1
|
Wiens KR, Wasti N, Ulloa OO, Klegeris A. Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules 2024; 29:5525. [PMID: 39683685 DOI: 10.3390/molecules29235525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Microglia, the brain immune cells, support neurons by producing several established neurotrophic molecules including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Modern analytical techniques have identified numerous phenotypic states of microglia, each associated with the secretion of a diverse set of substances, which likely include not only canonical neurotrophic factors but also other less-studied molecules that can interact with neurons and provide trophic support. In this review, we consider the following eight such candidate cytokines: oncostatin M (OSM), leukemia inhibitory factor (LIF), activin A, colony-stimulating factor (CSF)-1, interleukin (IL)-34, growth/differentiation factor (GDF)-15, fibroblast growth factor (FGF)-2, and insulin-like growth factor (IGF)-2. The available literature provides sufficient evidence demonstrating murine cells produce these cytokines and that they exhibit neurotrophic activity in at least one neuronal model. Several distinct types of neurotrophic activity are identified that only partially overlap among the cytokines considered, reflecting either their distinct intrinsic properties or lack of comprehensive studies covering the full spectrum of neurotrophic effects. The scarcity of human-specific studies is another significant knowledge gap revealed by this review. Further studies on these potential microglia-derived neurotrophic factors are warranted since they may be used as targeted treatments for diverse neurological disorders.
Collapse
Affiliation(s)
- Kennedy R Wiens
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Naved Wasti
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Omar Orlando Ulloa
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
2
|
Li H, Dan QQ, Chen YJ, Chen L, Zhang HT, Mu DZ, Wang TH. Cellular Localization and Distribution of TGF-β1, GDNF and PDGF-BB in the Adult Primate Central Nervous System. Neurochem Res 2023; 48:2406-2423. [PMID: 36976393 DOI: 10.1007/s11064-023-03909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
The available data on the localization of transforming growth factor beta1 (TGF-β1), glial cell line-derived neurotrophic factor (GDNF), and platelet-derived growth factor-BB (PDGF-BB) in the adult primate and human central nervous system (CNS) are limited and lack comprehensive and systematic information. This study aimed to investigate the cellular localization and distribution of TGF-β1, GDNF, and PDGF-BB in the CNS of adult rhesus macaque (Macaca mulatta). Seven adult rhesus macaques were included in the study. The protein levels of TGF-β1, PDGF-BB, and GDNF in the cerebral cortex, cerebellum, hippocampus, and spinal cord were analyzed by western blotting. The expression and location of TGF-β1, PDGF-BB, and GDNF in the brain and spinal cord was examined by immunohistochemistry and immunofluorescence staining, respectively. The mRNA expression of TGF-β1, PDGF-BB, and GDNF was detected by in situ hybridization. The molecular weight of TGF-β1, PDGF-BB, and GDNF in the homogenate of spinal cord was 25 KDa, 30 KDa, and 34 KDa, respectively. Immunolabeling revealed GDNF was ubiquitously distributed in the cerebral cortex, hippocampal formation, basal nuclei, thalamus, hypothalamus, brainstem, cerebellum, and spinal cord. TGF-β1 was least distributed and found only in the medulla oblongata and spinal cord, and PDGF-BB expression was also limited and present only in the brainstem and spinal cord. Besides, TGF-β1, PDGF-BB, and GDNF were localized in the astrocytes and microglia of spinal cord and hippocampus, and their expression was mainly found in the cytoplasm and primary dendrites. The mRNA of TGF-β1, PDGF-BB, and GDNF was localized to neuronal subpopulations in the spinal cord and cerebellum. These findings suggest that TGF-β1, GDNF and PDGF-BB may be associated with neuronal survival, neural regeneration and functional recovery in the CNS of adult rhesus macaques, providing the potential insights into the development or refinement of therapies based on these factors.
Collapse
Affiliation(s)
- Hui Li
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi-Qin Dan
- Institute of Neurological Disease, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - Yan-Jun Chen
- Institute of Neurological Disease, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - Li Chen
- Institute of Neurological Disease, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - Hong-Tian Zhang
- Institute of Neurological Disease, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - De-Zhi Mu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ting-Hua Wang
- Institute of Neurological Disease, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
3
|
Wang J, Chang CY, Yang X, Zhou F, Liu J, Feng Z, Hu W. Leukemia inhibitory factor, a double-edged sword with therapeutic implications in human diseases. Mol Ther 2023; 31:331-343. [PMID: 36575793 PMCID: PMC9931620 DOI: 10.1016/j.ymthe.2022.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the interleukin-6 (IL-6) superfamily. LIF was initially discovered as a factor to induce the differentiation of myeloid leukemia cells and thus inhibit their proliferation. Subsequent studies have highlighted the multi-functions of LIF under a wide variety of physiological and pathological conditions in a highly cell-, tissue-, and context-dependent manner. Emerging evidence has demonstrated that LIF plays an essential role in the stem cell niche, where it maintains the homeostasis and regeneration of multiple somatic tissues, including intestine, neuron, and muscle. Further, LIF exerts a crucial regulatory role in immunity and functions as a protective factor against many immunopathological diseases, such as infection, inflammatory bowel disease (IBD), and graft-verse-host disease (GVHD). It is worth noting that while LIF displays a tumor-suppressive function in leukemia, recent studies have highlighted the oncogenic role of LIF in many types of solid tumors, further demonstrating the complexities and context-dependent effects of LIF. In this review, we summarize the recent insights into the roles and mechanisms of LIF in stem cell homeostasis and regeneration, immunity, and cancer, and discuss the potential therapeutic options for human diseases by modulating LIF levels and functions.
Collapse
Affiliation(s)
- Jianming Wang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Chun-Yuan Chang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Xue Yang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Fan Zhou
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA.
| |
Collapse
|
4
|
Zhang C, Liu J, Wang J, Hu W, Feng Z. The emerging role of leukemia inhibitory factor in cancer and therapy. Pharmacol Ther 2021; 221:107754. [PMID: 33259884 PMCID: PMC8084904 DOI: 10.1016/j.pharmthera.2020.107754] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Leukemia inhibitory factor (LIF) is a multi-functional cytokine of the interleukin-6 (IL-6) superfamily. Initially identified as a factor that inhibits the proliferation of murine myeloid leukemia cells, LIF displays a wide variety of important functions in a cell-, tissue- and context-dependent manner in many physiological and pathological processes, including regulating cell proliferation, pluripotent stem cell self-renewal, tissue/organ development and regeneration, neurogenesis and neural regeneration, maternal reproduction, inflammation, infection, immune response, and metabolism. Emerging evidence has shown that LIF plays an important but complex role in human cancers; while LIF displays a tumor suppressive function in some types of cancers, including leukemia, LIF is overexpressed and exerts an oncogenic function in many more types of cancers. Further, targeting LIF has been actively investigated as a novel strategy for cancer therapy. This review summarizes the recent advances in the studies on LIF in human cancers and its potential application in cancer therapy. A better understanding of the role of LIF in different types of cancers and its underlying mechanisms will help to develop more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
5
|
Sénécal V, Barat C, Tremblay MJ. The delicate balance between neurotoxicity and neuroprotection in the context of HIV-1 infection. Glia 2020; 69:255-280. [PMID: 32910482 DOI: 10.1002/glia.23904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) causes a spectrum of neurological impairments, termed HIV-associated neurocognitive disorder (HAND), following the infiltration of infected cells into the brain. Even though the implementation of antiretroviral therapy reduced the systemic viral load, the prevalence of HAND remains unchanged and infected patients develop persisting neurological disturbances affecting their quality of life. As a result, HAND have gained importance in basic and clinical researches, warranting the need of developing new adjunctive treatments. Nonetheless, a better understanding of the molecular and cellular mechanisms remains necessary. Several studies consolidated their efforts into elucidating the neurotoxic signaling leading to HAND including the deleterious actions of HIV-1 viral proteins and inflammatory mediators. However, the scope of these studies is not sufficient to address all the complexity related to HAND development. Fewer studies focused on an altered neuroprotective capacity of the brain to respond to HIV-1 infection. Neurotrophic factors are endogenous polyproteins involved in neuronal survival, synaptic plasticity, and neurogenesis. Any defects in the processing or production of these crucial factors might compose a risk factor rendering the brain more vulnerable to neuronal damages. Due to their essential roles, they have been investigated for their diverse interplays with HIV-1 infection. In this review, we present a complete description of the neurotrophic factors involved in HAND. We discuss emerging concepts for their therapeutic applications and summarize the complex mechanisms that down-regulate their production in favor of a neurotoxic environment. For certain factors, we finally address opposing roles that rather lead to increased inflammation.
Collapse
Affiliation(s)
- Vincent Sénécal
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada.,Département de Microbiologie-infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
6
|
Laterza C, Uoshima N, Tornero D, Wilhelmsson U, Stokowska A, Ge R, Pekny M, Lindvall O, Kokaia Z. Attenuation of reactive gliosis in stroke-injured mouse brain does not affect neurogenesis from grafted human iPSC-derived neural progenitors. PLoS One 2018; 13:e0192118. [PMID: 29401502 PMCID: PMC5798785 DOI: 10.1371/journal.pone.0192118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 11/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) or their progeny, derived from human somatic cells, can give rise to functional improvements after intracerebral transplantation in animal models of stroke. Previous studies have indicated that reactive gliosis, which is associated with stroke, inhibits neurogenesis from both endogenous and grafted neural stem/progenitor cells (NSPCs) of rodent origin. Here we have assessed whether reactive astrocytes affect the fate of human iPSC-derived NSPCs transplanted into stroke-injured brain. Mice with genetically attenuated reactive gliosis (deficient for GFAP and vimentin) were subjected to cortical stroke and cells were implanted adjacent to the ischemic lesion one week later. At 8 weeks after transplantation, immunohistochemical analysis showed that attenuated reactive gliosis did not affect neurogenesis or commitment towards glial lineage of the grafted NSPCs. Our findings, obtained in a human-to-mouse xenograft experiment, provide evidence that the reactive gliosis in stroke-injured brain does not affect the formation of new neurons from intracortically grafted human iPSC-derived NSPCs. However, for a potential clinical translation of these cells in stroke, it will be important to clarify whether the lack of effect of reactive gliosis on neurogenesis is observed also in a human-to-human experimental setting.
Collapse
Affiliation(s)
- Cecilia Laterza
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
| | - Naomi Uoshima
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
- Department of Anesthesiology, Tokyo Medical University, Nishishinjuku, Shinjuku-ku, Tokyo, Japan
| | - Daniel Tornero
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
| | - Ulrika Wilhelmsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Stokowska
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ruimin Ge
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
| | - Milos Pekny
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Olle Lindvall
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
| | - Zaal Kokaia
- Department of Clinical Sciences, Laboratory of Stem Cells & Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden
- * E-mail:
| |
Collapse
|
7
|
Davis SM, Pennypacker KR. The role of the leukemia inhibitory factor receptor in neuroprotective signaling. Pharmacol Ther 2017; 183:50-57. [PMID: 28827150 DOI: 10.1016/j.pharmthera.2017.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Several neurotropic cytokines relay their signaling through the leukemia inhibitory factor receptor. This 190kDa subunit couples with the 130kDa gp130 subunit to transduce intracellular signaling in neurons and oligodendrocytes that leads to expression of genes associated with neurosurvival. Moreover, activation of this receptor alters the phenotype of immune cells to an anti-inflammatory one. Although cytokines that activate the leukemia inhibitory factor receptor have been studied in the context of neurodegenerative disease, therapeutic targeting of the specific receptor subunit has been understudied in by comparison. This review examines the role of this receptor in the CNS and immune system, and its application in the treatment in stroke and other brain pathologies.
Collapse
Affiliation(s)
- Stephanie M Davis
- Center for Advanced Translational Stroke Science, Departments of Neurology and Neuroscience, University of Kentucky, Lexington, KY 40536, United States
| | - Keith R Pennypacker
- Center for Advanced Translational Stroke Science, Departments of Neurology and Neuroscience, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
8
|
Laterza C, Wattananit S, Uoshima N, Ge R, Pekny R, Tornero D, Monni E, Lindvall O, Kokaia Z. Monocyte depletion early after stroke promotes neurogenesis from endogenous neural stem cells in adult brain. Exp Neurol 2017; 297:129-137. [PMID: 28746827 DOI: 10.1016/j.expneurol.2017.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/23/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
Abstract
Ischemic stroke, caused by middle cerebral artery occlusion, leads to long-lasting formation of new striatal neurons from neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ) of adult rodents. Concomitantly with this neurogenic response, SVZ exhibits activation of resident microglia and infiltrating monocytes. Here we show that depletion of circulating monocytes, using the anti-CCR2 antibody MC-21 during the first week after stroke, enhances striatal neurogenesis at one week post-insult, most likely by increasing short-term survival of the newly formed neuroblasts in the SVZ and adjacent striatum. Blocking monocyte recruitment did not alter the volume of the ischemic lesion but gave rise to reduced astrocyte activation in SVZ and adjacent striatum, which could contribute to the improved neuroblast survival. A similar decrease of astrocyte activation was found in and around human induced pluripotent stem cell (iPSC)-derived NSPCs transplanted into striatum at one week after stroke in monocyte-depleted mice. However, there was no effect on neurogenesis in the graft as determined 8weeks after implantation. Our findings demonstrate, for the first time, that a specific cellular component of the early inflammatory reaction in SVZ and adjacent striatum following stroke, i.e., infiltrating monocytes, compromises the short-term neurogenic response neurogenesis from endogenous NSPCs.
Collapse
Affiliation(s)
- Cecilia Laterza
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden
| | - Somsak Wattananit
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden
| | - Naomi Uoshima
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden; Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Ruimin Ge
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden
| | - Roy Pekny
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden
| | - Daniel Tornero
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden
| | - Emanuela Monni
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden
| | - Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, SE-221 84 Lund, Sweden.
| |
Collapse
|
9
|
Hodges H, Pollock K, Stroemer P, Patel S, Stevanato L, Reuter I, Sinden J. Making Stem Cell Lines Suitable for Transplantation. Cell Transplant 2017. [DOI: 10.3727/000000007783464605] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human stem cells, progenitor cells, and cell lines have been derived from embryonic, fetal, and adult sources in the search for graft tissue suitable for the treatment of CNS disorders. An increasing number of experimental studies have shown that grafts from several sources survive, differentiate into distinct cell types, and exert positive functional effects in experimental animal models, but little attention has been given to developing cells under conditions of good manufacturing practice (GMP) that can be scaled up for mass treatment. The capacity for continued division of stem cells in culture offers the opportunity to expand their production to meet the widespread clinical demands posed by neurodegenerative diseases. However, maintaining stem cell division in culture long term, while ensuring differentiation after transplantation, requires genetic and/or oncogenetic manipulations, which may affect the genetic stability and in vivo survival of cells. This review outlines the stages, selection criteria, problems, and ultimately the successes arising in the development of conditionally immortal clinical grade stem cell lines, which divide in vitro, differentiate in vivo, and exert positive functional effects. These processes are specifically exemplified by the murine MHP36 cell line, conditionally immortalized by a temperature-sensitive mutant of the SV40 large T antigen, and cell lines transfected with the c-myc protein fused with a mutated estrogen receptor (c-mycERTAM), regulated by a tamoxifen metabolite, but the issues raised are common to all routes for the development of effective clinical grade cells.
Collapse
Affiliation(s)
- Helen Hodges
- Department of Psychology, Institute of Psychiatry, Kings College, London, UK
- ReNeuron Ltd., Guildford, Surrey, UK
| | | | | | | | | | - Iris Reuter
- Department of Psychology, Institute of Psychiatry, Kings College, London, UK
- Department of Neurology, University of Giessen and Marburg, Germany
| | | |
Collapse
|
10
|
Interleukin-6-Mediated Induced Pluripotent Stem Cell (iPSC)-Derived Neural Differentiation. Mol Neurobiol 2017; 55:3513-3522. [PMID: 28509081 DOI: 10.1007/s12035-017-0594-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
Abstract
In an aging society with an increasing threat to higher brain cognitive functions due to dementia, it becomes imperative to identify new molecular remedies for supporting adult neurogenesis. Interleukin-6 (IL-6) is a promising cytokine that can support neurogenesis under conditions of neurodegeneration, and neuron replacement is eventually possible due to its agonistic acting soluble receptor sIL-6R. Here, we report that activation of the IL-6-signal transducer and activator of transcription 3 (STAT3) axis is neurogenic and has potential therapeutic applications for the treatment of neurodegenerative diseases such as Parkinson's disease (PD).
Collapse
|
11
|
A Two-Dimensional Difference Gel Electrophoresis (2D-DIGE) Protocol for Studies of Neural Precursor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 974:183-191. [PMID: 28353235 DOI: 10.1007/978-3-319-52479-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This chapter describes the basics of two-dimensional difference gel electrophoresis (2D-DIGE) for multiplex analysis of up to distinct proteomes. The example given describes the analysis of undifferentiated and differentiated neural precursor cells labelled with fluorescent Cy3 and Cy5 dyes in comparison to a pooled standard labelled with Cy2. After labelling, the proteomes are mixed together and electrophoresed on the same 2D gels. Scanning the gels at wavelengths specific for each dye allows direct overlay of the two different proteomes and the differences in abundance of specific protein spots can be determined through comparison to the pooled standard.
Collapse
|
12
|
Vagaska B, Ferretti P. Toward modeling the human nervous system in a dish: recent progress and outstanding challenges. Regen Med 2016; 12:15-23. [PMID: 27900887 DOI: 10.2217/rme-2016-0106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Studying the cellular and molecular bases governing development, and normal and abnormal functions of the human CNS is hampered by its complexity and the very limited possibility of experimentally manipulating it in vivo. Development of 3D, tissue-like culture systems offers much promise for boosting our understanding of human neural development, birth defects, neurodegenerative diseases and neural injury, and for providing platforms that will more accurately predict efficacy of putative therapeutic compounds and assess responses to potentially neurotoxic agents. Although novel technological developments and a more interdisciplinary approach to modeling the human CNS are accelerating the pace of discovery, increasing the complexity of in vitro systems increases the ordeals to be overcome to establish highly reproducible models amenable to quantitative analysis.
Collapse
Affiliation(s)
- Barbora Vagaska
- Stem Cell & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Patrizia Ferretti
- Stem Cell & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
13
|
Razavi S, Nazem G, Mardani M, Esfandiari E, Salehi H, Esfahani SHZ. Neurotrophic factors and their effects in the treatment of multiple sclerosis. Adv Biomed Res 2015; 4:53. [PMID: 25802822 PMCID: PMC4361963 DOI: 10.4103/2277-9175.151570] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/24/2014] [Indexed: 12/24/2022] Open
Abstract
Neurotrophins are small molecules of polypeptides, which include nerve growth factor (NGF) family, glial cell line–derived neurotrophic factor (GDNF) family ligands, and neuropoietic cytokines. These factors have an important role in neural regeneration, remyelination, and regulating the development of the peripheral and central nervous systems (PNS and CNS, respectively) by intracellular signaling through specific receptors. It has been suggested that the pathogenesis of human neurodegenerative disorders may be due to an alteration in the neurotrophic factors and their receptors. The use of neurotrophic factors as therapeutic agents is a novel strategy for restoring and maintaining neuronal function during neurodegenerative disorders such as multiple sclerosis. Innate and adaptive immune responses contribute to pathology of neurodegenerative disorders. Furthermore, autoimmune and mesenchymal stem cells, by the release of neurotrophic factors, have the ability to protect neuronal population and can efficiently suppress the formation of new lesions. So, these cells may be an alternative source for delivering neurotrophic factors into the CNS.
Collapse
Affiliation(s)
- Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghasemi Nazem
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mardani
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
14
|
Tao C, Zhang X. Development of astrocytes in the vertebrate eye. Dev Dyn 2014; 243:1501-10. [PMID: 25236977 DOI: 10.1002/dvdy.24190] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/22/2014] [Accepted: 09/12/2014] [Indexed: 02/04/2023] Open
Abstract
Astrocytes represent the earliest glial population in the embryonic optic nerve, contributing critically to retinal angiogenesis and formation of brain-retinal-barrier. Despite of many developmental and clinical implications of astrocytes, answers to some of the most fundamental questions of this unique type of glial cells remain elusive. This review provides an overview of the current knowledge about the origination, proliferation, and differentiation of astrocytes, their journey from the optic nerve toward the neuroretina, and their involvement in physiological and pathological development of the visual system.
Collapse
Affiliation(s)
- Chenqi Tao
- Stark Neuroscience Institute, Indiana University School of Medicine, Indianapolis, Indiana; Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, New York
| | | |
Collapse
|
15
|
Mousa A, Bakhiet M. Role of cytokine signaling during nervous system development. Int J Mol Sci 2013; 14:13931-57. [PMID: 23880850 PMCID: PMC3742226 DOI: 10.3390/ijms140713931] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 01/24/2023] Open
Abstract
Cytokines are signaling proteins that were first characterized as components of the immune response, but have been found to have pleiotropic effects in diverse aspects of body function in health and disease. They are secreted by numerous cells and are used extensively in intercellular communications to produce different activities, including intricate processes engaged in the ontogenetic development of the brain. This review discusses factors involved in brain growth regulation and recent findings exploring cytokine signaling pathways during development of the central nervous system. In view of existing data suggesting roles for neurotropic cytokines in promoting brain growth and repair, these molecules and their signaling pathways might become targets for therapeutic intervention in neurodegenerative processes due to diseases, toxicity, or trauma.
Collapse
Affiliation(s)
- Alyaa Mousa
- Department of Anatomy, Faculty of Medicine, Health Sciences Centre, Kuwait University, Safat 13060, Kuwait; E-Mail:
| | - Moiz Bakhiet
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671 Manama, Bahrain
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +973-1723-7300
| |
Collapse
|
16
|
Koutsopoulos S, Zhang S. Long-term three-dimensional neural tissue cultures in functionalized self-assembling peptide hydrogels, matrigel and collagen I. Acta Biomater 2013; 9:5162-9. [PMID: 22995405 DOI: 10.1016/j.actbio.2012.09.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/07/2012] [Accepted: 09/11/2012] [Indexed: 11/25/2022]
Abstract
Designer peptides with self-assembling properties form nanofibers which are further organized to form a hydrogel consisting of up to 99.5% water. We present here the encapsulation of neural stem cells into peptide nanofiber hydrogel scaffolds. This results in three-dimensional (3-D) neural tissue cultures in which neural stem cells differentiate into progenitor neural cells, neurons, astrocytes and oligodendrocytes when cultured in serum-free medium. Cell survival studies showed that neural cells in peptide hydrogels thrive for at least 5 months. In contrast, neural stem cells encapsulated in Collagen I were poorly differentiated and did not migrate significantly, thus forming clusters. We show that for culture periods of 1-2 weeks, neural stem cells proliferate and differentiate better in Matrigel. However, in long-term studies, the population of cells in Matrigel decreases whereas better cell survival rates are observed in neural tissue cultures in peptide hydrogels. Peptide functionalization with cell adhesion and cell differentiation motifs show superior cell survival and differentiation properties compared to those observed upon culturing neural cells in non-modified peptide hydrogels. These designed 3-D engineered tissue culturing systems have a potential use as tissue surrogates for tissue regeneration. The well-defined chemical and physical properties of the peptide nanofiber hydrogels and the use of serum-free medium allow for more realistic biological studies of neural cells in a biomimetic 3-D environment.
Collapse
|
17
|
Silva D, Natalello A, Sanii B, Vasita R, Saracino G, Zuckermann RN, Doglia SM, Gelain F. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications. NANOSCALE 2013; 5:704-718. [PMID: 23223865 DOI: 10.1039/c2nr32656f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The importance of self-assembling peptides (SAPs) in regenerative medicine is becoming increasingly recognized. The propensity of SAPs to form nanostructured fibers is governed by multiple forces including hydrogen bonds, hydrophobic interactions and π-π aromatic interactions among side chains of the amino acids. Single residue modifications in SAP sequences can significantly affect these forces. BMHP1-derived SAPs is a class of biotinylated oligopeptides, which self-assemble in β-structured fibers to form a self-healing hydrogel. In the current study, selected modifications in previously described BMHP1-derived SAPs were designed in order to investigate the influence of modified residues on self-assembly kinetics and scaffold formation properties. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis demonstrated the secondary structure (β-sheet) formation in all modified SAP sequences, whereas atomic force microscopy (AFM) analysis further confirmed the presence of nanofibers. Furthermore, the fiber shape and dimension analysis by AFM showed flattened and twisted fiber morphology ranging from ∼8 nm to ∼70 nm. The mechanical properties of the pre-assembled and post assembled solution were investigated by rheometry. The shear-thinning behavior and rapid re-healing properties of the pre-assembled solutions make them a preferable choice for injectable scaffolds. The wide range of stiffnesses (G')--from ∼1000 to ∼27,000 Pa--exhibited by the post-assembled scaffolds demonstrated their potential for a variety of tissue engineering applications. The extra cellular matrix (ECM) mimicking (physically and chemically) properties of SAP scaffolds enhanced cell adhesion and proliferation. The capability of the scaffold to facilitate murine neural stem cell (mNSC) proliferation was evaluated in vitro: the increased mNSCs adhesion and proliferation demonstrated the potential of newly synthesized SAPs for regenerative medicine approaches.
Collapse
Affiliation(s)
- Diego Silva
- Center for Nanomedicine and Tissue Engineering, A.O. OspedaleNiguardaCa' Granda, Piazza dell'ospedalemaggiore 3, Milan, 20162, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mittlmeier T, Stratos I. Muscle and Ligament Regeneration. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Muscle and Ligament Regeneration. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Cristini S, Navone S, Canzi L, Acerbi F, Ciusani E, Hladnik U, de Gemmis P, Alessandri G, Colombo A, Parati E, Invernici G. Human neural stem cells: a model system for the study of Lesch-Nyhan disease neurological aspects. Hum Mol Genet 2010; 19:1939-50. [PMID: 20159777 DOI: 10.1093/hmg/ddq072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The study of Lesch-Nyhan-diseased (LND) human brain is crucial for understanding how mutant hypoxanthine-phosphoribosyltransferase (HPRT) might lead to neuronal dysfunction. Since LND is a rare, inherited disorder caused by a deficiency of the enzyme HPRT, human neural stem cells (hNSCs) that carry this mutation are a precious source for delineating the consequences of HPRT deficiency and for developing new treatments. In our study we have examined the effect of HPRT deficiency on the differentiation of neurons in hNSCs isolated from human LND fetal brain. We have examined the expression of a number of transcription factors essential for neuronal differentiation and marker genes involved in dopamine (DA) biosynthetic pathway. LND hNSCs demonstrate aberrant expression of several transcription factors and DA markers. HPRT-deficient dopaminergic neurons also demonstrate a striking deficit in neurite outgrowth. These results represent direct experimental evidence for aberrant neurogenesis in LND hNSCs and suggest developmental roles for other housekeeping genes in neurodevelopmental disease. Moreover, exposure of the LND hNSCs to retinoic acid medium elicited the generation of dopaminergic neurons. The lack of precise understanding of the neurological dysfunction in LND has precluded development of useful therapies. These results evidence aberrant neurogenesis in LND hNSCs and suggest a role for HPRT gene in neurodevelopment. These cells combine the peculiarity of a neurodevelopmental model and a human, neural origin to provide an important tool to investigate the pathophysiology of HPRT deficiency and more broadly demonstrate the utility of human neural stem cells for studying the disease and identifying potential therapeutics.
Collapse
Affiliation(s)
- Silvia Cristini
- Laboratory of Cellular Neurobiology, UO Cerebrovascular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jiao S, Xu H, Xu J, Zhan Y, Zhang S. Effect of VEGF on neural differentiation of human embryonic stem cells in vitro. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2009; 29:563-6. [PMID: 19821087 DOI: 10.1007/s11596-009-0507-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Indexed: 01/04/2023]
Abstract
The effects of vascular endothelial growth factor (VEGF) on neural differentiation of human embryonic stem cells (hESCs) in vitro and the possible mechanism were observed. The hESCs lines, TJMU1 and TJMU2, were established and stored by our laboratory. hESCs differentiated into neuronal cells through embryonic body formation. In this induction process, hESCs were divided into three groups: group A, routine induction; group B, routine induction+10 ng/mL VEGF; group C, routine induction+10 ng/mL VEGF+10 ng/mL VEGFR2/Fc. OCT4, Nestin and GFAP in each group were detected by RT-PCR, and the cells expressing Nestin and GFAP were counted by immunofluorescence. The percentage of Nestin positive cells in group B was significantly higher than in groups A and C, while the percentage of GFAP positive cells in group B was significantly lower than in groups A and C (P<0.01). There was no significant difference between groups A and C (P>0.05). It was concluded that VEGF, via VEGFR2, stimulated the neural differentiation of hESCs in vitro.
Collapse
Affiliation(s)
- Shujie Jiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | | | | | | |
Collapse
|
22
|
Leukemia inhibitory factor favours neurogenic differentiation of long-term propagated human midbrain precursor cells. Neurosci Lett 2009; 464:203-8. [PMID: 19703518 DOI: 10.1016/j.neulet.2009.08.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/26/2009] [Accepted: 08/19/2009] [Indexed: 11/21/2022]
Abstract
There is a lot of excitement about the potential use of multipotent neural stem cells for the treatment of neurodegenerative diseases. However, the strategy is compromised by the general loss of multipotency and ability to generate neurons after long-term in vitro propagation. In the present study, human embryonic (5 weeks post-conception) ventral mesencephalic (VM) precursor cells were propagated as neural tissue-spheres (NTS) in epidermal growth factor (EGF; 20 ng/ml) and fibroblast growth factor 2 (FGF2; 20 ng/ml). After more than 325 days, the NTS were transferred to media containing either EGF+FGF2, EGF+FGF2+heparin or leukemia inhibitory factor (LIF; 10 ng/ml)+FGF2+heparin. Cultures were subsequently propagated for more than 180 days with NTS analyzed at various time-points. Our data show for the first time that human VM neural precursor cells can be long-term propagated as NTS in the presence of EGF and FGF2. A positive effect of heparin was found only after 150 days of treatment. After switching into different media, only NTS exposed to LIF contained numerous cells positive for markers of newly formed neurons. Besides of demonstrating the ability of human VM NTS to be long-term propagated, our study also suggests that LIF favours neurogenic differentiation of human VM precursor cells.
Collapse
|
23
|
Wakeman DR, Hofmann MR, Redmond DE, Teng YD, Snyder EY. Long-term multilayer adherent network (MAN) expansion, maintenance, and characterization, chemical and genetic manipulation, and transplantation of human fetal forebrain neural stem cells. ACTA ACUST UNITED AC 2009; Chapter 2:Unit2D.3. [PMID: 19455542 DOI: 10.1002/9780470151808.sc02d03s9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human neural stem/precursor cells (hNSC/hNPC) have been targeted for application in a variety of research models and as prospective candidates for cell-based therapeutic modalities in central nervous system (CNS) disorders. To this end, the successful derivation, expansion, and sustained maintenance of undifferentiated hNSC/hNPC in vitro, as artificial expandable neurogenic micro-niches, promises a diversity of applications as well as future potential for a variety of experimental paradigms modeling early human neurogenesis, neuronal migration, and neurogenetic disorders, and could also serve as a platform for small-molecule drug screening in the CNS. Furthermore, hNPC transplants provide an alternative substrate for cellular regeneration and restoration of damaged tissue in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Human somatic neural stem/progenitor cells (NSC/NPC) have been derived from a variety of cadaveric sources and proven engraftable in a cytoarchitecturally appropriate manner into the developing and adult rodent and monkey brain while maintaining both functional and migratory capabilities in pathological models of disease. In the following unit, we describe a new procedure that we have successfully employed to maintain operationally defined human somatic NSC/NPC from developing fetal, pre-term post-natal, and adult cadaveric forebrain. Specifically, we outline the detailed methodology for in vitro expansion, long-term maintenance, manipulation, and transplantation of these multipotent precursors.
Collapse
Affiliation(s)
- Dustin R Wakeman
- University of California at San Diego, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Dhara SK, Hasneen K, Machacek DW, Boyd NL, Rao RR, Stice SL. Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures. Differentiation 2008; 76:454-64. [DOI: 10.1111/j.1432-0436.2007.00256.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Neurotrophic Actions of PACAP-38 and LIF on Human Neuroblastoma SH-SY5Y Cells. J Mol Neurosci 2008; 36:45-56. [DOI: 10.1007/s12031-008-9082-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
|
27
|
Agasse F, Bernardino L, Silva B, Ferreira R, Grade S, Malva JO. Response to Histamine Allows the Functional Identification of Neuronal Progenitors, Neurons, Astrocytes, and Immature Cells in Subventricular Zone Cell Cultures. Rejuvenation Res 2008; 11:187-200. [DOI: 10.1089/rej.2007.0600] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Fabienne Agasse
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Liliana Bernardino
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Bruno Silva
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Raquel Ferreira
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Grade
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João O. Malva
- Neuroprotection and Neurogenesis in Brain Repair Group, Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
28
|
Erickson RI, Paucar AA, Jackson RL, Visnyei K, Kornblum H. Roles of insulin and transferrin in neural progenitor survival and proliferation. J Neurosci Res 2008; 86:1884-94. [DOI: 10.1002/jnr.21631] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Abstract
Neural stem cells (NSCs) have been identified in the mature central nervous system (CNS), and they reside in specific areas. Cultures of NSCs can be successfully established in vitro by exploiting the NeuroSphere assay. This methodology relies on the continuous exposure of neural cells to mitogens such as epidermal growth factor and fibroblast growth factor-2. Under these conditions, only NSCs and highly undifferentiated progenitors proliferate, whereas committed precursors and terminally differentiated cells are eliminated from the culture. The proper application of this method to the cells allows the establishment of long-term expanding stable NSC lines, starting from different neural tissues as the adult rodent CNS and human brain tumor specimens.
Collapse
Affiliation(s)
- Rossella Galli
- Stem Cell Research Institute (HSR-SCRI), DIBI-H.S. Raffaele, Milan, Italy
| | | | | |
Collapse
|
30
|
Neri M, Maderna C, Cavazzin C, Deidda-Vigoriti V, Politi LS, Scotti G, Marzola P, Sbarbati A, Vescovi AL, Gritti A. Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles: relevance for in vivo cell tracking. Stem Cells 2007; 26:505-16. [PMID: 17975226 DOI: 10.1634/stemcells.2007-0251] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent studies have raised appealing possibilities of replacing damaged or lost neural cells by transplanting in vitro-expanded neural precursor cells (NPCs) and/or their progeny. Magnetic resonance (MR) tracking of superparamagnetic iron oxide (SPIO)-labeled cells is a noninvasive technique to track transplanted cells in longitudinal studies on living animals. Murine NPCs and human mesenchymal or hematopoietic stem cells can be efficiently labeled by SPIOs. However, the validation of SPIO-based protocols to label human neural precursor cells (hNPCs) has not been extensively addressed. Here, we report the development and validation of optimized protocols using two SPIOs (Sinerem and Endorem) to label human hNPCs that display bona fide stem cell features in vitro. A careful titration of both SPIOs was required to set the conditions resulting in efficient cell labeling without impairment of cell survival, proliferation, self-renewal, and multipotency. In vivo magnetic resonance imaging (MRI) combined with histology and confocal microscopy indicated that low numbers (5 x 10(3) to 1 x 10(4)) of viable SPIO-labeled hNPCs could be efficiently detected in the short term after transplantation in the adult murine brain and could be tracked for at least 1 month in longitudinal studies. By using this approach, we also clarified the impact of donor cell death to the MR signal. This study describes a simple protocol to label NPCs of human origin using SPIOs at optimized low dosages and demonstrates the feasibility of noninvasive imaging of labeled cells after transplantation in the brain; it also evidentiates potential limitations of the technique that have to be considered, particularly in the perspective of neural cell-based clinical applications.
Collapse
Affiliation(s)
- Margherita Neri
- aStem Cell Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jonakait GM. The effects of maternal inflammation on neuronal development: possible mechanisms. Int J Dev Neurosci 2007; 25:415-25. [DOI: 10.1016/j.ijdevneu.2007.08.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022] Open
Affiliation(s)
- G. Miller Jonakait
- Department of Biological SciencesNew Jersey Institute of Technology195 University AvenueNewarkNJ07102United States
| |
Collapse
|
32
|
Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 2007; 8:221-32. [PMID: 17311007 DOI: 10.1038/nrn2054] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuropoietic cytokines are well known for their role in the control of neuronal, glial and immune responses to injury or disease. Since this discovery, it has emerged that several of these proteins are also involved in nervous system development, in particular in the regulation of neurogenesis and stem cell fate. Recent data indicate that these proteins have yet more functions, as key modulators of synaptic plasticity and of various behaviours. In addition, neuropoietic cytokines might be a factor in the aetiology of psychiatric disorders.
Collapse
Affiliation(s)
- Sylvian Bauer
- Physiologie Neurovégétative, UMR 6153 CNRS, 1147 INRA, Université Paul Cézanne-Aix-Marseille-3, Ave. Escadrille Normandie-Niemen, BP 351-352, 13397 Marseille Cedex 20, France
| | | | | |
Collapse
|
33
|
Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G, Munoz-Sanjuan I. Identification of Proteomic Changes during Differentiation of Adult Mouse Subventricular Zone Progenitor Cells. Stem Cells Dev 2007; 16:143-65. [PMID: 17233554 DOI: 10.1089/scd.2006.00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The use of neural precursor cells (NPCs) represents a promising repair strategy for many neurological disorders. However, the molecular events and biological features that control NPC proliferation and their differentiation into neurons, astrocytes, and oligodendrocytes are unclear. In the present study, we used a comparative proteomics approach to identify proteins that were differentially regulated in NPCs after short-term differentiation. We also used a subcellular fractionation technique for enrichment of nuclei and other dense organelles to identify proteins that were not readily detected in whole cell extracts. In total, 115 distinct proteins underwent expression changes during NPC differentiation. Forty one of these were only identified following subcellular fractionation. These included transcription factors, RNA-processing factors, cell cycle proteins, and proteins that translocate between the nucleus and cytoplasm. Biological network analysis showed that the differentiation of NPCs was associated with significant changes in cell cycle and protein synthesis machinery. Further characterization of these proteins could provide greater insight into the mechanisms involved in regulation of neurogenesis in the adult central nervous system (CNS) and potentially identify points of therapeutic intervention.
Collapse
Affiliation(s)
- Kamran Salim
- Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex, CM20 2QR, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Neural stem cells self-renew and give rise to neurons, astrocytes and oligodendrocytes. These cells hold great promise for neural repair after injury or disease. However, a great deal of information needs to be gathered before optimally using neural stem cells for neural repair. This brief review provides an introduction to neural stem cells and briefly describes some advances in neural stem-cell biology and biotechnology.
Collapse
Affiliation(s)
- Harley I Kornblum
- Semel Institute and Departments of Psychiatry, Pharmacology and Pediatrics, David Geffen School of Medicine at UCLA, Los Angles, CA, USA.
| |
Collapse
|
35
|
Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G, Munoz-Sanjuan I. Identification of Proteomic Changes During Differentiation of Adult Mouse Subventricular Zone Progenitor Cells. Stem Cells Dev 2007. [DOI: 10.1089/scd.2007.16.ft-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
36
|
Gelain F, Bottai D, Vescovi A, Zhang S. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 2006; 1:e119. [PMID: 17205123 PMCID: PMC1762423 DOI: 10.1371/journal.pone.0000119] [Citation(s) in RCA: 413] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 11/27/2006] [Indexed: 12/02/2022] Open
Abstract
Biomedical researchers have become increasingly aware of the limitations of conventional 2-dimensional tissue cell culture systems, including coated Petri dishes, multi-well plates and slides, to fully address many critical issues in cell biology, cancer biology and neurobiology, such as the 3-D microenvironment, 3-D gradient diffusion, 3-D cell migration and 3-D cell-cell contact interactions. In order to fully understand how cells behave in the 3-D body, it is important to develop a well-controlled 3-D cell culture system where every single ingredient is known. Here we report the development of a 3-D cell culture system using a designer peptide nanofiber scaffold with mouse adult neural stem cells. We attached several functional motifs, including cell adhesion, differentiation and bone marrow homing motifs, to a self-assembling peptide RADA16 (Ac-RADARADARADARADA-COHN2). These functionalized peptides undergo self-assembly into a nanofiber structure similar to Matrigel. During cell culture, the cells were fully embedded in the 3-D environment of the scaffold. Two of the peptide scaffolds containing bone marrow homing motifs significantly enhanced the neural cell survival without extra soluble growth and neurotrophic factors to the routine cell culture media. In these designer scaffolds, the cell populations with β-Tubulin+, GFAP+ and Nestin+ markers are similar to those found in cell populations cultured on Matrigel. The gene expression profiling array experiments showed selective gene expression, possibly involved in neural stem cell adhesion and differentiation. Because the synthetic peptides are intrinsically pure and a number of desired function cellular motifs are easy to incorporate, these designer peptide nanofiber scaffolds provide a promising controlled 3-D culture system for diverse tissue cells, and are useful as well for general molecular and cell biology.
Collapse
Affiliation(s)
- Fabrizio Gelain
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Stem Cell Research Institute, Department of Biological and Technological Research, Fondazione Centro San Raffaele del Monte Tabor, Milan, Italy
- Bioscience and Biotechnology Department, University of Milan-Bicocca, Milan, Italy
| | - Daniele Bottai
- Stem Cell Research Institute, Department of Biological and Technological Research, Fondazione Centro San Raffaele del Monte Tabor, Milan, Italy
- Department of Medicine, Surgery and Dentistry, Faculty of Medicine, University of Milan, Milan, Italy
| | - Angleo Vescovi
- Stem Cell Research Institute, Department of Biological and Technological Research, Fondazione Centro San Raffaele del Monte Tabor, Milan, Italy
- Bioscience and Biotechnology Department, University of Milan-Bicocca, Milan, Italy
| | - Shuguang Zhang
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Ricci-Vitiani L, Lombardi DG, Signore M, Biffoni M, Pallini R, Parati E, Peschle C, De Maria R. Human neural progenitor cells display limited cytotoxicity and increased oligodendrogenesis during inflammation. Cell Death Differ 2006; 14:876-8. [PMID: 17186021 DOI: 10.1038/sj.cdd.4402078] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
38
|
Decker L, Lachapelle F, Magy L, Picard-Riera N, Nait-Oumesmar B, Baron-Van Evercooren A. Fibroblast growth factors in oligodendrocyte physiology and myelin repair. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:39-59. [PMID: 16315608 DOI: 10.1007/3-540-27626-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- L Decker
- INSERM U368, Ecole Normale Supérieure, Paris, France.
| | | | | | | | | | | |
Collapse
|
39
|
Erlandsson A, Brännvall K, Gustafsdottir S, Westermark B, Forsberg-Nilsson K. Autocrine/Paracrine Platelet-Derived Growth Factor Regulates Proliferation of Neural Progenitor Cells. Cancer Res 2006; 66:8042-8. [PMID: 16912180 DOI: 10.1158/0008-5472.can-06-0900] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growth factors play an important role in regulating neural stem cell proliferation and differentiation. This study shows that platelet-derived growth factor (PDGF) induces a partial differentiation of neural stem/progenitor cells (NSPCs) in the absence of other mitogens in vitro. NSPCs thus acquire an immature morphology and display markers for both neurons and glia. In addition, these cells do not readily mature in the absence of further stimuli. When NSPC cultures treated with PDGF were exposed to additional differentiation factors, however, the differentiation proceeded into neurons, astrocytes, and oligodendrocytes. We find that NSPC cultures are endowed with an endogenous PDGF-BB production. The PDGF-BB expression peaks during early differentiation and is present both in cell lysates and in conditioned medium, allowing for autocrine as well as paracrine signaling. When the NSPC-derived PDGF was inhibited, progenitor cell numbers decreased, showing that PDGF is involved in NSPC expansion. Addition of a PDGF receptor (PDGFR) inhibitor resulted in a more rapid differentiation. Neurons and oligodendrocytes appeared earlier and had more elaborate processes than in control cultures where endogenous PDGFR signaling was not blocked. Our observations point to PDGF as an inducer of partial differentiation of NSPC that also sustains progenitor cell division. Such an intermediate stage in stem cell differentiation is of relevance for the understanding of brain tumor development because autocrine PDGF stimulation is believed to drive malignant conversion of central nervous system progenitor cells.
Collapse
Affiliation(s)
- Anna Erlandsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
40
|
Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 2005; 8:723-9. [PMID: 15908947 PMCID: PMC2377345 DOI: 10.1038/nn1473] [Citation(s) in RCA: 361] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 04/26/2005] [Indexed: 11/09/2022]
Abstract
The cerebellum is critical for motor coordination and cognitive function and is the target of transformation in medulloblastoma, the most common malignant brain tumor in children. Although the development of granule cells, the most abundant neurons in the cerebellum, has been studied in detail, the origins of other cerebellar neurons and glia remain poorly understood. Here we show that the murine postnatal cerebellum contains multipotent neural stem cells (NSCs). These cells can be prospectively isolated based on their expression of the NSC marker prominin-1 (CD133) and their lack of markers of neuronal and glial lineages (lin-). Purified prominin+ lin- cells form self-renewing neurospheres and can differentiate into astrocytes, oligodendrocytes and neurons in vitro. Moreover, they can generate each of these lineages after transplantation into the cerebellum. Identification of cerebellar stem cells has important implications for the understanding of cerebellar development and the origins of medulloblastoma.
Collapse
Affiliation(s)
- Audra Lee
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang H, Zhao Y, Zhao C, Yu S, Duan D, Xu Q. Long-term expansion of human neural progenitor cells by epigenetic stimulation in vitro. Neurosci Res 2005; 51:157-65. [PMID: 15681033 DOI: 10.1016/j.neures.2004.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 10/25/2004] [Indexed: 11/27/2022]
Abstract
Human neural progenitor cells (hNPCs) are currently believed to have important potential for clinical application and basic neuroscience research. In the present study, we have developed a new technique for expansion of human neural progenitor cells in vitro. We showed that the cultures of hNPCs in monolayer could keep the same features with that growing in neurospheres. These cells expressed the typical protein of neural progenitors, nestin, and could form neurons and astrocytes upon differentiation. Using this method, we achieved an exponential increase in cells number over a period of 240 days in vitro. We also confirmed these cells expressed the orphan nuclear receptor-related factor 1 (Nurr1). Furthermore, we acquired the GFP-expressing human neural progenitor cells using retroviral-mediated transgenic system. The results of present study indicate the feasibility of long-term in vitro expansion of human neural progenitor cells using the monolayer culture technique, which may be of value as vehicles for ex vivo gene transfer to the CNS and as a potential source for basic research of dopaminergic (DA) neurons development.
Collapse
Affiliation(s)
- Haiyan Zhang
- Beijing Institute for Neuroscience, The Beijing Center of Neural Regeneration and Repairing, Capital University of Medical Sciences, Beijing 100054, China
| | | | | | | | | | | |
Collapse
|
42
|
Sievertzon M, Wirta V, Mercer A, Meletis K, Erlandsson R, Wikström L, Frisén J, Lundeberg J. Transcriptome analysis in primary neural stem cells using a tag cDNA amplification method. BMC Neurosci 2005; 6:28. [PMID: 15833137 PMCID: PMC1112599 DOI: 10.1186/1471-2202-6-28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 04/15/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neural stem cells (NSCs) can be isolated from the adult mammalian brain and expanded in culture, in the form of cellular aggregates called neurospheres. Neurospheres provide an in vitro model for studying NSC behaviour and give information on the factors and mechanisms that govern their proliferation and differentiation. They are also a promising source for cell replacement therapies of the central nervous system. Neurospheres are complex structures consisting of several cell types of varying degrees of differentiation. One way of characterising neurospheres is to analyse their gene expression profiles. The value of such studies is however uncertain since they are heterogeneous structures and different populations of neurospheres may vary significantly in their gene expression. RESULTS To address this issue, we have used cDNA microarrays and a recently reported tag cDNA amplification method to analyse the gene expression profiles of neurospheres originating from separate isolations of the lateral ventricle wall of adult mice and passaged to varying degrees. Separate isolations as well as consecutive passages yield a high variability in gene expression while parallel cultures yield the lowest variability. CONCLUSIONS We demonstrate a low technical amplification variability using the employed amplification strategy and conclude that neurospheres from the same isolation and passage are sufficiently similar to be used for comparative gene expression analysis.
Collapse
Affiliation(s)
- Maria Sievertzon
- Royal Institute of Technology, AlbaNova University Center, KTH Genome Center, Department of Biotechnology, S-106 91 Stockholm, Sweden
| | - Valtteri Wirta
- Royal Institute of Technology, AlbaNova University Center, KTH Genome Center, Department of Biotechnology, S-106 91 Stockholm, Sweden
| | | | - Konstantinos Meletis
- Department of cell- and molecular biology, Medical Nobel Institute, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | | - Jonas Frisén
- Department of cell- and molecular biology, Medical Nobel Institute, Karolinska Institute, S-171 77 Stockholm, Sweden
| | - Joakim Lundeberg
- Royal Institute of Technology, AlbaNova University Center, KTH Genome Center, Department of Biotechnology, S-106 91 Stockholm, Sweden
| |
Collapse
|
43
|
Pluchino S, Zanotti L, Deleidi M, Martino G. Neural stem cells and their use as therapeutic tool in neurological disorders. ACTA ACUST UNITED AC 2005; 48:211-9. [PMID: 15850660 DOI: 10.1016/j.brainresrev.2004.12.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 10/25/2022]
Abstract
Spontaneous neural tissue repair occurs in patients affected by inflammatory and degenerative disorders of the central nervous system (CNS). However, this process is not robust enough to promote a functional and stable recovery of the CNS architecture. The development of cell-based therapies aimed at promoting brain repair, through damaged cell-replacement, is therefore foreseen. Several experimental cell-based strategies aimed at replacing damaged neural cells have been developed in the last 30 years. Although successful in promoting site-specific repair in focal CNS disorders, most of these therapeutic approaches have failed to foster repair in multifocal CNS diseases where the anatomical and functional damage is widespread. Stem cell-based therapies have been recently proposed and might represent in the near future a plausible alternative strategy in these disorders. However, before envisaging any human applications of stem cell-based therapies in neurological diseases, we need to consider some preliminary and still unsolved issues: (i) the ideal stem cell source for transplantation, (ii) the most appropriate route of stem cell administration, and, last but not least, (iii) the best approach to achieve an appropriate, functional, and long-lasting integration of transplanted stem cells into the host tissue.
Collapse
Affiliation(s)
- Stefano Pluchino
- Department of Neuroscience, San Raffaele Scientific Institute, Neuroimmunology Unit-DIBIT, Milano, Italy
| | | | | | | |
Collapse
|
44
|
Armstrong RJE, Jain M, Barker RA. Stem cell transplantation as an approach to brain repair. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.10.1563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Ricci-Vitiani L, Pedini F, Mollinari C, Condorelli G, Bonci D, Bez A, Colombo A, Parati E, Peschle C, De Maria R. Absence of caspase 8 and high expression of PED protect primitive neural cells from cell death. ACTA ACUST UNITED AC 2005; 200:1257-66. [PMID: 15545353 PMCID: PMC2211918 DOI: 10.1084/jem.20040921] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanisms that control neural stem and progenitor cell survival are unknown. In several pathological conditions, death receptor (DR) ligands and inflammatory cytokines exert a deleterious effect on neurons, whereas primitive neural cells migrate and survive in the site of lesion. Here, we show that even in the presence of inflammatory cytokines, DRs are unable to generate death signals in primitive neural cells. Neural stem and progenitor cells did not express caspase 8, the presence of which is required for initiating the caspase cascade. However, exogenous or cytokine-mediated expression of caspase 8 was not sufficient to restore their DR sensitivity. Searching for molecules potentially able to block DR death-inducing signaling complex (DISC), we found that primitive neural cells expressed high levels of the death effector domain-containing protein PED (also known as PEA-15). PED localized in the DISC and prevented caspase 8 recruitment and activation. Moreover, lentiviral-mediated delivery of PED antisense DNA resulted in dramatic down-regulation of the endogenous gene expression and sensitization of primitive neural cells to apoptosis mediated by inflammatory cytokines and DRs. Thus, absence of caspase 8 and high expression of PED constitute two levels of protection from apoptosis induced by DRs and inflammatory cytokines in neural stem and progenitor cells.
Collapse
Affiliation(s)
- Lucia Ricci-Vitiani
- Dept. of Hematology, Oncology, and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mondal D, Pradhan L, LaRussa VF. Signal transduction pathways involved in the lineage-differentiation of NSCs: can the knowledge gained from blood be used in the brain? Cancer Invest 2005; 22:925-43. [PMID: 15641490 DOI: 10.1081/cnv-200039679] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neural stem cells (NSC) are capable of differentiating toward neuronal, astrocytic, oligodendrocytic and glial lineages, depending on their spatial location within the central nervous system (CNS). Although, a lot of knowledge has been gained in the understanding of differentiation-specific signaling in hematopoietic (HSC) and mesenchymal (MSC) counterparts, the molecular mechanisms underlying lineage commitment in NSCs are just beginning to be understood. Furthermore, it is not well comprehended as to how the specification of one cell lineage can result in the suppression of parallel pathways in the NSCs. Thus, a thorough understanding of various signal transduction cascades activated via cytokines and growth factors, and the confounding effects of different CNS microenvironments are critically required to determine the full potential of NSCs. Our knowledge on the clonogenic ability, differentiation potential, and the inherent plasticity in both HSCs and MSCs may facilitate the understanding of lineage commitment in the NSCs as well. The information available from the marrow-derived stem cells may be extrapolated toward the similar signaling pathways in the neural precursors. From a number of previous studies, it is apparent that four distinctly different subsets of ligand-receptor superfamilies are involved in determining the fate of NSCs. These include 1) the transforming growth factor type-beta-1 (TGF-beta1) and bone morphogenetic protein (BMP) superfamily; 2) the platelet-derived and epidermal (PDGF/EGF) growth factors; 3) the interleukin-6, leukemia inhibitory factor, and ciliary neurotrophic factor (IL-6/LIF/CNTF) superfamily; and 4) the EGF-like Notch/Delta group of extracellular ligands. Ligand binding to the cell surface receptor activates the receptor's cytosolic catalytic domain and/or the receptor-associated protein-kinases, which in turn activate intracellular second messengers and different sets of transcription factors. Transcription factor oligomerization, nuclear localization, followed by their recognition of DNA elements, leads to the expression of lineage-specific genes. Association between different groups of transcription factors can also regulate their ability to transcriptionally activate different genes. The limited availability of coactivators and cosuppressors, which can sequester the transcription factor complexes toward or away from a specific gene locus, further adds to the complexity in the cross talk between different signaling cascades. Both concerted actions of temporally regulated signals and convergent effects of different signaling cascades can thus ultimately precipitate the phenotypic changes. It is beginning to be realized that in addition to the cytokines and growth factors, cell-to-cell and cell-to-extracellular matrix (ECM) interactions, are also important within the molecular scenario linked to both proliferation and differentiation of the stem cells. The cell surface molecules, which include cell adhesion molecules (CAMs), integrins, selectins, and the immunoglobulins, are well known to regulate HSC and MSC commitment within different tissue microenvironments and may have direct implications in understanding the NSC cell fate determination within different regions of the brain.
Collapse
Affiliation(s)
- Debasis Mondal
- Department of Pharmacology SL83, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
47
|
Mueller FJ, McKercher SR, Imitola J, Loring JF, Yip S, Khoury SJ, Snyder EY. At the interface of the immune system and the nervous system: how neuroinflammation modulates the fate of neural progenitors in vivo. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:83-114. [PMID: 16315610 DOI: 10.1007/3-540-27626-2_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Neural stem and progenitor cells express a variety of receptors that enable them to sense and react to signals emanating from physiological and pathophysiological conditions in the brain as well as elsewhere in the body. Many of these receptors and were first described in investigations of the immune system, particularly with respect to hematopoietic stem cells. This emerging view of neurobiology has two major implications. First, many phenomena known from the hematopoietic system may actually be generalizable to stem cells from many organ systems, reflecting the cells' progenitor-mediated regenerative potential. Second, regenerative interfaces may exist between diverse organ systems; populations of cells of neuroectodermal and hematopoietic origin may interact to play a crucial role in normal brain physiology, pathology, and repair. An understanding of the origins of signals and the neural progenitors' responses might lead to the development of effective therapeutic strategies to counterbalance acute and chronic neurodegenerative processes. Such strategies may include modifying and modulating cells with regenerative potential in subtle ways. For example, stem cells might be able to detect pathology-associated signals and be used as "interpreters" to mediate drug and other therapeutic interventions. This review has focused on the role of inflammation in brain repair. We propose that resident astroglia and blood-born cells both contribute to an inflammatory signature that is unique to each kind of neuronal degeneration or injury. These cells play a key role in coordinating the neural progenitor cell response to brain injury by exerting direct and indirect environmentally mediated influence on neural progenitor cells. We suggest that investigations of the neural progenitor-immunologic interface will provide valuable data related to the mechanisms by which endogenous and exogenous neural progenitor cells react to brain pathology, ultimately aiding in the design of more effective therapeutic applications of stem cell biology. Such improvements will include: (1) ascertaining the proper timing for implanting exogenous neural progenitor cells in relation to the administration of anti-inflammatory agents; (2) identifying what types of molecules might be administered during injury to enhance the mobilization and differentiation of endogenous and exogenous neural progenitor cells while also inhibiting the detrimental aspects of the inflammatory reaction; (3) divining clues as to which molecules may be required to change the lesioned environment in order to invite the homing of reparative neural progenitor cells.
Collapse
Affiliation(s)
- F J Mueller
- Program in Developmental Regenerative Cell Biology, The Burnham Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Laeng P, Pitts RL, Lemire AL, Drabik CE, Weiner A, Tang H, Thyagarajan R, Mallon BS, Altar CA. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J Neurochem 2004; 91:238-51. [PMID: 15379904 DOI: 10.1111/j.1471-4159.2004.02725.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Valproate, an anticonvulsant drug used to treat bipolar disorder, was studied for its ability to promote neurogenesis from embryonic rat cortical or striatal primordial stem cells. Six days of valproate exposure increased by up to fivefold the number and percentage of tubulin beta III-immunopositive neurons, increased neurite outgrowth, and decreased by fivefold the number of astrocytes without changing the number of cells. Valproate also promoted neuronal differentiation in human fetal forebrain stem cell cultures. The neurogenic effects of valproate on rat stem cells exceeded those obtained with the neurotrophins brain-derived growth factor (BDNF) or NT-3, and slightly exceeded the effects obtained with another mood stabilizer, lithium. No effect was observed with carbamazepine. Most of the newly formed neurons were GABAergic, as shown by 10-fold increases in neurons that immunostained for GABA and the GABA-synthesizing enzyme GAD65/67. Double immunostaining for bromodeoxyuridine and tubulin beta III showed that valproate increased by four- to fivefold the proliferation of neuronal progenitors derived from rat stem cells and increased cyclin D2 expression. Valproate also regulated the expression of survival genes, Bad and Bcl-2, at different times of treatment. The expression of prostaglandin E synthase, analyzed by quantitative RT-PCR, was increased by ninefold as early as 6 h into treatment by valproate. The enhancement of GABAergic neuron numbers, neurite outgrowth, and phenotypic expression via increases in the neuronal differentiation of neural stem cell may contribute to the therapeutic effects of valproate in the treatment of bipolar disorder.
Collapse
Affiliation(s)
- Pascal Laeng
- Gene Discovery, Psychiatric Genomics, Inc., Gaithersburg, Maryland 20878, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64:7011-21. [PMID: 15466194 DOI: 10.1158/0008-5472.can-04-1364] [Citation(s) in RCA: 1898] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transformed stem cells have been isolated from some human cancers. We report that, unlike other brain cancers, the lethal glioblastoma multiforme contains neural precursors endowed with all of the critical features expected from neural stem cells. Similar, yet not identical, to their normal neural stem cell counterpart, these precursors emerge as unipotent (astroglial) in vivo and multipotent (neuronal-astroglial-oligodendroglial) in culture. More importantly, these cells can act as tumor-founding cells down to the clonal level and can establish tumors that closely resemble the main histologic, cytologic, and architectural features of the human disease, even when challenged through serial transplantation. Thus, cells possessing all of the characteristics expected from tumor neural stem cells seem to be involved in the growth and recurrence of adult human glioblastomas multiforme.
Collapse
Affiliation(s)
- Rossella Galli
- Stem Cell Research Institute and Laboratory of Molecular Diagnostics, H. S. Raffaele, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pluchino S, Furlan R, Martino G. Cell-based remyelinating therapies in multiple sclerosis: evidence from experimental studies. Curr Opin Neurol 2004; 17:247-55. [PMID: 15167057 DOI: 10.1097/00019052-200406000-00003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Spontaneous remyelination occurs in the central nervous system of patients with multiple sclerosis. However, this process is not robust enough to promote a functional and stable recovery of the myelin architecture. The development of cell-based therapies, aimed at promoting multifocal remyelination, is therefore foreseen. RECENT FINDINGS Several experimental cell-based strategies aimed at replacing damaged myelin-forming cells have been developed in the last few years. However, most of these therapeutic approaches - although consistently able to form new myelin sheaths at the transplantation site - are unfeasible owing to the mutifocality of the demyelinating process in multiple sclerosis patients and the inability to grow and produce large numbers of differentiated myelin-forming cells in vitro. Stem cell-based therapies that partially overcome these limitations have been proposed recently. SUMMARY Stem cell-based remyelinating therapies can be considered a plausible alternative strategy in immune-mediated demyelinating disorders. However, before any potential applications in patients with multiple sclerosis can be envisaged, it is necessary to confront the following preliminary, and still unsolved, questions: (1) the ideal stem cell source for transplantation; (2) the most appropriate route of stem cell administration; and, last but not least, (3) the best approach for achieving an appropriate, functional and long-lasting integration of transplanted stem cells into the host tissue.
Collapse
Affiliation(s)
- Stefano Pluchino
- Neuroimmunology Unit - Department of Biotechnology (DIBIT) and Department of Neurology and Neurophysiology, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|