1
|
Arantes AB, Rosa RT, de Oliveira NS, Bianchini LF, Rached RN, Johann ACBR, Weber SH, Murakami FS, Maluf DF, Rosa EAR. Facial disbiosis and UV filters. Arch Dermatol Res 2024; 316:739. [PMID: 39499337 DOI: 10.1007/s00403-024-03501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Acne is a multifactorial inflammatory disease with a robust microbial component and numerous correlations with dysbiosis states. Furthermore, various factors are recognized as triggers for skin dysbiosis, including the use of certain cosmetics. Based on these arguments, we hypothesized that using photoprotective formulations could trigger dysbiosis and the occurrence of acne manifestations. To verify this assumption, six volunteers between 19 and 23 years of age, meeting all the inclusion criteria, received two applications a day of a non-commercial sunscreen formulation developed with the sun filters ethylhexyl methoxycinnamate, ethylhexyl salicylate, methyl anthranilate, and octocrylene dispersed in a base gel, with an estimated protection factor of 28.8. The pure base gel was used as a control. The samples were applied to an area delimited by a standard template (15 cm2) in an amount corresponding to 30 mg (2 mg cm2) for ten days. At two points in time, pre- and post-sample applications, the facial skin surface was swabbed to collect extracted DNA and processed to verify divergent degrees of 16 S RNA coding sequences. The data obtained allowed us to determine the abundance of different bacterial entities at the genus and species levels. The results showed that critical species of the acne process, such as Cutibacterium acnes and Staphylococcus epidermidis, seem to tolerate the evaluated formulation well and are not significantly affected by the formulation, suggesting no interference of its use concerning dysbiosis induction. These findings refute the idea that photoprotectors may cause skin dysbiosis in men.
Collapse
Affiliation(s)
- Angela Bonjorno Arantes
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Rosimeire Takaki Rosa
- School of Medicine and Life Sciences. Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Nicoly Subtil de Oliveira
- School of Medicine and Life Sciences, Graduate Program on Animal Science, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Luiz Fernando Bianchini
- School of Medicine and Life Sciences. Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Rodrigo Nunes Rached
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Aline Cristina Batista Rodrigues Johann
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Saulo Henrique Weber
- School of Medicine and Life Sciences, Graduate Program on Animal Science, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil
| | - Fábio Seigi Murakami
- Faculty of Pharmacy. Graduate Program on Pharmaceutical Sciences, Federal University of Paraná, 652 Prof. Lothario Meissner Av. Zip 80210-170, Curitiba, Brazil
| | - Daniela Florencio Maluf
- Faculty of Pharmacy. Graduate Program on Pharmaceutical Sciences, Federal University of Paraná, 652 Prof. Lothario Meissner Av. Zip 80210-170, Curitiba, Brazil
| | - Edvaldo Antonio Ribeiro Rosa
- School of Medicine and Life Sciences, Graduate Program on Dentistry, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil.
- School of Medicine and Life Sciences. Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil.
- School of Medicine and Life Sciences, Graduate Program on Animal Science, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição St. Zip, Curitiba, 80215-901, Brazil.
| |
Collapse
|
2
|
De Lucas R, Martínez H, Nieto C, Ruiz-Alonso C, Bermejo R, Carrón N, Garcia-Segura S, Gonzalez-Torres P, Palacios-Martínez D, Guerra-Tapia A, Bou L, Pérez M. New clinical approach in facial mild-moderate acne: Re-stabilization of skin microbiota balance with a topical biotechnological phytocomplex. J Cosmet Dermatol 2024; 23:3616-3627. [PMID: 39205505 DOI: 10.1111/jocd.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Dysbiosis of the skin microbiota has been identified as a key factor in the development of acne. This study was aimed to evaluate the effect of a facial cream gel containing a biotechnological phytocomplex, niacinamide and succinic acid on the bacterial diversity of subjects with mild-moderate acne and its clinical benefits due to microbiota changes. METHODS Open-label, clinical study in 44 subjects with mild-moderate acne treated with a facial cream gel for 8 weeks. Bacterial diversity was analyzed by 16S rRNA gene sequencing of skin samples. Clinical effects were evaluated using the IGA acne severity scale, biometric measurements, and safety. RESULTS After 56 days of product's use, an increase in alpha and beta diversity was found (p < 0.01), with a decrease in the relative abundance of C. acnes (48.99% vs. 38.83%, p < 0.001). Regarding clinical results, a decrease in acne severity on the IGA scale (27.33%, p < 0.001), number of non-inflammatory and inflammatory lesions (respectively: 31.12%, p = 0.05; 47.27%, p < 0.001), amount of sebum (89.00%, p < 0.01) and erythema (15.35%, p < 0.01), was found. [Correction added on 19 September 2024, after first online publication: In the preceding sentence, "42.27%" has been changed to "47.27%" in this version.] Responder analysis of the IGA score showed that 61.36% of patients improved by at least one point at day 56. The product was well tolerated throughout the study. CONCLUSIONS The use of the facial cream gel on skin was effective in rebalancing the microbiota, inhibiting biofilm formation and other virulence factors, reducing the number of mild-moderate acne lesions and sebum secretion, and consequently improving acne's severity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Aurora Guerra-Tapia
- Consulta Dermatólogas Guerra, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Lola Bou
- Consulta de Dermatología, Barcelona, Spain
| | - Montse Pérez
- Clínica Dermatológica de Moragas, Barcelona, Spain
| |
Collapse
|
3
|
Chekanov K, Danko D, Tlyachev T, Kiselev K, Hagens R, Georgievskaya A. State-of-the-Art in Skin Fluorescent Photography for Cosmetic and Skincare Research: From Molecular Spectra to AI Image Analysis. Life (Basel) 2024; 14:1271. [PMID: 39459571 PMCID: PMC11509763 DOI: 10.3390/life14101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Autofluorescence is a remarkable property of human skin. It can be excited by UV and observed in the dark using special detection systems. The method of fluorescence photography (FP) is an effective non-invasive tool for skin assessment. It involves image capturing by a camera the emission of light quanta from fluorophore molecules in the skin. It serves as a useful tool for cosmetic and skincare research, especially for the detection of pathological skin states, like acne, psoriasis, etc. To the best of our knowledge, there is currently no comprehensive review that fully describes the application and physical principles of FP over the past five years. The current review covers various aspects of the skin FP method from its biophysical basis and the main fluorescent molecules of the skin to its potential applications and the principles of FP recording and analysis. We pay particular attention to recently reported works on the automatic analysis of FP based on artificial intelligence (AI). Thus, we argue that FP is a rapidly evolving technology with a wide range of potential applications. We propose potential directions of the development of this method, including new AI algorithms for the analysis and expanding the range of applications.
Collapse
Affiliation(s)
- Konstantin Chekanov
- Haut.AI OÜ, Telliskivi 60a/8, 10412 Tallinn, Harjumaa, Estonia; (D.D.); (T.T.); (A.G.)
| | - Daniil Danko
- Haut.AI OÜ, Telliskivi 60a/8, 10412 Tallinn, Harjumaa, Estonia; (D.D.); (T.T.); (A.G.)
| | - Timur Tlyachev
- Haut.AI OÜ, Telliskivi 60a/8, 10412 Tallinn, Harjumaa, Estonia; (D.D.); (T.T.); (A.G.)
| | - Konstantin Kiselev
- Haut.AI OÜ, Telliskivi 60a/8, 10412 Tallinn, Harjumaa, Estonia; (D.D.); (T.T.); (A.G.)
| | - Ralf Hagens
- Beiersdorf AG, Beiersdorfstraße 1-9, 22529 Hamburg, Germany;
| | | |
Collapse
|
4
|
Wang Y, Shi YN, Xiang H, Shi YM. Exploring nature's battlefield: organismic interactions in the discovery of bioactive natural products. Nat Prod Rep 2024. [PMID: 39316448 DOI: 10.1039/d4np00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Covering: up to March 2024.Microbial natural products have historically been a cornerstone for the discovery of therapeutic agents. Advanced (meta)genome sequencing technologies have revealed that microbes harbor far greater biosynthetic capabilities than previously anticipated. However, despite the application of CRISPR/Cas-based gene editing and high-throughput technologies to activate silent biosynthetic gene clusters, the rapid identification of new natural products has not led to a proportional increase in the discovery rate of lead compounds or drugs. A crucial issue in this gap may be insufficient knowledge about the inherent biological and physiological functions of microbial natural products. Addressing this gap necessitates recognizing that the generation of functional natural products is deeply rooted in the interactions between the producing microbes and other (micro)organisms within their ecological contexts, an understanding that is essential for harnessing their potential therapeutic benefits. In this review, we highlight the discovery of functional microbial natural products from diverse niches, including those associated with humans, nematodes, insects, fungi, protozoa, plants, and marine animals. Many of these findings result from an organismic-interaction-guided strategy using multi-omic approaches. The current importance of this topic lies in its potential to advance drug discovery in an era marked by increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Yuyang Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yan-Ni Shi
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hao Xiang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Ming Shi
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Borrego-Ruiz A, Borrego JJ. Microbial Dysbiosis in the Skin Microbiome and Its Psychological Consequences. Microorganisms 2024; 12:1908. [PMID: 39338582 PMCID: PMC11433878 DOI: 10.3390/microorganisms12091908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The homeostasis of the skin microbiome can be disrupted by both extrinsic and intrinsic factors, leading to a state of dysbiosis. This imbalance has been observed at the onset of persistent skin diseases that are closely linked to mental health conditions like anxiety and depression. This narrative review explores recent findings on the relationship between the skin microbiome and the pathophysiology of specific skin disorders, including acne vulgaris, atopic dermatitis, psoriasis, and wound infections. Additionally, it examines the psychological impact of these skin disorders, emphasizing their effect on patients' quality of life and their association with significant psychological consequences, such as anxiety, depression, stress, and suicidal ideation in the most severe cases.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
6
|
Whitfield R, Tipton CD, Diaz N, Ancira J, Landry KS. Clinical Evaluation of Microbial Communities and Associated Biofilms with Breast Augmentation Failure. Microorganisms 2024; 12:1830. [PMID: 39338504 PMCID: PMC11434069 DOI: 10.3390/microorganisms12091830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
The incidence of breast implant illness (BII) and BII-related explant procedures has not decreased with current surgical and treatment techniques. It is speculated the main underlying cause of BII complications is the result of chronic, sub-clinical infections residing on and around the implant. The infection, and subsequent biofilm, produce antagonistic compounds that drive chronic inflammation and immune responses. In this study, the microbial communities in over 600 consecutive samples of infected explant capsules and tissues were identified via next-generation sequencing to identify any commonality between samples. The majority of the bacteria identified were Gram-positive, with Cutibacterium acnes and Staphylococcus epidermidis being the dominant organisms. No correlation between sample richness and implant filling was found. However, there was a significant correlation between sample richness and patient age. Due to the complex nature, breast augmentation failures may be better addressed from a holistic approach than one of limited scope.
Collapse
Affiliation(s)
| | - Craig D. Tipton
- RTL Genomics, MicroGen DX, Lubbock, TX 79424, USA (N.D.); (J.A.)
| | - Niccole Diaz
- RTL Genomics, MicroGen DX, Lubbock, TX 79424, USA (N.D.); (J.A.)
| | - Jacob Ancira
- RTL Genomics, MicroGen DX, Lubbock, TX 79424, USA (N.D.); (J.A.)
| | - Kyle S. Landry
- Department of Health and Rehabilitation Sciences, Boston University, Boston, MA 02215, USA
- Delavie Sciences LLC, Worcester, MA 01606, USA
| |
Collapse
|
7
|
Mim MF, Sikder MH, Chowdhury MZH, Bhuiyan AUA, Zinan N, Islam SMN. The dynamic relationship between skin microbiomes and personal care products: A comprehensive review. Heliyon 2024; 10:e34549. [PMID: 39104505 PMCID: PMC11298934 DOI: 10.1016/j.heliyon.2024.e34549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Healthy skin reflects a healthy microbiome and vice versa. The contemporary society, marked by a sharp increase in skin irritation cases, has compelled researchers, dermatologists, and the cosmetics industry to investigate the correlation between skin microbiomes and the use of skincare products. Different cosmetics can change skin's normal flora to a varying degree -some changes can be detrimental, there are also instances where these alterations aid in restoring the skin microbiome. Previous studies using artificial skin models, metagenomic analysis, and culture-based approaches have suggested that skincare products play an important role in skin microbial alteration. This article assessed current knowledge on microbial shifts from daily use of various personal and skincare products. We have also introduced a readily applicable framework, synthesized from various observations, which can be employed to identify the normal skin microbiome and evaluate the impact of personal care and skincare products on it. We also discussed how lifestyle choice remake skin microbial makeup. Future studies are warranted to examine the effect of personal and skincare product usage on skin microbiome across various age groups, genders, and body sites with a multi-study approach.
Collapse
Affiliation(s)
- Mahjabin Ferdaous Mim
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Zahid Hasan Chowdhury
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Ashkar-Ul-Alam Bhuiyan
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Nayeematul Zinan
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Shah Mohammad Naimul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| |
Collapse
|
8
|
Guerra‐Tapia A, Martínez H, Nieto C, Ruiz Alonso C, Bermejo R, Carrón N, Garcia‐Segura S, Gonzalez‐Torres P, Palacios‐Martínez D, Bou L, Pérez M, De Lucas R. A new topical biotechnological phytocomplex for truncal mild-moderate acne restores skin microbiota balance. Skin Res Technol 2024; 30:e13806. [PMID: 39044362 PMCID: PMC11266433 DOI: 10.1111/srt.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND The disruption of the microbial community or dysbiosis alters the functional composition, metabolic activity, and local distribution of the microbiota leading the development of acne. The aim of this study is to evaluate the effect of a lotion containing a biotechnological phytocomplex, niacinamide, and succinic acid in the bacterial diversity of subjects with truncal mild-moderate acne and its clinical benefits due to microbiota changes. MATERIALS AND METHODS Open, clinical study in 43 subjects with truncal mild-moderate acne treated with a lotion for 8 weeks. Bacterial diversity was analyzed by 16S rRNA gene sequencing of skin samples. Clinical effects were evaluated through IGA acne severity scale, biometric measurements, and safety. RESULTS After 56 days of product's use, an increase in richness alpha diversity was found (p = 0.005), with a decrease in Cutibacterium acnes relative abundance (66.43% vs. 58.11%, p = 0.009). The clinical results showed a decrease in IGA score (27.59% decrease; p = 0.001), the inflammatory lesions (52.12% decrease, p = 0.006) and erythema (18.33% decrease, p = 0.007), and desquamation index (63.83% decrease, p = 0.02). The responder analysis of the IGA score showed that 60.47% of patients improved by at least one point at day 56. The product was well tolerated along the study. CONCLUSION The use of the lotion on acneic skin was effective on rebalancing the microbiota, inhibiting biofilm formation and other virulence factors, reducing erythema and desquamation, and improving acne's severity.
Collapse
Affiliation(s)
- Aurora Guerra‐Tapia
- Universidad Complutense de Madrid (UCM)Consulta Dermatólogas GuerraMadridSpain
| | | | - Carlos Nieto
- Laboratorio Reig Jofre S.ASant Joan DespiBarcelonaSpain
| | | | | | | | | | | | | | - Lola Bou
- Consulta de DermatologíaBarcelonaSpain
| | | | | |
Collapse
|
9
|
Li Y, Chen H, Xie X, Pang R, Huang S, Ying H, Chen M, Xue L, Zhang J, Ding Y, Wu Q. Skin microbiome profiling reveals the crucial role of microbial metabolites in anti-photoaging. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12987. [PMID: 38968385 DOI: 10.1111/phpp.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Skin microbiota is essential for health maintenance. Photoaging is the primary environmental factor that affects skin homeostasis, but whether it influences the skin microbiota remains unclear. OBJECTIVE The objective of this study is to investigate the relationship between photoaging and skin microbiome. METHODS A cohort of senior bus drivers was considered as a long-term unilateral ultraviolet (UV) irradiated population. 16S rRNA amplicon sequencing was conducted to assess skin microbial composition variations on different sides of their faces. The microbiome characteristics of the photoaged population were further examined by photoaging guinea pig models, and the correlations between microbial metabolites and aging-related cytokines were analyzed by high-throughput sequencing and reverse transcription polymerase chain reaction. RESULTS Photoaging decreased the relative abundance of microorganisms including Georgenia and Thermobifida in human skin and downregulated the generation of skin microbe-derived antioxidative metabolites such as ectoin. In animal models, Lactobacillus and Streptobacillus abundance in both the epidermis and dermis dropped after UV irradiation, resulting in low levels of skin antioxidative molecules and leading to elevated expressions of the collagen degradation factors matrix metalloproteinase (MMP)-1 and MMP-2 and inflammatory factors such as interleukin (IL)-1β and IL-6. CONCLUSIONS Skin microbial characteristics have an impact in photoaging and the loss of microbe-derived antioxidative metabolites impairs skin cells and accelerates the aging process. Therefore, microbiome-based therapeutics may have potential in delaying skin aging.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhen Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shixuan Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hang Ying
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Lousada MB, Edelkamp J, Lachnit T, Fehrholz M, Pastar I, Jimenez F, Erdmann H, Bosch TCG, Paus R. Spatial Distribution and Functional Impact of Human Scalp Hair Follicle Microbiota. J Invest Dermatol 2024; 144:1353-1367.e15. [PMID: 38070726 DOI: 10.1016/j.jid.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 02/26/2024]
Abstract
Human hair follicles (HFs) constitute a unique microbiota habitat that differs substantially from the skin surface. Traditional HF sampling methods fail to eliminate skin microbiota contaminants or assess the HF microbiota incompletely, and microbiota functions in human HF physiology remain ill explored. Therefore, we used laser-capture microdissection, metagenomic shotgun sequencing, and FISH to characterize the human scalp HF microbiota in defined anatomical compartments. This revealed significant compartment-, tissue lineage-, and donor age-dependent variations in microbiota composition. Greatest abundance variations between HF compartments were observed for viruses, archaea, Staphylococcus epidermidis, Cutibacterium acnes, and Malassezia restricta, with the latter 2 being the most abundant viable HF colonizers (as tested by propidium monoazide assay) and, surprisingly, most abundant in the HF mesenchyme. Transfection of organ-cultured human scalp HFs with S. epidermidis-specific lytic bacteriophages ex vivo downregulated transcription of genes known to regulate HF growth and development, metabolism, and melanogenesis, suggesting that selected microbial products may modulate HF functions. Indeed, HF treatment with butyrate, a metabolite of S. epidermidis and other HF microbiota, delayed catagen and promoted autophagy, mitochondrial activity, and gp100 and dermcidin expression ex vivo. Thus, human HF microbiota show spatial variations in abundance and modulate the physiology of their host, which invites therapeutic targeting.
Collapse
Affiliation(s)
- Marta B Lousada
- Monasterium Laboratory, Münster, Germany; Zoological Institute, Christian Albrechts University in Kiel, Kiel, Germany
| | | | - Tim Lachnit
- Zoological Institute, Christian Albrechts University in Kiel, Kiel, Germany
| | | | - Irena Pastar
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Francisco Jimenez
- Mediteknia Skin & Hair Lab, Las Palmas de Gran Canaria, Spain; Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | | | - Thomas C G Bosch
- Zoological Institute, Christian Albrechts University in Kiel, Kiel, Germany
| | - Ralf Paus
- Monasterium Laboratory, Münster, Germany; Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; CUTANEON, Hamburg, Germany.
| |
Collapse
|
11
|
Wilkinson C, Brooks J, Stander MA, Malgas R, Roodt-Wilding R, Makunga NP. Metabolomic profiling of wild rooibos (Aspalathus linearis) ecotypes and their antioxidant-derived phytopharmaceutical potential. Metabolomics 2024; 20:45. [PMID: 38615312 PMCID: PMC11016507 DOI: 10.1007/s11306-024-02103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/16/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION Aspalathus linearis (commonly known as rooibos) is endemic to the Cape Floristic Region of South Africa and is a popular herbal drink and skin phytotherapeutic ingredient, with health benefits derived primarily from its unique phenolic content. Several, seemingly habitat-specific ecotypes from the Cederberg (Western Cape) and Northern Cape have morphological, ecological, genetic and biochemical differences. OBJECTIVES AND METHODS Despite the commercial popularity of the cultivated variety, the uncultivated ecotypes are largely understudied. To address gaps in knowledge about the biochemical constituency, ultra-performance liquid chromatography-mass spectrometry analysis of fifteen populations was performed, enabling high-throughput metabolomic fingerprinting of 50% (v/v) methanolic extracts. Antioxidant screening of selected populations was performed via three assays and antimicrobial activity on two microbial species was assessed. The metabolomic results were corroborated with total phenolic and flavonoid screening of the extracts. RESULTS AND DISCUSSION Site-specific chemical lineages of rooibos ecotypes were confirmed via multivariate data analyses. Important features identified via PLS-DA disclosed higher relative abundances of certain tentative metabolites (e.g., rutin, aspalathin and apiin) present in the Dobbelaarskop, Blomfontein, Welbedacht and Eselbank sites, in comparison to other locations. Several unknown novel metabolites (e.g., m/z 155.0369, 231.0513, 443.1197, 695.2883) are responsible for metabolomic separation of the populations, four of which showed higher amounts of key metabolites and were thus selected for bioactivity analysis. The Welbedacht and Eselbank site 2 populations consistently displayed higher antioxidant activities, with 2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activities of 679.894 ± 3.427 µmol Trolox/g dry matter and 635.066 ± 5.140 µmol Trolox/g dry matter, respectively, in correlation with a high number of phenolic and flavonoid compounds. The contribution of the individual metabolites to the pharmacological effectiveness of rooibos remains unknown and as such, further structural elucidation and phytopharmacological testing is thus urgently needed.
Collapse
Affiliation(s)
- C Wilkinson
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa
| | - J Brooks
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa
| | - M A Stander
- Department of Biochemistry, and Mass Spectrometry Unit, Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa
| | - R Malgas
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa
| | - R Roodt-Wilding
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa
| | - N P Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa.
| |
Collapse
|
12
|
Abruzzo A, Pucci R, Abruzzo PM, Canaider S, Parolin C, Vitali B, Valle F, Brucale M, Cerchiara T, Luppi B, Bigucci F. Azithromycin-loaded liposomes and niosomes for the treatment of skin infections: Influence of excipients and preparative methods on the functional properties. Eur J Pharm Biopharm 2024; 197:114233. [PMID: 38387849 DOI: 10.1016/j.ejpb.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The aim of this study was to develop azithromycin (AZT)-loaded liposomes (LP) and niosomes (NS) useful for the treatment of bacterial skin infections and acne. LP based on phosphatidylcholine from egg yolk (EPC) or from soybean lecithin (SPC), and NS composed of sorbitan monopalmitate (Span 40) or sorbitan monostearate (Span 60) were prepared through the thin film hydration (TFH) and the ethanol injection (EI) methods. The formulations were subsequently characterized for their physico-chemical and functional properties. Vesicles prepared through TFH showed higher average sizes than the corresponding formulations obtained by EI. All the vesicles presented adequate encapsulation efficiency and a negative ζ potential, which assured good stability during the storage period (except for LP-SPC). Formulations prepared with TFH showed a more prolonged AZT release than those prepared through EI, due to their lower surface area and multilamellar structure, as confirmed by atomic force microscopy nanomechanical characterization. Finally, among all the formulations, NS-Span 40-TFH and LP-EPC-TFH allowed the highest drug accumulation in the skin, retained the antimicrobial activity and did not alter fibroblast metabolism and viability. Overall, they could ensure to minimize the dosing and the administration frequency, thus representing promising candidates for the treatment of bacterial skin infections and acne.
Collapse
Affiliation(s)
- A Abruzzo
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - R Pucci
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - P M Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - S Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - C Parolin
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - B Vitali
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - F Valle
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), via Gobetti 101, 40129 Bologna, Italy.
| | - M Brucale
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), via Gobetti 101, 40129 Bologna, Italy.
| | - T Cerchiara
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - B Luppi
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| | - F Bigucci
- Department of Pharmacy and Biotechnology, Via San Donato 19/2, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
13
|
Folle C, Marqués AM, Díaz-Garrido N, Carvajal-Vidal P, Sánchez López E, Suñer-Carbó J, Halbaut L, Mallandrich M, Espina M, Badia J, Baldoma L, García ML, Calpena AC. Gel-Dispersed Nanostructured Lipid Carriers Loading Thymol Designed for Dermal Pathologies. Int J Nanomedicine 2024; 19:1225-1248. [PMID: 38348173 PMCID: PMC10859765 DOI: 10.2147/ijn.s433686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose Acne vulgaris is one of the most prevalent dermal disorders affecting skin health and appearance. To date, there is no effective cure for this pathology, and the majority of marketed formulations eliminate both healthy and pathological microbiota. Therefore, hereby we propose the encapsulation of an antimicrobial natural compound (thymol) loaded into lipid nanostructured systems to be topically used against acne. Methods To address this issue, nanostructured lipid carriers (NLC) capable of encapsulating thymol, a natural compound used for the treatment of acne vulgaris, were developed either using ultrasonication probe or high-pressure homogenization and optimized using 22-star factorial design by analyzing the effect of NLC composition on their physicochemical parameters. These NLC were optimized using a design of experiments approach and were characterized using different physicochemical techniques. Moreover, short-term stability and cell viability using HaCat cells were assessed. Antimicrobial efficacy of the developed NLC was assessed in vitro and ex vivo. Results NLC encapsulating thymol were developed and optimized and demonstrated a prolonged thymol release. The formulation was dispersed in gels and a screening of several gels was carried out by studying their rheological properties and their skin retention abilities. From them, carbomer demonstrated the capacity to be highly retained in skin tissues, specifically in the epidermis and dermis layers. Moreover, antimicrobial assays against healthy and pathological skin pathogens demonstrated the therapeutic efficacy of thymol-loaded NLC gelling systems since NLC are more efficient in slowly reducing C. acnes viability, but they possess lower antimicrobial activity against S. epidermidis, compared to free thymol. Conclusion Thymol was successfully loaded into NLC and dispersed in gelling systems, demonstrating that it is a suitable candidate for topical administration against acne vulgaris by eradicating pathogenic bacteria while preserving the healthy skin microbiome.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Paulina Carvajal-Vidal
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Jin Z, Song Y, He L. A review of skin immune processes in acne. Front Immunol 2023; 14:1324930. [PMID: 38193084 PMCID: PMC10773853 DOI: 10.3389/fimmu.2023.1324930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Acne vulgaris is one of the most prevalent skin conditions, affecting almost all teenagers worldwide. Multiple factors, including the excessive production of sebum, dysbiosis of the skin microbiome, disruption of keratinization within hair follicles, and local inflammation, are believed to trigger or aggravate acne. Immune activity plays a crucial role in the pathogenesis of acne. Recent research has improved our understanding of the immunostimulatory functions of microorganisms, lipid mediators, and neuropeptides. Additionally, significant advances have been made in elucidating the intricate mechanisms through which cutaneous innate and adaptive immune cells perceive and transmit stimulatory signals and initiate immune responses. However, our understanding of precise temporal and spatial patterns of immune activity throughout various stages of acne development remains limited. This review provides a comprehensive overview of the current knowledge concerning the immune processes involved in the initiation and progression of acne. Furthermore, we highlight the significance of detailed spatiotemporal analyses, including analyses of temporal dynamics of immune cell populations as well as single-cell and spatial RNA sequencing, for the development of targeted therapeutic and prevention strategies.
Collapse
Affiliation(s)
| | | | - Li He
- Skin Health Research Center, Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| |
Collapse
|
15
|
Xu CCY, Lemoine J, Albert A, Whirter ÉM, Barrett RDH. Community assembly of the human piercing microbiome. Proc Biol Sci 2023; 290:20231174. [PMID: 38018103 PMCID: PMC10685111 DOI: 10.1098/rspb.2023.1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Predicting how biological communities respond to disturbance requires understanding the forces that govern their assembly. We propose using human skin piercings as a model system for studying community assembly after rapid environmental change. Local skin sterilization provides a 'clean slate' within the novel ecological niche created by the piercing. Stochastic assembly processes can dominate skin microbiomes due to the influence of environmental exposure on local dispersal, but deterministic processes might play a greater role within occluded skin piercings if piercing habitats impose strong selection pressures on colonizing species. Here we explore the human ear-piercing microbiome and demonstrate that community assembly is predominantly stochastic but becomes significantly more deterministic with time, producing increasingly diverse and ecologically complex communities. We also observed changes in two dominant and medically relevant antagonists (Cutibacterium acnes and Staphylococcus epidermidis), consistent with competitive exclusion induced by a transition from sebaceous to moist environments. By exploiting this common yet uniquely human practice, we show that skin piercings are not just culturally significant but also represent ecosystem engineering on the human body. The novel habitats and communities that skin piercings produce may provide general insights into biological responses to environmental disturbances with implications for both ecosystem and human health.
Collapse
Affiliation(s)
- Charles C. Y. Xu
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Juliette Lemoine
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Avery Albert
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
- Trottier Space Institute, McGill University, Montreal, Quebec, Canada H3A 2A7
| | | | - Rowan D. H. Barrett
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| |
Collapse
|
16
|
Bacińska Z, Baberowska K, Surowiak AK, Balcerzak L, Strub DJ. Exploring the Antimicrobial Properties of 99 Natural Flavour and Fragrance Raw Materials against Pathogenic Bacteria: A Comparative Study with Antibiotics. PLANTS (BASEL, SWITZERLAND) 2023; 12:3777. [PMID: 37960133 PMCID: PMC10648197 DOI: 10.3390/plants12213777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Currently, one of the most serious global problems is the increasing incidence of infectious diseases. This is closely related to the increase in antibiotic use, which has resulted in the development of multidrug resistance in microorganisms. Another problem is the numerous microbiological contaminations of cosmetic products, which can lead to dangerous bacterial infections in humans. Natural fragrance raw materials exhibit a wide spectrum of biological properties, including antimicrobial properties. Despite their prevalence and availability on the commercial market, there is little research into their effects on multidrug-resistant microorganisms. This study examines the inhibitory effect of natural substances on Gram-positive and Gram-negative bacteria. For this purpose, screening and appropriate assays were carried out to determine the minimum inhibitory concentration (MIC) value of individual substances, using the alamarBlueTM reagent. The lowest MIC values were observed for Staphylococcus aureus (black seed (Nigella sativa) expressed oil, MIC = 25 µg/mL), Kocuria rhizophila (fir balsam absolute, MIC = 12.5 µg/mL), and Pseudomonas putida (cubeb oil and fir balsam absolute, MIC = 12.5 µg/mL). The most resistant Gram-negative species was Enterobacter gergoviae, while Staphylococcus epidermidis was the most resistant Gram-positive species.
Collapse
Affiliation(s)
- Zuzanna Bacińska
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kinga Baberowska
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Alicja Karolina Surowiak
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Lucyna Balcerzak
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Daniel Jan Strub
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
17
|
Ersanli C, Tzora A, Voidarou C(C, Skoufos S, Zeugolis DI, Skoufos I. Biodiversity of Skin Microbiota as an Important Biomarker for Wound Healing. BIOLOGY 2023; 12:1187. [PMID: 37759587 PMCID: PMC10525143 DOI: 10.3390/biology12091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Cutaneous wound healing is a natural and complex repair process that is implicated within four stages. However, microorganisms (e.g., bacteria) can easily penetrate through the skin tissue from the wound bed, which may lead to disbalance in the skin microbiota. Although commensal and pathogenic bacteria are in equilibrium in normal skin, their imbalance in the wound area can cause the delay or impairment of cutaneous wounds. Moreover, skin microbiota is in constant crosstalk with the immune system and epithelial cells, which has significance for the healing of a wound. Therefore, understanding the major bacteria species in the cutaneous wound as well as their communication with the immune system has gained prominence in a way that allows for the emergence of a new perspective for wound healing. In this review, the major bacteria isolated from skin wounds, the role of the crosstalk between the cutaneous microbiome and immune system to heal wounds, the identification techniques of these bacteria populations, and the applied therapies to manipulate the skin microbiota are investigated.
Collapse
Affiliation(s)
- Caglar Ersanli
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Chrysoula (Chrysa) Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Stylianos Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
| |
Collapse
|
18
|
Kawamoto A, Kuwano T, Watarai E, Igarashi T, Katayama Y, Kushida K, Nakamura S, Murase T, Yoshida H, Ishikawa J. Oleic acid-induced interleukin-36γ: A possible link between facial skin redness and sebum. J Cosmet Dermatol 2023. [PMID: 36891608 DOI: 10.1111/jocd.15697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND Redness of the facial skin is an important cosmetic concern. Although qualitative and quantitative modifications of sebum on the skin surface are major pathogenic factors of chronic inflammatory skin conditions, the relationship between skin redness, sebum, and mild inflammation on the cheeks of healthy subjects remains elusive. AIMS We aimed to explore the correlation between cheek redness and sebum and inflammatory cytokines in the stratum corneum (SC) of healthy subjects. We also examined the effects of representative sebum lipids on the gene expression of inflammatory cytokines in cultured keratinocytes. PATIENTS/METHODS This study included 198 healthy participants. Skin sebum was analyzed using flow injection analysis, and skin redness was assessed using a spectrophotometer. Inflammatory cytokines in tape-stripped SC were measured using enzyme-linked immunosorbent assay. RESULTS Cheek redness parameters positively correlated with the amount of skin sebum and the proportion of monounsaturated free fatty acids (C16:1 and C18:1) in the sebum. They also positively correlated with the interleukin (IL)-36γ/IL-37 ratio in the SC. Among the representative sebum lipids examined, oleic acid (C18:1, cis-9) dose- and time-dependently regulated the mRNA expression of IL-36γ and IL-37 in cultured keratinocytes, and this effect was attenuated by the N-methyl-D-aspartate (NMDA)-type glutamate receptor antagonist, MK801. CONCLUSIONS Skin surface sebum may be related to cheek redness in healthy subjects, and oleic acid-induced IL-36γ through NMDA-type glutamate receptors may be a link between them. Our study provides a possible skincare strategy for mitigating unfavorable increase in skin redness by targeting the facial skin sebum, particularly oleic acid.
Collapse
Affiliation(s)
- Akane Kawamoto
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | - Tetsuya Kuwano
- Biological Science Research, Kao Corporation, Tochigi, Japan
| | - Etsuko Watarai
- Skin Care Products Research, Kao Corporation, Odawara, Japan
| | | | | | - Ken Kushida
- Analytical Science Research, Kao Corporation, Tochigi, Japan
| | - Shun Nakamura
- Analytical Science Research, Kao Corporation, Tochigi, Japan
| | | | | | - Junko Ishikawa
- Biological Science Research, Kao Corporation, Tochigi, Japan
| |
Collapse
|
19
|
Wongtada C, Prombutara P, Asawanonda P, Noppakun N, Kumtornrut C, Chatsuwan T. Distinct skin microbiome modulation following different topical acne treatments in mild acne vulgaris patients: A randomized, investigator-blinded exploratory study. Exp Dermatol 2023. [PMID: 36841971 DOI: 10.1111/exd.14779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
The effects of topical non-antibiotic acne treatment on skin microbiota have rarely been demonstrated. In the study, we randomized 45 mild acne vulgaris participants into three treatment groups, including a cream-gel dermocosmetic containing Aqua Posae Filiformis, lipohydroxy acid, salicylic acid, linoleic acid, niacinamide and piroctone olamine (DC), retinoic acid 0.025% cream (VAA) and benzoyl peroxide 2.5% gel (BP). At months 0, 1 and 3, skin specimens were swabbed from the cheek and forehead and sequenced by targeting V3-V4 regions of the 16 S rRNA gene. QIIME2 was used to characterize bacterial communities. Acne severity, sebum level and tolerability were assessed concomitantly in each visit. We found that both VAA and BP could significantly reduce the bacterial diversity at month 1 (p-value = 0.010 and 0.004 respectively), while no significant reduction was observed in DC group. The microbiota compositions also significantly altered for beta diversity in all treatments (all p-value = 0.001). An increased Cutibacterium with decreased Staphylococcus relative abundance was observed at months 1 and 3 in DC group, while an opposite trend was demonstrated in VAA and BP groups. These findings suggest a potential impact of DC, VAA and BP on the diversity and composition profiles of the skin microbiota in mild acne participants.
Collapse
Affiliation(s)
- Chanidapa Wongtada
- Department of Medicine, Division of Dermatology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pinidphon Prombutara
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pravit Asawanonda
- Department of Medicine, Division of Dermatology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nopadon Noppakun
- Department of Medicine, Division of Dermatology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanat Kumtornrut
- Department of Medicine, Division of Dermatology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol 2023; 21:97-111. [PMID: 36042296 PMCID: PMC9903335 DOI: 10.1038/s41579-022-00780-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/20/2023]
Abstract
The coagulase-negative bacterium Staphylococcus epidermidis is a member of the human skin microbiota. S. epidermidis is not merely a passive resident on skin but actively primes the cutaneous immune response, maintains skin homeostasis and prevents opportunistic pathogens from causing disease via colonization resistance. However, it is now appreciated that S. epidermidis and its interactions with the host exist on a spectrum of potential pathogenicity derived from its high strain-level heterogeneity. S. epidermidis is the most common cause of implant-associated infections and is a canonical opportunistic biofilm former. Additional emerging evidence suggests that some strains of S. epidermidis may contribute to the pathogenesis of common skin diseases. Here, we highlight new developments in our understanding of S. epidermidis strain diversity, skin colonization dynamics and its multifaceted interactions with the host and other members of the skin microbiota.
Collapse
|
21
|
Legiawati L, Halim PA, Fitriani M, Hikmahrachim HG, Lim HW. Microbiomes in Acne Vulgaris and Their Susceptibility to Antibiotics in Indonesia: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2023; 12:145. [PMID: 36671346 PMCID: PMC9854683 DOI: 10.3390/antibiotics12010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Hot and humid countries such as Indonesia have a higher prevalence of acne vulgaris (AV). The activity of skin microbes, not only Cutibacterium acnes, contribute to the formation of AV. Topical and oral antibiotics are routinely prescribed to treat AV. As antimicrobial resistance rates increase globally, there are concerns about decreased efficacy. This study intends to systematically evaluate the microbiomes isolated from AV lesions and their antibiotics susceptibility in Indonesia. The data were retrieved through PubMed, EMBASE, Google Scholar, and ScienceDirect searches for articles published until July 2022 using three multiword searches. Sixteen studies published between 2001 and 2022 were identified from which the data were pooled using a random effects model. The pooled prevalence estimates demonstrated that C. acnes, Staphylococcus epidermidis, and Staphylococcus aureus were the three common microbes associated with AV in Indonesia. Tetracyclines had lower resistance rates compared to those of macrolides and clindamycin, with C. acnes showing a resistance rate that is as high as 60.1% against macrolides. C. acnes resistance against minocycline showed an increasing trend, whereas the resistances to doxycycline, clindamycin, and macrolides stagnated. The high resistance prevalence and trends signify a public health concern. The results of this study call for the development of antibiotic stewardship programs in Indonesia, which may lead to improved acne outcomes.
Collapse
Affiliation(s)
- Lili Legiawati
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| | - Paulus Anthony Halim
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| | - Magna Fitriani
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Central General Hospital, Jakarta 10430, Indonesia
| | | | - Henry W. Lim
- Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA
| |
Collapse
|
22
|
Shao X, Chen Y, Zhang L, Zhang Y, Ariyawati A, Chen T, Chen J, Liu L, Pu Y, Li Y, Chen J. Effect of 30% Supramolecular Salicylic Acid Peel on Skin Microbiota and Inflammation in Patients with Moderate-to-Severe Acne Vulgaris. Dermatol Ther (Heidelb) 2022; 13:155-168. [PMID: 36350527 PMCID: PMC9823178 DOI: 10.1007/s13555-022-00844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Thirty-percent supramolecular salicylic acid (SSA), a modified salicylic acid preparation, is a safe and effective treatment for moderate-to-severe acne vulgaris (AV). However, its mechanism of action remains unclear. We aimed to analyze the role of 30% SSA peels on skin microbiota and inflammation in patients with moderate-to-severe AV. METHODS A total of 28 patients were enrolled and received 30% SSA peels biweekly for 2 months. The Global Acne Grading System (GAGS) score, skin water content, transepidermal water loss (TEWL), pH, and sebum levels were assessed. Skin microbial samples and perilesional skin biopsies were obtained at the onset and 2 weeks after treatment completion. Samples were characterized using a high-throughput sequencing approach targeting a portion of the bacterial 16S ribosomal RNA gene. RESULTS After treatment, patients showed a significant improvement in their GAGS score and skin barrier indicators (P < 0.05). The GAGS score was positively associated with both the sebum concentration (R = 0.3, P = 0.027) and pH (R = 0.39, P = 0.003). Increased expression of caveolin-1 and decreased expression of interleukin (IL)-1a, IL-6, IL-17, transforming growth factor beta, and toll-like receptor 2 were observed in the skin tissue after treatment. The richness and evenness of the cutaneous microbiome decreased after treatment and the Staphylococcus proportion decreased significantly (P < 0.05), whereas the Propionibacterium proportion tended to decrease (P = 0.066). CONCLUSIONS On the basis of analyses of the skin barrier and microbiota, we speculate that the 30% SSA peel may have a therapeutic effect in patients with moderate-to-severe AV by improving the skin microenvironment and modulating the skin microbiome, thus reducing local inflammation.
Collapse
Affiliation(s)
- Xinyi Shao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yangmei Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Lingzhao Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yujie Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Asoka Ariyawati
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Tingqiao Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Jiayi Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Lin Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yihuan Pu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yuxin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| |
Collapse
|
23
|
Lee HJ, Kim M. Skin Barrier Function and the Microbiome. Int J Mol Sci 2022; 23:13071. [PMID: 36361857 PMCID: PMC9654002 DOI: 10.3390/ijms232113071] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Human skin is the largest organ and serves as the first line of defense against environmental factors. The human microbiota is defined as the total microbial community that coexists in the human body, while the microbiome refers to the collective genome of these microorganisms. Skin microbes do not simply reside on the skin but interact with the skin in a variety of ways, significantly affecting the skin barrier function. Here, we discuss recent insights into the symbiotic relationships between the microbiome and the skin barrier in physical, chemical, and innate/adaptive immunological ways. We discuss the gut-skin axis that affects skin barrier function. Finally, we examine the effects of microbiome dysbiosis on skin barrier function and the role of these effects in inflammatory skin diseases, such as acne, atopic dermatitis, and psoriasis. Microbiome cosmetics can help restore skin barrier function and improve these diseases.
Collapse
Affiliation(s)
| | - Miri Kim
- Department of Dermatology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, #10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea
| |
Collapse
|
24
|
Susano P, Silva J, Alves C, Martins A, Pinteus S, Gaspar H, Goettert MI, Pedrosa R. Saccorhiza polyschides-A Source of Natural Active Ingredients for Greener Skincare Formulations. Molecules 2022; 27:6496. [PMID: 36235032 PMCID: PMC9573298 DOI: 10.3390/molecules27196496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The growing knowledge about the harmful effects caused by some synthetic ingredients present in skincare products has led to an extensive search for natural bioactives. Thus, this study aimed to investigate the dermatological potential of five fractions (F1-F5), obtained by a sequential extraction procedure, from the brown seaweed Saccorhiza polyschides. The antioxidant (DPPH, FRAP, ORAC and TPC), anti-enzymatic (collagenase, elastase, hyaluronidase and tyrosinase), antimicrobial (Staphylococcus epidermidis, Cutibacterium acnes and Malassezia furfur), anti-inflammatory (nitric oxide, tumor necrosis factor-α, interleukin-6 and interleukin-10) and photoprotective (reactive oxygen species) properties of all fractions were evaluated. The ethyl acetate fraction (F3) displayed the highest antioxidant and photoprotective capacity, reducing ROS levels in UVA/B-exposed 3T3 fibroblasts, and the highest anti-enzymatic capacity against tyrosinase (IC50 value: 89.1 µg/mL). The solid water-insoluble fraction (F5) revealed the greatest antimicrobial activity against C. acnes growth (IC50 value: 12.4 µg/mL). Furthermore, all fractions demonstrated anti-inflammatory potential, reducing TNF-α and IL-6 levels in RAW 264.7 macrophages induced with lipopolysaccharides. Chemical analysis of the S. polyschides fractions by NMR revealed the presence of different classes of compounds, including lipids, polyphenols and sugars. The results highlight the potential of S. polyschides to be incorporated into new nature-based skincare products.
Collapse
Affiliation(s)
- Patrícia Susano
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Alice Martins
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Márcia Inês Goettert
- Cell Culture Laboratory, Postgraduate Programme in Biotechnology, University of Vale do Taquari-Univates, Lajeado 95914-014, RS, Brazil
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, D 72076 Tübingen, Germany
| | - Rui Pedrosa
- MARE/ARNET, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal
| |
Collapse
|
25
|
Akaza N, Takasaki K, Nishiyama E, Usui A, Miura S, Yokoi A, Futamura K, Suzuki K, Yashiro Y, Yagami A. The Microbiome in Comedonal Contents of Inflammatory Acne Vulgaris is Composed of an Overgrowth of Cutibacterium Spp. and Other Cutaneous Microorganisms. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:2003-2012. [PMID: 36172249 PMCID: PMC9510696 DOI: 10.2147/ccid.s379609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
Background Acne vulgaris (acne) and cutaneous resident microorganisms are considered to be closely related. However, the bacterial and fungal microbiota in the comedonal contents of inflammatory acne lesions have not yet been investigated in detail. Purpose To clarify the relationship between cutaneous microorganisms and acne, we examined the microbiome in the comedonal contents of inflammatory acne and on the facial skin of patients with acne using 16s rRNA and ITS gene sequencing with a next-generation sequencer (NGS). Patients and Methods Twenty-two untreated Japanese acne outpatients were examined. The comedonal contents of inflammatory acne lesions on the face were collected using a comedo extractor. Skin surface samples from facial skin were collected using the swab method. Results The results obtained revealed that the predominant bacteria in the comedonal contents of inflammatory acne were Cutibacterium spp. (more prominent in areas with large amounts of sebum), while those on the skin surface were Staphylococcus spp. Malassezia spp., particularly Malassezia restricta, were the predominant fungi in both the comedonal contents of inflammatory acne and on the skin surface. The bacterial microbiome in comedonal contents exhibited stronger metabolic activity, including the production of enzymes related to acne, than that on the skin surface. Conclusion These results indicate that acne is an inflammatory disease involving the overgrowth of Cutibacterium acnes and other cutaneous resident microorganisms, including Malassezia spp.
Collapse
Affiliation(s)
- Narifumi Akaza
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | | | | | | | - Shiori Miura
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Aya Yokoi
- Nihombashi Irodori Dermatology Clinic, Tokyo, Japan.,Department of Allergology, Fujita Health University School of Medicine, Nagoya, Japan
| | - Kyoko Futamura
- Department of Allergology, Fujita Health University School of Medicine, Nagoya, Japan
| | - Kayoko Suzuki
- Department of Allergology, Fujita Health University School of Medicine, Nagoya, Japan
| | - Youichi Yashiro
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Akiko Yagami
- Department of Allergology, Fujita Health University School of Medicine, Nagoya, Japan
| |
Collapse
|
26
|
In Vitro Antibacterial and Anti-Inflammatory Activity of Arctostaphylos uva-ursi Leaf Extract against Cutibacterium acnes. Pharmaceutics 2022; 14:pharmaceutics14091952. [PMID: 36145700 PMCID: PMC9501556 DOI: 10.3390/pharmaceutics14091952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Cutibacterium acnes (C. acnes) is the main causative agent of acne vulgaris. The study aims to evaluate the antimicrobial activity of a natural product, Arctostaphylos uva-ursi leaf extract, against C. acnes. Preliminary chemical–physical characterization of the extract was carried out by means of FT-IR, TGA and XPS analyses. Skin permeation kinetics of the extract conveyed by a toning lotion was studied in vitro by Franz diffusion cell, monitoring the permeated arbutin (as the target component of the extract) and the total phenols by HPLC and UV-visible spectrophotometry, respectively. Antimicrobial activity and time-killing assays were performed to evaluate the effects of Arctostaphylos uva-ursi leaf extract against planktonic C. acnes. The influence of different Arctostaphylos uva-ursi leaf extract concentrations on the biofilm biomass inhibition and degradation was evaluated by the crystal violet (CV) method. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test was used to determine the viability of immortalized human keratinocytes (HaCaT) after exposure to Arctostaphylos uva-ursi leaf extract for 24 and 48 h. Levels of interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor (TNF)-α were quantified after HaCaT cells cotreatment with Arctostaphylos uva-ursi leaf extract and heat-killed C. acnes. The minimum inhibitory concentration (MIC) which exerted a bacteriostatic action on 90% of planktonic C. acnes (MIC90) was 0.6 mg/mL. Furthermore, MIC and sub-MIC concentrations influenced the biofilm formation phases, recording a percentage of inhibition that exceeded 50 and 40% at 0.6 and 0.3 mg/mL. Arctostaphylos uva-ursi leaf extract disrupted biofilm biomass of 57 and 45% at the same concentrations mentioned above. Active Arctostaphylos uva-ursi leaf extract doses did not affect the viability of HaCaT cells. On the other hand, at 1.25 and 0.6 mg/mL, complete inhibition of the secretion of pro-inflammatory cytokines was recorded. Taken together, these results indicate that Arctostaphylos uva-ursi leaf extract could represent a natural product to counter the virulence of C. acnes, representing a new alternative therapeutic option for the treatment of acne vulgaris.
Collapse
|
27
|
Caswell G, Eshelby B. Skin microbiome considerations for long haul space flights. Front Cell Dev Biol 2022; 10:956432. [PMID: 36158225 PMCID: PMC9493037 DOI: 10.3389/fcell.2022.956432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Dysbiosis of the human skin microbiome has long been associated with changes to the pH of the skin, dermal immune function and chronic skin conditions. Dermatological issues have been noted as the most prevalent medical presentation in the microgravity environment of space. The change in gravitational forces has been implicated in human immuno-suppression, also impacted by changes in the gastrointestinal-skin axis and its impact on Vitamin D metabolism, altered microbial gene expression in resident flora (leading changes in biofilm formation) and increased virulence factors in potential pathogens. There are also other stressors to the skin microbiome unique to space travel, including increased exposure to radiation, prolonged periods of dry washing technique, air quality and changes in microbe replication and growth parameters. Optimal microbiome health leads to enhanced skin barrier manufacture and maintenance, along with improved skin immune function and healing. In a microgravity environment expected to be experienced during long space flights, disruptions to the skin microbiome, coupled with increased virulence of pathological viruses and bacteria has implications for holistic skin health, astronaut cognitive function and mental health, and is coupled with slowed rates of wound healing. Scenario management for holistic skin health and restoration of microbiome homeostasis on long space flights require consideration.
Collapse
|
28
|
Yang Y, Qu L, Mijakovic I, Wei Y. Advances in the human skin microbiota and its roles in cutaneous diseases. Microb Cell Fact 2022; 21:176. [PMID: 36038876 PMCID: PMC9422115 DOI: 10.1186/s12934-022-01901-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Skin is the largest organ in the human body, and the interplay between the environment factors and human skin leads to some skin diseases, such as acne, psoriasis, and atopic dermatitis. As the first line of human immune defense, skin plays significant roles in human health via preventing the invasion of pathogens that is heavily influenced by the skin microbiota. Despite being a challenging niche for microbes, human skin is colonized by diverse commensal microorganisms that shape the skin environment. The skin microbiota can affect human health, and its imbalance and dysbiosis contribute to the skin diseases. This review focuses on the advances in our understanding of skin microbiota and its interaction with human skin. Moreover, the potential roles of microbiota in skin health and diseases are described, and some key species are highlighted. The prevention, diagnosis and treatment strategies for microbe-related skin diseases, such as healthy diets, lifestyles, probiotics and prebiotics, are discussed. Strategies for modulation of skin microbiota using synthetic biology are discussed as an interesting venue for optimization of the skin-microbiota interactions. In summary, this review provides insights into human skin microbiota recovery, the interactions between human skin microbiota and diseases, and the strategies for engineering/rebuilding human skin microbiota.
Collapse
Affiliation(s)
- Yudie Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450051, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450051, China
| | - Lingbo Qu
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450051, China
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450051, China.
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, 450051, China.
| |
Collapse
|
29
|
Preparation and evaluation of dissolving microneedle loaded with azelaic acid for acne vulgaris therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
A 3D-printed transepidermal microprojection array for human skin microbiome sampling. Proc Natl Acad Sci U S A 2022; 119:e2203556119. [PMID: 35867832 PMCID: PMC9335308 DOI: 10.1073/pnas.2203556119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Skin microbiome sampling is currently performed with tools such as swabs and tape strips to collect microbes from the skin surface. However, these conventional approaches may be unable to detect microbes deeper in the epidermis or in epidermal invaginations. We describe a sampling tool with a depth component, a transepidermal microprojection array (MPA), which captures microbial biomass from both the epidermal surface and deeper skin layers. We leveraged the rapid customizability of 3D printing to enable systematic optimization of MPA for human skin sampling. Evaluation of sampling efficacy on human scalp revealed the optimized MPA was comparable in sensitivity to swab and superior to tape strip, especially for nonstandard skin surfaces. We observed differences in species diversity, with the MPA detecting clinically relevant fungi more often than other approaches. This work delivers a tool in the complex field of skin microbiome sampling to potentially address gaps in our understanding of its role in health and disease.
Collapse
|
31
|
Farfán J, Gonzalez JM, Vives M. The immunomodulatory potential of phage therapy to treat acne: a review on bacterial lysis and immunomodulation. PeerJ 2022; 10:e13553. [PMID: 35910763 PMCID: PMC9332329 DOI: 10.7717/peerj.13553] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/17/2022] [Indexed: 01/17/2023] Open
Abstract
Background Characterized by an inflammatory pathogenesis, acne is the most common skin disorder worldwide. Altered sebum production, abnormal proliferation of keratinocytes, and microbiota dysbiosis represented by disbalance in Cutibacterium acnes population structure, have a synergic effect on inflammation of acne-compromised skin. Although the role of C. acnes as a single factor in acne development is still under debate, it is known that skin and skin-resident immune cells recognize this bacterium and produce inflammatory markers as a result. Control of the inflammatory response is frequently the target for acne treatment, using diverse chemical or physical agents including antibiotics. However, some of these treatments have side effects that compromise patient adherence and drug safety and in the case of antibiotics, it has been reported C. acnes resistance to these molecules. Phage therapy is an alternative to treat antibiotic-resistant bacterial strains and have been recently proposed as an immunomodulatory therapy. Here, we explore this perspective about phage therapy for acne, considering the potential immunomodulatory role of phages. Methodology Literature review was performed using four different databases (Europe PubMed Central-ePMC, Google Scholar, PubMed, and ScienceDirect). Articles were ordered and selected according to their year of publication, number of citations, and quartile of the publishing journal. Results The use of lytic bacteriophages to control bacterial infections has proven its promising results, and anti-inflammatory effects have been found for some bacteriophages and phage therapy. These effects can be related to bacterial elimination or direct interaction with immune cells that result in the regulation of pro-inflammatory cytokines. Studies on C. acnes bacteriophages have investigated their lytic activity, genomic structure, and stability on different matrices. However, studies exploring the potential of immunomodulation of these bacteriophages are still scarce. Conclusions C. acnes bacteriophages, as well as other phages, may have direct immunomodulatory effects that are yet to be fully elucidated. To our knowledge, to the date that this review was written, there are only two studies that investigate anti-inflammatory properties for C. acnes bacteriophages. In those studies, it has been evidenced reduction of pro-inflammatory response to C. acnes inoculation in mice after bacteriophage application. Nevertheless, these studies were conducted in mice, and the interaction with the immune response was not described. Phage therapy to treat acne can be a suitable therapeutic alternative to C. acnes control, which in turn can aid to restore the skin's balance of microbiota. By controlling C. acnes colonization, C. acnes bacteriophages can reduce inflammatory reactions triggered by this bacterium.
Collapse
Affiliation(s)
- Juan Farfán
- Biological Sciences Department, Faculty of Science, Universidad de Los Andes, Bogotá, Bogotá D.C., Colombia
| | - John M. Gonzalez
- School of Medicine, Universidad de Los Andes, Bogotá, Bogotá D.C., Colombia
| | - Martha Vives
- Biological Sciences Department, Faculty of Science, Universidad de Los Andes, Bogotá, Bogotá D.C., Colombia
| |
Collapse
|
32
|
Huang TY, Jiang YE, Scott DA. Culturable bacteria in the entire acne lesion and short-chain fatty acid metabolites of Cutibacterium acnes and Staphylococcus epidermidis isolates. Biochem Biophys Res Commun 2022; 622:45-49. [PMID: 35843093 DOI: 10.1016/j.bbrc.2022.06.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Although evidence supports that the acne microbiome harbors a diverse range of microbes that play a vital role in the progression of acne vulgaris, the culturable microbes in the acne microbiome have not yet been largely identified. Here, we grew microbe colonies from entire acne lesions on agar plates and identified abundant Staphylococcus, Acinetobacter, and Pseudomonas species from forty selected single colonies. Staphylococcus species, including Staphylococcus epidermidis (S. epidermidis), Staphylococcus hominis (S. hominis), and Staphylococcus aureus (S. aureus), were isolated from tryptic soy broth (TSB) agar plates. However, Cutibacterium acnes (C. acnes) was predominately isolated from furazolidone-supplemented TSB agar plates. Results from gas chromatography-mass spectrometry (GC-MS) analysis revealed that, besides acetate, propionate and butyrate were the main short-chain fatty acids (SCFAs) in fermentation metabolites of C. acnes and S. epidermidis isolates, respectively. The culturable bacteria and SCFA profiles presented in this study provide a reservoir for selecting acne probiotics and developing SCFA-associated therapies against acne vulgaris.
Collapse
Affiliation(s)
| | | | - David A Scott
- Cancer Metabolism Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
33
|
Nakase K, Koizumi J, Fukumoto S, Hayashi N, Noguchi N, Nakaminami H. Increased Prevalence of Minocycline-Resistant Staphylococcus epidermidis with tet(M) by Tetracycline Use for Acne Treatment. Microb Drug Resist 2022; 28:861-866. [PMID: 35723664 DOI: 10.1089/mdr.2021.0319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus epidermidis, a major skin bacterium, can cause opportunistic infections. Use of antimicrobial agents against Cutibacterium acnes for acne treatment becomes a risk factor for emergence of antimicrobial-resistant skin bacteria. In this study, the impact of antimicrobial treatment of acne vulgaris on S. epidermidis antimicrobial resistance was assessed. A total of 344 S. epidermidis strains isolated from patients with acne vulgaris who visited hospital (165 strains) and dermatological clinics (179 strains), respectively, were analyzed. Except for doxycycline, the resistance rates were higher in strains isolated from patients who had used antimicrobials for acne treatment than in those isolated from patients who had not used antimicrobials. The prevalence rates of strains with erm(C) from patients who used macrolides and clindamycin (hospital, 78.0%; clinics, 61.3%) and those of strains with tet(M) from patients who used tetracyclines (hospital, 27.5%; clinics, 42.4%) were significantly higher than those of strains from patients who did not use antimicrobials (p < 0.05). All strains with erm(A) (8/8) and 91.7% strains with erm(C) (156/170) showed high-level resistance to macrolides and clindamycin (MIC ≥256 μg/mL). Furthermore, almost all strains with tet(M) showed resistance to minocycline. Our results showed that the use of antimicrobials for acne treatment may lead to an increased prevalence of antimicrobial-resistant S. epidermidis. In particular, the emergence of minocycline-resistant strains with tet(M) owing to the use of tetracyclines (doxycycline and minocycline) is a critical issue. Appropriate antimicrobial use for acne treatment may be an important strategy to prevent the emergence of antimicrobial-resistant skin bacteria.
Collapse
Affiliation(s)
- Keisuke Nakase
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Juri Koizumi
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Sana Fukumoto
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | - Norihisa Noguchi
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hidemasa Nakaminami
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
34
|
Shao L, Jiang S, Li Y, Shi Y, Wang M, Liu T, Yang S, Ma L. Regular Late Bedtime Significantly Affects the Skin Physiological Characteristics and Skin Bacterial Microbiome. Clin Cosmet Investig Dermatol 2022; 15:1051-1063. [PMID: 35698548 PMCID: PMC9188400 DOI: 10.2147/ccid.s364542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
Abstract
Background Late bedtime is a common form of unhealthy sleep pattern in adulthood, which influences circadian rhythm, and negatively affects health. However, little is known about the effect of regular late bedtime on skin characteristics, particularly on skin microbiome. Objective To investigate the changes and effects of the regular late bedtime on skin physiological parameters and facial bacterial microbiome of 219 cases of Chinese women aged 18-38 years living in Shanghai. Methods Based on the Self-Evaluation Questionnaire, bedtime was categorized as 11:00 PM; thus, the volunteers were divided into early bedtime group (S0) and late bedtime group (S1). The physiological parameters of facial skin were measured by non-invasive instrumental methods, and the skin microbiome was analyzed by 16S rRNA high-throughput sequencing. Results The skin physiological parameters of the late bedtime group exhibited significant decrease in skin hydration content, skin firmness (F4) and elasticity (R2), while TEWL, sebum and wrinkle significantly increased. The result indicated that late bedtime significantly impaired the integrity of skin barrier, damaged skin structure, and disrupted water-oil balance. Furthermore, the analysis of α-diversity, Sobs, Ace and Chao index were found to significantly decrease (P < 0.05) in the late bedtime group, suggesting that late bedtime reduced both the abundance and the diversity of facial bacterial microbiota. Moreover, the abundance of Pseudomonas increased significantly, while Streptococcus, Stenotrophomonas, Acinetobacter, Haemophilus, Actinomyces and Neisseria decreased significantly. In addition, Spearman correlation analysis revealed strong correlations between the microbiota and the physiological parameters. Notably, the abundance of Pseudomonas significantly positively correlated with skin firmness and elasticity, but significantly negatively correlated with skin hemoglobin content, melanin content and skin hydration. Conclusion Bedtime is an important factor in maintaining skin health. Regular late bedtime not only damages the skin barrier and skin structure but also reduces the diversity and composition of facial bacterial microbiome.
Collapse
Affiliation(s)
- Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Sujing Jiang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Yan Li
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd, Jinan, Shandong, People's Republic of China
| | - Yanqin Shi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China.,The Oriental Beauty Valley Research Institute, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Man Wang
- Department of Nutrition, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, People's Republic of China
| | - Ting Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Suzhen Yang
- R&D Innovation Center, Shandong Freda Biotech Co., Ltd, Jinan, Shandong, People's Republic of China
| | - Laiji Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China.,The Oriental Beauty Valley Research Institute, Shanghai Institute of Technology, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Clinical Translation of Microbiome Research in Alopecia Areata: A New Perspective? COSMETICS 2022. [DOI: 10.3390/cosmetics9030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The continuous research advances in the microbiome field is changing clinicians’ points of view about the involvement of the microbiome in human health and disease, including autoimmune diseases such as alopecia areata (AA). Both gut and cutaneous dysbiosis have been considered to play roles in alopecia areata. A new approach is currently possible owing also to the use of omic techniques for studying the role of the microbiome in the disease by the deep understanding of microorganisms involved in the dysbiosis as well as of the pathways involved. These findings suggest the possibility to adopt a topical approach using either cosmetics or medical devices, to modulate or control, for example, the growth of overexpressed species using specific bacteriocins or postbiotics or with pH control. This will favour at the same time the growth of beneficial bacteria which, in turn, can impact positively both the structure of the scalp ecosystem on the host’s response to internal and external offenders. This approach, together with a “systemic” one, via oral supplementation, diet, or faecal transplantation, makes a reliable translation of microbiome research in clinical practice and should be taken into consideration every time alopecia areata is considered by a clinician.
Collapse
|
36
|
Mahendra CK, Goh KW, Ming LC, Zengin G, Low LE, Ser HL, Goh BH. The Prospects of Swietenia macrophylla King in Skin Care. Antioxidants (Basel) 2022; 11:antiox11050913. [PMID: 35624777 PMCID: PMC9137607 DOI: 10.3390/antiox11050913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
The importance of cosmetics in our lives is immeasurable. Covering items from daily personal hygienic products to skincare, it has become essential to consumers that the items that they use are safe and effective. Since natural products are from natural sources, and therefore considered “natural” and “green” in the public’s eyes, the rise in demand for such products is not surprising. Even so, factoring in the need to remain on trend and innovative, cosmetic companies are on a constant search for new ingredients and inventive new formulations. Based on numerous literature, the seed of Swietenia macrophylla has been shown to possess several potential “cosmetic-worthy” bioproperties, such as skin whitening, photoprotective, antioxidant, antimicrobial, etc. These properties are vital in the cosmetic business, as they ultimately contribute to the “ageless” beauty that many consumers yearn for. Therefore, with further refinement and research, these active phytocompounds may be a great contribution to the cosmetic field in the near future.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia;
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Correspondence: (L.C.M.); (B.H.G.)
| | - Gokhan Zengin
- Biochemistry and Physiology Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Liang Ee Low
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Hooi-Leng Ser
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia;
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (L.C.M.); (B.H.G.)
| |
Collapse
|
37
|
Dagnelie MA, Poinas A, Dréno B. What is new in adult acne for the last 2 years: focus on acne pathophysiology and treatments. Int J Dermatol 2022; 61:1205-1212. [PMID: 35521784 DOI: 10.1111/ijd.16220] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/07/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
Acne affects more than 640 million people worldwide, including about 85% of adolescents. This inflammatory dermatosis affects the entire population, from teenagers to adults, which reinforces the need to investigate it. Furthermore, in adults, acne has serious consequences, including a psychological impact, low self-esteem, social isolation, and depression. Over the last years, the understanding of acne pathophysiology has improved, mainly thanks to the identification of the pivotal role of the microbiota. The aim of this review was to screen the most recent scientific literature on adult acne and the newly tested treatments. Clinically, therapeutic innovations for the treatment of acne have been recently developed, including pre/probiotics, new molecules, and innovative formulations associated, however, with fewer side effects. Moreover, clinical trials are underway to use off-label molecules that seem to be proving their value in the fight against adult acne.
Collapse
Affiliation(s)
- Marie-Ange Dagnelie
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
| | - Alexandra Poinas
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
| | - Brigitte Dréno
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
| |
Collapse
|
38
|
Oliveira AS, Rolo J, Gaspar C, Cavaleiro C, Salgueiro L, Palmeira-de-Oliveira R, Ferraz C, Coelho S, Pastorinho MR, Sousa AC, Teixeira JP, Martinez-de-Oliveira J, Palmeira-de-Oliveira A. Chemical characterization and bioactive potential of Thymus×citriodorus (Pers.) Schreb. preparations for anti-acne applications: Antimicrobial, anti-biofilm, anti-inflammatory and safety profiles. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114935. [PMID: 34954264 DOI: 10.1016/j.jep.2021.114935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thymus × citriodorus (Pers.) Schreb. is an interspecific hybrid between Thymus pulegioides and Thymus vulgaris, known for its pharmacological activities as diaphoretic, deodorant, antiseptic and disinfectant, the last mostly related with its antimicrobial activity. The folk use of other extracts, as hydrolates, have also been disseminated, as regulators of oily skin with anti-acne effect. AIM OF THE STUDY We aimed to evaluate the anti-acne potential of two Thymus x citriodorus (TC) preparations, the essential oil (EO) and the hydrolate, to be used as active ingredients for skin applications. Specifically, we intend to validate their anti-acne potential by describing their activity on acne related bacteria, bacterial virulence, anti-oxidant and anti-inflammatory potential, and biocompatibility on inflammatory cells. Additionally, we aimed to report their ecotoxicity under the Globally Harmonized System of Classification and Labelling of Chemicals (GHS), thus focusing not only on the consumer, but also on environmental safety assessment. MATERIALS AND METHODS Minimum inhibitory concentration (MIC) against C. acnes, S. aureus and S. epidermidis was evaluated. Minimum lethal concentration (MLC) was also determined. The effect on C. acnes biofilm formation and disruption was evaluated with crystal violet staining. Anti-inflammatory activity was investigated on LPS-stimulated mouse macrophages (RAW 264.7), by studying nitric oxide (NO) production (Griess reagent) and cellular biocompatibility through MTT assay. In-vitro NO and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging potential were also evaluated. The ecotoxicity was evaluated using Daphnia magna acute toxicity assays. RESULTS EO presented direct antimicrobial activity, with visual MICs ranging from 0.06% for S. epidermidis and C. acnes to 0.125% for S. aureus. MLCs were higher than the obtained MICs. Hydrolate revealed visual MIC only for C. acnes. TC essential oil was effective in preventing biofilm formation and disrupting preformed biofilms even at sub-inhibitory concentrations. Hydrolate showed a more modest anti-biofilm effect. Regarding anti-inflammatory activity, TC hydrolate has a higher cellular biocompatibility. Still, both plant preparations were able to inhibit at least 50% of NO production at non-cytotoxic concentrations. Both EO and hydrolate have poor anti-oxidant activities. Regarding the ecotoxicity, TC essential oil was classified under acute 3 category, while the hydrolate has proved to be nontoxic, in accordance to the GHS. CONCLUSIONS These results support the anti-acne value of different TC preparations for different applications. TC hydrolate by presenting higher biocompatibility, anti-inflammatory potential and the ability to modulate C. acnes virulence, can be advantageous in a product for everyday application. On the other hand, EO by presenting a marked antimicrobial, anti-biofilm and anti-inflammatory activities, still with some cytotoxicity, may be better suited for application in acute flare-ups, for short treatment periods.
Collapse
Affiliation(s)
- Ana S Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Joana Rolo
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Carlos Gaspar
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal.
| | - Carlos Cavaleiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal.
| | - Lígia Salgueiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal.
| | - Rita Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal; CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504, Coimbra, Portugal.
| | - Celso Ferraz
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Susana Coelho
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - M Ramiro Pastorinho
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Department of Medical and Health Sciences, University of Évora, Évora, Portugal; Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal.
| | - Ana Catarina Sousa
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal; Department of Biology, University of Évora, Évora, Portugal.
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal.
| | - José Martinez-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| | - Ana Palmeira-de-Oliveira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal; Labfit-Health Products Research and Development Lda, UBImedical, Estrada Nacional 506, 6200-284, Covilhã, Portugal.
| |
Collapse
|
39
|
Gelidiales Are Not Just Agar—Revealing the Antimicrobial Potential of Gelidium corneum for Skin Disorders. Antibiotics (Basel) 2022; 11:antibiotics11040481. [PMID: 35453232 PMCID: PMC9030148 DOI: 10.3390/antibiotics11040481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
In recent decades, seaweeds have proven to be an excellent source of bioactive molecules. Presently, the seaweed Gelidium corneum is harvested in a small area of the Portuguese coast exclusively for agar extraction. The aim of this work was to fully disclosure Gelidium corneum as a sustainable source of antimicrobial ingredients for new dermatological formulations, highlighting its potential to be explored in a circular economy context. For this purpose, after a green sequential extraction, these seaweed fractions (F1–F5) were chemically characterized (1H NMR) and evaluated for their antimicrobial potential against Staphylococcus aureus, Staphylococcus epidermidis and Cutibacterium acnes. The most active fractions were also evaluated for their effects on membrane potential, membrane integrity and DNA damage. Fractions F2 and F3 displayed the best results, with IC50 values of 16.1 (7.27–23.02) μg/mL and 51.04 (43.36–59.74) μg/mL against C. acnes, respectively, and 53.29 (48.75–57.91) μg/mL and 102.80 (87.15–122.30) μg/mL against S. epidermidis, respectively. The antimicrobial effects of both fractions seem to be related to membrane hyperpolarization and DNA damage. This dual mechanism of action may provide therapeutic advantages for the treatment of skin dysbiosis-related diseases.
Collapse
|
40
|
The Role of Skin Immune System in Acne. J Clin Med 2022; 11:jcm11061579. [PMID: 35329904 PMCID: PMC8949596 DOI: 10.3390/jcm11061579] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 01/05/2023] Open
Abstract
Acne vulgaris is a skin disease that often occurs in adolescence and in young adulthood. The main pathogenic factors are hyperkeratinization, obstruction of sebaceous glands, stimulation of sebaceous gland secretion by androgens, and bacterial colonization of sebaceous units by Cutibacterium acnes, which promotes inflammation. Little is known about the role of skin immune cells in the development of acne lesions. The aim of the study was to try to understand the role of skin immune cells in the course of acne. Recent studies have shown that there are at least four major pathways by which Cutibacterium acnes interacts with the innate immune system to induce inflammation: through TLRs, activating inflammasomes, inducing the production of matrix metalloproteinases (MMPs), and stimulating antimicrobial peptide (AMP) activity. Cells of adaptive immune response, mainly Th1 and Th17 lymphocytes, also play an important role in the pathogenesis of acne. It is worth emphasizing that understanding the role of the skin’s immune cells in the pathogenesis of acne may, in the future, contribute to the application of modern therapeutic strategies that would avoid addiction to antibiotics, which would alleviate the spectrum of resistance that is now evident and a current threat.
Collapse
|
41
|
Carmona-Cruz S, Orozco-Covarrubias L, Sáez-de-Ocariz M. The Human Skin Microbiome in Selected Cutaneous Diseases. Front Cell Infect Microbiol 2022; 12:834135. [PMID: 35321316 PMCID: PMC8936186 DOI: 10.3389/fcimb.2022.834135] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
The human skin harbors a wide variety of microbes that, together with their genetic information and host interactions, form the human skin microbiome. The role of the human microbiome in the development of various diseases has lately gained interest. According to several studies, changes in the cutaneous microbiota are involved in the pathophysiology of several dermatoses. A better delineation of the human microbiome and its interactions with the innate and adaptive immune systems could lead to a better understanding of these diseases, as well as the opportunity to achieve new therapeutic modalities. The present review centers on the most recent knowledge on skin microbiome and its participation in the pathogenesis of several skin disorders: atopic and seborrheic dermatitis, alopecia areata, psoriasis and acne.
Collapse
|
42
|
Mitigating the negative impacts of marine invasive species – Sargassum muticum - a key seaweed for skincare products development. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Advances in Microbiome-Derived Solutions and Methodologies Are Founding a New Era in Skin Health and Care. Pathogens 2022; 11:pathogens11020121. [PMID: 35215065 PMCID: PMC8879973 DOI: 10.3390/pathogens11020121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
The microbiome, as a community of microorganisms and their structural elements, genomes, metabolites/signal molecules, has been shown to play an important role in human health, with significant beneficial applications for gut health. Skin microbiome has emerged as a new field with high potential to develop disruptive solutions to manage skin health and disease. Despite an incomplete toolbox for skin microbiome analyses, much progress has been made towards functional dissection of microbiomes and host-microbiome interactions. A standardized and robust investigation of the skin microbiome is necessary to provide accurate microbial information and set the base for a successful translation of innovations in the dermo-cosmetic field. This review provides an overview of how the landscape of skin microbiome research has evolved from method development (multi-omics/data-based analytical approaches) to the discovery and development of novel microbiome-derived ingredients. Moreover, it provides a summary of the latest findings on interactions between the microbiomes (gut and skin) and skin health/disease. Solutions derived from these two paths are used to develop novel microbiome-based ingredients or solutions acting on skin homeostasis are proposed. The most promising skin and gut-derived microbiome interventional strategies are presented, along with regulatory, safety, industrial, and technical challenges related to a successful translation of these microbiome-based concepts/technologies in the dermo-cosmetic industry.
Collapse
|
44
|
Dhanam S, Arumugam T, Rajasekar S. Biofilm Effects of the Soil Bacillus cereus Metabolites: Isolation, Characterization and Antimicrobial Activity Against Methicillin-Resistant Staphylococcus aureus. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Januário AP, Félix R, Félix C, Reboleira J, Valentão P, Lemos MFL. Red Seaweed-Derived Compounds as a Potential New Approach for Acne Vulgaris Care. Pharmaceutics 2021; 13:pharmaceutics13111930. [PMID: 34834345 PMCID: PMC8623078 DOI: 10.3390/pharmaceutics13111930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris (AV) is a chronic skin disease of the pilosebaceous unit affecting both adolescents and adults. Its pathophysiology includes processes of inflammation, increased keratinization, sebum production, hormonal dysregulation, and bacterial Cutibacterium acnes proliferation. Common AV has been treated with antibiotics since the 1960s, but strain resistance has emerged and is of paramount concern. Macroalgae are known producers of substances with bioactive properties, including anti-viral, antibacterial, antioxidant, and anti-inflammatory properties, among several others. In particular, red algae are rich in bioactive compounds such as polysaccharides, phenolic compounds, lipids, sterols, alkaloids, and terpenoids, conferring them antioxidant, antimicrobial, and anti-inflammatory activities, among others. Thus, the exploration of compounds from marine resources can be an appealing approach to discover new treatment options against AV. The aim of this work is to provide an overview of the current knowledge of the potentialities of red macroalgae in the treatment of AV by reviewing the main therapeutic targets of this disease, and then the existence of compounds or extracts with bioactive properties against them.
Collapse
Affiliation(s)
- Adriana P. Januário
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
- Correspondence: (A.P.J.); (M.F.L.L.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - João Reboleira
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- Correspondence: (A.P.J.); (M.F.L.L.)
| |
Collapse
|
46
|
Folle C, Marqués AM, Díaz-Garrido N, Espina M, Sánchez-López E, Badia J, Baldoma L, Calpena AC, García ML. Thymol-loaded PLGA nanoparticles: an efficient approach for acne treatment. J Nanobiotechnology 2021; 19:359. [PMID: 34749747 PMCID: PMC8577023 DOI: 10.1186/s12951-021-01092-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background Acne is a common skin disorder that involves an infection inside the hair follicle, which is usually treated with antibiotics, resulting in unbalanced skin microbiota and microbial resistance. For this reason, we developed polymeric nanoparticles encapsulating thymol, a natural active compound with antimicrobial and antioxidant properties. In this work, optimization physicochemical characterization, biopharmaceutical behavior and therapeutic efficacy of this novel nanostructured system were assessed. Results Thymol NPs (TH-NP) resulted on suitable average particle size below 200 nm with a surface charge around − 28 mV and high encapsulation efficiency (80%). TH-NP released TH in a sustained manner and provide a slow-rate penetration into the hair follicle, being highly retained inside the skin. TH-NP possess a potent antimicrobial activity against Cutibacterium acnes and minor effect towards Staphylococcus epidermis, the major resident of the healthy skin microbiota. Additionally, the stability and sterility of developed NPs were maintained along storage. Conclusion TH-NP showed a promising and efficient alternative for the treatment of skin acne infection, avoiding antibiotic administration, reducing side effects, and preventing microbial drug resistance, without altering the healthy skin microbiota. Additionally, TH-NP enhanced TH antioxidant activity, constituting a natural, preservative-free, approach for acne treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01092-z.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| | - Josefa Badia
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
47
|
Dagnelie MA, Corvec S, Timon-David E, Khammari A, Dréno B. Cutibacterium acnes and Staphylococcus epidermidis: the unmissable modulators of skin inflammatory response. Exp Dermatol 2021; 31:406-412. [PMID: 34674324 DOI: 10.1111/exd.14467] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022]
Abstract
Acne is a multifactorial inflammatory dermatose that affects all age categories from teenagers to adults, resulting in important psychological impacts. Multiple hypotheses currently attempt to decrypt the physiopathology of this disease, and four main actors were identified as highly implicated in it: hyperkeratinization of the pilosebaceous follicle, hyperseborrheae, host factors (innate immunity) and skin microbiota. In this letter, we present results illustrating the impact of skin microbiota on inflammatory skin response, and how far the proper balance between each bacterial community, especially C. acnes and S. epidermidis, is crucial to maintain an appropriate inflammatory response on the skin. The data presented in this study demonstrate that within the skin microbiota, an imbalance between Cutibacterium acnes and Staphylococcus epidermidis, is able to induce the activation of inflammation-related markers such as IL-1ra, IL-6, IL-8, G-CSF and the molecules C5/C5a, soluble CD14 MIP-3beta, Serpin E1, VCAM-1 and beta-defensin-2. Moreover, S. epidermidis appears to have a more important role than C. acnes on the induction of inflammation-related markers, particularly on IL-6. This work is the basis of future in vitro studies to further understand acne physiopathology, inspiring the development of future innovative therapies based on skin microbiota modulation.
Collapse
Affiliation(s)
- Marie-Ange Dagnelie
- Dermatology Department, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
| | - Stephane Corvec
- Bacteriology Department, CHU Nantes, CRCINA, University Nantes, Nantes, France
| | - Elise Timon-David
- Dermatology Department, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
| | - Amir Khammari
- Dermatology Department, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
| | - Brigitte Dréno
- Dermatology Department, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
| |
Collapse
|
48
|
Ruffier d'Epenoux L, Guillouzouic A, Bémer P, Dagnelie MA, Khammari A, Dréno B, Corvec S. Should we consider broad-spectrum quinolone antibacterial agent as acne treatment in the antimicrobial resistance era? J Eur Acad Dermatol Venereol 2021; 36:e193-e195. [PMID: 34626030 DOI: 10.1111/jdv.17727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L Ruffier d'Epenoux
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France.,CRCINA, INSERM U1232, Université de Nantes, Nantes, France
| | - A Guillouzouic
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
| | - P Bémer
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
| | - M-A Dagnelie
- CRCINA, INSERM U1232, Université de Nantes, Nantes, France
| | - A Khammari
- CRCINA, INSERM U1232, Université de Nantes, Nantes, France.,Service de Dermatologie, CHU Nantes, Nantes, France
| | - B Dréno
- CRCINA, INSERM U1232, Université de Nantes, Nantes, France.,Service de Dermatologie, CHU Nantes, Nantes, France
| | - S Corvec
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France.,CRCINA, INSERM U1232, Université de Nantes, Nantes, France
| |
Collapse
|
49
|
Fatima N, Bjarnsholt T, Bay L. Dynamics of skin microbiota in shoulder surgery infections. APMIS 2021; 129:665-674. [PMID: 34587324 DOI: 10.1111/apm.13185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/25/2021] [Indexed: 01/10/2023]
Abstract
Post-surgical infections arise due to various contributing factors. Most important is the presence of potential pathogenic microorganisms in the skin complemented by the patient´s health status. Cutibacterium acnes is commonly present in the pilosebaceous glands and hair follicle funnels in human skin. After surgical intervention, these highly prevalent, slow-growing bacteria can be found in the deeper tissues and in proximity of implants. C. acnes is frequently implicated in post-surgical infections, often resulting in the need for revision surgery. This review summarizes the current understanding of microbial dynamics in shoulder surgical infections. In particular, we shed light on the contribution of C. acnes to post-surgical shoulder infections as well as their colonization and immune-modulatory potential. Despite being persistently found in post-surgical tissues, C. acnes is often underestimated as a causative organism due to its slow growth and the inefficient detection methods. We discuss the role of the skin environment constituted by microbial composition and host cellular status in influencing C. acnes recolonization potential. Future mapping of the individual skin microbiome in shoulder surgery patients using advanced molecular methods would be a useful approach for determining the risk of post-operative infections.
Collapse
Affiliation(s)
- Naireen Fatima
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Lene Bay
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Xu X, Ran X, Tang J, Pradhan S, Dai Y, Zhuang K, Ran Y. Skin Microbiota in Non-inflammatory and Inflammatory Lesions of Acne Vulgaris: The Underlying Changes within the Pilosebaceous Unit. Mycopathologia 2021; 186:863-869. [PMID: 34498139 DOI: 10.1007/s11046-021-00586-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023]
Abstract
Acne vulgaris is a common chronic inflammatory skin disease of the pilosebaceous unit. Clinical manifestations include seborrhea, non-inflammatory lesions, inflammatory lesions, or scar formation. Fourteen eligible participants of either sex, aged 18-28 years old, with mild to moderate acne lesions, were recruited in this observational study. The contents of 10 pilosebaceous units of non-inflammatory (comedones) and inflammatory lesions (papules and pustules) were collected from each participant's face and examined by amplicon metagenomics sequencing and real-time Polymerase Chain Reaction (PCR). Male participants, participants with a higher body mass index (BMI) than normal, and participants younger than 20 years old, were revealed to have a higher proportion of Malassezia in their non-inflammatory lesions than that in inflammatory lesions. There was an increased abundance of Malassezia restricta (M. restricta) and Cutibacterium acnes (C. acnes) in the non-inflammatory group. Correlation analysis indicated that Staphylococcus epidermidis (S. epidermidis) and M. restricta have similar proliferation trends with C. acnes during the transformation from non-inflammatory to inflammatory lesions. M. restricta probably involve in the microecological balance within the pilosebaceous unit.
Collapse
Affiliation(s)
- Xiaoxi Xu
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiaoqing Tang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Sushmita Pradhan
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yaling Dai
- Department of Clinical Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kaiwen Zhuang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Clinical Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|