1
|
Du ZQ, Xie JB, Ji SY, Zhou W, Tao ZS. Spermidine prevents iron overload-induced impaired bone mass by activating SIRT1/SOD2 signaling in senile rat model. Redox Rep 2025; 30:2485666. [PMID: 40173181 PMCID: PMC11966988 DOI: 10.1080/13510002.2025.2485666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Spermidine (SPD) is an organic compound known for its powerful antioxidant stress and anti-aging properties, and whether SPD has the ability to reduce bone mass in elderly iron overload rats is unknown. The study aimed to assess SPD's impact on iron overload-induced bone loss in elderly rats. In our aged rat model, we found that iron overload negatively influences bone metabolism and remodeling, resulting in decreased bone mineral density and increased bone loss. However, SPD treatment effectively alleviated these harmful effects, as shown by reduced serum levels of MDA and increased SOD and GSH levels. Additionally, SPD-treated rats exhibited enhanced bone mass and higher expression of OC, BMP2, SIRT1, and SOD2 in their bones. Moreover, SPD restored the imbalance in bone metabolism by counteracting the inhibition of osteogenic differentiation and promoting osteoclast differentiation induced by iron overload in MC3T3-E1 and RAW264.7 cells affected by EX527. In summary, our findings suggest that SPD's antioxidant properties may exert anti-osteoporosis effects through activation of the SIRT1/SOD2 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Qing Du
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, People’s Republic of China
| | - Jia-Bin Xie
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, People’s Republic of China
| | - Sheng-Yi Ji
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, People’s Republic of China
| | - Wanshu Zhou
- Department of Gerontology, The Second Affiliated Hospital of Wannan Medical College, Wuhu City, People’s Republic of China
| | - Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Wuhu, People’s Republic of China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, People’s Republic of China
| |
Collapse
|
2
|
Catapano A, Cimmino F, Petrella L, Pizzella A, D'Angelo M, Ambrosio K, Marino F, Sabbatini A, Petrelli M, Paolini B, Lucchin L, Cavaliere G, Cristino L, Crispino M, Trinchese G, Mollica MP. Iron metabolism and ferroptosis in health and diseases: The crucial role of mitochondria in metabolically active tissues. J Nutr Biochem 2025; 140:109888. [PMID: 40057002 DOI: 10.1016/j.jnutbio.2025.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/30/2025]
Abstract
Iron is essential in various physiological processes, but its accumulation leads to oxidative stress and cell damage, thus iron homeostasis has to be tightly regulated. Ferroptosis is an iron-dependent non-apoptotic regulated cell death characterized by iron overload and reactive oxygen species accumulation. Mitochondria are organelles playing a crucial role in iron metabolism and involved in ferroptosis. MitoNEET, a protein of mitochondrial outer membrane, is a key element in this process. Ferroptosis, altering iron levels in several metabolically active organs, is linked to several non-communicable diseases. For example, iron overload in the liver leads to hepatic fibrosis and cirrhosis, accelerating non-alcholic fatty liver diseases progression, in the muscle cells contributes to oxidative damage leading to sarcopenia, and in the brain is associated to neurodegeneration. The aim of this review is to investigate the intricate balance of iron regulation focusing on the role of mitochondria and oxidative stress, and analyzing the ferroptosis implications in health and disease.
Collapse
Affiliation(s)
- Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Margherita D'Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Katia Ambrosio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Annarita Sabbatini
- Dietetic and Clinical Nutrition Unit, IEO European Institute of Oncology IRCSS, Milan, Italy
| | - Massimiliano Petrelli
- Department of Clinical and Molecular Sciences, Clinic of Endocrinology and Metabolic Diseases, Università Politecnica delle Marche, Ancona, Italy
| | - Barbara Paolini
- Department of Innovation, experimentation and clinical research, Unit of dietetics and clinical nutrition, S. Maria Alle Scotte Hospital, University of Siena, Siena, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, Bolzano, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
3
|
Tavasoli A, Okwuegbuna OK, Tang B, Iudicello JE, Kallianpur AR, Ellis RJ, Letendre SL. Hepcidin modifies the relationship between anemia, erythrocyte indices, and neurocognitive performance in virally suppressed people with HIV. AIDS 2025; 39:658-666. [PMID: 39764772 DOI: 10.1097/qad.0000000000004110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/23/2024] [Indexed: 04/04/2025]
Abstract
OBJECTIVE Neurocognitive impairment in people with HIV (PWH) is associated with erythrocyte indices, which may serve as indicators of iron metabolism, inflammation, and related factors. Erythropoiesis requires iron, regulated by a multifaceted system of peptide hormones, including hepcidin. This study postulated that hepcidin might modify the relationship between erythrocyte indices and neurocognitive performance in PWH. METHODS Plasma hepcidin and erythrocyte indices were quantified in 88 virally suppressed PWH who underwent comprehensive neurocognitive assessments. Global neurocognitive performance was summarized by global T -scores. Associations of global T -scores with anemia and erythrocyte indices were determined in univariable analyses. To examine the influence of hepcidin on the relationship between neurocognitive performance and erythrocyte indices, we evaluated interactions between these covariates in relation to global T -scores and then performed stratified analyses. RESULTS In multivariable analyses, hepcidin detectability interacted with age ( P = 0.007) and mean corpuscular volume (MCV; P = 0.031) in relation to the global T -score. Interactions between anemia and erythrocyte indices on global T -scores were significant (anemia × MCV, P = 0.008; anemia × MCH, P = 0.011). Stratified analyses identified that lower global T -scores were associated with older age ( P = 0.001) and higher MCV ( P = 0.0046) and mean corpuscular hemoglobin (MCH, P = 0.026) only when hepcidin was undetectable. Among the anemic, worse global T -score was associated with higher MCV ( P = 0.001) and MCH ( P = 0.002). CONCLUSION Findings suggest that iron-related factors (hepcidin, anemia, MCV, MCH) and age influence neurocognitive health. This cross-sectional study underscores hepcidin as an effect modifier in the associations of erythrocyte indices, anemia, and age with neurocognitive function in PWH.
Collapse
Affiliation(s)
- Azin Tavasoli
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | | | - Bin Tang
- Department of Psychiatry, University of California San Diego, San Diego, CA
| | | | - Asha R Kallianpur
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Ronald J Ellis
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Scott L Letendre
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
4
|
Al-Awadhi A, Alwehaidah MS, Al-Sabaan K, Al-Ajmi N. Assessment of ferritin and hepcidin levels in splenectomised and non-splenectomised β-thalassemia major patients and exploring a potential correlation with von Willebrand factor and ADAMTS-13. Ann Hematol 2025:10.1007/s00277-025-06360-8. [PMID: 40232405 DOI: 10.1007/s00277-025-06360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Iron overload is a major complication in β-thalassemia major (β-TM) patients, resulting from ineffective erythropoiesis, increased gastrointestinal iron absorption and multiple blood transfusions. Excess iron accumulates in various organs, leading to organ dysfunction, and increased risk of thrombotic events. In this study we aim to determine levels of ferritin and its regulation hormone hepcidin in multi-transfused splenectomised and non-splenectomised β-thalassemia major patients and assess a possible correlation with the coagulation protein von Willebrand factor (vWF) and its cleaving protease ADAMTS-13. The study was conducted on 80 β-thalassemia major patients and 80 age- and sex-matched healthy controls. Plasma levels of vWF, ADAMTS-13, and hepcidin were assessed using the ELISA method. All patients presented with significantly higher levels of ferritin compared to normal controls (p < 0.001), while hepcidin levels were barely higher in patients (p = 0.05). Ferritin had a positive correlation with vWF antigen levels (r = 0.222, p = 0.05), ADAMTS-13 antigen levels (r = 0.334, p = 0.002) and ADAMTS-13 activity levels (r = 0.353, p = 0.001) in patients. Splenectomised patients had significantly higher levels of white blood cell counts, platelet counts and vWF antigen levels compared to non-splenectomised patients (p < 0.05), but ferritin and hepcidin levels were comparable between the two groups (p > 0.05). Hepcidin was not found to be correlated with any of the measured parameters in patients (p > 0.05). Iron overload is well manifested in our study group despite continuous chelation therapy. Unlike hepcidin, ferritin appeared to be associated with increased secretion of vWF and ADAMTS-13 in patients, while splenectomy had no effect on ferritin or hepcidin levels. These findings highlight the importance of proper iron monitoring in β-TM and recognition of thrombotic risks in managing this anemia.
Collapse
Affiliation(s)
- Anwar Al-Awadhi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait.
| | - Materah Salem Alwehaidah
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Kefayah Al-Sabaan
- Department of Hematology, Al-Farwaniya Hospital, Ministry of Health, Farwaniya, Kuwait
| | - Nouf Al-Ajmi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
5
|
Cingöz K, Gençoğlan G. Effects of biological agents on lipid profile and hemogram parameters in patients with psoriasis. Arch Dermatol Res 2025; 317:692. [PMID: 40208364 DOI: 10.1007/s00403-025-04192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
The effects of biological agents on laboratory parameters in patients with psoriasis remain incompletely characterized, with conflicting data reported. To investigate the effects of five biological agents on lipid profiles, hemogram parameters, inflammatory markers, and their correlation with disease activity in psoriasis patients. This retrospective study analyzed hemogram parameters (n = 153) and lipid profiles (n = 124) in psoriasis patients treated with adalimumab, etanercept, infliximab, ustekinumab, or secukinumab for ≥ 6 months. Parameters were evaluated at baseline, week 12, and week 24. Patients with conditions potentially affecting these parameters were excluded. Platelet counts decreased significantly in etanercept and secukinumab groups (p < 0.001, p < 0.05) and all patients (p < 0.001). Lymphocyte counts increased in adalimumab and etanercept groups (p < 0.001, p < 0.01) and all patients (p < 0.001). Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio decreased significantly in adalimumab, etanercept, secukinumab groups (p < 0.05). Triglyceride levels increased in the ustekinumab group (10.91%) and all patients (3.2%) (p < 0.05). Total cholesterol, LDL, HDL, and atherogenic index showed no significant changes. A strong positive correlation was found between neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio changes (r = 0.646, p < 0.001). Biological agents have specific effects on hematological and lipid parameters in psoriasis patients. The observed changes in inflammatory markers and triglycerides suggest the importance of laboratory monitoring during biological therapy.
Collapse
Affiliation(s)
- Kağan Cingöz
- Private Practice, Kagan Cingoz Dermatology Clinic, Kırklareli, Turkey.
| | - Gülsüm Gençoğlan
- Department of Dermatology and Venereology, Liv Hospital Vadi İstanbul, Istinye University, Istanbul, 34010, Turkey
| |
Collapse
|
6
|
Rosson S, Pavord S. Understanding hepcidin for iron management in pregnancy. Transfus Med 2025; 35:109-115. [PMID: 39873179 PMCID: PMC11999002 DOI: 10.1111/tme.13125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/29/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Iron deficiency anaemia (IDA) poses a significant health challenge during pregnancy, affecting up to 30% of pregnant women in the UK. It has been linked to poor health outcomes for the mother, foetus, and the infant. Despite its prevalence and impact, current diagnostic and therapeutic approaches are limited. Ensuring an adequate iron status in pregnancy requires prompt investigation and treatment whilst avoiding excessive iron supplementation and its associated side effects. Hepcidin, a key regulator of iron trafficking in the body, has emerged as a promising candidate for tailoring iron supplementation to individual needs and responsiveness. However, current research on hepcidin-based approaches yields mixed findings, necessitating a comprehensive review to elucidate its potential utility in guiding iron therapy for pregnant women with IDA. This literature review seeks to synthesise existing evidence to explore the role of hepcidin in personalised iron supplementation for pregnant women with IDA and to identify avenues for future research to pave the way for improved management of IDA in pregnancy.
Collapse
Affiliation(s)
- Sarah Rosson
- SUWON (Surgery, Oncology and Womens), Department of HaematologyUniversity of OxfordOxfordUK
| | - Sue Pavord
- SUWON (Surgery, Oncology and Womens), Department of HaematologyUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Rolić T, Yazdani M, Mandić S, Distante S. Iron Metabolism, Calcium, Magnesium and Trace Elements: A Review. Biol Trace Elem Res 2025; 203:2216-2225. [PMID: 38969940 PMCID: PMC11920315 DOI: 10.1007/s12011-024-04289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Iron (Fe) is fundamental to life on earth. In the human body, it is both essential and harmful if above threshold. A similar balance applies to other elements: calcium (Ca), magnesium (Mg), and trace elements including copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), mercury (Hg), and nickel (Ni). These elements share some proteins involved in the absorption and transport of Fe. Cu and Cd can inhibit Fe absorption, while excess of Fe may antagonize Cu metabolism and reduce ceruloplasmin (Cp). Excessive Fe can hinder Zn absorption and transferrin (Trf) can bind to both Zn and Ni. Ca is able to inhibit the divalent metal transporter 1 (DMT1) in a dose-dependent manner to reduce Fe absorption and low Mg concentrations can exacerbate Fe deficiency. Pb competitively inhibits Fe distribution and elevated Cd absorption reduces Fe uptake. Exposure to Hg is associated with higher ferritin concentrations and Ni alters intracellular Fe metabolism. Fe removal by phlebotomy in hemochromatosis patients has shown to increase the levels of Cd and Pb and alter the concentrations of trace elements in some types of anemia. Yet, the effects of chronic exposure of most trace elements remain poorly understood.
Collapse
Affiliation(s)
- Tara Rolić
- Faculty of Medicine, University of Osijek, Osijek, Croatia
- Osijek University Hospital Centre (Klinički bolnički centar Osijek), Osijek, Croatia
| | | | - Sanja Mandić
- Faculty of Medicine, University of Osijek, Osijek, Croatia
| | | |
Collapse
|
8
|
Ali I, Muhammad S, Naqvi SSZH, Wei L, Yan W, Khan MF, Mahmood A, Liu H, Shah W. Hepatitis B Virus-Associated Liver Carcinoma: The Role of Iron Metabolism and Its Modulation. J Viral Hepat 2025; 32:e14016. [PMID: 39445513 DOI: 10.1111/jvh.14016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/17/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Hepatitis B virus (HBV) infection is a significant contributor to the development of hepatocellular carcinoma (HCC), a leading cause of cancer-related mortality worldwide. Iron, a central co-factor in various metabolic pathways, plays an essential role in liver function, but its dysregulation can lead to severe health consequences. Accumulation of iron within hepatic cells over time is linked to increased liver injury and is strongly associated with sensitive exposure to a range of conditions, including cirrhosis, fibrosis and ultimately, HCC. This review explores the intricate interplay between iron metabolism and HCC within the context of HBV infection. Hepatic iron overload can arise from liver injury and disruptions in iron homeostasis, causing hepatic necrosis, inflammation, and fibrosis, ultimately culminating in carcinogenesis. Moreover, alterations in serum iron components in HBV-related scenarios have been observed to impact the persistence of HBV infection. Notably, the progression of HBV-associated liver damage exhibits distinct characteristics at various stages of liver disease. In addition to elucidating the complex relationship between iron metabolism and HCC in the context of HBV infection, this review also investigates the prognostic implications of systemic iron levels for HCC. Furthermore, it aims to provide a comprehensive understanding of the intricate interplay between iron metabolism and HCC, extending the discussion to the context of hepatitis C virus (HCV) infection. By shedding light on these multifaceted connections, this review aims to contribute to our understanding of the pathogenesis of HBV-associated HCC and potentially identify novel therapeutic avenues for intervention.
Collapse
Affiliation(s)
- Imran Ali
- Department of General Surgery, Subspecialty Hepatobiliary Surgery, Shanxi First Medical Hospital Affiliated With Shanxi Medical University, Yangzi Qu, Taiyuan, China
| | - Shoaib Muhammad
- Department of Urology, First Hospital of Shanxi Medical University, Yangzi Qu, Taiyuan, China
| | - Syed Shah Zaman Haider Naqvi
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences; Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Lingxi Wei
- Laboratory of Physiology, Shanxi Medical University, Jing Zhong, China
| | - Wenqi Yan
- Shandong University, Ji Nan, Shandong, China
| | - Muhammad Fiaz Khan
- Department of Zoology, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Ahmad Mahmood
- Department of Hepatobiliary and Echinococcosis Surgery, Digestive and Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong Liu
- Department of General Surgery, Subspecialty Hepatobiliary Surgery, Shanxi First Medical Hospital Affiliated With Shanxi Medical University, Yangzi Qu, Taiyuan, China
| | - Wahid Shah
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Kesharwani P, Dash D, Koiri RK. Deciphering the role of hepcidin in iron metabolism and anemia management. J Trace Elem Med Biol 2025; 87:127591. [PMID: 39813816 DOI: 10.1016/j.jtemb.2025.127591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
One of the most common diseases worldwide is anemia, which is characterized by insufficient erythrocyte production. Numerous complex factors, such as chronic diseases, genetic mutations, and nutritional inadequacies, contribute to this widespread syndrome. This review focuses specifically on anemias caused by defective hepcidin production. Hepcidin, a peptide hormone produced primarily by liver cells, plays a crucial role in regulating iron levels by controlling its absorption. Hepcidin's mechanism of action involves binding to the ferroportin iron transporter, causing its internalization. Disturbances in iron metabolism can have far-reaching consequences, affecting not only the blood but also organs like the liver, kidneys, and brain. Iron homeostasis is crucial for maintaining optimal physiological function. Several blood-based markers are employed to assess iron stores. However, these markers have inherent limitations. Hepcidin, a key regulator of iron metabolism, plays a pivotal role in preventing iron release into the plasma from absorptive enterocytes and macrophages. Elucidating the structure and function of hepcidin is essential for understanding its role in iron homeostasis, which has significant implications for the diagnosis and management of various anemia subtypes. A well-established correlation exists between hepcidin dysregulation and iron deficiency. Despite its potential as a biomarker, the clinical application of hepcidin is hindered by the lack of a commercially available, clinically validated assay. This review aims to provide a comprehensive overview of hepcidin's role in regulating blood iron concentrations and elucidate its implications in the pathogenesis of various anemia subtypes, paving the way for its future applications in research and clinical practice.
Collapse
Affiliation(s)
- Palak Kesharwani
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Debabrata Dash
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Raj Kumar Koiri
- Biochemistry Laboratory, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
10
|
Chatzikalil E, Arvanitakis K, Kalopitas G, Florentin M, Germanidis G, Koufakis T, Solomou EE. Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches. Cancers (Basel) 2025; 17:392. [PMID: 39941760 PMCID: PMC11815926 DOI: 10.3390/cancers17030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is rising in global incidence and mortality. Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disease, is strongly linked to metabolic conditions that can progress to liver cirrhosis and HCC. Iron overload (IO), whether inherited or acquired, results in abnormal iron hepatic deposition, significantly impacting MASLD development and progression to HCC. While the pathophysiological connections between hepatic IO, MASLD, and HCC are not fully understood, dysregulation of glucose and lipid metabolism and IO-induced oxidative stress are being investigated as the primary drivers. Genomic analyses of inherited IO conditions reveal inconsistencies in the association of certain mutations with liver malignancies. Moreover, hepatic IO is also associated with hepcidin dysregulation and activation of ferroptosis, representing promising targets for HCC risk assessment and therapeutic intervention. Understanding the relationship between hepatic IO, MASLD, and HCC is essential for advancing clinical strategies against liver disease progression, particularly with recent IO-targeted therapies showing potential at improving liver biochemistry and insulin sensitivity. In this review, we summarize the current evidence on the pathophysiological association between hepatic IO and the progression of MASLD to HCC, underscoring the importance of early diagnosis, risk stratification, and targeted treatment for these interconnected conditions.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Matilda Florentin
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
11
|
Qiu L, Frazer DM, Hu M, Song R, Liu X, Qin X, Ma J, Zhou J, Tan Z, Ren F, Collins JF, Wang X. Mechanism and regulation of iron absorption throughout the life cycle. J Adv Res 2025:S2090-1232(25)00002-5. [PMID: 39814221 DOI: 10.1016/j.jare.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Iron plays a crucial role through various life stages of human. Iron homeostasis is primarily regulated by iron absorption which is mediated via divalent metal-ion transporter 1 (DMT1), and iron export protein ferroportin (FPN), as there is no active pathway for iron excretion from the body. Recent studies have shown that the magnitude of iron absorption changes through various life stages to meet changing iron requirements. AIM OF REVIEW This review aims to provide an overview of recent researches on the regulation of iron absorption throughout mammalian life cycle, with the potential to reveal novel molecules and pathways at special stage of life. Such insights may pave the way for new treatments for disorders associated with aberrant iron homeostasis in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first summarize the mechanism and regulation of iron absorption throughout various life stages, highlighting that regulatory mechanisms have developed to precisely align iron absorption to iron requirements. In adults, iron absorption is enhanced when body is deficient of iron, conversely, iron absorption is reduced when iron demand decreases via systemic regulator Hepcidin and cellular regulation. In the elderly, age-related inflammation, hormonal changes, and chronic diseases may affect the production of Hepcidin, affecting iron absorption. In infants, intestinal iron absorption and its regulatory mechanism are different from that in adults and there might be an alternative pathway independent of DMT1 and FPN due to high iron absorption. Unique to the fetus, iron is absorbed from maternal stores for its own use through the placenta and is regulated by maternal iron status. This review also proposes directions for further studies, offering promising avenues for developing new treatments for disorders associated with aberrant iron homeostasis.
Collapse
Affiliation(s)
- Lili Qiu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - David M Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Herston 4029 Australia
| | - Mengxiao Hu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Rui Song
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Xiaoxue Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083 China
| | - Xiyu Qin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Jie Ma
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Jun Zhou
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Zidi Tan
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China
| | - Fazheng Ren
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083 China
| | - James F Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Xiaoyu Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083 China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083 China.
| |
Collapse
|
12
|
Langa D, Naczyk M, Szymczak RK, Karbowska J, Kochan Z. A Preliminary Study of Nutrients Related to the Risk of Relative Energy Deficiency in Sport (RED-S) in Top-Performing Female Amateur Triathletes: Results from a Nutritional Assessment. Nutrients 2025; 17:208. [PMID: 39861337 PMCID: PMC11767317 DOI: 10.3390/nu17020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: As an endurance multi-sport race, triathlon places significant energy demands on athletes during performance and training. Insufficient energy intake from food can lead to low energy availability (LEA) and Relative Energy Deficiency in Sport (RED-S). We aimed to measure symptoms related to LEA, examine the risk of RED-S, and find how diet relates to the risk of RED-S in highly trained female amateur triathletes. Methods: Our sample was 20 top-performing female triathletes competing in Quarter Ironman (IM), Half IM, IM, or Double IM triathlons for 5.5 ± 2.5 y who were during the preparatory phase of training (training load 11 ± 3.76 h/week, a single workout 84 ± 25 min). Triathletes completed 3-day food diaries, training diaries, and the Low Energy Availability in Females Questionnaire (LEAF-Q). Exercise energy expenditure was estimated using wrist-worn activity trackers. To examine dietary patterns related to the first signs of LEA, predating RED-S, we created two groups: the L-LEA group (LEAF-Q score 0-5, no symptoms related to LEA, low risk of RED-S, n = 10) and the H-LEA group (LEAF-Q ≥ 6, at least one LEA-related symptom, high risk of RED-S, n = 10). Results: The risk of RED-S was prevalent in 30% of female triathletes, and 50% showed at least one symptom related to LEA. Macronutrient intake was similar in all participants, but triathletes from the H-LEA group tended to eat more plant-sourced protein and fiber. They consumed less saturated fatty acids but ingested more significant amounts of n-6 polyunsaturated fatty acids (PUFAn6). Conclusions: We conclude that foods higher in plant proteins, fiber, and PUFAn6 might predispose female triathletes to LEA by reducing the diet's energy density.
Collapse
Affiliation(s)
- Dorota Langa
- Laboratory of Nutritional Biochemistry, Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdansk, Poland; (D.L.); (M.N.)
| | - Marta Naczyk
- Laboratory of Nutritional Biochemistry, Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdansk, Poland; (D.L.); (M.N.)
| | - Robert K. Szymczak
- Department of Emergency Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Joanna Karbowska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Zdzislaw Kochan
- Laboratory of Nutritional Biochemistry, Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdansk, Poland; (D.L.); (M.N.)
| |
Collapse
|
13
|
Rangwala BS, Zuhair V, Mustafa MS, Mussarat A, Khan AW, Danish F, Fatima Zaidi SM, Rehman FU, Shafique MA. Ferric carboxymaltose for iron deficiency in patients with heart failure: a systematic review and meta-analysis. Future Sci OA 2024; 10:2367956. [PMID: 38982752 PMCID: PMC11238921 DOI: 10.1080/20565623.2024.2367956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Aim: Iron deficiency (ID) is associated with heart failure (HF) in a considerable proportion of patients. To improve the quality of life, lower the frequency of hospitalizations, and lower mortality rates of chronic HF patients (HF), this meta-analysis will look into the role of iron supplementation using ferric carboxymaltose (FCM). Methods & results: From inception until 1 October 2023, we conducted a thorough literature search of electronic databases for peer-reviewed publications. Around 5229 HF patients were included, of which 2691 received FCM while 2538 received placebo. Conclusion: FCM reduces HF-related hospitalizations but doesn't improve overall or cardiovascular mortality in those with HF and ID. The overall results support FCM's role in managing iron deficiency in heart failure.
Collapse
Affiliation(s)
| | - Varisha Zuhair
- Department of Medicine, Jinnah Sindh Medical University, Karachi, 75510, Pakistan
| | | | - Abdullah Mussarat
- Department of Medicine, Jinnah Sindh Medical University, Karachi, 75510, Pakistan
| | - Aimen Waqar Khan
- Department of Medicine, Jinnah Sindh Medical University, Karachi, 75510, Pakistan
| | - Fnu Danish
- Department of Medicine, Jinnah Sindh Medical University, Karachi, 75510, Pakistan
| | | | - Faizan ur Rehman
- Department of Medicine, Dow University of Health Sciences, Karachi, 74200, Pakistan
| | | |
Collapse
|
14
|
Davaanyam D, Seol SI, Oh SA, Lee H, Lee JK. Hepatocyte activation and liver injury following cerebral ischemia promote HMGB1-mediated hepcidin upregulation in hepatocytes and regulation of systemic iron levels. Exp Mol Med 2024; 56:2171-2183. [PMID: 39349828 PMCID: PMC11541749 DOI: 10.1038/s12276-024-01314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/24/2024] [Indexed: 10/03/2024] Open
Abstract
We previously reported that high mobility group box 1 (HMGB1), a danger-associated molecular pattern (DAMP), increases intracellular iron levels in the postischemic brain by upregulating hepcidin, a key regulator of iron homeostasis, triggering ferroptosis. Since hepatocytes are the primary cells that produce hepcidin and control systemic iron levels, we investigated whether cerebral ischemia induces hepcidin upregulation in hepatocytes. Following middle cerebral artery occlusion (MCAO) in a rodent model, significant liver injury was observed. This injury was evidenced by significantly elevated Eckhoff's scores and increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Additionally, total iron levels were significantly elevated in the liver, with intracellular iron accumulation detected in hepatocytes. Hepcidin expression in the liver, which is primarily localized in hepatocytes, increased significantly starting at 3 h after MCAO and continued to increase rapidly, reaching a peak at 24 h. Interestingly, HMGB1 levels in the liver were also significantly elevated after MCAO, with the disulfide form of HMGB1 being the major subtype. In vitro experiments using AML12 hepatocytes showed that recombinant disulfide HMGB1 significantly upregulated hepcidin expression in a Toll-like receptor 4 (TLR4)- and RAGE-dependent manner. Furthermore, treatment with a ROS scavenger and a peptide HMGB1 antagonist revealed that both ROS generation and HMGB1 induction contributed to hepatocyte activation and liver damage following MCAO-reperfusion. In conclusion, this study revealed that cerebral ischemia triggers hepatocyte activation and liver injury. HMGB1 potently induces hepcidin not only in the brain but also in the liver, thereby influencing systemic iron homeostasis following ischemic stroke.
Collapse
Affiliation(s)
- Dashdulam Davaanyam
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea
| | - Song-I Seol
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea
| | - Sang-A Oh
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea
| | - Hahnbi Lee
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea.
| |
Collapse
|
15
|
Cao PHA, Dominic A, Lujan FE, Senthilkumar S, Bhattacharya PK, Frigo DE, Subramani E. Unlocking ferroptosis in prostate cancer - the road to novel therapies and imaging markers. Nat Rev Urol 2024; 21:615-637. [PMID: 38627553 DOI: 10.1038/s41585-024-00869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Ferroptosis is a distinct form of regulated cell death that is predominantly driven by the build-up of intracellular iron and lipid peroxides. Ferroptosis suppression is widely accepted to contribute to the pathogenesis of several tumours including prostate cancer. Results from some studies reported that prostate cancer cells can be highly susceptible to ferroptosis inducers, providing potential for an interesting new avenue of therapeutic intervention for advanced prostate cancer. In this Perspective, we describe novel molecular underpinnings and metabolic drivers of ferroptosis, analyse the functions and mechanisms of ferroptosis in tumours, and highlight prostate cancer-specific susceptibilities to ferroptosis by connecting ferroptosis pathways to the distinctive metabolic reprogramming of prostate cancer cells. Leveraging these novel mechanistic insights could provide innovative therapeutic opportunities in which ferroptosis induction augments the efficacy of currently available prostate cancer treatment regimens, pending the elimination of major bottlenecks for the clinical translation of these treatment combinations, such as the development of clinical-grade inhibitors of the anti-ferroptotic enzymes as well as non-invasive biomarkers of ferroptosis. These biomarkers could be exploited for diagnostic imaging and treatment decision-making.
Collapse
Affiliation(s)
- Pham Hong Anh Cao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Abishai Dominic
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fabiola Ester Lujan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sanjanaa Senthilkumar
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signalling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Elavarasan Subramani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Brown CV, Patrician A, Tremblay JC, Brewster LM, Barak O, Drvis I, Dujic G, Dujic Z, Ainslie PN. Cardiovascular and hematological responses to a dry dynamic apnea in breath hold divers. Am J Physiol Regul Integr Comp Physiol 2024; 327:R442-R456. [PMID: 39102462 DOI: 10.1152/ajpregu.00081.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
The mammalian dive reflex, characterized by bradycardia and peripheral vasoconstriction, occurs in all mammals, including humans, in response to apnea. However, the dive reflex to a single, maximal, dry, dynamic apnea (DYN) and how it compares to a time-matched exercise control trial (EX) or dry static apnea (SA) has not been studied. We examined the hypotheses that, compared with EX and SA, the magnitude of the 1) cardiovascular response and 2) hematological response to DYN would be greater. Cardiovascular parameters [heart rate (HR), systolic (SBP), diastolic (DBP), and mean arterial (MAP) blood pressure] were continuously collected in 23 (F = 6 females) moderate and elite freedivers, first during a maximal DYN, then during a time-matched SA and EX on a swimming ergometer in randomized order. Venous blood draws were made before and following each trial. The change in calculated oxygen saturation (DYN: -17 ± 13%, EX: -2 ± 1%, ΔSA: -2 ± 1%; P < 0.05, all comparisons) was greater during DYN compared with EX and SA. During DYN, ΔSBP (DYN: 104 ± 31 mmHg; EX: 38 ± 23 mmHg; and SA: 20 ± 11 mmHg), ΔDBP (DYN: 45 ± 12 mmHg; EX: 14 ± 10 mmHg; and SA: 15 ± 8 mmHg), and ΔMAP (DYN: 65 ± 17 mmHg; EX: 22 ± 13 mmHg; and SA: 16 ± 9 mmHg) were increased compared with EX and SA, while ΔHR was greater during EX (DYN: -24 ± 23 beats/min; EX: 33 ± 13 beats/min; and SA: -1 ± 10 beats/min) than either DYN or SA (P < 0.0001, all comparisons). Females had a greater pressor response to EX (ΔSBP: 59 ± 30 mmHg; ΔDBP: 24 ± 14 mmHg; and ΔMAP: 35 ± 8 mmHg) than males (ΔSBP: 31 ± 15 mmHg; ΔDBP: 11 ± 6 mmHg; and ΔMAP: 18 ± 8 mmHg; P < 0.01, all comparisons). Together, these data indicate that DYN elicits a distinct, exaggerated cardiovascular response compared with EX or SA alone.NEW & NOTEWORTHY This study performed a dry dynamic apnea with sport-specific equipment to closely mimic the physiological demands of competition diving. We found the cardiovascular and hematological responses to dynamic apnea were more robust compared with time-matched exercise and dry static apnea control trials.
Collapse
Affiliation(s)
- Courtney V Brown
- School of Health and Exercise Science, University of British Columbia Okanagan, British Columbia, Canada
| | - Alexander Patrician
- School of Health and Exercise Science, University of British Columbia Okanagan, British Columbia, Canada
| | - Joshua C Tremblay
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - L Madden Brewster
- School of Health and Exercise Science, University of British Columbia Okanagan, British Columbia, Canada
| | - Otto Barak
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Drvis
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Goran Dujic
- Clinical Department of Diagnostic and Interventional Radiology, University Hospital of Split, Split, Croatia
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Šoltanska, Split, Croatia
| | - Philip N Ainslie
- School of Health and Exercise Science, University of British Columbia Okanagan, British Columbia, Canada
| |
Collapse
|
17
|
Modi NB, Shames R, Lickliter JD, Gupta S. Pharmacokinetics, pharmacodynamics, and tolerability of an aqueous formulation of rusfertide (PTG-300), a hepcidin mimetic, in healthy volunteers: A double-blind first-in-human study. Eur J Haematol 2024; 113:340-350. [PMID: 38785334 DOI: 10.1111/ejh.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES Rusfertide is a potent peptide mimetic of hepcidin being investigated for the treatment of polycythemia vera. This randomized, placebo-controlled, double-blind study evaluated the safety, pharmacokinetics, and pharmacodynamics of single and repeated subcutaneous doses of an aqueous formulation of rusfertide in healthy adult males. METHODS Subjects received single doses of 1, 3, 10, 20, 40, or 80 mg rusfertide or placebo. A separate cohort of subjects received two doses of 40 mg rusfertide or placebo 1 week apart. Blood samples for pharmacokinetics and pharmacodynamics were collected, and adverse events, clinical laboratory tests, 12-lead electrocardiograms, and vital signs were monitored. RESULTS Rusfertide was well tolerated. There were no serious or severe treatment-emergent adverse events, and no patterns of clinically important adverse events, or laboratory, vital sign, or electrocardiogram abnormalities. Mean maximum rusfertide plasma concentration (Cmax) and area under the concentration-time curve increased with dose, but less than dose proportionally. Median time to Cmax was 2-4.5 h for 40 and 80 mg rusfertide and 8-24 h for lower doses. Apparent clearance and half-life increased with dose. Single doses of rusfertide 1-80 mg were associated with dose-dependent decreases in serum iron and transferrin-iron saturation. CONCLUSIONS Rusfertide was well tolerated and showed dose-dependent pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Nishit B Modi
- Protagonist Therapeutics, Inc., Newark, California, USA
| | | | | | - Suneel Gupta
- Protagonist Therapeutics, Inc., Newark, California, USA
| |
Collapse
|
18
|
Farrell R, Pascuzzi N, Chen YL, Kim M, Torres M, Gollahon L, Chen KHE. Prolactin Drives Iron Release from Macrophages and Uptake in Mammary Cancer Cells through CD44. Int J Mol Sci 2024; 25:8941. [PMID: 39201626 PMCID: PMC11354873 DOI: 10.3390/ijms25168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Iron is an essential element for human health. In humans, dysregulated iron homeostasis can result in a variety of disorders and the development of cancers. Enhanced uptake, redistribution, and retention of iron in cancer cells have been suggested as an "iron addiction" pattern in cancer cells. This increased iron in cancer cells positively correlates with rapid tumor growth and the epithelial-to-mesenchymal transition, which forms the basis for tumor metastasis. However, the source of iron and the mechanisms cancer cells adopt to actively acquire iron is not well understood. In the present study, we report, for the first time, that the peptide hormone, prolactin, exhibits a novel function in regulating iron distribution, on top of its well-known pro-lactating role. When stimulated by prolactin, breast cancer cells increase CD44, a surface receptor mediating the endocytosis of hyaluronate-bound iron, resulting in the accumulation of iron in cancer cells. In contrast, macrophages, when treated by prolactin, express more ferroportin, the only iron exporter in cells, giving rise to net iron output. Interestingly, when co-culturing macrophages with pre-stained labile iron pools and cancer cells without any iron staining, in an iron free condition, we demonstrate direct iron flow from macrophages to cancer cells. As macrophages are one of the major iron-storage cells and it is known that macrophages infiltrate tumors and facilitate their progression, our work therefore presents a novel regulatory role of prolactin to drive iron flow, which provides new information on fine-tuning immune responses in tumor microenvironment and could potentially benefit the development of novel therapeutics.
Collapse
Affiliation(s)
- Reagan Farrell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Nicholas Pascuzzi
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Yi-Ling Chen
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Mary Kim
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Miguel Torres
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Kuan-Hui Ethan Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| |
Collapse
|
19
|
Bozadjieva-Kramer N, Shin JH, Blok NB, Jain C, Das NK, Polex-Wolf J, Knudsen LB, Shah YM, Seeley RJ. Liraglutide Impacts Iron Homeostasis in a Murine Model of Hereditary Hemochromatosis. Endocrinology 2024; 165:bqae090. [PMID: 39045670 PMCID: PMC11311705 DOI: 10.1210/endocr/bqae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Classic hereditary hemochromatosis (HH) is an autosomal recessive iron-overload disorder resulting from loss-of-function mutations of the HFE gene. Patients with HH exhibit excessive hepatic iron accumulation that predisposes these patients to liver disease, including the risk for developing liver cancer. Chronic iron overload also poses a risk for the development of metabolic disorders such as obesity, type 2 diabetes, and insulin resistance. We hypothesized that liraglutide, GLP1 receptor agonist, alters iron metabolism while also reducing body weight and glucose tolerance in a mouse model of HH (global HFE knockout, HFE KO) and diet-induced obesity and glucose intolerance. The total body HFE KO and wild-type control mice were fed high-fat diet for 8 weeks. Mice were subdivided into liraglutide and vehicle-treated groups and received daily subcutaneous administration of the respective treatment once daily for 18 weeks. Liraglutide improved glucose tolerance and hepatic lipid markers and reduced body weight in a mouse model of HH, the HFE KO mouse, similar to wild-type controls. Importantly, our data show that liraglutide alters iron metabolism in HFE KO mice, leading to decreased circulating and stored iron levels in HFE KO mice. These observations highlight the potential that GLP1 receptor agonist could be used to reduce iron overload in addition to reducing body weight and improving glucose regulation in HH patients.
Collapse
Affiliation(s)
- Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, MI 48105, USA
| | - Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Neil B Blok
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chesta Jain
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nupur K Das
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Yatrik M Shah
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Aguree S, Owora A, Hawkins M, Gletsu-Miller N. Obesity modifies the association between diabetes and iron biomarkers and red cell indices in reproductive-aged women in the United States. J Investig Med 2024; 72:425-437. [PMID: 38445643 DOI: 10.1177/10815589241240059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Obesity and diabetes are associated with impaired iron metabolism. We aimed to examine the independent relationship between diabetes and iron after controlling for body weight (or obesity) in women aged 20-49 years. The National Health and Nutrition Examination Survey data from 2015 to 2018 were used in this investigation. Body composition data, HbAc1, iron biomarkers (serum ferritin (SF), soluble transferrin receptor (sTfR), and body iron index (BII)), mean corpuscular volume (MCV), mean hemoglobin concentration (MCH), red cell distribution width (RDW), and hemoglobin were used. Linear regression models were used to examine how and to what extent body mass index (BMI) modified the relationship between diabetes and iron status biomarkers. A total of 1834 women aged 20-49 were included in the analysis with a mean (SD) age of 32 .2 ± 6.1 years and BMI of 29.5 ± 6.9 kg/m2. The mean SF (p = 0.014) and BII (p < 0.001) were lower, while sTfR (p < 0.001) was higher in women with diabetes than those with no diabetes. Mean estimates for MCV and MCH were lower, while RDW (p = 0.001) was higher in diabetes patients (all p < 0.001). Women with diabetes were more likely to have iron deficiency, anemia, and iron deficiency anemia than those without diabetes (18.1% vs 8.6%, p < 0.001), (24.4% vs 8.4%, p < 0.001), and (14.8% vs 5.2%, p < 0.001), respectively. Among women with obesity, those with diabetes had lower predicted ferritin (β = -0.19, p = 0.016), BII (β = -0.99, p = 0.016), and hemoglobin (β = -0.27, p = 0.042) than those without diabetes. The study shows that diabetes is linked to lower iron stores; this is exacerbated in those with obesity.
Collapse
Affiliation(s)
- Sixtus Aguree
- Department of Applied Health Science, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
| | - Arthur Owora
- Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Misty Hawkins
- Department of Health and Wellness Design, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Nana Gletsu-Miller
- Department of Applied Health Science, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
| |
Collapse
|
21
|
Naelitz BD, Khooblall PS, Parekh NV, Vij SC, Rotz SJ, Lundy SD. The effect of red blood cell disorders on male fertility and reproductive health. Nat Rev Urol 2024; 21:303-316. [PMID: 38172196 DOI: 10.1038/s41585-023-00838-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Male infertility is defined as a failure to conceive after 12 months of unprotected intercourse owing to suspected male reproductive factors. Non-malignant red blood cell disorders are systemic conditions that have been associated with male infertility with varying severity and strength of evidence. Hereditary haemoglobinopathies and bone marrow failure syndromes have been associated with hypothalamic-pituitary-gonadal axis dysfunction, hypogonadism, and abnormal sperm parameters. Bone marrow transplantation is a potential cure for these conditions, but exposes patients to potentially gonadotoxic chemotherapy and/or radiation that could further impair fertility. Iron imbalance might also reduce male fertility. Thus, disorders of hereditary iron overload can cause iron deposition in tissues that might result in hypogonadism and impaired spermatogenesis, whereas severe iron deficiency can propagate anaemias that decrease gonadotropin release and sperm counts. Reproductive urologists should be included in the comprehensive care of patients with red blood cell disorders, especially when gonadotoxic treatments are being considered, to ensure fertility concerns are appropriately evaluated and managed.
Collapse
Affiliation(s)
- Bryan D Naelitz
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Prajit S Khooblall
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Neel V Parekh
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sarah C Vij
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Seth J Rotz
- Department of Paediatric Hematology and Oncology, Cleveland Clinic Children's Hospital, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Scott D Lundy
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
22
|
Cohen CT, Powers JM. Nutritional Strategies for Managing Iron Deficiency in Adolescents: Approaches to a Challenging but Common Problem. Adv Nutr 2024; 15:100215. [PMID: 38556251 PMCID: PMC11070695 DOI: 10.1016/j.advnut.2024.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Iron deficiency (ID) is a common and challenging problem in adolescence. In order to prevent, recognize, and treat ID in this age range, it is critical to understand the recommended daily intake of iron in relation to an adolescent's activity, dietary habits, and basal iron losses. Adolescents following vegetarian or vegan diets exclusively rely on plant-based, nonheme iron, which has decreased bioavailability compared with heme iron and requires increased total iron intake. Individuals with disordered eating habits, excessive menstrual blood loss, and certain chronic health conditions (including inflammatory bowel disease and heart failure) are at high risk of ID and the development of symptomatic iron deficiency anemia (IDA). Adolescent athletes and those with sleep and movement disorders may also be more sensitive to changes in iron status. Iron deficiency is typically treated with oral iron supplementation. To maximize iron absorption, oral iron should be administered no more than once daily, ideally in the morning, while avoiding foods and drinks that inhibit iron absorption. Oral iron therapy should be provided for ≥3 mo in the setting of ID to reach a ferritin of 20 ng/mL before discontinuation. Intravenous iron is being increasingly used in this population and has demonstrated efficacy and safety in adolescents. It should be considered in those with persistent ID despite a course of oral iron, severe and/or symptomatic IDA, and chronic inflammatory conditions characterized by decreased gastrointestinal iron absorption.
Collapse
Affiliation(s)
- Clay T Cohen
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, United States
| | - Jacquelyn M Powers
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
23
|
Pandur E, Pap R, Jánosa G, Tamási K, Sipos K. Regulation of iron metabolism in HEC-1A endometrium cells by macrophage-derived factors and fractalkine. Cell Biol Int 2024; 48:737-754. [PMID: 38410054 DOI: 10.1002/cbin.12144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Accepted: 02/11/2024] [Indexed: 02/28/2024]
Abstract
Macrophages in the endometrium promote receptivity and implantation by secreting proinflammatory cytokines and other factors like fractalkine (FKN). Macrophages are closely linked to regulating iron homeostasis and can modulate iron availability in the tissue microenvironment. It has been revealed that the iron metabolism of the mother is crucial in fertility. Iron metabolism is strictly controlled by hepcidin, the principal iron regulatory protein. The inflammatory cytokines can modulate hepcidin synthesis and, therefore, the iron metabolism of the endometrium. It was proven recently that FKN, a unique chemokine, is implicated in maternal-fetal communication and may contribute to endometrial receptivity and implantation. In the present study, we investigated the effect of activated THP-1 macrophages and FKN on the iron metabolism of the HEC-1A endometrial cells. We established a noncontact coculture with or without recombinant human FKN supplementation to study the impact of the macrophage-derived factors and FKN on the regulation of hepcidin synthesis and iron release and storage of endometrial cells. Based on our findings, the conditioned medium of the activated macrophages could modify hepcidin synthesis via the nuclear factor kappa-light-chain-enhancer of activated B cells, the signal transducer and activator of transcription 3, and the transferrin receptor 2/bone morphogenetic protein 6/suppressor of mothers against decapentaplegic 1/5/8 signaling pathways, and FKN could alter this effect on the endometrial cells. It was also revealed that the conditioned macrophage medium and FKN modulated the iron release and storage of HEC-1A cells. FKN signaling may be involved in the management of iron trafficking of the endometrium by the regulation of hepcidin. It can contribute to the iron supply for fetal development at the early stage of the pregnancy.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Kitti Tamási
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, Pécs, Hungary
| |
Collapse
|
24
|
Zeidan RS, Martenson M, Tamargo JA, McLaren C, Ezzati A, Lin Y, Yang JJ, Yoon HS, McElroy T, Collins JF, Leeuwenburgh C, Mankowski RT, Anton S. Iron homeostasis in older adults: balancing nutritional requirements and health risks. J Nutr Health Aging 2024; 28:100212. [PMID: 38489995 DOI: 10.1016/j.jnha.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Iron plays a crucial role in many physiological processes, including oxygen transport, bioenergetics, and immune function. Iron is assimilated from food and also recycled from senescent red blood cells. Iron exists in two dietary forms: heme (animal based) and non-heme (mostly plant based). The body uses iron for metabolic purposes, and stores the excess mainly in splenic and hepatic macrophages. Physiologically, iron excretion in humans is inefficient and not highly regulated, so regulation of intestinal absorption maintains iron homeostasis. Iron losses occur at a steady rate via turnover of the intestinal epithelium, blood loss, and exfoliation of dead skin cells, but overall iron homeostasis is tightly controlled at cellular and systemic levels. Aging can have a profound impact on iron homeostasis and induce a dyshomeostasis where iron deficiency or overload (sometimes both simultaneously) can occur, potentially leading to several disorders and pathologies. To maintain physiologically balanced iron levels, reduce risk of disease, and promote healthy aging, it is advisable for older adults to follow recommended daily intake guidelines and periodically assess iron levels. Clinicians can evaluate body iron status using different techniques but selecting an assessment method primarily depends on the condition being examined. This review provides a comprehensive overview of the forms, sources, and metabolism of dietary iron, associated disorders of iron dyshomeostasis, assessment of iron levels in older adults, and nutritional guidelines and strategies to maintain iron balance in older adults.
Collapse
Affiliation(s)
- Rola S Zeidan
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Matthew Martenson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Javier A Tamargo
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christian McLaren
- Department of Clinical and Health Psychology, College of Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Armin Ezzati
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA
| | - Yi Lin
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jae Jeong Yang
- UF Health Cancer Center, Gainesville, FL, USA; Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hyung-Suk Yoon
- UF Health Cancer Center, Gainesville, FL, USA; Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Taylor McElroy
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - James F Collins
- Department of Food Science & Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Christiaan Leeuwenburgh
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Robert T Mankowski
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stephen Anton
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Health and Health Professions, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
25
|
Aparco JP, Santos-Antonio G, Bautista-Olortegui W, Alvis-Chirinos K, Velarde-Delgado P, Hinojosa-Mamani P, Solis-Sanchez G, Santa Cruz FE, Zavaleta N. Iron status and hemoglobin adjustment by altitude to define anemia in children aged 6 to 8 months living in Lima, Arequipa, Cusco and Puno. Rev Peru Med Exp Salud Publica 2024; 40:395-405. [PMID: 38597467 PMCID: PMC11138835 DOI: 10.17843/rpmesp.2023.404.12573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 11/08/2023] [Indexed: 04/11/2024] Open
Abstract
OBJECTIVE. To describe the iron status profile and to propose hemoglobin adjustment factors for altitude for children aged 6 to 8 months in Lima, Arequipa, Cusco and Puno. MATERIALS AND METHODS. Cross-sectional study in children aged 6 to 8 months from four cities. We measured hemoglobin and other iron biomarkers, C-reactive protein (CRP), among others. To estimate the adjustment equation, we applied an exponential regression. We excluded children with iron deficiency (ID) and/or inflammation. RESULTS. The proportions of ID were higher in Puno and Arequipa, while inflammation did not exceed 19% in any of the cities. Hemoglobin showed an exponential increase at higher altitude. The adjustment equation was: 10.34249 x (1.00007 ^ Alt). CONCLUSIONS. Children residing in Arequipa and Puno showed higher rates of ID and lower iron reserves; furthermore, the increase in hemoglobin by altitude was exponential, showing the need to adjust hemoglobin at altitude.
Collapse
Affiliation(s)
- Juan Pablo Aparco
- National Center for Food, Nutrition, and Healthy Living, Instituto Nacional de Salud, (INS), Lima, Peru.National Center for Food, Nutrition, and Healthy LivingInstituto Nacional de Salud (INS)LimaPeru
| | - Gabriela Santos-Antonio
- National Center for Food, Nutrition, and Healthy Living, Instituto Nacional de Salud, (INS), Lima, Peru.National Center for Food, Nutrition, and Healthy LivingInstituto Nacional de Salud (INS)LimaPeru
| | - William Bautista-Olortegui
- National Center for Food, Nutrition, and Healthy Living, Instituto Nacional de Salud, (INS), Lima, Peru.National Center for Food, Nutrition, and Healthy LivingInstituto Nacional de Salud (INS)LimaPeru
| | - Katherine Alvis-Chirinos
- National Center for Food, Nutrition, and Healthy Living, Instituto Nacional de Salud, (INS), Lima, Peru.National Center for Food, Nutrition, and Healthy LivingInstituto Nacional de Salud (INS)LimaPeru
| | - Patricia Velarde-Delgado
- National Center for Food, Nutrition, and Healthy Living, Instituto Nacional de Salud, (INS), Lima, Peru.National Center for Food, Nutrition, and Healthy LivingInstituto Nacional de Salud (INS)LimaPeru
| | - Paul Hinojosa-Mamani
- National Center for Food, Nutrition, and Healthy Living, Instituto Nacional de Salud, (INS), Lima, Peru.National Center for Food, Nutrition, and Healthy LivingInstituto Nacional de Salud (INS)LimaPeru
| | - Gilmer Solis-Sanchez
- National Center for Food, Nutrition, and Healthy Living, Instituto Nacional de Salud, (INS), Lima, Peru.National Center for Food, Nutrition, and Healthy LivingInstituto Nacional de Salud (INS)LimaPeru
| | - Flor Eliana Santa Cruz
- General Directorate of Strategic Interventions in Public Health, Ministry of Health (MINSA), Lima, Peru.General Directorate of Strategic Interventions in Public HealthMinistry of Health (MINSA)LimaPeru
| | - Nelly Zavaleta
- Nutritional Research Institute (IIN), Lima, Peru.Nutritional Research Institute (IIN)LimaPeru
| |
Collapse
|
26
|
Hayakawa K, Zhou Y, Shinton SA. B-1 derived anti-Thy-1 B cells in old aged mice develop lymphoma/leukemia with high expression of CD11b and Hamp2 that different from TCL1 transgenic mice. Immun Ageing 2024; 21:22. [PMID: 38570827 PMCID: PMC10988983 DOI: 10.1186/s12979-024-00415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Human old aged unmutated chronic lymphocytic leukemia U-CLL are the TCL1+ZAP70+CD5+ B cells. Since CD5 makes the BCR signaling tolerance, ZAP70 increased in U-CLL not only TCL1+ alone. In mice, TCL1 (TCL1A) is the negative from neonate to old aged, as TC-. VH8-12/Vk21-5 is the anti-thymocyte/Thy-1 autoreactive ATA B cell. When ATA μκTg generation in mice, ATA B cells are the neonate generated CD5+ B cells in B-1, and in the middle age, CD5+ can be down or continuously CD5+, then, old aged CLL/lymphoma generation with increased CD11b in TC-ZAP70-CD5- or TC-ZAP70+CD5+. In this old aged TC-ATA B microarray analysis showed most similar to human CLL and U-CLL, and TC-ZAP70+CD5+ showed certain higher present as U-CLL. Original neonate ATA B cells showed with several genes down or further increase in old aged tumor, and old aged T-bet+CD11c+, CTNNB1hi, HMGBhi, CXCR4hi, DPP4hi and decreased miR181b. These old aged increased genes and down miR181b are similar to human CLL. Also, in old age ATA B cell tumor, high CD38++CD44++, increased Ki67+ AID+, and decreased CD180- miR15Olow are similar to U-CLL. In this old aged ATA B, increased TLR7,9 and Wnt10b. TC+Tg generated with ATAμκTg mice occurred middle age tumor as TC+ZAP70-CD5+ or TC+ZAP70+CD5+, with high NF-kB1, TLR4,6 and Wnt5b,6 without increased CD11b. Since neonatal state to age with TC+Tg continuously, middle age CLL/lymphoma generation is not similar to old aged generated, however, some increased in TC+ZAP70+ are similar to the old age TC- ATA B tumor. Then, TC- ATA B old age tumor showed some difference to human CLL. ATA B cells showed CD11b+CD22++, CD24 down, and hepcidin Hamp2++ with iron down. This mouse V8-12 similar to human V2-5, and V2-5 showed several cancers with macrophages/neutrophils generated hepcidin+ ironlow or some showed hepcidin- iron+ with tumor, and mouse V8-12 with different Vk19-17 generate MZ B cells strongly increased macrophage++ in old aged and generated intestine/colon tumor. Conclusion, neonate generated TC-ATA B1 cells in old aged tumor generation are CD11b+ in the leukemia CLL together with lymphoma cancer with hepcidin-related Hamp2++ in B-1 cell generation to control iron.
Collapse
Affiliation(s)
- Kyoko Hayakawa
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
| | - Yan Zhou
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Susan A Shinton
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| |
Collapse
|
27
|
Wacka E, Nicikowski J, Jarmuzek P, Zembron-Lacny A. Anemia and Its Connections to Inflammation in Older Adults: A Review. J Clin Med 2024; 13:2049. [PMID: 38610814 PMCID: PMC11012269 DOI: 10.3390/jcm13072049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Anemia is a common hematological disorder that affects 12% of the community-dwelling population, 40% of hospitalized patients, and 47% of nursing home residents. Our understanding of the impact of inflammation on iron metabolism and erythropoiesis is still lacking. In older adults, anemia can be divided into nutritional deficiency anemia, bleeding anemia, and unexplained anemia. The last type of anemia might be caused by reduced erythropoietin (EPO) activity, progressive EPO resistance of bone marrow erythroid progenitors, and the chronic subclinical pro-inflammatory state. Overall, one-third of older patients with anemia demonstrate a nutritional deficiency, one-third have a chronic subclinical pro-inflammatory state and chronic kidney disease, and one-third suffer from anemia of unknown etiology. Understanding anemia's pathophysiology in people aged 65 and over is crucial because it contributes to frailty, falls, cognitive decline, decreased functional ability, and higher mortality risk. Inflammation produces adverse effects on the cells of the hematological system. These effects include iron deficiency (hypoferremia), reduced EPO production, and the elevated phagocytosis of erythrocytes by hepatic and splenic macrophages. Additionally, inflammation causes enhanced eryptosis due to oxidative stress in the circulation. Identifying mechanisms behind age-related inflammation is essential for a better understanding and preventing anemia in older adults.
Collapse
Affiliation(s)
- Eryk Wacka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (J.N.); (A.Z.-L.)
| | - Jan Nicikowski
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (J.N.); (A.Z.-L.)
| | - Pawel Jarmuzek
- Department of Neurosurgery and Neurology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland;
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (J.N.); (A.Z.-L.)
| |
Collapse
|
28
|
Matsuoka T, Abe M, Kobayashi H. Iron Metabolism and Inflammatory Mediators in Patients with Renal Dysfunction. Int J Mol Sci 2024; 25:3745. [PMID: 38612557 PMCID: PMC11012052 DOI: 10.3390/ijms25073745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects around 850 million people worldwide, posing significant challenges in healthcare due to complications like renal anemia, end-stage kidney disease, and cardiovascular diseases. This review focuses on the intricate interplay between iron metabolism, inflammation, and renal dysfunction in CKD. Renal anemia, prevalent in CKD, arises primarily from diminished erythropoietin (EPO) production and iron dysregulation, which worsens with disease progression. Functional and absolute iron deficiencies due to impaired absorption and chronic inflammation are key factors exacerbating erythropoiesis. A notable aspect of CKD is the accumulation of uremic toxins, such as indoxyl sulfate (IS), which hinder iron metabolism and worsen anemia. These toxins directly affect renal EPO synthesis and contribute to renal hypoxia, thus playing a critical role in the pathophysiology of renal anemia. Inflammatory cytokines, especially TNF-α and IL-6, further exacerbate CKD progression and disrupt iron homeostasis, thereby influencing anemia severity. Treatment approaches have evolved to address both iron and EPO deficiencies, with emerging therapies targeting hepcidin and employing hypoxia-inducible factor (HIF) stabilizers showing potential. This review underscores the importance of integrated treatment strategies in CKD, focusing on the complex relationship between iron metabolism, inflammation, and renal dysfunction to improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Hiroki Kobayashi
- Division of Nephrology, Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
29
|
Hullon D, Taherifard E, Al-Saraireh TH. The effect of the four pharmacological pillars of heart failure on haemoglobin level. Ann Med Surg (Lond) 2024; 86:1575-1583. [PMID: 38463117 PMCID: PMC10923357 DOI: 10.1097/ms9.0000000000001773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/21/2024] [Indexed: 03/12/2024] Open
Abstract
Anaemia, a condition characterized by low levels of haemoglobin, is frequently observed in patients with heart failure (HF). Guideline-directed medical therapy improves HF outcomes by using medications like beta blockers, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers, along with mineralocorticoid receptor antagonists and sodium-glucose cotransporter 2 inhibitors. In this study, we aimed to review the pathophysiology of anaemia in patients with HF and present the current evidence regarding the relationship between the main recommended medications for these patients and haemoglobin levels. The authors conducted a comprehensive search in the medical literature for relevant original clinical articles in which the four pharmacological pillars of HF were given to the patients; we, then, assessed whether the association of use of these medications and haemoglobin level or development of anaemia was provided. These common medications have been shown in the literature that may exacerbate or ameliorate anaemia. Besides, it has been shown that even in the case that they result in the development of anaemia, their use is associated with positive effects that outweigh this potential harm. The literature also suggests that among patients receiving medications with negative effects on the level of haemoglobin, there was no difference in the rate of mortality between anaemic and non-anaemic patients when both were on treatment for anaemia; this point highlights the importance of the detection and treatment of anaemia in these patients. Further research is needed to explore these relationships and identify additional strategies to mitigate the risk of anaemia in this population.
Collapse
Affiliation(s)
| | - Erfan Taherifard
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
30
|
Qiu L, Hu M, Qin X, Song R, Sun Y, Wang X. Intracellular Regulation Limits the Response of Intestinal Ferroportin to Iron Status in Suckling Rats. Mol Nutr Food Res 2024; 68:e2300617. [PMID: 38366942 DOI: 10.1002/mnfr.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Indexed: 02/19/2024]
Abstract
SCOPE Iron status is regulated via iron absorption as there is no active iron excretion. Divalent metal-ion transporter-1 (DMT1) and ferroportin (FPN) are two key proteins vital for iron absorption, but the regulation of them in suckling mammals differs from that in adults. This study aims to explore regulation of iron transporters under different iron conditions during suckling. METHODS AND RESULTS This study developed suckling rats under different iron conditions. Unexpectedly, unchanged FPN at different iron status are detected. Since FPN is the only known iron exporter for mammals, unchanged FPN limits iron exported into blood during suckling. Thus, factors regulating FPN at transcriptional, post-transcriptional, and post-translational levels are detected. Results showed that Fpn mRNA is upregulated, while micro RNA-485(miR-485) which could silence Fpn mRNA is upregulated at low iron status limiting translation of Fpn mRNA. Besides, serum hepcidin and liver Hamp mRNA are upregulated, but ring finger protein 217( Rnf217) mRNA remained unchanged at high iron status leading to FPN not downregulated as adults. CONCLUSIONS Overall, this study indicates that translational regulation limits intestinal FPN protein response to iron deficiency and Rnf217 cannot effectively mediate the degradation of FPN at high iron status, which provides a reference for maintaining iron homeostasis during suckling.
Collapse
Affiliation(s)
- Lili Qiu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Mengxiao Hu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiyu Qin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Song
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
- Food Laboratory of Zhongyuan, Luohe, 462300, China
| | - Xiaoyu Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
- Food Laboratory of Zhongyuan, Luohe, 462300, China
| |
Collapse
|
31
|
Dande A, Pajai S, Gupta A, Dande S, Sethi N. Unraveling the Role of Maternal Serum Ferritin Levels in Preterm Delivery: A Comprehensive Review. Cureus 2024; 16:e54515. [PMID: 38516441 PMCID: PMC10955505 DOI: 10.7759/cureus.54515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/11/2024] [Indexed: 03/23/2024] Open
Abstract
Preterm delivery remains a critical global health concern, with numerous adverse consequences for both neonate and healthcare systems. Understanding the relationship between maternal ferritin levels, as a marker of iron status, and the risk of preterm birth is the focal point of this comprehensive review. We provide insights into the multifaceted nature of this connection, highlighting factors that influence maternal ferritin levels, including dietary intake, genetic and physiological variations, comorbidities, and iron supplementation. While evidence suggests an association between low maternal ferritin levels and preterm birth, causality remains elusive, necessitating further research with robust study designs. The potential mechanisms linking maternal iron status to preterm birth, such as inflammation, infection, and oxidative stress, are explored, underscoring the need for in-depth investigations. This comprehensive review emphasizes the clinical importance of assessing and monitoring maternal ferritin levels in prenatal care and advocates for public health initiatives to raise awareness and provide targeted interventions, particularly in high-risk populations. As we strive to address these unanswered questions and embark on innovative research directions, the aim is to ultimately enhance our understanding of the complex relationship between maternal iron status and preterm birth, leading to improved maternal and child health outcomes.
Collapse
Affiliation(s)
- Anubha Dande
- Obstetrics and Genecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sandhya Pajai
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Aishwarya Gupta
- Obstetrics and Genecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Seema Dande
- Obstetrics and Genecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Neha Sethi
- Obstetrics and Genecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
32
|
Volk Robertson K, Schleh MW, Harrison FE, Hasty AH. Microglial-specific knockdown of iron import gene, Slc11a2, blunts LPS-induced neuroinflammatory responses in a sex-specific manner. Brain Behav Immun 2024; 116:370-384. [PMID: 38141840 PMCID: PMC10874246 DOI: 10.1016/j.bbi.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023] Open
Abstract
Neuroinflammation and microglial iron load are significant hallmarks found in several neurodegenerative diseases. In in vitro systems, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and it has been shown that iron can augment cellular inflammation, suggesting a feed-forward loop between mechanisms involved in iron import and inflammatory signaling. However, it is not understood how microglial iron import mechanisms contribute to inflammation in vivo, or whether altering a microglial iron-related gene affects the inflammatory response. These studies aimed to determine the effect of knocking down microglial iron import gene Slc11a2 on the inflammatory response in vivo. We generated a novel model of tamoxifen-inducible, microglial-specific Slc11a2 knockdown using Cx3cr1Cre-ERT2 mice. Transgenic male and female mice were administered intraperitoneal saline or lipopolysaccharide (LPS) and assessed for sickness behavior post-injection. Plasma cytokines and microglial bulk RNA sequencing (RNASeq) analyses were performed at 4 h post-LPS, and microglia were collected for gene expression analysis after 24 h. A subset of mice was assessed in a behavioral test battery following LPS-induced sickness recovery. Control male, but not female, mice significantly upregulated microglial Slc11a2 at 4 and 24 h following LPS. In Slc11a2 knockdown mice, we observed an improvement in the acute behavioral sickness response post-LPS in male, but not female, animals. Microglia from male, but not female, knockdown animals exhibited a significant decrease in LPS-provoked pro-inflammatory cytokine expression after 24 h. RNASeq data from male knockdown microglia 4 h post-LPS revealed a robust downregulation in inflammatory genes including Il6, Tnfα, and Il1β, and an increase in anti-inflammatory and homeostatic markers (e.g., Tgfbr1, Cx3cr1, and Trem2). This corresponded with a profound decrease in plasma pro-inflammatory cytokines 4 h post-LPS. At 4 h, male knockdown microglia also upregulated expression of markers of iron export, iron recycling, and iron homeostasis and decreased iron storage and import genes, along with pro-oxidant markers such as Cybb, Nos2, and Hif1α. Overall, this work elucidates how manipulating a specific gene involved in iron import in microglia alters acute inflammatory signaling and overall cell activation state in male mice. These data highlight a sex-specific link between a microglial iron import gene and the pro-inflammatory response to LPS in vivo, providing further insight into the mechanisms driving neuroinflammatory disease.
Collapse
Affiliation(s)
- Katrina Volk Robertson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Michael W Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
33
|
Anthony P, Wu M, Shanmugalingam A, Ng CH, Wright D. Preoperative iron infusion does not reduce the requirement for blood transfusion in colorectal cancer surgery. Minerva Surg 2024; 79:28-32. [PMID: 37705393 DOI: 10.23736/s2724-5691.23.09975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
BACKGROUND Allogeneic blood transfusions (BT) for patients undergoing colorectal cancer surgery have demonstrated to increase postoperative morbidity and mortality. It has been suggested that the utilization of preoperative iron infusions may reduce the requirement for allogeneic BT in these patients. The aim of this project is to ascertain whether the preoperative use of intravenous iron is significantly associated with a reduction in perioperative blood transfusion requirement. METHODS A retrospective study of 130 patients was conducted in Blacktown Hospital, Australia. Data pertaining to patient demographics, as well as quantity of preoperative iron infusion and perioperative blood transfusion was collected. RESULTS Twenty-six (20%) patients required perioperative BT. Twenty-seven underwent preoperative iron infusion, with 20 of them not requiring BT and seven requiring BT. There was no evidence to suggest preoperative iron infusion reduces blood transfusion requirement (RR 1.55, 95% CI 0.57-4.18, P=0.39). For elective procedures, no significance was also demonstrated (RR 1.20, 95% CI 0.29-4.92, P=0.80). CONCLUSIONS There is no evidence suggesting that preoperative iron infusion reduces the requirement for perioperative blood transfusion in colorectal cancer surgery.
Collapse
Affiliation(s)
| | - Mike Wu
- Blacktown Hospital, Department of Surgery, Blacktown, Australia
| | | | - Cheuk H Ng
- Department of Surgery, Westmead Hospital, Westmead, Australia
| | - Danette Wright
- Blacktown Hospital, Department of Surgery, Blacktown, Australia
| |
Collapse
|
34
|
da Conceição RR, Giannocco G, Herai RH, Petroski LP, Pereira BG, Oliveira KCD, Chiamolera MI, Sato MA, Maciel RM, de Souza JS. Thyroid dysfunction alters gene expression of proteins related to iron homeostasis and metabolomics in male rats. Mol Cell Endocrinol 2024; 579:112086. [PMID: 37858610 DOI: 10.1016/j.mce.2023.112086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Thyroid hormones (THs) are crucial in bodily functions, while iron is essential for processes like oxygen transport. Specialized proteins maintain iron balance, including ferritin, transferrin, ferroportin, and hepcidin. Research suggests that THs can influence iron homeostasis by affecting mRNA and protein expression, such as ferritin and transferrin. Our study focused on male rats to assess mRNA expression of iron homeostasis-related proteins and metabolomics in thyroid dysfunction. We found altered gene expression across various tissues (liver, duodenum, spleen, and kidney) and identified disrupted metabolite patterns in thyroid dysfunction. These findings highlight tissue-specific effects of thyroid dysfunction on essential iron homeostasis proteins and provide insights into associated metabolic changes. Our research contributes to understanding the intricate interplay between thyroid hormones and iron balance. By unveiling tissue-specific gene expression alterations and metabolic disruptions caused by thyroid dysfunction, our work lays a foundation for future investigations to explore underlying mechanisms and develop targeted strategies for managing iron-related complications in thyroid disorders.
Collapse
Affiliation(s)
- Rodrigo Rodrigues da Conceição
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil
| | - Gisele Giannocco
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil; Departmento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, 09920-000, Brazil
| | - Roberto Hiroshi Herai
- Laboratory of Bioinformatics and Neurogenetics, Graduate Program in Health Sciences, School of Medicine and Life Sciences (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Luiz Pedro Petroski
- Laboratory of Bioinformatics and Neurogenetics, Graduate Program in Health Sciences, School of Medicine and Life Sciences (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Bruno Gabriel Pereira
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil
| | - Kelen Carneiro de Oliveira
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil
| | - Maria Izabel Chiamolera
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil
| | - Monica Akemi Sato
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo André, SP, Brazil
| | - Rui Monteiro Maciel
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil
| | - Janaina Sena de Souza
- Departmento de Medicina, Laboratório de Endocrinologia e Medicina Translational, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, SP, 04039-032, Brazil; Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
35
|
Bhowmik S, Biswas AK, Baranwal AK, Pawar AA, Dimri U. The effect of blood transfusion on serum hepcidin levels in chronically transfused patients of β-thalassemia major: An observational study in a tertiary care centre in Western Maharashtra. Asian J Transfus Sci 2024; 18:73-78. [PMID: 39036689 PMCID: PMC11259346 DOI: 10.4103/ajts.ajts_160_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 07/23/2024] Open
Abstract
INTRODUCTION Hepcidin is the key regulator of systemic iron homeostasis. In iron-loading anemias, hepcidin levels are regulated by opposite forces of erythropoiesis and iron overload. In β-thalassemia major patients, transfusions are the predominant cause of iron overload; in such chronically transfused patients, hepcidin concentrations are significantly higher than nontransfused patients, due to both increased iron load of transfusions and the suppression of ineffective erythropoiesis. AIM This study aims to evaluate the effect of blood transfusions on serum hepcidin levels in chronically transfused patients of β-thalassemia major and correlate with hemoglobin and serum ferritin levels of pre- and posttransfusion. MATERIALS AND METHODS Thirty-three β-thalassemia major patients requiring monthly transfusions were included in the study. Blood samples, collected pretransfusion and 7 days posttransfusion, were evaluated for hemoglobin, serum ferritin, and serum hepcidin using enzyme immunoassay. STATISTICAL ANALYSIS Data were statistically analyzed through SPSS software and P < 0.05 is considered statically significant. RESULTS Posttransfusion levels of hemoglobin, serum ferritin, and serum hepcidin increased. Posttransfusion levels of hepcidin were near normal levels. Pre- and posttransfusion hepcidin concentrations were significantly associated with hemoglobin levels. CONCLUSION Serum hepcidin concentrations vary depending on the degree of erythropoiesis drive and level of anemia. We found that the serum hepcidin levels decrease over the inter-transfusion interval and transfusions cause suppression of ineffective erythropoiesis by the increase in hemoglobin. Posttransfusion values of hepcidin in our study were closer to normal levels which may be due to lower erythropoietic drive posttransfusion. We suggest that the measurement of serum hepcidin in chronically transfused β-thalassemia patients can be used as a follow-up investigation for better management of these patients.
Collapse
Affiliation(s)
- Sujay Bhowmik
- Department of Immunohaematology and Blood Transfusion, Armed Forces Medical College, Pune, Maharashtra, India
| | - Amit Kumar Biswas
- Department of Immunohaematology and Blood Transfusion, Armed Forces Medical College, Pune, Maharashtra, India
| | - Ajay Kumar Baranwal
- Department of Immunohaematology and Blood Transfusion, Armed Forces Medical College, Pune, Maharashtra, India
| | - Amit Ajay Pawar
- Department of Immunohaematology and Blood Transfusion, Armed Forces Medical College, Pune, Maharashtra, India
| | - Ujjwal Dimri
- Department of Immunohaematology and Blood Transfusion, Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|
36
|
Duminuco A, Chifotides HT, Giallongo S, Giallongo C, Tibullo D, Palumbo GA. ACVR1: A Novel Therapeutic Target to Treat Anemia in Myelofibrosis. Cancers (Basel) 2023; 16:154. [PMID: 38201581 PMCID: PMC10778144 DOI: 10.3390/cancers16010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Activin receptor type I (ACVR1) is a transmembrane kinase receptor belonging to bone morphogenic protein receptors (BMPs). ACVR1 plays an important role in hematopoiesis and anemia via the BMP6/ACVR1/SMAD pathway, which regulates expression of hepcidin, the master regulator of iron homeostasis. Elevated hepcidin levels are inversely associated with plasma iron levels, and chronic hepcidin expression leads to iron-restricted anemia. Anemia is one of the hallmarks of myelofibrosis (MF), a bone marrow (BM) malignancy characterized by BM scarring resulting in impaired hematopoiesis, splenomegaly, and systemic symptoms. Anemia and red blood cell transfusions negatively impact MF prognosis. Among the approved JAK inhibitors (ruxolitinib, fedratinib, momelotinib, and pacritinib) for MF, momelotinib and pacritinib are preferably used in cytopenic patients; both agents are potent ACVR1 inhibitors that suppress hepcidin expression via the BMP6/ACVR1/SMAD pathway and restore iron homeostasis/erythropoiesis. In September 2023, momelotinib was approved as a treatment for patients with MF and anemia. Zilurgisertib (ACVR1 inhibitor) and DISC-0974 (anti-hemojuvelin monoclonal antibody) are evaluated in early phase clinical trials in patients with MF and anemia. Luspatercept (ACVR2B ligand trap) is assessed in transfusion-dependent MF patients in a registrational phase 3 trial. Approved ACVR1 inhibitors and novel agents in development are poised to improve the outcomes of anemic MF patients.
Collapse
Affiliation(s)
- Andrea Duminuco
- Hematology Unit with BMT, A.O.U. Policlinico “G.Rodolico-San Marco”, 95123 Catania, Italy;
| | - Helen T. Chifotides
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd., Houston, TX 77030, USA;
| | - Sebastiano Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giuseppe A. Palumbo
- Hematology Unit with BMT, A.O.U. Policlinico “G.Rodolico-San Marco”, 95123 Catania, Italy;
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (C.G.)
| |
Collapse
|
37
|
Mukhopadhyay A, Deshpande SN, Bhatia T, Thelma BK. Significance of an altered lncRNA landscape in schizophrenia and cognition: clues from a case-control association study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1677-1691. [PMID: 37009928 DOI: 10.1007/s00406-023-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Genetic etiology of schizophrenia is poorly understood despite large genome-wide association data. Long non-coding RNAs (lncRNAs) with a probable regulatory role are emerging as important players in neuro-psychiatric disorders including schizophrenia. Prioritising important lncRNAs and analyses of their holistic interaction with their target genes may provide insights into disease biology/etiology. Of the 3843 lncRNA SNPs reported in schizophrenia GWASs extracted using lincSNP 2.0, we prioritised n = 247 based on association strength, minor allele frequency and regulatory potential and mapped them to lncRNAs. lncRNAs were then prioritised based on their expression in brain using lncRBase, epigenetic role using 3D SNP and functional relevance to schizophrenia etiology. 18 SNPs were finally tested for association with schizophrenia (n = 930) and its endophenotypes-tardive dyskinesia (n = 176) and cognition (n = 565) using a case-control approach. Associated SNPs were characterised by ChIP seq, eQTL, and transcription factor binding site (TFBS) data using FeatSNP. Of the eight SNPs significantly associated, rs2072806 in lncRNA hsaLB_IO39983 with regulatory effect on BTN3A2 was associated with schizophrenia (p = 0.006); rs2710323 in hsaLB_IO_2331 with role in dysregulation of ITIH1 with tardive dyskinesia (p < 0.05); and four SNPs with significant cognition score reduction (p < 0.05) in cases. Two of these with two additional variants in eQTL were observed among controls (p < 0.05), acting likely as enhancer SNPs and/or altering TFBS of eQTL mapped downstream genes. This study highlights important lncRNAs in schizophrenia and provides a proof of concept of novel interactions of lncRNAs with protein-coding genes to elicit alterations in immune/inflammatory pathways of schizophrenia.
Collapse
Affiliation(s)
- Anirban Mukhopadhyay
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Smita N Deshpande
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Triptish Bhatia
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
38
|
Sharma SK, Mohanty BP, Singh V, Bansal MP, Singhal NK, Sharma SK, Sandhir R. Trace elements dyshomeostasis in liver and brain of weanling mice under altered dietary selenium conditions. J Trace Elem Med Biol 2023; 80:127305. [PMID: 37778095 DOI: 10.1016/j.jtemb.2023.127305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND A balanced diet containing selenium (Se) and other trace elements is essential for normal development and growth. Se has been recognized as an essential trace element; however, its interaction with other elements has not been fully investigated. In the present study, sodium (Na), magnesium (Mg), potassium (K), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), Se and rubidium (Rb), were analysed in liver and brain regions under altered dietary Se intake in weanling mice to identify major discriminatory elements. METHODS The study investigated the effects of different levels of Se intake on the elemental composition in liver and brain tissues of weaned mice. After 24 weeks of feeding with Se adequate, deficient, and excess diets, elemental analysis was performed on the harvested tissues using Inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis that included analysis of covariance (ANCOVA), correlation coefficient analysis, principal component analysis, and partial least squares discriminant analysis were performed. RESULTS The ANCOVA showed statistically significant changes and correlations among the analysed elements under altered dietary Se status. The multivariate analysis showed differential changes in elements in liver and brain regions. The results suggest that long-term dietary Se alternations lead to dyshomeostasis in trace elements that are required in higher concentrations compared to Se. It was observed that changes in the Fe, Co, and Rb levels were similar in all the tissues studied, whereas the changes in Mg, Cr, and Mn levels were different among the tissues under altered dietary Se status. Additionally, the changes in Rb levels correlated with the dietary Se intake but had no relation with the tissue Se levels. CONCLUSIONS The findings suggest interactions between Mg, Cr, Mn, Fe, Co, and Se under altered Se status may impact cellular functions during postnatal development. However, the possible biological significance of alterations in Rb levels under different dietary Se paradigms needs to be further explored.
Collapse
Affiliation(s)
| | | | - Vishal Singh
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar 140306, India
| | | | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar 140306, India
| | | | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
39
|
Jorgenson MC, Aguree S, Schalinske KL, Reddy MB. Effects of green tea polyphenols on inflammation and iron status. J Nutr Sci 2023; 12:e119. [PMID: 38155809 PMCID: PMC10753450 DOI: 10.1017/jns.2023.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 12/30/2023] Open
Abstract
Inflammation is an underlying problem for many disease states and has been implicated in iron deficiency (ID). This study aimed to determine whether iron status is improved by epigallocatechin-3-gallate (EGCG) through reducing inflammation. Thirty-two male Sprague-Dawley rats were fed an iron-deficient diet for 2 weeks and then randomly divided into four groups (n 8 each): positive controls, negative controls, lipopolysaccharide (LPS, 0⋅5 mg/kg body weight), and LPS + EGCG (LPS plus 600 mg EGCG/kg diet) for 3 additional weeks. The study involved testing two control groups, both treated with saline. One group (positive control) was fed a regular diet containing standard iron, while the negative control was fed an iron-deficient diet. Additionally, two treatment groups were tested. The first group was given LPS, while the second group was administered LPS and fed an EGCG diet. Iron status, hepcidin, C-reactive protein (CRP), serum amyloid A (SAA), and interleukin-6 (IL-6) were measured. There were no differences in treatment groups compared with control in CRP, hepcidin, and liver iron concentrations. Serum iron concentrations were significantly lower in the LPS (P = 0⋅02) and the LPS + EGCG (P = 0⋅01) than in the positive control group. Compared to the positive control group, spleen iron concentrations were significantly lower in the negative control (P < 0⋅001) but not with both LPS groups. SAA concentrations were significantly lower in the LPS + EGCG group compared to LPS alone group. EGCG reduced SAA concentrations but did not affect hepcidin or improve serum iron concentration or other iron markers.
Collapse
Affiliation(s)
| | - Sixtus Aguree
- Department of Applied Health Science, Indiana University School of Public Health—Bloomington, Bloomington, IN, USA
| | - Kevin L. Schalinske
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Manju B. Reddy
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| |
Collapse
|
40
|
Denton CC, Vodala S, Veluswamy S, Hofstra TC, Coates TD, Wood JC. Splenic iron decreases without change in volume or liver parameters during luspatercept therapy. Blood 2023; 142:1932-1934. [PMID: 37704579 DOI: 10.1182/blood.2023021839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Splenic iron decreased whereas liver iron was stable during luspatercept therapy in some individuals with thalassemia. This suggests a reduction of ineffective erythropoiesis changes the organ distribution of iron and demonstrates that liver iron concentration alone may not accurately reflect total body iron content. This article describes data from subjects enrolled in BELIEVE (NCT02604433) and BEYOND (NCT03342404).
Collapse
Affiliation(s)
- Christopher C Denton
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Saranya Veluswamy
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Thomas C Hofstra
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Thomas D Coates
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - John C Wood
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Division of Cardiology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA
| |
Collapse
|
41
|
Winkler R, Lu H. Cell-Specific Regulation of Inflammatory Cytokines and Acute-Phase Proteins by the Glucocorticoid Receptor. Mediators Inflamm 2023; 2023:4399998. [PMID: 39619227 PMCID: PMC11606692 DOI: 10.1155/2023/4399998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 10/24/2023] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Literature and data mining found abnormal induction of chemokine (C-X-C motif) ligand 1 (CXCL1) and CXCL8 and down-regulation of CXCL2 in inflammatory liver diseases. This study was performed to understand the glucocorticoid receptor's (GR's) effects on chemokine and acute-phase protein expression in human liver, in settings of bacterial infection (modeled using LPS) or inflammation (modeled using TNFα). METHODS Primary human hepatocytes (PHH) were treated with combinations of tumor necrosis factor alpha (TNFα), lipopolysaccharide (LPS), and dexamethasone (DEX) for 24 h, following which chemokine mRNA and protein expression were analyzed using qPCR and enzyme-linked immunosorbent assay assays. Dual luciferase assays were performed on transfected cell lines. Mutant CXCL2 promoters were used in dual luciferase assays to identify specific regions of the CXCL2 promoter affected by GR, TNFα, or hepatocyte nuclear factor 4α (HNF4α, a liver-enriched transcription factor). RESULTS In PHH from donor 1, GR strongly inhibited LPS-induced CXCL1 and CXCL8 translation and transcription, whereas CXCL2 transcription tended to increase with DEX treatment. In PHH from donor 2, DEX treatment inhibited protein expression and secretion of CXCL1 and CXCL8 induced by TNFα and/or LPS, whereas CXCL2 upregulation was largely unaffected by DEX treatment. In nonliver HEK293T cells GR activity inhibited CXCL2 promoter activity. However, in liver-derived HEPG2 cells, GR induced CXCL2 promoter activity. A 407-base pair region upstream of CXCL2 promoter is necessary for full GR functionality in HEPG2 cells. TNFα synergized with HNF4α in inducing CXCL2 promoter activity in HEPG2 cells. CONCLUSIONS GR's effects on chemokine expression are cell-type specific and chemokine specific. GR down-regulated CXCL1 and CXCL8 in different cell types, whereas the specific activation of CXCL2 in hepatocytes and down-regulation of CXCL2 in nonhepatocytes by GR appears due to cell-specific utilization of CXCL2 promoter. By specifically increasing GR activity in the liver, we may normalize chemokine imbalances and prevent sepsis in inflammatory liver diseases.
Collapse
Affiliation(s)
- Rebecca Winkler
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
42
|
Yadav PK, Singh S, Singh AK. '3D-QSAR-based, pharmacophore modelling, virtual screening, and molecular docking studies for identification of hypoxia-inducible factor-1 inhibitor with potential bioactivity. Comput Biol Med 2023; 166:107557. [PMID: 37812986 DOI: 10.1016/j.compbiomed.2023.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Iron overload is a primary cause of vital organ failure in patients with blood transfusion-dependent beta-thalassemia, and the hypoxia-inducible factor-1 α (HIF-1α) plays an important role in iron homeostasis pathway. HIF-1α modulation as a potential therapeutic target approach for iron chelation in hepatocyte cells. In this study, we used a 3D quantitative structure-activity relationship (QSAR) analysis to predict the inhibitory activity of HIF-1α inhibitors for iron chelation in liver cells. These feature descriptors were used to build a 3D-QSAR model, which was validated using Cost analysis and Fischer's randomization test. The model was used to virtually search the chemical compound libraries for potential inhibitor candidates with least inhibitory activity. The High-throughput Docking (Libdock) approach was used to dock large repositories of chemical molecules. Following Libdock score screening, the protein-ligand poses were docked using docking optimization (Cdocker) method. Binding energy were calculated for the protein-ligand poses of lowest -Cdocker Energy and -Cdocker Interaction. Further, side chain hopping method was used to generate lead novel ligand from best hit pose of ligand. Molecular dynamics simulation study to evaluate the lead novel ligand. Our study demonstrates the utility of 3D-QSAR pharmacophore screening in predicting the inhibitory activity for target. Inhibition strategy for iron chelation provides an alternative routes for reducing the iron content.
Collapse
Affiliation(s)
- Piyush Kumar Yadav
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India
| | - Suchitra Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
43
|
McCann S, Mason L, Milosavljevic B, Mbye E, Touray E, Colley A, Johnson W, Lloyd-Fox S, Elwell CE, Moore SE. Iron status in early infancy is associated with trajectories of cognitive development up to pre-school age in rural Gambia. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002531. [PMID: 37910494 PMCID: PMC10619872 DOI: 10.1371/journal.pgph.0002531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION Iron deficiency is among the leading risk factors for poor cognitive development. However, interventions targeting iron deficiency have had mixed results on cognitive outcomes. This may be due to previous interventions focusing on the correction of iron deficiency anaemia in late infancy and early childhood, at which point long lasting neural impacts may already be established. We hypothesise that the relationship between iron status and cognitive development will be observable in the first months of life and will not be recovered by 5 years of age. METHODS Using data from the Brain Imaging for Global Health (BRIGHT) Study in Gambia (n = 179), we conducted mixed effects modelling to assess the relationship between iron status at 5 months of age and trajectories of cognitive development from 5 months- 5 years using (i) a standardised measure of cognitive development (Mullen Scales of Early Learning) and (ii) an eye-tracking assessment of attention processing (visual disengagement time). RESULTS All infants were iron sufficient at 1 month of age. At 5 and 12 months of age 30% and 55% of infants were iron deficient respectively. In fully adjusted analyses, infants in the lowest tercile of soluble transferrin receptor (sTfR) (best iron status) achieved MSEL Cognitive Scores on average 1.9 points higher than infants in the highest sTfR tercile (p = 0.009, effect size = 0.48). There was no evidence that this group difference was recovered by 5 years of age. Infants in the lowest sTfR tercile had visual disengagement time 57ms faster than the highest tercile (p = 0.001, effect size = 0.59). However, this difference diminished by early childhood (p = 0.024). CONCLUSION Infants are at risk of iron deficiency in early infancy. A relationship between iron status and cognitive development is apparent from 5 months of age and remains observable at 5 years of age. One mechanism by which iron availability in early infancy impacts brain development may be through effects on early attentional processing, which is rapidly developing and has substantial nutritional requirements during this period. To support neurocognitive development, prevention of iron deficiency in pre- and early postnatal life may be more effective than correcting iron deficiency once already established.
Collapse
Affiliation(s)
- Samantha McCann
- Department of Women and Children’s Health, King’s College London, London, United Kingdom
| | - Luke Mason
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, United Kingdom
| | | | - Ebrima Mbye
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Ebou Touray
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Alhassan Colley
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - William Johnson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Sarah Lloyd-Fox
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Clare E. Elwell
- Department of Medical Physics, University College London, London, United Kingdom
| | - Sophie E. Moore
- Department of Women and Children’s Health, King’s College London, London, United Kingdom
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | |
Collapse
|
44
|
Solberg A, Reikvam H. Iron Status and Physical Performance in Athletes. Life (Basel) 2023; 13:2007. [PMID: 37895389 PMCID: PMC10608302 DOI: 10.3390/life13102007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Iron is an important mineral in the body, essential for muscle function and oxygen transport. Adequate levels of iron in the blood are necessary for athletes, as iron-deficiency anemia can reduce physical performance. Several studies have investigated iron status and supplementation in iron-deficient athletes, and determined how physical strain can change iron balance and markers related to iron status. The question of how to influence and optimize iron status, as well as other markers that can affect iron metabolism, has been less thoroughly investigated. Therefore, the aim of this review is to take a closer look at the importance of iron values, iron markers, and factors that can change iron metabolism for physical performance and the extent to which physical performance can be influenced in a positive or negative way. A systematic search of the PubMed database was performed, with the use of « iron» or «iron deficiency» or «hemoglobin» AND «athletes» AND «athletic performance» as a strategy of the search. After the search, 11 articles were included in the review after the application of inclusion and exclusion criteria. Major findings include that iron supplementation had the best effect in athletes with the lowest iron status, and effects on physical performance were mostly achieved in those who were originally in a deficit. Iron supplementation could be beneficial for optimal erythropoietic response during altitude training, even in athletes with normal iron stores at baseline, but should be performed with caution. Alteration of the hepcidin response can affect the use of existing iron stores for erythropoiesis. Energy intake, and the amount of carbohydrates available, may have an impact on the post-exercise hepcidin response. Optimal vitamin D and B12 levels can possibly contribute to improved iron status and, hence, the avoidance of anemia.
Collapse
Affiliation(s)
- Andrea Solberg
- Faculty of Medicine, University of Bergen, 5007 Bergen, Norway;
| | - Håkon Reikvam
- Institute of Clinical Science, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway
- Clinic for Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
45
|
Mylvaganam S, Freeman SA. The resolution of phagosomes. Immunol Rev 2023; 319:45-64. [PMID: 37551912 DOI: 10.1111/imr.13260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Phagocytosis is a fundamental immunobiological process responsible for the removal of harmful particulates. While the number of phagocytic events achieved by a single phagocyte can be remarkable, exceeding hundreds per day, the same phagocytic cells are relatively long-lived. It should therefore be obvious that phagocytic meals must be resolved in order to maintain the responsiveness of the phagocyte and to avoid storage defects. In this article, we discuss the mechanisms involved in the resolution process, including solute transport pathways and membrane traffic. We describe how products liberated in phagolysosomes support phagocyte metabolism and the immune response. We also speculate on mechanisms involved in the redistribution of phagosomal metabolites back to circulation. Finally, we highlight the pathologies owed to impaired phagosome resolution, which range from storage disorders to neurodegenerative diseases.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Porter JB, Scrimgeour A, Martinez A, James L, Aleku M, Wilson R, Muckenthaler M, Boyce M, Wilkes D, Schaeper U, Campion GV. SLN124, a GalNAc conjugated 19-mer siRNA targeting tmprss6, reduces plasma iron and increases hepcidin levels of healthy volunteers. Am J Hematol 2023; 98:1425-1435. [PMID: 37497888 DOI: 10.1002/ajh.27015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023]
Abstract
SLN124, an N-acetylgalactosamine conjugated 19-mer short interfering RNA, is being developed to treat iron-loading anemias (including beta-thalassemia and myelodysplastic syndromes) and myeloproliferative neoplasms (polycythemia vera). Through hepatic targeting and silencing of the TMPRSS6 gene, SLN124 increases endogenous hepcidin synthesis. This is the first clinical report of an siRNA targeting a component of iron homeostasis. This first-in-human, phase 1 study assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of single ascending doses of SLN124 (1.0, 3.0, and 4.5 mg/kg) in healthy volunteers. Twenty-four participants were randomized in three sequential cohorts of eight subjects, each to receive a single dose of either SLN124 or placebo (6:2 randomization), administered subcutaneously. There were no serious or severe adverse events, or discontinuations due to adverse events, and most treatment-emergent adverse events were mild, including transient mild injection site reactions, resolving without intervention. SLN124 was rapidly absorbed, with a median tmax of 4-5 h across all treatment groups, and largely eliminated from plasma by 48 h. Plasma concentrations increased in a greater than dose proportional fashion between treatment groups. In all SLN124 groups, a dose-related effect was observed across iron metabolism markers, and across erythroid markers, SLN124 resulted in increased plasma hepcidin levels, peaking around Day 29, and consequent dose-related sustained reductions in plasma iron and transferrin saturation with decreased reticulocyte production, MCHC, and MCV. Results suggest duration of action lasting up to 56 days after a single SLN124 dose, on hepcidin and hematological parameters of iron metabolism (serum iron and TSAT).
Collapse
|
47
|
O'Loughlin E, Chih H, Sivalingam P, Symons J, Godsall G, MacLean B, Richards T. IRON NOF trial: IV iron for anaemic patients with femoral fracture. BJA OPEN 2023; 7:100222. [PMID: 37638076 PMCID: PMC10457485 DOI: 10.1016/j.bjao.2023.100222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Background Preoperative anaemia is associated with increased use of blood transfusions, a greater risk of postoperative complications, and patient morbidity. The IRON NOF trial aimed to investigate whether the administration of i.v. iron in anaemic patients during hip fracture surgery reduced the need for blood transfusion and improved patient outcomes. Methods This phase III double-blind, randomised, placebo-controlled trial included patients >60 yr old with preoperative anaemia undergoing surgery for femoral neck or subtrochanteric fracture across seven Australian Hospitals. Patients were randomly allocated on a 1:1 basis to receive either i.v. iron carboxymaltose 1000 mg or placebo (saline) at operation. The primary endpoint was blood transfusion use, with secondary endpoints of haemoglobin concentration at 6 weeks, length of hospital stay, rehabilitation duration to discharge, and 6-month mortality. Subgroup analysis compared outcomes in patients <80 yr old and patients >80 yr old. All analyses were performed by intention-to-treat. This trial was terminated early because of jurisdictional changes of more restrictive transfusion practices and changes in consent requirements. Results Participants (n=143) were recruited between February 2013 and May 2017. There was no difference observed in the incidence of blood transfusion between the treatment group (18/70) (26%) compared with the placebo group (27/73) (37%) (odds ratio for transfusion if receiving placebo: 1.70; 95% confidence interval [CI] 0.83-3.47; P=0.15) and there was no overall difference in the median number of blood units transfused between groups (odds ratio 1.52; 95% CI 0.77-3.00; P=0.22). Patients receiving i.v. iron had a higher haemoglobin 6 weeks after intervention compared with the placebo group (Hb 116 g L-1vs 108 g L-1; P=0.01). No difference was observed in length of hospital stay, rehabilitation duration to discharge, or 6-month mortality. However, in younger patients without major bleeding, the use of placebo compared with i.v. iron was associated with an increased number of units of blood transfused (placebo transfusion incidence rate ratio 3.88; 95% CI 1.16-13.0; P=0.03). Conclusions In anaemic patients undergoing surgery for hip fracture, i.v. iron did not reduce the overall proportion of patients receiving blood transfusion. The use of i.v. iron may reduce the amount of blood transfused in younger patients. The use of i.v. iron is associated with increased haemoglobin concentrations 6 weeks after the operation. Clinical trial registration ACTRN12612000448842.
Collapse
Affiliation(s)
- Edmond O'Loughlin
- Department of Anaesthesia, Pain and Perioperative Medicine, Fiona Stanley and Fremantle Hospital Group, Perth, Western Australia, Australia
| | - HuiJun Chih
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Pal Sivalingam
- Department of Anaesthetics, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Joel Symons
- Department of Anaesthesia and Perioperative Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Guy Godsall
- Department of Anaesthesia, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Beth MacLean
- Division of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Toby Richards
- Division of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
48
|
Vizi Z, Hotchkiss D, Lányi K, Sterczer Á. Quantitative demonstration of the existence of two isoforms of canine hepcidin in the serum & urine of dogs. Res Vet Sci 2023; 162:104949. [PMID: 37442013 DOI: 10.1016/j.rvsc.2023.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Hepcidin-25 is the key peptide hormone controlling vertebrate iron metabolism. However, in the last twenty years there was some disagreement in the literature over the structure of this compound. The aim of this research was to study whether more than one isoform of canine hepcidin-25 exists. For the purpose of comparison serum concentrations of hepcidin-25 were determined in the samples of 47 dogs sick with acute/chronic inflammation too. The study demonstrated that two isoforms of canine hepcidin-25 exist. A statistical correlation may indicate that both molecules are synthesised by dogs together. No statistically significant correlations were found between the measured concentrations of the two canine hepcidin-25 isoforms and the measured serum iron parameters in the sampled dogs, irrespective of the measurements were made in serum or urine. The mean urinary total hepcidin-25/creatinine ratio in healthy dogs was 1.08 ± 0.10. The mean serum total hepcidin-25 concentration was 79.8 ± 4.9 ng/ml, about 65% of which was the 25β version. The presence of inflammation results in a statistically significant increase in the serum concentration of both hepcidin varieties. The role and fate of the two molecules may need to be researched further to provide better understanding of their relation.
Collapse
Affiliation(s)
- Z Vizi
- Department & Clinic of Internal Medicine, University of Veterinary Medicine Budapest, H-1078, Budapest, István utca 2, Hungary
| | - D Hotchkiss
- Department & Clinic of Internal Medicine, University of Veterinary Medicine Budapest, H-1078, Budapest, István utca 2, Hungary
| | - K Lányi
- Department of Food Hygiene, University of Veterinary Medicine Budapest, H-1078 Budapest, István utca 2, Hungary.
| | - Á Sterczer
- Department & Clinic of Internal Medicine, University of Veterinary Medicine Budapest, H-1078, Budapest, István utca 2, Hungary
| |
Collapse
|
49
|
Kimita W, Ko J, Petrov MS. Relationship of Iron Intake, Ferritin, and Hepcidin with the Transverse Relaxation Rate of Water Protons in the Pancreas. Nutrients 2023; 15:3727. [PMID: 37686761 PMCID: PMC10490090 DOI: 10.3390/nu15173727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
(1) Background: There is a paucity of markers of iron metabolism in health and disease. The aim was to investigate the associations of iron metabolism with pancreas transverse water proton relaxation rate (R2water) in healthy individuals and people after an attack of pancreatitis. (2) Methods: All participants underwent a 3.0 T magnetic resonance imaging of the abdomen on the same scanner. High-speed T2-corrected multi-echo (HISTO) acquisition at single-voxel magnetic resonance spectroscopy and inline processing were used to quantify pancreas R2water. Habitual dietary intake of iron was determined using the EPIC-Norfolk food frequency questionnaire. Circulating levels of ferritin and hepcidin were measured. Generalised additive models were used, adjusting for age, sex, body mass index, and haemoglobin A1c. (3) Results: A total of 139 individuals (47 healthy individuals, 54 individuals after acute pancreatitis, and 38 individuals after chronic pancreatitis) were included. Total dietary intake of iron was significantly associated with pancreas R2water, consistently in healthy individuals (p < 0.001), individuals after acute pancreatitis (p < 0.001), and individuals after chronic pancreatitis (p < 0.001) across all the statistical models. Ferritin was significantly associated with pancreas R2water, consistently in healthy individuals (p < 0.001), individuals after acute pancreatitis (p < 0.001), and individuals after chronic pancreatitis (p = 0.01) across all adjusted models. Hepcidin was significantly associated with pancreas R2water in individuals after acute pancreatitis (p < 0.001) and individuals after chronic pancreatitis (p = 0.04) in the most adjusted model. (4) Conclusions: Pancreas R2water, corrected for T2, is related to iron metabolism in both health and pancreatitis. This non-invasive marker could be used for automated in vivo identification of intra-pancreatic iron deposition.
Collapse
Affiliation(s)
| | | | - Maxim S. Petrov
- School of Medicine, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
50
|
Franczuk P, Tkaczyszyn M, Kosiorek A, Kulej-Łyko K, Kobak KA, Kasztura M, Sołtowska A, Jaroch J, Ponikowski P, Jankowska EA. Iron Status and Short-Term Recovery after Non-Severe Acute Myocarditis: A Prospective Observational Study. Biomedicines 2023; 11:2136. [PMID: 37626633 PMCID: PMC10452231 DOI: 10.3390/biomedicines11082136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Pathomechanisms responsible for recovery from acute myocarditis (MCD) or progression to non-ischemic cardiomyopathy have not been comprehensively investigated. Iron, positioned at the crossroads of inflammation and the energy metabolism of cardiomyocytes, may contribute to the pathophysiology of inflammatory myocardial disease. The aim of this study was to evaluate whether systemic iron parameters are related to myocardial dysfunction in MCD patients. We prospectively enrolled 42 consecutive patients hospitalized for MCD. Their iron status and their clinical, laboratory, and echocardiographic indices were assessed during hospitalization and during ambulatory visits six weeks after discharge. A control group comprising healthy volunteers was recruited. The MCD patients had higher serum ferritin and hepcidin and lower serum iron concentration and transferrin saturation (TSAT) than the healthy controls (all p < 0.01). Six weeks after discharge, the iron status of the MCD patients was already comparable to that of the control group. During hospitalization, lower serum iron and TSAT correlated with higher NT-proBNP (both p < 0.05). In-hospital lower serum iron and TSAT correlated with both a lower left ventricular ejection fraction (LVEF) and worse left ventricular global longitudinal strain at follow-up visits (all p < 0.05). In conclusion, in patients with acute MCD, iron status is altered and normalizes within six weeks. Low serum iron and TSAT are related to greater in-hospital neurohormonal activation and subtle persistent left ventricular dysfunction.
Collapse
Affiliation(s)
- Paweł Franczuk
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland
| | - Michał Tkaczyszyn
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland
| | - Aneta Kosiorek
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | - Kamil Aleksander Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Monika Kasztura
- Department of Food Hygiene and Consumer Health Protection, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Alicja Sołtowska
- Department of Cardiology, Tadeusz Marciniak Lower Silesia Specialist Hospital-Emergency Medicine Center, 54-049 Wroclaw, Poland
- Division of Internal Medicine Nursing, Faculty of Health Science, Wroclaw Medical University, 51-618 Wroclaw, Poland
| | - Joanna Jaroch
- Department of Cardiology, Tadeusz Marciniak Lower Silesia Specialist Hospital-Emergency Medicine Center, 54-049 Wroclaw, Poland
- Division of Internal Medicine Nursing, Faculty of Health Science, Wroclaw Medical University, 51-618 Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland
| | - Ewa Anita Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland
| |
Collapse
|