1
|
Morais A, Imai T, Jin X, Locascio JJ, Boisserand L, Herman AL, Chauhan A, Lamb J, Nagarkatti K, Diniz MA, Kumskova M, Dhanesha N, Kamat PK, Khan MB, Dhandapani KM, Patel RB, Sutariya B, Shi Y, van Leyen K, Kimberly WT, Hess DC, Aronowski J, Leira EC, Koehler RC, Chauhan AK, Sansing LH, Lyden PD, Ayata C. Biological and Procedural Predictors of Outcome in the Stroke Preclinical Assessment Network (SPAN) Trial. Circ Res 2024; 135:575-592. [PMID: 39034919 PMCID: PMC11428171 DOI: 10.1161/circresaha.123.324139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The SPAN trial (Stroke Preclinical Assessment Network) is the largest preclinical study testing acute stroke interventions in experimental focal cerebral ischemia using endovascular filament middle cerebral artery occlusion (MCAo). Besides testing interventions against controls, the prospective design captured numerous biological and procedural variables, highlighting the enormous heterogeneity introduced by the multicenter structure that might influence stroke outcomes. Here, we leveraged the unprecedented sample size achieved by the SPAN trial and the prospective design to identify the biological and procedural variables that affect experimental stroke outcomes in transient endovascular filament MCAo. METHODS The study cohort included all mice enrolled and randomized in the SPAN trial (N=1789). Mice were subjected to 60-minute MCAo and followed for a month. Thirteen biological and procedural independent variables and 4 functional (weight loss and 4-point neuroscore on days 1 and 2, corner test on days 7 and 28, and mortality) and 3 tissue (day 2, magnetic resonance imaging infarct volumes and swelling; day 30, magnetic resonance imaging tissue loss) outcome variables were prospectively captured. Multivariable regression with stepwise elimination was used to identify the predictors and their effect sizes. RESULTS Older age, active circadian stage at MCAo, and thinner and longer filament silicone tips predicted higher mortality. Older age, larger body weight, longer anesthesia duration, and longer filament tips predicted worse neuroscores, while high-fat diet and blood flow monitoring predicted milder neuroscores. Older age and a high-fat diet predicted worse corner test performance. While shorter filament tips predicted more ipsiversive turning, longer filament tips appeared to predict contraversive turning. Age, sex, and weight interacted when predicting the infarct volume. Older age was associated with smaller infarcts on day 2 magnetic resonance imaging, especially in animals with larger body weights; this association was most conspicuous in females. High-fat diet also predicted smaller infarcts. In contrast, the use of cerebral blood flow monitoring and more severe cerebral blood flow drop during MCAo, longer anesthesia, and longer filament tips all predicted larger infarcts. Bivariate analyses among the dependent variables highlighted a disconnect between tissue and functional outcomes. CONCLUSIONS Our analyses identified variables affecting endovascular filament MCAo outcome, an experimental stroke model used worldwide. Multiple regression refuted some commonly reported predictors and revealed previously unrecognized associations. Given the multicenter prospective design that represents a sampling of real-world conditions, the degree of heterogeneity mimicking clinical trials, the large number of predictors adjusted for in the multivariable model, and the large sample size, we think this is the most definitive analysis of the predictors of preclinical stroke outcome to date. Future multicenter experimental stroke trials should standardize or at least ensure a balanced representation of the biological and procedural variables identified herein as potential confounders.
Collapse
Affiliation(s)
- Andreia Morais
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Takahiko Imai
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xuyan Jin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Joseph J Locascio
- Harvard Catalyst Biostatistical Consulting Unit, Department of Biostatistics, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Harvard Medical School, Boston MA, USA
| | - Ligia Boisserand
- Department of Neurology, Yale University School of Medicine, New Haven, CT USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Alison L. Herman
- Department of Neurology, Yale University School of Medicine, New Haven, CT USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Anjali Chauhan
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX, USA
| | - Jessica Lamb
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Los Angeles, CA USA
- Department of Neurology, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - Karisma Nagarkatti
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Los Angeles, CA USA
- Department of Neurology, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - Marcio A. Diniz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariia Kumskova
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nirav Dhanesha
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Pradip K. Kamat
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA
| | | | | | - Rakesh B. Patel
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Brijesh Sutariya
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yanrong Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Klaus van Leyen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - W. Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital, Boston, Harvard Medical School, Boston MA, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, University of Texas HSC, Houston, TX, USA
| | - Enrique C. Leira
- Departments of Neurology, Neurosurgery, Carver College of Medicine, and Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
| | - Anil K. Chauhan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT USA
| | - Patrick D. Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Los Angeles, CA USA
- Department of Neurology, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Harvard Medical School, Boston MA, USA
| |
Collapse
|
2
|
Ruscu M, Glavan D, Surugiu R, Doeppner TR, Hermann DM, Gresita A, Capitanescu B, Popa-Wagner A. Pharmacological and stem cell therapy of stroke in animal models: Do they accurately reflect the response of humans? Exp Neurol 2024; 376:114753. [PMID: 38490317 DOI: 10.1016/j.expneurol.2024.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Cerebrovascular diseases are the second leading cause of death worldwide. Despite significant research investment, the only available therapeutic options are mechanical thrombectomy and tissue plasminogen activator thrombolysis. None of the more than a thousand drugs tested on animal models have proven successful in human clinical trials. Several factors contribute to this poor translation of data from stroke-related animal models to human stroke patients. Firstly, our understanding of the molecular and cellular processes involved in recovering from an ischemic stroke is severely limited. Secondly, although the risk of stroke is particularly high among older patients with comorbidities, most drugs are tested on young, healthy animals in controlled laboratory conditions. Furthermore, in animal models, the tracking of post-stroke recovery typically spans only 3 to 28 days, with occasional extensions to 60 days, whereas human stroke recovery is a more extended and complex process. Thirdly, young animal models often exhibit a considerably higher rate of spontaneous recovery compared to humans following a stroke. Fourth, only a very limited number of animals are utilized for each condition, including control groups. Another contributing factor to the much smaller beneficial effects in humans is that positive outcomes from numerous animal studies are more readily accepted than results reported in human trials that do not show a clear benefit to the patient. Useful recommendations for conducting experiments in animal models, with increased chances of translatability to humans, have been issued by both the STEPS investigative team and the STAIR committee. However, largely, due to economic factors, these recommendations are largely ignored. Furthermore, one might attribute the overall failures in predicting and subsequently developing effective acute stroke therapies beyond thrombolysis to potential design deficiencies in clinical trials.
Collapse
Affiliation(s)
- Mihai Ruscu
- Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Roxana Surugiu
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany; Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen 45147, Germany
| | - Andrei Gresita
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA
| | - Bogdan Capitanescu
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA.
| | - Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680-8000, USA.
| |
Collapse
|
3
|
Beker MC, Aydinli FI, Caglayan AB, Beker M, Baygul O, Caglayan A, Popa-Wagner A, Doeppner TR, Hermann DM, Kilic E. Age-Associated Resilience Against Ischemic Injury in Mice Exposed to Transient Middle Cerebral Artery Occlusion. Mol Neurobiol 2023:10.1007/s12035-023-03353-4. [PMID: 37093494 DOI: 10.1007/s12035-023-03353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Ischemic stroke is the leading cause of death and disability. Although stroke mainly affects aged individuals, animal research is mostly one on young rodents. Here, we examined the development of ischemic injury in young (9-12-week-old) and adult (72-week-old) C57BL/6 and BALB/c mice exposed to 30 min of intraluminal middle cerebral artery occlusion (MCAo). Post-ischemic reperfusion did not differ between young and adult mice. Ischemic injury assessed by infarct area and blood-brain barrier (BBB) integrity assessed by IgG extravasation analysis was smaller in adult compared with young mice. Microvascular viability and neuronal survival assessed by CD31 and NeuN immunohistochemistry were higher in adult than young mice. Tissue protection was associated with stronger activation of cell survival pathways in adult than young mice. Microglial/macrophage accumulation and activation assessed by F4/80 immunohistochemistry were more restricted in adult than young mice, and pro- and anti-inflammatory cytokine and chemokine responses were reduced by aging. By means of liquid chromatography-mass spectrometry, we identified a hitherto unknown proteome profile comprising the upregulation of glycogen degradation-related pathways and the downregulation of mitochondrial dysfunction-related pathways, which distinguished post-ischemic responses of the aged compared with the young brain. Our study suggests that aging increases the brain's resilience against ischemic injury.
Collapse
Affiliation(s)
- Mustafa C Beker
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Fatmagul I Aydinli
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Medical Biology, School of Medicine, Nisantasi University, Istanbul, Turkey
| | - Ahmet B Caglayan
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Merve Beker
- Department of Medical Biology, International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Oguzhan Baygul
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aysun Caglayan
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging, ARES, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ertugrul Kilic
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Unalan, TR-34700, Istanbul, Turkey.
| |
Collapse
|
4
|
Fernandez N, Petit A, Pianos A, Haddad L, Schumacher M, Liere P, Guennoun R. Aging Is Associated With Lower Neuroactive Steroids and Worsened Outcomes Following Cerebral Ischemia in Male Mice. Endocrinology 2022; 164:6779564. [PMID: 36306407 DOI: 10.1210/endocr/bqac183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/16/2023]
Abstract
Ischemic stroke is a leading cause of disability and death, and aging is the main nonmodifiable risk factor. Following ischemia, neuroactive steroids have been shown to play a key role in cerebroprotection. Thus, brain steroid concentrations at the time of injury as well as their regulation after stroke are key factors to consider. Here, we investigated the effects of age and cerebral ischemia on steroid levels, behavioral outcomes, and neuronal degeneration in 3- and 18-month-old C57BL/6JRj male mice. Ischemia was induced by middle cerebral artery occlusion for 1 hour followed by reperfusion (MCAO/R) and analyses were performed at 6 hours after MCAO. Extended steroid profiles established by gas chromatography coupled with tandem mass spectrometry revealed that (1) brain and plasma concentrations of the main 5α-reduced metabolites of progesterone, 11-deoxycorticosterone, and corticosterone were lower in old than in young mice; (2) after MCAO/R, brain concentrations of progesterone, 5α-dihydroprogesterone, and corticosterone increased in young mice; and (3) after MCAO/R, brain concentrations of 5α-reduced metabolites of progesterone, 3α5α-tetrahydrodeoxycorticosterone, and 3β5α-tetrahydrodeoxycorticosterone were lower in old than in young mice. After ischemia, old mice showed increased sensori-motor deficits and more degenerating neurons in the striatum than young mice. Altogether, these findings strongly suggest that the decreased capacity of old mice to metabolize steroids toward the 5α-reduction pathway comparatively to young mice may contribute to the worsening of their stroke outcomes.
Collapse
Affiliation(s)
- Neïké Fernandez
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Anthony Petit
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Antoine Pianos
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Léna Haddad
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
5
|
Pluta R, Jabłoński M, Januszewski S, Czuczwar SJ. Crosstalk between the aging intestinal microflora and the brain in ischemic stroke. Front Aging Neurosci 2022; 14:998049. [PMID: 36275012 PMCID: PMC9582537 DOI: 10.3389/fnagi.2022.998049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Aging is an inevitable phenomenon experienced by animals and humans, and its intensity varies from one individual to another. Aging has been identified as a risk factor for neurodegenerative disorders by influencing the composition of the gut microbiota, microglia activity and cognitive performance. The microbiota-gut-brain axis is a two-way communication path between the gut microbes and the host brain. The aging intestinal microbiota communicates with the brain through secreted metabolites (neurotransmitters), and this phenomenon leads to the destruction of neuronal cells. Numerous external factors, such as living conditions and internal factors related to the age of the host, affect the condition of the intestinal microflora in the form of dysbiosis. Dysbiosis is defined as changes in the composition and function of the gut microflora that affect the pathogenesis, progress, and response to treatment of a disease entity. Dysbiosis occurs when changes in the composition and function of the microbiota exceed the ability of the microflora and its host to restore equilibrium. Dysbiosis leading to dysfunction of the microbiota-gut-brain axis regulates the development and functioning of the host’s nervous, immune, and metabolic systems. Dysbiosis, which causes disturbances in the microbiota-gut-brain axis, is seen with age and with the onset of stroke, and is closely related to the development of risk factors for stroke. The review presents and summarizes the basic elements of the microbiota-gut-brain axis to better understand age-related changes in signaling along the microbiota-gut-brain axis and its dysfunction after stroke. We focused on the relationship between the microbiota-gut-brain axis and aging, emphasizing that all elements of the microbiota-gut-brain axis are subject to age-related changes. We also discuss the interaction between microbiota, microglia and neurons in the aged individuals in the brain after ischemic stroke. Finally, we presented preclinical and clinical studies on the role of the aged microbiota-gut-brain axis in the development of risk factors for stroke and changes in the post-stroke microflora.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- *Correspondence: Ryszard Pluta,
| | - Mirosław Jabłoński
- Department of Rehabilitation and Orthopedics, Medical University of Lublin, Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
6
|
Abstract
The microbiota-gut-brain-axis (MGBA) is a bidirectional communication network between gut microbes and their host. Many environmental and host-related factors affect the gut microbiota. Dysbiosis is defined as compositional and functional alterations of the gut microbiota that contribute to the pathogenesis, progression and treatment responses to disease. Dysbiosis occurs when perturbations of microbiota composition and function exceed the ability of microbiota and its host to restore a symbiotic state. Dysbiosis leads to dysfunctional signaling of the MGBA, which regulates the development and the function of the host's immune, metabolic, and nervous systems. Dysbiosis-induced dysfunction of the MGBA is seen with aging and stroke, and is linked to the development of common stroke risk factors such as obesity, diabetes, and atherosclerosis. Changes in the gut microbiota are also seen in response to stroke, and may impair recovery after injury. This review will begin with an overview of the tools used to study the MGBA with a discussion on limitations and potential experimental confounders. Relevant MGBA components are introduced and summarized for a better understanding of age-related changes in MGBA signaling and its dysfunction after stroke. We will then focus on the relationship between the MGBA and aging, highlighting that all components of the MGBA undergo age-related alterations that can be influenced by or even driven by the gut microbiota. In the final section, the current clinical and preclinical evidence for the role of MGBA signaling in the development of stroke risk factors such as obesity, diabetes, hypertension, and frailty are summarized, as well as microbiota changes with stroke in experimental and clinical populations. We conclude by describing the current understanding of microbiota-based therapies for stroke including the use of pre-/pro-biotics and supplementations with bacterial metabolites. Ongoing progress in this new frontier of biomedical sciences will lead to an improved understanding of the MGBA's impact on human health and disease.
Collapse
Affiliation(s)
- Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX (R.M.B.)
| | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| |
Collapse
|
7
|
Jurcau A, Ardelean AI. Oxidative Stress in Ischemia/Reperfusion Injuries following Acute Ischemic Stroke. Biomedicines 2022; 10:biomedicines10030574. [PMID: 35327376 PMCID: PMC8945353 DOI: 10.3390/biomedicines10030574] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recanalization therapy is increasingly used in the treatment of acute ischemic stroke. However, in about one third of these patients, recanalization is followed by ischemia/reperfusion injuries, and clinically to worsening of the neurological status. Much research has focused on unraveling the involved mechanisms in order to prevent or efficiently treat these injuries. What we know so far is that oxidative stress and mitochondrial dysfunction are significantly involved in the pathogenesis of ischemia/reperfusion injury. However, despite promising results obtained in experimental research, clinical studies trying to interfere with the oxidative pathways have mostly failed. The current article discusses the main mechanisms leading to ischemia/reperfusion injuries, such as mitochondrial dysfunction, excitotoxicity, and oxidative stress, and reviews the clinical trials with antioxidant molecules highlighting recent developments and future strategies.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Neurology, Clinical Municipal Hospital Oradea, Louis Pasteur Street nr 26, 410054 Oradea, Romania
- Correspondence: ; Tel.: +40-744-600-833
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Universitatii Street nr 1, 410087 Oradea, Romania;
- Department of Cardiology, Clinical Emergency County Hospital Oradea, Gh. Doja Street nr 65, 410169 Oradea, Romania
| |
Collapse
|
8
|
Candelario-Jalil E, Paul S. Impact of aging and comorbidities on ischemic stroke outcomes in preclinical animal models: A translational perspective. Exp Neurol 2021; 335:113494. [PMID: 33035516 PMCID: PMC7874968 DOI: 10.1016/j.expneurol.2020.113494] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a highly complex and devastating neurological disease. The sudden loss of blood flow to a brain region due to an ischemic insult leads to severe damage to that area resulting in the formation of an infarcted tissue, also known as the ischemic core. This is surrounded by the peri-infarct region or penumbra that denotes the functionally impaired but potentially salvageable tissue. Thus, the penumbral tissue is the main target for the development of neuroprotective strategies to minimize the extent of ischemic brain damage by timely therapeutic intervention. Given the limitations of reperfusion therapies with recombinant tissue plasminogen activator or mechanical thrombectomy, there is high enthusiasm to combine reperfusion therapy with neuroprotective strategies to further reduce the progression of ischemic brain injury. Till date, a large number of candidate neuroprotective drugs have been identified as potential therapies based on highly promising results from studies in rodent ischemic stroke models. However, none of these interventions have shown therapeutic benefits in stroke patients in clinical trials. In this review article, we discussed the urgent need to utilize preclinical models of ischemic stroke that more accurately mimic the clinical conditions in stroke patients by incorporating aged animals and animal stroke models with comorbidities. We also outlined the recent findings that highlight the significant differences in stroke outcome between young and aged animals, and how major comorbid conditions such as hypertension, diabetes, obesity and hyperlipidemia dramatically increase the vulnerability of the brain to ischemic damage that eventually results in worse functional outcomes. It is evident from these earlier studies that including animal models of aging and comorbidities during the early stages of drug development could facilitate the identification of neuroprotective strategies with high likelihood of success in stroke clinical trials.
Collapse
Affiliation(s)
- Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
9
|
Kim E, Cho S. CNS and peripheral immunity in cerebral ischemia: partition and interaction. Exp Neurol 2021; 335:113508. [PMID: 33065078 PMCID: PMC7750306 DOI: 10.1016/j.expneurol.2020.113508] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Stroke elicits excessive immune activation in the injured brain tissue. This well-recognized neural inflammation in the brain is not just an intrinsic organ response but also a result of additional intricate interactions between infiltrating peripheral immune cells and the resident immune cells in the affected areas. Given that there is a finite number of immune cells in the organism at the time of stroke, the partitioned immune systems of the central nervous system (CNS) and periphery must appropriately distribute the limited pool of immune cells between the two domains, mounting a necessary post-stroke inflammatory response by supplying a sufficient number of immune cells into the brain while maintaining peripheral immunity. Stroke pathophysiology has mainly been neurocentric in focus, but understanding the distinct roles of the CNS and peripheral immunity in their concerted action against ischemic insults is crucial. This review will discuss stroke-induced influences of the peripheral immune system on CNS injury/repair and of neural inflammation on peripheral immunity, and how comorbidity influences each.
Collapse
Affiliation(s)
- Eunhee Kim
- Vivian L. Smith Department of Neurosurgery at University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, United States of America; Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, United States of America.
| |
Collapse
|
10
|
Ageing as a risk factor for cerebral ischemia: Underlying mechanisms and therapy in animal models and in the clinic. Mech Ageing Dev 2020; 190:111312. [PMID: 32663480 DOI: 10.1016/j.mad.2020.111312] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Age is the only one non-modifiable risk of cerebral ischemia. Advances in stroke medicine and behavioral adaptation to stroke risk factors and comorbidities was successful in decreasing stroke incidence and increasing the number of stroke survivors in western societies. Comorbidities aggravates the outcome after cerebral ischemia. However, due to the increased in number of elderly, the incidence of stroke has increased again paralleled by an increase in the number of stroke survivors, many with severe disabilities, that has led to an increased economic and social burden in society. Animal models of stroke often ignore age and comorbidities frequently associated with senescence. This might explain why drugs working nicely in animal models fail to show efficacy in stroke survivors. Since stroke afflicts mostly the elderly comorbid patients, it is highly desirable to test the efficacy of stroke therapies in an appropriate animal stroke model. Therefore, in this review, we make parallels between animal models of stroke und clinical data and summarize the impact of ageing and age-related comorbidities on stroke outcome.
Collapse
|
11
|
Gul Z, Demircan C, Bagdas D, Buyukuysal RL. Aging protects rat cortical slices against to oxygen-glucose deprivation induced damage. Int J Neurosci 2020; 130:1183-1191. [PMID: 32064981 DOI: 10.1080/00207454.2020.1730830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Objective: In present study, we aimed to clarify effect of aging on the susceptibility of brain tissue to neurodegeneration induced by ischemia.Methods: Damage induced by oxygen-glucose deprivation (OGD) followed by reoxygenation (REO) were compared in cortical slices prepared from young (3 months of age) and aged (22-24 months of age) male Sprague Dawley rats.Results: After incubation of the slices in an oxygen and glucose containing control condition, 2,3,5-triphenyl tetrazolium chloride (TTC) staining intensity was found significantly high in aged cortical slices. Although thirty minutes incubation of the slices in OGD medium followed by REO (OGD-REO) caused similar decline in TTC staining in young and aged cortical slices, staining intensity was still significantly higher in the slices prepared from aged animals. Thirty minutes of OGD-REO, on the other hand, also caused more increase in lactate dehydrogenase (LDH) leakage from young slices. While water contents of the slices were almost equal under control condition, it was significantly high in young cortical slices after OGD-REO incubations. In contrary to these findings, OGD and REO caused more increases in S100B output from aged rat cortical slices. S100B levels in brain regions including the cerebral cortex were also found higher in aged rats.Conclusion: All these results indicate that, cortical slices prepared from aged male rats are significantly less responsive to in vitro OGD-REO induced alterations. Since protein S100B outputs were almost doubled from aged cortical slices, a possible involvement of this enhanced S100B output seems to be likely.
Collapse
Affiliation(s)
- Zulfiye Gul
- Faculty of Medicine, Department of Medical Pharmacology, Bahcesehir University, Istanbul, Turkey
| | - Celaleddin Demircan
- Faculty of Medicine, Department of Internal Medicine, Uludag University, Bursa, Turkey
| | - Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| | | |
Collapse
|
12
|
Fu DL, Li JH, Shi YH, Zhang XL, Lin Y, Zheng GQ. Sanhua Decoction, a Classic Herbal Prescription, Exerts Neuroprotection Through Regulating Phosphorylated Tau Level and Promoting Adult Endogenous Neurogenesis After Cerebral Ischemia/Reperfusion Injury. Front Physiol 2020; 11:57. [PMID: 32116767 PMCID: PMC7026024 DOI: 10.3389/fphys.2020.00057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/21/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Ischemia stroke is the leading cause of death and long-term disability. Sanhua Decoction (SHD), a classic Chinese herbal prescription, has been used for ischemic stroke for about thousands of years. Here, we aim to investigate the neuroprotective effects of SHD on cerebral ischemia/reperfusion (CIR) injury rat models. Methods: The male Sprague-Dawley rats (body weight, 250-280 g; age, 7-8 weeks) were randomly divided into sham group, CIR group, and SHD group and were further divided into subgroups according to different time points at 6 h, 1, 3, 7, 14, 21, and 28 d, respectively. The SHD group received intragastric administration of SHD at 10 g kg-1 d-1. The focal CIR models were induced by middle cerebral artery occlusion according to Longa's method, while sham group had the same operation without suture insertion. Neurological deficit score (NDS) was evaluated using the Longa's scale. BrdU, doublecortin (DCX), and glial fibrillary acidic protein (GFAP) were used to label proliferation, migration, and differentiation of nerve cells before being observed by immunofluorescence. The expression of reelin, total tau (t-tau), and phosphorylated tau (p-tau) were evaluated by western blot and RT-qPCR. Results: SHD can significantly improve NDS at 1, 3, 7, and 14 d (p < 0.05), increase the number of BrdU positive and BrdU/DCX positive cells in subventricular zone at 3, 7, and 14 d (p < 0.05), upregulate BrdU/GFAP positive cells in the ischemic penumbra at 28 d after CIR (p < 0.05), and reduce p-tau level at 1, 3, 7, and 14 d (p < 0.05). There was no significant difference on reelin and t-tau level between three groups at each time points after CIR. Conclusions: SHD exerts neuroprotection probably by regulating p-tau level and promoting the proliferation, migration, and differentiation of endogenous neural stem cells, accompanying with neurobehavioral recovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Increased Mortality and Vascular Phenotype in a Knock-In Mouse Model of Retinal Vasculopathy With Cerebral Leukoencephalopathy and Systemic Manifestations. Stroke 2020; 51:300-307. [DOI: 10.1161/strokeaha.119.025176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background and Purpose—
Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is an autosomal dominant small vessel disease caused by C-terminal frameshift mutations in the
TREX1
gene that encodes the major mammalian 3′ to 5′ DNA exonuclease. RVCL-S is characterized by vasculopathy, especially in densely vascularized organs, progressive retinopathy, cerebral microvascular disease, white matter lesions, and migraine, but the underlying mechanisms are unknown.
Methods—
Homozygous transgenic RVCL-S knock-in mice expressing a truncated Trex1 (three prime repair exonuclease 1) protein (similar to what is seen in patients) and wild-type littermates, of various age groups, were subjected to (1) a survival analysis, (2) in vivo postocclusive reactive hyperemia and ex vivo Mulvany myograph studies to characterize the microvascular and macrovascular reactivity, and (3) experimental stroke after transient middle cerebral artery occlusion with neurological deficit assessment.
Results—
The mutant mice show increased mortality starting at midlife (
P
=0.03 with hazard ratio, 3.14 [95% CI, 1.05–9.39]). The mutants also show a vascular phenotype as evidenced by attenuated postocclusive reactive hyperemia responses (across all age groups; F[1, 65]=5.7,
P
=0.02) and lower acetylcholine-induced relaxations in aortae (in 20- to 24-month-old mice; RVCL-S knock-in: E
max
: 37±8% versus WT: E
max
: 65±6%,
P
=0.01). A vascular phenotype is also suggested by the increased infarct volume seen in 12- to 14-month-old mutant mice at 24 hours after infarct onset (RVCL-S knock-in: 75.4±2.7 mm
3
versus WT: 52.9±5.6 mm
3
,
P
=0.01).
Conclusions—
Homozygous RVCL-S knock-in mice show increased mortality, signs of abnormal vascular function, and increased sensitivity to experimental stroke and can be instrumental to investigate the pathology seen in patients with RVCL-S.
Collapse
|
14
|
Statin Therapy in Ischemic Stroke Models: A Meta-Analysis. Transl Stroke Res 2019; 11:590-600. [PMID: 31788761 DOI: 10.1007/s12975-019-00750-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/05/2023]
Abstract
Statins, drugs known for lipid lowering capabilities and reduction of cardiovascular disease, have demonstrated neuroprotective effects following ischemic stroke in retrospective clinical and animal studies. However, dosing (methods, time, type of statin, and quantity) varies across studies, limiting the clinical applicability of these findings. Furthermore, a comprehensive review of statins in edema and blood-brain barrier (BBB) breakdown is needed to provide insight on diverse, less explored neuroprotective effects. In the present study, we conduct a meta-analysis of publications evaluating statin administration in animal models of ischemic stroke. We review statins' most effective dosing regimen in four outcomes-infarct, edema, BBB breakdown, and functional outcome-to characterize several parameters of benefit associated with statin administration. A search term was constructed to identify experimental murine studies exploring statin use after transient middle cerebral artery occlusion (tMCAO) in PubMed, Web of Science, and Embase. Extracted data included statin type, dose, time and method of administration, and the four predetermined outcomes (functional outcome, edema, BBB breakdown, and infarction). A meta-analysis and stratified meta-regression were conducted using the standardized mean difference (SMD) method for continuous measurements. Included publications were assessed for bias using SYRCLE's RoB tool for animal studies. A total of 24 studies were included. Statin administration significantly reduced infarct volume (p < 0.0001), edema volume (p < 0.002), and neurological deficit (p < 0.0001). Simvastatin and pravastatin were most effective in reducing infarct volume when compared with atorvastatin (p = 0.0475, p = 0.0004) and rosuvastatin (p = 0.0036, p < 0.0001). Pravastatin outperformed all others in functional outcome. Subcutaneous (SC) injection was most effective in all outcomes. Statin therapy reduced BBB breakdown according to our systematic review. Mean study quality was 4.6/10. While statin therapy evidently improves neurological outcome following ischemic stroke, this analysis adds to our understanding of dosing and statins' effects on edema and BBB breakdown. These findings will aid the design of future studies investigating statin use and have larger implications for the clinical care of ischemic stroke patients.
Collapse
|
15
|
He J, Huang Y, Du G, Wang Z, Xiang Y, Wang Q. Lasting spatial learning and memory deficits following chronic cerebral hypoperfusion are associated with hippocampal mitochondrial aging in rats. Neuroscience 2019; 415:215-229. [DOI: 10.1016/j.neuroscience.2019.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
|
16
|
Wesley UV, Bhute VJ, Hatcher JF, Palecek SP, Dempsey RJ. Local and systemic metabolic alterations in brain, plasma, and liver of rats in response to aging and ischemic stroke, as detected by nuclear magnetic resonance (NMR) spectroscopy. Neurochem Int 2019; 127:113-124. [PMID: 30707914 DOI: 10.1016/j.neuint.2019.01.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
Metabolic dysfunction impacts stroke incidence and outcome. However, the intricate association between altered metabolic program due to aging, and focal ischemia in brain, circulation, and peripheral organs is not completely elucidated. Here we identified locally and systemically altered metabolites in brain, liver, and plasma as a result of normal aging, ischemic-stroke, and extended time of reperfusion injury. Comprehensive quantitative metabolic profiling was carried out using nuclear magnetic resonance spectroscopy. Aging, but healthy rats showed significant metabolic alterations in the brain, but only a few metabolic changes in the liver and plasma as compared to younger rats. But, ischemic stroke altered metabolites significantly in liver and plasma of older rats during early acute phase. Major metabolic changes were also seen in the brains of younger rats following ischemic stroke during early acute phase of injury. We further report that metabolic changes occur sequentially in a tissue specific manner during extended reperfusion time of late repair phase. First metabolic alterations occurred in brain due to local injury. Next, changes in circulating metabolites in plasma occurred during acute-repair phase transition time. Lastly, the delayed systemic effect was seen in the peripheral organ, liver that exhibited significant and persistent changes in selected metabolites during later reperfusion time. The metabolic pathways involved in energy/glucose, and amino acid metabolism, inflammation, and oxidative stress were mainly altered as a result of aging and ischemia/reperfusion. Biomarker analysis revealed citrate, lysine, and tyrosine as potential age-independent blood metabolic biomarkers of ischemia/reperfusion. Overall, our study elucidates the complex network of metabolic events as a function of normal aging and acute stroke. We further provide evidence for a clear transition from local to systemic metabolic dysfunction due to ischemic injury in a time dependent manner, which may altogether greatly impact the post-stroke outcome.
Collapse
Affiliation(s)
- Umadevi V Wesley
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA.
| | - Vijesh J Bhute
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, 53792, USA
| | - James F Hatcher
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, 53792, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, 53792, USA
| |
Collapse
|
17
|
Shi L, Rocha M, Leak RK, Zhao J, Bhatia TN, Mu H, Wei Z, Yu F, Weiner SL, Ma F, Jovin TG, Chen J. A new era for stroke therapy: Integrating neurovascular protection with optimal reperfusion. J Cereb Blood Flow Metab 2018; 38:2073-2091. [PMID: 30191760 PMCID: PMC6282224 DOI: 10.1177/0271678x18798162] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in stroke reperfusion therapies have led to remarkable improvement in clinical outcomes, but many patients remain severely disabled, due in part to the lack of effective neuroprotective strategies. In this review, we show that 95% of published preclinical studies on "neuroprotectants" (1990-2018) reported positive outcomes in animal models of ischemic stroke, while none translated to successful Phase III trials. There are many complex reasons for this failure in translational research, including that the majority of clinical trials did not test early delivery of neuroprotectants in combination with successful reperfusion. In contrast to the clinical trials, >80% of recent preclinical studies examined the neuroprotectant in animal models of transient ischemia with complete reperfusion. Furthermore, only a small fraction of preclinical studies included long-term functional assessments, aged animals of both genders, and models with stroke comorbidities. Recent clinical trials demonstrate that 70%-80% of patients treated with endovascular thrombectomy achieve successful reperfusion. These successes revive the opportunity to retest previously failed approaches, including cocktail drugs that target multiple injury phases and different cell types. It is our hope that neurovascular protectants can be retested in future stroke research studies with specific criteria outlined in this review to increase translational successes.
Collapse
Affiliation(s)
- Ligen Shi
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Marcelo Rocha
- 3 Department of Neurology, UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- 4 Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Jingyan Zhao
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tarun N Bhatia
- 4 Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Hongfeng Mu
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhishuo Wei
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan L Weiner
- 4 Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Feifei Ma
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tudor G Jovin
- 3 Department of Neurology, UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,5 Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Meadows KL. Experimental models of focal and multifocal cerebral ischemia: a review. Rev Neurosci 2018; 29:661-674. [PMID: 29397392 DOI: 10.1515/revneuro-2017-0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
Rodent and rabbit stroke models have been instrumental in our current understanding of stroke pathophysiology; however, translational failure is a significant problem in preclinical ischemic stroke research today. There are a number of different focal cerebral ischemia models that vary in their utility, pathophysiology of causing disease, and their response to treatments. Unfortunately, despite active preclinical research using these models, treatment options for ischemic stroke have not significantly advanced since the food and drug administration approval of tissue plasminogen activator in 1996. This review aims to summarize current stroke therapies, the preclinical experimental models used to help develop stroke therapies, as well as their advantages and limitations. In addition, this review discusses the potential for naturally occurring canine ischemic stroke models to compliment current preclinical models and to help bridge the translational gap between small mammal models and human clinical trials.
Collapse
Affiliation(s)
- Kristy L Meadows
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, Grafton, MA 01536, USA
| |
Collapse
|
19
|
Zhang H, Lin S, Chen X, Gu L, Zhu X, Zhang Y, Reyes K, Wang B, Jin K. The effect of age, sex and strains on the performance and outcome in animal models of stroke. Neurochem Int 2018; 127:2-11. [PMID: 30291954 DOI: 10.1016/j.neuint.2018.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Stroke is one of the leading causes of death worldwide, and the majority of cerebral stroke is caused by occlusion of cerebral circulation, which eventually leads to brain infarction. Although stroke occurs mainly in the aged population, most animal models for experimental stroke in vivo almost universally rely on young-adult rodents for the evaluation of neuropathological, neurological, or behavioral outcomes after stroke due to their greater availability, lower cost, and fewer health problems. However, it is well established that aged animals differ from young animals in terms of physiology, neurochemistry, and behavior. Stroke-induced changes are more pronounced with advancing age. Therefore, the overlooked role of age in animal models of stroke could have an impact on data quality and hinder the translation of rodent models to humans. In addition to aging, other factors also influence functional performance after ischemic stroke. In this article, we summarize the differences between young and aged animals, the impact of age, sex and animal strains on performance and outcome in animal models of stroke and emphasize age as a key factor in preclinical stroke studies.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Siyang Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xudong Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lei Gu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaohong Zhu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kassandra Reyes
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
20
|
Langdon KD, Cordova CA, Granter-Button S, Boyd JD, Peeling J, Murphy TH, Corbett D. Executive dysfunction and blockage of brain microvessels in a rat model of vascular cognitive impairment. J Cereb Blood Flow Metab 2018; 38:1727-1740. [PMID: 29083274 PMCID: PMC6168916 DOI: 10.1177/0271678x17739219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most research focuses on overt stroke caused by blockage of major blood vessels. Less attention has been paid to small vessel disease which gives rise to covert stroke that often leads to vascular cognitive impairment (VCI). One reason for this may be the relative lack of relevant animal models. Herein, we describe, a model of VCI induced in middle-aged Sprague-Dawley rats exposed to a diet high in saturated fats, salt and refined sugar (HFSS). In Experiment 1, rats were fed HFSS and subjected to a small mediodorsal (MD) thalamic stroke with or without concomitant permanent bilateral carotid artery occlusion. MD lesions produce significant executive dysfunction in an attention set-shift task ( p = 0.012). In Experiment 2, rats were exposed to either HFSS or control diet and functional effects assessed. We found significant hypertension ( p = 0.013), blockage of brain microvessels ( p = 0.018) and white matter atrophy ( p = 0.039) in HFSS diet animals. As in Experiment 1, profound, specific set-shifting executive dysfunction was noted ( p = 0.003) following both small MD infarcts (0.332 mm3) and the HFSS diet. In summary, these data describe a middle-aged animal model of VCI that includes clinically relevant metabolic disturbances and small vessel disease and as such may be helpful in developing new cognitive therapies.
Collapse
Affiliation(s)
- Kristopher D Langdon
- 1 BioMedical Sciences, Memorial University, St. John's, NL, Canada.,2 Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Chris A Cordova
- 1 BioMedical Sciences, Memorial University, St. John's, NL, Canada
| | | | - Jamie D Boyd
- 3 Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - James Peeling
- 4 Department of Radiology, University of Manitoba, Winnipeg, MB, Canada.,5 Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada
| | - Timothy H Murphy
- 3 Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada.,6 Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.,7 Kinsmen Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,8 Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dale Corbett
- 1 BioMedical Sciences, Memorial University, St. John's, NL, Canada.,6 Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.,9 Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,10 Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Xu M, Wang MM, Gao Y, Keep RF, Shi Y. The effect of age-related risk factors and comorbidities on white matter injury and repair after ischemic stroke. Neurobiol Dis 2018; 126:13-22. [PMID: 30017454 DOI: 10.1016/j.nbd.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/17/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
White matter injury is a crucial component of human stroke, but it has often been neglected in preclinical studies. Most human stroke is associated with one or more comorbidities, including aging, hypertension, diabetes and metabolic syndrome including hyperlipidemia. The purpose of this review is to examine how age and hypertension impact stroke-induced white matter injury as well as white matter repair in both human stroke and preclinical models. It is essential that comorbidities be examined in preclinical trials as they may impact translatability to the clinic. In addition, understanding how comorbidities impact white matter injury and repair may provide new therapeutic opportunities for patients with those conditions.
Collapse
Affiliation(s)
- Mingyue Xu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Michael M Wang
- Departments of Neurology and Physiology, University of Michigan, Ann Arbor, MI 48109, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
22
|
Aging alters the immunological response to ischemic stroke. Acta Neuropathol 2018; 136:89-110. [PMID: 29752550 PMCID: PMC6015099 DOI: 10.1007/s00401-018-1859-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/21/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
The peripheral immune system plays a critical role in aging and in the response to brain injury. Emerging data suggest inflammatory responses are exacerbated in older animals following ischemic stroke; however, our understanding of these age-related changes is poor. In this work, we demonstrate marked differences in the composition of circulating and infiltrating leukocytes recruited to the ischemic brain of old male mice after stroke compared to young male mice. Blood neutrophilia and neutrophil invasion into the brain were increased in aged animals. Relative to infiltrating monocyte populations, brain-invading neutrophils had reduced phagocytic potential, and produced higher levels of reactive oxygen species and extracellular matrix-degrading enzymes (i.e., MMP-9), which were further exacerbated with age. Hemorrhagic transformation was more pronounced in aged versus young mice relative to infarct size. High numbers of myeloperoxidase-positive neutrophils were found in postmortem human brain samples of old (> 71 years) acute ischemic stroke subjects compared to non-ischemic controls. Many of these neutrophils were found in the brain parenchyma. A large proportion of these neutrophils expressed MMP-9 and positively correlated with hemorrhage and hyperemia. MMP-9 expression and hemorrhagic transformation after stroke increased with age. These changes in the myeloid response to stroke with age led us to hypothesize that the bone marrow response to stroke is altered with age, which could be important for the development of effective therapies targeting the immune response. We generated heterochronic bone marrow chimeras as a tool to determine the contribution of peripheral immune senescence to age- and stroke-induced inflammation. Old hosts that received young bone marrow (i.e., Young → Old) had attenuation of age-related reductions in bFGF and VEGF and showed improved locomotor activity and gait dynamics compared to isochronic (Old → Old) controls. Microglia in young heterochronic mice (Old → Young) developed a senescent-like phenotype. After stroke, aged animals reconstituted with young marrow had reduced behavioral deficits compared to isochronic controls, and had significantly fewer brain-infiltrating neutrophils. Increased rates of hemorrhagic transformation were seen in young mice reconstituted with aged bone marrow. This work suggests that age alters the immunological response to stroke, and that this can be reversed by manipulation of the peripheral immune cells in the bone marrow.
Collapse
|
23
|
Kelly KM, Jukkola PI, Yin G, Miller ER, Kharlamov EA, Shiau DS, Strong R, Aronowski J. Poststroke epilepsy following transient unilateral middle cerebral and common carotid artery occlusion in young adult and aged F344 rats. Epilepsy Res 2018; 141:38-47. [PMID: 29455049 PMCID: PMC5879023 DOI: 10.1016/j.eplepsyres.2018.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/29/2017] [Accepted: 02/07/2018] [Indexed: 01/14/2023]
Abstract
The mechanisms of injured brain that establish poststroke seizures and epilepsy are not well understood, largely because animal modeling has had limited development. The main objective of this study was to determine whether an arterial occlusion model of cortical stroke in young adult and aged rats was capable of generating either focal or generalized epileptic seizures within 2 months of lesioning. Four- and 20-month-old male Fischer 344 (F344) sham-operated controls and those lesioned by transient (3 h) unilateral middle cerebral artery (MCA) and common carotid artery (CCA) occlusion (MCA/CCAo) were studied by video-EEG recordings up to 2 months post-procedure. The main findings were: 1) seizures (grade 3 and above) were recorded within 2 months in both young (4-month; 0.23/h) and aged (20-month; 1.93/h) MCA/CCAo rat groups; both MCA/CCAo rat groups had more seizures recorded than the respective control groups, i.e., no seizures in young controls and 0.52/h in old controls; 2) both age and infarction independently had effects on seizure frequency; however, there was no demonstrated interaction between the two factors; and 3) there was no difference in infarct volumes comparing 4- to 20-month-old MCA/CCAo animals. In addition, all lesioned and sham-operated animals demonstrated intermittent solitary myoclonic convulsions arising out of sleep. Morbidity and mortality of animals limited the extent to which the animals could be evaluated, especially 20-month-old animals. These results suggest that transient unilateral MCA/CCAo can result in poststroke epileptic seizures in both young adult and aged F344 rats within a relatively brief period of time following lesioning.
Collapse
Affiliation(s)
- Kevin M Kelly
- Department of Neurology and Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, PA, USA; Departments of Neurology, Drexel University College of Medicine, Philadelphia, PA, USA; Departments of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Peter I Jukkola
- Department of Neurology and Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Guo Yin
- Department of Neurology and Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Eric R Miller
- Department of Neurology and Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Elena A Kharlamov
- Department of Neurology and Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, PA, USA; Departments of Neurology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Roger Strong
- Stroke Program, Department of Neurology, University of Texas at Houston McGovern Medical School, Houston, TX, USA
| | - Jaroslaw Aronowski
- Stroke Program, Department of Neurology, University of Texas at Houston McGovern Medical School, Houston, TX, USA
| |
Collapse
|
24
|
Popa-Wagner A, Glavan DG, Olaru A, Olaru DG, Margaritescu O, Tica O, Surugiu R, Sandu RE. Present Status and Future Challenges of New Therapeutic Targets in Preclinical Models of Stroke in Aged Animals with/without Comorbidities. Int J Mol Sci 2018; 19:ijms19020356. [PMID: 29370078 PMCID: PMC5855578 DOI: 10.3390/ijms19020356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 01/02/2023] Open
Abstract
The aging process, comorbidities, and age-associated diseases are closely dependent on each other. Cerebral ischemia impacts a wide range of systems in an age-dependent manner. However, the aging process has many facets which are influenced by the genetic background and epigenetic or environmental factors, which can explain why some people age differently than others. Therefore, there is an urgent need to identify age-related changes in body functions or structures that increase the risk for stroke and which are associated with a poor outcome. Multimodal imaging, electrophysiology, cell biology, proteomics, and transcriptomics, offer a useful approach to link structural and functional changes in the aging brain, with or without comorbidities, to post-stroke rehabilitation. This can help us to improve our knowledge about senescence firstly, and in this context, aids in elucidating the pathophysiology of age-related diseases that allows us to develop therapeutic strategies or prevent diseases. These processes, including potential therapeutical interventions, need to be studied first in relevant preclinical models using aged animals, with and without comorbidities. Therefore, preclinical research on ischemic stroke should consider age as the most important risk factor for cerebral ischemia. Furthermore, the identification of effective therapeutic strategies, corroborated with successful translational studies, will have a dramatic impact on the lives of millions of people with cerebrovascular diseases.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Griffith University School of Medicine, Gold Coast Campus, QLD, Queensland Eye Institute, Brisbane, QLD 4101, Australia.
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Daniela-Gabriela Glavan
- Psychiatry Clinic Hospital, University of Medicine and Pharmacy of Craiova, Petru Rares Street 2, 200349 Craiova, Romania.
| | - Andrei Olaru
- Department of Ophthalmology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | | | - Otilia Margaritescu
- Department of Neurosurgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Oana Tica
- Department of "Mother and Child", University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Roxana Surugiu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Raluca Elena Sandu
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| |
Collapse
|
25
|
Percie du Sert N, Alfieri A, Allan SM, Carswell HV, Deuchar GA, Farr TD, Flecknell P, Gallagher L, Gibson CL, Haley MJ, Macleod MR, McColl BW, McCabe C, Morancho A, Moon LD, O'Neill MJ, Pérez de Puig I, Planas A, Ragan CI, Rosell A, Roy LA, Ryder KO, Simats A, Sena ES, Sutherland BA, Tricklebank MD, Trueman RC, Whitfield L, Wong R, Macrae IM. The IMPROVE Guidelines (Ischaemia Models: Procedural Refinements Of in Vivo Experiments). J Cereb Blood Flow Metab 2017; 37:3488-3517. [PMID: 28797196 PMCID: PMC5669349 DOI: 10.1177/0271678x17709185] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most in vivo models of ischaemic stroke target the middle cerebral artery and a spectrum of stroke severities, from mild to substantial, can be achieved. This review describes opportunities to improve the in vivo modelling of ischaemic stroke and animal welfare. It provides a number of recommendations to minimise the level of severity in the most common rodent models of middle cerebral artery occlusion, while sustaining or improving the scientific outcomes. The recommendations cover basic requirements pre-surgery, selecting the most appropriate anaesthetic and analgesic regimen, as well as intraoperative and post-operative care. The aim is to provide support for researchers and animal care staff to refine their procedures and practices, and implement small incremental changes to improve the welfare of the animals used and to answer the scientific question under investigation. All recommendations are recapitulated in a summary poster (see supplementary information).
Collapse
Affiliation(s)
- Nathalie Percie du Sert
- 1 National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | - Alessio Alfieri
- 2 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Stuart M Allan
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hilary Vo Carswell
- 4 Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Graeme A Deuchar
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | - Tracy D Farr
- 6 School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | - Lindsay Gallagher
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | - Claire L Gibson
- 8 Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Michael J Haley
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Malcolm R Macleod
- 9 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- 2 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Christopher McCabe
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | - Anna Morancho
- 10 Neurovascular Research Laboratory. Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona; Barcelona, Spain
| | - Lawrence Df Moon
- 11 Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Isabel Pérez de Puig
- 13 Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | - Anna Planas
- 13 Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | | | - Anna Rosell
- 10 Neurovascular Research Laboratory. Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona; Barcelona, Spain
| | - Lisa A Roy
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | | | - Alba Simats
- 10 Neurovascular Research Laboratory. Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona; Barcelona, Spain
| | - Emily S Sena
- 9 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Brad A Sutherland
- 16 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,17 School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Mark D Tricklebank
- 18 Centre for Neuroimaging Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Rebecca C Trueman
- 6 School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | - Raymond Wong
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - I Mhairi Macrae
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| |
Collapse
|
26
|
Cai M, Zhang W, Weng Z, Stetler RA, Jiang X, Shi Y, Gao Y, Chen J. Promoting Neurovascular Recovery in Aged Mice after Ischemic Stroke - Prophylactic Effect of Omega-3 Polyunsaturated Fatty Acids. Aging Dis 2017; 8:531-545. [PMID: 28966799 PMCID: PMC5614319 DOI: 10.14336/ad.2017.0520] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/20/2017] [Indexed: 12/17/2022] Open
Abstract
The aged population is among the highest at risk for ischemic stroke, yet most stroke patients of advanced ages (>80 years) are excluded from access to thrombolytic treatment by tissue plasminogen activator, the only FDA approved pharmacological therapy for stroke victims. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) robustly alleviate ischemic brain injury in young adult rodents, but have not yet been studied in aged animals. This study investigated whether chronic dietary supplementation of n-3 PUFAs protects aging brain against cerebral ischemia and improves long-term neurological outcomes. Aged (18-month-old) mice were administered n-3 PUFA-enriched fish oil in daily chow for 3 months before and up to 8 weeks after 45 minutes of transient middle cerebral artery occlusion (tMCAO). Sensorimotor outcomes were assessed by cylinder test and corner test up to 35 days and brain repair dynamics evaluated immunohistologically up to 56 days after tMCAO. Mice receiving dietary supplementation of n-3 PUFAs for 3 months showed significant increases in brain ratio of n-3/n-6 PUFA contents, and markedly reduced long-term sensorimotor deficits and chronic ischemic brain tissue loss after tMCAO. Mechanistically, n-3 PUFAs robustly promoted post-ischemic angiogenesis and neurogenesis, and enhanced white matter integrity after tMCAO. The Pearson linear regression analysis revealed that the enhancement of neurogenesis and white matter integrity both correlated positively with improved sensorimotor activities after tMCAO. This study demonstrates that prophylactic dietary supplementation of n-3 PUFAs effectively improves long-term stroke outcomes in aged mice, perhaps by promoting post-stroke brain repair processes such as angiogenesis, neurogenesis, and white matter restoration.
Collapse
Affiliation(s)
- Mengfei Cai
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China
| | - Wenting Zhang
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China
| | - Zhongfang Weng
- 2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China.,2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,3Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoyan Jiang
- 2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- 2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,3Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Yanqin Gao
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China.,2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jun Chen
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China.,2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,3Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| |
Collapse
|
27
|
Bertrand L, Dygert L, Toborek M. Induction of Ischemic Stroke and Ischemia-reperfusion in Mice Using the Middle Artery Occlusion Technique and Visualization of Infarct Area. J Vis Exp 2017. [PMID: 28190061 DOI: 10.3791/54805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cerebrovascular disease is highly prevalent in the global population and encompasses several types of conditions, including stroke. To study the impact of stroke on tissue injury and to evaluate the effectiveness of therapeutic interventions, several experimental models in a variety of species were developed. They include complete global cerebral ischemia, incomplete global ischemia, focal cerebral ischemia, and multifocal cerebral ischemia. The model described in this protocol is based on the middle cerebral artery occlusion (MCAO) and is related to the focal ischemia category. This technique produces consistent focal ischemia in a strictly defined region of the hemisphere and is less invasive than other methods. The procedure described is performed on mice, given the availability of several genetic variants and the high number of tests standardized for mice to aid in the behavioral and neurodeficit evaluation.
Collapse
Affiliation(s)
- Luc Bertrand
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami; Miller School of Medicine, University of Miami
| | - Levi Dygert
- Miller School of Medicine, University of Miami
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami; Jerzy Kukuczka Academy of Physical Education;
| |
Collapse
|
28
|
Abstract
Stroke is the second foremost cause of mortality worldwide and a major cause of long-term disability. Due to changes in lifestyle and an aging population, the incidence of stroke continues to increase and stroke mortality predicted to exceed 12 % by the year 2030. However, the development of pharmacological treatments for stroke has failed to progress much in over 20 years since the introduction of the thrombolytic drug, recombinant tissue plasminogen activator. These alarming circumstances caused many research groups to search for alternative treatments in the form of neuroprotectants. Here, we consider the potential use of phytochemicals in the treatment of stroke. Their historical use in traditional medicine and their excellent safety profile make phytochemicals attractive for the development of therapeutics in human diseases. Emerging findings suggest that some phytochemicals have the ability to target multiple pathophysiological processes involved in stroke including oxidative stress, inflammation and apoptotic cell death. Furthermore, epidemiological studies suggest that the consumption of plant sources rich in phytochemicals may reduce stroke risk, and so reinforce the possibility of developing preventative or neuroprotectant therapies for stroke. In this review, we describe results of preclinical studies that demonstrate beneficial effects of phytochemicals in experimental models relevant to stroke pathogenesis, and we consider their possible mechanisms of action.
Collapse
|
29
|
Gibson CL, Bath PM. Feasibility of progesterone treatment for ischaemic stroke. J Cereb Blood Flow Metab 2016; 36:487-91. [PMID: 26661235 PMCID: PMC4776310 DOI: 10.1177/0271678x15616782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/11/2015] [Indexed: 11/18/2022]
Abstract
Two multi-centre phase III clinical trials examining the protective potential of progesterone following traumatic brain injury have recently failed to demonstrate any improvement in outcome. Thus, it is timely to consider how this impacts on the translational potential of progesterone treatment for ischaemic stroke. A wealth of experimental evidence supports the neuroprotective properties of progesterone, and associated metabolites, following various types of central nervous system injury. In particular, for ischaemic stroke, studies have also begun to reveal possible mechanisms of such neuroprotection. However, the results in traumatic brain injury now question whether further clinical development of progesterone for ischaemic stroke is relevant.
Collapse
Affiliation(s)
- Claire L Gibson
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Philip M Bath
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| |
Collapse
|
30
|
White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Exp Neurol 2015; 272:109-19. [PMID: 25836044 DOI: 10.1016/j.expneurol.2015.03.021] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 01/04/2023]
Abstract
Most of the successes in experimental models of stroke have not translated well to the clinic. One potential reason for this failure is that stroke mainly afflicts the elderly and the majority of experimental stroke studies rely on data gathered from young adult animals. Therefore, in the present study we established a reliable, reproducible model of stroke with low mortality in aged (18month) male mice and contrasted their pathophysiological changes with those in young (2month) animals. To this end, mice were subjected to permanent tandem occlusion of the left distal middle cerebral artery (dMCAO) with ipsilateral common carotid artery occlusion (CCAO). Cerebral blood flow (CBF) was evaluated repeatedly during and after stroke. Reduction of CBF was more dramatic and sustained in aged mice. Aged mice exhibited more severe long-term sensorimotor deficits, as manifested by deterioration of performance in the Rotarod and hanging wire tests up to 35d after stroke. Aged mice also exhibited significantly worse long-term cognitive deficits after stroke, as measured by the Morris water maze test. Consistent with these behavioral observations, brain infarct size and neuronal tissue loss after dMCAO were significantly larger in aged mice at 2d and 14d, respectively. The young versus aged difference in neuronal tissue loss, however, did not persist until 35d after dMCAO. In contrast to the transient difference in neuronal tissue loss, we found significant and long lasting deterioration of white matter in aged animals, as revealed by the loss of myelin basic protein (MBP) staining in the striatum at 35d after dMCAO. We further examined the expression of M1 (CD16/CD32) and M2 (CD206) markers in Iba-1(+) microglia by double immunofluorescent staining. In both young and aged mice, the expression of M2 markers peaked around 7d after stroke whereas the expression of M1 markers peaked around 14d after stroke, suggesting a progressive M2-to-M1 phenotype shift in both groups. However, aged mice exhibited significantly reduced M2 polarization compared to young adults. Remarkably, we discovered a strong positive correlation between favorable neurological outcomes after dMCAO and MBP levels or the number of M2 microglia/macrophages. In conclusion, our studies suggest that the distal MCAO stroke model consistently results in ischemic brain injury with long-term behavioral deficits, and is therefore suitable for the evaluation of long-term stroke outcomes. Furthermore, aged mice exhibit deterioration of functional outcomes after stroke and this deterioration is linked to white matter damage and reductions in M2 microglia/macrophage polarization.
Collapse
|
31
|
Wong R, Gibson CL, Kendall DA, Bath PMW. Evaluating the translational potential of progesterone treatment following transient cerebral ischaemia in male mice. BMC Neurosci 2014; 15:131. [PMID: 25471043 PMCID: PMC4255926 DOI: 10.1186/s12868-014-0131-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022] Open
Abstract
Background Progesterone is neuroprotective in numerous preclinical CNS injury models including cerebral ischaemia. The aim of this study was two-fold; firstly, we aimed to determine whether progesterone delivery via osmotic mini-pump would confer neuroprotective effects and whether such neuroprotection could be produced in co-morbid animals. Results Animals underwent transient middle cerebral artery occlusion. At the onset of reperfusion, mice were injected intraperitoneally with progesterone (8 mg/kg in dimethylsulfoxide). Adult and aged C57 Bl/6 mice were dosed additionally with subcutaneous infusion (1.0 μl/h of a 50 mg/ml progesterone solution) via implanted osmotic minipumps. Mice were allowed to survive for up to 7 days post-ischaemia and assessed for general well-being (mass loss and survival), neurological score, foot fault and t-maze performance. Progesterone reduced neurological deficit [F(1,2) = 5.38, P = 0.027] and number of contralateral foot-faults [F(1,2) = 7.36, P = 0.0108] in adult, but not aged animals, following ischaemia. In hypertensive animals, progesterone treatment lowered neurological deficit [F(1,6) = 18.31, P = 0.0001], reduced contralateral/ipsilateral alternation ratio % [F(1,2) = 17.05, P = 0.0006] and time taken to complete trials [F(1,2) = 15.92, P = 0.0009] for t-maze. Conclusion Post-ischemic progesterone administration via mini-pump delivery is effective in conferring functional improvement in a transient MCAO model in adult mice. Preliminary data suggests such a treatment regimen was not effective in producing a protective effect in aged mice. However, in hypertensive mice, who received post-ischemic progesterone intraperitoneally at the onset of reperfusion had better functional outcomes than control hypertensive mice.
Collapse
Affiliation(s)
| | - Claire L Gibson
- School of Psychology, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, UK.
| | | | | |
Collapse
|
32
|
The influence of aging on poststroke depression using a rat model via middle cerebral artery occlusion. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2014; 13:847-59. [PMID: 23761136 DOI: 10.3758/s13415-013-0177-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Poststroke depression (PSD) is the most frequent psychological sequela following stroke. While previous studies describe the impact of age on brain infarct volume, brain edema, and blood-brain barrier (BBB) breakdown following ischemia, the role of age on PSD has yet to be described. Here, we examine the influence of age on PSD progression in a rat model of PSD by middle cerebral artery occlusion (MCAO). One hundred forty-three rats were divided into three groups. 48 rats 20 weeks of age underwent a sham procedure, 51 rats 20 weeks of age had MCAO, and 44 rats 22-26 months of age had MCAO. Groups were further divided into two subgroups. The first subgroup was used to measure infarct lesion volume, brain edema, and BBB breakdown at 24 h. In the second subgroup at 3 weeks after MCAO, rats were subjected to a sucrose preference test, two-way shuttle avoidance task, forced swimming test, and a brain-derived neurotrophic factor (BDNF) protein level measurement. Total and striatal infarct volume, brain edema, and BBB breakdown in the striatum were increased in older rats, as compared with younger rats. While both old and young rats exhibited depressive-like behaviors on each of the behavioral tests and lower BDNF levels post-MCAO, as compared with control rats, there were no differences between old and young rats. Although older rats suffered from larger infarct volumes, increased brain edema and more BBB disruption following MCAO, the lack of behavioral differences between young and old rats suggests that there was no effect of rat age on the incidence of PSD.
Collapse
|
33
|
Yoon JH, Lee HH, Yi ES, Baek SG. Age-dependent effect of treadmill exercise on hemorrhage-induced neuronal cell death in rats. J Exerc Rehabil 2013; 9:506-10. [PMID: 24409426 PMCID: PMC3884869 DOI: 10.12965/jer.130070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/13/2013] [Accepted: 12/09/2013] [Indexed: 11/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a major cause of death and disability in the elderly. In the present study, we examined the age-dependence of the effect of treadmill exercise on the intrastriatal hemorrhage-induced neuronal cell death in rats. Young (8 weeks old) and old (64 weeks old) Sprague-Dawley male rats were used in the present study. Intrastriatal hemorrhage was induced by injection of 0.2 U collagenase (1 μL volume) into the striatum using a stereotaxic instrument. The rats in the exercise groups were forced to run on a treadmill for 30 min daily for 7 days. Lesion size was determined by Nissl staining. Apoptosis was assessed by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. In the present results, induction of hemorrhage increased lesion size and enhanced apoptosis. Treadmill exercise decreased the lesion size with suppressing apoptosis. However, the size of lesion induced by hemorrhage and the number of apoptotic cells were not different between young and old rats. Treadmill exercise significantly reduced the ICH-induced lesion size and the number of apoptotic cells irrespective of age. The data suggest that treadmill exercise may provide therapeutic value against ICH by suppressing neuronal apoptosis regardless of age.
Collapse
Affiliation(s)
- Jin-Hwan Yoon
- Department of Sports Science, College of Life Science and Nano Technology, Hannam University, Daejeon, Korea
| | - Hee-Hyuk Lee
- Department of Sports Science, College of Life Science and Nano Technology, Hannam University, Daejeon, Korea
| | - Eun-Surk Yi
- Department of Exercise Rehabilitation & Welfare, College of Health Science, Gachon University, Incheon, Korea
| | - Soon Gi Baek
- Department of Sports Health Medicine, College of Health Science, Jungwon University, Chungcheongbuk-do, Korea
| |
Collapse
|
34
|
Manwani B, Friedler B, Verma R, Venna VR, McCullough LD, Liu F. Perfusion of ischemic brain in young and aged animals: a laser speckle flowmetry study. Stroke 2013; 45:571-8. [PMID: 24357659 DOI: 10.1161/strokeaha.113.002944] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Aging is an important determinant of ischemic stroke outcomes. Both clinical and experimental stroke studies have shown that aging negatively correlates with infarct volumes but is associated with worsened functional recovery after stroke. This may correspond to a differing cellular and molecular response to stroke in the aged versus young brain. It was hypothesized in this study that the smaller injury seen in the aged ischemic brain is because of structural differences in microvasculature with aging or differences in intraischemic tissue perfusion. METHODS Both young and aged C57BL6 mice were subject to middle cerebral artery occlusion modeling. Laser speckle flowmetry was used to study the functional dynamics of cerebral perfusion, and fluorescein isothiocyanate (FITC)-dextran staining was performed to examine the structural change in microvasculature. In separate cohorts, cresyl violet staining and immunohistochemistry with CD31 and IgG antibodies were applied to further assess the microvascular density and blood-brain barrier breakdown after stroke. RESULTS No difference in cerebral blood flow was seen at the baseline, intraischemically, and postreperfusion in young versus aged mice. FITC-dextran and CD31 staining did not show significant differences in the microvascular density between young and aged ischemic brains. More extravasation of IgG through the blood-brain barrier was found in the young versus aged cohort at both 24 and 72 hours after stroke. CONCLUSIONS Cerebrovascular dynamics and perfusion are not responsible for the different stroke phenotypes seen in the young versus aged animals, which may be more related to different levels of blood-brain barrier breakdown.
Collapse
Affiliation(s)
- Bharti Manwani
- From the Department of Neurology and Neuroscience, University of Connecticut Health Center, Farmington, CT
| | | | | | | | | | | |
Collapse
|
35
|
Moyanova SG, Mitreva RG, Kortenska LV, Nicoletti F, Ngomba RT. Age-dependence of sensorimotor and cerebral electroencephalographic asymmetry in rats subjected to unilateral cerebrovascular stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2013; 5:13. [PMID: 24245542 PMCID: PMC4176494 DOI: 10.1186/2040-7378-5-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/06/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND The human population mostly affected by stroke is more than 65 years old. This study was designed to meet the recommendation that models of cerebral ischemia in aged animals are more relevant to the clinical setting than young animal models. Until now the majority of the pre-clinical studies examining age effects on stroke outcomes have used rats of old age. Considering the increasing incidence of stroke among younger than old human population, new translational approaches in animal models are needed to match the rejuvenation of stroke. A better knowledge of alterations in stroke outcomes in middle-aged rats has important preventive and management implications providing clues for future investigations on effects of various neuroprotective and neurorestorative drugs against cerebrovascular accidents that may occur before late senescence. METHODS We evaluated the impact of transient focal ischemia, induced by intracerebral unilateral infusion of endothelin-1 (Et-1) near the middle cerebral artery of conscious rats, on volume of brain damage and asymmetry in behavioral and electroencephalographic (EEG) output measures in middle-aged (11-12 month-old) rats. RESULTS We did not find any age-dependent difference in the volume of ischemic brain damage three days after Et-1 infusion. However, age was an important determinant of neurological and EEG outcomes after stroke. Middle-aged ischemic rats had more impaired somatosensory functions of the contralateral part of the body than young ischemic rats and thus, had greater left-right reflex/sensorimotor asymmetry. Interhemispheric EEG asymmetry was more evident in middle-aged than in young ischemic rats, and this could tentatively explain the behavioral asymmetry. CONCLUSIONS With a multiparametric approach, we have validated the endothelin model of ischemia in middle-aged rats. The results provide clues for future studies on mechanisms underlying plasticity after brain damage and motivate investigations of novel neuroprotective strategies against cerebrovascular accidents that may occur before late senescence.
Collapse
Affiliation(s)
| | | | | | | | - Richard T Ngomba
- I,R,C,C,S,, NEUROMED, Localita Camerelle, 86077, Pozzilli, (IS), Italy.
| |
Collapse
|
36
|
Wong R, Bath PMW, Kendall D, Gibson CL. Progesterone and cerebral ischaemia: the relevance of ageing. J Neuroendocrinol 2013; 25:1088-94. [PMID: 23631651 DOI: 10.1111/jne.12042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/18/2013] [Accepted: 04/26/2013] [Indexed: 12/15/2022]
Abstract
Cerebral stroke is a leading cause of long-term disability and a major cause of death in the developed world. The total incidence of stroke is projected to rise substantially over the next 20 years as a result of the rising elderly population. Although age is one of the most significant prognostic markers for poor outcome after stroke, very few experimental studies have been conducted in aged animals. Importantly, sex differences in both vulnerability to stroke and outcome after cerebral ischaemia have frequently been reported and attributed to the action of steroid hormones. Progesterone is a candidate neuroprotective factor for stroke, although the majority of pre-clinical studies have focused on using young, healthy adult animals. In terms of cerebral stroke, males and postmenopausal females represent the groups at highest risk of cerebral stroke and these categories can be modelled using either aged or ovariectomised female animals. In this review, we discuss the importance of conducting experimental studies in aged animals compared to young, healthy animals, as well as the impact this has on experimental outcomes. In addition, we focus on reviewing the studies that have been conducted to date examining the neuroprotective potential of progesterone in aged animals. Importantly, the limited studies that have been conducted in aged animals do lend further support to progesterone as a therapeutic option after ischaemic stroke that warrants further investigation.
Collapse
Affiliation(s)
- R Wong
- Division of Stroke, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
37
|
Buga AM, Di Napoli M, Popa-Wagner A. Preclinical models of stroke in aged animals with or without comorbidities: role of neuroinflammation. Biogerontology 2013; 14:651-62. [PMID: 24057280 DOI: 10.1007/s10522-013-9465-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/10/2013] [Indexed: 12/31/2022]
Abstract
Age is the principal nonmodifiable risk factor for stroke. Over the past 10 years, suitable models for stroke in aged rats have been established. At genetic and cellular level there are significant differences in behavioral, cytological and genomics responses to injury in old animals as compared with the young ones. Behaviorally, the aged rats have the capacity to recover after cortical infarcts albeit to a lower extent than the younger counterparts. Similarly, the increased vulnerability of the aged brain to stroke, together with a decreased interhemisphere synchrony after stroke, assessed by different experimental methods (MRI, fMRI, in vivo microscopy, EEG) leads to unfavorable recovery of physical and cognitive functions in aged people and may have a prognostic value for the recovery of stroke patients. Furthermore, in elderly, comorbidities like diabetes or arterial hypertension are associated with higher risk of stroke, increased mortality and disability, and poorer functional status and quality of life. Aging brain reacts strongly to ischemia-reperfusion injury with an early inflammatory response. The process of cellular senescence can be an important additional contributor to chronic post-stroke by creating a "primed" inflammatory environment in the brain. Overall, these pro-inflammatory reactions promote early scar formation associated with tissue fibrosis and reduce functional recovery. A better understanding of molecular factors and signaling pathways underlying the contribution of comorbidities to stroke-induced pathological sequelae, may be translated into successful treatment or prevention therapies for age-associated diseases which would improve lifespan and quality of life.
Collapse
Affiliation(s)
- A-M Buga
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Craiova, Romania
| | | | | |
Collapse
|
38
|
Fann DYW, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 2013; 12:941-66. [PMID: 24103368 DOI: 10.1016/j.arr.2013.09.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 12/20/2022]
Abstract
Inflammation is an innate immune response to infection or tissue damage that is designed to limit harm to the host, but contributes significantly to ischemic brain injury following stroke. The inflammatory response is initiated by the detection of acute damage via extracellular and intracellular pattern recognition receptors, which respond to conserved microbial structures, termed pathogen-associated molecular patterns or host-derived danger signals termed damage-associated molecular patterns. Multi-protein complexes known as inflammasomes (e.g. containing NLRP1, NLRP2, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4, AIM2 and/or Pyrin), then process these signals to trigger an effector response. Briefly, signaling through NLRP1 and NLRP3 inflammasomes produces cleaved caspase-1, which cleaves both pro-IL-1β and pro-IL-18 into their biologically active mature pro-inflammatory cytokines that are released into the extracellular environment. This review will describe the molecular structure, cellular signaling pathways and current evidence for inflammasome activation following cerebral ischemia, and the potential for future treatments for stroke that may involve targeting inflammasome formation or its products in the ischemic brain.
Collapse
|
39
|
Cerebral ischemic stroke: is gender important? J Cereb Blood Flow Metab 2013; 33:1355-61. [PMID: 23756694 PMCID: PMC3764377 DOI: 10.1038/jcbfm.2013.102] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 12/19/2022]
Abstract
Cerebral stroke continues to be a major cause of death and the leading cause of long-term disability in developed countries. Evidence reviewed here suggests that gender influences various aspects of the clinical spectrum of ischemic stroke, in terms of influencing how a patients present with ischemic stroke through to how they respond to treatment. In addition, this review focuses on discussing the various pathologic mechanisms of ischemic stroke that may differ according to gender and compares how intrinsic and hormonal mechanisms may account for such gender differences. All clinical trials to date investigating putative neuroprotective treatments for ischemic stroke have failed, and it may be that our understanding of the injury cascade initiated after ischemic injury is incomplete. Revealing aspects of the pathophysiological consequences of ischemic stroke that are gender specific may enable gender relevant and effective neuroprotective strategies to be identified. Thus, it is possible to conclude that gender does, in fact, have an important role in ischemic stroke and must be factored into experimental and clinical investigations of ischemic stroke.
Collapse
|
40
|
Cojocaru GR, Popa-Wagner A, Stanciulescu EC, Babadan L, Buga AM. Post-stroke depression and the aging brain. J Mol Psychiatry 2013; 1:14. [PMID: 25408907 PMCID: PMC4223891 DOI: 10.1186/2049-9256-1-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/25/2013] [Indexed: 11/12/2022] Open
Abstract
Ageing is associated with changes in the function of various organ systems. Changes in the cardiovascular system affect both directly and indirectly the function in a variety of organs, including the brain, with consequent neurological (motor and sensory performance) and cognitive impairments, as well as leading to the development of various psychiatric diseases. Post-stroke depression (PSD) is among the most frequent neuropsychiatric consequences of cerebral ischemia. This review discusses several animal models used for the study of PSD and summarizes recent findings in the genomic profile of the ageing brain, which are associated with age-related disorders in the elderly. Since stroke and depression are diseases with increased incidence in the elderly, great clinical benefit may especially accrue from deciphering and targeting basic mechanisms underlying PSD. Finally, we discuss the relationship between ageing, circadian rhythmicity and PSD.
Collapse
Affiliation(s)
- Gabriel R Cojocaru
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Petru Rares str., no 2, Craiova, 200349 Romania
| | - Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine Rostock, Rostock, Germany
| | - Elena C Stanciulescu
- Faculty of Pharmacy, Chair of Biochemistry, University of Medicine and Pharmacy of Craiova, Craiova, 200349 Romania
| | - Loredana Babadan
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Petru Rares str., no 2, Craiova, 200349 Romania
| | - Ana-Maria Buga
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Petru Rares str., no 2, Craiova, 200349 Romania
| |
Collapse
|
41
|
Schwarzkopf TM, Koch KA, Klein J. Neurodegeneration after transient brain ischemia in aged mice: beneficial effects of bilobalide. Brain Res 2013; 1529:178-87. [PMID: 23850645 DOI: 10.1016/j.brainres.2013.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/03/2013] [Indexed: 12/21/2022]
Abstract
Bilobalide, an active constituent of Ginkgo biloba, has neuroprotective properties in experimental stroke models, but nearly all published studies were carried out in young animals. As ischemic strokes in humans are much more frequent in old age, we investigated bilobalide's effects in aged mice (age 18-22 month) using a model of transient ischemia induced by occlusion of the middle cerebral artery (MCAO) for 60 min. When bilobalide was administered locally into the striatum via microdialysis, a significant reduction of infarct size by almost 70% was observed. Concomitantly, the extensive, twelve-fold increase of extracellular glutamate which was observed in untreated animals was strongly reduced during the infusion of bilobalide. Glucose levels, in contrast, were not affected by bilobalide. In further experiments, bilobalide was given as an intraperitoneal injection (10/mg/kg) 1h before MCAO onset. ATP levels (measured in brain homogenates) were significantly reduced by transient MCAO but pretreatment with bilobalide prevented this loss. In ex vivo experiments with isolated mitochondria from aged mice, we found that the activity of the mitochondrial respiratory chain was only slightly impaired after 60 min of ischemia, and bilobalide showed no benefit in this experiment. However, aged mitochondria proved to be very sensitive to calcium-induced swelling which was significantly increased after ischemia. In this assay, pretreatment with bilobalide lowered the extent of swelling nearly to control levels. In behavioural tests, pretreatment of aged mice with bilobalide significantly improved the outcome in the Rotarod and the Corner test. In conclusion, aged mice show some differences in their response to transient ischemia when compared with young mice. Bilobalide has prominent neuroprotective properties in mice of all ages.
Collapse
Affiliation(s)
- Tina M Schwarzkopf
- Department of Pharmacology, College of Pharmacy, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
42
|
Smith CJ, Lawrence CB, Rodriguez-Grande B, Kovacs KJ, Pradillo JM, Denes A. The immune system in stroke: clinical challenges and their translation to experimental research. J Neuroimmune Pharmacol 2013; 8:867-87. [PMID: 23673977 DOI: 10.1007/s11481-013-9469-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/28/2013] [Indexed: 12/27/2022]
Abstract
Stroke represents an unresolved challenge for both developed and developing countries and has a huge socio-economic impact. Although considerable effort has been made to limit stroke incidence and improve outcome, strategies aimed at protecting injured neurons in the brain have all failed. This failure is likely to be due to both the incompleteness of modelling the disease and its causes in experimental research, and also the lack of understanding of how systemic mechanisms lead to an acute cerebrovascular event or contribute to outcome. Inflammation has been implicated in all forms of brain injury and it is now clear that immune mechanisms profoundly influence (and are responsible for the development of) risk and causation of stroke, and the outcome following the onset of cerebral ischemia. Until very recently, systemic inflammatory mechanisms, with respect to common comorbidities in stroke, have largely been ignored in experimental studies. The main aim is therefore to understand interactions between the immune system and brain injury in order to develop novel therapeutic approaches. Recent data from clinical and experimental research clearly show that systemic inflammatory diseases -such as atherosclerosis, obesity, diabetes or infection - similar to stress and advanced age, are associated with dysregulated immune responses which can profoundly contribute to cerebrovascular inflammation and injury in the central nervous system. In this review, we summarize recent advances in the field of inflammation and stroke, focusing on the challenges of translation between pre-clinical and clinical studies, and potential anti-inflammatory/immunomodulatory therapeutic approaches.
Collapse
Affiliation(s)
- Craig J Smith
- Stroke and Vascular Research Centre, Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Science Centre, Salford Royal Foundation Trust, Salford M6 8HD, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Hedna VS, Bodhit AN, Ansari S, Falchook AD, Stead L, Heilman KM, Waters MF. Hemispheric differences in ischemic stroke: is left-hemisphere stroke more common? J Clin Neurol 2013; 9:97-102. [PMID: 23626647 PMCID: PMC3633197 DOI: 10.3988/jcn.2013.9.2.97] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Understanding the mechanisms underlying stroke can aid the development of therapies and improve the final outcome. The purposes of this study were to establish whether there are characteristic mechanistic differences in the frequency, severity, functional outcome, and mortality between left- and right-hemisphere ischemic stroke and, given the velocity differences in the carotid circulation and direct branching of the left common carotid artery from the aorta, whether large-vessel ischemia (including cardioembolism) is more common in the territory of the left middle cerebral artery. METHODS Trial cohorts were combined into a data set of 476 samples. Using Trial of Org 10172 in Acute Stroke Treatment criteria, ischemic strokes in a total 317 patients were included in the analysis. Hemorrhagic stroke, stroke of undetermined etiology, cryptogenic stroke, and bilateral ischemic strokes were excluded. Laterality and vascular distribution were correlated with outcomes using a logistic regression model. The etiologies of the large-vessel strokes were atherosclerosis and cardioembolism. RESULTS The overall event frequency, mortality, National Institutes of Health Stroke Scale (NIHSS) score, Glasgow Coma Scale score, and rate of mechanical thrombectomy interventions differed significantly between the hemispheres. Left-hemispheric strokes (54%) were more common than right-hemispheric strokes (46%; p=0.0073), and had higher admission NIHSS scores (p=0.011), increased mortality (p=0.0339), and higher endovascular intervention rates (p≤0.0001). ischemic strokes were more frequent in the distribution of the left middle cerebral artery (122 vs. 97; p=0.0003) due to the higher incidence of large-vessel ischemic stroke in this area (p=0.0011). CONCLUSIONS Left-hemispheric ischemic strokes appear to be more frequent and often have a worse outcome than their right-hemispheric counterparts. The incidence of large-vessel ischemic strokes is higher in the left middle cerebral artery distribution, contributing to these hemispheric differences. The hemispheric differences exhibit a nonsignificant trend when strokes in the middle cerebral artery distribution are excluded from the analysis.
Collapse
|
44
|
Liu JR, Jensen-Kondering UR, Zhou JJ, Sun F, Feng XY, Shen XL, Deuschl G, Jansen O, Herdegen T, Meyne J, Zhao Y, Eschenfelder C. Transient filament occlusion of the middle cerebral artery in rats: does the reperfusion method matter 24 hours after perfusion? BMC Neurosci 2012; 13:154. [PMID: 23272656 PMCID: PMC3546945 DOI: 10.1186/1471-2202-13-154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022] Open
Abstract
Background There are two widely used transient middle cerebral artery occlusion (MCAO) methods, which differ in the use of unilateral or bilateral carotid artery reperfusion (UNICAR and BICAR). Of the two methods, UNICAR is easier to perform. This study was designed to comprehensively compare the two reperfusion methods to determine if there are any differences in outcomes. Results The UNICAR and BICAR groups each included 9 rats. At baseline, the average pO2 was 20.54 ± 9.35 and 26.43 ± 7.39, for the UNICAR and BICAR groups, respectively (P = 0.519). Changes in pO2, as well as other physiological parameters measured within the ischemic lesion, were similar between the UNICAR and BICAR groups during 90 min of MCAO and the first 30 min of reperfusion (all P > 0.05). Furthermore, both the Bederson score and Garcia score, which are used for neurological assessment, were also similar (both P > 0.05). There were also no significant differences in T2WI lesion volume, DWI lesion volume, PWI lesion volume, or TTC staining infarct volume between the two groups (all P > 0.05). Conclusion UNICAR and BICAR have similar capability for inducing acute brain ischemic injury and can be considered interchangeable up to 24 hours after reperfusion.
Collapse
Affiliation(s)
- Jian-Ren Liu
- Department of Neurology, University of Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu F, McCullough LD. Interactions between age, sex, and hormones in experimental ischemic stroke. Neurochem Int 2012; 61:1255-65. [PMID: 23068990 DOI: 10.1016/j.neuint.2012.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/27/2022]
Abstract
Age, sex, and gonadal hormones have profound effects on ischemic stroke outcomes, although how these factors impact basic stroke pathophysiology remains unclear. There is a plethora of inconsistent data reported throughout the literature, primarily due to differences in the species examined, the timing and methods used to evaluate injury, the models used, and confusion regarding differences in stroke incidence as seen in clinical populations vs. effects on acute neuroprotection or neurorepair in experimental stroke models. Sex and gonadal hormone exposure have considerable independent impact on stroke outcome, but these factors also interact with each other, and the contribution of each differs throughout the lifespan. The contribution of sex and hormones to experimental stroke will be the focus of this review. Recent advances and our current understanding of age, sex, and hormone interactions in ischemic stroke with a focus on inflammation will be discussed.
Collapse
Affiliation(s)
- Fudong Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | | |
Collapse
|
46
|
Lay CC, Davis MF, Chen-Bee CH, Frostig RD. Mild sensory stimulation protects the aged rodent from cortical ischemic stroke after permanent middle cerebral artery occlusion. J Am Heart Assoc 2012; 1:e001255. [PMID: 23130160 PMCID: PMC3487352 DOI: 10.1161/jaha.112.001255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/15/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Accumulated research has shown that the older adult brain is significantly more vulnerable to stroke than the young adult brain. Although recent evidence in young adult rats demonstrates that single-whisker stimulation can result in complete protection from ischemic damage after permanent middle cerebral artery occlusion (pMCAO), it remains unclear whether the same treatment would be effective in older animals. METHODS AND RESULTS Aged rats (21 to 24 months of age) underwent pMCAO and subsequently were divided into "treated" and "untreated" groups. Treated aged rats received intermittent single-whisker stimulation during a 120-minute period immediately after pMCAO, whereas untreated aged rats did not. These animals were assessed using a battery of behavioral tests 1 week before and 1 week after pMCAO, after which their brains were stained for infarct. An additional treated aged group and a treated young adult group also were imaged with functional imaging. Results demonstrated that the recovery of treated aged animals was indistinguishable from that of the treated young adult animals. Treated aged rats had fully intact sensorimotor behavior and no infarct, whereas untreated aged rats were impaired and sustained cortical infarct. CONCLUSIONS Taken together, our results confirm that single-whisker stimulation is protective in an aged rodent pMCAO model, despite age-associated stroke vulnerability. These findings further suggest potential for translation to the more clinically relevant older adult human population. (J Am Heart Assoc. 2012;1:e001255 doi: 10.1161/JAHA.112.001255.).
Collapse
Affiliation(s)
- Christopher C Lay
- Department of Neurobiology and Behavior, Irvine, CA (C.C.L., M.F.D., C.H.C.-B., R.D.F.) ; The Center for the Neurobiology of Learning and Memory, Irvine, CA (C.C.L., M.F.D., C.H.C.-B., R.D.F.) ; The Center for Hearing Research, University of California, Irvine, CA (C.C.L, R.D.F.)
| | | | | | | |
Collapse
|
47
|
Ankolekar S, Rewell S, Howells DW, Bath PMW. The Influence of Stroke Risk Factors and Comorbidities on Assessment of Stroke Therapies in Humans and Animals. Int J Stroke 2012; 7:386-97. [DOI: 10.1111/j.1747-4949.2012.00802.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The main driving force behind the assessment of novel pharmacological agents in animal models of stroke is to deliver new drugs to treat the human disease rather than to increase knowledge of stroke pathophysiology. There are numerous animal models of the ischaemic process and it appears that the same processes operate in humans. Yet, despite these similarities, the drugs that appear effective in animal models have not worked in clinical trials. To date, tissue plasminogen activator is the only drug that has been successfully used at the bedside in hyperacute stroke management. Several reasons have been put forth to explain this, but the failure to consider comorbidities and risk factors common in older people is an important one. In this article, we review the impact of the risk factors most studied in animal models of acute stroke and highlight the parallels with human stroke, and, where possible, their influence on evaluation of therapeutic strategies.
Collapse
Affiliation(s)
| | - Sarah Rewell
- Florey Neuroscience Institutes, Melbourne Brain Centre, Heidelberg, Australia
| | - David W. Howells
- Florey Neuroscience Institutes, Melbourne Brain Centre, Heidelberg, Australia
| | | |
Collapse
|
48
|
Macrae IM. Preclinical stroke research--advantages and disadvantages of the most common rodent models of focal ischaemia. Br J Pharmacol 2012; 164:1062-78. [PMID: 21457227 DOI: 10.1111/j.1476-5381.2011.01398.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review describes the most commonly used rodent models and outcome measures in preclinical stroke research and discusses their strengths and limitations. Most models involve permanent or transient middle cerebral artery occlusion with therapeutic agents tested for their ability to reduce stroke-induced infarcts and improve neurological deficits. Many drugs have demonstrated preclinical efficacy but, other than thrombolytics, which restore blood flow, none have demonstrated efficacy in clinical trials. This failure to translate efficacy from bench to bedside is discussed alongside achievable steps to improve the ability of preclinical research to predict clinical efficacy: (i) Improvements in study quality and reporting. Study design must include randomization, blinding and predefined inclusion/exclusion criteria, and journal editors have the power to ensure statements on these and mortality data are included in preclinical publications. (ii) Negative and neutral studies must be published to enable preclinical meta-analyses and systematic reviews to more accurately predict drug efficacy in man. (iii) Preclinical groups should work within networks and agree on standardized procedures for assessing final infarct and functional outcome. This will improve research quality, timeliness and translational capacity. (iv) Greater uptake and improvements in non-invasive diagnostic imaging to detect and study potentially salvageable penumbral tissue, the target for acute neuroprotection. Drug effects on penumbra lifespan studied serially, followed by assessment of behavioural outcome and infarct within in the same animal group, will increase the power to detect drug efficacy preclinically. Similar progress in detecting drug efficacy clinically will follow from patient recruitment into acute stroke trials based on evidence of remaining penumbra.
Collapse
Affiliation(s)
- I M Macrae
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
49
|
Moore TL, Killiany RJ, Pessina MA, Moss MB, Finklestein SP, Rosene DL. Recovery from ischemia in the middle-aged brain: a nonhuman primate model. Neurobiol Aging 2012; 33:619.e9-619.e24. [PMID: 21458887 PMCID: PMC3145025 DOI: 10.1016/j.neurobiolaging.2011.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/30/2011] [Accepted: 02/06/2011] [Indexed: 02/08/2023]
Abstract
Studies of recovery from stroke mainly utilize rodent models and focus primarily on young subjects despite the increased prevalence of stroke with age and the fact that recovery of function is more limited in the aged brain. In the present study, a nonhuman primate model of cortical ischemia was developed to allow the comparison of impairments in young and middle-aged monkeys. Animals were pretrained on a fine motor task of the hand and digits and then underwent a surgical procedure to map and lesion the hand-digit representation in the dominant motor cortex. Animals were retested until performance returned to preoperative levels. To assess the recovery of grasp patterns, performance was videotaped and rated using a scale adapted from human occupational therapy. Results demonstrated that the impaired hand recovers to baseline in young animals in 65-80 days and in middle-aged animals in 130-150 days. However, analysis of grasp patterns revealed that neither group recover preoperative finger thumb grasp patterns, rather they develop compensatory movements.
Collapse
Affiliation(s)
- Tara L Moore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Manwani B, McCullough LD. Sexual dimorphism in ischemic stroke: lessons from the laboratory. ACTA ACUST UNITED AC 2011; 7:319-39. [PMID: 21612353 DOI: 10.2217/whe.11.22] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ischemic stroke is emerging as a major health problem for elderly women. Women have lower stroke incidence than men until an advanced age, when the epidemiology of ischemic stroke shifts and incidence rises dramatically in women. Experimental models of rodent stroke have replicated this clinical epidemiology, with exacerbated injury in older compared with young female rodents. Many of the detrimental effects of aging on ischemic stroke outcome in females can be replicated by ovariectomy, suggesting that hormones such as estrogen play a neuroprotective role. However, emerging data suggest that the molecular mechanisms leading to ischemic cell death differ in the two sexes, and these effects may be independent of circulating hormone levels. This article highlights recent clinical and experimental literature on sex differences in stroke outcomes and mechanisms.
Collapse
Affiliation(s)
- Bharti Manwani
- Department of Neurology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|