1
|
Phogat A, Singh J, Sheoran R, Hasanpuri A, Chaudhary A, Bhardwaj S, Antil S, Kumar V, Prakash C, Malik V. Berberine Attenuates Acetamiprid Exposure-Induced Mitochondrial Dysfunction and Apoptosis in Rats via Regulating the Antioxidant Defense System. J Xenobiot 2024; 14:1079-1092. [PMID: 39189176 PMCID: PMC11348026 DOI: 10.3390/jox14030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Acetamiprid (ACMP) is a neonicotinoid insecticide that poses a significant threat to the environment and mankind. Oxidative stress and mitochondrial dysfunction are considered prime contributors to ACMP-induced toxic effects. Meanwhile, berberine (BBR) a natural plant alkaloid, is a topic of interest because of its therapeutic and prophylactic actions. Therefore, this study evaluated the effects of BBR on ACMP-mediated alterations in mitochondrial functions and apoptosis in rat liver tissue. Male Wistar rats were divided into four groups: (I) control, (II) BBR-treated, (III) ACMP-exposed, and (IV) BBR+ACMP co-treated groups. The doses of BBR (150 mg/kg b.wt) and ACMP (1/10 of LD50, i.e., 21.7 mg/kg b.wt) were given intragastrically for 21 consecutive days. The results showed that the administration of ACMP diminished mitochondrial complex activity, downregulated complex I (ND1 and ND2) and complex IV (COX1 and COX4) subunit mRNA expression, depleted the antioxidant defense system, and induced apoptosis in rat liver. BBR pre-treatment significantly attenuated ACMP-induced mitochondrial dysfunction by maintaining mitochondrial complex activity and upregulating ND1, ND2, COX1, and COX4 mRNA expression. BBR reversed ACMP-mediated apoptosis by diminishing Bax and caspase-3 and increasing the Bcl-2 protein level. BBR also improved the mitochondrial antioxidant defense system by upregulating mRNA expression of PGC-1α, MnSOD, and UCP-2 in rat liver tissue. This study is the first to evaluate the protective potential of BBR against pesticide-induced mitochondrial dysfunction in liver tissue. In conclusion, BBR offers protection against ACMP-induced impairment in mitochondrial functions by maintaining the antioxidant level and modulating the apoptotic cascade.
Collapse
Affiliation(s)
- Annu Phogat
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Jagjeet Singh
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India;
| | - Reena Sheoran
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Arun Hasanpuri
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Aakash Chaudhary
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Shakti Bhardwaj
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| | - Sandeep Antil
- Department of Zoology, ANDC College, University of Delhi, New Delhi 110019, India;
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India;
| | - Chandra Prakash
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (A.P.); (J.S.); (R.S.); (A.H.); (A.C.); (S.B.)
| |
Collapse
|
2
|
Kumar M. Hydrogen sulfide: From a toxic gas to a potential therapy for COVID-19 and inflammatory disorders. Nitric Oxide 2023; 140-141:8-15. [PMID: 37648016 DOI: 10.1016/j.niox.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
COVID-19 has been shown to induce inflammatory disorders and CNS manifestations. Swift and efficient treatment strategies are urgently warranted for the management of COVID, inflammatory and neurological disorders. Hydrogen sulfide (H2S) has been associated with several clinical disorders due to its potential to influence a broad range of biological signalling pathways. According to recent clinical studies, COVID patients with lower physiological H2S had higher fatality rates. These findings clearly demonstrate an inverse correlation between H2S levels and the severity of COVID-19. H2S has been proposed as a protective molecule because of its antioxidant, anti-inflammatory, and antiviral properties. Various H2S-releasing prodrugs, hybrids and natural compounds have been tested for their therapeutic efficacy in viral infections and inflammatory disorders. In this review, I am highlighting the rationale for using H2S-based interventions for the management of COVID-19 and post-infection inflammatory disorders including neuroinflammation. I am also proposing therepurposing of existing H2S-releasing prodrugs, developing new NO-H2S-hybrids, targeting H2S metabolic pathways, and using H2S-producing dietary supplements as viable defensive strategies against SARS-CoV-2 infection and COVID-19 pathologies.
Collapse
Affiliation(s)
- Mohit Kumar
- Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Punjab, 140306, India.
| |
Collapse
|
3
|
Jurcau A, Jurcau CM. Mitochondria in Huntington's disease: implications in pathogenesis and mitochondrial-targeted therapeutic strategies. Neural Regen Res 2023; 18:1472-1477. [PMID: 36571344 PMCID: PMC10075114 DOI: 10.4103/1673-5374.360289] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Huntington's disease is a genetic disease caused by expanded CAG repeats on exon 1 of the huntingtin gene located on chromosome 4. Compelling evidence implicates impaired mitochondrial energetics, altered mitochondrial biogenesis and quality control, disturbed mitochondrial trafficking, oxidative stress and mitochondrial calcium dyshomeostasis in the pathogenesis of the disorder. Unfortunately, conventional mitochondrial-targeted molecules, such as cysteamine, creatine, coenzyme Q10, or triheptanoin, yielded negative or inconclusive results. However, future therapeutic strategies, aiming to restore mitochondrial biogenesis, improving the fission/fusion balance, and improving mitochondrial trafficking, could prove useful tools in improving the phenotype of Huntington's disease and, used in combination with genome-editing methods, could lead to a cure for the disease.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea; Neurology 3 Ward, Clinical Emergency Hospital, Oradea, Romania
| | | |
Collapse
|
4
|
Brondani M, Roginski AC, Ribeiro RT, de Medeiros MP, Hoffmann CIH, Wajner M, Leipnitz G, Seminotti B. Mitochondrial dysfunction, oxidative stress, ER stress and mitochondria-ER crosstalk alterations in a chemical rat model of Huntington's disease: potential benefits of bezafibrate. Toxicol Lett 2023; 381:48-59. [PMID: 37116597 DOI: 10.1016/j.toxlet.2023.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Redox homeostasis, mitochondrial functions, and mitochondria-endoplasmic reticulum (ER) communication were evaluated in the striatum of rats after 3-nitropropionic acid (3-NP) administration, a recognized chemical model of Huntington's disease (HD). 3-NP impaired redox homeostasis by increasing malondialdehyde levels at 28 days, decreasing glutathione (GSH) concentrations at 21 and 28 days, and the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione S-transferase at 7, 21, and 28 days, catalase at 21 days, and glutathione reductase at 21 and 28 days. Impairment of mitochondrial respiration at 7 and 28 days after 3-NP administration was also observed, as well as reduced activities of succinate dehydrogenase (SDH) and respiratory chain complexes. 3-NP also impaired mitochondrial dynamics and the interactions between ER and mitochondria and induced ER-stress by increasing the levels of mitofusin-1, and of DRP1, VDAC1, Grp75 and Grp78. Synaptophysin levels were augmented at 7 days but reduced at 28 days after 3-NP injection. Finally, bezafibrate prevented 3-NP-induced alterations of the activities of SOD, GPx, SDH and respiratory chain complexes, DCFH oxidation and on the levels of GSH, VDAC1 and synaptophysin. Mitochondrial dysfunction and synaptic disruption may contribute to the pathophysiology of HD and bezafibrate may be considered as an adjuvant therapy for this disorder.
Collapse
Affiliation(s)
- Morgana Brondani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Cristina Roginski
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Paula de Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio, 21111, Porto Alegre, RS, 90035-003, Brazil
| | - Chrístofer Ian Hernandez Hoffmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio, 21111, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio, 21111, Porto Alegre, RS, 90035-003, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio, 21111, Porto Alegre, RS, 90035-003, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
D’Egidio F, Castelli V, Cimini A, d’Angelo M. Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease. Antioxidants (Basel) 2023; 12:571. [PMID: 36978821 PMCID: PMC10045781 DOI: 10.3390/antiox12030571] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Huntington's Disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a CAG triplet repeat in the HTT gene, resulting in the production of an aberrant huntingtin (Htt) protein. The mutant protein accumulation is responsible for neuronal dysfunction and cell death. This is due to the involvement of oxidative damage, excitotoxicity, inflammation, and mitochondrial impairment. Neurons naturally adapt to bioenergetic alteration and oxidative stress in physiological conditions. However, this dynamic system is compromised when a neurodegenerative disorder occurs, resulting in changes in metabolism, alteration in calcium signaling, and impaired substrates transport. Thus, the aim of this review is to provide an overview of the cell's answer to the stress induced by HD, focusing on the role of oxidative stress and its balance with the antioxidant system.
Collapse
Affiliation(s)
| | | | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
6
|
Siddiqui SI, Malik C, Ghosh S. Voltage dependent anion channel and its interaction with N-acetyl-L-Cysteine (NAC) under oxidative stress on planar lipid bilayer. Biochimie 2023; 209:150-160. [PMID: 36780980 DOI: 10.1016/j.biochi.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/30/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Mitochondria are the major source of Hydrogen Peroxide (H2O2), a reactive oxygen species, in the cells. The reactive oxygen species generated by the mitochondria oxidize major proteins including Voltage Dependent Anion Channel (VDAC). We were interested to know how the effect of H2O2 is countered by antioxidants present around the mitochondria. N-Acetyl-l-Cysteine (NAC) is a naturally existing antioxidant in the cells. Keeping this in view, the modulatory effect of antioxidant NAC on H2O2 oxidized VDAC has been investigated through in vitro electrophysiological studies. First, the effect of H2O2 and NAC was studied on independently incorporated single-channel VDAC. It was observed that NAC suppresses VDAC conductance with a half-maximal inhibitory concentration (IC50) of ∼1.04 μM. In contrast, H2O2 enhances VDAC conductance. Later, oxidative stress was induced by H2O2 on VDAC increased conductance with half-maximal effective concentration (EC50) of ∼302 nM. An application of 1 μM NAC on H2O2 treated (300 nM) VDAC reversed the effect of oxidation. In the next step, NAC and H2O2 were added in reverse order. When oxidative stress was induced using H2O2, reduction in conductance by NAC was 4.5 ± 0.404 nS. The change in conductance is nearly 6.3%. However, if antioxidant NAC was incubated first followed by H2O2 treatment, the conductance of VDAC was 3.09 ± 0.27 nS. The change in conductance is near 33%. Both H2O2 and NAC also affected various conducting states of VDAC. In-silico studies indicated the binding of NAC at Lysine and Glutamic acid of VDAC. Hence, NAC was found to be effective in protection of VDAC against H2O2-induced oxidative stress due to its strong binding.
Collapse
Affiliation(s)
- Shumaila Iqbal Siddiqui
- Department of Biophysics, Benito Juarez Road, University of Delhi South Campus, New Delhi, 110021, India
| | - Chetan Malik
- Department of Biophysics, Benito Juarez Road, University of Delhi South Campus, New Delhi, 110021, India
| | - Subhendu Ghosh
- Department of Biophysics, Benito Juarez Road, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
7
|
Hammerschmidt TG, Donida B, Raabe M, Faverzani JL, de Fátima Lopes F, Machado AZ, Kessler RG, Reinhardt LS, Poletto F, Moura DJ, Vargas CR. Evidence of redox imbalance and mitochondrial dysfunction in Niemann-Pick type C 1 patients: the in vitro effect of combined therapy with antioxidants and β-cyclodextrin nanoparticles. Metab Brain Dis 2023; 38:507-518. [PMID: 36447062 DOI: 10.1007/s11011-022-01128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Niemann-Pick C disease (NPC) is an autosomal recessive genetic disorder resulting from mutation in one of two cholesterol transport genes: NPC1 or NPC2, causing accumulation of unesterified cholesterol, together with glycosphingolipids, within the endosomal/lysosomal compartment of cells. The result is a severe disease in both multiple peripheral organs and the central nervous system, causing neurodegeneration and early death. However, the pathophysiological mechanisms of NPC1 remain poorly understood. Recent studies have shown that the primary lysosomal defect found in fibroblasts from NPC1 patients is accompanied by a deregulation of mitochondrial organization and function. There is currently no cure for NPC1, but recently the potential of β-cyclodextrin (β-CD) for the treatment of the disease was discovered, which resulted in the redistribution of cholesterol from subcellular compartments to the circulation and increased longevity in an animal model of NPC1. Considering the above, the present work evaluated the in vitro therapeutic potential of β-CD to reduce cholesterol in fibroblasts from NPC1 patients. β-CD was used in its free and nanoparticulate form. We also evaluated the β-CD potential to restore mitochondrial functions, as well as the beneficial combined effects of treatment with antioxidants N-Acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). Besides, we evaluated oxidative and nitrative stress parameters in NPC1 patients. We showed that oxidative and nitrative stress could contribute to the pathophysiology of NPC1, as the levels of lipoperoxidation and the nitrite and nitrate levels were increased in these patients when compared to healthy individuals, as well as DNA damage. The nanoparticles containing β-CD reduced the cholesterol accumulated in the NPC1 fibroblasts. This result was potentiated by the concomitant use of the nanoparticles with the antioxidants NAC and CoQ10 compared to those presented by healthy individuals cells ́. In addition, treatments combining β-CD nanoparticles and antioxidants could reduce mitochondrial oxidative stress, demonstrating advantages compared to free β-CD. The results obtained are promising regarding the combined use of β-CD loaded nanoparticles and antioxidants in the treatment of NPC1 disease.
Collapse
Affiliation(s)
| | - Bruna Donida
- Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | - Marco Raabe
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Jéssica Lamberty Faverzani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franciele de Fátima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Andryele Z Machado
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Rejane G Kessler
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Luiza S Reinhardt
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Fernanda Poletto
- Programa de Pós-Graduação em Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Dinara J Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Carmen R Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Serviço de Genética Médica, HCPA, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Liu M, Sun X, Chen B, Dai R, Xi Z, Xu H. Insights into Manganese Superoxide Dismutase and Human Diseases. Int J Mol Sci 2022; 23:ijms232415893. [PMID: 36555531 PMCID: PMC9786916 DOI: 10.3390/ijms232415893] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Redox equilibria and the modulation of redox signalling play crucial roles in physiological processes. Overproduction of reactive oxygen species (ROS) disrupts the body's antioxidant defence, compromising redox homeostasis and increasing oxidative stress, leading to the development of several diseases. Manganese superoxide dismutase (MnSOD) is a principal antioxidant enzyme that protects cells from oxidative damage by converting superoxide anion radicals to hydrogen peroxide and oxygen in mitochondria. Systematic studies have demonstrated that MnSOD plays an indispensable role in multiple diseases. This review focuses on preclinical evidence that describes the mechanisms of MnSOD in diseases accompanied with an imbalanced redox status, including fibrotic diseases, inflammation, diabetes, vascular diseases, neurodegenerative diseases, and cancer. The potential therapeutic effects of MnSOD activators and MnSOD mimetics are also discussed. Targeting this specific superoxide anion radical scavenger may be a clinically beneficial strategy, and understanding the therapeutic role of MnSOD may provide a positive insight into preventing and treating related diseases.
Collapse
Affiliation(s)
- Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Xueyang Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Boya Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
- Correspondence: (Z.X.); (H.X.)
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
- Correspondence: (Z.X.); (H.X.)
| |
Collapse
|
9
|
Mohammadi E, Nikbakht F, Barati M, Roghani M, Vazifekhah S, Khanizadeh AM, Heidari Z. Protective effect of N-acetyl cysteine on the mitochondrial dynamic imbalance in temporal lobe epilepsy: Possible role of mTOR. Neuropeptides 2022; 96:102294. [PMID: 36270032 DOI: 10.1016/j.npep.2022.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Understanding the underlying molecular mechanisms involved in epilepsy is critical for the development of more effective therapies. It is believed that mTOR (Mechanistic Target of Rapamycin kinases) activity and the mitochondrial dynamic balance change during epilepsy. mTOR affects mitochondrial fission by stimulating the translation of mitochondrial fission process 1 (MTFP1). In This study, the protective role of N-acetylcysteine was studied in temporal lobe epilepsy (TLE) through the regulation of mTOR and mitochondrial dynamic proteins. Rats received N-acetylcysteine (oral administration) seven days before induction of epilepsy, followed by one day after epilepsy. TLE was induced by microinjection of kainite into the left lateral ventricle. The total mTOR and Drp1 levels in the hippocampus were evaluated by western blotting. MFN1 was assessed using immunohistochemistry, and the expression of Fis.1 and MTFP1 (fission-related proteins) and OPA (fusion-related protein) were detected by real-time PCR. The mitochondrial membrane potential was measured by Rhodamin 123. The results showed that 72 h after induction of epilepsy, the mTOR protein level increased, and the balance of the mitochondrial dynamic was disturbed; however, oral administration of NAC decreased the mTOR protein level and improved the mitochondrial dynamic. These findings indicate that NAC plays a neuroprotective role in temporal lobe epilepsy, probably through decreasing the mTOR protein level, which can improve the imbalance in the mitochondrial dynamic.
Collapse
Affiliation(s)
- Ekram Mohammadi
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahmoud Barati
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Somayeh Vazifekhah
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Khanizadeh
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Heidari
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Albekairi TH, Kamra A, Bhardwaj S, Mehan S, Giri A, Suri M, Alshammari A, Alharbi M, Alasmari AF, Narula AS, Kalfin R. Beta-Boswellic Acid Reverses 3-Nitropropionic Acid-Induced Molecular, Mitochondrial, and Histopathological Defects in Experimental Rat Model of Huntington's Disease. Biomedicines 2022; 10:2866. [PMID: 36359390 PMCID: PMC9687177 DOI: 10.3390/biomedicines10112866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 10/01/2023] Open
Abstract
Huntington's disease (HD) is distinguished by a triple repeat of CAG in exon 1, an increase in poly Q in the Htt gene, and a loss of GABAergic medium spiny neurons (MSN) in the striatum and white matter of the cortex. Mitochondrial ETC-complex dysfunctions are involved in the pathogenesis of HD, including neuronal energy loss, synaptic neurotrophic decline, neuronal inflammation, apoptosis, and grey and white matter destruction. A previous study has demonstrated that beta Boswellic acid (β-BA), a naturally occurring phytochemical, has several neuroprotective properties that can reduce pathogenic factors associated with various neurological disorders. The current investigation aimed to investigate the neuroprotective potential of β-BA at oral doses of 5, 10, and 15 mg/kg alone, as well as in conjunction with the potent antioxidant vitamin E (8 mg/kg, orally) in 3-NP-induced experimental HD rats. Adult Wistar rats were separated into seven groups, and 3-NP, at a dose of 10 mg/kg, was orally administered to each group of adult Wistar rats beginning on day 1 and continuing through day 14. The neurotoxin 3-NP induces neurodegenerative, g, neurochemical, and pathological alterations in experimental animals. Continuous injection of 3-NP, according to our results, aggravated HD symptoms by suppressing ETC-complex-II, succinate dehydrogenase activity, and neurochemical alterations. β-BA, when taken with vitamin E, improved behavioural dysfunctions such as neuromuscular and motor impairments, as well as memory and cognitive abnormalities. Pharmacological treatments with β-BA improved and restored ETC complexes enzymes I, II, and V levels in brain homogenates. β-BA treatment also restored neurotransmitter levels in the brain while lowering inflammatory cytokines and oxidative stress biomarkers. β-BA's neuroprotective potential in reducing neuronal death was supported by histopathological findings in the striatum and cortex. As a result, the findings of this research contributed to a better understanding of the potential role of natural phytochemicals β-BA in preventing neurological illnesses such as HD.
Collapse
Affiliation(s)
- Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Arzoo Kamra
- Department of Pharmacology, Seth G.L. Bihani S.D. College of Technical Education, Institute of Pharmaceutical Sciences and Drug Research, Sri Ganganagar 335001, Rajasthan, India
| | - Sudeep Bhardwaj
- Department of Pharmacology, Seth G.L. Bihani S.D. College of Technical Education, Institute of Pharmaceutical Sciences and Drug Research, Sri Ganganagar 335001, Rajasthan, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga 142001, Punjab, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University “NeofitRilski”, Ivan Mihailov St. 66, 2700 Blagoevgrad, Bulgaria
| |
Collapse
|
11
|
Trends in Gliosis in Obesity, and the Role of Antioxidants as a Therapeutic Alternative. Antioxidants (Basel) 2022; 11:antiox11101972. [PMID: 36290695 PMCID: PMC9598641 DOI: 10.3390/antiox11101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity remains a global health problem. Chronic low-grade inflammation in this pathology has been related to comorbidities such as cognitive alterations that, in the long term, can lead to neurodegenerative diseases. Neuroinflammation or gliosis in patients with obesity and type 2 diabetes mellitus has been related to the effect of adipokines, high lipid levels and glucose, which increase the production of free radicals. Cerebral gliosis can be a risk factor for developing neurodegenerative diseases, and antioxidants could be an alternative for the prevention and treatment of neural comorbidities in obese patients. AIM Identify the immunological and oxidative stress mechanisms that produce gliosis in patients with obesity and propose antioxidants as an alternative to reducing neuroinflammation. METHOD Advanced searches were performed in scientific databases: PubMed, ProQuest, EBSCO, and the Science Citation index for research on the physiopathology of gliosis in obese patients and for the possible role of antioxidants in its management. CONCLUSION Patients with obesity can develop neuroinflammation, conditioned by various adipokines, excess lipids and glucose, which results in an increase in free radicals that must be neutralized with antioxidants to reduce gliosis and the risk of long-term neurodegeneration.
Collapse
|
12
|
Dang X, Huan X, Du X, Chen X, Bi M, Yan C, Jiao Q, Jiang H. Correlation of Ferroptosis and Other Types of Cell Death in Neurodegenerative Diseases. Neurosci Bull 2022; 38:938-952. [PMID: 35482278 PMCID: PMC9352832 DOI: 10.1007/s12264-022-00861-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Ferroptosis is defined as an iron-dependent, non-apoptotic cell death pathway, with specific morphological phenotypes and biochemical changes. There is a growing realization that ferroptosis has significant implications for several neurodegenerative diseases. Even though ferroptosis is different from other forms of programmed death such as apoptosis and autophagic death, they involve a number of common protein molecules. This review focuses on current research on ferroptosis and summarizes the cross-talk among ferroptosis, apoptosis, and autophagy that are implicated in neurodegenerative diseases. We hope that this information provides new ideas for understanding the mechanisms and searching for potential therapeutic approaches and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoting Dang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xuejie Huan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
13
|
Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, Sorrentino V, Millet GP. Boosting mitochondrial health to counteract neurodegeneration. Prog Neurobiol 2022; 215:102289. [DOI: 10.1016/j.pneurobio.2022.102289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022]
|
14
|
Singh J, Phogat A, Kumar V, Malik V. N-acetylcysteine ameliorates monocrotophos exposure-induced mitochondrial dysfunctions in rat liver. Toxicol Mech Methods 2022; 32:686-694. [DOI: 10.1080/15376516.2022.2064258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jagjeet Singh
- Department of Zoology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Annu Phogat
- Department of Zoology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| |
Collapse
|
15
|
Martinez-Banaclocha M. N-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020416. [PMID: 35204298 PMCID: PMC8869501 DOI: 10.3390/antiox11020416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In the last twenty years, significant progress in understanding the pathophysiology of age-associated neurodegenerative diseases has been made. However, the prevention and treatment of these diseases remain without clinically significant therapeutic advancement. While we still hope for some potential genetic therapeutic approaches, the current reality is far from substantial progress. With this state of the issue, emphasis should be placed on early diagnosis and prompt intervention in patients with increased risk of neurodegenerative diseases to slow down their progression, poor prognosis, and decreasing quality of life. Accordingly, it is urgent to implement interventions addressing the psychosocial and biochemical disturbances we know are central in managing the evolution of these disorders. Genomic and proteomic studies have shown the high molecular intricacy in neurodegenerative diseases, involving a broad spectrum of cellular pathways underlying disease progression. Recent investigations indicate that the dysregulation of the sensitive-cysteine proteome may be a concurrent pathogenic mechanism contributing to the pathophysiology of major neurodegenerative diseases, opening new therapeutic opportunities. Considering the incidence and prevalence of these disorders and their already significant burden in Western societies, they will become a real pandemic in the following decades. Therefore, we propose large-scale investigations, in selected groups of people over 40 years of age with decreased blood glutathione levels, comorbidities, and/or mild cognitive impairment, to evaluate supplementation of the diet with low doses of N-acetyl-cysteine, a promising and well-tolerated therapeutic agent suitable for long-term use.
Collapse
|
16
|
Zhou J, Terluk MR, Orchard PJ, Cloyd JC, Kartha RV. N-Acetylcysteine Reverses the Mitochondrial Dysfunction Induced by Very Long-Chain Fatty Acids in Murine Oligodendrocyte Model of Adrenoleukodystrophy. Biomedicines 2021; 9:biomedicines9121826. [PMID: 34944641 PMCID: PMC8698433 DOI: 10.3390/biomedicines9121826] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
The accumulation of saturated very long-chain fatty acids (VLCFA, ≥C22:0) due to peroxisomal impairment leads to oxidative stress and neurodegeneration in X-linked adrenoleukodystrophy (ALD). Among the neural supporting cells, myelin-producing oligodendrocytes are the most sensitive to the detrimental effect of VLCFA. Here, we characterized the mitochondrial dysfunction and cell death induced by VLFCA, and examined whether N-acetylcysteine (NAC), an antioxidant, prevents the cytotoxicity. We exposed murine oligodendrocytes (158 N) to hexacosanoic acid (C26:0, 1-100 µM) for 24 h and measured reactive oxygen species (ROS) and cell death. Low concentrations of C26:0 (≤25 µM) induced a mild effect on cell survival with no alterations in ROS or total glutathione (GSH) concentrations. However, analysis of the mitochondrial status of cells treated with C26:0 (25 µM) revealed depletion in mitochondrial GSH (mtGSH) and a decrease in the inner membrane potential. These results indicate that VLCFA disturbs the mitochondrial membrane potential causing ROS accumulation, oxidative stress, and cell death. We further tested whether NAC (500 µM) can prevent the mitochondria-specific effects of VLCFA in C26:0-treated oligodendrocytes. Our results demonstrate that NAC improves mtGSH levels and mitochondrial function in oligodendrocytes, indicating that it has potential use in the treatment of ALD and related disorders.
Collapse
Affiliation(s)
- Jie Zhou
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (J.C.C.)
| | - Marcia R. Terluk
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (J.C.C.)
| | - Paul J. Orchard
- Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, 425 East River Parkway, Minneapolis, MN 55455, USA;
| | - James C. Cloyd
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (J.C.C.)
| | - Reena V. Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA; (J.Z.); (M.R.T.); (J.C.C.)
- Correspondence: ; Tel.: +1-612-626-2436
| |
Collapse
|
17
|
Antunes FTT, de Souza AH, Caminski ES, Greggio S, Venturin GT, da Costa JC, Taffarel M, Rebelo IN, Gomez MV, Correa DS, Vilanova FN, Regner AP, Dallegrave E. Neuroprotective effects of the CTK 01512-2 toxin against neurotoxicity induced by 3-nitropropionic acid in rats. Neurotoxicology 2021; 87:30-42. [PMID: 34478769 DOI: 10.1016/j.neuro.2021.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 01/07/2023]
Abstract
The mitochondrial inhibitor 3-nitropropionic acid (3-NP) induces excitotoxicity. The authors hypothesized that CTK 01512-2, a recombinant peptide calcium channel N-type blocker, and the TRPA1 antagonist, could show neuroprotective effects. The male Wistar rats received 3-NP [25 mg/kg (i.p.) for 7 days], and a treatment of CTK 01512-2 was delivered intrathecally (i.t.), thrice a week. The neuroprotective effects were evaluated by [18F]FDG MicroPET analysis. The CTK 01512-2 toxin was able to reestablish similar glucose uptakes on the control animals. To detect the neurobehavioral effects from 3-NP, three protocols (6.25, 12.5, 18.75 mg/kg of 3-NP (i.p.), for 3, 4, and 6 days, respectively) were evaluated by performance tests (open field test, walk footprint, elevated plus-maze, Y-maze, and the object recognition test). Important disabilities in the gait of the rats were seen, as well as memory deficits, and anxious behavior in the animals that were treated with all 3-NP protocols. The dose of 18.75 mg/kg (for 3 days) showed the most pronounced behavioral effects and lethality, while the rats treated with 12.5 mg/kg (for 4 days) showed behavioral effects similar to the 6.25 mg/kg dose (for 6 days). The third protocol was then repeated and the rats were treated with the CTK 01512-2 toxin to be evaluated behaviorally again. The recombinant peptide prevented all of the gait-evaluated parameters that were induced by 3-NP at a 6.25 mg/kg dose, which displayed an improvement in the exploratory activities. Overall, these results have reinforced the positive effects of CTK 01512-2 against the behavioral changes that were induced by the mitochondrial inhibitor 3-NP.
Collapse
Affiliation(s)
- Flavia Tasmin Techera Antunes
- Program of Postgraduation in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.
| | - Alessandra Hubner de Souza
- Program of Postgraduation in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.
| | - Emanuelle Sistherenn Caminski
- Laboratory of Toxicology Research, The Federal University of Health Science of Porto Alegre (UFCSPA), Rio Grande do Sul, Brazil.
| | - Samuel Greggio
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul, Brain Institute (Brains), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil.
| | - Gianina Teribele Venturin
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul, Brain Institute (Brains), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil.
| | - Jaderson Costa da Costa
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul, Brain Institute (Brains), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil.
| | - Maitê Taffarel
- Laboratory of Pharmacy, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.
| | - Isadora Nunes Rebelo
- Laboratory of Pharmacy, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.
| | - Marcus Vinicius Gomez
- Institute of Teaching and Research of Santa Casa de Belo Horizonte, Belo Horizonte, Brazil.
| | - Dione Silva Correa
- Department of Chemistry, Lutheran University of Brazil, Canoas, RS, Brazil.
| | | | - Andrea Pereira Regner
- Program of Postgraduation in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.
| | - Eliane Dallegrave
- Laboratory of Toxicology Research, The Federal University of Health Science of Porto Alegre (UFCSPA), Rio Grande do Sul, Brazil.
| |
Collapse
|
18
|
Semenovich DS, Plotnikov EY, Titko OV, Lukiyenko EP, Kanunnikova NP. Effects of Panthenol and N-Acetylcysteine on Changes in the Redox State of Brain Mitochondria under Oxidative Stress In Vitro. Antioxidants (Basel) 2021; 10:antiox10111699. [PMID: 34829571 PMCID: PMC8614675 DOI: 10.3390/antiox10111699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
The glutathione system in the mitochondria of the brain plays an important role in maintaining the redox balance and thiol–disulfide homeostasis, whose violations are the important component of the biochemical shifts in neurodegenerative diseases. Mitochondrial dysfunction is known to be accompanied by the activation of free radical processes, changes in energy metabolism, and is involved in the induction of apoptotic signals. The formation of disulfide bonds is a leading factor in the folding and maintenance of the three-dimensional conformation of many specific proteins that selectively accumulate in brain structures during neurodegenerative pathology. In this study, we estimated brain mitochondria redox status and functioning during induction of oxidative damage in vitro. We have shown that the development of oxidative stress in vitro is accompanied by inhibition of energy metabolism in the brain mitochondria, a shift in the redox potential of the glutathione system to the oxidized side, and activation of S-glutathionylation of proteins. Moreover, we studied the effects of pantothenic acid derivatives—precursors of coenzyme A (CoA), primarily D-panthenol, that exhibit high neuroprotective activity in experimental models of neurodegeneration. Panthenol contributes to the significant restoration of the activity of enzymes of mitochondrial energy metabolism, normalization of the redox potential of the glutathione system, and a decrease in the level of S-glutathionylated proteins in brain mitochondria. The addition of succinate and glutathione precursor N-acetylcysteine enhances the protective effects of the drug.
Collapse
Affiliation(s)
- Dmitry S. Semenovich
- Institute of Biochemistry of Biologically Active Substances, NAS of Belarus, 230030 Grodno, Belarus; (O.V.T.); (E.P.L.); (N.P.K.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia;
- Correspondence: ; Tel.: +7-(925)-465-78-52
| | - Egor Yu. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia;
| | - Oksana V. Titko
- Institute of Biochemistry of Biologically Active Substances, NAS of Belarus, 230030 Grodno, Belarus; (O.V.T.); (E.P.L.); (N.P.K.)
| | - Elena P. Lukiyenko
- Institute of Biochemistry of Biologically Active Substances, NAS of Belarus, 230030 Grodno, Belarus; (O.V.T.); (E.P.L.); (N.P.K.)
| | - Nina P. Kanunnikova
- Institute of Biochemistry of Biologically Active Substances, NAS of Belarus, 230030 Grodno, Belarus; (O.V.T.); (E.P.L.); (N.P.K.)
- Department of Technology, Physiology and Food Hygiene, State University of Grodno, 230030 Grodno, Belarus
| |
Collapse
|
19
|
Anti-Oxidative, Anti-Inflammatory and Anti-Apoptotic Effects of Flavonols: Targeting Nrf2, NF-κB and p53 Pathways in Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10101628. [PMID: 34679762 PMCID: PMC8533072 DOI: 10.3390/antiox10101628] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are one of the leading causes of disability and death worldwide. Intracellular transduction pathways that end in the activation of specific transcription factors are highly implicated in the onset and progression of pathological changes related to neurodegeneration, of which those related to oxidative stress (OS) and neuroinflammation are particularly important. Here, we provide a brief overview of the key concepts related to OS- and neuroinflammation-mediated neuropathological changes in neurodegeneration, together with the role of transcription factors nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB). This review is focused on the transcription factor p53 that coordinates the cellular response to diverse genotoxic stimuli, determining neuronal death or survival. As current pharmacological options in the treatment of neurodegenerative disease are only symptomatic, many research efforts are aimed at uncovering efficient disease-modifying agents. Natural polyphenolic compounds demonstrate powerful anti-oxidative, anti-inflammatory and anti-apoptotic effects, partially acting as modulators of signaling pathways. Herein, we review the current understanding of the therapeutic potential and limitations of flavonols in neuroprotection, with emphasis on their anti-oxidative, anti-inflammatory and anti-apoptotic effects along the Nrf2, NF-κB and p53 pathways. A better understanding of cellular and molecular mechanisms of their action may pave the way toward new treatments.
Collapse
|
20
|
Abstract
Significance: The molecular processes that determine Huntington's disease (HD) pathogenesis are not yet fully understood, and until now no effective neuroprotective therapeutic strategies have been developed. Mitochondria are one of most important organelles required for neuronal homeostasis, by providing metabolic pathways relevant for energy production, regulating calcium homeostasis, or controlling free radical generation and cell death. Because augmented reactive oxygen species (ROS) accompanied by mitochondrial dysfunction are relevant early HD mechanisms, targeting these cellular mechanisms may constitute relevant therapeutic approaches. Recent Advances: Previous findings point toward a close relationship between mitochondrial dysfunction and redox changes in HD. Mutant huntingtin (mHTT) can directly interact with mitochondrial proteins, as translocase of the inner membrane 23 (TIM23), disrupting mitochondrial proteostasis and favoring ROS production and HD progression. Furthermore, abnormal brain and muscle redox signaling contributes to altered proteostasis and motor impairment in HD, which can be improved with the mitochondria-targeted antioxidant mitoquinone or resveratrol, an SIRT1 activator that ameliorates mitochondrial biogenesis and function. Critical Issues: Various antioxidants and metabolic enhancers have been studied in HD; however, the real outcome of these molecules is still debatable. New compounds have proven to ameliorate mitochondrial and redox-based signaling pathways in early stages of HD, potentially precluding selective neurodegeneration. Future Directions: Unraveling the molecular etiology of deregulated mitochondrial function and dynamics, and oxidative stress opens new prospects for HD therapeutics. In this review, we explore the role of redox unbalance and mitochondrial dysfunction in HD progression, and further describe advances on clinical trials in HD based on mitochondrial and redox-based therapeutic strategies.
Collapse
Affiliation(s)
- Lígia Fão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Li HH, Bao LS, Deng SM, Liu L, Cheng J, Chen X, Pan YX, Zhang JS, Chu WY. Investigation of Proteus vulgaris and Elizabethkingia meningoseptica invasion on muscle oxidative stress and autophagy in Chinese soft-shelled turtle (Pelodiscus sinensis). Sci Rep 2021; 11:3657. [PMID: 33574492 PMCID: PMC7878920 DOI: 10.1038/s41598-021-83388-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 02/02/2021] [Indexed: 01/30/2023] Open
Abstract
Muscle is an important structural tissue in aquatic animals and it is susceptible to bacterial and fungal infection, which could affect flesh quality and health. In this study, Chinese soft-shelled turtles were artificially infected with two pathogens, Proteus vulgaris and Elizabethkingia meningoseptica and the effects on muscle nutritional characteristics, oxidative stress and autophagy were assayed. Upon infection, the muscle nutritional composition and muscle fiber structure were notably influenced. Meanwhile, the mRNA expression of Nrf2 was down-regulated and Keap1 up-regulated, thus resulting in a decrease in antioxidant capacity and oxidative stress. However, with N-acetylcysteine treatment, the level of oxidative stress was decreased, accompanied by significant increases in antioxidant enzyme activities and the mRNA levels of SOD, CAT, GSTCD, and GSTO1. Interestingly, there was a significant increase in autophagy in the muscle tissue after the pathogen infection, but this increase could be reduced by N-acetylcysteine treatment. Our findings suggest that muscle nutritional characteristics were dramatically changed after pathogen infection, and oxidative stress and autophagy were induced by pathogen infection. However, N-acetylcysteine treatment could compromise the process perhaps by decreasing the ROS level and regulating Nrf2-antioxidant signaling pathways.
Collapse
Affiliation(s)
- Hong-Hui Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, China
| | - Ling-Sheng Bao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | | | - Li Liu
- Hunan Fisheries Science Institute, Changsha, China
| | - Jia Cheng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xiao Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Ya-Xiong Pan
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jian-She Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China.
| | - Wu-Ying Chu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, College of Biological and Environmental Engineering, Changsha University, Changsha, China.
| |
Collapse
|
22
|
Tchantchou F, Miller C, Goodfellow M, Puche A, Fiskum G. Hypobaria-Induced Oxidative Stress Facilitates Homocysteine Transsulfuration and Promotes Glutathione Oxidation in Rats with Mild Traumatic Brain Injury. J Cent Nerv Syst Dis 2021; 13:1179573520988193. [PMID: 33597815 PMCID: PMC7863175 DOI: 10.1177/1179573520988193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/18/2020] [Indexed: 01/14/2023] Open
Abstract
Background: United States service members injured in combat theatre are often aeromedically evacuated within a few days to regional military hospitals. Animal and epidemiological research indicates that early exposure to flight hypobaria may worsen brain and other injuries. The mechanisms by which secondary exposure to hypobaria worsen trauma outcomes are not well elucidated. This study tested the hypothesis that hypobaria-induced oxidative stress and associated changes in homocysteine levels play a role in traumatic brain injury (TBI) pathological progression caused by hypobaria. Methods: Male Sprague Dawley rats were exposed to a 6 h hypobaria 24 h after mild TBI by the controlled cortical impact. Plasma and brain tissues were assessed for homocysteine levels, oxidative stress markers or glutathione metabolism, and behavioral deficits post-injury in the absence and presence of hypobaria exposure. Results: We found that hypobaria after TBI increased oxidative stress markers, altered homocysteine metabolism, and promoted glutathione oxidation. Increased glutathione metabolism was driven by differential upregulation of glutathione metabolizing genes. These changes correlated with increased anxiety-like behavior. Conclusion: These data provide evidence that hypobaria exposure after TBI increases oxidative stress and alters homocysteine elimination likely through enhanced glutathione metabolism. This pathway may represent a compensatory mechanism to attenuate free radical formation. Thus, hypobaria-induced enhancement of glutathione metabolism represents a potential therapeutic target for TBI management.
Collapse
Affiliation(s)
- Flaubert Tchantchou
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, USA
| | - Catriona Miller
- Aeromedical Research, U.S Air Force School of Aerospace Medicine, Wright-Patterson, OH, USA
| | - Molly Goodfellow
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, USA
| | - Adam Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, USA
| | - Gary Fiskum
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
23
|
Khodagholi F, Maleki A, Motamedi F, Mousavi MA, Rafiei S, Moslemi M. Oxytocin Prevents the Development of 3-NP-Induced Anxiety and Depression in Male and Female Rats: Possible Interaction of OXTR and mGluR2. Cell Mol Neurobiol 2020; 42:1105-1123. [PMID: 33201416 DOI: 10.1007/s10571-020-01003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/07/2020] [Indexed: 01/01/2023]
Abstract
Huntington disease (HD) is a progressive neurological disorder with dominant motor symptoms. It also has psychiatric manifestations, like anxiety and depression, that can emerge themselves before motor symptoms and impose a major burden on patients. Oxytocin (OXT) is a newly emerged treatment for disorders like autism and schizophrenia and recently is using to alleviate depression and anxiety. In the current study, we investigated the behavioral and molecular effects of OXT on the development of anxiety and depression in 3-nitropropionic acid (3-NP)-induced model of HD. Anxiety- and depression-like behaviors as well as the levels of oxytocin receptor (OXTR), metabotropic glutamate receptor (mGluR) 2, mGluR5, and glutathione (GSH) were measured in striatum, hippocampus, prefrontal cortex, and amygdala. Also, we questioned if sex had any modulatory effect. We found that 3-NP increased anxiety and depression compared to controls. It also reduced the levels of OXTR and mGluR2, increased mGluR5, and reduced GSH in studied brain regions. Pretreatment with OXT before the injection of 3-NP ameliorated anxiety and depression. Additionally, it protected the brain from developing low levels of OXTR, mGluR2, and GSH and high levels of mGluR5 in studied regions. The protective effects of OXT were similar between male and female animals. These data suggest that OXTR, mGluR2, mGluR5, and GSH may contribute to psychiatric manifestations of HD. In addition, pretreatment with OXT could prevent the mood changes in male and female rats.
Collapse
Affiliation(s)
- Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrbanoo Rafiei
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Moslemi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Khadka B, Lee JY, Park DH, Kim KT, Bae JS. The Role of Natural Compounds and their Nanocarriers in the Treatment of CNS Inflammation. Biomolecules 2020; 10:E1401. [PMID: 33019651 PMCID: PMC7601486 DOI: 10.3390/biom10101401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation, which is involved in various inflammatory cascades in nervous tissues, can result in persistent and chronic apoptotic neuronal cell death and programmed cell death, triggering various degenerative disorders of the central nervous system (CNS). The neuroprotective effects of natural compounds against neuroinflammation are mainly mediated by their antioxidant, anti-inflammatory, and antiapoptotic properties that specifically promote or inhibit various molecular signal transduction pathways. However, natural compounds have several limitations, such as their pharmacokinetic properties and stability, which hinder their clinical development and use as medicines. This review discusses the molecular mechanisms of neuroinflammation and degenerative diseases of CNS. In addition, it emphasizes potential natural compounds and their promising nanocarriers for overcoming their limitations in the treatment of neuroinflammation. Moreover, recent promising CNS inflammation-targeted nanocarrier systems implementing lesion site-specific active targeting strategies for CNS inflammation are also discussed.
Collapse
Affiliation(s)
- Bikram Khadka
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMR1, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
25
|
Soo SK, Rudich PD, Traa A, Harris-Gauthier N, Shields HJ, Van Raamsdonk JM. Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders. Mech Ageing Dev 2020; 190:111297. [PMID: 32610099 PMCID: PMC7484136 DOI: 10.1016/j.mad.2020.111297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
While aging is the greatest risk factor for the development of neurodegenerative disease, the role of aging in these diseases is poorly understood. In the inherited forms of these diseases, the disease-causing mutation is present from birth but symptoms appear decades later. This indicates that these mutations are well tolerated in younger individuals but not in older adults. Based on this observation, we hypothesized that changes taking place during normal aging make the cells in the brain (and elsewhere) susceptible to the disease-causing mutations. If so, then delaying some of these age-related changes may be beneficial in the treatment of neurodegenerative disease. In this review, we examine the effects of five compounds that have been shown to extend longevity (metformin, rapamycin, resveratrol, N-acetyl-l-cysteine, curcumin) in four of the most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis). While not all investigations observe a beneficial effect of these compounds, there are multiple studies that show a protective effect of each of these lifespan-extending compounds in animal models of neurodegenerative disease. Combined with genetic studies, this suggests the possibility that targeting the aging process may be an effective strategy to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Namasthée Harris-Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada; Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Reactive Species in Huntington Disease: Are They Really the Radicals You Want to Catch? Antioxidants (Basel) 2020; 9:antiox9070577. [PMID: 32630706 PMCID: PMC7401865 DOI: 10.3390/antiox9070577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative condition and one of the so-called rare or minority diseases, due to its low prevalence (affecting 1–10 of every 100,000 people in western countries). The causative gene, HTT, encodes huntingtin, a protein with a yet unknown function. Mutant huntingtin causes a range of phenotypes, including oxidative stress and the activation of microglia and astrocytes, which leads to chronic inflammation of the brain. Although substantial efforts have been made to find a cure for HD, there is currently no medical intervention able to stop or even delay progression of the disease. Among the many targets of therapeutic intervention, oxidative stress and inflammation have been extensively studied and some clinical trials have been promoted to target them. In the present work, we review the basic research on oxidative stress in HD and the strategies used to fight it. Many of the strategies to reduce the phenotypes associated with oxidative stress have produced positive results, yet no substantial functional recovery has been observed in animal models or patients with the disease. We discuss possible explanations for this and suggest potential ways to overcome it.
Collapse
|
27
|
Pathogenesis, Assessments, and Management of Chemotherapy-Related Cognitive Impairment (CRCI): An Updated Literature Review. JOURNAL OF ONCOLOGY 2020; 2020:3942439. [PMID: 32684930 PMCID: PMC7333028 DOI: 10.1155/2020/3942439] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/10/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
There are various cancer treatments at present, and chemotherapy is one of the main methods. Chemotherapy-related cognitive impairment (CRCI), as one of the side effects of chemotherapy, has gradually attracted the attention of more and more researchers. CRCI has been verified by subjective reports and objective neuropsychological tests so far. But oncologists' understanding of it and its treatments are still incomplete. In this review, we mainly give a comprehensive overview of the mechanism of CRCI, then describe a variety of evaluation methods, and finally summarize the treatment approaches under current medical conditions and compare it with an excellent article published in 2015 with the aim of providing directions for future research and better understanding of CRCI for clinicians.
Collapse
|
28
|
La Rosa P, Petrillo S, Bertini ES, Piemonte F. Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement. Biomolecules 2020; 10:biom10050702. [PMID: 32369911 PMCID: PMC7277112 DOI: 10.3390/biom10050702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
DNA repeat expansion disorders are a group of neuromuscular and neurodegenerative diseases that arise from the inheritance of long tracts of nucleotide repetitions, located in the regulatory region, introns, or inside the coding sequence of a gene. Although loss of protein expression and/or the gain of function of its transcribed mRNA or translated product represent the major pathogenic effect of these pathologies, mitochondrial dysfunction and imbalance in redox homeostasis are reported as common features in these disorders, deeply affecting their severity and progression. In this review, we examine the role that the redox imbalance plays in the pathological mechanisms of DNA expansion disorders and the recent advances on antioxidant treatments, particularly focusing on the expression and the activity of the transcription factor NRF2, the main cellular regulator of the antioxidant response.
Collapse
|
29
|
Subramaniam S. Exaggerated mitophagy: a weapon of striatal destruction in the brain? Biochem Soc Trans 2020; 48:709-717. [PMID: 32129826 PMCID: PMC7200642 DOI: 10.1042/bst20191283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
Mechanisms responsible for neuronal vulnerability in the brain remain unclear. Striatal neurons are preferentially damaged by 3-nitropropionic acid (3-NP), a mitochondrial complex-II inhibitor, causing striatal damage reminiscent of Huntington's disease (HD), but the mechanisms of the selectivity are not as well understood. We have discovered that Rhes, a protein enriched in the striatum, removes mitochondria via the mitophagy process. The process becomes intensified in the presence of 3-NP, thereby eliminating most of the mitochondria from the striatum. We put forward the hypothesis that Rhes acts as a 'mitophagy ligand' in the brain and promotes mitophagy via NIX, a mitophagy receptor. Since Rhes interacts and promotes toxicity in association with mutant huntingtin (mHTT), the genetic cause of HD, it is tempting to speculate on whether the exaggerated mitophagy may be a contributing factor to the striatal lesion found in HD. Thus, Rhes-mediated exaggerated mitophagy may act as a weapon of striatal destruction in the brain.
Collapse
Affiliation(s)
- Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, U.S.A
| |
Collapse
|
30
|
Sabetghadam M, Mazdeh M, Abolfathi P, Mohammadi Y, Mehrpooya M. Evidence for a Beneficial Effect of Oral N-acetylcysteine on Functional Outcomes and Inflammatory Biomarkers in Patients with Acute Ischemic Stroke. Neuropsychiatr Dis Treat 2020; 16:1265-1278. [PMID: 32547030 PMCID: PMC7244239 DOI: 10.2147/ndt.s241497] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/01/2020] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Numerous preclinical studies have demonstrated the potential neuroprotective effects of N-acetylcysteine (NAC) in the treatment of brain ischemia. Accordingly, the present study aimed to assess the potential therapeutic effects of oral NAC in patients with acute ischemic stroke. PATIENTS AND METHODS In a randomized, double-blind, placebo-controlled trial study, 68 patients with acute ischemic stroke with the onset of symptoms less than 24 hours were randomly assigned to either the NAC-treated group or placebo-treated group. NAC and matched placebo were administrated by a 72-hour oral protocol (initially 4 grams loading dose and after on, 4 g in 4 equal divided doses for more 2 days). The primary outcomes were quantification of any neurologic deficit by the use of the National Institute of Health Stroke Scale (NIHSS) score and functional disability by the use of the modified Rankin scale (mRS) at 90 days after stroke. Additionally, serum levels of markers of oxidative stress and inflammation as a main mechanism of its action were assessed at baseline and the end of 3-day treatment protocol. RESULTS NAC-treated patients in comparison with placebo-treated patients showed a significantly lower mean NIHSS scores at day 90 after stroke. A favorable functional outcome which was defined as an mRS score of 0 or 1, also in favor of NAC compared to placebo was noted on day 90 after stroke (57.6% in the NAC-treated group compared with 28.6% in the placebo-treated group). Further, compared to the placebo, NAC treatment significantly decreased serum levels of proinflammatory biomarkers such as interleukin 6 (IL-6), soluble intercellular cell adhesion molecule-1 (sICAM-1), nitric oxide (NO), malondialdehyde (MDA), and neuron-specific enolase (NSE) and significantly increased serum levels of anti-oxidant biomarkers such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and total thiol groups (TTG). CONCLUSION The pattern of results suggests that oral NAC administration early after an acute ischemic stroke is associated with a better outcome profile in terms of acute neurological deficit and disability grade compared to placebo. NAC may improve neurological outcomes of patients with stroke at least in part by its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Maryam Sabetghadam
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdokht Mazdeh
- Department of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parnaz Abolfathi
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
31
|
Calabrese EJ, Bhatia TN, Calabrese V, Dhawan G, Giordano J, Hanekamp YN, Kapoor R, Kozumbo WJ, Leak RK. Cytotoxicity models of Huntington’s disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies. Pharmacol Res 2019; 150:104371. [DOI: 10.1016/j.phrs.2019.104371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
|
32
|
Paul BD, Snyder SH. Impaired Redox Signaling in Huntington's Disease: Therapeutic Implications. Front Mol Neurosci 2019; 12:68. [PMID: 30941013 PMCID: PMC6433839 DOI: 10.3389/fnmol.2019.00068] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease triggered by expansion of polyglutamine repeats in the protein huntingtin. Mutant huntingtin (mHtt) aggregates and elicits toxicity by multiple mechanisms which range from dysregulated transcription to disturbances in several metabolic pathways in both the brain and peripheral tissues. Hallmarks of HD include elevated oxidative stress and imbalanced redox signaling. Disruption of antioxidant defense mechanisms, involving antioxidant molecules and enzymes involved in scavenging or reversing oxidative damage, have been linked to the pathophysiology of HD. In addition, mitochondrial function is compromised in HD leading to impaired bioenergetics and elevated production of free radicals in cells. However, the exact mechanisms linking redox imbalance to neurodegeneration are still elusive. This review will focus on the current understanding of aberrant redox homeostasis in HD and potential therapeutic interventions.
Collapse
Affiliation(s)
- Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
Essa MM, Moghadas M, Ba-Omar T, Walid Qoronfleh M, Guillemin GJ, Manivasagam T, Justin-Thenmozhi A, Ray B, Bhat A, Chidambaram SB, Fernandes AJ, Song BJ, Akbar M. Protective Effects of Antioxidants in Huntington’s Disease: an Extensive Review. Neurotox Res 2019; 35:739-774. [DOI: 10.1007/s12640-018-9989-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023]
|
34
|
Mi Y, Gao X, Xu H, Cui Y, Zhang Y, Gou X. The Emerging Roles of Ferroptosis in Huntington's Disease. Neuromolecular Med 2019; 21:110-119. [PMID: 30600476 DOI: 10.1007/s12017-018-8518-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant and fatal neurodegenerative disorder, which is caused by an abnormal CAG repeat in the huntingtin gene. Despite its well-defined genetic origin, the molecular mechanisms of neuronal death are unclear yet, thus there are no effective strategies to block or postpone the process of HD. Ferroptosis, a recently identified iron-dependent cell death, attracts considerable attention due to its putative involvement in neurodegenerative diseases. Accumulative data suggest that ferroptosis is very likely to participate in HD, and inhibition of the molecules and signaling pathways involved in ferroptosis can significantly eliminate the symptoms and pathology of HD. This review first describes evidence for the close relevance of ferroptosis and HD in patients and mouse models, then summarizes advances for the mechanisms of ferroptosis involved in HD, finally outlines some therapeutic strategies targeted ferroptosis. Comprehensive understanding of the emerging roles of ferroptosis in the occurrence of HD will help us to explore effective therapies for slowing the progression of this disease.
Collapse
Affiliation(s)
- Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Hao Xu
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yuanyuan Cui
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yuelin Zhang
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China.
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
35
|
Zhang H, Li Y, Chen Y, Zhang L, Wang T. N-Acetylcysteine protects against intrauterine growth retardation-induced intestinal injury via restoring redox status and mitochondrial function in neonatal piglets. Eur J Nutr 2018; 58:3335-3347. [PMID: 30535793 DOI: 10.1007/s00394-018-1878-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Intrauterine growth retardation (IUGR) is detrimental to the intestinal development of neonates, yet satisfactory treatment strategies remain limited. This study was, therefore, conducted using neonatal piglets as a model to investigate the potential of N-acetylcysteine (NAC) to alleviate intestinal damage caused by IUGR. METHODS Seven normal birth weight (NBW) and fourteen IUGR neonatal male piglets were selected and then fed a basal milk diet (NBW-CON and IUGR-CON groups) or a basal milk diet supplemented with 1.2 g NAC per kg of diet (IUGR-NAC group) from 7 to 21 days of age (n = 7). Parameters associated with the severity of intestinal injury, villus morphology and ultrastructural structure, redox status, and mitochondrial function were analyzed. RESULTS Compared with the NBW-CON piglets, the IUGR-CON piglets exhibited decreased villus height and greater numbers of apoptotic cells in jejunum, along with the increases in malondialdehyde and protein carbonyl concentrations and a decreased adenosine triphosphate (ATP) content. Treatment with NAC significantly increased jejunal superoxide dismutase activity, reduced glutathione: oxidized glutathione ratio, and the mRNA abundance of nuclear respiratory factor 2, heme oxygenase 1, and superoxide dismutase 2 in the IUGR-NAC piglets compared with the IUGR-CON piglets. In addition, NAC improved the efficiency of mitochondrial oxidative metabolism and ATP generation, ameliorated mitochondrial swelling, and inhibited the overproduction of mitochondrial superoxide anion in the jejunal mucosa. CONCLUSIONS Dietary supplementation of NAC shows promise for attenuating the early intestinal injury of young piglets with IUGR, probably through its antioxidant action to restore redox status and mitochondrial function.
Collapse
Affiliation(s)
- Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- Postdoctoral Research Station of Clinical Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, 200240, People's Republic of China
| | - Yue Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- Postdoctoral Research Station of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, People's Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1, Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
36
|
Pereira C, Chavarria V, Vian J, Ashton MM, Berk M, Marx W, Dean OM. Mitochondrial Agents for Bipolar Disorder. Int J Neuropsychopharmacol 2018; 21:550-569. [PMID: 29596661 PMCID: PMC6007750 DOI: 10.1093/ijnp/pyy018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Bipolar disorder is a chronic and often debilitating illness. Current treatment options (both pharmaco- and psychotherapy) have shown efficacy, but for many leave a shortfall in recovery. Advances in the understanding of the pathophysiology of bipolar disorder suggest that interventions that target mitochondrial dysfunction may provide a therapeutic benefit. Methods This review explores the current and growing theoretical rationale as well as existing preclinical and clinical data for those therapies aiming to target the mitochondrion in bipolar disorder. A Clinicaltrials.gov and ANZCTR search was conducted for complete and ongoing trials on mitochondrial agents used in psychiatric disorders. A PubMed search was also conducted for literature published between January 1981 and July 2017. Systematic reviews, randomized controlled trials, observational studies, case series, and animal studies with an emphasis on agents affecting mitochondrial function and its role in bipolar disorder were included. The search was augmented by manually searching the references of key papers and related literature. The results were presented as a narrative review. Results Mitochondrial agents offer new horizons in mood disorder treatment. While some negative effects have been reported, most compounds are overall well tolerated and have generally benign side-effect profiles. Conclusions The study of neuroinflammation, neurodegeneration, and mitochondrial function has contributed the understanding of bipolar disorder's pathophysiology. Agents targeting these pathways could be a potential therapeutic strategy. Future directions include identification of novel candidate mitochondrial modulators as well as rigorous and well-powered clinical trials.
Collapse
Affiliation(s)
- Círia Pereira
- Psychiatry and Mental Health Department, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | - João Vian
- Psychiatry and Mental Health Department, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Melanie Maree Ashton
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
- University of Melbourne, Department of Psychiatry, Royal Melbourne Hospital, Parkville, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
- University of Melbourne, Department of Psychiatry, Royal Melbourne Hospital, Parkville, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Wolfgang Marx
- Deakin University, Food & Mood Centre, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Olivia May Dean
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
- University of Melbourne, Department of Psychiatry, Royal Melbourne Hospital, Parkville, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
37
|
Saavedra A, García-Díaz Barriga G, Pérez-Navarro E, Alberch J. Huntington's disease: novel therapeutic perspectives hanging in the balance. Expert Opin Ther Targets 2018; 22:385-399. [PMID: 29671352 DOI: 10.1080/14728222.2018.1465930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Huntington's disease (HD), an autosomal dominant neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin gene, has long been characterized by the presence of motor symptoms due to the loss of striatal projection neurons. Cognitive dysfunction and neuropsychiatric symptoms are also present and they occur in the absence of cell death in most mouse models, pointing to neuronal dysfunction and abnormal synaptic plasticity as causative mechanisms. Areas covered: Here, we focus on those common mechanisms altered by the presence of mutant huntingtin affecting corticostriatal and hippocampal function as therapeutic targets that could prove beneficial to ameliorate both cognitive and motor function in HD. Specifically, we discuss the importance of reestablishing the balance in (1) synaptic/extrasynaptic N-methyl-D-aspartate receptor signaling, (2) mitochondrial dynamics/trafficking, (3) TrkB/p75NTR signaling, and (4) transcriptional activity. Expert opinion: Mutant huntingtin has a broad impact on multiple cellular processes, which makes it very challenging to design a curative therapeutic strategy. As we point out here, novel therapeutic interventions should look for multi-purpose drugs targeting common and early affected processes leading to corticostriatal and hippocampal dysfunction that additionally operate in a feedforward vicious cycle downstream the activation of extrasynaptic N-methyl-D-aspartate receptor.
Collapse
Affiliation(s)
- Ana Saavedra
- a Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències , Universitat de Barcelona , Barcelona , Spain.,b Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| | - Gerardo García-Díaz Barriga
- a Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències , Universitat de Barcelona , Barcelona , Spain.,b Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| | - Esther Pérez-Navarro
- a Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències , Universitat de Barcelona , Barcelona , Spain.,b Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| | - Jordi Alberch
- a Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències , Universitat de Barcelona , Barcelona , Spain.,b Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| |
Collapse
|
38
|
Dhanda S, Sunkaria A, Halder A, Sandhir R. Mitochondrial dysfunctions contribute to energy deficits in rodent model of hepatic encephalopathy. Metab Brain Dis 2018; 33:209-223. [PMID: 29138968 DOI: 10.1007/s11011-017-0136-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Perturbations in the cerebral energy metabolism are anticipated to be an important factor by which ammonia may exert its toxic effects on the central nervous system. The present study was designed to investigate the role of impaired mitochondrial functions and cerebral energy metabolism in the development hepatic encephalopathy (HE) induced by of bile duct ligation (BDL). After four weeks of BDL, a significant increase in hepatic hydroxyproline and collagen content was observed which confirmed biliary fibrosis. Brain regions viz. cortex, hippocampus, striatum and cerebellum of BDL rats had impaired activity of mitochondrial respiratory chain enzymes. This was accompanied by increase in mitochondrial reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl levels in the brain. Mitochondrial redox ratio was significantly reduced in the brain of BDL rats. In addition, mitochondria from brain of BDL rats were depolarized and swollen compared to the sham controls. Ultrastructure analysis of mitochondria from cortex and hippocampus of BDL animals revealed aberrant cristae, ruptured membranes and non-dense matrix. Further, a significant decrease was observed in creatine kinase activity, glucose uptake and CO2 production in the brain regions of BDL rats. ATP/ADP ratio, a critical parameter of cellular energy status, was also significantly reduced in brain regions of rats with HE. Overall, the findings clearly demonstrate that BDL induced HE involves mitochondrial respiratory chain dysfunctions, mitochondrial depolarization and swelling that accentuates oxidative stress which in turn leads to compromise in cerebral energy metabolism thereby contributing to the pathophysiology of chronic HE.
Collapse
Affiliation(s)
- Saurabh Dhanda
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Aditya Sunkaria
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Avishek Halder
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
39
|
Adjunctive N-acetylcysteine in depression: exploration of interleukin-6, C-reactive protein and brain-derived neurotrophic factor. Acta Neuropsychiatr 2017; 29:337-346. [PMID: 28318471 DOI: 10.1017/neu.2017.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to explore effects of adjunctive N-acetylcysteine (NAC) treatment on inflammatory and neurogenesis markers in unipolar depression. METHODS We embarked on a 12-week clinical trial of NAC (2000 mg/day compared with placebo) as an adjunctive treatment for unipolar depression. A follow-up visit was conducted 4 weeks following the completion of treatment. We collected serum samples at baseline and the end of the treatment phase (week 12) to determine changes in interleukin-6 (IL6), C-reactive protein (CRP) and brain-derived neurotrophic factor (BDNF) following NAC treatment. RESULTS NAC treatment significantly improved depressive symptoms on the Montgomery-Asberg Depression Rating Scale (MADRS) over 16 weeks of the trial. Serum levels of IL6 were associated with reductions of MADRS scores independent of treatment response. However, we found no significant changes in IL6, CRP and BDNF levels following NAC treatment. CONCLUSION Overall, this suggests that our results failed to support the hypothesis that IL6, CRP and BDNF are directly involved in the therapeutic mechanism of NAC in depression. IL6 may be a useful marker for future exploration of treatment response.
Collapse
|
40
|
Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, Marriott A, Moore EM, Morris G, Page RS, Gray L. Post-Operative Cognitive Dysfunction: An exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev 2017; 84:116-133. [PMID: 29180259 DOI: 10.1016/j.neubiorev.2017.11.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Post-Operative Cognitive Dysfunction (POCD) is a highly prevalent condition with significant clinical, social and financial impacts for patients and their communities. The underlying pathophysiology is becoming increasingly understood, with the role of neuroinflammation and oxidative stress secondary to surgery and anaesthesia strongly implicated. This review aims to describe the putative mechanisms by which surgery-induced inflammation produces cognitive sequelae, with a focus on identifying potential novel therapies based upon their ability to modify these pathways.
Collapse
Affiliation(s)
- David R Skvarc
- School of Psychology, Deakin University, Melbourne, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Linda K Byrne
- School of Psychology, Deakin University, Melbourne, Australia.
| | - Olivia M Dean
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Seetal Dodd
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia
| | - Matthew Lewis
- School of Psychology, Deakin University, Melbourne, Australia; Aged Psychiatry Service, Caulfield Hospital, Alfred Health, Caulfield, Australia
| | - Andrew Marriott
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Eileen M Moore
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia
| | | | - Richard S Page
- Deakin University, School of Medicine, Geelong, Australia; Department of Orthopaedics, Barwon Health, Geelong, Australia
| | - Laura Gray
- Deakin University, School of Medicine, Geelong, Australia.
| |
Collapse
|
41
|
Streck EL, De Prá SDT, Ferro PR, Carvalho-Silva M, Gomes LM, Agostini JF, Damiani A, Andrade VM, Schuck PF, Ferreira GC, Scaini G. Role of antioxidant treatment on DNA and lipid damage in the brain of rats subjected to a chemically induced chronic model of tyrosinemia type II. Mol Cell Biochem 2017; 435:207-214. [PMID: 28547180 DOI: 10.1007/s11010-017-3070-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/13/2017] [Indexed: 11/28/2022]
Abstract
Tyrosine levels are abnormally elevated in tissues and body fluids of patients with inborn errors of tyrosine metabolism. Tyrosinemia type II, which is caused by tyrosine aminotransferase deficiency, provokes eyes, skin, and central nervous system disturbances in affected patients. However, the mechanisms of brain damage are still poorly known. Considering that studies have demonstrated that oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia, in the present study we investigated the effects of antioxidant treatment (NAC and DFX) on DNA damage and oxidative stress markers induced by chronic administration of L-tyrosine in cerebral cortex, hippocampus, and striatum of rats. The results showed elevated levels of DNA migration, and thus DNA damage, after chronic administration of L-tyrosine in all the analyzed brain areas, and that the antioxidant treatment was able to prevent DNA damage in cerebral cortex and hippocampus. However, the co-administration of NAC plus DFX did not prevent the DNA damage in the striatum. Moreover, we found a significant increase in thiobarbituric acid-reactive substances (TBA-RS) and DCFH oxidation in cerebral cortex, as well as an increase in nitrate/nitrite levels in the hippocampus and striatum. Additionally, the antioxidant treatment was able to prevent the increase in TBA-RS levels and in nitrate/nitrite levels, but not the DCFH oxidation. In conclusion, our findings suggest that reactive oxygen and nitrogen species and oxidative stress can play a role in DNA damage in this disorder. Moreover, NAC/DFX supplementation to tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the current treatment of this disease.
Collapse
Affiliation(s)
- Emilio L Streck
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil. .,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| | - Samira D T De Prá
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Paula Ronsani Ferro
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Lara M Gomes
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Jotele F Agostini
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Adriani Damiani
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| |
Collapse
|
42
|
Skvarc DR, Dean OM, Byrne LK, Gray L, Lane S, Lewis M, Fernandes BS, Berk M, Marriott A. The effect of N-acetylcysteine (NAC) on human cognition - A systematic review. Neurosci Biobehav Rev 2017; 78:44-56. [PMID: 28438466 DOI: 10.1016/j.neubiorev.2017.04.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/15/2022]
Abstract
Oxidative stress, neuroinflammation and neurogenesis are commonly implicated as cognitive modulators across a range of disorders. N-acetylcysteine (NAC) is a glutathione precursor with potent antioxidant, pro-neurogenesis and anti-inflammatory properties and a favourable safety profile. A systematic review of the literature specifically examining the effect of NAC administration on human cognition revealed twelve suitable articles for inclusion: four examining Alzheimer's disease; three examining healthy participants; two examining physical trauma; one examining bipolar disorder, one examining schizophrenia, and one examining ketamine-induced psychosis. Heterogeneity of studies, insufficiently powered studies, infrequency of cognition as a primary outcome, heterogeneous methodologies, formulations, co-administered treatments, administration regimes, and assessment confounded the drawing of firm conclusions. The available data suggested statistically significant cognitive improvements following NAC treatment, though the paucity of NAC-specific research makes it difficult to determine if this effect is meaningful. While NAC may have a positive cognitive effect in a variety of contexts; larger, targeted studies are warranted, specifically evaluating its role in other clinical disorders with cognitive sequelae resulting from oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- David R Skvarc
- School of Psychology, Deakin University, Melbourne, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia
| | - Olivia M Dean
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Australia
| | - Linda K Byrne
- School of Psychology, Deakin University, Melbourne, Australia
| | - Laura Gray
- Deakin University, School of Medicine, Geelong, Australia
| | - Stephen Lane
- Deakin University, School of Medicine, Geelong, Australia; Biostatistics Unit, Barwon Health, Geelong, Australia
| | - Matthew Lewis
- School of Psychology, Deakin University, Melbourne, Australia; Aged Psychiatry Service, Caulfield Hospital, Alfred Health, Caulfield, Australia
| | - Brisa S Fernandes
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Michael Berk
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, Australia
| | - Andrew Marriott
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia.
| |
Collapse
|
43
|
Stavrovskaya AV, Voronkov DN, Yamshchikova NG, Ol’shanskiy AS, Khudoerkov RM, Illarioshkin SN. Experience of experimental modelling of Huntington’s disease. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s0362119716080120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Yin L, Dai Y, Cui Z, Jiang X, Liu W, Han F, Lin A, Cao J, Liu J. The regulation of cellular apoptosis by the ROS-triggered PERK/EIF2α/chop pathway plays a vital role in bisphenol A-induced male reproductive toxicity. Toxicol Appl Pharmacol 2017; 314:98-108. [DOI: 10.1016/j.taap.2016.11.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
45
|
Lomeli N, Di K, Czerniawski J, Guzowski JF, Bota DA. Cisplatin-induced mitochondrial dysfunction is associated with impaired cognitive function in rats. Free Radic Biol Med 2017; 102:274-286. [PMID: 27908784 PMCID: PMC5308450 DOI: 10.1016/j.freeradbiomed.2016.11.046] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 02/08/2023]
Abstract
PURPOSE Chemotherapy-related cognitive impairment (CRCI) is commonly reported following the administration of chemotherapeutic agents and comprises a wide variety of neurological problems. No effective treatments for CRCI are currently available. Here we examined the mechanisms involving cisplatin-induced hippocampal damage following cisplatin administration in a rat model and in cultured rat hippocampal neurons and neural stem/progenitor cells (NSCs). We also assessed the protective effects of the antioxidant, N-acetylcysteine in mitigating these damages. EXPERIMENTAL DESIGN Adult male rats received 6mg/kg cisplatin in the acute studies. In chronic studies, rats received 5mg/kg cisplatin or saline injections once per week for 4 weeks. N-acetylcysteine (250mg/kg/day) or saline was administered for five consecutive days during cisplatin treatment. Cognitive testing was performed 5 weeks after treatment cessation. Cisplatin-treated cultured hippocampal neurons and NSCs were examined for changes in mitochondrial function, oxidative stress production, caspase-9 activation, and neuronal dendritic spine density. RESULTS Acute cisplatin treatment reduced dendritic branching and spine density, and induced mitochondrial degradation. Rats receiving the chronic cisplatin regimen showed impaired performance in contextual fear conditioning, context object discrimination, and novel object recognition tasks compared to controls. Cisplatin induced mitochondrial DNA damage, impaired respiratory activity, increased oxidative stress, and activated caspase-9 in cultured hippocampal neurons and NSCs. N-acetylcysteine treatment prevented free radical production, ameliorated apoptotic cellular death and dendritic spine loss, and partially reversed the cisplatin-induced cognitive impairments. CONCLUSIONS Our results suggest that mitochondrial dysfunction and increased oxidative stress are involved in cisplatin-induced cognitive impairments. Therapeutic agents, such as N-acetylcysteine, may be effective in mitigating the deleterious effects of cisplatin.
Collapse
Affiliation(s)
- Naomi Lomeli
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
| | - Kaijun Di
- Department of Neurological Surgery, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| | - Jennifer Czerniawski
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA; Center for the Neurobiology of Learning & Memory, University of California Irvine, Irvine, CA, USA.
| | - John F Guzowski
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, USA; Center for the Neurobiology of Learning & Memory, University of California Irvine, Irvine, CA, USA.
| | - Daniela A Bota
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA; Department of Neurological Surgery, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA; Department of Neurology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
46
|
N-acetyl-l-cysteine Prevents Bile Duct Ligation Induced Renal Injury by Modulating Oxidative Stress. Indian J Clin Biochem 2016; 32:411-419. [PMID: 29062172 DOI: 10.1007/s12291-016-0627-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/17/2016] [Indexed: 01/26/2023]
Abstract
The aim of the present study was to evaluate the effect of N-acetyl-l-cysteine (NAC) on bile duct ligation (BDL) induced oxidative stress in kidneys. Male Wistar rats were randomly segregated into four groups; sham control (SC), SC + NAC, BDL and BDL + NAC group. Liver damage was induced following BDL and renal injury was assessed by kidney function tests along with lipid peroxidation, nitrite levels, thiols and antioxidant enzymes. Three weeks after BDL, rats developed renal dysfunction in terms of elevated serum creatinine levels. BDL animals exhibited an increase in lipid peroxidation, reduction in thiols and redox ratio in liver and kidney tissue along with altered antioxidant enzymes in kidneys. BDL animals that were orally administered NAC at a daily dose 100 mg/kg for duration of two weeks, showed significant reduction in serum creatinine levels. NAC was effective in lowering lipid peroxidation and was able to restore thiol levels along with GSH/GSSG ratio in both liver and kidneys along with the activity of antioxidant enzymes in the kidneys of BDL animals. The results clearly demonstrate the efficacy of NAC in attenuating oxidative stress in kidneys, suggesting a therapeutic role for NAC in individuals with renal dysfunction following BDL.
Collapse
|
47
|
Vidoni C, Castiglioni A, Seca C, Secomandi E, Melone MAB, Isidoro C. Dopamine exacerbates mutant Huntingtin toxicity via oxidative-mediated inhibition of autophagy in SH-SY5Y neuroblastoma cells: Beneficial effects of anti-oxidant therapeutics. Neurochem Int 2016; 101:132-143. [PMID: 27840125 DOI: 10.1016/j.neuint.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Neuronal cell death in Huntington's Disease (HD) is associated with the abnormal expansions of a polyglutamine (polyQ) tract in the huntingtin protein (Htt) at the N-terminus that causes the misfolding and aggregation of the mutated protein (mHtt). Autophagy-lysosomal degradation of Htt aggregates may protect the neurons in HD. HD patients eventually manifest parkinsonian-like symptoms, which underlie defects in the dopaminergic system. We hypothesized that dopamine (DA) exacerbates the toxicity in affected neurons by over-inducing an oxidative stress that negatively impinges on the autophagy clearance of mHtt and thus precipitating neuronal cell death. Here we show that the hyper-expression of mutant (>113/150) polyQ Htt is per se toxic to dopaminergic human neuroblastoma SH-SY5Y cells, and that DA exacerbates this toxicity leading to apoptosis and secondary necrosis. DA toxicity is mediated by ROS production (mainly anion superoxide) that elicits a block in the formation of autophagosomes. We found that the pre-incubation with N-Acetyl-l-Cysteine (a quinone reductase inducer) or Deferoxamine (an iron chelator) prevents the generation of ROS, restores the autophagy degradation of mHtt and preserves the cell viability in SH-SY5Y cells expressing the polyQ Htt and exposed to DA. The present findings suggest that DA-induced impairment of autophagy underlies the parkinsonism in HD patients. Our data provide a mechanistic explanation of the DA toxicity in dopaminergic neurons expressing the mHtt and support the use of anti-oxidative stress therapeutics to restore protective autophagy in order to slow down the neurodegeneration in HD patients.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Castiglioni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Christian Seca
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Mariarosa A B Melone
- 2° Division of Neurology, Department of Medical Surgical, Neurological, Metabolic Sciences, and Aging, Second University of Naples, Naples, Italy; InterUniversity Center for Research in Neurosciences, Second University of Naples, Naples, Italy.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; InterUniversity Center for Research in Neurosciences, Second University of Naples, Naples, Italy.
| |
Collapse
|
48
|
Shinomol GK, Ranganayaki S, Joshi AK, Gayathri N, Gowda H, Muralidhara, Srinivas Bharath MM. Characterization of age-dependent changes in the striatum: Response to the mitochondrial toxin 3-nitropropionic acid. Mech Ageing Dev 2016; 161:66-82. [PMID: 27143313 DOI: 10.1016/j.mad.2016.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/10/2016] [Accepted: 04/23/2016] [Indexed: 11/26/2022]
Abstract
Neurodegenerative phenomena are associated with mitochondrial dysfunction and this could be exacerbated by aging. Age-dependence of mitochondrial response to toxins could help understand these mechanisms and evolve novel therapeutics. 3-Nitropropionic acid (3-NPA) is a mitochondrial toxin that induces neurotoxicity in the striatum via inhibition of complex II. We investigated the age-related events that contribute to 3-NPA toxicity. 3-NPA induced neuronal death, oxidative stress and altered mitochondrial structure in neuronal cells. 3-NPA injection in vivo caused motor impairment, mitochondrial dysfunction and oxidative damage with different trend in young and adult mice. To understand the age-dependent mechanisms, we carried out proteomic analysis of the striatal protein extract from young mice (control: YC vs. 3-NPA treated: YT) and adult mice (control: AC vs. 3-NPA treated: AT). Among the 3752 identified proteins, 33 differentially expressed proteins (mitochondrial, synaptic and microsomal proteins) were unique either to YT or AT. Interestingly, comparison of the proteomic profile in AC and YC indicated that 161 proteins (linked with cytoskeletal structure, neuronal development, axogenesis, protein transport, cell adhesion and synaptic function) were down-regulated in AC compared to YC. We surmise that aging contributes to the cellular and molecular architecture in the mouse striatum with implications for neurodegeneration.
Collapse
Affiliation(s)
- G K Shinomol
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India; Neurotoxicology laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India
| | - S Ranganayaki
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India; Neurotoxicology laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India
| | - Apurva K Joshi
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India; Neurotoxicology laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India
| | - N Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India
| | - Harsha Gowda
- Institute of Bioinformatics (IOB), Discoverer, Industrial Technology Park Limited (ITPL), Whitefield, Bangalore 560066, Karnataka, India
| | - Muralidhara
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | - M M Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India; Neurotoxicology laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, 2900, Hosur Road, Bangalore 560029, Karnataka, India.
| |
Collapse
|
49
|
Affiliation(s)
- Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Faculty of Health, Geelong, VIC, Australia Orygen, The National Centre of Excellence in Youth Mental Health and the Centre for Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Abstract
BACKGROUND Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by hyperkinetic movements, psychiatric (e.g. depression and psychosis) and cognitive symptoms (frontal lobe dementia). In Germany approximately 8000 patients suffer from HD. OBJECTIVES The paper reviews the clinical course, epidemiology, genetics, differential diagnoses, pathophysiology, symptomatics and causal treatment options. METHODS Publications on animal and human HD studies and trials and reviews available in Medline have been taken into account. RESULTS Only genetic testing allows diagnostic certainty. The CAG repeat length influences age of onset, disease course and life expectancy. The mechanism by which mutant huntingtin protein (mHTT) causes HD is complex and poorly understood but leads to cell death, in particular in striatal neurons. In clinical trials antioxidants (e.g. coenzyme Q10), selisistat, PBT2, cysteamine, N-methyl-D-aspartate (NMDA)-receptor antagonists and tyrosine kinase B receptor agonists have been studied in HD. CONCLUSION No disease-modifying therapy is currently available for HD; however, gene silencing, e.g. through RNA interference, is a promising technique which could lead to effective therapies in due course.
Collapse
Affiliation(s)
- J D Rollnik
- Institut für neurorehabilitative Forschung (InFo) der BDH-Klinik Hessisch Oldendorf gGmbH, Assoziiertes Institut der Medizinischen Hochschule Hannover (MHH), Greitstr. 18-28, 31840, Hessisch Oldendorf, Deutschland,
| |
Collapse
|