1
|
Zhang S, Lu J, Jin Z, Xu H, Zhang D, Chen J, Wang J. Gut microbiota metabolites: potential therapeutic targets for Alzheimer's disease? Front Pharmacol 2024; 15:1459655. [PMID: 39355779 PMCID: PMC11442227 DOI: 10.3389/fphar.2024.1459655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function, which significantly increases pain and social burden. However, few therapeutic interventions are effective in preventing or mitigating the progression of AD. An increasing number of recent studies support the hypothesis that the gut microbiome and its metabolites may be associated with upstream regulators of AD pathology. Methods In this review, we comprehensively explore the potential mechanisms and currently available interventions targeting the microbiome for the improvement of AD. Our discussion is structured around modern research advancements in AD, the bidirectional communication between the gut and brain, the multi-target regulatory effects of microbial metabolites on AD, and therapeutic strategies aimed at modulating gut microbiota to manage AD. Results The gut microbiota plays a crucial role in the pathogenesis of AD through continuous bidirectional communication via the microbiota-gut-brain axis. Among these, microbial metabolites such as lipids, amino acids, bile acids and neurotransmitters, especially sphingolipids and phospholipids, may serve as central components of the gut-brain axis, regulating AD-related pathogenic mechanisms including β-amyloid metabolism, Tau protein phosphorylation, and neuroinflammation. Additionally, interventions such as probiotic administration, fecal microbiota transplantation, and antibiotic use have also provided evidence supporting the association between gut microbiota and AD. At the same time, we propose an innovative strategy for treating AD: a healthy lifestyle combined with targeted probiotics and other potential therapeutic interventions, aiming to restore intestinal ecology and microbiota balance. Conclusion Despite previous efforts, the molecular mechanisms by which gut microbes act on AD have yet to be fully described. However, intestinal microorganisms may become an essential target for connecting the gut-brain axis and improving the symptoms of AD. At the same time, it requires joint exploration by multiple centers and multiple disciplines.
Collapse
Affiliation(s)
- Shanshan Zhang
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ziqi Jin
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Chen
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Van Hul M, Neyrinck AM, Everard A, Abot A, Bindels LB, Delzenne NM, Knauf C, Cani PD. Role of the intestinal microbiota in contributing to weight disorders and associated comorbidities. Clin Microbiol Rev 2024; 37:e0004523. [PMID: 38940505 PMCID: PMC11391702 DOI: 10.1128/cmr.00045-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARYThe gut microbiota is a major factor contributing to the regulation of energy homeostasis and has been linked to both excessive body weight and accumulation of fat mass (i.e., overweight, obesity) or body weight loss, weakness, muscle atrophy, and fat depletion (i.e., cachexia). These syndromes are characterized by multiple metabolic dysfunctions including abnormal regulation of food reward and intake, energy storage, and low-grade inflammation. Given the increasing worldwide prevalence of obesity, cachexia, and associated metabolic disorders, novel therapeutic strategies are needed. Among the different mechanisms explaining how the gut microbiota is capable of influencing host metabolism and energy balance, numerous studies have investigated the complex interactions existing between nutrition, gut microbes, and their metabolites. In this review, we discuss how gut microbes and different microbiota-derived metabolites regulate host metabolism. We describe the role of the gut barrier function in the onset of inflammation in this context. We explore the importance of the gut-to-brain axis in the regulation of energy homeostasis and glucose metabolism but also the key role played by the liver. Finally, we present specific key examples of how using targeted approaches such as prebiotics and probiotics might affect specific metabolites, their signaling pathways, and their interactions with the host and reflect on the challenges to move from bench to bedside.
Collapse
Affiliation(s)
- Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
| | - Audrey M Neyrinck
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Amandine Everard
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | - Laure B Bindels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Nathalie M Delzenne
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Toulouse, France
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| |
Collapse
|
3
|
Romaní-Pérez M, Líebana-García R, Flor-Duro A, Bonillo-Jiménez D, Bullich-Vilarrubias C, Olivares M, Sanz Y. Obesity and the gut microbiota: implications of neuroendocrine and immune signaling. FEBS J 2024. [PMID: 39159270 DOI: 10.1111/febs.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Obesity is a major health challenge due to its high prevalence and associated comorbidities. The excessive intake of a diet rich in fat and sugars leads to a persistent imbalance between energy intake and energy expenditure, which increases adiposity. Here, we provide an update on relevant diet-microbe-host interactions contributing to or protecting from obesity. In particular, we focus on how unhealthy diets shape the gut microbiota and thus impact crucial intestinal neuroendocrine and immune system functions. We describe how these interactions promote dysfunction in gut-to-brain neuroendocrine pathways involved in food intake control and postprandial metabolism and elevate the intestinal proinflammatory tone, promoting obesity and metabolic complications. In addition, we provide examples of how this knowledge may inspire microbiome-based interventions, such as fecal microbiota transplants, probiotics, and biotherapeutics, to effectively combat obesity-related disorders. We also discuss the current limitations and gaps in knowledge of gut microbiota research in obesity.
Collapse
Affiliation(s)
- Marina Romaní-Pérez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Rebeca Líebana-García
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Alejandra Flor-Duro
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Daniel Bonillo-Jiménez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Marta Olivares
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
4
|
Cingolani F, Balasubramaniam A, Srinivasan S. Molecular mechanisms of enteric neuropathies in high-fat diet feeding and diabetes. Neurogastroenterol Motil 2024:e14897. [PMID: 39119749 DOI: 10.1111/nmo.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Obesity and diabetes are associated with altered gastrointestinal function and with the development of abdominal pain, nausea, diarrhea, and constipation among other symptoms. The enteric nervous system (ENS) regulates gastrointestinal motility. Enteric neuropathies defined as damage or loss of enteric neurons can lead to motility disorders. PURPOSE Here, we review the molecular mechanisms that drive enteric neurodegeneration in diabetes and obesity, including signaling pathways leading to neuronal cell death, oxidative stress, and microbiota alteration. We also highlight potential approaches to treat enteric neuropathies including antioxidant therapy to prevent oxidative stress-induced damage and the use of stem cells.
Collapse
Affiliation(s)
- Francesca Cingolani
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Arun Balasubramaniam
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| |
Collapse
|
5
|
Clemente-Suárez VJ, Peris-Ramos HC, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, David-Fernandez S, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Personalizing Nutrition Strategies: Bridging Research and Public Health. J Pers Med 2024; 14:305. [PMID: 38541047 PMCID: PMC10970995 DOI: 10.3390/jpm14030305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
In recent years, although life expectancy has increased significantly, non-communicable diseases (NCDs) continue to pose a significant threat to the health of the global population. Therefore, eating habits have been recognized as key modifiable factors that influence people's health and well-being. For this reason, it is interesting to study dietary patterns, since the human diet is a complex mixture of macronutrients, micronutrients, and bioactive compounds, and can modulate multiple physiological processes, including immune function, the metabolism, and inflammation. To ensure that the data we acquired were current and relevant, we searched primary and secondary sources, including scientific journals, bibliographic indexes, and databases in the last 15 years with the most relevant articles. After this search, we observed that all the recent research on NCDs suggests that diet is a critical factor in shaping an individual's health outcomes. Thus, cardiovascular, metabolic, mental, dental, and visual health depends largely on the intake, habits and patterns, and nutritional behaviors. A diet high in processed and refined foods, added sugars, and saturated fats can increase the risk of developing chronic diseases. On the other hand, a diet rich in whole, nutrient-dense foods, such as vegetables, fruits, nuts, legumes, and a high adherence to Mediterranean diet can improve health's people.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Helia Carmen Peris-Ramos
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street, s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | - Susana David-Fernandez
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
6
|
Abot A, Pomié N, Astre G, Jaomanjaka F, Marchand P, Cani PD, Roudier N, Knauf C. Limosilactobacillus reuteri BIO7251 administration improves metabolic phenotype in obese mice fed a high fat diet: an inter-organ crosstalk between gut, adipose tissue and nervous system. Int J Food Sci Nutr 2024; 75:58-69. [PMID: 37921224 DOI: 10.1080/09637486.2023.2276672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Gut microbiota is implicated in the control of host physiology by releasing bioactive actors that could exert a direct or indirect effect on tissue. A dysfunction of the gut microbiota to tissue axis could participate in the development of pathological states such as obesity and diabetes. The aim of this study was to identify the metabolic effect of Limosilactobacillus reuteri (known as Lactobacillus reuteri) BIO7251 (L. reuteri BIO7251) isolated from Corsican clementine orange. Body weight gain, adiposity, glucose tolerance, glucose absorption and food intake were measured in mice fed a high-fat diet in response to a preventive oral administration of L. reuteri BIO7251. This strain of bacteria exerts a beneficial effect on body weight gain by decreasing the subcutaneous adipose tissue mass. The treatment with L. reuteri BIO7251 decreases glucose absorption and food intake in obese/diabetic mice. L. reuteri BIO7251 could be tested as new probiotic strain that could manage body weight during obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Brussels, NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium, Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology (WELBIO) department, WEL Research Institute (WELRI), Brussels, Belgium
| | | | - Claude Knauf
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Toulouse, France
| |
Collapse
|
7
|
Di Ciaula A, Bonfrate L, Khalil M, Garruti G, Portincasa P. Contribution of the microbiome for better phenotyping of people living with obesity. Rev Endocr Metab Disord 2023; 24:839-870. [PMID: 37119391 PMCID: PMC10148591 DOI: 10.1007/s11154-023-09798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 05/01/2023]
Abstract
Obesity has reached epidemic proportion worldwide and in all ages. Available evidence points to a multifactorial pathogenesis involving gene predisposition and environmental factors. Gut microbiota plays a critical role as a major interface between external factors, i.e., diet, lifestyle, toxic chemicals, and internal mechanisms regulating energy and metabolic homeostasis, fat production and storage. A shift in microbiota composition is linked with overweight and obesity, with pathogenic mechanisms involving bacterial products and metabolites (mainly endocannabinoid-related mediators, short-chain fatty acids, bile acids, catabolites of tryptophan, lipopolysaccharides) and subsequent alterations in gut barrier, altered metabolic homeostasis, insulin resistance and chronic, low-grade inflammation. Although animal studies point to the links between an "obesogenic" microbiota and the development of different obesity phenotypes, the translational value of these results in humans is still limited by the heterogeneity among studies, the high variation of gut microbiota over time and the lack of robust longitudinal studies adequately considering inter-individual confounders. Nevertheless, available evidence underscores the existence of several genera predisposing to obesity or, conversely, to lean and metabolically health phenotype (e.g., Akkermansia muciniphila, species from genera Faecalibacterium, Alistipes, Roseburia). Further longitudinal studies using metagenomics, transcriptomics, proteomics, and metabolomics with exact characterization of confounders are needed in this field. Results must confirm that distinct genera and specific microbial-derived metabolites represent effective and precision interventions against overweight and obesity in the long-term.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
8
|
Yadav H, Jaldhi, Bhardwaj R, Anamika, Bakshi A, Gupta S, Maurya SK. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review. Life Sci 2023; 330:122022. [PMID: 37579835 DOI: 10.1016/j.lfs.2023.122022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Emerging evidence have shown the importance of gut microbiota in regulating brain functions. The diverse molecular mechanisms involved in cross-talk between gut and brain provide insight into importance of this communication in maintenance of brain homeostasis. It has also been observed that disturbed gut microbiota contributes to neurological diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and aging. Recently, gut microbiome-derived exosomes have also been reported to play an essential role in the development and progression of neurodegenerative diseases and could thereby act as a therapeutic target. Further, pharmacological interventions including antibiotics, prebiotics and probiotics can influence gut microbiome-mediated management of neurological diseases. However, extensive research is warranted to better comprehend this interconnection in maintenance of brain homeostasis and its implication in neurological diseases. Thus, the present review is aimed to provide a detailed understanding of gut-brain axis followed by possibilities to target the gut microbiome for improving neurological health.
Collapse
Affiliation(s)
- Himanshi Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Jaldhi
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Rati Bhardwaj
- Department of Biotechnology, Delhi Technical University, Delhi, India
| | - Anamika
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India.
| |
Collapse
|
9
|
Abot A, Brochot A, Pomié N, Astre G, Druart C, de Vos WM, Knauf C, Cani PD. Pasteurized Akkermansia muciniphila improves glucose metabolism is linked with increased hypothalamic nitric oxide release. Heliyon 2023; 9:e18196. [PMID: 37501991 PMCID: PMC10368821 DOI: 10.1016/j.heliyon.2023.e18196] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Background and objective Pasteurized Akkermansia muciniphila cells have shown anti-diabetic effects in rodents and human. Although, its primary site of action consists in maintaining the gut barrier function, there are no study exploring if A. muciniphila controls glycemia via a gut to brain axis. Targeting the gut motility represents an alternative pathway to treat hyperglycemia. Here, we tested the impact of pasteurized A. muciniphila on gut motility, gut-brain axis and glucose metabolism. Methods We used mice fed a 45% high-fat (HFD) treated or not with pasteurized A. muciniphila MucT during 12 weeks. We measured the effects of the treatment on body weight gain, glucose metabolism (insulin, glycemia, glucose tolerance), gut contraction and enteric neurotransmitter release, and hypothalamic nitric oxide (NO) release. Results We show that pasteurized A. muciniphila exerts positive effects on different metabolic parameters such as body weight, fat mass, insulin, glycemia and glucose tolerance. This could be explained by the ability of pasteurized A. muciniphila supplementation to decrease duodenal contraction and to increase hypothalamic NO release in HFD mice. Conclusion We demonstrate a novel mode of action of pasteurized A. muciniphila explaining its beneficial impact on the control of glycemia in a preclinical model of type 2 diabetes via gut-brain axis signaling.
Collapse
Affiliation(s)
- Anne Abot
- Enterosys SAS, 31670, Labège, France
| | | | | | | | - Céline Druart
- The Akkermansia Company, 1435, Mont-Saint-Guibert, Belgium
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, 6700, EH Wageningen, the Netherlands
- Human Microbiome Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Claude Knauf
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Place du Docteur Baylac, CS, 60039, CEDEX 3, 31024, Toulouse, France
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France
| | - Patrice D. Cani
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, WELBIO department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium
| |
Collapse
|
10
|
Park S, Zhang T, Kang S. Fecal Microbiota Composition, Their Interactions, and Metagenome Function in US Adults with Type 2 Diabetes According to Enterotypes. Int J Mol Sci 2023; 24:ijms24119533. [PMID: 37298483 DOI: 10.3390/ijms24119533] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
T2DM etiology differs among Asians and Caucasians and may be associated with gut microbiota influenced by different diet patterns. However, the association between fecal bacterial composition, enterotypes, and T2DM susceptibility remained controversial. We investigated the fecal bacterial composition, co-abundance network, and metagenome function in US adults with T2DM compared to healthy adults based on enterotypes. We analyzed 1911 fecal bacterial files of 1039 T2DM and 872 healthy US adults from the Human Microbiome Projects. Operational taxonomic units were obtained after filtering and cleaning the files using Qiime2 tools. Machine learning and network analysis identified primary bacteria and their interactions influencing T2DM incidence, clustered into enterotypes, Bacteroidaceae (ET-B), Lachnospiraceae (ET-L), and Prevotellaceae (ET-P). ET-B showed higher T2DM incidence. Alpha-diversity was significantly lower in T2DM in ET-L and ET-P (p < 0.0001), but not in ET-B. Beta-diversity revealed a distinct separation between T2DM and healthy groups across all enterotypes (p < 0.0001). The XGBoost model exhibited high accuracy and sensitivity. Enterocloster bolteae, Facalicatena fissicatena, Clostridium symbiosum, and Facalibacterium prausnitizii were more abundant in the T2DM group than in the healthy group. Bacteroides koreensis, Oscillibacter ruminantium, Bacteroides uniformis, and Blautia wexlerae were lower in the T2DM than in the healthy group regardless of the enterotypes in the XGBoost model (p < 0.0001). However, the patterns of microbial interactions varied among different enterotypes affecting T2DM risk. The interaction between fecal bacteria was more tightly regulated in the ET-L than in the ET-B and ET-P groups (p < 0.001). Metagenomic analysis revealed an inverse association between bacteria abundance in T2DM, energy utility, butanoate and propanoate metabolism, and the insulin signaling pathway (p < 0.0001). In conclusion, fecal bacteria play a role in T2DM pathogenesis, particularly within different enterotypes, providing valuable insights into the link between gut microbiota and T2DM in the US population.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, Asan 31499, Republic of Korea
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea
| | - Ting Zhang
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea
| | - Suna Kang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, Asan 31499, Republic of Korea
| |
Collapse
|
11
|
Nie L, Yan Q, Zhang S, Cao Y, Zhou X. Duodenal Mucosa: A New Target for the Treatment of Type 2 Diabetes. Endocr Pract 2023; 29:53-59. [PMID: 36309189 DOI: 10.1016/j.eprac.2022.10.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE After a high-fat and high-sugar diet, the duodenal mucosa of rodents proliferate and trigger the signal of insulin resistance, which may be the cause of type 2 diabetes (T2D). In response to this phenomenon, researchers have designed the duodenal mucosal resurfacing (DMR) procedure, mainly through the hydrothermal ablation procedure, to restore the normal mucosal surface, thereby correcting this abnormal metabolic signal. This article aims to understand the changes in duodenum before and after the onset or treatment of T2D, and the potential mechanisms of DMR procedure. METHODS A literature search of PubMed and Web of Science was conducted using appropriate keywords. RESULTS Both animal and clinical studies have shown that the villus thickness, intestinal cells, glucose transporters, enteric nerves, and gut microbiota and their metabolites in the duodenum undergo corresponding changes before and after the onset or treatment of T2D. These changes may be related to the pathogenesis of T2D. DMR procedure may produce beneficial glycemic and hepatic metabolic effects by regulating these changes. CONCLUSION The duodenum is an important metabolic signaling center, and limiting nutrient exposure to this critical region will have powerful metabolic benefits. The DMR procedure may regulate glycemic and hepatic parameters through various mechanisms, which needs to be further confirmed by a large number of animal and clinical studies.
Collapse
Affiliation(s)
- LiJuan Nie
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - QianHua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shu Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - YuTian Cao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - XiQiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Neag MA, Craciun AE, Inceu AI, Burlacu DE, Craciun CI, Buzoianu AD. Short-Chain Fatty Acids as Bacterial Enterocytes and Therapeutic Target in Diabetes Mellitus Type 2. Biomedicines 2022; 11:72. [PMID: 36672580 PMCID: PMC9855839 DOI: 10.3390/biomedicines11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus is a disease with multiple gastrointestinal symptoms (diarrhea or constipation, abdominal pain, bloating) whose pathogenesis is multifactorial. The most important of these factors is the enteric nervous system, also known as the "second brain"; a part of the peripheral nervous system capable of functioning independently of the central nervous system. Modulation of the enteric nervous system can be done by short-chain fatty acids, which are bacterial metabolites of the intestinal microbiota. In addition, these acids provide multiple benefits in diabetes, particularly by stimulating glucagon-like peptide 1 and insulin secretion. However, it is not clear what type of nutraceuticals (probiotics, prebiotics, and alimentary supplements) can be used to increase the amount of short-chain fatty acids and achieve the beneficial effects in diabetes. Thus, even if several studies demonstrate that the gut microbiota modulates the activity of the ENS, and thus, may have a positive effect in diabetes, further studies are needed to underline this effect. This review outlines the most recent data regarding the involvement of SCFAs as a disease modifying agent in diabetes mellitus type 2. For an in-depth understanding of the modulation of gut dysbiosis with SCFAs in diabetes, we provide an overview of the interplay between gut microbiota and ENS.
Collapse
Affiliation(s)
- Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Diana-Elena Burlacu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristian-Ioan Craciun
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Gimenes GM, Santana GO, Scervino MVM, Curi R, Pereira JNB. A short review on the features of the non-obese diabetic Goto-Kakizaki rat intestine. Braz J Med Biol Res 2022; 55:e11910. [PMID: 36000611 PMCID: PMC9394691 DOI: 10.1590/1414-431x2022e11910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
The Goto-Kakizaki (GK) rat is a non-obese experimental model of type 2 diabetes
mellitus (T2DM) that allows researchers to monitor diabetes-induced changes
without jeopardizing the effects of obesity. This rat strain exhibits notable
gastrointestinal features associated with T2DM, such as marked alterations in
intestinal morphology, reduced intestinal motility, slow transit, and modified
microbiota compared to Wistar rats. The primary treatments for diabetic patients
include administration of hypoglycemic agents and insulin, and lifestyle
changes. Emerging procedures, including alternative therapies, metabolic
surgeries, and modulation of the intestinal microbiota composition, have been
shown to improve the diabetic state of GK rats. This review describes the
morpho-physiological diabetic-associated features of the gastrointestinal tract
(GIT) of GK rats. We also describe promising strategies, e.g., metabolic surgery
and modulation of gut microbiota composition, used to target the GIT of this
animal model to improve the diabetic state.
Collapse
Affiliation(s)
- G M Gimenes
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - G O Santana
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - M V M Scervino
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - R Curi
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil.,Centro Bioindustrial, Instituto Butantan, São Paulo, SP, Brasil
| | - J N B Pereira
- Laboratório Estratégico de Diagnóstico Molecular, Instituto Butantan, São Paulo, SP, Brasil
| |
Collapse
|
14
|
Koopen A, Witjes J, Wortelboer K, Majait S, Prodan A, Levin E, Herrema H, Winkelmeijer M, Aalvink S, Bergman JJGHM, Havik S, Hartmann B, Levels H, Bergh PO, van Son J, Balvers M, Bastos DM, Stroes E, Groen AK, Henricsson M, Kemper EM, Holst J, Strauch CM, Hazen SL, Bäckhed F, De Vos WM, Nieuwdorp M, Rampanelli E. Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects: a randomised double-blind placebo-controlled cross-over study. Gut 2022; 71:1577-1587. [PMID: 34697034 PMCID: PMC9279853 DOI: 10.1136/gutjnl-2020-323297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/09/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Although gut dysbiosis is increasingly recognised as a pathophysiological component of metabolic syndrome (MetS), the role and mode of action of specific gut microbes in metabolic health remain elusive. Previously, we identified the commensal butyrogenic Anaerobutyricum soehngenii to be associated with improved insulin sensitivity in subjects with MetS. In this proof-of-concept study, we investigated the potential therapeutic effects of A. soehngenii L2-7 on systemic metabolic responses and duodenal transcriptome profiles in individuals with MetS. DESIGN In this randomised double-blind placebo-controlled cross-over study, 12 male subjects with MetS received duodenal infusions of A. soehngenii/ placebo and underwent duodenal biopsies, mixed meal tests (6 hours postinfusion) and 24-hour continuous glucose monitoring. RESULTS A. soehngenii treatment provoked a markedly increased postprandial excursion of the insulinotropic hormone glucagon-like peptide 1 (GLP-1) and an elevation of plasma secondary bile acids, which were positively associated with GLP-1 levels. Moreover, A. soehngenii treatment robustly shaped the duodenal expression of 73 genes, with the highest fold induction in the expression of regenerating islet-protein 1B (REG1B)-encoding gene. Strikingly, duodenal REG1B expression positively correlated with GLP-1 levels and negatively correlated with peripheral glucose variability, which was significantly diminished in the 24 hours following A. soehngenii intake. Mechanistically, Reg1B expression is induced upon sensing butyrate or bacterial peptidoglycan. Importantly, A. soehngenii duodenal administration was safe and well tolerated. CONCLUSIONS A single dose of A. soehngenii improves peripheral glycaemic control within 24 hours; it specifically stimulates intestinal GLP-1 production and REG1B expression. Further studies are needed to delineate the specific pathways involved in REG1B induction and function in insulin sensitivity. TRIAL REGISTRATION NUMBER NTR-NL6630.
Collapse
Affiliation(s)
- Annefleur Koopen
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Julia Witjes
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Soumia Majait
- Clinical Pharmacy, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Andrei Prodan
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Evgeni Levin
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Hilde Herrema
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Maaike Winkelmeijer
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Steven Aalvink
- Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Stephan Havik
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Bolette Hartmann
- Biomedical Sciences, University of Copenhagen Novo Nordisk Foundation Center for Basic Metabolic Research, Kobenhavn, Denmark
| | - Han Levels
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Per-Olof Bergh
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Jamie van Son
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Manon Balvers
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | | | - Erik Stroes
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Albert K Groen
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Marcus Henricsson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | | | - Jens Holst
- Biomedical Sciences, University of Copenhagen Novo Nordisk Foundation Center for Basic Metabolic Research, Kobenhavn, Denmark
| | - Christopher M Strauch
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stanley L Hazen
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Fredrik Bäckhed
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Willem M De Vos
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Abot A, Fried S, Cani PD, Knauf C. Reactive Oxygen Species/Reactive Nitrogen Species as Messengers in the Gut: Impact on Physiology and Metabolic Disorders. Antioxid Redox Signal 2022; 37:394-415. [PMID: 34714099 DOI: 10.1089/ars.2021.0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: The role of reactive oxygen/nitrogen species as "friend" or "foe" messengers in the whole body is well characterized. Depending on the concentration in the tissue considered, these molecular actors exert beneficial or deleterious impacts leading to a pathological state, as observed in metabolic disorders such as type 2 diabetes and obesity. Recent Advances: Among the tissues impacted by oxidation and inflammation in this pathological state, the intestine is a site of dysfunction that can establish diabetic symptoms, such as alterations in the intestinal barrier, gut motility, microbiota composition, and gut/brain axis communication. In the intestine, reactive oxygen/nitrogen species (from the host and/or microbiota) are key factors that modulate the transition from physiological to pathological signaling. Critical Issues: Controlling the levels of intestinal reactive oxygen/nitrogen species is a complicated balance between positive and negative impacts that is in constant equilibrium. Here, we describe the synthesis and degradation of intestinal reactive oxygen/nitrogen species and their interactions with the host. The development of novel redox-based therapeutics that alter these processes could restore intestinal health in patients with metabolic disorders. Future Directions: Deciphering the mode of action of reactive oxygen/nitrogen species in the gut of obese/diabetic patients could result in a future therapeutic strategy that combines nutritional and pharmacological approaches. Consequently, preventive and curative treatments must take into account one of the first sites of oxidative and inflammatory dysfunctions in the body, that is, the intestine. Antioxid. Redox Signal. 37, 394-415.
Collapse
Affiliation(s)
- Anne Abot
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Steven Fried
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| | - Patrice D Cani
- International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France.,UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Claude Knauf
- Université Paul Sabatier, Toulouse III, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Toulouse, France.,International Research Project (IRP), European Lab "NeuroMicrobiota," Brussels, Belgium and Toulouse, France
| |
Collapse
|
16
|
Ben Fradj S, Nédélec E, Salvi J, Fouesnard M, Huillet M, Pallot G, Cansell C, Sanchez C, Philippe C, Gigot V, Lemoine A, Trompier D, Henry T, Petrilli V, Py BF, Guillou H, Loiseau N, Ellero-Simatos S, Nahon JL, Rovère C, Grober J, Boudry G, Douard V, Benani A. Evidence for Constitutive Microbiota-Dependent Short-Term Control of Food Intake in Mice: Is There a Link with Inflammation, Oxidative Stress, Endotoxemia, and GLP-1? Antioxid Redox Signal 2022; 37:349-369. [PMID: 35166124 DOI: 10.1089/ars.2021.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Although prebiotics, probiotics, and fecal transplantation can alter the sensation of hunger and/or feeding behavior, the role of the constitutive gut microbiota in the short-term regulation of food intake during normal physiology is still unclear. Results: An antibiotic-induced microbiota depletion study was designed to compare feeding behavior in conventional and microbiota-depleted mice. Tissues were sampled to characterize the time profile of microbiota-derived signals in mice during consumption of either standard or high-fat food for 1 h. Pharmacological and genetic tools were used to evaluate the contribution of postprandial endotoxemia and inflammatory responses in the short-term regulation of food intake. We observed constitutive microbial and macronutrient-dependent control of food intake at the time scale of a meal; that is, within 1 h of food introduction. Specifically, microbiota depletion increased food intake, and the microbiota-derived anorectic effect became significant during the consumption of high-fat but not standard food. This anorectic effect correlated with a specific postprandial microbial metabolic signature, and did not require postprandial endotoxemia or an NOD-, LRR-, and Pyrin domain-containing protein 3-inflammasome-mediated inflammatory response. Innovation and Conclusion: These findings show that the gut microbiota controls host appetite at the time scale of a meal under normal physiology. Interestingly, a microbiota-derived anorectic effect develops specifically with a high-fat meal, indicating that gut microbiota activity is involved in the satietogenic properties of foods. Antioxid. Redox Signal. 37, 349-369.
Collapse
Affiliation(s)
- Selma Ben Fradj
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Emmanuelle Nédélec
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Juliette Salvi
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Mélanie Fouesnard
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Institut NuMeCan, INRAE (UMR1341), INSERM (UMR1241), Université de Rennes 1, St-Gilles, France
| | - Marine Huillet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Gaëtan Pallot
- Centre de Recherche Lipides, Nutrition, Cancer, INSERM (UMR1231), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Céline Cansell
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Clara Sanchez
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Catherine Philippe
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Gigot
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Aleth Lemoine
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Doriane Trompier
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm (U1111), CNRS (UMR5308), ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Virginie Petrilli
- Centre de Recherche en Cancérologie de Lyon, Inserm (U1052), CNRS (UMR5286), Université de Lyon 1, Lyon, France
| | - Benedicte F Py
- CIRI, Centre International de Recherche en Infectiologie, Inserm (U1111), CNRS (UMR5308), ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Jean-Louis Nahon
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Carole Rovère
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Jacques Grober
- Centre de Recherche Lipides, Nutrition, Cancer, INSERM (UMR1231), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Gaelle Boudry
- Institut NuMeCan, INRAE (UMR1341), INSERM (UMR1241), Université de Rennes 1, St-Gilles, France
| | - Véronique Douard
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
17
|
Touny AA, Kenny E, Månsson M, Webb DL, Hellström PM. Pain relief and pain intensity response to GLP-1 receptor agonist ROSE-010 in irritable bowel syndrome; clinical study cross-analysis with respect to patient characteristics. Scand J Gastroenterol 2022; 57:783-791. [PMID: 35234561 DOI: 10.1080/00365521.2022.2041084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Glucagon-like peptide-1 receptor agonist ROSE-010 has been studied for management of irritable bowel syndrome (IBS). ROSE-010 showed promising effects by reducing pain during attacks of IBS. In this exploratory substudy, we cross-analyzed earlier data to identify the most suitable subpopulation for treatment with ROSE-010. METHODS Data comprising 166 participants (116 females, 50 males) treated by subcutaneous injection with ROSE-010 at 100 µg and 300 µg versus placebo were broken down into subpopulations with recall of historical pain intensity, pain intensity immediately before treatment, gender, age, BMI, IBS subtype as well as pain intensity and pain relief of ROSE-010 with relationship to plasma glucose using visual analogue scores. Statistical cross-analysis was performed to detect optimal responders for adequate pain relief response. RESULTS ROSE-010 gave dose- and time-dependent effects with maximum pain relief at 300 µg relative 100 µg and placebo at 120 min post injection. Females had greater pain relief than males; age and BMI did not affect treatment response. IBS pain relief was greatest in constipation-dominant IBS (IBS-C) and mixed IBS (IBS-M) relative diarrhea-dominant and unspecified IBS. CONCLUSIONS Clinical trial data indicate that female participants are more likely than males to respond to ROSE-010 100 µg and 300 µg to achieve meaningful IBS pain relief. Maximum pain relief was achieved at 120 min with the higher dose, although this was accompanied with higher rates of nausea. Improvement of IBS pain attacks was most pronounced in IBS-C and IBS-M, suggesting these subgroups to be optimal ROSE-010 responders.
Collapse
Affiliation(s)
- Aya A Touny
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | - Dominic-Luc Webb
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Wemelle E, Carneiro L, Abot A, Lesage J, Cani PD, Knauf C. Glucose Stimulates Gut Motility in Fasted and Fed Conditions: Potential Involvement of a Nitric Oxide Pathway. Nutrients 2022; 14:nu14102176. [PMID: 35631317 PMCID: PMC9143273 DOI: 10.3390/nu14102176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Type 2 diabetes (T2D) is associated with a duodenal hypermotility in postprandial conditions that favors hyperglycemia and insulin resistance via the gut-brain axis. Enterosynes, molecules produced within the gut with effects on the enteric nervous system, have been recently discovered and pointed to as potential key modulators of the glycemia. Indeed, targeting the enteric nervous system that controls gut motility is now considered as an innovative therapeutic way in T2D to limit intestinal glucose absorption and restore the gut-brain axis to improve insulin sensitivity. So far, little is known about the role of glucose on duodenal contraction in fasted and fed states in normal and diabetic conditions. The aim of the present study was thus to investigate these effects in adult mice. (2) Methods: Gene-expression level of glucose transporters (SGLT-1 and GLUT2) were quantified in the duodenum and jejunum of normal and diabetic mice fed with an HFD. The effect of glucose at different concentrations on duodenal and jejunal motility was studied ex vivo using an isotonic sensor in fasted and fed conditions in both normal chow and HFD mice. (3) Results: Both SGLT1 and GLUT2 expressions were increased in the duodenum (47 and 300%, respectively) and jejunum (75% for GLUT2) of T2D mice. We observed that glucose stimulates intestinal motility in fasted (200%) and fed (400%) control mice via GLUT2 by decreasing enteric nitric oxide release (by 600%), a neurotransmitter that inhibits gut contractions. This effect was not observed in diabetic mice, suggesting that glucose sensing and mechanosensing are altered during T2D. (4) Conclusions: Glucose acts as an enterosyne to control intestinal motility and glucose absorption through the enteric nervous system. Our data demonstrate that GLUT2 and a reduction of NO production could both be involved in this stimulatory contracting effect.
Collapse
Affiliation(s)
- Eve Wemelle
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Place du Docteur Baylac, CS 60039, CEDEX 3, 31024 Toulouse, France; (E.W.); (L.C.)
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, 31024 Toulouse, France
| | - Lionel Carneiro
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Place du Docteur Baylac, CS 60039, CEDEX 3, 31024 Toulouse, France; (E.W.); (L.C.)
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, 31024 Toulouse, France
| | - Anne Abot
- Enterosys SAS, 31670 Labège, France;
| | - Jean Lesage
- Université de Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France;
| | - Patrice D. Cani
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, 31024 Toulouse, France
- UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, WELBIO, Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, 1200 Brussels, Belgium
- Correspondence: (P.D.C.); (C.K.)
| | - Claude Knauf
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Place du Docteur Baylac, CS 60039, CEDEX 3, 31024 Toulouse, France; (E.W.); (L.C.)
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, 31024 Toulouse, France
- Correspondence: (P.D.C.); (C.K.)
| |
Collapse
|
19
|
Magierowska K, Magierowski M. COin Gastrointestinal Physiology and Protection. CARBON MONOXIDE IN DRUG DISCOVERY 2022:466-481. [DOI: 10.1002/9781119783435.ch27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
20
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
21
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
22
|
O'Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fülling C, Morley SJ, Clarke G, Schellekens H, Cryan JF. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol Cell Endocrinol 2022; 546:111572. [PMID: 35066114 DOI: 10.1016/j.mce.2022.111572] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
The role of the intestinal microbiota as a regulator of gut-brain axis signalling has risen to prominence in recent years. Understanding the relationship between the gut microbiota, the metabolites it produces, and the brain will be critical for the subsequent development of new therapeutic approaches, including the identification of novel psychobiotics. A key focus in this regard have been the short-chain fatty acids (SCFAs) produced by bacterial fermentation of dietary fibre, which include butyrate, acetate, and propionate. Ongoing research is focused on the entry of SCFAs into systemic circulation from the gut lumen, their migration to cerebral circulation and across the blood brain barrier, and their potential to exert acute and chronic effects on brain structure and function. This review aims to discuss our current mechanistic understanding of the direct and indirect influence that SCFAs have on brain function, behaviour and physiology, which will inform future microbiota-targeted interventions for brain disorders.
Collapse
Affiliation(s)
| | - Michael K Collins
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Emily G Knox
- APC Microbiome Ireland, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - María R Aburto
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Shane J Morley
- APC Microbiome Ireland, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland.
| |
Collapse
|
23
|
Sampath C, Raju AV, Freeman ML, Srinivasan S, Gangula PR. Nrf2 attenuates hyperglycemia-induced nNOS impairment in adult mouse primary enteric neuronal crest cells and normalizes stomach function. Am J Physiol Gastrointest Liver Physiol 2022; 322:G368-G382. [PMID: 35084215 PMCID: PMC8897013 DOI: 10.1152/ajpgi.00323.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enteric neuronal cells play a vital role in gut motility in humans and experimental rodent models. Patients with diabetes are more vulnerable to gastrointestinal dysfunction due to enteric neuronal degeneration. In this study, we examined the mechanistic role and regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) in hyperglycemia-induced enteric neuronal cell apoptosis in vitro by using adult mouse primary enteric neuronal crest cells (pENCs). Our data show that hyperglycemia (HG) or inhibition of Nrf2 induces apoptosis by elevating proinflammatory cytokines, reactive oxygen species (ROS) and suppresses neuronal nitric oxide synthase (nNOS-α) via PI3K/Nrf2-mediated signaling. Conversely, treating pENCs with cinnamaldehyde (CNM), a naturally occurring Nrf2 activator, prevented HG-induced apoptosis. These novel data reveal a negative feedback mechanism for GSK-3 activation. To further demonstrate that loss of Nrf2 leads to inflammation, oxidative stress, and reduces nNOS-mediated gastric function, we have used streptozotocin (STZ)-induced diabetic and Nrf2 null female mice. In vivo activation of Nrf2 with CNM (50 mg/kg, 3 days a week, ip) attenuated impaired nitrergic relaxation and delayed gastric emptying (GE) in conventional type 1 diabetic but not in Nrf2 null female mice. Supplementation of CNM normalized diabetes-induced altered gastric antrum protein expression of 1) p-AKT/p-p38MAPK/p-GSK-3β, 2) BH4 (cofactor of nNOS) biosynthesis enzyme GCH-1, 3) nNOSα, 4) TLR4, NF-κB, and 5) inflammatory cytokines (TNF-α, IL-1β, IL-6). We conclude that activation of Nrf2 prevents hyperglycemia-induced apoptosis in pENCs and restores nitrergic-mediated gastric motility and GE in STZ-induced diabetes female mice.NEW & NOTEWORTHY Primary neuronal cell crust (pENCs) in the intestine habitats nNOS and Nrf2, which was suppressed in diabetic gastroparesis. Activation of Nrf2 restored nNOS by suppressing inflammatory markers in pENCs cells. Inhibition of Nrf2 reveals a negative feedback mechanism for the activation of GSK-3. Activation of Nrf2 alleviates STZ-induced delayed gastric emptying and nitrergic relaxation in female mice. Activation of Nrf2 restored impaired gastric BH4 biosynthesis enzyme GCH-1, nNOSα expression thus regulating nitric oxide levels.
Collapse
Affiliation(s)
- Chethan Sampath
- 1Department of ODS and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| | - Abhinav V. Raju
- 2Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Michael L. Freeman
- 4Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shanthi Srinivasan
- 2Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia,3Atlanta Veterans Affairs Health Care System, Atlanta, Georgia
| | - Pandu R. Gangula
- 1Department of ODS and Research, School of Dentistry, Meharry Medical College, Nashville, Tennessee
| |
Collapse
|
24
|
Grasset E, Puel A, Charpentier J, Klopp P, Christensen JE, Lelouvier B, Servant F, Blasco-Baque V, Tercé F, Burcelin R. Gut microbiota dysbiosis of type 2 diabetic mice impairs the intestinal daily rhythms of GLP-1 sensitivity. Acta Diabetol 2022; 59:243-258. [PMID: 34648088 DOI: 10.1007/s00592-021-01790-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
The gut-brain-beta cell glucagon-like peptide-1 (GLP-1)-dependent axis and the clock genes both control insulin secretion. Evidence shows that a keystone of this molecular interaction could be the gut microbiota. We analyzed in mice the circadian profile of GLP-1 sensitivity on insulin secretion and the impact of the autonomic neuropathy, antibiotic treated in different diabetic mouse models and in germ-free colonized mice. We show that GLP-1sensitivity is maximal during the dark feeding period, i.e., the postprandial state. Coincidently, the ileum expression of GLP-1 receptor and peripherin is increased and tightly correlated with a subset of clock gene. Since both are markers of enteric neurons, it suggests a role in the gut-brain-beta cell GLP-1-dependent axis. We evaluated the importance of gut microbiota dysbiosis and found that the abundance of ileum bacteria, particularly Ruminococcaceae and Lachnospiraceae, oscillated diurnally, with a maximum during the dark period, along with expression patterns of a subset of clock genes. This diurnal pattern of circadian gene expression and Lachnospiraceae abundance was also observed in two separate mouse models of gut microbiota dysbiosis and of autonomic neuropathy with impaired GLP-1 sensitivity (1.high-fat diet-fed type 2 diabetic, 2.antibiotic-treated/germ-free mice). Our data show that GLP-1 sensitivity relies on specific pattern of intestinal clock gene expression and specific gut bacteria. This new statement opens opportunities to treat diabetic patient with GLP-1-based therapies by using on a possible pre/probiotic co-treatment to improve the time-dependent efficiency of these therapies.
Collapse
Affiliation(s)
- Estelle Grasset
- Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France.
- UMR) 1048, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2 : 'Intestinal Risk Factors, Diabetes, Université Paul Sabatier (UPS), Unité Mixte de Recherche, 31432, Toulouse Cedex 4, Dyslipidemia, France.
| | - Anthony Puel
- Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- UMR) 1048, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2 : 'Intestinal Risk Factors, Diabetes, Université Paul Sabatier (UPS), Unité Mixte de Recherche, 31432, Toulouse Cedex 4, Dyslipidemia, France
| | - Julie Charpentier
- Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- UMR) 1048, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2 : 'Intestinal Risk Factors, Diabetes, Université Paul Sabatier (UPS), Unité Mixte de Recherche, 31432, Toulouse Cedex 4, Dyslipidemia, France
| | - Pascale Klopp
- Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- UMR) 1048, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2 : 'Intestinal Risk Factors, Diabetes, Université Paul Sabatier (UPS), Unité Mixte de Recherche, 31432, Toulouse Cedex 4, Dyslipidemia, France
| | - Jeffrey E Christensen
- Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- UMR) 1048, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2 : 'Intestinal Risk Factors, Diabetes, Université Paul Sabatier (UPS), Unité Mixte de Recherche, 31432, Toulouse Cedex 4, Dyslipidemia, France
| | - Benjamin Lelouvier
- Vaiomer SAS, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Florence Servant
- Vaiomer SAS, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Vincent Blasco-Baque
- Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- UMR) 1048, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2 : 'Intestinal Risk Factors, Diabetes, Université Paul Sabatier (UPS), Unité Mixte de Recherche, 31432, Toulouse Cedex 4, Dyslipidemia, France
| | - François Tercé
- Institut National de La Santé Et de La Recherche Médicale (INSERM), Toulouse, France
- UMR) 1048, Institut Des Maladies Métaboliques Et Cardiovasculaires (I2MC), Team 2 : 'Intestinal Risk Factors, Diabetes, Université Paul Sabatier (UPS), Unité Mixte de Recherche, 31432, Toulouse Cedex 4, Dyslipidemia, France
| | - Rémy Burcelin
- Directeur de Recherche Inserm I²MC, Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U 1027, Rue Jean Poulhès, 31400, Toulouse, France.
- Research Director Inserm I²MC, Institute for research on cardiometabolic diseases, Inserm U 1027, Rue Jean Poulhès, 31400, Toulouse, France.
| |
Collapse
|
25
|
Wemelle E, Marousez L, de Lamballerie M, Knauf C, Lesage J. High Hydrostatic Pressure Processing of Human Milk Increases Apelin and GLP-1 Contents to Modulate Gut Contraction and Glucose Metabolism in Mice Compared to Holder Pasteurization. Nutrients 2022; 14:nu14010219. [PMID: 35011094 PMCID: PMC8747192 DOI: 10.3390/nu14010219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND High hydrostatic pressure (HHP) processing is a non-thermal method proposed as an alternative to Holder pasteurization (HoP) for the sterilization of human breast milk (BM). HHP preserves numerous milk bioactive factors that are degraded by HoP, but no data are available for milk apelin and glucagon-like peptide 1 (GLP-1), two hormones implicated in the control of glucose metabolism directly and via the gut-brain axis. This study aims to determine the effects of HoP and HHP processing on apelin and GLP-1 concentrations in BM and to test the effect of oral treatments with HoP- and HHP-BM on intestinal contractions and glucose metabolism in adult mice. METHODS Mice were treated by daily oral gavages with HoP- or HHP-BM during one week before intestinal contractions, and glucose tolerance was assessed. mRNA expression of enteric neuronal enzymes known to control intestinal contraction was measured. RESULTS HoP-BM displayed a reduced concentration of apelin and GLP-1, whereas HHP processing preserved these hormones close to their initial levels in raw milk. Chronic HHP-BM administration to mice increased ileal mRNA nNos expression level leading to a decrease in gut contraction associated with improved glucose tolerance. CONCLUSION In comparison to HoP, HPP processing of BM preserves both apelin and GLP-1 and improves glucose tolerance by acting on gut contractions. This study reinforces previous findings demonstrating that HHP processing provides BM with a higher biological value than BM treated by HoP.
Collapse
Affiliation(s)
- Eve Wemelle
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Place du Docteur Baylac, CS 60039, CEDEX 3, 31024 Toulouse, France;
- European Associated Laboratory (EAL) «NeuroMicrobiota», International Research Projects (IRP) INSERM, 1000 Brussels, Belgium
- European Associated Laboratory (EAL) «NeuroMicrobiota», International Research Projects (IRP) INSERM, 31024 Toulouse, France
| | - Lucie Marousez
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France;
| | | | - Claude Knauf
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Place du Docteur Baylac, CS 60039, CEDEX 3, 31024 Toulouse, France;
- European Associated Laboratory (EAL) «NeuroMicrobiota», International Research Projects (IRP) INSERM, 1000 Brussels, Belgium
- European Associated Laboratory (EAL) «NeuroMicrobiota», International Research Projects (IRP) INSERM, 31024 Toulouse, France
- Correspondence: (C.K.); (J.L.)
| | - Jean Lesage
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France;
- Correspondence: (C.K.); (J.L.)
| |
Collapse
|
26
|
Haim LB, Schirmer L, Zulji A, Sabeur K, Tiret B, Ribon M, Chang S, Lamers WH, BoillEée S, Chaumeil MM, Rowitch DH. Evidence for glutamine synthetase function in mouse spinal cord oligodendrocytes. Glia 2021; 69:2812-2827. [PMID: 34396578 PMCID: PMC8502205 DOI: 10.1002/glia.24071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/02/2021] [Accepted: 07/29/2021] [Indexed: 11/07/2022]
Abstract
Glutamine synthetase (GS) is a key enzyme that metabolizes glutamate into glutamine. While GS is highly enriched in astrocytes, expression in other glial lineages has been noted. Using a combination of reporter mice and cell type-specific markers, we show that GS is expressed in myelinating oligodendrocytes (OL) but not oligodendrocyte progenitor cells of the mouse and human ventral spinal cord. To investigate the role of GS in mature OL, we used a conditional knockout (cKO) approach to selectively delete GS-encoding gene (Glul) in OL, which caused a significant decrease in glutamine levels on mouse spinal cord extracts. GS cKO mice (CNP-cre+ :Glulfl/fl ) showed no differences in motor neuron numbers, size or axon density; OL differentiation and myelination in the ventral spinal cord was normal up to 6 months of age. Interestingly, GS cKO mice showed a transient and specific decrease in peak force while locomotion and motor coordination remained unaffected. Last, GS expression in OL was increased in chronic pathological conditions in both mouse and humans. We found a disease-stage dependent increase of OL expressing GS in the ventral spinal cord of SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Moreover, we showed that GLUL transcripts levels were increased in OL in leukocortical tissue from multiple sclerosis but not control patients. These findings provide evidence towards OL-encoded GS function in spinal cord sensorimotor axis, which is dysregulated in chronic neurological diseases.
Collapse
Affiliation(s)
- Lucile Ben Haim
- Department of Pediatrics, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Lucas Schirmer
- Department of Pediatrics, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Amel Zulji
- Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Khalida Sabeur
- Department of Pediatrics, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Brice Tiret
- Departments of Physical Therapy and Rehabilitation Science and of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Matthieu Ribon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Sandra Chang
- Department of Pediatrics, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Wouter H. Lamers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Meibergdreef 15, 1105 BK Amsterdam, The Netherlands
| | - Séverine BoillEée
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Myriam M. Chaumeil
- Departments of Physical Therapy and Rehabilitation Science and of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - David H. Rowitch
- Department of Pediatrics, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Cerantola S, Faggin S, Annaloro G, Mainente F, Filippini R, Savarino EV, Piovan A, Zoccatelli G, Giron MC. Influence of Tilia tomentosa Moench Extract on Mouse Small Intestine Neuromuscular Contractility. Nutrients 2021; 13:nu13103505. [PMID: 34684506 PMCID: PMC8541069 DOI: 10.3390/nu13103505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Functional gastrointestinal disorders (FGIDs) are characterized by abdominal pain, bloating and bowel disturbances. FGID therapy is primarily symptomatic, including treatment with herbal remedies. Flower extract of Tilia tomentosa Moench (TtM) is occasionally used as an anti-spasmodic in popular medicine. Since its effect on intestinal response is unknown, we evaluated the influence of TtM extract on small intestine contractility. Ileal preparations from C57BL/6J mice were mounted in organ baths to assess changes in muscle tension, following addition of TtM extract (0.5–36 μg/mL) or a vehicle (ethanol). Changes in contractile response to receptor- and non-receptor-mediated stimuli were assessed in ileal preparations pretreated with 12 μg/mL TtM. Alterations in the enteric nervous system neuroglial network were analyzed by confocal immunofluorescence. Increasing addition of TtM induced a marked relaxation in ileal specimens compared to the vehicle. Pretreatment with TtM affected cholinergic and tachykininergic neuromuscular contractions as well as K+-induced smooth muscle depolarization. Following incubation with TtM, a significant reduction in non-adrenergic non-cholinergic-mediated relaxation sensitive to Nω-Nitro-L-arginine methyl ester hydrochloride (pan-nitric oxide synthase inhibitor) was found. In vitro incubation of intestinal specimens with TtM did not affect the myenteric plexus neuroglial network. Our findings show that TtM-induced intestinal relaxation is mediated by nitric oxide pathways, providing a pharmacological basis for the use of TtM in FGIDs.
Collapse
Affiliation(s)
- Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (S.F.); (G.A.); (R.F.); (A.P.)
| | - Sofia Faggin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (S.F.); (G.A.); (R.F.); (A.P.)
| | - Gabriela Annaloro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (S.F.); (G.A.); (R.F.); (A.P.)
| | - Federica Mainente
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (F.M.); (G.Z.)
| | - Raffaella Filippini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (S.F.); (G.A.); (R.F.); (A.P.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncological and Gastrointestinal Science, University of Padova, 35121 Padova, Italy;
| | - Anna Piovan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (S.F.); (G.A.); (R.F.); (A.P.)
| | - Gianni Zoccatelli
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (F.M.); (G.Z.)
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (S.C.); (S.F.); (G.A.); (R.F.); (A.P.)
- IRCCS San Camillo Hospital, 30126 Venice, Italy
- Correspondence: ; Tel.: +39-049-827-5091
| |
Collapse
|
28
|
Charpentier J, Briand F, Lelouvier B, Servant F, Azalbert V, Puel A, Christensen JE, Waget A, Branchereau M, Garret C, Lluch J, Heymes C, Brousseau E, Burcelin R, Guzylack L, Sulpice T, Grasset E. Liraglutide targets the gut microbiota and the intestinal immune system to regulate insulin secretion. Acta Diabetol 2021; 58:881-897. [PMID: 33723651 DOI: 10.1007/s00592-020-01657-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023]
Abstract
AIMS Liraglutide controls type 2 diabetes (T2D) and inflammation. Gut microbiota regulates the immune system and causes at least in part type 2 diabetes. We here evaluated whether liraglutide regulates T2D through both gut microbiota and immunity in dysmetabolic mice. METHODS Diet-induced dysmetabolic mice were treated for 14 days with intraperitoneal injection of liraglutide (100 µg/kg) or with vehicle or Exendin 4 (10 µg/kg) as controls. Various metabolic parameters, the intestinal immune cells were characterized and the 16SrDNA gene sequenced from the gut. The causal role of gut microbiota was shown using large spectrum antibiotics and by colonization of germ-free mice with the gut microbiota from treated mice. RESULTS Besides, the expected metabolic impacts liraglutide treatment induced a specific gut microbiota specific signature when compared to vehicle or Ex4-treated mice. However, liraglutide only increased glucose-induced insulin secretion, reduced the frequency of Th1 lymphocytes, and increased that of TReg in the intestine. These effects were abolished by a concomitant antibiotic treatment. Colonization of germ-free mice with gut microbiota from liraglutide-treated diabetic mice improved glucose-induced insulin secretion and regulated the intestinal immune system differently from what observed in germ-free mice colonized with microbiota from non-treated diabetic mice. CONCLUSIONS Altogether, our result demonstrated first the influence of liraglutide on gut microbiota and the intestinal immune system which could at least in part control glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Julie Charpentier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Francois Briand
- PHYSIOGENEX SAS Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Benjamin Lelouvier
- Vaiomer, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Florence Servant
- Vaiomer, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Vincent Azalbert
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Anthony Puel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Jeffrey E Christensen
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Aurélie Waget
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Maxime Branchereau
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Céline Garret
- Vaiomer, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Jérome Lluch
- Vaiomer, Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Christophe Heymes
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| | - Emmanuel Brousseau
- PHYSIOGENEX SAS Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France.
| | - Laurence Guzylack
- Neuro-Gastroenterology and Nutrition Team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Thierry Sulpice
- PHYSIOGENEX SAS Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670, Labège Innopole, France
| | - Estelle Grasset
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Team 2: 'Intestinal Risk Factors Diabetes, Dyslipidemia', 31432, Toulouse Cedex 4, France
| |
Collapse
|
29
|
Abot A, Wemelle E, Laurens C, Paquot A, Pomie N, Carper D, Bessac A, Mas Orea X, Fremez C, Fontanie M, Lucas A, Lesage J, Everard A, Meunier E, Dietrich G, Muccioli GG, Moro C, Cani PD, Knauf C. Identification of new enterosynes using prebiotics: roles of bioactive lipids and mu-opioid receptor signalling in humans and mice. Gut 2021; 70:1078-1087. [PMID: 33020209 PMCID: PMC8108281 DOI: 10.1136/gutjnl-2019-320230] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The enteric nervous system (ENS) plays a key role in controlling the gut-brain axis under normal and pathological conditions, such as type 2 diabetes. The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is considered an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia is still developed. We studied whether the modulation of gut microbiota by prebiotics could permit the identification of novel enterosynes. DESIGN We measured the effects of prebiotics on the production of bioactive lipids in the intestine and tested the identified lipid on ENS-induced contraction and glucose metabolism. Then, we studied the signalling pathways involved and compared the results obtained in mice to human. RESULTS We found that modulating the gut microbiota with prebiotics modifies the actions of enteric neurons, thereby controlling duodenal contraction and subsequently attenuating hyperglycaemia in diabetic mice. We discovered that the signalling pathway involved in these effects depends on the synthesis of a bioactive lipid 12-hydroxyeicosatetraenoic acid (12-HETE) and the presence of mu-opioid receptors (MOR) on enteric neurons. Using pharmacological approaches, we demonstrated the key role of the MOR receptors and proliferator-activated receptor γ for the effects of 12-HETE. These findings are supported by human data showing a decreased expression of the proenkephalin and MOR messanger RNAs in the duodenum of patients with diabetic. CONCLUSIONS Using a prebiotic approach, we identified enkephalin and 12-HETE as new enterosynes with potential real beneficial and safety impact in diabetic human.
Collapse
Affiliation(s)
- Anne Abot
- IRSD, INSERM, Toulouse, Occitanie, France,Enterosys, CRO, Toulouse, Occitanie, France,European Associated Laboratory (EAL) NeuroMicrobiota, Toulouse, Brussels, France, Belgium
| | - Eve Wemelle
- IRSD, INSERM, Toulouse, Occitanie, France,European Associated Laboratory (EAL) NeuroMicrobiota, Toulouse, Brussels, France, Belgium
| | - Claire Laurens
- CNRS, University of Strasbourg, Strasbourg, France,CNES, Paris, France
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | | | | | - Arnaud Bessac
- IRSD, INSERM, Toulouse, Occitanie, France,IPBS, Toulouse, Midi-Pyrénées, France
| | | | | | | | | | - Jean Lesage
- Lille 2 University of Health and Law, Lille, Hauts-de-France, France
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | | | | | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | | | - Patrice D Cani
- European Associated Laboratory (EAL) NeuroMicrobiota, Toulouse, Brussels, France, Belgium .,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Claude Knauf
- IRSD, INSERM, Toulouse, Occitanie, France .,European Associated Laboratory (EAL) NeuroMicrobiota, Toulouse, Brussels, France, Belgium
| |
Collapse
|
30
|
High-fat diet impairs duodenal barrier function and elicits glia-dependent changes along the gut-brain axis that are required for anxiogenic and depressive-like behaviors. J Neuroinflammation 2021; 18:115. [PMID: 33993886 PMCID: PMC8126158 DOI: 10.1186/s12974-021-02164-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mood and metabolic disorders are interrelated and may share common pathological processes. Autonomic neurons link the brain with the gastrointestinal tract and constitute a likely pathway for peripheral metabolic challenges to affect behaviors controlled by the brain. The activities of neurons along these pathways are regulated by glia, which exhibit phenotypic shifts in response to changes in their microenvironment. How glial changes might contribute to the behavioral effects of consuming a high-fat diet (HFD) is uncertain. Here, we tested the hypothesis that anxiogenic and depressive-like behaviors driven by consuming a HFD involve compromised duodenal barrier integrity and subsequent phenotypic changes to glia and neurons along the gut-brain axis. METHODS C57Bl/6 male mice were exposed to a standard diet or HFD for 20 weeks. Bodyweight was monitored weekly and correlated with mucosa histological damage and duodenal expression of tight junction proteins ZO-1 and occludin at 0, 6, and 20 weeks. The expression of GFAP, TLR-4, BDNF, and DCX were investigated in duodenal myenteric plexus, nodose ganglia, and dentate gyrus of the hippocampus at the same time points. Dendritic spine number was measured in cultured neurons isolated from duodenal myenteric plexuses and hippocampi at weeks 0, 6, and 20. Depressive and anxiety behaviors were also assessed by tail suspension, forced swimming, and open field tests. RESULTS HFD mice exhibited duodenal mucosa damage with marked infiltration of immune cells and decreased expression of ZO-1 and occludin that coincided with increasing body weight. Glial expression of GFAP and TLR4 increased in parallel in the duodenal myenteric plexuses, nodose ganglia, and hippocampus in a time-dependent manner. Glial changes were associated with a progressive decrease in BDNF, and DCX expression, fewer neuronal dendritic spines, and anxiogenic/depressive symptoms in HFD-treated mice. Fluorocitrate (FC), a glial metabolic poison, abolished these effects both in the enteric and central nervous systems and prevented behavioral alterations at week 20. CONCLUSIONS HFD impairs duodenal barrier integrity and produces behavioral changes consistent with depressive and anxiety phenotypes. HFD-driven changes in both peripheral and central nervous systems are glial-dependent, suggesting a potential glial role in the alteration of the gut-brain signaling that occurs during metabolic disorders and psychiatric co-morbidity.
Collapse
|
31
|
Thottapillil A, Kouser S, Kukkupuni SK, Vishnuprasad CN. An 'Ayurveda-Biology' platform for integrative diabetes management. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113575. [PMID: 33181283 DOI: 10.1016/j.jep.2020.113575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes is a multifactorial disease with complex multi-organ-multi-target crosstalk in the body. Currently, the theoretical assumptions framing the diabetes management strategies are reductionist and largely focus on reducing hyperglycemia through targeted molecular drugs. While they effectively reduce hyperglycemia, they are inadequate to address the multifactorial etiopathology, chronicity and systemic complications of diabetes. Therefore, a holistic and systemic approach is essential for its successful management. We hypothesize an integrative diabetes management strategy, combining holistic principles of diabetes management with its molecular understandings, would be more appropriate to fill this gap. The holistic disease management principles of Ayurveda, the Indian system of medicine, can play a pivotal role in this context. This narrative review discusses the scope of a trans-disciplinary ' Ayurveda-Biology ' approach for deepening the holistic understanding of the pathophysiology of diabetes as well as designing novel integrative strategies for managing diabetes and restoring whole body glucose homeostasis. METHODOLOGY The article analyses the Ayurveda scheme of diabetes management and correlates it with the molecular understanding of its pathophysiology and management. The sources of information used in this article include classical texts of Ayurveda , medical books, published research articles and scientific databases like PubMed, Google Scholar, Science-Direct, etc. RESULTS: While Ayurveda and modern biomedicine uses different epistemology and ontology for describing diabetes, both the systems recognize the central role of gut and gut derived factors in postprandial glucose disposal and whole body glucose homeostasis. Essentially, the principles of both Ayurveda and modern biomedicine overlap at a gut centred view of diabetes management; and Gastro-intestinal mediated glucose disposal , a holistic concept of glucose metabolism, is emerging as a converging node for designing innovative integrative diabetes management strategies. CONCLUSIONS An integrative disease management strategy, combining holistic and reductionist perspectives of traditional medicine and biology respectively, would be the prerogative for successful management of diabetes. Creating an ' Ayurveda-Biology' knowledge framework integrating the patient centred holistic management principles of Ayurveda and the molecular approaches of modern biology can give better insights into the biology of whole body glucose homeostasis and offer novel strategies for cost effective, holistic and multi-targeted management of diabetes.
Collapse
Affiliation(s)
- Anjana Thottapillil
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Transdisciplinary Health Sciences and Technology (TDU), No.74/2, Jarakabande Kaval Post: Attur, Via Yelahanka, Bangalore, 560 106, India
| | - Sania Kouser
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Transdisciplinary Health Sciences and Technology (TDU), No.74/2, Jarakabande Kaval Post: Attur, Via Yelahanka, Bangalore, 560 106, India
| | - Subrahmanya Kumar Kukkupuni
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Transdisciplinary Health Sciences and Technology (TDU), No.74/2, Jarakabande Kaval Post: Attur, Via Yelahanka, Bangalore, 560 106, India
| | - Chethala N Vishnuprasad
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Transdisciplinary Health Sciences and Technology (TDU), No.74/2, Jarakabande Kaval Post: Attur, Via Yelahanka, Bangalore, 560 106, India.
| |
Collapse
|
32
|
Chachlaki K, Prevot V. Nitric oxide signalling in the brain and its control of bodily functions. Br J Pharmacol 2020; 177:5437-5458. [PMID: 31347144 PMCID: PMC7707094 DOI: 10.1111/bph.14800] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a versatile molecule that plays key roles in the development and survival of mammalian species by endowing brain neuronal networks with the ability to make continual adjustments to function in response to moment-to-moment changes in physiological input. Here, we summarize the progress in the field and argue that NO-synthetizing neurons and NO signalling in the brain provide a core hub for integrating sensory- and homeostatic-related cues, control key bodily functions, and provide a potential target for new therapeutic opportunities against several neuroendocrine and behavioural abnormalities.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| |
Collapse
|
33
|
Foong JPP, Hung LY, Poon S, Savidge TC, Bornstein JC. Early life interaction between the microbiota and the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2020; 319:G541-G548. [PMID: 32902314 PMCID: PMC8087348 DOI: 10.1152/ajpgi.00288.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies on humans and their key experimental model, the mouse, have begun to uncover the importance of gastrointestinal (GI) microbiota and enteric nervous system (ENS) interactions during developmental windows spanning from conception to adolescence. Disruptions in GI microbiota and ENS during these windows by environmental factors, particularly antibiotic exposure, have been linked to increased susceptibility of the host to several diseases. Mouse models have provided new insights to potential signaling factors between the microbiota and ENS. We review very recent work on maturation of GI microbiota and ENS during three key developmental windows: embryogenesis, early postnatal, and postweaning periods. We discuss advances in understanding of interactions between the two systems and highlight research avenues for future studies.
Collapse
Affiliation(s)
- Jaime P. P. Foong
- 1Department of Physiology, The University of Melbourne, Parkville, Melbourne, Australia
| | - Lin Y. Hung
- 1Department of Physiology, The University of Melbourne, Parkville, Melbourne, Australia
| | - Sabrina Poon
- 1Department of Physiology, The University of Melbourne, Parkville, Melbourne, Australia
| | - Tor C. Savidge
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Joel C. Bornstein
- 1Department of Physiology, The University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
34
|
Abstract
The discovery that glucagon-like peptide 1 (GLP-1) mediates a significant proportion of the incretin effect during the postprandial period and the subsequent observation that GLP-1 bioactivity is retained in type 2 diabetes (T2D) led to new therapeutic strategies being developed for T2D treatment based on GLP-1 action. Although owing to its short half-life exogenous GLP-1 has no use therapeutically, GLP-1 mimetics, which have a much longer half-life than native GLP-1, have proven to be effective for T2D treatment since they prolong the incretin effect in patients. These GLP-1 mimetics are a desirable therapeutic option for T2D since they do not provoke hypoglycaemia or weight gain and have simple modes of administration and monitoring. Additionally, over more recent years, GLP-1 action has been found to mediate systemic physiological beneficial effects and this has high clinical relevance due to the post-diagnosis complications of T2D. Indeed, recent studies have found that certain GLP-1 analogue therapies improve the cardiovascular outcomes for people with diabetes. Furthermore, GLP-1-based therapies may enable new therapeutic strategies for diseases that can also arise independently of the clinical manifestation of T2D, such as dementia and Parkinson's disease. GLP-1 functions by binding to its receptor (GLP-1R), which expresses mainly in pancreatic islet beta cells. A better understanding of the mechanisms and signalling pathways by which acute and chronic GLP-1R activation alleviates disease phenotypes and induces desirable physiological responses during healthy conditions will likely lead to the development of new therapeutic GLP-1 mimetic-based therapies, which improve prognosis to a greater extent than current therapies for an array of diseases.
Collapse
Affiliation(s)
- Josh Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Stephen C. Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, Wales, SA2 8PP, UK
| | | |
Collapse
|