microenvironment. Cancer cells were found to be susceptible to Lf only when this proton pump is present at the plasma membrane. Plasmalemmal V-ATPase can thus be an excellent biomarker for driving treatment decisions and forecasting clinical outcomes of Lf-based anticancer strategies. Future research endeavors should thus seek to validate this biomarker by thorough preclinical and clinical studies, as well as to develop effective methods for its detection under clinical settings.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal;
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Lígia R. Rodrigues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal;
| |
Collapse
|
15
|
Aoyama Y, Naiki-Ito A, Xiaochen K, Komura M, Kato H, Nagayasu Y, Inaguma S, Tsuda H, Tomita M, Matsuo Y, Takiguchi S, Takahashi S. Lactoferrin Prevents Hepatic Injury and Fibrosis via the Inhibition of NF-κB Signaling in a Rat Non-Alcoholic Steatohepatitis Model. Nutrients 2021; 14:42. [PMID: 35010924 PMCID: PMC8746867 DOI: 10.3390/nu14010042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) can cause liver cirrhosis and hepatocellular carcinoma (HCC), with cases increasing worldwide. To reduce the incidence of liver cirrhosis and HCC, NASH is targeted for the development of treatments, along with viral hepatitis and alcoholic hepatitis. Lactoferrin (LF) has antioxidant, anti-cancer, and anti-inflammatory activities. However, whether LF affects NASH and fibrosis remains unelucidated. We aimed to clarify the chemopreventive effect of LF on NASH progression. We used a NASH model with metabolic syndrome established using connexin 32 (Cx32) dominant negative transgenic (Cx32ΔTg) rats. Cx32ΔTg rats (7 weeks old) were fed a high-fat diet and intraperitoneally injected with dimethylnitrosamine (DMN). Rats were divided into three groups for LF treatment at 0, 100, or 500 mg/kg/day for 17 weeks. Lactoferrin significantly protected steatosis and lobular inflammation in Cx32ΔTg rat livers and attenuated bridging fibrosis or liver cirrhosis induced by DMN. By quantitative RT-PCR, LF significantly down-regulated inflammatory (Tnf-α, Il-6, Il-18, and Il-1β) and fibrosis-related (Tgf-β1, Timp2, and Col1a1) cytokine mRNAs. Phosphorylated nuclear factor (NF)-κB protein decreased in response to LF, while phosphorylated JNK protein was unaffected. These results indicate that LF might act as a chemopreventive agent to prevent hepatic injury, inflammation, and fibrosis in NASH via NF-κB inactivation.
Collapse
Affiliation(s)
- Yoshinaga Aoyama
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (Y.A.); (K.X.); (M.K.); (H.K.); (Y.N.); (S.I.); (S.T.)
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (Y.M.); (S.T.)
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (Y.A.); (K.X.); (M.K.); (H.K.); (Y.N.); (S.I.); (S.T.)
| | - Kuang Xiaochen
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (Y.A.); (K.X.); (M.K.); (H.K.); (Y.N.); (S.I.); (S.T.)
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (Y.A.); (K.X.); (M.K.); (H.K.); (Y.N.); (S.I.); (S.T.)
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (Y.A.); (K.X.); (M.K.); (H.K.); (Y.N.); (S.I.); (S.T.)
| | - Yuko Nagayasu
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (Y.A.); (K.X.); (M.K.); (H.K.); (Y.N.); (S.I.); (S.T.)
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (Y.A.); (K.X.); (M.K.); (H.K.); (Y.N.); (S.I.); (S.T.)
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, Nagoya 467-8603, Japan;
| | | | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (Y.M.); (S.T.)
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (Y.M.); (S.T.)
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (Y.A.); (K.X.); (M.K.); (H.K.); (Y.N.); (S.I.); (S.T.)
| |
Collapse
|
16
|
Liu N, Feng G, Zhang X, Hu Q, Sun S, Sun J, Sun Y, Wang R, Zhang Y, Wang P, Li Y. The Functional Role of Lactoferrin in Intestine Mucosal Immune System and Inflammatory Bowel Disease. Front Nutr 2021; 8:759507. [PMID: 34901112 PMCID: PMC8655231 DOI: 10.3389/fnut.2021.759507] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), is one of the main types of intestinal inflammatory diseases with intestine mucosal immune disorder. Intestine mucosal immune system plays a remarkable and important role in the etiology and pathogenesis of IBD. Therefore, understanding the intestine mucosal immune mechanism is a key step to develop therapeutic interventions for IBD. Intestine mucosal immune system and IBD are influenced by various factors, such as inflammation, gut permeability, gut microbiota, and nutrients. Among these factors, emerging evidence show that nutrients play a key role in inflammation activation, integrity of intestinal barrier, and immune cell modulation. Lactoferrin (LF), an iron-binding glycoprotein belonging to transferrin family, is a dietary bioactive component abundantly found in mammalian milk. Notably, LF has been reported to perform diverse biological functions including antibacterial activity, anti-inflammatory activity, intestinal barrier protection, and immune cell modulation, and is involved in maintaining intestine mucosal immune homeostasis. The improved understanding of the properties of LF in intestine mucosal immune system and IBD will facilitate its application in nutrition, clinical medicine, and health. Herein, this review outlines the recent advancements on LF as a potential therapeutic intervention for IBD associated with intestine mucosal immune system dysfunction. We hope this review will provide a reference for future studies and lay a theoretical foundation for LF-based therapeutic interventions for IBD by understanding the particular effects of LF on intestine mucosal immune system.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Gang Feng
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Xiaoying Zhang
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Qingjuan Hu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Jiaqi Sun
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Presti S, Manti S, Parisi GF, Papale M, Barbagallo IA, Li Volti G, Leonardi S. Lactoferrin: Cytokine Modulation and Application in Clinical Practice. J Clin Med 2021; 10:jcm10235482. [PMID: 34884183 PMCID: PMC8658270 DOI: 10.3390/jcm10235482] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple properties of lactoferrin have been reported in the literature so far. Decades of in vitro and in vivo studies have demonstrated the important antimicrobial, anti-inflammatory, anti-oxidant, and immunomodulating properties. It suggests the use of lactoferrin as an effective and safe option for the treatment of several common disorders. Herein, we show the applications of lactoferrin in clinical practice, highlighting its evidence-based capacities for the treatment of heterogeneous disorders, such as allergic, gastrointestinal, and respiratory diseases, and hematologic, oncologic, gynecologic, dermatologic, and dental disorders. Moreover, the widespread use of lactoferrin in neonatology is summarized here. As a result of its antiviral properties, lactoferrin has also been proposed as a valid option for the treatment for COVID-19 patients. Here, the uses of lactoferrin in clinical practice as a new, safe, and evidence-based treatment for many types of disorders are summarized.
Collapse
Affiliation(s)
- Santiago Presti
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95121 Catania, Italy; (S.P.); (S.M.); (G.F.P.); (M.P.); (S.L.)
| | - Sara Manti
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95121 Catania, Italy; (S.P.); (S.M.); (G.F.P.); (M.P.); (S.L.)
| | - Giuseppe Fabio Parisi
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95121 Catania, Italy; (S.P.); (S.M.); (G.F.P.); (M.P.); (S.L.)
| | - Maria Papale
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95121 Catania, Italy; (S.P.); (S.M.); (G.F.P.); (M.P.); (S.L.)
| | | | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95121 Catania, Italy
- Correspondence: ; Tel.: +39-095-4781157
| | - Salvatore Leonardi
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95121 Catania, Italy; (S.P.); (S.M.); (G.F.P.); (M.P.); (S.L.)
| |
Collapse
|
18
|
Lee PS, Nagabhushanam K, Ho CT, Pan MH. Inhibitory Effect of Garcinol on Obesity-Exacerbated, Colitis-Mediated Colon Carcinogenesis. Mol Nutr Food Res 2021; 65:e2100410. [PMID: 34245224 DOI: 10.1002/mnfr.202100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/16/2021] [Indexed: 12/24/2022]
Abstract
SCOPE Epidemiological studies show a consistent and compelling association between the risk of colorectal cancer development and obesity, but its mechanisms remain poorly understood. Evidence is mounting that colorectal cancer can be prevented by nutritional supplements, such as phytochemicals. Garcinol, a polyisoprenylated benzophenone derivative, is widely present in Garcinia plants. This study investigates the potential role of garcinol supplementation in ameliorating obesity-induced colon cancer development. METHODS AND RESULTS An animal model to investigate the effect of high-fat-diet (HFD)-induced obesity on promoting colitis-associated colon cancer (AOM (azoxymethane)/DSS (dextran sodium sulfate)-induced) is designed. The results show that HFD can promote colitis-associated colon cancer as compared to an AOM/DSS group without the intervention of obesity, and supplementing with 0.05% garcinol in the diet can significantly ameliorate obesity-promoted colon carcinogenesis. The results also reveals that the microbiota composition of each group is significantly different and clustered. The most representative genera are Alistipes, Romboutsia, and Ruminococcus. The RNA-sequencing results show that the administration of garcinol can regulate genes and improve obesity-promoting colitis-associated colon carcinogenesis. CONCLUSION The study results suggest that garcinol can prevent obesity-promoted colorectal cancer, and these findings provide important niches for the future development of garcinol as functional foods or adjuvant therapeutic agents.
Collapse
Affiliation(s)
- Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
19
|
Sawayama H, Miyamoto Y, Mima K, Kato R, Ogawa K, Hiyoshi Y, Shimokawa M, Akiyama T, Kiyozumi Y, Iwagami S, Iwatsuki M, Baba Y, Yoshida N, Baba H. Preoperative iron status is a prognosis factor for stage II and III colorectal cancer. Int J Clin Oncol 2021; 26:2037-2045. [PMID: 34302234 DOI: 10.1007/s10147-021-01995-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Iron deficiency anemia is represented in colorectal cancer (CRC) patients. Iron surplus load to increase non-transferrin bound iron (NTBI), and NTBI promotes cancer progression and influences microbiota. This study investigated whether preoperative serum iron status was associated with prognosis after CRC resection. METHODS We evaluated preoperative iron and transferrin saturation (TSAT), which was calculated as iron divided by total iron-binding capacity, in 327 patients who underwent surgery for Stage II-III CRC. Fe < 60 μg/dl and TSAT > 40% were defined as low and high iron, respectively. The associations between iron status and overall survival (OS) were evaluated in univariate and multivariate Cox proportional hazards analysis. RESULTS Of the 327 patients, 179 (54.7%), 124 (37.9%) and 24 (7.3%) had low, normal and high iron, respectively. In univariate analysis, low iron was associated with shorter OS (hazard ratio [HR] 2.821, 95% confidence interval [CI] 1.451-5.485, P = 0.002). High iron was also associated with shorter OS (HR 3.396, 95% CI 1.359-8.489, P = 0.009). In multivariate analysis, high age (P = 0.002), depth of invasion pT4 (P = 0.012), lymph-node metastasis presence (P = 0.035), low albumin (P = 0.011), low iron (HR 2.282, 95% CI 1.163-4.478, P = 0.016) and high iron (HR 3.757, 95% CI 1.486-9.494 P = 0.005) were independently associated with shorter OS. High iron was associated with the amount of intratumoral Fusobacterium nucleatum compared with normal iron. CONCLUSION Both low and high preoperative iron in Stage II-III CRC patients were associated with unfavorable OS in univariate and multivariate analyses.
Collapse
Affiliation(s)
- Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Rikako Kato
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Katsuhiro Ogawa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takahiko Akiyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yuki Kiyozumi
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
| |
Collapse
|
20
|
Interaction of Lactoferrin with Unsaturated Fatty Acids: In Vitro and In Vivo Study of Human Lactoferrin/Oleic Acid Complex Cytotoxicity. MATERIALS 2021; 14:ma14071602. [PMID: 33805987 PMCID: PMC8037541 DOI: 10.3390/ma14071602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/16/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022]
Abstract
As shown recently, oleic acid (OA) in complex with lactoferrin (LF) causes the death of cancer cells, but no mechanism(s) of that toxicity have been disclosed. In this study, constitutive parameters of the antitumor effect of LF/OA complex were explored. Complex LF/OA was prepared by titrating recombinant human LF with OA. Spectral analysis was used to assess possible structural changes of LF within its complex with OA. Structural features of apo-LF did not change within the complex LF:OA = 1:8, which was toxic for hepatoma 22a cells. Cytotoxicity of the complex LF:OA = 1:8 was tested in cultured hepatoma 22a cells and in fresh erythrocytes. Its anticancer activity was tested in mice carrying hepatoma 22a. In mice injected daily with LF-8OA, the same tumor grew significantly slower. In 20% of animals, the tumors completely resolved. LF alone was less efficient, i.e., the tumor growth index was 0.14 for LF-8OA and 0.63 for LF as compared with 1.0 in the control animals. The results of testing from 48 days after the tumor inoculation showed that the survival rate among LF-8OA-treated animals was 70%, contrary to 0% rate in the control group and among the LF-treated mice. Our data allow us to regard the complex of LF and OA as a promising tool for cancer treatment.
Collapse
|
21
|
Sánchez C, Franco L, Regal P, Lamas A, Cepeda A, Fente C. Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy. Nutrients 2021; 13:1026. [PMID: 33810073 PMCID: PMC8005182 DOI: 10.3390/nu13031026] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Breast milk is an unbeatable food that covers all the nutritional requirements of an infant in its different stages of growth up to six months after birth. In addition, breastfeeding benefits both maternal and child health. Increasing knowledge has been acquired regarding the composition of breast milk. Epidemiological studies and epigenetics allow us to understand the possible lifelong effects of breastfeeding. In this review we have compiled some of the components with clear functional activity that are present in human milk and the processes through which they promote infant development and maturation as well as modulate immunity. Milk fat globule membrane, proteins, oligosaccharides, growth factors, milk exosomes, or microorganisms are functional components to use in infant formulas, any other food products, nutritional supplements, nutraceuticals, or even for the development of new clinical therapies. The clinical evaluation of these compounds and their commercial exploitation are limited by the difficulty of isolating and producing them on an adequate scale. In this work we focus on the compounds produced using milk components from other species such as bovine, transgenic cattle capable of expressing components of human breast milk or microbial culture engineering.
Collapse
Affiliation(s)
- Cristina Sánchez
- Pharmacy Faculty, San Pablo-CEU University, 28003 Madrid, Spain;
| | - Luis Franco
- Medicine Faculty, Santiago de Compostela University, 15782 Santiago de Compostela, Spain;
| | - Patricia Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Alberto Cepeda
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| | - Cristina Fente
- Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela University, 27002 Lugo, Spain; (P.R.); (A.L.); (A.C.)
| |
Collapse
|
22
|
Abstract
Glioblastoma multiforme (GBM) is the most frequent primary malignant brain tumour prevalent in humans, that exhibits aggressive cell proliferation and rapid invasion of normal brain tissue. Despite aggressive therapeutic approaches consisting of maximum safe surgical resection followed by radio-chemotherapy with temozolomide (TMZ), more than 95% of GBM patients die within 5 years after diagnosis. In most cases, the therapy is not able to counteract the growth and invasiveness of the tumour, which relapses after an interval of time that varies from patient to patient. An increasing number of evidence indicates that natural substances exhibited effective anti-tumour functions and might be successfully used in the treatment of GBM. This review summarizes some natural substances: lactoferrin, hispolon, aloe-emodin and tea tree oil; all these show a growth inhibition and synergistic effect when together with TMZ, (the most commonly used alkylating drug for the treatment of glioblastoma) were administered to U87MG glioblastoma cell line in vitro and in murine animal model. U87MG cell growth was monitored by daily cell count after treatments with the substances mentioned above and growth analysis showed that all drugs significantly decrease proliferation of U87MG in a time- and dose-dependent manner. FACS analysis demonstrates a block of cell cycle in S, G2/M or G0/G1 phases. These substances mediate multiple processes including apoptosis by releasing the inducing factor: PARP. Natural compounds, in combination with conventional chemotherapy TMZ, are a powerful approach to improve the effectiveness of brain cancer treatment.
Collapse
|
23
|
Zhang X, Chen X, Xu Y, Yang J, Du L, Li K, Zhou Y. Milk consumption and multiple health outcomes: umbrella review of systematic reviews and meta-analyses in humans. Nutr Metab (Lond) 2021; 18:7. [PMID: 33413488 PMCID: PMC7789627 DOI: 10.1186/s12986-020-00527-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
In order to recapitulate the best available evidence of milk consumption and multiple health-related outcomes, we performed an umbrella review of meta-analyses and systematic reviews in humans. Totally, 41 meta-analyses with 45 unique health outcomes were included. Milk consumption was more often related to benefits than harm to a sequence of health-related outcomes. Dose–response analyses indicated that an increment of 200 ml (approximately 1 cup) milk intake per day was associated with a lower risk of cardiovascular disease, stroke, hypertension, colorectal cancer, metabolic syndrome, obesity and osteoporosis. Beneficial associations were also found for type 2 diabetes mellitus and Alzheimer's disease. Conversely, milk intake might be associated with higher risk of prostate cancer, Parkinson’s disease, acne and Fe-deficiency anaemia in infancy. Potential allergy or lactose intolerance need for caution. Milk consumption does more good than harm for human health in this umbrella review. Our results support milk consumption as part of a healthy diet. More well-designed randomized controlled trials are warranted.
Collapse
Affiliation(s)
- Xingxia Zhang
- West China School of Nursing/West China Hospital, Sichuan University, 37 Guo Xue Rd, Chengdu, 610041, China.,Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 37 Guo Xue Rd, Chengdu, 610041, Sichuan Province, China
| | - Xinrong Chen
- West China School of Nursing/West China Hospital, Sichuan University, 37 Guo Xue Rd, Chengdu, 610041, China.,Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 37 Guo Xue Rd, Chengdu, 610041, Sichuan Province, China
| | - Yujie Xu
- Department of Public Health, School of Public Health, Sichuan University, Chengdu, 610041, China
| | - Jie Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 37 Guo Xue Rd, Chengdu, 610041, Sichuan Province, China
| | - Liang Du
- Chinese Evidence-Based Medicine/Cochrane Center, Chengdu, 610041, China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, 37 Guo Xue Rd, Chengdu, 610041, China. .,Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 37 Guo Xue Rd, Chengdu, 610041, Sichuan Province, China.
| | - Yong Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, 37 Guo Xue Rd, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
24
|
Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel) 2020; 12:E3806. [PMID: 33348646 PMCID: PMC7766217 DOI: 10.3390/cancers12123806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| |
Collapse
|
25
|
Ramírez-Sánchez DA, Arredondo-Beltrán IG, Canizalez-Roman A, Flores-Villaseñor H, Nazmi K, Bolscher JGM, León-Sicairos N. Bovine lactoferrin and lactoferrin peptides affect endometrial and cervical cancer cell lines. Biochem Cell Biol 2020; 99:149-158. [PMID: 33307991 DOI: 10.1139/bcb-2020-0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cervical, uterine, and ovarian cancers are the most common malignancies of the female genital tract worldwide. Despite advances in prevention, early diagnosis, effective screening, and treatment programs, mortality remains high. Consequently, it is important to search for new treatments. The activity of bovine lactoferrin (bLF) and LF peptides against several types of cancer has been studied; however, only a few studies report the effect of bLF and LF peptides against cervical and endometrial cancers. In this study, we explored the effect of bLF as well as LF chimera and its constituent peptides LFcin17-30 and LFampin265-284 on the viability of cervical (HeLa, SiHa) and endometrial (KLE, HEC-1A) cancer cell lines. Cell proliferation was quantified with an MTT assay, cell morphological changes and damage were determined by Giemsa and phalloidin-TRITC and DAPI staining, and apoptotic and necrotic cells were identified by Alexa Fluor® 488 Annexin V and propidium iodide staining. Additionally, the effect of combinations of bLF and LF peptides with cisplatin was assessed. bLF and LF peptides inhibited the proliferation of uterine cancer cells and caused cellular morphological changes and damage to cell monolayers. bLF induced apoptosis, LFcin17-30 and LFampin265-284 induced apoptosis and necrosis, and LF chimera induced necrosis. Additionally, bLF and LF chimera showed an additive interaction with cisplatin against uterine cancer cells.
Collapse
Affiliation(s)
- Diana A Ramírez-Sánchez
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México.,Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México
| | - Izamar G Arredondo-Beltrán
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México.,Maestría en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México
| | - Adrián Canizalez-Roman
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México.,Hospital de la Mujer, Servicios de Salud de Sinaloa, Culiacán Sinaloa, México
| | | | - Kamran Nazmi
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, the Netherlands
| | - Jan G M Bolscher
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, the Netherlands
| | - Nidia León-Sicairos
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México.,Departamento de Investigación del Hospital Pediátrico, Servicios de Salud de Sinaloa, Culiacán Sinaloa, México
| |
Collapse
|
26
|
FUJIMURA T, IGUCHI A, SATO A, KAGAYA S, HOSHINO T, TAKEUCHI T. The pain-relieving effects of lactoferrin on oxaliplatin-induced neuropathic pain. J Vet Med Sci 2020; 82:1648-1654. [PMID: 32981900 PMCID: PMC7719891 DOI: 10.1292/jvms.20-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/14/2020] [Indexed: 12/04/2022] Open
Abstract
Oxaliplatin (OXL) therapy often causes side effects including chronic peripheral neuropathy. We investigated the pain-relieving effects of recombinant human lactoferrin (rhLf) as well as a long-acting IgG-Fc fused rhLf (rhLf-Fc) on OXL-induced neuropathic pain. We used the hLf in this study, because the homology between mouse Lf and hLf is higher than that of bovine Lf. In addition, rhLf-Fc is expected to enhance the analgesic effect due to the life extension effect in the body. We administered OXL (2 mg/kg, i.v.) to mice twice weekly for 4 weeks. Phosphate buffered saline (PBS), rhLf (100 mg/kg, i.p.) or rhLf-Fc (100 mg/kg, i.p.) was administered once a week from day 15 to 32. We also assessed the continuous infusion of same drugs (10 mg/kg/day) into the external jugular vein by using an osmotic pump. Both of rhLf and rhLf-Fc significantly reduced the hypersensitivity to mechanical stimulation when they were administered intraperitoneally. The continuous infusion of rhLf resulted in a more pronounced effect. Histopathological analysis of sciatic nerve showed that both rhLf and rhLf-Fc tended to reduce nerve fiber damage, but no significant difference was observed in nerve fiber cross-sectional area. Therefore, it was suggested that rhLf or rhLf-Fc injection could be an option for controlling neuropathic pain, which are side effects of OXL.
Collapse
Affiliation(s)
- Takeshi FUJIMURA
- Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Aiko IGUCHI
- Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Atsushi SATO
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Shinji KAGAYA
- NRL Pharma, Inc., #203 KSP East, 3-2-1 Sakato, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Tatsuo HOSHINO
- NRL Pharma, Inc., #203 KSP East, 3-2-1 Sakato, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Takashi TAKEUCHI
- Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| |
Collapse
|
27
|
Larsson SC, Mason AM, Kar S, Vithayathil M, Carter P, Baron JA, Michaëlsson K, Burgess S. Genetically proxied milk consumption and risk of colorectal, bladder, breast, and prostate cancer: a two-sample Mendelian randomization study. BMC Med 2020; 18:370. [PMID: 33261611 PMCID: PMC7709312 DOI: 10.1186/s12916-020-01839-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Observational studies have shown that milk consumption is inversely associated with colorectal, bladder, and breast cancer risk, but positively associated with prostate cancer. However, whether the associations reflect causality remains debatable. We investigated the potential causal associations of milk consumption with the risk of colorectal, bladder, breast, and prostate cancer using a genetic variant near the LCT gene as proxy for milk consumption. METHODS We obtained genetic association estimates for cancer from the UK Biobank (n = 367,643 women and men), FinnGen consortium (n = 135,638 women and men), Breast Cancer Association Consortium (n = 228,951 women), and Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome consortium (n = 140,254 men). Milk consumption was proxied by a genetic variant (rs4988235 or rs182549) upstream of the gene encoding lactase, which catalyzes the breakdown of lactose. RESULTS Genetically proxied milk consumption was associated with a reduced risk of colorectal cancer. The odds ratio (OR) for each additional milk intake increasing allele was 0.95 (95% confidence interval [CI] 0.91-0.99; P = 0.009). There was no overall association of genetically predicted milk consumption with bladder (OR 0.99; 95% CI 0.94-1.05; P = 0.836), breast (OR 1.01; 95% CI 1.00-1.02; P = 0.113), and prostate cancer (OR 1.01; 95% CI 0.99-1.02; P = 0.389), but a positive association with prostate cancer was observed in the FinnGen consortium (OR 1.07; 95% CI 1.01-1.13; P = 0.026). CONCLUSIONS Our findings strengthen the evidence for a protective role of milk consumption on colorectal cancer risk. There was no or limited evidence that milk consumption affects the risk of bladder, breast, and prostate cancer.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Amy M Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Paul Carter
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John A Baron
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Karl Michaëlsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Stephen Burgess
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Fan Y, Jiang J, Song S, Chen X. The selective extraction of iron-binding glycoprotein lactoferrin via a “deferrization-restoring” SPE strategy. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Fernández-Tomé S, Hernández-Ledesma B. Gastrointestinal Digestion of Food Proteins under the Effects of Released Bioactive Peptides on Digestive Health. Mol Nutr Food Res 2020; 64:e2000401. [PMID: 32974997 DOI: 10.1002/mnfr.202000401] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The gastrointestinal tract represents a specialized interface between the organism and the external environment. Because of its direct contact with lumen substances, the modulation of digestive functions by dietary substances is supported by a growing body of evidence. Food-derived bioactive peptides have demonstrated a plethora of activities in the organism with increasing interest toward their impact over the digestive system and related physiological effects. This review updates the biological effects of food proteins, specifically milk and soybean proteins, associated to gastrointestinal health and highlights the study of digestion products and released peptides, the identification of the active form/s, and the evaluation of the mechanisms of action underlying their relationship with the digestive cells and receptors. The approach toward the modifications that food proteins and peptides undergo during gastrointestinal digestion and their bioavailability is a crucial step for current investigations on the field. The recent literature on the regulation of digestive functions by peptides has been mostly considered in terms of their influence on gastrointestinal motility and signaling, oxidative damage and inflammation, and malignant cellular proliferation. A final section regarding the actual challenges and future perspectives in this scientific topic is critically discussed.
Collapse
Affiliation(s)
- Samuel Fernández-Tomé
- Samuel Fernández-Tomé. Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Diego de León, 62, 28006, Madrid, Spain
| | - Blanca Hernández-Ledesma
- Blanca Hernández-Ledesma. Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049, Madrid, Spain
| |
Collapse
|
30
|
Kim KU, Kim WH, Jeong CH, Yi DY, Min H. More than Nutrition: Therapeutic Potential of Breast Milk-Derived Exosomes in Cancer. Int J Mol Sci 2020; 21:E7327. [PMID: 33023062 PMCID: PMC7582863 DOI: 10.3390/ijms21197327] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Human breast milk (HBM) is an irreplaceable source of nutrition for early infant growth and development. Breast-fed children are known to have a low prevalence and reduced risk of various diseases, such as necrotizing enterocolitis, gastroenteritis, acute lymphocytic leukemia, and acute myeloid leukemia. In recent years, HBM has been found to contain a microbiome, extracellular vesicles or exosomes, and microRNAs, as well as nutritional components and non-nutritional proteins, including immunoregulatory proteins, hormones, and growth factors. Especially, the milk-derived exosomes exert various physiological and therapeutic function in cell proliferation, inflammation, immunomodulation, and cancer, which are mainly attributed to their cargo molecules such as proteins and microRNAs. The exosomal miRNAs are protected from enzymatic digestion and acidic conditions, and play a critical role in immune regulation and cancer. In addition, the milk-derived exosomes are developed as drug carriers for delivering small molecules and siRNA to tumor sites. In this review, we examined the various components of HBM and their therapeutic potential, in particular of exosomes and microRNAs, towards cancer.
Collapse
Affiliation(s)
- Ki-Uk Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (K.-U.K.); (W.-H.K.); (C.H.J.)
| | - Wan-Hoon Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (K.-U.K.); (W.-H.K.); (C.H.J.)
| | - Chi Hwan Jeong
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (K.-U.K.); (W.-H.K.); (C.H.J.)
| | - Dae Yong Yi
- Department of Pediatrics, Chung-Ang University College of Medicine, Seoul 06974, Korea
- Department of Pediatrics, Chung-Ang University Hospital, Seoul 06973, Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (K.-U.K.); (W.-H.K.); (C.H.J.)
| |
Collapse
|
31
|
Fujishima H, Okada N, Matsumoto K, Shimizu E, Fukuda S, Tomita M. Conjunctival Injection Reduction in Patients with Atopic Keratoconjunctivitis Due to Synergic Effect of Bovine Enteric-Coated Lactoferrin in 0.1% Tacrolimus Ophthalmic Suspension. J Clin Med 2020; 9:jcm9103093. [PMID: 32992801 PMCID: PMC7599790 DOI: 10.3390/jcm9103093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/03/2023] Open
Abstract
Lactoferrin (LF), a multifunctional glycoprotein found in mammalian milk, is reported to have immunoregulatory effects. The present study aimed to evaluate whether enteric-coated LF (eLF) could improve symptoms in patients with atopic keratoconjunctivitis (AKC). This randomized double-blind placebo-controlled single-center trial comprised Japanese patients (n = 20; aged 22–60 years) with AKC. Patients treated with 0.1% tacrolimus ophthalmic suspension (TALYMUS®) were administered eLF (400 mg/d of bovine LF) or placebo tablets for 12 weeks. Conjunctival injection was examined, papillae formation in the palpebral conjunctiva was evaluated, and corneal fluorescein score, itchy sensation in end-point itching scale, and serum allergic parameters were assessed. Conjunctival injection was significantly reduced in the LF group than in the placebo group (p = 0.0017, Mann–Whitney U-test). Papillae formation in the palpebral conjunctiva showed a statistical decrease in the LF group than in the placebo group (p = 0.010, unpaired T-test). LF combined with TALYMUS® could be a promising treatment strategy to mitigate AKC.
Collapse
Affiliation(s)
- Hiroshi Fujishima
- Department of Ophthalmology, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama 230-8501, Japan;
- Correspondence: ; Tel.: +81-45-580-8599
| | - Naoko Okada
- Department of Ophthalmology, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama 230-8501, Japan;
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama 362-0806, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; (S.F.); (M.T.)
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki 210-0821, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; (S.F.); (M.T.)
| |
Collapse
|
32
|
Tanaka H, Gunasekaran S, Saleh DM, Alexander WT, Alexander DB, Ohara H, Tsuda H. Effects of oral bovine lactoferrin on a mouse model of inflammation associated colon cancer. Biochem Cell Biol 2020; 99:159-165. [PMID: 32905707 DOI: 10.1139/bcb-2020-0087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients with ulcerative colitis or colonic Crohn's disease have a significantly increased risk of developing colorectal cancer. Bovine lactoferrin (bLF) reportedly inhibited the development of colon cancer in rats and mice, and in a placebo controlled trial, ingestion of bLF inhibited the growth of intestinal polyps. In addition, in a case study, a patient with Crohn's disease was reported to have remained in remission for over 7 years while ingesting 1 g of bLF daily. Thus, bLF has an inhibitory effect on colon carcinogenesis, and it may also promote remission of Crohn's disease. The purpose of this study was to investigate the effects of bLF in a mouse model of colorectal cancer related to irritable bowel disease (IBD). The mice were divided into 4 groups: (i) no treatment; (ii) treated with bLF only; (iii) treated with azoxymethane plus dextran sulfate sodium (AOM + DSS); and (iv) treated with AOM + DSS + bLF. AOM was used to initiate intestinal cancer, and DSS was used to induce IBD-like inflammation in the intestine of the C57BL/6 mice. At the end of the study, the mice treated with AOM + DSS + bLF had a better fecal score, fewer lesions in the colon, and less weight loss than the mice treated with AOM + DSS without bLF. However, there were no statistically significant differences between the two groups with respect to tumor burden.
Collapse
Affiliation(s)
- Hajime Tanaka
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sivagami Gunasekaran
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Dina Mourad Saleh
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | | | | | - Hirotaka Ohara
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| |
Collapse
|
33
|
Elzoghby AO, Abdelmoneem MA, Hassanin IA, Abd Elwakil MM, Elnaggar MA, Mokhtar S, Fang JY, Elkhodairy KA. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials 2020; 263:120355. [PMID: 32932142 PMCID: PMC7480805 DOI: 10.1016/j.biomaterials.2020.120355] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Recent progress in protein-based nanomedicine, inspired by the success of Abraxane® albumin-paclitaxel nanoparticles, have resulted in novel therapeutics used for treatment of challenging diseases like cancer and viral infections. However, absence of specific drug targeting, poor pharmacokinetics, premature drug release, and off-target toxicity are still formidable challenges in the clinic. Therefore, alternative protein-based nanomedicines were developed to overcome those challenges. In this regard, lactoferrin (Lf), a glycoprotein of transferrin family, offers a promising biodegradable well tolerated material that could be exploited both as an active therapeutic and drug nanocarrier. This review highlights the major pharmacological actions of Lf including anti-cancer, antiviral, and immunomodulatory actions. Delivery technologies of Lf to improve its pries and enhance its efficacy were also reviewed. Moreover, different nano-engineering strategies used for fabrication of drug-loaded Lf nanocarriers were discussed. In addition, the use of Lf for functionalization of drug nanocarriers with emphasis on tumor-targeted drug delivery was illustrated. Besides its wide application in oncology nano-therapeutics, we discussed the recent advances of Lf-based nanocarriers as efficient platforms for delivery of anti-parkinsonian, anti-Alzheimer, anti-viral drugs, immunomodulatory and bone engineering applications.
Collapse
Affiliation(s)
- Ahmed O Elzoghby
- Center for Engineered Therapeutics, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA, 02139, USA; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Mona A Abdelmoneem
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Damanhur University, Damanhur, 22516, Egypt
| | - Islam A Hassanin
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Mahmoud M Abd Elwakil
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Manar A Elnaggar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Nanotechnology Program, School of Sciences & Engineering, The American University in Cairo (AUC), New Cairo, 11835, Egypt
| | - Sarah Mokhtar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan
| | - Kadria A Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
34
|
Cutone A, Rosa L, Ianiro G, Lepanto MS, Bonaccorsi di Patti MC, Valenti P, Musci G. Lactoferrin's Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules 2020; 10:biom10030456. [PMID: 32183434 PMCID: PMC7175311 DOI: 10.3390/biom10030456] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in cancer therapy, current treatments, including radiotherapy, chemotherapy, and immunotherapy, although beneficial, present attendant side effects and long-term sequelae, usually more or less affecting quality of life of the patients. Indeed, except for most of the immunotherapeutic agents, the complete lack of selectivity between normal and cancer cells for radio- and chemotherapy can make them potential antagonists of the host anti-cancer self-defense over time. Recently, the use of nutraceuticals as natural compounds corroborating anti-cancer standard therapy is emerging as a promising tool for their relative abundance, bioavailability, safety, low-cost effectiveness, and immuno-compatibility with the host. In this review, we outlined the anti-cancer properties of Lactoferrin (Lf), an iron-binding glycoprotein of the innate immune defense. Lf shows high bioavailability after oral administration, high selectivity toward cancer cells, and a wide range of molecular targets controlling tumor proliferation, survival, migration, invasion, and metastasization. Of note, Lf is able to promote or inhibit cell proliferation and migration depending on whether it acts upon normal or cancerous cells, respectively. Importantly, Lf administration is highly tolerated and does not present significant adverse effects. Moreover, Lf can prevent development or inhibit cancer growth by boosting adaptive immune response. Finally, Lf was recently found to be an ideal carrier for chemotherapeutics, even for the treatment of brain tumors due to its ability to cross the blood-brain barrier, thus globally appearing as a promising tool for cancer prevention and treatment, especially in combination therapies.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
- Correspondence: (A.C.); (G.M.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
- Correspondence: (A.C.); (G.M.)
| |
Collapse
|
35
|
Oda H, Wakabayashi H, Tanaka M, Yamauchi K, Sugita C, Yoshida H, Abe F, Sonoda T, Kurokawa M. Effects of lactoferrin on infectious diseases in Japanese summer: A randomized, double-blinded, placebo-controlled trial. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:566-574. [PMID: 32151562 DOI: 10.1016/j.jmii.2020.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE To investigate the effects of lactoferrin (LF) on infectious diseases in Japanese summer. METHODS An intake of placebo, 200 mg, or 600 mg of LF were administered to healthy adults in Kyushu University of Health and Welfare for 12 weeks in a randomized, double-blinded, placebo-controlled parallel-group comparative trial. The primary endpoints were the prevalence and duration of infectious diseases and changes in immune parameters. RESULTS Three hundred and ten subjects were randomized (placebo, n = 104; 200 mg, n = 103; 600 mg, n = 103). Twenty subjects were lost to the follow-up, leaving 290 for a full analysis set (n = 99; n = 95; n = 96). The duration (day) of total infectious diseases was shorter in the 200 mg group (2.0, p = 0.045) and 600 mg group (2.0, p = 0.010) than in the placebo group (3.0). The duration of summer colds was shorter in the 600 mg group (2.0, p = 0.036) than in the placebo group (3.0). No significant differences were observed in the prevalence of infectious diseases or changes in immune parameters. In exploratory investigations, changes in the neutrophil phagocytic capacity, cortisol concentrations, and T score of "Vigor/Activity" in the Profile of Mood States 2 were greater in the 600 mg group than in the placebo group, when analysis was done on the lower half groups at the baseline. Adverse events were similar in each group and none had a causal relationship with the intake of the test foods. CONCLUSIONS In summer, the intake of LF attenuates infectious diseases, including summer colds.
Collapse
Affiliation(s)
- Hirotsugu Oda
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Zama, Kanagawa, 252-8583, Japan.
| | - Hiroyuki Wakabayashi
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Zama, Kanagawa, 252-8583, Japan
| | - Miyuki Tanaka
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Zama, Kanagawa, 252-8583, Japan
| | - Koji Yamauchi
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Zama, Kanagawa, 252-8583, Japan
| | - Chihiro Sugita
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1, Nobeoka, Miyazaki, 882-8508, Japan
| | - Hiroki Yoshida
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1, Nobeoka, Miyazaki, 882-8508, Japan
| | - Fumiaki Abe
- Food Ingredients and Technology Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Zama, Kanagawa, 252-8583, Japan
| | - Tohru Sonoda
- Department of Occupational Therapy, School of Health and Science, Kyushu University of Health and Welfare, 1714-1, Nobeoka, Miyazaki, 882-8508, Japan
| | - Masahiko Kurokawa
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1, Nobeoka, Miyazaki, 882-8508, Japan
| |
Collapse
|
36
|
Whey protein in cancer therapy: A narrative review. Pharmacol Res 2019; 144:245-256. [PMID: 31005617 DOI: 10.1016/j.phrs.2019.04.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
Cancer remains a public health challenge in the identification and development of ideal pharmacological therapies and dietary strategies. The use of whey protein as a dietary strategy is widespread in the field of oncology. The two types of whey protein, sweet or acid, result from several processing techniques and possess distinct protein subfraction compositions. Mechanistically, whey protein subfractions have specific anti-cancer effects. Alpha-lactalbumin, human α-lactalbumin made lethal to tumor cell, bovine α-lactalbumin made lethal to tumor cell, bovine serum albumin, and lactoferrin are whey protein subfractions with potential to hinder tumor pathways. Such effects, however, are principally supported by studies performed in vitro and/or in vivo. In clinical practice, whey protein intake-induced anti-cancer effects are indiscernible. However, whey protein supplementation represents a practical, feasible, and cost-effective approach to mitigate cancer cachexia syndrome. The usefulness of whey protein is evidenced by a greater leucine content and the potential to modulate IGF-1 concentrations, representing important factors towards musculoskeletal hypertrophy. Further clinical trials are warranted and needed to establish the effects of whey protein supplementation as an adjuvant to cancer therapy.
Collapse
|
37
|
Malcomson FC. Mechanisms underlying the effects of nutrition, adiposity and physical activity on colorectal cancer risk. NUTR BULL 2018. [DOI: 10.1111/nbu.12359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Dias Bastos PA, Lara Santos L, Pinheiro Vitorino RM. How are the expression patterns of gut antimicrobial peptides modulated by human gastrointestinal diseases? A bridge between infectious, inflammatory, and malignant diseases. J Pept Sci 2018. [PMID: 29542263 DOI: 10.1002/psc.3071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human gut barrier is the tissue exposed to the highest load of microorganisms, harbouring 100 trillion bacteria. In addition, the gut's renewal rate outruns that of any other human tissue. Antimicrobial peptides (AMPs) are highly optimized defense molecules in the intestinal barrier optimized to maintain gastrointestinal homeostasis. Alterations in AMPs activity can lead to or result from human gastrointestinal diseases. In this review, unique, conserved, or otherwise regular alterations in the expression patterns of human AMPs across gastrointestinal inflammatory and infectious diseases were analyzed for pattern elucidation. Human gastrointestinal diseases are associated with alterations in gut AMPs' expression patterns in a peptide-specific, disease-specific, and pathogen-specific way, modulating human gastrointestinal functioning. Across diseases, there is a (i) marked reduction in otherwise constitutively expressed AMPs, leading to increased disease susceptibility, and a (ii) significant increase in the expression of inducible AMPs, leading to tissue damage and disease severity. Infections and inflammatory conditions are associated with altered gene expression in the gut, whose patterns may favour cellular metaplasia, mucosal dysfunction, and disease states. Altered expression of AMPs can thus thrive disease severity and evolution since its early stages. Nevertheless, the modulation of AMP expression patterns unveils promising therapeutic targets.
Collapse
Affiliation(s)
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group - Research Center, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal.,Department of Surgical Oncology, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal
| | - Rui Miguel Pinheiro Vitorino
- iBiMED, Institute for Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
39
|
Guedes JP, Pereira CS, Rodrigues LR, Côrte-Real M. Bovine Milk Lactoferrin Selectively Kills Highly Metastatic Prostate Cancer PC-3 and Osteosarcoma MG-63 Cells In Vitro. Front Oncol 2018; 8:200. [PMID: 29915723 PMCID: PMC5994723 DOI: 10.3389/fonc.2018.00200] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer and osteosarcoma are the second most common type of cancer affecting men and the fifth most common malignancy among adolescents, respectively. The use of non-toxic natural or natural-derived products has been one of the current strategies for cancer therapy, owing to the reduced risks of induced-chemoresistance development and the absence of secondary effects. In this perspective, lactoferrin (Lf), a natural protein derived from milk, emerges as a promising anticancer agent due to its well-recognized cytotoxicity and anti-metastatic activity. Here, we aimed to ascertain the potential activity of bovine Lf (bLf) against highly metastatic cancer cells. The bLf effect on prostate PC-3 and osteosarcoma MG-63 cell lines, both displaying plasmalemmal V-ATPase, was studied and compared with the breast cancer MDA-MB-231 and the non-tumorigenic BJ-5ta cell lines. Cell proliferation, cell death, intracellular pH, lysosomal acidification, and extracellular acidification rate were evaluated. Results show that bLf inhibits proliferation, induces apoptosis, intracellular acidification, and perturbs lysosomal acidification only in highly metastatic cancer cell lines. By contrast, BJ-5ta cells are insensitive to bLf. Overall, our results establish a common mechanism of action of bLf against highly metastatic cancer cells exhibiting plasmalemmal V-ATPase. This study opens promising perspectives for further research on the anticancer role of Lf, which ultimately will contribute to its safer and more rational application in the human therapy of these life-threatening cancers.
Collapse
Affiliation(s)
- Joana P Guedes
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Center of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Cátia S Pereira
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Center of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Center of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
40
|
Ikeda M, Iijima H, Shinoda I, Iwamoto H, Takeda Y. Effects of bovine lactoferrin on l-DOPA absorption and metabolism in mice. Food Funct 2018; 9:2865-2871. [PMID: 29707715 DOI: 10.1039/c7fo01518f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive natural products, habitually ingested with milk or its derivative nutrients, have been studied for their bioavailability. In this study, we investigated the effects of the co-administration of bovine milk-derived lactoferrin (bLF) and bioactive products, with a focus on catechol-O-methyltransferase (COMT), an enzyme in the catechol metabolism. bLF showed inhibitory activity on COMT in vitro, and acidic pretreatment of bLF enhanced its inhibitory activity. Moreover, partially digested products of bLF by pepsin retained inhibitory activity. Based on these results, bLF was co-administered with levodopa (l-DOPA), which is a catechol compound and a precursor of dopamine, and the effect of bLF on l-DOPA absorption and metabolism was investigated in a mouse model. The co-administration of l-DOPA and bLF alone showed no effect on the concentration of l-DOPA in plasma. However, with the additional administration of carbidopa, the concentration of l-DOPA was significantly enhanced. Furthermore, the ratio of l-DOPA/3-O-methyldopa significantly increased. On the other hand, casein, which is a major milk protein, was not effective. In addition, COMT activity in the intestines was lowered with bLF administration. We concluded that the co-administration of bLF and carbidopa enhances the concentration of l-DOPA.
Collapse
Affiliation(s)
- Masayuki Ikeda
- Wellness & Nutrition Science Institute, R&D Division, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa 252-8583, Japan.
| | | | | | | | | |
Collapse
|
41
|
Nakamura K, Kishida T, Ejima A, Tateyama R, Morishita S, Ono T, Murakoshi M, Sugiyama K, Nishino H, Mazda O. Bovine lactoferrin promotes energy expenditure via the cAMP-PKA signaling pathway in human reprogrammed brown adipocytes. Biometals 2018; 31:415-424. [PMID: 29744695 DOI: 10.1007/s10534-018-0103-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/05/2018] [Indexed: 11/26/2022]
Abstract
Lactoferrin (LF) is a multifunctional protein in mammalian milk. We previously reported that enteric-coated bovine LF reduced the visceral fat in a double-blind clinical study. We further demonstrated that bovine LF (bLF) inhibited adipogenesis and promoted lipolysis in white adipocytes, but the effect of bLF on brown adipocytes has not been clarified. In this study, we investigated the effects of bLF on energy expenditure and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway using human reprogrammed brown adipocytes generated by gene transduction. bLF at concentrations of ≥ 100 μg/mL significantly increased uncoupling protein 1 (UCP1) mRNA levels, with the maximum value observed 4 h after bLF addition. At the same time point, bLF stimulation also significantly increased oxygen consumption. Signaling pathway analysis revealed rapid increases of intracellular cAMP and cAMP response element-binding protein (CREB) phosphorylation levels beginning 5 min after bLF addition. The mRNA levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) were also significantly increased after 1 h of bLF stimulation. H-89, a specific PKA inhibitor, abrogated bLF-induced UCP1 gene expression. Moreover, receptor-associated protein (Rap), an antagonist of low-density lipoprotein receptor-related protein 1 (LRP1), significantly reduced bLF-induced UCP1 gene expression in a dose-dependent manner. These results suggest that bLF promotes UCP1 gene expression in brown adipocytes through the cAMP-PKA signaling pathway via the LRP1 receptor, leading to increased energy expenditure.
Collapse
Affiliation(s)
- Kanae Nakamura
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa, 256-0811, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamikyo, Kyoto, 602-8566, Japan
| | - Akika Ejima
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Riho Tateyama
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa, 256-0811, Japan
| | - Satoru Morishita
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa, 256-0811, Japan
- "Food for Life", Organization for Interdisciplinary Research Projects, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomoji Ono
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa, 256-0811, Japan
- Advanced Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Michiaki Murakoshi
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa, 256-0811, Japan
- Advanced Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
- Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-0841, Japan
| | - Keikichi Sugiyama
- Research Organization of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Hoyoku Nishino
- Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto, 602-0841, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamikyo, Kyoto, 602-8566, Japan.
| |
Collapse
|
42
|
Abstract
Herein we review commercial bovine lactoferrin quality issues by describing an example of industrial production, the current status of global quality standardization, and quality-activity concerns for further discussion. Morinaga Milk Industry has been industrially producing bovine lactoferrin in Milei GmbH, Germany, since 1989. We delineate its production and quality as an example of safe and high-quality manufacturing. Currently, global standardization in the quality of bovine lactoferrin is progressing through Novel Food and GRAS in the EU and USA, respectively. Novel Food was applied or notified to seven lactoferrin manufacturers and GRAS was notified to three manufacturers, two of which are for infant use and one is for adult use, by the end of 2017. The specifications of these regulations are relatively high, including more than 95% lactoferrin purity in protein, which means that such companies can supply relatively high-grade lactoferrin. There appear to be several concerns regarding lactoferrin quality affecting activities, including contamination of lipopolysaccharide (LPS) and angiogenin, purity, and degradation of lactoferrin sample. Although LPS is immunologically toxic when invading the body, it is distributed normally in foods and the gut. However, an industrial lactoferrin sample may contain LPS at a maximum LPS/lactoferrin molecule ratio = 1/1724, which means 99.9% of the lactoferrin molecule is LPS-free. It is difficult to speculate that LPS contained in a lactoferrin sample affects its activities. Finally in order to achieve good and reproducible results, we make proposals to researchers a use of high-grade lactoferrin, careful storage, and indication the manufacturers' names and specifications in the paper.
Collapse
|
43
|
Bonucci M, Pastore C, Ferrera V, Fiorentini C, Fabbri A. Integrated Cancer Treatment in the Course of Metastatic Pancreatic Cancer: Complete Resolution in 2 Cases. Integr Cancer Ther 2018; 17:994-999. [PMID: 29478350 PMCID: PMC6142071 DOI: 10.1177/1534735418755479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer (PC) has a very low average survival, but its prognosis is
further reduced in the case of metastatic spread. Medical therapy in these cases
is the only applicable methodology in the international guidelines. During
anticancer treatments, common side effects are nausea, vomiting, arthralgia,
neuropathy, and alopecia as well as a myelosuppressive effect. The toxicity of
various drugs not only affects the quality of life of the patient, but often its
severity requires a reduction in if not the termination of drug administration.
Scientific studies have shown that a combined use of chemotherapy and certain
natural substances, in the form of standardized extracts, can lead to an
enhancement of the action of the chemotherapy. Here, we describe 2 cases of
metastatic PC. The first case concerns the integrated treatment of a patient
with cancer of the pancreas tail with metastatic involvement ab initio of
peripancreatic lymph nodes and liver parenchyma, with numerous secondary lesions
greater than 9.5 cm. The second case concerns the integrated treatment of a
patient with cancer of the pancreatic body with metastatic involvement of the
liver parenchyma, with a small secondary lesion. In both cases, an integrated
cancer treatment approach, combining chemotherapy with natural remedies,
extracts, and hyperthermia, induced a notable remission of primary and
metastatic lesions.
Collapse
|
44
|
Inhibitory Effect of Bovine Lactoferrin on Catechol-O-Methyltransferase. Molecules 2017; 22:molecules22081373. [PMID: 28825621 PMCID: PMC6152271 DOI: 10.3390/molecules22081373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/08/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Lactoferrin (LF) is a well-known multifunctional protein. In this study, we report the inhibitory potency of bovine LF (bLF) on catechol-O-methyltransferase (COMT), which catalyzes methylation of catechol substrates. We found that bLF binds to and inhibits COMT using its N-terminal region. An N-terminal peptide fragment obtained from bLF by trypsin digestion showed a higher inhibitory activity than intact bLF. A synthetic fragment of the bLF N-terminal residues 6-50, with two pairs of disulfide bonds, also showed higher inhibitory activity than intact bLF. Enzyme kinetic studies proved that bLF did not compete with S-adenosylmethionine (the methyl donor substrate) as well as methyl acceptor substrates such as dihydroxybenzoic acid, (-)-epicatechin, norepinephrine, or l-3,4-dihydroxyphenylalanine. The inhibitory potency of bLF decreased against a COMT preparation pretreated with dithiothreitol, suggesting that the oxidation status of COMT is relevant to interaction with bLF. We further confirmed that COMT activity in the cell extracts form Caco-2 and HepG2 cells was inhibited by bLF and by the synthesized fragment. Enzyme kinetic study indicated that bLF functions as a non-competitive inhibitor by binding to an allosteric surface of COMT.
Collapse
|
45
|
Nakamura K, Morishita S, Ono T, Murakoshi M, Sugiyama K, Kato H, Ikeda I, Nishino H. Lactoferrin interacts with bile acids and increases fecal cholesterol excretion in rats. Biochem Cell Biol 2017; 95:142-147. [DOI: 10.1139/bcb-2016-0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lactoferrin (LF) is a multifunctional cationic protein (pI 8.2–8.9) in mammalian milk. We previously reported that enteric-LF prevented hypercholesterolemia and atherosclerosis in a diet-induced atherosclerosis model using Microminipig, although the underlying mechanisms remain unclear. Because LF is assumed to electrostatically interact with bile acids to inhibit intestinal cholesterol absorption, LF could promote cholesterol excretion. In this study, we assessed the interaction between LF and taurocholate in vitro, and the effect of LF on cholesterol excretion in rats. The binding rate of taurocholate to LF was significantly higher than that to transferrin (pI 5.2–6.3). When rats were administered a high-cholesterol diet (HCD) containing 5% LF, LF was detected using ELISA in the upper small intestine from 7.5 to 60 min after the administration. Rats were fed one of the following diets: control, HCD, or HCD + 5% LF for 21 days. Fecal neutral steroids and hepatic cholesterol levels in the HCD group were significantly higher than those in the control group. The addition of LF to a HCD significantly increased fecal neutral steroids levels (22% increase, p < 0.05) and reduced hepatic cholesterol levels (17% decrease, p < 0.05). These parameters were inversely correlated (R = −0.63, p < 0.05). These results suggest that LF promotes cholesterol excretion via interactions with bile acids.
Collapse
Affiliation(s)
- Kanae Nakamura
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
| | - Satoru Morishita
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
- “Food for Life”, Organization for Interdisciplinary Research Projects, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoji Ono
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
- Advanced Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Michiaki Murakoshi
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
- Advanced Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
- Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto 602-0841, Japan
| | - Keikichi Sugiyama
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
- Research Organization of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Hisanori Kato
- “Food for Life”, Organization for Interdisciplinary Research Projects, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuo Ikeda
- Laboratory of Food and Biomolecular Science, Department of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi 981-8555, Japan
| | - Hoyoku Nishino
- Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto 602-0841, Japan
| |
Collapse
|
46
|
Alexander DB, Iigo M, Abdelgied M, Ozeki K, Tanida S, Joh T, Takahashi S, Tsuda H. Bovine lactoferrin and Crohn's disease: a case study. Biochem Cell Biol 2016; 95:133-141. [PMID: 28165294 DOI: 10.1139/bcb-2016-0107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A 22-year-old male suffering from abdominal pain, repeated diarrhea, and weight loss visited the Digestive Disease Department of Nagoya City University Hospital on 19 December 2011. He was hospitalized and diagnosed with Crohn's colitis. His Crohn's Disease Activity Index (CDAI) was 415. Treatment by granulocyte apheresis, mesalazine, and adalimumab was started. His CDAI was 314 on 30 December and 215 on 5 January. A colonoscopic examination on 19 January showed almost complete remission in the transverse colon and marked remission in the rectum. Mesalazine therapy was stopped on 28 February, and the patient was instructed to self-inject 40 mg of adalimumab every other week. His CDAI was 50 on 10 April, indicating clinical remission. His last self-injection of adalimumab was on 24 April 2012, and he started taking 1 g of bovine lactoferrin (bLF) daily. His CDAI was 35 on 8 January 2013. He continued taking 1 g of bLF daily without any other treatment for Crohn's disease. Laboratory blood tests on 7 September 2015 showed no sign of disease recurrence, and a colonoscopic examination on 23 October 2015 showed almost complete mucosal healing. This case indicates that ingestion of bLF to maintain Crohn's disease in a remissive state should be further explored.
Collapse
Affiliation(s)
| | - Masaaki Iigo
- a Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| | - Mohamed Abdelgied
- a Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,b Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,c Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Keiji Ozeki
- d Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Tanida
- d Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Joh
- d Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- b Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Tsuda
- a Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| |
Collapse
|
47
|
Arias M, Hilchie AL, Haney EF, Bolscher JGM, Hyndman ME, Hancock REW, Vogel HJ. Anticancer activities of bovine and human lactoferricin-derived peptides. Biochem Cell Biol 2016; 95:91-98. [PMID: 28165293 DOI: 10.1139/bcb-2016-0175] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.
Collapse
Affiliation(s)
- Mauricio Arias
- a Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ashley L Hilchie
- b Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,c Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Evan F Haney
- b Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jan G M Bolscher
- d Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University of Amsterdam, 1081 AL Amsterdam, the Netherlands
| | - M Eric Hyndman
- e Department of Surgery, Division of Urology, Southern Alberta Institute of Urology, University of Calgary, Calgary, AB T2V 1P9, Canada
| | - Robert E W Hancock
- b Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hans J Vogel
- a Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.,b Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
48
|
Mayeur S, Spahis S, Pouliot Y, Levy E. Lactoferrin, a Pleiotropic Protein in Health and Disease. Antioxid Redox Signal 2016; 24:813-36. [PMID: 26981846 DOI: 10.1089/ars.2015.6458] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SIGNIFICANCE Lactoferrin (Lf) is a nonheme iron-binding glycoprotein strongly expressed in human and bovine milk and it plays many functions during infancy such as iron homeostasis and defense against microorganisms. In humans, Lf is mainly expressed in mucosal epithelial and immune cells. Growing evidence suggests multiple physiological roles for Lf after weaning. RECENT ADVANCES The aim of this review is to highlight the recent advances concerning multifunctional Lf activities. CRITICAL ISSUES First, we will provide an overview of the mechanisms related to Lf intrinsic synthesis or intestinal absorption as well as its interaction with a wide spectrum of mammalian receptors and distribution in organs and cell types. Second, we will discuss the large variety of its physiological functions such as iron homeostasis, transportation, immune regulation, oxidative stress, inflammation, and apoptosis while specifying the mechanisms of action. Third, we will focus on its recent physiopathology implication in metabolic disorders, including obesity, type 2 diabetes, and cardiovascular diseases. Additional efforts are necessary before suggesting the potential use of Lf as a diagnostic marker or as a therapeutic tool. FUTURE DIRECTIONS The main sources of Lf in human cardiometabolic disorders should be clarified to identify new perspectives for future research and develop new strategies using Lf in therapeutics. Antioxid. Redox Signal. 24, 813-836.
Collapse
Affiliation(s)
- Sylvain Mayeur
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada
| | - Schohraya Spahis
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada .,3 Department of Nutrition, Université de Montréal , Montreal, Canada
| | - Yves Pouliot
- 3 Department of Nutrition, Université de Montréal , Montreal, Canada
| | - Emile Levy
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Canada .,2 Institute of Nutraceuticals and Functional Foods (INAF) , Université Laval, Quebec, Canada .,3 Department of Nutrition, Université de Montréal , Montreal, Canada
| |
Collapse
|
49
|
The unique medicinal properties of camel products: A review of the scientific evidence. J Taibah Univ Med Sci 2016. [DOI: 10.1016/j.jtumed.2015.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
50
|
Morishita S, Kawaguchi H, Ono T, Miura N, Murakoshi M, Sugiyama K, Kato H, Tanimoto A, Nishino H. Enteric lactoferrin attenuates the development of high-fat and high-cholesterol diet-induced hypercholesterolemia and atherosclerosis in Microminipigs. Biosci Biotechnol Biochem 2016; 80:295-303. [DOI: 10.1080/09168451.2015.1091713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Previously, we found that enteric lactoferrin (eLF) could reduce the visceral fat accumulation known to associate strongly with metabolic syndrome symptoms and consequently with an increased risk of atherosclerosis. In this study, the atherosclerosis-preventive potential of LF was assessed in a high-fat and high-cholesterol diet (HFCD)-induced hypercholesterolemia and atherosclerosis model using Microminipig™. Eight-week orally administered eLF remarkably reduced the HFCD-induced serum total and low-density lipoprotein cholesterol levels but not high-density lipoprotein cholesterol levels. A histological analysis of 15 arteries revealed that eLF systemically inhibited the development of atherosclerotic lesions. Pathway analysis using identified genes that characterized eLF administration in liver revealed significant changes in the steroid biosynthesis pathway (ssc00100) and all affected genes in this pathway were upregulated, suggesting that cholesterol synthesis inhibited by HFCD was recovered by eLF. In summary, eLF could potentially prevent the hypercholesterolemia and atherosclerosis through protecting homeostasis from HFCD-induced dysfunction of cholesterol metabolism.
Collapse
Affiliation(s)
- Satoru Morishita
- Life Science Research Laboratories, Research and Development Headquarters, Lion Corporation, Odawara, Japan
- “Food for Life,” Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Kawaguchi
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomoji Ono
- Life Science Research Laboratories, Research and Development Headquarters, Lion Corporation, Odawara, Japan
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Naoki Miura
- Joint Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Kagoshima University, Kagoshima, Japan
| | - Michiaki Murakoshi
- Life Science Research Laboratories, Research and Development Headquarters, Lion Corporation, Odawara, Japan
- Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keikichi Sugiyama
- Life Science Research Laboratories, Research and Development Headquarters, Lion Corporation, Odawara, Japan
- Research Organization of Science and Engineering, Ritsumeikan University, Kusatsu, Japan
| | - Hisanori Kato
- “Food for Life,” Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | |
Collapse
|