1
|
Howard PG, Zou P, Zhang Y, Huang F, Tesic V, Wu CYC, Lee RHC. Serum/glucocorticoid regulated kinase 1 (SGK1) in neurological disorders: pain or gain. Exp Neurol 2024; 382:114973. [PMID: 39326820 PMCID: PMC11536509 DOI: 10.1016/j.expneurol.2024.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Serum/Glucocorticoid Regulated Kinase 1 (SGK1), a serine/threonine kinase, is ubiquitous across a wide range of tissues, orchestrating numerous signaling pathways and associated with various human diseases. SGK1 has been extensively explored in diverse types of immune and inflammatory diseases, cardiovascular disorders, as well as cancer metastasis. These studies link SGK1 to cellular proliferation, survival, metabolism, membrane transport, and drug resistance. Recently, increasing research has focused on SGK1's role in neurological disorders, including a variety of neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease), brain injuries (e.g., cerebral ischemia and traumatic brain injury), psychiatric conditions (e.g., depression and drug addiction). SGK1 is emerging as an increasingly compelling therapeutic target across the spectrum of neurological disorders, supported by the availability of several effective agents. However, the conclusions of many studies observing the prevalence and function of SGK1 in neurological disorders are contradictory, necessitating a review of the SGK1 research within neurological disorders. Herein, we review recent literature on SGK1's primary functions within the nervous system and its impacts within different neurological disorders. We summarize significant findings, identify research gaps, and outline possible future research directions based on the current understanding of SGK1 to help further progress the understanding and treatment of neurological disorders.
Collapse
Affiliation(s)
- Peyton Grace Howard
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Peibin Zou
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Yulan Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Fang Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA.
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA; Department of Department of Cell Biology & Anatomy, Louisiana State University Health, Shreveport, LA, USA.
| |
Collapse
|
2
|
Gan J, Shi Y, Zhao R, Li D, Jin H, Wu M, Liu Z, Li X, Xu A, Li Y, Lin Z, Wu F. Adipose c-Jun NH2-terminal kinase promotes angiotensin II-induced and deoxycorticosterone acetate salt-induced hypertension and vascular dysfunction by inhibition of adiponectin production and activation of SGK1 in mice. J Hypertens 2024; 42:856-872. [PMID: 38164960 DOI: 10.1097/hjh.0000000000003649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Adipose c-Jun NH2-terminal kinase 1/2 (JNK1/2) is a central mediator involved in the development of obesity and its complications. However, the roles of adipose JNK1/2 in hypertension remain elusive. Here we explored the role of adipose JNK1/2 in hypertension. METHODS AND RESULTS The roles of adipose JNK1/2 in hypertension were investigated by evaluating the impact of adipose JNK1/2 inactivation in both angiotensin II (Ang II)-induced and deoxycorticosterone acetate (DOCA) salt-induced hypertensive mice. Specific inactivation of JNK1/2 in adipocytes significantly alleviates Ang II-induced and DOCA salt-induced hypertension and target organ damage in mice. Interestingly, such beneficial effects are also observed in hypertensive mice after oral administration of JNK1/2 inhibitor SP600125. Mechanistically, adipose JNK1/2 acts on adipocytes to reduce the production of adiponectin (APN), then leads to promote serum and glucocorticoid-regulated kinase 1 (SGK1) phosphorylation and increases epithelial Na + channel α-subunit (ENaCα) expression in both renal cells and adipocytes, respectively, finally exacerbates Na + retention. In addition, chronic treatment of recombinant mouse APN significantly augments the beneficial effects of adipose JNK1/2 inactivation in DOCA salt-induced hypertension. By contrast, the blood pressure-lowering effects of adipose JNK1/2 inactivation are abrogated by adenovirus-mediated SGK1 overexpression in Ang II -treated adipose JNK1/2 inactivation mice. CONCLUSION Adipose JNK1/2 promotes hypertension and targets organ impairment via fine-tuning the multiorgan crosstalk among adipose tissue, kidney, and blood vessels.
Collapse
Affiliation(s)
- Jing Gan
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University
| | - Yaru Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
- Department of Pharmacy, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui
| | - Ruyi Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Dan Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
- Department of clinical pharmacy, the Forth People's Hospital of Liaocheng, Liaocheng
| | - Hua Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Maolan Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Zhen Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong
| | - Yulin Li
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, Beijing
| | - Zhuofeng Lin
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University
- The laboratory of Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Fan Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| |
Collapse
|
3
|
Zhang L, Sun Z, Yang Y, Mack A, Rodgers M, Aroor A, Jia G, Sowers JR, Hill MA. Endothelial cell serum and glucocorticoid regulated kinase 1 (SGK1) mediates vascular stiffening. Metabolism 2024; 154:155831. [PMID: 38431129 DOI: 10.1016/j.metabol.2024.155831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Excessive dietary salt intake increases vascular stiffness in humans, especially in salt-sensitive populations. While we recently suggested that the endothelial sodium channel (EnNaC) contributes to salt-sensitivity related endothelial cell (EC) and arterial stiffening, mechanistic understanding remains incomplete. This study therefore aimed to explore the role of EC-serum and glucocorticoid regulated kinase 1 (SGK1), as a reported regulator of sodium channels, in EC and arterial stiffening. METHODS AND RESULTS A mouse model of salt sensitivity-associated vascular stiffening was produced by subcutaneous implantation of slow-release deoxycorticosterone acetate (DOCA) pellets, with salt (1 % NaCl, 0.2 % KCl) administered via drinking water. Preliminary data showed that global SGK1 deletion caused significantly decreased blood pressure (BP), EnNaC activity and aortic endothelium stiffness as compared to control mice following DOCA-salt treatment. To probe EC signaling pathways, selective deletion of EC-SGK1 was performed by cross-breeding cadherin 5-Cre mice with sgk1flox/flox mice. DOCA-salt treated control mice had significantly increased BP, EC and aortic stiffness in vivo and ex vivo, which were attenuated by EC-SGK1 deficiency. To demonstrate relevance to humans, human aortic ECs were cultured in the absence or presence of aldosterone and high salt with or without the SGK1 inhibitor, EMD638683 (10uM or 25uM). Treatment with aldosterone and high salt increased intrinsic stiffness of ECs, which was prevented by SGK1 inhibition. Further, the SGK1 inhibitor prevented aldosterone and high salt induced actin polymerization, a key mechanism in cellular stiffening. CONCLUSION EC-SGK1 contributes to salt-sensitivity related EC and aortic stiffening by mechanisms appearing to involve regulation of actin polymerization.
Collapse
Affiliation(s)
- Liping Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Austin Mack
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Mackenna Rodgers
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Annayya Aroor
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Guanghong Jia
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - James R Sowers
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
4
|
Ríos-Medina Y, Rico-Chávez P, Martínez-Vieyra I, Durán-Álvarez JC, Rodriguez-Varela M, Rincón-Heredia R, Reyes-López C, Cerecedo D. Altered Plasma Membrane Lipid Composition in Hypertensive Neutrophils Impacts Epithelial Sodium Channel (ENaC) Endocytosis. Int J Mol Sci 2024; 25:4939. [PMID: 38732158 PMCID: PMC11084340 DOI: 10.3390/ijms25094939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Biological membranes are composed of a lipid bilayer with embedded proteins, including ion channels like the epithelial sodium channel (ENaC), which are critical for sodium homeostasis and implicated in arterial hypertension (HTN). Changes in the lipid composition of the plasma membrane can significantly impact cellular processes related to physiological functions. We hypothesized that the observed overexpression of ENaC in neutrophils from HTN patients might result from alterations in the structuring domains within the plasma membrane, disrupting the endocytic processes responsible for ENaC retrieval. This study assessed the structural lipid composition of neutrophil plasma membranes from HTN patients along with the expression patterns of key elements regulating ENaC at the plasma membrane. Our findings suggest alterations in microdomain structure and SGK1 kinase activity, which could prolong ENaC presence on the plasma membrane. Additionally, we propose that the proteasomal and lysosomal degradation pathways are insufficient to diminish ENaC presence at the plasma membrane in HTN. These results highlight the importance of understanding ENaC retrieval mechanisms and suggest that targeting these mechanisms could provide insights for developing drugs to prevent and treat HTN.
Collapse
Affiliation(s)
- Yolanda Ríos-Medina
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico; (Y.R.-M.); (P.R.-C.); (I.M.-V.)
| | - Pedro Rico-Chávez
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico; (Y.R.-M.); (P.R.-C.); (I.M.-V.)
| | - Ivette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico; (Y.R.-M.); (P.R.-C.); (I.M.-V.)
| | - Juan C. Durán-Álvarez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.D.-Á.); (M.R.-V.)
| | - Mario Rodriguez-Varela
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.D.-Á.); (M.R.-V.)
| | - Ruth Rincón-Heredia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - César Reyes-López
- Laboratorio de Bioquímica Estructural, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico;
| | - Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico; (Y.R.-M.); (P.R.-C.); (I.M.-V.)
| |
Collapse
|
5
|
Gulzar M, Noor S, Hasan GM, Hassan MI. The role of serum and glucocorticoid-regulated kinase 1 in cellular signaling: Implications for drug development. Int J Biol Macromol 2024; 258:128725. [PMID: 38092114 DOI: 10.1016/j.ijbiomac.2023.128725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a ubiquitously expressed protein belonging to the Ser/Thr kinase family. It regulates diverse physiological processes, including epithelial sodium channel activity, hypertension, cell proliferation, and insulin sensitivity. Due to its significant role in the pathogenesis of numerous diseases, SGK1 can be exploited as a potential therapeutic target to address challenging health problems. SGK1 is associated with the development of obesity, and its overexpression enhances the sodium-glucose co-transporter 1 activity, which absorbs intestinal glucose. This review highlighted the detailed functional significance of SGK1 signaling and role in different diseases and subsequent therapeutic targeting. We aim to provide deeper mechanistic insights into understanding the pathogenesis and recent advancements in the SGK1 targeted drug development process. Small-molecule inhibitors are being developed with excellent binding affinity and improved SGK1 inhibition with desired selectivity. We have discussed small molecule inhibitors designed explicitly as potent SGK1 inhibitors and their therapeutic implications in various diseases. We further addressed the therapeutic potential and mechanism of action of these SGK1 inhibitors and provided a strong scientific foundation for developing effective therapeutics.
Collapse
Affiliation(s)
- Mehak Gulzar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
6
|
Castillo Cabrera J, Dang H, Graves A, Zhang Z, Torres-Castillo J, Li K, King Z, Liu P, Aubé J, Bear JE, Damania B, Hagan RS, Baldwin AS. AGC kinase inhibitors regulate STING signaling through SGK-dependent and SGK-independent mechanisms. Cell Chem Biol 2023; 30:1601-1616.e6. [PMID: 37939709 PMCID: PMC10842197 DOI: 10.1016/j.chembiol.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 07/22/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Type 1 IFN expression is critical in the innate immune response, but aberrant expression is associated with autoimmunity and cancer. Here, we identify N-[4-(1H46 pyrazolo[3,4-b] pyrazin-6-yl)-phenyl]-sulfonamide (Sanofi-14h), a compound with preference for inhibition of the AGC family kinase SGK3, as an inhibitor of Ifnb1 gene expression in response to STING stimulation of macrophages. Sanofi-14h abrogated SGK activity and also impaired activation of the critical TBK1/IRF3 pathway downstream of STING activation, blocking interaction of STING with TBK1. Deletion of SGK1/3 in a macrophage cell line did not block TBK1/IRF3 activation but decreased expression of transcription factors, such as IRF7 and STAT1, required for the innate immune response. Other AGC kinase inhibitors blocked TBK1 and IRF3 activation suggesting common action on a critical regulatory node in the STING pathway. These studies reveal both SGK-dependent and SGK-independent mechanisms in the innate immune response and indicate an approach to block aberrant Ifnb1 expression.
Collapse
Affiliation(s)
- Johnny Castillo Cabrera
- Pathobiology and Translational Sciences Graduate Program, Department of Pathology and Laboratory Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hong Dang
- Division of Pulmonary Diseases and Critical Care Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Marsico Lung Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam Graves
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhigang Zhang
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jose Torres-Castillo
- Division of Pulmonary Diseases and Critical Care Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Marsico Lung Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zayna King
- Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biochemistry and Biophysics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeff Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James E Bear
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert S Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Marsico Lung Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Maestro I, Madruga E, Boya P, Martínez A. Identification of a new structural family of SGK1 inhibitors as potential neuroprotective agents. J Enzyme Inhib Med Chem 2023; 38:2153841. [PMID: 36637025 PMCID: PMC9848319 DOI: 10.1080/14756366.2022.2153841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
SGK1 is a serine/threonine kinase involved in several neurodegenerative-related pathways such as apoptosis, neuroinflammation, ionic channel regulation, and autophagy, among others. Despite its potential role as a pharmacological target against this kind of diseases, there are no reported inhibitors able to cross the BBB so far, being a field yet to be explored. In this context, a structure-based virtual screening against this kinase was performed, pointing out the deazapurine moiety as an interesting and easy-to-derivatize scaffold. Moreover, these inhibitors are able to i) exert neuroprotection in an in vitro model of AD and ii) block mitophagy in a PRKN-independent manner, reinforcing the hypothesis of SGK1 inhibitors as neuroprotective chemical tools.
Collapse
Affiliation(s)
- Ines Maestro
- Centro de Investigaciones, Biológicas Margarita Salas-CSIC, Madrid, Spain,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Madruga
- Centro de Investigaciones, Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Patricia Boya
- Centro de Investigaciones, Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones, Biológicas Margarita Salas-CSIC, Madrid, Spain,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain,CONTACT Ana Martínez CIB-CSIC, Ramiro Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
8
|
Zhang Y, Zhang D, Meng T, Tian P, Chen J, Liu A, Zheng Y, Su G. SGK1 is involved in doxorubicin-induced chronic cardiotoxicity and dysfunction through activation of the NFκB pathway. Int Immunopharmacol 2023; 125:111151. [PMID: 37948859 DOI: 10.1016/j.intimp.2023.111151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Breast cancer is the predominant cancer among women worldwide, and chemotherapeutic agents, such as doxorubicin (DOX), have the potential to significantly prolong survival, albeit at the cost of inducing severe cardiovascular toxicity. Inflammation has emerged as a crucial biological process contributing to the remodeling of cardiovascular toxicity. The role of serum glucocorticoid kinase 1 (SGK1) in various inflammatory diseases has been extensively investigated. Here, we studied the molecular mechanisms underlying the function of SGK1 in DOX-induced cardiotoxicity in HL-1 cardiomyocyte cell lines and in a tumor-bearing mouse model. SGK1 was upregulated in the DOX-induced cardiotoxicity model, accompanied by increased levels of inflammatory factors. Furthermore, inhibition of SGK1 suppresses the phosphorylation of nuclear factor-kappa B (NFκB) in cardiomyocytes, which inhibits the production of inflammatory factors and apoptosis of cardiomyocytes, and has cardioprotective effects. Simultaneously, small interfering RNA targeting SGK1 inhibited the proliferation of breast cancer cells. Conversely, overexpression of SGK1 increases the phosphorylation of NFκB and aggravates myocardial injury. In conclusion, our study demonstrates that SGK1 promotes DOX-induced cardiac inflammation and apoptosis by promoting NFκB activity. Our results indicate that inhibiting SGK1 might be an effective treatment strategy that can provide both tumor-killing and cardioprotective functions. Further in vivo research is needed to fully elucidate the effects and mechanisms of combination therapy with SGK1 inhibitors and DOX in breast cancer treatment.
Collapse
Affiliation(s)
- Yu Zhang
- Jinan Central Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Dan Zhang
- Jinan Central Hospital, Jinan, Shandong, People's Republic of China
| | - Tingting Meng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Peng Tian
- Jinan Central Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jianlin Chen
- Research Center of Translational Medicine, Jinan Central Hospital, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Anbang Liu
- Jinan Central Hospital, Jinan, Shandong, People's Republic of China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China.
| | - Guohai Su
- Jinan Central Hospital, Shandong University, Jinan, Shandong, People's Republic of China; Jinan Central Hospital, Jinan, Shandong, People's Republic of China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Kim M, Das S, Tester DJ, Pradhananga S, Hamrick SK, Gao X, Srinivasan D, Sager PT, Ackerman MJ. SGK1 Inhibition Attenuated the Action Potential Duration in Patient- and Genotype-Specific Re-Engineered Heart Cells with Congenital Long QT Syndrome. Heart Rhythm O2 2023; 4:268-274. [PMID: 37124559 PMCID: PMC10134391 DOI: 10.1016/j.hroo.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Background Long QT syndrome (LQTS) stems from pathogenic variants in KCNQ1 (LQT1), KCNH2 (LQT2), or SCN5A (LQT3) and is characterized by action potential duration (APD) prolongation. Inhibition of serum and glucocorticoid regulated kinase-1 (SGK1) is proposed as a novel therapeutic for LQTS. Objective The study sought to test the efficacy of novel, selective SGK1 inhibitors in induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) models of LQTS. Methods The mexiletine (MEX)-sensitive SCN5A-P1332L iPSC-CMs were tested initially compared with a CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 SCN5A-P1332L variant-corrected isogenic control (IC). The SGK1-I1 therapeutic efficacy, compared with MEX, was tested for APD at 90% repolarization (APD90) shortening in SCN5A-P1332L, SCN5A-R1623Q, KCNH2-G604S, and KCNQ1-V254M iPSC-CMs using FluoVolt. Results The APD90 was prolonged in SCN5A-P1332L iPSC-CMs compared with its IC (646 ± 7 ms vs 482 ± 23 ms; P < .0001). MEX shortened the APD90 to 560 ± 7 ms (52% attenuation, P < .0001). SGK1-I1 shortened the APD90 to 518 ± 5 ms (78% attenuation, P < .0001) but did not shorten the APD90 in the IC. SGK1-I1 shortened the APD90 of the SCN5A-R1623Q iPSC-CMs (753 ± 8 ms to 475 ± 19 ms compared with 558 ± 19 ms with MEX), the KCNH2-G604S iPSC-CMs (666 ± 10 ms to 574 ± 18 ms vs 538 ± 15 ms after MEX), and the KCNQ1-V254M iPSC-CMs (544 ± 10 ms to 475 ± 11ms; P = .0004). Conclusions Therapeutically inhibiting SGK1 effectively shortens the APD in human iPSC-CM models of the 3 major LQTS genotypes. These preclinical data support development of SGK1 inhibitors as novel, first-in-class therapy for patients with congenital LQTS.
Collapse
|
10
|
Inhibition of Serum- and Glucocorticoid-Regulated Protein Kinase-1 Aggravates Imiquimod-Induced Psoriatic Dermatitis and Enhances Proinflammatory Cytokine Expression through the NF-kB Pathway. J Invest Dermatol 2023; 143:954-964. [PMID: 36623704 DOI: 10.1016/j.jid.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
Although the anti-inflammatory effect of serum- and glucocorticoid-regulated protein kinase 1 (SGK1) has been established in other diseases, the possible regulatory role of SGK1 in psoriasis and the underlying molecular mechanisms remain largely unknown. In this study, we found that SGK1 expression was decreased in macrophages from patients with psoriasis. Moreover, a specific pharmacological SGK1 inhibitor, EMD638683, significantly enhanced imiquimod-mediated toll-like receptor 7/8 activity and proinflammatory cytokine production in RAW264.7 cells, and this result was confirmed by Sgk1 small interfering RNA. Further mechanistic data showed that SGK1 inhibition increased the phosphorylation of Bruton's agammaglobulinemia tyrosine kinase; moreover, Bruton's agammaglobulinemia tyrosine kinase inhibition abrogated the proinflammatory effects of the SGK1 inhibitor on toll-like receptor 7/8 activation, thereby validating that SGK1 inhibition enhances the toll-like receptor 7/8 pathway by increasing Bruton's agammaglobulinemia tyrosine kinase phosphorylation. In addition, our in vivo results showed that SGK1 inhibition significantly increased the secretion of proinflammatory cytokines, including IL-1β, IL-6, and TNF-α, and the infiltration of T helper 17 cells in an imiquimod-induced psoriasis mouse model. Altogether, these results show that SGK1 plays a critical role in the pathogenesis of psoriasis by modulating inflammatory responses in skin lesions, indicating that SGK1‒Bruton's agammaglobulinemia tyrosine kinase signaling could be a novel therapeutic target for the control of psoriasis.
Collapse
|
11
|
Blackwood EA, MacDonnell LF, Thuerauf DJ, Bilal AS, Murray VB, Bedi KC, Margulies KB, Glembotski CC. Noncanonical Form of ERAD Regulates Cardiac Hypertrophy. Circulation 2023; 147:66-82. [PMID: 36317534 PMCID: PMC9797446 DOI: 10.1161/circulationaha.122.061557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cardiac hypertrophy increases demands on protein folding, which causes an accumulation of misfolded proteins in the endoplasmic reticulum (ER). These misfolded proteins can be removed by the adaptive retrotranslocation, polyubiquitylation, and a proteasome-mediated degradation process, ER-associated degradation (ERAD), which, as a biological process and rate, has not been studied in vivo. To investigate a role for ERAD in a pathophysiological model, we examined the function of the functional initiator of ERAD, valosin-containing protein-interacting membrane protein (VIMP), positing that VIMP would be adaptive in pathological cardiac hypertrophy in mice. METHODS We developed a new method involving cardiac myocyte-specific adeno-associated virus serovar 9-mediated expression of the canonical ERAD substrate, TCRα, to measure the rate of ERAD, ie, ERAD flux, in the heart in vivo. Adeno-associated virus serovar 9 was also used to either knock down or overexpress VIMP in the heart. Then mice were subjected to transverse aortic constriction to induce pressure overload-induced cardiac hypertrophy. RESULTS ERAD flux was slowed in both human heart failure and mice after transverse aortic constriction. Surprisingly, although VIMP adaptively contributes to ERAD in model cell lines, in the heart, VIMP knockdown increased ERAD and ameliorated transverse aortic constriction-induced cardiac hypertrophy. Coordinately, VIMP overexpression exacerbated cardiac hypertrophy, which was dependent on VIMP engaging in ERAD. Mechanistically, we found that the cytosolic protein kinase SGK1 (serum/glucocorticoid regulated kinase 1) is a major driver of pathological cardiac hypertrophy in mice subjected to transverse aortic constriction, and that VIMP knockdown decreased the levels of SGK1, which subsequently decreased cardiac pathology. We went on to show that although it is not an ER protein, and resides outside of the ER, SGK1 is degraded by ERAD in a noncanonical process we call ERAD-Out. Despite never having been in the ER, SGK1 is recognized as an ERAD substrate by the ERAD component DERLIN1, and uniquely in cardiac myocytes, VIMP displaces DERLIN1 from initiating ERAD, which decreased SGK1 degradation and promoted cardiac hypertrophy. CONCLUSIONS ERAD-Out is a new preferentially favored noncanonical form of ERAD that mediates the degradation of SGK1 in cardiac myocytes, and in so doing is therefore an important determinant of how the heart responds to pathological stimuli, such as pressure overload.
Collapse
Affiliation(s)
- Erik A. Blackwood
- Translational Cardiovascular Research Center and Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, AZ
| | - Lauren F. MacDonnell
- Translational Cardiovascular Research Center and Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, AZ
| | - Donna J. Thuerauf
- San Diego State University Heart Institute and Department of Biology, San Diego State University, CA
| | - Alina S. Bilal
- Translational Cardiovascular Research Center and Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, AZ
| | - Victoria B. Murray
- Translational Cardiovascular Research Center and Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, AZ
| | - Kenneth C. Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kenneth B. Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christopher C. Glembotski
- Translational Cardiovascular Research Center and Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, AZ
- Department of Internal Medicine, University of Arizona College of Medicine-Phoenix, Phoenix AZ
| |
Collapse
|
12
|
Verma AK, Ahmed SF, Hossain MS, Bhojiya AA, Upadhyay SK, Srivastava AK, Singh N, Harina H, Rahaman MM, Bahadur NM. Unlocking SGK1 inhibitor potential of bis-[1-N,7-N, pyrazolo tetraethoxyphthalimido{-4-(3,5-Dimethyl-4-(spiro-3-methylpyazolo)-1,7-dihydro-1H-dipyrazolo[3,4-b;4',3'-e]pyridin-8-yl)}]p-disubstituted phenyl compounds: a computational study. J Biomol Struct Dyn 2022; 40:13412-13431. [PMID: 34696688 DOI: 10.1080/07391102.2021.1988711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SGK1 (Serum and Glucocorticoid Regulated Kinase 1), a serine/threonine kinase that is activated by various stimuli, including serum and glucocorticoids. It controls inflammation, apoptosis, hormone release, neuro-excitability and cell proliferation, all of which play an important role in cancer progression and metastasis. SGK1 was recently proposed as a potential drug target for cancer, diabetes, and neurodegenerative diseases. In this study, molecular docking, physiochemical, toxicological properties and molecular dynamic simulation of the Bis-[1-N,7-N, Pyrazolo tetraethoxyphthalimido{-4-(3,5-Dimethyl-4-(spiro-3-methylpyazolo)-1,7-dihydro-1H-dipyrazolo[3,4-b;4',3'-e]pyridin-8-yl)}]p-disubstituted phenyl compoundsand reference EMD638683 against new SGK1 target protein. Compared to the reference inhibitor EMD638683, we choose the best compounds (series 2-6) based on the binding energy (in the range from -11.0 to -10.6 kcal/mol). With the exception of compounds 2 and 6, none of the compounds posed a risk for AMES toxicity or carcinogenicity due to their toxicological properties. 100 ns MD simulation accompanied by MM/PBSA energy calculations and PCA. According to MD simulation results, the binding of compounds 3, 4 and 5 stabilizes the SGK1 structure and causes febrile conformational changes compared to EMD638683. As a result of this research, the final selected compounds 3, 4 and 5 can be used as scaffolds to develop promising SGK1 inhibitors for the treatment of related diseases such as cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Department of Life Sciences, Faculty of Science and Technology, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
| | - Sk Faisal Ahmed
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| | - Ali Asger Bhojiya
- Faculty of Agriculture and Veterinary Sciences, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, Uttar Pradesh, India
| | | | - Nripendra Singh
- Department of Pharmacy, V.B.S, Purvanchal University, Jaunpur, Uttar Pradesh, India
| | - Harina Harina
- Department of Life Sciences, Faculty of Science and Technology, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
| | | | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
| |
Collapse
|
13
|
Patel CH, Heikamp EB, Xu W, Sun IH, Oh MH, Sun IM, Wen J, Tam AJ, Blosser RL, Powell JD. Cutting Edge: mTORC2 Regulates CD8+ Effector and Memory T Cell Differentiation through Serum and Glucocorticoid Kinase 1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2287-2291. [PMID: 36469844 PMCID: PMC10065985 DOI: 10.4049/jimmunol.2100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2022] [Indexed: 01/04/2023]
Abstract
The mechanistic target of rapamycin is an essential regulator of T cell metabolism and differentiation. In this study, we demonstrate that serum- and glucocorticoid-regulated kinase 1 (SGK1), a downstream node of mechanistic target of rapamycin complex 2 signaling, represses memory CD8+ T cell differentiation. During acute infections, murine SGK1-deficient CD8+ T cells adopt an early memory precursor phenotype leading to more long-lived memory T cells. Thus, SGK1-deficient CD8+ T cells demonstrate an enhanced recall capacity in response to reinfection and can readily reject tumors. Mechanistically, activation of SGK1-deficient CD8+ T cells results in decreased Foxo1 phosphorylation and increased nuclear translocation of Foxo1 to promote early memory development. Overall, SGK1 might prove to be a powerful target for enhancing the efficacy of vaccines and tumor immunotherapy.
Collapse
Affiliation(s)
- Chirag H. Patel
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Current address: Calico LLC, South San Francisco, CA 94080
- Equal contribution
| | - Emily B. Heikamp
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston, MA 02215, USA
- Equal contribution
| | - Wei Xu
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Im-Hong Sun
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Min-Hee Oh
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Im-Meng Sun
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jiayu Wen
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ada J. Tam
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Richard L. Blosser
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan D. Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Current address: Calico LLC, South San Francisco, CA 94080
- Lead Contact
| |
Collapse
|
14
|
Jang H, Park Y, Jang J. Serum and glucocorticoid-regulated kinase 1: Structure, biological functions, and its inhibitors. Front Pharmacol 2022; 13:1036844. [PMID: 36457711 PMCID: PMC9706101 DOI: 10.3389/fphar.2022.1036844] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 08/11/2023] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase belonging to the protein kinase A, G, and C (AGC) family. Upon initiation of the phosphoinositide 3-kinase (PI3K) signaling pathway, mammalian target of rapamycin complex 2 (mTORC2) and phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylate the hydrophobic motif and kinase domain of SGK1, respectively, inducing SGK1 activation. SGK1 modulates essential cellular processes such as proliferation, survival, and apoptosis. Hence, dysregulated SGK1 expression can result in multiple diseases, including hypertension, cancer, autoimmunity, and neurodegenerative disorders. This review provides a current understanding of SGK1, particularly in sodium transport, cancer progression, and autoimmunity. In addition, we summarize the developmental status of SGK1 inhibitors, their structures, and respective potencies evaluated in pre-clinical experimental settings. Collectively, this review highlights the significance of SGK1 and proposes SGK1 inhibitors as potential drugs for treatment of clinically relevant diseases.
Collapse
Affiliation(s)
- Hyunsoo Jang
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Youngjun Park
- Laboratory of Immune and Inflammatory Disease, College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Jaebong Jang
- College of Pharmacy, Korea University, Sejong, South Korea
| |
Collapse
|
15
|
Identification of Novel Inhibitors Targeting SGK1 via Ensemble-Based Virtual Screening Method, Biological Evaluation and Molecular Dynamics Simulation. Int J Mol Sci 2022; 23:ijms23158635. [PMID: 35955763 PMCID: PMC9369041 DOI: 10.3390/ijms23158635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1), as a serine threonine protein kinase of the AGC family, regulates different enzymes, transcription factors, ion channels, transporters, and cell proliferation and apoptosis. Inhibition of SGK1 is considered as a valuable approach for the treatment of various metabolic diseases. In this investigation, virtual screening methods, including pharmacophore models, Bayesian classifiers, and molecular docking, were combined to discover novel inhibitors of SGK1 from the database with 29,158 compounds. Then, the screened compounds were subjected to ADME/T, PAINS and drug-likeness analysis. Finally, 28 compounds with potential inhibition activity against SGK1 were selected for biological evaluation. The kinase inhibition activity test revealed that among these 28 hits, hit15 exhibited the highest inhibition activity against SGK1, which gave 44.79% inhibition rate at the concentration of 10 µM. In order to further investigate the interaction mechanism of hit15 and SGK1 at simulated physiological conditions, a molecular dynamics simulation was performed. The molecular dynamics simulation demonstrated that hit15 could bind to the active site of SGK1 and form stable interactions with key residues, such as Tyr178, ILE179, and VAL112. The binding free energy of the SGK1-hit15 was −48.90 kJ mol−1. Therefore, the identified hit15 with novel scaffold may be a promising lead compound for development of new SGK1 inhibitors for various diseases treatment.
Collapse
|
16
|
Wu Y, Wang H, Li Y, Li Y, Liang Y, Zhong G, Zhang Q. Estrogen-increased SGK1 Promotes Endometrial Stromal Cell Invasion in Adenomyosis by Regulating with LPAR2. Reprod Sci 2022; 29:3026-3038. [PMID: 35799024 DOI: 10.1007/s43032-022-00990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022]
Abstract
Adenomyosis is an estrogen-dependent gynecological disorder. The abnormal migration and invasion of the eutopic endometrium is thought to be the primary role in the pathogenesis of adenomyosis. However, the exact underlying mechanism remains unclear. This study investigated involvement of serum and glucocorticoid-regulated kinase 1 (SGK1) in the pathogenesis of adenomyosis. The SGK1 expression level was higher in the eutopic endometrium of adenomyosis. Upregulation of SGK1 can promote the migration, invasion of human stromal endometrial cells (HESC). Through RNA sequencing and other technical methods, we found that SGK1 regulates the expression of the important downstream molecule Lysophosphatidic acid receptor 2 (LPAR2), and ultimately regulates the expression level of functional proteins such as matrix metalloproteinase 2 and matrix metalloproteinase 9, which are related to migration and invasion. Then, we found that 17β-estradiol (E2) upregulated the expression of SGK1 in endometrial cells in a dose-dependent manner. Furthermore, SGK1 shRNA significantly suppressed the migration and invasion induced by E2 in endometrial cells, as well as the related factors. Our study revealed the possible role of SGK1 in the migration and invasion in the development of adenomyosis.
Collapse
Affiliation(s)
- Yingchen Wu
- Department of Gynecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Wang
- Department of Gynecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Li
- Department of Gynecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yangzhi Li
- Department of Gynecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yihua Liang
- Department of Gynecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guangzheng Zhong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Qingxue Zhang
- Department of Gynecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
17
|
Han X, Ren J, Lohner H, Yakoumatos L, Liang R, Wang H. SGK1 negatively regulates inflammatory immune responses and protects against alveolar bone loss through modulation of TRAF3 activity. J Biol Chem 2022; 298:102036. [PMID: 35588785 PMCID: PMC9190018 DOI: 10.1016/j.jbc.2022.102036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/05/2022] Open
Abstract
Serum- and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase that plays important roles in the cellular stress response. While SGK1 has been reported to restrain inflammatory immune responses, the molecular mechanisms involved remain elusive, especially in oral bacteria-induced inflammatory milieu. Here, we found that SGK1 curtails Porphyromonas gingivalis-induced inflammatory responses through maintaining levels of tumor necrosis factor receptor-associated factor (TRAF) 3, thereby suppressing NF-κB signaling. Specifically, SGK1 inhibition significantly enhances production of proinflammatory cytokines, including tumor necrosis factor α, interleukin (IL)-6, IL-1β, and IL-8 in P. gingivalis-stimulated innate immune cells. The results were confirmed with siRNA and LysM-Cre-mediated SGK1 KO mice. Moreover, SGK1 deletion robustly increased NF-κB activity and c-Jun expression but failed to alter the activation of mitogen-activated protein kinase signaling pathways. Further mechanistic data revealed that SGK1 deletion elevates TRAF2 phosphorylation, leading to TRAF3 degradation in a proteasome-dependent manner. Importantly, siRNA-mediated traf3 silencing or c-Jun overexpression mimics the effect of SGK1 inhibition on P. gingivalis-induced inflammatory cytokines and NF-κB activation. In addition, using a P. gingivalis infection-induced periodontal bone loss model, we found that SGK1 inhibition modulates TRAF3 and c-Jun expression, aggravates inflammatory responses in gingival tissues, and exacerbates alveolar bone loss. Altogether, we demonstrated for the first time that SGK1 acts as a rheostat to limit P. gingivalis-induced inflammatory immune responses and mapped out a novel SGK1-TRAF2/3-c-Jun-NF-κB signaling axis. These findings provide novel insights into the anti-inflammatory molecular mechanisms of SGK1 and suggest novel interventional targets to inflammatory diseases relevant beyond the oral cavity.
Collapse
Affiliation(s)
- Xiao Han
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Junling Ren
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hannah Lohner
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lan Yakoumatos
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Ruqiang Liang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Huizhi Wang
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
18
|
Lu RQ, Zhang YY, Zhao HQ, Guo RQ, Jiang ZX, Guo R. SGK1, a Critical Regulator of Immune Modulation and Fibrosis and a Potential Therapeutic Target in Chronic Graft-Versus-Host Disease. Front Immunol 2022; 13:822303. [PMID: 35222400 PMCID: PMC8866649 DOI: 10.3389/fimmu.2022.822303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Patients with severe chronic graft-versus-host disease (cGVHD) always experience debilitating tissue injury and have poorer quality of life and shorter survival time. The early stage of cGVHD is characterized by inflammation, which eventually leads to extensive tissue fibrosis in various organs, such as skin and lung, eventually inducing scleroderma-like changes and bronchiolitis obliterans syndrome. Here we review the functions of serum/glucocorticoid regulated kinase 1 (SGK1), a hub molecule in multiple signal transduction pathways and cell phosphorylation cascades, which has important roles in cell proliferation and ion channel regulation, and its relevance in cGVHD. SGK1 phosphorylates the ubiquitin ligase, NEDD4, and induces Th cells to differentiate into Th17 and Th2 phenotypes, hinders Treg development, and promotes inflammatory fibrosis. Phosphorylation of NEDD4 by SGK1 also leads to up-regulation of the transcription factor SMAD2/3, thereby amplifying the fibrosis-promoting effect of TGF-β. SGK1 also up-regulates the inflammatory transcription factor, nuclear factor-κB (NF-κB), which in turn stimulates the expression of multiple inflammatory mediators, including connective tissue growth factor. Overexpression of SGK1 has been observed in various fibrotic diseases, including pulmonary fibrosis, diabetic renal fibrosis, liver cirrhosis, hypertensive cardiac fibrosis, peritoneal fibrosis, and Crohn’s disease. In addition, SGK1 inhibitors can attenuate, or even reverse, the effect of fibrosis, and may be used to treat inflammatory conditions and/or fibrotic diseases, such as cGVHD, in the future.
Collapse
Affiliation(s)
- Run-Qing Lu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yin-Yin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Qiu Zhao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong-Qun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhong-Xing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Wang C, Zhang Y, Wang J, Xing D. VHL-based PROTACs as potential therapeutic agents: Recent progress and perspectives. Eur J Med Chem 2022; 227:113906. [PMID: 34656901 DOI: 10.1016/j.ejmech.2021.113906] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Proteolysis targeting chimeras (PROTACs), which hijack proteins of interest (POIs) and recruit E3 ligases for target degradation via the ubiquitin-proteasome pathway, are a novel drug discovery paradigm that has been widely used as biological tools and medicinal molecules with the potential of clinical application value. To date, a wide variety of small molecule PROTACs have been developed. Importantly, VHL-based PROTACs have emerged to be a promising approach for proteins, including those non-druggable ones, such as transcriptional factors and scaffold proteins. VHL-based PRTOACs have been developed for the treatment of diseases that are difficult to be dealt with by conventional methods, such as radiotherapy, chemotherapy, and small molecule inhibitors. In this review, the recent advances of VHL-based PRTOACs were summarized, and the chances and challenges associated with this area were also highlighted.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; School of Pharmacy, Qingdao University, Qingdao, 266021, Shandong, China.
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
20
|
Zhang S, Wang Y, Yu M, Shang Y, Chang Y, Zhao H, Kang Y, Zhao L, Xu L, Zhao X, Difrancesco D, Baruscotti M, Wang Y. Discovery of Herbacetin as a Novel SGK1 Inhibitor to Alleviate Myocardial Hypertrophy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101485. [PMID: 34761560 PMCID: PMC8805583 DOI: 10.1002/advs.202101485] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/17/2021] [Indexed: 05/05/2023]
Abstract
Cardiac hypertrophy is a pivotal pathophysiological step of various cardiovascular diseases, which eventually leads to heart failure and death. Extracts of Rhodiola species (Ext.R), a class of commonly used medicinal herbs in Europe and East Asia, can attenuate cardiac hypertrophy both in vitro and in vivo. Serum/glucocorticoid regulated kinase 1 (SGK1) is identified as a potential target of Ext. R. By mass spectrometry-based kinase inhibitory assay, herbacetin (HBT) from Ext.R is identified as a novel SGK1 inhibitor with IC50 of 752 nmol. Thermal shift assay, KINOMEscan in vitro assay combined with molecular docking proves a direct binding between HBT and SGK1. Site-specific mutation of Asp177 in SGK1 completely ablates the inhibitory activity of HBT. The presence of OH groups at the C-3, C-8, C-4' positions of flavonoids is suggested to be favorable for the inhibition of SGK1 activity. Finally, HBT significantly suppresses cardiomyocyte hypertrophy in vitro and in vivo, reduces reactive oxygen species (ROS) synthesis and calcium accumulation. HBT decreases phosphorylation of SGK1 and regulates its downstream forkhead box protein O1 (FoxO1) signaling pathway. Taken together, the findings suggest that a panel of flavonoids structurally related to HBT may be novel leads for developing new therapeutics against cardiac hypertrophy.
Collapse
Affiliation(s)
- Shujing Zhang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Yingchao Wang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Min Yu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Ye Shang
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Yanxu Chang
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Hong Zhao
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Yu Kang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Lu Zhao
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Lei Xu
- Institute of Bioinformatics and Medical EngineeringSchool of Electrical and Information EngineeringJiangsu University of TechnologyChangzhouJiangsu213001China
| | - Xiaoping Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhou310053China
| | | | | | - Yi Wang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjin301617China
| |
Collapse
|
21
|
Halland N, Schmidt F, Weiss T, Li Z, Czech J, Saas J, Ding-Pfennigdorff D, Dreyer MK, Strübing C, Nazare M. Rational Design of Highly Potent, Selective, and Bioavailable SGK1 Protein Kinase Inhibitors for the Treatment of Osteoarthritis. J Med Chem 2021; 65:1567-1584. [PMID: 34931844 DOI: 10.1021/acs.jmedchem.1c01601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The serine/threonine kinase SGK1 is an activator of the β-catenin pathway and a powerful stimulator of cartilage degradation that is found to be upregulated under genomic control in diseased osteoarthritic cartilage. Today, no oral disease-modifying treatments are available and chronic treatment in this indication sets high requirements for the drug selectivity, pharmacokinetic, and safety profile. We describe the identification of a highly selective druglike 1H-pyrazolo[3,4-d]pyrimidine SGK1 inhibitor 17a that matches both safety and pharmacokinetic requirements for oral dosing. Rational compound design was facilitated by a novel hSGK1 co-crystal structure, and multiple ligand-based computer models were applied to guide the chemical optimization of the compound ADMET and selectivity profiles. Compounds were selected for subchronic proof of mechanism studies in the mouse femoral head cartilage explant model, and compound 17a emerged as a druglike SGK1 inhibitor, with a highly optimized profile suitable for oral dosing as a novel, potentially disease-modifying agent for osteoarthritis.
Collapse
Affiliation(s)
- Nis Halland
- Integrated Drug Discovery, Sanofi R&D, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Friedemann Schmidt
- Integrated Drug Discovery, Sanofi R&D, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Tilo Weiss
- Integrated Drug Discovery, Sanofi R&D, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Ziyu Li
- Integrated Drug Discovery, Sanofi R&D, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Jörg Czech
- Integrated Drug Discovery, Sanofi R&D, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Joachim Saas
- Integrated Drug Discovery, Sanofi R&D, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | | | - Matthias K Dreyer
- Integrated Drug Discovery, Sanofi R&D, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Carsten Strübing
- Integrated Drug Discovery, Sanofi R&D, Industriepark Höchst, D-65926 Frankfurt am Main, Germany
| | - Marc Nazare
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| |
Collapse
|
22
|
Noor S, Mohammad T, Ashraf GM, Farhat J, Bilgrami AL, Eapen MS, Sohal SS, Yadav DK, Hassan MI. Mechanistic insights into the role of serum-glucocorticoid kinase 1 in diabetic nephropathy: A systematic review. Int J Biol Macromol 2021; 193:562-573. [PMID: 34715204 DOI: 10.1016/j.ijbiomac.2021.10.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Aberrant expression of serum-glucocorticoid kinase 1 (SGK1) contributes to the pathogenesis of multiple disorders, including diabetes, hypertension, obesity, fibrosis, and metabolic syndrome. SGK1 variant is expressed in the presence of insulin and several growth factors, eventually modulating various ion channels, carrier proteins, and transcription factors. SGK1 also regulates the enzymatic activity of Na+ K+ ATPase, glycogen synthase kinase-3, ubiquitin ligase Nedd4-2, and phosphomannose mutase impacting cell cycle regulation, neuroexcitation, and apoptosis. Ample evidence supports the crucial role of aberrant SGK1 expression in hyperglycemia-mediated secondary organ damage. Diabetic nephropathy (DN), a dreadful microvascular complication of diabetes, is the leading cause of end-stage renal failures with high morbidity and mortality rate. The complex pathogenesis of DN encompasses several influencing factors, including transcriptional factors, inflammatory markers, cytokines, epigenetic modulators, and abnormal enzymatic activities. SGK1 plays a pivotal role by controlling various physiological functions associated with the occurrence and progression of DN; therefore, targeting SGK1 may favorably influence the clinical outcome in patients with DN. This review aimed to provide mechanistic insights into SGK1 regulated DN pathogenesis and summarize the evidence supporting the therapeutic potential of SGK1 inhibition and its consequences on human health.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam M Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Joviana Farhat
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
23
|
Abstract
BACKGROUND The serum and glucocorticoid-induced kinase-1 (SGK1) belonging to the AGC protein kinase family phosphorylates serine and threonine residues of target proteins. It regulates numerous ion channels and transporters and promotes survival under cellular stress. Unique to SGK1 is a tight control at transcriptional and post-transcriptional levels. SGK1 regulates multiple signal transduction pathways related to tumor development. Several studies have reported that SGK1 is upregulated in different types of human malignancies and induces resistance against inhibitors, drugs, and targeted therapies. RESULTS AND CONCLUSION This review highlights the cellular functions of SGK1, its crucial role in cancer development, and clinical insights for SGK1 targeted therapies. Furthermore, the role of SGK1-mediated autophagy as a potential therapeutic target for cancer has been discussed.
Collapse
|
24
|
Das B, Sarkar C, Rawat VS, Kalita D, Deka S, Agnihotri A. Promise of the NLRP3 Inflammasome Inhibitors in In Vivo Disease Models. Molecules 2021; 26:4996. [PMID: 34443594 PMCID: PMC8399941 DOI: 10.3390/molecules26164996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Nucleotide-binding oligomerization domain NOD-like receptors (NLRs) are conserved cytosolic pattern recognition receptors (PRRs) that track the intracellular milieu for the existence of infection, disease-causing microbes, as well as metabolic distresses. The NLRP3 inflammasome agglomerates are consequent to sensing a wide spectrum of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Certain members of the NLR family have been documented to lump into multimolecular conglomerates called inflammasomes, which are inherently linked to stimulation of the cysteine protease caspase-1. Following activation, caspase-1 severs the proinflammatory cytokines interleukin (IL)-1β and IL-18 to their biologically active forms, with consequent commencement of caspase-1-associated pyroptosis. This type of cell death by pyroptosis epitomizes a leading pathway of inflammation. Accumulating scientific documentation has recorded overstimulation of NLRP3 (NOD-like receptor protein 3) inflammasome involvement in a wide array of inflammatory conditions. IL-1β is an archetypic inflammatory cytokine implicated in multiple types of inflammatory maladies. Approaches to impede IL-1β's actions are possible, and their therapeutic effects have been clinically demonstrated; nevertheless, such strategies are associated with certain constraints. For instance, treatments that focus on systemically negating IL-1β (i.e., anakinra, rilonacept, and canakinumab) have been reported to result in an escalated peril of infections. Therefore, given the therapeutic promise of an NLRP3 inhibitor, the concerted escalated venture of the scientific sorority in the advancement of small molecules focusing on direct NLRP3 inflammasome inhibition is quite predictable.
Collapse
Affiliation(s)
- Biswadeep Das
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| | - Chayna Sarkar
- Department of Clinical Pharmacology & Therapeutics, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS), Mawdiangdiang, Shillong 793018, Meghalaya, India;
| | - Vikram Singh Rawat
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| | - Deepjyoti Kalita
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India; (D.K.); (S.D.)
| | - Sangeeta Deka
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India; (D.K.); (S.D.)
| | - Akash Agnihotri
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| |
Collapse
|
25
|
Doyle MA, Bali V, Eagle AL, Stark AR, Fallon B, Neve RL, Robison AJ, Mazei-Robison MS. Serum- and glucocorticoid-inducible kinase 1 activity in ventral tegmental area dopamine neurons regulates cocaine conditioned place preference but not cocaine self-administration. Neuropsychopharmacology 2021; 46:1574-1583. [PMID: 34007042 PMCID: PMC8280171 DOI: 10.1038/s41386-021-01032-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
Drugs of abuse regulate the activity of the mesolimbic dopamine (DA) system, and drug-induced changes in ventral tegmental area (VTA) cellular activity and gene regulation are linked to behavioral outputs associated with addiction. Previous work from our lab determined that VTA serum- and glucocorticoid-inducible kinase 1 (SGK1) transcription and catalytic activity were increased by repeated cocaine administration; however, it was unknown if these biochemical changes contributed to cocaine-elicited behaviors. Using transgenic and viral-mediated manipulations, we investigated the role of VTA SGK1 catalytic activity in regulating cocaine conditioned place preference and self-administration. We showed intra-VTA infusion of a catalytically inactive SGK1 mutant (K127Q) significantly decreased cocaine conditioned place preference (CPP). Further, we found that K127Q expression in VTA DA neurons significantly decreased cocaine CPP, while this same manipulation in VTA GABA neurons had no effect. However, blunted VTA DA SGK1 catalytic activity did not alter cocaine self-administration. Altogether, these studies identify the specific VTA cells critical for SGK1-mediated effects on cocaine CPP but not self-administration.
Collapse
Affiliation(s)
- Marie A. Doyle
- grid.17088.360000 0001 2150 1785Neuroscience Program, Michigan State University, East Lansing, USA
| | - Vedrana Bali
- grid.17088.360000 0001 2150 1785Department of Physiology, Michigan State University, East Lansing, USA
| | - Andrew L. Eagle
- grid.17088.360000 0001 2150 1785Department of Physiology, Michigan State University, East Lansing, USA
| | - Ali R. Stark
- grid.17088.360000 0001 2150 1785Neuroscience Program, Michigan State University, East Lansing, USA
| | - Barbara Fallon
- grid.17088.360000 0001 2150 1785Pharmacology and Toxicology Department, Michigan State University, East Lansing, USA
| | - Rachael L. Neve
- grid.32224.350000 0004 0386 9924Gene Technology Core, Massachusetts General Hospital, Boston, USA
| | - A. J. Robison
- grid.17088.360000 0001 2150 1785Neuroscience Program, Michigan State University, East Lansing, USA ,grid.17088.360000 0001 2150 1785Department of Physiology, Michigan State University, East Lansing, USA
| | - Michelle S. Mazei-Robison
- grid.17088.360000 0001 2150 1785Neuroscience Program, Michigan State University, East Lansing, USA ,grid.17088.360000 0001 2150 1785Department of Physiology, Michigan State University, East Lansing, USA
| |
Collapse
|
26
|
Ren J, Han X, Lohner H, Liang R, Liang S, Wang H. Serum- and Glucocorticoid-Inducible Kinase 1 Promotes Alternative Macrophage Polarization and Restrains Inflammation through FoxO1 and STAT3 Signaling. THE JOURNAL OF IMMUNOLOGY 2021; 207:268-280. [PMID: 34162726 DOI: 10.4049/jimmunol.2001455] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
Expression and activity of serum- and glucocorticoid-inducible kinase 1 (SGK1) are associated with many metabolic and inflammatory diseases. In this study, we report that SGK1 promotes alternative macrophage polarization and restrains inflammation in the infectious milieu of the gingiva. Inhibition of SGK1 expression or activity enhances characteristics of classically activated (M1) macrophages by directly activating the transcription of genes encoding iNOS, IL-12P40, TNF-α, and IL-6 and repressing IL-10 at message and protein levels. Moreover, SGK1 inhibition robustly reduces the expression of alternatively activated (M2) macrophage molecular markers, including arginase-1, Ym-1, Fizz1, and Mgl-1. These results were confirmed by multiple gain- and loss-of-function approaches, including small interfering RNA, a plasmid encoding SGK1, and LysM-Cre-mediated sgk1 gene knockout. Further mechanistic analysis showed that SGK1 deficiency decreases STAT3 but increases FoxO1 expression in macrophages under M2 or M1 macrophage-priming conditions, respectively. Combined with decreased FoxO1 phosphorylation and the subsequent suppressed cytoplasmic translocation observed, SGK1 deficiency robustly enhances FoxO1 activity and drives macrophage to preferential M1 phenotypes. Furthermore, FoxO1 inhibition abrogates M1 phenotypes, and STAT3 overexpression results in a significant increase of M2 phenotypes, indicating that both FoxO1 and STAT3 are involved in SGK1-mediated macrophage polarization. Additionally, SGK1 differentially regulates the expression of M1 and M2 molecular markers, including CD68 and F4/F80 and CD163 and CD206, respectively, and protects against Porphyromonas gingivalis-induced alveolar bone loss in a mouse model. Taken together, these results have demonstrated that SGK1 is critical for macrophage polarization and periodontal bone loss, and for the first time, to our knowledge, we elucidated a bifurcated signaling circuit by which SGK1 promotes alternative, while suppressing inflammatory, macrophage polarization.
Collapse
Affiliation(s)
- Junling Ren
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA
| | - Xiao Han
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA
| | - Hannah Lohner
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA
| | - Ruqiang Liang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA; and
| | - Shuang Liang
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY
| | - Huizhi Wang
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA;
| |
Collapse
|
27
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Jiang F, Liu H, Peng F, Liu Z, Ding K, Song J, Li L, Chen J, Shao Q, Yan S, De Veirman K, Vanderkerken K, Fu R. Complement C3a activates osteoclasts by regulating the PI3K/PDK1/SGK3 pathway in patients with multiple myeloma. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0430. [PMID: 33960177 PMCID: PMC8330530 DOI: 10.20892/j.issn.2095-3941.2020.0430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Myeloma bone disease (MBD) is the most common complication of multiple myeloma (MM). Our previous study showed that the serum levels of C3/C4 in MM patients were significantly positively correlated with the severity of bone disease. However, the mechanism of C3a/C4a in osteoclasts MM patients remains unclear. METHODS The formation and function of osteoclasts were analyzed after adding C3a/C4a in vitro. RNA-seq analysis was used to screen the potential pathways affecting osteoclasts, and the results were verified by Western blot, qRT-PCR, and pathway inhibitors. RESULTS The osteoclast area per view induced by 1 μg/mL (mean ± SD: 50.828 ± 12.984%) and 10 μg/mL (53.663 ± 12.685%) of C3a was significantly increased compared to the control group (0 μg/mL) (34.635 ± 8.916%) (P < 0.001 and P < 0.001, respectively). The relative mRNA expressions of genes, OSCAR/TRAP/RANKL/cathepsin K, induced by 1 μg/mL (median: 5.041, 3.726, 1.638, and 4.752, respectively) and 10 μg/mL (median: 5.140, 3.702, 2.250, and 5.172, respectively) of C3a was significantly increased compared to the control group (median: 3.137, 2.004, 0.573, and 2.257, respectively) (1 μg/mL P = 0.001, P = 0.003, P < 0.001, and P = 0.008, respectively; 10 μg/mL: P < 0.001, P = 0.019, P < 0.001, and P = 0.002, respectively). The absorption areas of the osteoclast resorption pits per view induced by 1 μg/mL (mean ± SD: 51.464 ± 11.983%) and 10 μg/mL (50.219 ± 12.067%) of C3a was also significantly increased (33.845 ± 8.331%) (P < 0.001 and P < 0.001, respectively) compared to the control. There was no difference between the C4a and control groups. RNA-seq analysis showed that C3a promoted the proliferation of osteoclasts using the phosphoinositide 3-kinase (PI3K) signaling pathway. The relative expressions of PIK3CA/phosphoinositide dependent kinase-1 (PDK1)/serum and glucocorticoid inducible protein kinases (SGK3) genes and PI3K/PDK1/p-SGK3 protein in the C3a group were significantly higher than in the control group. The activation role of C3a in osteoclasts of MM patients was reduced by the SGK inhibitor (EMD638683). CONCLUSIONS C3a activated osteoclasts by regulating the PI3K/PDK1/SGK3 pathways in MM patients, which was reduced using a SGK inhibitor. Overall, our results identified potential therapeutic targets and strategies for MBD patients.
Collapse
Affiliation(s)
- Fengjuan Jiang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fengping Peng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jin Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qing Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Siyang Yan
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
29
|
Zhang M, Chen H, Liu MS, Zhu KY, Hao Y, Zhu DL, Li P. Serum- and glucocorticoid-inducible kinase 1 promotes insulin resistance in adipocytes via degradation of insulin receptor substrate 1. Diabetes Metab Res Rev 2021; 37:e3451. [PMID: 33724645 DOI: 10.1002/dmrr.3451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/08/2021] [Accepted: 02/24/2021] [Indexed: 11/11/2022]
Abstract
AIMS Accumulating evidence indicates that serum- and glucocorticoid-inducible kinase 1 (SGK1) plays a role in the development of metabolic syndrome via a poorly understood mechanism. This study aimed to investigate the direct effect of SGK1 on insulin sensitivity in adipose tissue. MATERIALS AND METHODS We ectopically expressed or silenced SGK1 in adipocytes via lentiviral transfection, measured glucose uptake and evaluated insulin signalling using western blotting. In vivo insulin resistance was measured at the whole-body and adipose tissue levels in db/db mice treated with an inhibitor of SGK1. RESULTS After 8 weeks of SGK1 inhibitor treatment, the serum insulin level and homeostasis model assessment of insulin resistance index were significantly decreased, and AKT phosphorylation in adipose tissue was enhanced in db/db mice. Overexpression of constitutively active SGK1 in adipocytes in vitro decreased AKT phosphorylation and insulin-stimulated glucose uptake. Dexamethasone and oleic acid increased SGK1 expression and decreased AKT phosphorylation and insulin receptor substrate expression in adipocytes. Administration of an inhibitor of SGK1 or Lv-shSGK1 reversed the suppression of insulin signalling induced by dexamethasone and oleic acid. SGK1 overexpression increased FoxO1 phosphorylation, and administration of Lv-shSGK1 reversed an increase in FoxO1 phosphorylation induced by dexamethasone and oleic acid. CONCLUSIONS Thus, SGK1 mediates the effect of glucocorticoids and high-fat feeding and induces insulin resistance in adipocytes. Our data suggest that SGK1 is a possible therapeutic target for metabolic syndrome and related complications.
Collapse
Affiliation(s)
- Min Zhang
- Department of Endocrinology, Taikang Xianlin Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, People's Republic of China
| | - Huan Chen
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, People's Republic of China
| | - Meng-Si Liu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ke-Ying Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, People's Republic of China
| | - Yan Hao
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, People's Republic of China
| | - Da-Long Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ping Li
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, People's Republic of China
| |
Collapse
|
30
|
Elahi M, Motoi Y, Shimonaka S, Ishida Y, Hioki H, Takanashi M, Ishiguro K, Imai Y, Hattori N. High-fat diet-induced activation of SGK1 promotes Alzheimer's disease-associated tau pathology. Hum Mol Genet 2021; 30:1693-1710. [PMID: 33890983 PMCID: PMC8411983 DOI: 10.1093/hmg/ddab115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) has long been considered a risk factor for Alzheimer’s disease (AD). However, the molecular links between T2DM and AD remain obscure. Here, we reported that serum-/glucocorticoid-regulated kinase 1 (SGK1) is activated by administering a chronic high-fat diet (HFD), which increases the risk of T2DM, and thus promotes Tau pathology via the phosphorylation of tau at Ser214 and the activation of a key tau kinase, namely, GSK-3ß, forming SGK1-GSK-3ß-tau complex. SGK1 was activated under conditions of elevated glucocorticoid and hyperglycemia associated with HFD, but not of fatty acid–mediated insulin resistance. Elevated expression of SGK1 in the mouse hippocampus led to neurodegeneration and impairments in learning and memory. Upregulation and activation of SGK1, SGK1-GSK-3ß-tau complex were also observed in the hippocampi of AD cases. Our results suggest that SGK1 is a key modifier of tau pathology in AD, linking AD to corticosteroid effects and T2DM.
Collapse
Affiliation(s)
- Montasir Elahi
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yumiko Motoi
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Shotaro Shimonaka
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Yoko Ishida
- Department of Cell Biology and Neuroscience, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Masashi Takanashi
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Koichi Ishiguro
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
- To whom correspondence should be addressed. Tel: +81 368018332; Fax: +81 358000547;
| | - Nobutaka Hattori
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University Graduate of Medicine, Tokyo, Japan
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Kwon O, Song J, Yang Y, Kim S, Kim JY, Seok M, Hwang I, Yu J, Karmacharya J, Maeng H, Kim J, Jho E, Ko SY, Son H, Chang M, Lee S. SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Mol Med 2021; 13:e13076. [PMID: 33646633 PMCID: PMC8033538 DOI: 10.15252/emmm.202013076] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Astrocytes and microglia are brain-resident glia that can establish harmful inflammatory environments in disease contexts and thereby contribute to the progression of neuronal loss in neurodegenerative disorders. Correcting the diseased properties of glia is therefore an appealing strategy for treating brain diseases. Previous studies have shown that serum/ glucocorticoid related kinase 1 (SGK1) is upregulated in the brains of patients with various neurodegenerative disorders, suggesting its involvement in the pathogenesis of those diseases. In this study, we show that inhibiting glial SGK1 corrects the pro-inflammatory properties of glia by suppressing the intracellular NFκB-, NLRP3-inflammasome-, and CGAS-STING-mediated inflammatory pathways. Furthermore, SGK1 inhibition potentiated glial activity to scavenge glutamate toxicity and prevented glial cell senescence and mitochondrial damage, which have recently been reported as critical pathologic features of and therapeutic targets in Parkinson disease (PD) and Alzheimer disease (AD). Along with those anti-inflammatory/neurotrophic functions, silencing and pharmacological inhibition of SGK1 protected midbrain dopamine neurons from degeneration and cured pathologic synuclein alpha (SNCA) aggregation and PD-associated behavioral deficits in multiple in vitro and in vivo PD models. Collectively, these findings suggest that SGK1 inhibition could be a useful strategy for treating PD and other neurodegenerative disorders that share the common pathology of glia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Oh‐Chan Kwon
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Jae‐Jin Song
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
| | - Yunseon Yang
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Seong‐Hoon Kim
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Ji Young Kim
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Min‐Jong Seok
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Inhwa Hwang
- Korea Department of Microbiology and ImmunologyInstitute for Immunology and Immunological DiseasesBrain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulSouth Korea
| | - Je‐Wook Yu
- Korea Department of Microbiology and ImmunologyInstitute for Immunology and Immunological DiseasesBrain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulSouth Korea
| | | | | | - Jiyoung Kim
- Department of Life ScienceUniversity of SeoulSeoulKorea
| | - Eek‐hoon Jho
- Department of Life ScienceUniversity of SeoulSeoulKorea
| | - Seung Yeon Ko
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Hyeon Son
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| | - Mi‐Yoon Chang
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
| | - Sang‐Hun Lee
- Department of Biochemistry and Molecular BiologyCollege of MedicineHanyang UniversitySeoulKorea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulKorea
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoul
| |
Collapse
|
32
|
Liu BW, Zhang J, Hong YS, Li NB, Liu Y, Zhang M, Wu WY, Zheng H, Lampert A, Zhang XW. NGF-Induced Nav1.7 Upregulation Contributes to Chronic Post-surgical Pain by Activating SGK1-Dependent Nedd4-2 Phosphorylation. Mol Neurobiol 2021; 58:964-982. [PMID: 33063281 DOI: 10.1007/s12035-020-02156-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/29/2020] [Indexed: 01/07/2023]
Abstract
At present, chronic post-surgical pain (CPSP) is difficult to prevent and cure clinically because of our lack of understanding of its mechanisms. Surgical injury induces the upregulation of voltage-gated sodium channel Nav1.7 in dorsal root ganglion (DRG) neurons, suggesting that Nav1.7 is involved in the development of CPSP. However, the mechanism leading to persistent dysregulation of Nav1.7 is largely unknown. Given that nerve growth factor (NGF) induces a long-term increase in the neuronal hyperexcitability after injury, we hypothesized that NGF might cause the long-term dysregulation of Nav1.7. In this study, we aimed to investigate whether Nav1.7 regulation by NGF is involved in CPSP and thus contributes to the specific mechanisms involved in the development of CPSP. Using conditional nociceptor-specific Nav1.7 knockout mice, we confirmed the involvement of Nav1.7 in NGF-induced pain and identified its role in the maintenance of pain behavior during long-term observations (up to 14 days). Using western blot analyses and immunostaining, we showed that NGF could trigger the upregulation of Nav1.7 expression and thus support the development of CPSP in rats. Using pharmacological approaches, we showed that the increase of Nav1.7 might be partly regulated by an NGF/TrkA-SGK1-Nedd4-2-mediated pathway. Furthermore, reversing the upregulation of Nav1.7 in DRG could alleviate spinal sensitization. Our results suggest that the maintained upregulation of Nav1.7 triggered by NGF contributes to the development of CPSP. Attenuating the dysregulation of Nav1.7 in peripheral nociceptors may be a strategy to prevent the transition from acute post-surgical pain to CPSP.
Collapse
MESH Headings
- Analgesics/pharmacology
- Animals
- Behavior, Animal/drug effects
- Benzamides/pharmacology
- Brain-Derived Neurotrophic Factor/metabolism
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Hydrazines/pharmacology
- Immediate-Early Proteins/antagonists & inhibitors
- Immediate-Early Proteins/metabolism
- Indoles/pharmacology
- Male
- Mice, Knockout
- Models, Biological
- NAV1.7 Voltage-Gated Sodium Channel/genetics
- NAV1.7 Voltage-Gated Sodium Channel/metabolism
- Nedd4 Ubiquitin Protein Ligases/metabolism
- Nerve Growth Factor/pharmacology
- Pain, Postoperative/genetics
- Pain, Postoperative/pathology
- Phosphorylation/drug effects
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Rats, Sprague-Dawley
- Receptor, trkA/antagonists & inhibitors
- Receptor, trkA/metabolism
- Spinal Cord/pathology
- Ubiquitination/drug effects
- Up-Regulation/drug effects
- Vesicular Glutamate Transport Protein 2/metabolism
- Mice
- Rats
Collapse
Affiliation(s)
- Bao-Wen Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi-Shun Hong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ning-Bo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen-Yao Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Zheng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Xian-Wei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
33
|
Mason JA, Cockfield JA, Pape DJ, Meissner H, Sokolowski MT, White TC, Valentín López JC, Liu J, Liu X, Martínez-Reyes I, Chandel NS, Locasale JW, Schafer ZT. SGK1 signaling promotes glucose metabolism and survival in extracellular matrix detached cells. Cell Rep 2021; 34:108821. [PMID: 33730592 DOI: 10.1016/j.celrep.2021.108821] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/30/2020] [Accepted: 02/12/2021] [Indexed: 12/29/2022] Open
Abstract
Loss of integrin-mediated attachment to extracellular matrix (ECM) proteins can trigger a variety of cellular changes that affect cell viability. Foremost among these is the activation of anoikis, caspase-mediated cell death induced by ECM detachment. In addition, loss of ECM attachment causes profound alterations in cellular metabolism, which can lead to anoikis-independent cell death. Here, we describe a surprising role for serum and glucocorticoid kinase-1 (SGK1) in the promotion of energy production when cells are detached. Our data demonstrate that SGK1 activation is necessary and sufficient for ATP generation during ECM detachment and anchorage-independent growth. More specifically, SGK1 promotes a substantial elevation in glucose uptake because of elevated GLUT1 transcription. In addition, carbon flux into the pentose phosphate pathway (PPP) is necessary to accommodate elevated glucose uptake and PPP-mediated glyceraldehyde-3-phosphate (G3P) is necessary for ATP production. Thus, our data show SGK1 as master regulator of glucose metabolism and cell survival during ECM-detached conditions.
Collapse
Affiliation(s)
- Joshua A Mason
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jordan A Cockfield
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Daniel J Pape
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hannah Meissner
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael T Sokolowski
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Taylor C White
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - José C Valentín López
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Juan Liu
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaojing Liu
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jason W Locasale
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zachary T Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
34
|
Martin-Batista E, Maglio LE, Armas-Capote N, Hernández G, Alvarez de la Rosa D, Giraldez T. SGK1.1 limits brain damage after status epilepticus through M current-dependent and independent mechanisms. Neurobiol Dis 2021; 153:105317. [PMID: 33639207 DOI: 10.1016/j.nbd.2021.105317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022] Open
Abstract
Epilepsy is a neurological condition associated to significant brain damage produced by status epilepticus (SE) including neurodegeneration, gliosis and ectopic neurogenesis. Reduction of these processes constitutes a useful strategy to improve recovery and ameliorate negative outcomes after an initial insult. SGK1.1, the neuronal isoform of the serum and glucocorticoids-regulated kinase 1 (SGK1), has been shown to increase M-current density in neurons, leading to reduced excitability and protection against seizures. For this study, we used 4-5 months old male transgenic C57BL/6 J and FVB/NJ mice expressing near physiological levels of a constitutively active form of the kinase controlled by its endogenous promoter. Here we show that SGK1.1 activation potently reduces levels of neuronal death (assessed using Fluoro-Jade C staining) and reactive glial activation (reported by GFAP and Iba-1 markers) in limbic regions and cortex, 72 h after SE induced by kainate, even in the context of high seizure activity. This neuroprotective effect is not exclusively through M-current activation but is also directly linked to decreased apoptosis levels assessed by TUNEL assays and quantification of Bim and Bcl-xL by western blot of hippocampal protein extracts. Our results demonstrate that this newly described antiapoptotic role of SGK1.1 activation acts synergistically with the regulation of cellular excitability, resulting in a significant reduction of SE-induced brain damage in areas relevant to epileptogenesis.
Collapse
Affiliation(s)
- Elva Martin-Batista
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristobal de La Laguna, Spain; Instituto de Tecnologías Biomédicas (ITB), Campus de Ciencias de la Salud sn, 38071 San Cristobal de La Laguna, Spain.
| | - Laura E Maglio
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristobal de La Laguna, Spain; Instituto de Tecnologías Biomédicas (ITB), Campus de Ciencias de la Salud sn, 38071 San Cristobal de La Laguna, Spain.
| | - Natalia Armas-Capote
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristobal de La Laguna, Spain; Instituto de Tecnologías Biomédicas (ITB), Campus de Ciencias de la Salud sn, 38071 San Cristobal de La Laguna, Spain.
| | - Guadalberto Hernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristobal de La Laguna, Spain; Instituto de Tecnologías Biomédicas (ITB), Campus de Ciencias de la Salud sn, 38071 San Cristobal de La Laguna, Spain.
| | - Diego Alvarez de la Rosa
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristobal de La Laguna, Spain; Instituto de Tecnologías Biomédicas (ITB), Campus de Ciencias de la Salud sn, 38071 San Cristobal de La Laguna, Spain.
| | - Teresa Giraldez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristobal de La Laguna, Spain; Instituto de Tecnologías Biomédicas (ITB), Campus de Ciencias de la Salud sn, 38071 San Cristobal de La Laguna, Spain.
| |
Collapse
|
35
|
Sierra-Ramos C, Velazquez-Garcia S, Keskus AG, Vastola-Mascolo A, Rodríguez-Rodríguez AE, Luis-Lima S, Hernández G, Navarro-González JF, Porrini E, Konu O, Alvarez de la Rosa D. Increased SGK1 activity potentiates mineralocorticoid/NaCl-induced kidney injury. Am J Physiol Renal Physiol 2021; 320:F628-F643. [PMID: 33586495 DOI: 10.1152/ajprenal.00505.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) stimulates aldosterone-dependent renal Na+ reabsorption and modulates blood pressure. In addition, genetic ablation or pharmacological inhibition of SGK1 limits the development of kidney inflammation and fibrosis in response to excess mineralocorticoid signaling. In this work, we tested the hypothesis that a systemic increase in SGK1 activity would potentiate mineralocorticoid/salt-induced hypertension and kidney injury. To that end, we used a transgenic mouse model with increased SGK1 activity. Mineralocorticoid/salt-induced hypertension and kidney damage was induced by unilateral nephrectomy and treatment with deoxycorticosterone acetate and NaCl in the drinking water for 6 wk. Our results show that although SGK1 activation did not induce significantly higher blood pressure, it produced a mild increase in glomerular filtration rate, increased albuminuria, and exacerbated glomerular hypertrophy and fibrosis. Transcriptomic analysis showed that extracellular matrix- and immune response-related terms were enriched in the downregulated and upregulated genes, respectively, in transgenic mice. In conclusion, we propose that systemically increased SGK1 activity is a risk factor for the development of mineralocorticoid-dependent kidney injury in the context of low renal mass and independently of blood pressure.NEW & NOTEWORTHY Increased activity of the protein kinase serum and glucocorticoid-regulated kinase 1 may be a risk factor for accelerated renal damage. Serum and glucocorticoid-regulated kinase 1 expression could be a marker for the rapid progression toward chronic kidney disease and a potential therapeutic target to slow down the process.
Collapse
Affiliation(s)
- Catalina Sierra-Ramos
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Silvia Velazquez-Garcia
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Ayse G Keskus
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey
| | - Arianna Vastola-Mascolo
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | | | - Sergio Luis-Lima
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.,Departamento de Medicina Interna, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Guadalberto Hernández
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Juan F Navarro-González
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.,Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Esteban Porrini
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.,Departamento de Medicina Interna, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Ozlen Konu
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey.,Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey.,UNAM-Institute of Materials Science and Nanotechnology, Ankara, Turkey
| | - Diego Alvarez de la Rosa
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
36
|
Sang Y, Kong P, Zhang S, Zhang L, Cao Y, Duan X, Sun T, Tao Z, Liu W. SGK1 in Human Cancer: Emerging Roles and Mechanisms. Front Oncol 2021; 10:608722. [PMID: 33542904 PMCID: PMC7851074 DOI: 10.3389/fonc.2020.608722] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Serum and glucocorticoid-induced protein kinase 1 (SGK1) is a member of the "AGC" subfamily of protein kinases, which shares structural and functional similarities with the AKT family of kinases and displays serine/threonine kinase activity. Aberrant expression of SGK1 has profound cellular consequences and is closely correlated with human cancer. SGK1 is considered a canonical factor affecting the expression and signal transduction of multiple genes involved in the genesis and development of many human cancers. Abnormal expression of SGK1 has been found in tissue and may hopefully become a useful indicator of cancer progression. In addition, SGK1 acts as a prognostic factor for cancer patient survival. This review systematically summarizes and discusses the role of SGK1 as a diagnostic and prognostic biomarker of diverse cancer types; focuses on its essential roles and functions in tumorigenesis, cancer cell proliferation, apoptosis, invasion, metastasis, autophagy, metabolism, and therapy resistance and in the tumor microenvironment; and finally summarizes the current understanding of the regulatory mechanisms of SGK1 at the molecular level. Taken together, this evidence highlights the crucial role of SGK1 in tumorigenesis and cancer progression, revealing why it has emerged as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yiwen Sang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Piaoping Kong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhen Zhang
- The Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Cao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Yasukochi S, Kusunose N, Matsunaga N, Koyanagi S, Ohdo S. Sulfasalazine alleviates neuropathic pain hypersensitivity in mice through inhibition of SGK-1 in the spinal cord. Biochem Pharmacol 2021; 185:114411. [PMID: 33428896 DOI: 10.1016/j.bcp.2021.114411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Diurnal variations in pain hypersensitivity are common in chronic pain disorders. Temporal exacerbation of neuropathic pain hypersensitivity is dependent on diurnal variations in glucocorticoid secretion from the adrenal glands. We previously demonstrated that spinal expression of serum- and glucocorticoid-inducible kinase-1 (SGK-1) is associated with glucocorticoid- induced exacerbation of pain hypersensitivity, but there are no available strategies to inhibit SGK-1 in the spinal cord. By screening a clinically approved drug library (more than 1,200 drugs), we found that sulfasalazine (SSZ) has inhibitory effects on SGK-1. SSZ is a prodrug composed of 5-aminosalicylic acid and sulfapyridine linked by NN bond, which is therapeutically effective for inflammatory bowel diseases. However, the NN bond in SSZ was necessary for its inhibitory action against SGK-1. Although intrathecal injection of SSZ to nerve-injured mice significantly alleviated mechanical pain hypersensitivity, no significant anti- neuropathic pain effects of SSZ were detected after oral administration due to its low bioavailability and limited spinal distribution, which were associated with efflux by the xenobiotic transporter breast cancer resistance protein (BCRP). Concomitant oral administration of SSZ with febuxostat (FBX), which is an approved drug to inhibit BCRP, improved the distribution of SSZ to the spinal cord. The concomitant oral administration with FBX also increased the anti-neuropathic pain effects of SSZ. Our study revealed a previously unrecognized pharmacological effect of SSZ to alleviate SGK-1-induced painful peripheral neuropathy, and concomitant oral administration of SSZ with FBX may also be a preventative option for diurnal exacerbation of neuropathic pain hypersensitivity.
Collapse
Affiliation(s)
- Sai Yasukochi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Kusunose
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Matsunaga
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
38
|
Rassi-Cruz M, Maria AG, Faucz FR, London E, Vilela LAP, Santana LS, Benedetti AFF, Goldbaum TS, Tanno FY, Srougi V, Chambo JL, Pereira MAA, Cavalcante ACBS, Carnevale FC, Pilan B, Bortolotto LA, Drager LF, Lerario AM, Latronico AC, Fragoso MCBV, Mendonca BB, Zerbini MCN, Stratakis CA, Almeida MQ. Phosphodiesterase 2A and 3B variants are associated with primary aldosteronism. Endocr Relat Cancer 2021; 28:1-13. [PMID: 33112806 PMCID: PMC7757641 DOI: 10.1530/erc-20-0384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
Familial primary aldosteronism (PA) is rare and mostly diagnosed in early-onset hypertension (HT). However, 'sporadic' bilateral adrenal hyperplasia (BAH) is the most frequent cause of PA and remains without genetic etiology in most cases. Our aim was to investigate new genetic defects associated with BAH and PA. We performed whole-exome sequencing (paired blood and adrenal tissue) in six patients with PA caused by BAH that underwent unilateral adrenalectomy. Additionally, we conducted functional studies in adrenal hyperplastic tissue and transfected cells to confirm the pathogenicity of the identified genetic variants. Rare germline variants in phosphodiesterase 2A (PDE2A) and 3B (PDE3B) genes were identified in three patients. The PDE2A heterozygous variant (p.Ile629Val) was identified in a patient with BAH and early-onset HT at 13 years of age. Two PDE3B heterozygous variants (p.Arg217Gln and p.Gly392Val) were identified in patients with BAH and HT diagnosed at 18 and 33 years of age, respectively. A strong PDE2A staining was found in all cases of BAH in zona glomerulosa and/or micronodules (that were also positive for CYP11B2). PKA activity in frozen tissue was significantly higher in BAH from patients harboring PDE2A and PDE3B variants. PDE2A and PDE3B variants significantly reduced protein expression in mutant transfected cells compared to WT. Interestingly, PDE2A and PDE3B variants increased SGK1 and SCNN1G/ENaCg at mRNA or protein levels. In conclusion, PDE2A and PDE3B variants were associated with PA caused by BAH. These novel genetic findings expand the spectrum of genetic etiologies of PA.
Collapse
Affiliation(s)
- Marcela Rassi-Cruz
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Andrea G. Maria
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Edra London
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Leticia A. P. Vilela
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Lucas S. Santana
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Anna Flavia F. Benedetti
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Tatiana S. Goldbaum
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Fabio Y. Tanno
- Serviço de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Vitor Srougi
- Serviço de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Jose L. Chambo
- Serviço de Urologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Maria Adelaide A. Pereira
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Aline C. B. S. Cavalcante
- Instituto de Radiologia InRad, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Francisco C. Carnevale
- Instituto de Radiologia InRad, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Bruna Pilan
- Instituto de Radiologia InRad, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Luiz A. Bortolotto
- Unidade de Hipertensão, Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-900, Brasil
| | - Luciano F. Drager
- Unidade de Hipertensão, Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-900, Brasil
- Unidade de Hipertensão, Disciplina de Nefrologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Antonio M. Lerario
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
- Endocrinology, Metabolism and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Ana Claudia Latronico
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Maria Candida B. V. Fragoso
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
- Servico de Endocrinologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-000, Brasil
| | - Berenice B. Mendonca
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Maria Claudia N. Zerbini
- Divisão de Anatomia Patológica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Madson Q. Almeida
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular LIM/42, Serviço de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403-000, Brasil
- Servico de Endocrinologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo, 01246-000, Brasil
| |
Collapse
|
39
|
Guerriero I, Monaco G, Coppola V, Orlacchio A. Serum and Glucocorticoid-Inducible Kinase 1 (SGK1) in NSCLC Therapy. Pharmaceuticals (Basel) 2020; 13:ph13110413. [PMID: 33266470 PMCID: PMC7700219 DOI: 10.3390/ph13110413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most prevalent and one of the deadliest cancers worldwide. Despite recent success, there is still an urgent need for new therapeutic strategies. It is also becoming increasingly evident that combinatorial approaches are more effective than single modality treatments. This review proposes that the serum and glucocorticoid-inducible kinase 1 (SGK1) may represent an attractive target for therapy of NSCLC. Although ubiquitously expressed, SGK1 deletion in mice causes only mild defects of ion physiology. The frequent overexpression of SGK1 in tumors is likely stress-induced and provides a therapeutic window to spare normal tissues. SGK1 appears to promote oncogenic signaling aimed at preserving the survival and fitness of cancer cells. Most importantly, recent investigations have revealed the ability of SGK1 to skew immune-cell differentiation toward pro-tumorigenic phenotypes. Future studies are needed to fully evaluate the potential of SGK1 as a therapeutic target in combinatorial treatments of NSCLC. However, based on what is currently known, SGK1 inactivation can result in anti-oncogenic effects both on tumor cells and on the immune microenvironment. A first generation of small molecules to inactivate SGK1 has already been already produced.
Collapse
Affiliation(s)
- Ilaria Guerriero
- Biogem Institute for Genetic Research Gaetano Salvatore, Ariano Irpino, 83031 Avellino, Italy; (I.G.); (G.M.)
| | - Gianni Monaco
- Biogem Institute for Genetic Research Gaetano Salvatore, Ariano Irpino, 83031 Avellino, Italy; (I.G.); (G.M.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (V.C.); (A.O.); Tel.: +1-614-688-8038 (V.C.); +1-646-552-0641 (A.O.)
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (V.C.); (A.O.); Tel.: +1-614-688-8038 (V.C.); +1-646-552-0641 (A.O.)
| |
Collapse
|
40
|
Role of SGK1 in the Osteogenic Transdifferentiation and Calcification of Vascular Smooth Muscle Cells Promoted by Hyperglycemic Conditions. Int J Mol Sci 2020; 21:ijms21197207. [PMID: 33003561 PMCID: PMC7583813 DOI: 10.3390/ijms21197207] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
In diabetes mellitus, hyperglycemia promotes the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) to enhance medial vascular calcification, a common complication strongly associated with cardiovascular disease and mortality. The mechanisms involved are, however, still poorly understood. Therefore, the present study explored the potential role of serum- and glucocorticoid-inducible kinase 1 (SGK1) during vascular calcification promoted by hyperglycemic conditions. Exposure to high-glucose conditions up-regulated the SGK1 expression in primary human aortic VSMCs. High glucose increased osteogenic marker expression and activity and, thus, promoted the osteogenic transdifferentiation of VSMCs, effects significantly suppressed by additional treatment with the SGK1 inhibitor EMD638683. Moreover, high glucose augmented the mineralization of VSMCs in the presence of calcification medium, effects again significantly reduced by SGK1 inhibition. Similarly, SGK1 knockdown blunted the high glucose-induced osteogenic transdifferentiation of VSMCs. The osteoinductive signaling promoted by high glucose required SGK1-dependent NF-kB activation. In addition, advanced glycation end products (AGEs) increased the SGK1 expression in VSMCs, and SGK1 inhibition was able to interfere with AGEs-induced osteogenic signaling. In conclusion, SGK1 is up-regulated and mediates, at least partly, the osteogenic transdifferentiation and calcification of VSMCs during hyperglycemic conditions. Thus, SGK1 inhibition may reduce the development of vascular calcification promoted by hyperglycemia in diabetes.
Collapse
|
41
|
Zhu R, Yang G, Cao Z, Shen K, Zheng L, Xiao J, You L, Zhang T. The prospect of serum and glucocorticoid-inducible kinase 1 (SGK1) in cancer therapy: a rising star. Ther Adv Med Oncol 2020; 12:1758835920940946. [PMID: 32728395 PMCID: PMC7364809 DOI: 10.1177/1758835920940946] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Serum and glucocorticoid-inducible kinase 1 (SGK1) is an AGC kinase that has been reported to be involved in a variety of physiological and pathological processes. Recent evidence has accumulated that SGK1 acts as an essential Akt-independent mediator of phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway in cancer. SGK1 is overexpressed in several tumors, including prostate cancer, colorectal carcinoma, glioblastoma, breast cancer, and endometrial cancer. The functions of SGK1 include regulating tumor growth, survival, metastasis, autophagy, immunoregulation, calcium (Ca2+) signaling, cancer stem cells, cell cycle, and therapeutic resistance. In this review, we introduce the pleiotropic role of SGK1 in the development and progression of tumors, summarize its downstream targets, and integrate the knowledge provided by preclinical studies that the prospect of SGK1 inhibition as a potential therapeutic approach.
Collapse
Affiliation(s)
- Ruizhe Zhu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Shen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing 100730, China
| |
Collapse
|
42
|
Yang C, Li J, Sun F, Zhou H, Yang J, Yang C. The functional duality of SGK1 in the regulation of hyperglycemia. Endocr Connect 2020; 9:R187-R194. [PMID: 32621586 PMCID: PMC7424354 DOI: 10.1530/ec-20-0225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Hyperglycemia is the consequence of blood glucose dysregulation and a driving force of diabetic complications including retinopathy, nephropathy and cardiovascular diseases. The serum and glucocorticoid inducible kinase-1 (SGK1) has been suggested in the modulation of various pathophysiological activities. However, the role of SGK1 in blood glucose homeostasis remains less appreciated. In this review, we intend to summarize the function of SGK1 in glucose level regulation and to examine the evidence supporting the therapeutic potential of SGK1 inhibitors in hyperglycemia. Ample evidence points to the controversial roles of SGK1 in pancreatic insulin secretion and peripheral insulin sensitivity, which reflects the complex interplay between SGK1 activation and blood glucose fluctuation. Furthermore, SGK1 is engaged in glucose absorption and excretion in intestine and kidney and participates in the progression of hyperglycemia-induced secondary organ damage. As a net effect, blockage of SGK1 activation via either pharmacological inhibition or genetic manipulation seems to be helpful in glucose control at varying diabetic stages.
Collapse
Affiliation(s)
- Chunliang Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Correspondence should be addressed to C Yang or J Yang: or
| | - Chao Yang
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
- Correspondence should be addressed to C Yang or J Yang: or
| |
Collapse
|
43
|
Maestro I, Boya P, Martinez A. Serum- and glucocorticoid-induced kinase 1, a new therapeutic target for autophagy modulation in chronic diseases. Expert Opin Ther Targets 2020; 24:231-243. [PMID: 32067528 DOI: 10.1080/14728222.2020.1730328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Autophagy, a basic cellular degradation pathway essential for survival, is altered both in aging and in many chronic human diseases, including infections, cancer, heart disease, and neurodegeneration. Identifying new therapeutic targets for the control and modulation of autophagy events is therefore of utmost importance in drug discovery. Serum and glucocorticoid activated kinase 1 (SGK1), known for decades for its role in ion channel modulation, is now known to act as a switch for autophagy homeostasis, and has emerged as a novel and important therapeutic target likely to attract considerable research attention in the coming years.Areas covered: In this general review of SGK1 we describe the kinase's structure and its roles in physiological and pathological contexts. We also discuss small-molecule modulators of SGK1 activity. These modulators are of particular interest to medicinal chemists and pharmacists seeking to develop more potent and selective drug candidates for SGK1, which, despite its key role in autophagy, remains relatively understudied.Expert opinion: The main future challenges in this area are (i) deciphering the role of SGK1 in selective autophagy processes (e.g. mitophagy, lipophagy, and aggrephagy); (ii) identifying selective allosteric modulators of SGK1 with specific biological functions; and (iii) conducting first-in-man clinical studies.
Collapse
Affiliation(s)
- Inés Maestro
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Patricia Boya
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
44
|
Mohammad T, Siddiqui S, Shamsi A, Alajmi MF, Hussain A, Islam A, Ahmad F, Hassan MI. Virtual Screening Approach to Identify High-Affinity Inhibitors of Serum and Glucocorticoid-Regulated Kinase 1 among Bioactive Natural Products: Combined Molecular Docking and Simulation Studies. Molecules 2020; 25:E823. [PMID: 32070031 PMCID: PMC7070812 DOI: 10.3390/molecules25040823] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase that works under acute transcriptional control by several stimuli, including serum and glucocorticoids. It plays a significant role in the cancer progression and metastasis, as it regulates inflammation, apoptosis, hormone release, neuro-excitability, and cell proliferation. SGK1 has recently been considered as a potential drug target for cancer, diabetes, and neurodegenerative diseases. In the present study, we have performed structure-based virtual high-throughput screening of natural compounds from the ZINC database to find potential inhibitors of SGK1. Initially, hits were selected based on their physicochemical, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and other drug-like properties. Afterwards, PAINS filter, binding affinities estimation, and interaction analysis were performed to find safe and effective hits. We found four compounds bearing appreciable binding affinity and specificity towards the binding pocket of SGK1. The docking results were complemented by all-atom molecular dynamics simulation for 100 ns, followed by MM/PBSA, and principal component analysis to investigate the conformational changes, stability, and interaction mechanism of SGK1 in-complex with the selected compound ZINC00319000. Molecular dynamics simulation results suggested that the binding of ZINC00319000 stabilizes the SGK1 structure, and it leads to fewer conformational changes. In conclusion, the identified compound ZINC00319000 might be further exploited as a scaffold to develop promising inhibitors of SGK1 for the therapeutic management of associated diseases, including cancer.
Collapse
Affiliation(s)
- Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (T.M.); (A.S.); (A.I.); (F.A.)
| | - Shiza Siddiqui
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (T.M.); (A.S.); (A.I.); (F.A.)
| | - Mohamed F. Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.)
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.)
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (T.M.); (A.S.); (A.I.); (F.A.)
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (T.M.); (A.S.); (A.I.); (F.A.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (T.M.); (A.S.); (A.I.); (F.A.)
| |
Collapse
|
45
|
Sun CC, Zhang LC, Gao CL, Zhang HR, Yu RL, Kang CM. Design and screening of SGK1, Src dual inhibitors using pharmacophore models, molecular docking, and molecular dynamics simulation. NEW J CHEM 2020. [DOI: 10.1039/d0nj02249g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serum and glucocorticoid-regulated protein kinase 1 that can promote the growth of tumor cells is highly expressed in many tumors. Sarcoma gene plays an important role in the pathogenesis of cancer and is an important kinase in tumor cell expression pathways.
Collapse
Affiliation(s)
- Chuan-ce Sun
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Li-chuan Zhang
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Cheng-long Gao
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Hao-ran Zhang
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Ri-lei Yu
- Key Laboratory of Marine Drugs
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Cong-min Kang
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| |
Collapse
|
46
|
Abstract
![]()
SGK3
is a PX domain containing protein kinase activated at endosomes
downstream of class 1 and 3 PI3K family members by growth factors
and oncogenic mutations. SGK3 plays a key role in mediating resistance
of breast cancer cells to class 1 PI3K or Akt inhibitors, by substituting
for the loss of Akt activity and restoring proliferative pathways
such as mTORC1 signaling. It is therefore critical to develop tools
to potently target SGK3 and obstruct its role in inhibitor resistance.
Here, we describe the development of SGK3-PROTAC1, a PROTAC conjugate
of the 308-R SGK inhibitor with the VH032 VHL binding ligand, targeting
SGK3 for degradation. SGK3-PROTAC1 (0.3 μM) induced 50%
degradation of endogenous SGK3 within 2 h, with maximal 80% degradation
observed within 8 h, accompanied by a loss of phosphorylation of NDRG1,
an SGK3 substrate. SGK3-PROTAC1 did not degrade closely related SGK1
and SGK2 isoforms that are nevertheless engaged and inhibited by 308-R.
Proteomic analysis revealed that SGK3 was the only cellular protein
whose cellular levels were significantly reduced following treatment
with SGK3-PROTAC1. Low doses of SGK3-PROTAC1 (0.1–0.3 μM)
restored sensitivity of SGK3 dependent ZR-75-1 and CAMA-1 breast cancer
cells to Akt (AZD5363) and PI3K (GDC0941) inhibitors, whereas the
cis epimer analogue incapable of binding to the VHL E3 ligase had
no impact. SGK3-PROTAC1 suppressed proliferation of ZR-75-1 and CAMA-1
cancer cell lines treated with a PI3K inhibitor (GDC0941) more effectively
than could be achieved by a conventional SGK isoform inhibitor (14H).
This work underscores the benefit of the PROTAC approach in targeting
protein kinase signaling pathways with greater efficacy and selectivity
than can be achieved with conventional inhibitors. SGK3-PROTAC1 will
be an important reagent to explore the roles of the SGK3 pathway.
Collapse
|
47
|
Glucocorticoid stimulation increases cardiac contractility by SGK1-dependent SOCE-activation in rat cardiac myocytes. PLoS One 2019; 14:e0222341. [PMID: 31498847 PMCID: PMC6733454 DOI: 10.1371/journal.pone.0222341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/27/2019] [Indexed: 01/28/2023] Open
Abstract
Aims Glucocorticoid (GC) stimulation has been shown to increase cardiac contractility by elevated intracellular [Ca] but the sources for Ca entry are unclear. This study aims to determine the role of store-operated Ca entry (SOCE) for GC-mediated inotropy. Methods and results Dexamethasone (Dex) pretreatment significantly increased cardiac contractile force ex vivo in Langendorff-perfused Sprague-Dawley rat hearts (2 mg/kg BW i.p. Dex 24 h prior to experiment). Moreover, Ca transient amplitude as well as fractional shortening were significantly enhanced in Fura-2-loaded isolated rat ventricular myocytes exposed to Dex (1 mg/mL Dex, 24 h). Interestingly, these Dex-dependent effects could be abolished in the presence of SOCE-inhibitors SKF-96356 (SKF, 2 μM) and BTP2 (5 μM). Ca transient kinetics (time to peak, decay time) were not affected by SOCE stimulation. Direct SOCE measurements revealed a negligible magnitude in untreated myocytes but a dramatic increase in SOCE upon Dex-pretreatment. Importantly, the Dex-dependent stimulation of SOCE could be blocked by inhibition of serum and glucocorticoid-regulated kinase 1 (SGK1) using EMD638683 (EMD, 50 μM). Dex preincubation also resulted in increased mRNA expression of proteins involved in SOCE (stromal interaction molecule 2, STIM2, and transient receptor potential cation channels 3/6, TRPC 3/6), which were also prevented in the presence of EMD. Conclusion Short-term GC-stimulation with Dex improves cardiac contractility by a SOCE-dependent mechanism, which appears to involve increased SGK1-dependent expression of the SOCE-related proteins. Since Ca transient kinetics were unaffected, SOCE appears to influence Ca cycling more by an integrated response across multiple cardiac cycles but not on a beat-to-beat basis.
Collapse
|
48
|
Schoene J, Gazzi T, Lindemann P, Christmann M, Volkamer A, Nazaré M. Probing 2
H
‐Indazoles as Templates for SGK1, Tie2, and SRC Kinase Inhibitors. ChemMedChem 2019; 14:1514-1527. [DOI: 10.1002/cmdc.201900328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/26/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Jens Schoene
- Medicinal ChemistryLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus BerlinBuch Robert-Roessle-Str. 10 13125 Berlin Germany
| | - Thais Gazzi
- Medicinal ChemistryLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus BerlinBuch Robert-Roessle-Str. 10 13125 Berlin Germany
| | - Peter Lindemann
- Medicinal ChemistryLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus BerlinBuch Robert-Roessle-Str. 10 13125 Berlin Germany
| | - Mathias Christmann
- Organische ChemieInstitut für Chemie und BiochemieFreie Universität Berlin Takustrasse. 3 14195 Berlin Germany
| | - Andrea Volkamer
- In silico Toxicology and Structural Bioinformatics Group, Institute of PhysiologyCharité—Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Germany
| | - Marc Nazaré
- Medicinal ChemistryLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus BerlinBuch Robert-Roessle-Str. 10 13125 Berlin Germany
- Anna-Louisa-Karsch-Str. 2 10178 Berlin Germany
| |
Collapse
|
49
|
Xu JB, Zhang YL, Huang J, Lu SJ, Sun Q, Chen PX, Jiang P, Qiu ZE, Jiang FN, Zhu YX, Lai DH, Zhong WD, Lun ZR, Zhou WL. Increased intracellular Cl - concentration mediates Trichomonas vaginalis-induced inflammation in the human vaginal epithelium. Int J Parasitol 2019; 49:697-704. [PMID: 31254529 DOI: 10.1016/j.ijpara.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 11/15/2022]
Abstract
Trichomonas vaginalis is a primary urogenital parasite that causes trichomoniasis, a common sexually transmitted disease. As the first line of host defense, vaginal epithelial cells play critical roles in orchestrating vaginal innate immunity and modulate intracellular Cl- homeostasis via the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that plays positive roles in regulating nuclear factor-κB (NF-κB) signalling. However, the association between T. vaginalis infection and intracellular Cl- disequilibrium remains elusive. This study showed that after T. vaginalis infection, CFTR was markedly down-regulated by cysteine proteases in vaginal epithelial cells. The intracellular Cl- concentration ([Cl-]i) was consequently elevated, leading to NF-κB signalling activation via serum- and glucocorticoid-inducible kinase-1. Moreover, heightened [Cl-]i and activated NF-κB signalling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP through NF-κB-mediated up-regulation of phosphodiesterase 4. The results conclusively revealed that the intracellular Cl- of the human vaginal epithelium could be dynamically modulated by T. vaginalis, which contributed to mediation of epithelial inflammation in the human vagina.
Collapse
Affiliation(s)
- Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiehong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shen-Jiao Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qing Sun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng-Xiao Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ping Jiang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fu-Neng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - De-Hua Lai
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Zhao-Rong Lun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
50
|
Identification, structure modification, and characterization of potential small-molecule SGK3 inhibitors with novel scaffolds. Acta Pharmacol Sin 2018; 39:1902-1912. [PMID: 30038340 DOI: 10.1038/s41401-018-0087-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/10/2018] [Indexed: 12/16/2022] Open
Abstract
The serum and glucocorticoid-regulated kinase (SGK) family has been implicated in the regulation of many cellular processes downstream of the PI3K pathway. It plays a crucial role in PI3K-mediated tumorigenesis, making it a potential therapeutic target for cancer. SGK family consists of three isoforms (SGK1, SGK2, and SGK3), which have high sequence homology in the kinase domain and similar substrate specificity with the AKT family. In order to identify novel compounds capable of inhibiting SGK3 activity, a high-throughput screening campaign against 50,400 small molecules was conducted using a fluorescence-based kinase assay that has a Z' factor above 0.5. It identified 15 hits (including nitrogen-containing aromatic, flavone, hydrazone, and naphthalene derivatives) with IC50 values in the low micromolar to sub-micromolar range. Four compounds with a similar scaffold (i.e., a hydrazone core) were selected for structural modification and 18 derivatives were synthesized. Molecular modeling was then used to investigate the structure-activity relationship (SAR) and potential protein-ligand interactions. As a result, a series of SGK inhibitors that are active against both SGK1 and SGK3 were developed and important functional groups that control their inhibitory activity identified.
Collapse
|