1
|
Mickael C, Jordan M, Posey JN, Tuder RM, Nozik ES, Thurman JM, Stenmark KR, Graham BB, Delaney CA. Activation of platelets and the complement system in mice with Schistosoma-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L661-L668. [PMID: 39254088 DOI: 10.1152/ajplung.00165.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Schistosomiasis-induced pulmonary hypertension (PH) presents a significant global health burden, yet the underlying mechanisms remain poorly understood. Here, we investigate the involvement of platelets and the complement system in the initiation events leading to Schistosoma-induced PH. We demonstrate that Schistosoma exposure leads to thrombocytopenia, platelet accumulation in the lung, and platelet activation. In addition, we observed increased plasma complement anaphylatoxins C3a and C5a, indicative of complement system activation, and elevated platelet expression of C1q, C3, decay activating factor (DAF), and complement C3a and C5a receptors. Our findings suggest the active involvement of platelets in responding to complement system signals induced by Schistosoma exposure and form the basis for future mechanistic studies on how complement may regulate platelet activation and promote the development of Schistosoma-induced PH.NEW & NOTEWORTHY Schistosomiasis-induced pulmonary hypertension (PH) is a significant global health burden, yet the underlying mechanisms remain poorly understood. We demonstrate that Schistosoma exposure leads to platelet accumulation in the lung and platelet activation. We observed increased plasma levels of C3a and C5a, indicative of complement system activation, and elevated expression of platelet complement proteins and receptors. These findings underscore the role of platelets and complement in the inflammatory responses associated with Schistosoma-induced PH.
Collapse
Grants
- K01HL161024 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R25HL146166 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Entelligence Young Investigator Award Entelligence
- Early Career Investigator American Thoracic Society (ATS)
- P01HL152961 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 1R35HL139726 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135872 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01DK076690 HHS | National Institutes of Health (NIH)
Collapse
Affiliation(s)
- Claudia Mickael
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mariah Jordan
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janelle N Posey
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rubin M Tuder
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eva S Nozik
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Joshua M Thurman
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kurt R Stenmark
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States
| | - Brian B Graham
- Department of Medicine, University of California, San Francisco, California, United States
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States
| | - Cassidy A Delaney
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
2
|
Stark K, Kilani B, Stockhausen S, Busse J, Schubert I, Tran TD, Gaertner F, Leunig A, Pekayvaz K, Nicolai L, Fumagalli V, Stermann J, Stephan F, David C, Müller MB, Heyman B, Lux A, da Palma Guerreiro A, Frenzel LP, Schmidt CQ, Dopler A, Moser M, Chandraratne S, von Brühl ML, Lorenz M, Korff T, Rudelius M, Popp O, Kirchner M, Mertins P, Nimmerjahn F, Iannacone M, Sperandio M, Engelmann B, Verschoor A, Massberg S. Antibodies and complement are key drivers of thrombosis. Immunity 2024; 57:2140-2156.e10. [PMID: 39226900 DOI: 10.1016/j.immuni.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/17/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Venous thromboembolism (VTE) is a common, deadly disease with an increasing incidence despite preventive efforts. Clinical observations have associated elevated antibody concentrations or antibody-based therapies with thrombotic events. However, how antibodies contribute to thrombosis is unknown. Here, we show that reduced blood flow enabled immunoglobulin M (IgM) to bind to FcμR and the polymeric immunoglobulin receptor (pIgR), initiating endothelial activation and platelet recruitment. Subsequently, the procoagulant surface of activated platelets accommodated antigen- and FcγR-independent IgG deposition. This leads to classical complement activation, setting in motion a prothrombotic vicious circle. Key elements of this mechanism were present in humans in the setting of venous stasis as well as in the dysregulated immunothrombosis of COVID-19. This antibody-driven thrombosis can be prevented by pharmacologically targeting complement. Hence, our results uncover antibodies as previously unrecognized central regulators of thrombosis. These findings carry relevance for therapeutic application of antibodies and open innovative avenues to target thrombosis without compromising hemostasis.
Collapse
Affiliation(s)
- Konstantin Stark
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.
| | - Badr Kilani
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sven Stockhausen
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Johanna Busse
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Irene Schubert
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thuy-Duong Tran
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Florian Gaertner
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany; Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Alexander Leunig
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Valeria Fumagalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Julia Stermann
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Felix Stephan
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christian David
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, Biomedical Center (BMC) LMU Munich, Munich, Germany
| | - Martin B Müller
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany; Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anja Lux
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Alexandra da Palma Guerreiro
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50937, Germany; Center of Integrated Oncology ABCD, University Hospital of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50937, Germany
| | - Lukas P Frenzel
- Department I of Internal Medicine, University Hospital Cologne, Cologne 50937, Germany; Center of Integrated Oncology ABCD, University Hospital of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50937, Germany
| | - Christoph Q Schmidt
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Arthur Dopler
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Markus Moser
- Department of Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany; Institute of Experimental Hematology, TranslaTUM, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Sue Chandraratne
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marie-Luise von Brühl
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Korff
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilian University, Munich, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany; German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany; German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany; German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Markus Sperandio
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, Biomedical Center (BMC) LMU Munich, Munich, Germany
| | - Bernd Engelmann
- Institut für Laboratoriumsmedizin, University Hospital, LMU Munich, Munich, Germany
| | - Admar Verschoor
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany; Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany.
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Cimé-Aké E, Barrera-Vargas A, Demichelis-Gómez R, Ramírez-Alemón M, Rull-Gabayet M. Description of therapeutic strategies in severe systemic lupus erythematosus-associated immune thrombocytopenia: a retrospective cohort study of response and relapse. Clin Rheumatol 2024; 43:2521-2532. [PMID: 38916764 DOI: 10.1007/s10067-024-07031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
OBJECTIVES To describe the response and relapse of severe thrombocytopenia in patients with systemic lupus erythematosus (SLE) with different treatments. METHOD We performed a retrospective cohort study, which included SLE patients who were hospitalized for thrombocytopenia of less than 30,000/µL platelets, from January 2012 to December 2021. Demographic and clinical information was obtained from clinical records. Kaplan-Meier and logrank test were performed. RESULTS Forty-seven patients, mostly women (83%) with a median age of 31 years, were included in the study. Eight patients (17%) relapsed within a median period of 35.7 weeks. Initial acute treatment with prednisone at 1 mg/kg/day was as effective as glucocorticoid pulses. However, induction treatment with cyclophosphamide (CYC) had the lowest remission rate (43%, p = 0.034). There was no significant difference in relapse-free survival (RFS) among the acute glucocorticoid treatments. CYC induction was associated with lower RFS compared to rituximab (RTX) (CYC 43.6 weeks vs. RTX 51.8 weeks, p = 0.040) or azathioprine (AZA) (CYC 43.6 weeks vs. AZA 51.2 weeks, p = 0.024). Administration of antimalarials was associated with longer RFS (51.6 weeks vs. 45.0 weeks, p = 0.021). Factors such as antiphospholipid syndrome, IgG anti-β2 glycoprotein I positivity, renal and additional hematologic SLE activity during follow-up significantly reduced RFS. CONCLUSIONS Despite similar response of acute glucocorticoid regimens, induction therapy with AZA or RTX resulted in a longer RFS compared to CYC. Adding an antimalarial also improved RFS. Our study provides evidence that may help develop better treatment strategies for severe thrombocytopenia in SLE patients. Key Points • Induction therapy with azathioprine or rituximab provided longer relapse-free survival in SLE thrombocytopenia compared with cyclophosphamide. • Antimalarial administration was associated with longer relapse-free survival in SLE thrombocytopenia. • Antiphospholipid syndrome, IgG anti-β2 glycoprotein I positivity, as well as renal and additional hematologic SLE activity during follow-up, decreased relapse-free survival.
Collapse
Affiliation(s)
- Erik Cimé-Aké
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ana Barrera-Vargas
- Department of Medical Education, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Roberta Demichelis-Gómez
- Department of Hematology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Martha Ramírez-Alemón
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Marina Rull-Gabayet
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
4
|
Li J, Peng L, Wu L, Ding Y, Duan X, Xu J, Wei W, Chen Z, Zhao C, Yang M, Jiang N, Zhang S, Wang Q, Tian X, Li M, Zeng X, Zhao Y, Zhao J. Antiphospholipid antibodies as potential predictors of disease severity and poor prognosis in systemic lupus erythematosus-associated thrombocytopenia: results from a real-world CSTAR cohort study. Arthritis Res Ther 2024; 26:67. [PMID: 38475924 DOI: 10.1186/s13075-024-03305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND To investigate the role of antiphospholipid antibodies (aPLs) in the disease severity and prognosis of SLE-related thrombocytopenia (SLE-TP). METHODS This multicenter prospective study was conducted based on data from the CSTAR registry. TP was defined as a platelet count<100 × 109/L. Demographic characteristics, platelet count, clinical manifestations, disease activity, and autoantibody profiles were collected at baseline. Relapse was defined as the loss of remission. Bone marrow aspirate reports were also collected. RESULTS A total of 350 SLE-TP patients with complete follow-up data, 194 (55.4%) were aPLs positive. At baseline, SLE-TP patients with aPLs had lower baseline platelet counts (61.0 × 109/L vs. 76.5 × 109/L, P<0.001), and a higher proportion of moderate to severe cases (24.2% vs. 14.1% ; 18.0% vs. 8.3%, P<0.001). SLE-TP patients with aPLs also had lower platelet counts at their lowest point (37.0 × 109/L vs. 51.0 × 109/L, P = 0.002). In addition, thean increasing number of aPLs types was associated with a decrease in the baseline and minimum values of platelets ( P<0.001, P = 0.001). During follow-up, SLE-TP carrying aPLs had a higher relapse rate (58.2% vs. 44.2%, P = 0.009) and a lower complete response (CR) rate. As the types of aPLs increased, the relapse rate increased, and the CR rate decreased. Furthermore, there was no significant difference in the ratio of granulocytes to red blood cells (G/E), the total number of megakaryocyte and categories. CONCLUSION SLE-TP patients with positive aPLs had more severe disease a lower remission rate but a higher relapse rate.
Collapse
Affiliation(s)
- Jun Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Liying Peng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Lijun Wu
- Department of Rheumatology and Immunology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Yufang Ding
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Xinwang Duan
- Department of Rheumatology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jian Xu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhen Chen
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Cheng Zhao
- Department of Rheumatology and Immunology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Min Yang
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Nan Jiang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Shangzhu Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China.
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China.
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Ministry of Education, Beijing, 100730, China.
| |
Collapse
|
5
|
Xie HG, Jiang LP, Tai T, Ji JZ, Mi QY. The Complement System and C4b-Binding Protein: A Focus on the Promise of C4BPα as a Biomarker to Predict Clopidogrel Resistance. Mol Diagn Ther 2024; 28:189-199. [PMID: 38261250 DOI: 10.1007/s40291-023-00691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Abstract
The complement system plays a dual role in the body, either as a first-line defense barrier when balanced between activation and inhibition or as a potential driver of complement-associated injury or diseases when unbalanced or over-activated. C4b-binding protein (C4BP) was the first circulating complement regulatory protein identified and it functions as an important complement inhibitor. C4BP can suppress the over-activation of complement components and prevent the complement system from attacking the host cells through the binding of complement cleavage products C4b and C3b, working in concert as a cofactor for factor I in the degradation of C4b and C3b, and consequently preventing or reducing the assembly of C3 convertase and C5 convertase, respectively. C4BP, particularly C4BP α-chain (C4BPα), exerts its unique inhibitory effects on complement activation and opsonization, systemic inflammation, and platelet activation and aggregation. It has long been acknowledged that crosstalk or interplay exists between the complement system and platelets. Our unpublished preliminary data suggest that circulating C4BPα exerts its antiplatelet effects through inhibition of both complement activity levels and complement-induced platelet reactivity. Plasma C4BPα levels appear to be significantly higher in patients sensitive to, rather than resistant to, clopidogrel, and we suggest that a plasma C4BPα measurement could be used to predict clopidogrel resistance in the clinical settings.
Collapse
Affiliation(s)
- Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| | - Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| |
Collapse
|
6
|
Borba-Junior IT, Lima F, Sidarta-Oliveira D, Moraes CRP, Annichino-Bizzacchi JM, Bombassaro B, Palma AC, Costa FTM, Moretti ML, Mansour E, Velloso LA, Orsi FA, De Paula EV. Podoplanin and CLEC-2 levels in patients with COVID-19. Res Pract Thromb Haemost 2023; 7:100282. [PMID: 37361399 PMCID: PMC10284445 DOI: 10.1016/j.rpth.2023.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Podoplanin (PDPN gene) and CLEC-2 are involved in inflammatory hemostasis and have also been related with the pathogenesis of thrombosis. Emerging evidence also suggest that podoplanin can exert protective effects in sepsis and in acute lung injury. In lungs, podoplanin is co-expressed with ACE2, which is the main entry receptor for SARS-CoV-2. Aim To explore the role of podoplanin and CLEC-2 in COVID-19. Methods Circulating levels of podoplanin and CLEC-2 were measured in 30 consecutive COVID-19 patients admitted due to hypoxia, and in 30 age- and sex-matched healthy individuals. Podoplanin expression in lungs from patients who died of COVID-19 was obtained from two independent public databases of single-cell RNAseq from which data from control lungs were also available. Results Circulating podoplanin levels were lower in COVID-19, while no difference was observed in CLEC-2 levels. Podoplanin levels were significantly inversely correlated with markers of coagulation, fibrinolysis and innate immunity. scRNAseq data confirmed that PDPN is co-expressed with ACE2 in pneumocytes, and showed that PDPN expression is lower in this cell compartment in lungs from patients with COVID-19. Conclusion Circulating levels of podoplanin are lower in COVID-19, and the magnitude of this reduction is correlated with hemostasis activation. We also demonstrate the downregulation of PDPN at the transcription level in pneumocytes. Together, our exploratory study questions whether an acquired podoplanin deficiency could be involved in the pathogenesis of acute lung injury in COVID-19, and warrant additional studies to confirm and refine these findings.
Collapse
Affiliation(s)
| | - Franciele Lima
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | | | - Joyce M. Annichino-Bizzacchi
- School of Medical Sciences, University of Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Bruna Bombassaro
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - André C. Palma
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | | | - Eli Mansour
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Lício Augusto Velloso
- School of Medical Sciences, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Center, University of Campinas, Campinas, Brazil
| | - Fernanda Andrade Orsi
- School of Medical Sciences, University of Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Erich Vinicius De Paula
- School of Medical Sciences, University of Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
7
|
Allegra A, Cicero N, Mirabile G, Giorgianni CM, Gangemi S. Novel Biomarkers for Diagnosis and Monitoring of Immune Thrombocytopenia. Int J Mol Sci 2023; 24:ijms24054438. [PMID: 36901864 PMCID: PMC10003036 DOI: 10.3390/ijms24054438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Lower-than-normal platelet counts are a hallmark of the acquired autoimmune illness known as immune thrombocytopenia, which can affect both adults and children. Immune thrombocytopenia patients' care has evolved significantly in recent years, but the disease's diagnosis has not, and it is still only clinically achievable with the elimination of other causes of thrombocytopenia. The lack of a valid biomarker or gold-standard diagnostic test, despite ongoing efforts to find one, adds to the high rate of disease misdiagnosis. However, in recent years, several studies have helped to elucidate a number of features of the disease's etiology, highlighting how the platelet loss is not only caused by an increase in peripheral platelet destruction but also involves a number of humoral and cellular immune system effectors. This made it possible to identify the role of immune-activating substances such cytokines and chemokines, complement, non-coding genetic material, the microbiome, and gene mutations. Furthermore, platelet and megakaryocyte immaturity indices have been emphasized as new disease markers, and prognostic signs and responses to particular types of therapy have been suggested. Our review's goal was to compile information from the literature on novel immune thrombocytopenia biomarkers, markers that will help us improve the management of these patients.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy
- Correspondence:
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, 98100 Messina, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy
| | - Concetto Mario Giorgianni
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, 98100 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
8
|
Regulatory Effects of Curcumin on Platelets: An Update and Future Directions. Biomedicines 2022; 10:biomedicines10123180. [PMID: 36551934 PMCID: PMC9775400 DOI: 10.3390/biomedicines10123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
The rhizomatous plant turmeric, which is frequently used as a spice and coloring ingredient, yields curcumin, a bioactive compound. Curcumin inhibits platelet activation and aggregation and improves platelet count. Platelets dysfunction results in several disorders, including inflammation, atherothrombosis, and thromboembolism. Several studies have proved the beneficial role of curcumin on platelets and hence proved it is an important candidate for the treatment of the aforementioned diseases. Moreover, curcumin is also frequently employed as an anti-inflammatory agent in conventional medicine. In arthritic patients, it has been shown to reduce the generation of pro-inflammatory eicosanoids and to reduce edema, morning stiffness, and other symptoms. Curcumin taken orally also reduced rats' acute inflammation brought on by carrageenan. Curcumin has also been proven to prevent atherosclerosis and platelet aggregation, as well as to reduce angiogenesis in adipose tissue. In the cerebral microcirculation, curcumin significantly lowered platelet and leukocyte adhesion. It largely modulated the endothelium to reduce platelet adhesion. Additionally, P-selectin expression and mice survival after cecal ligation and puncture were improved by curcumin, which also altered platelet and leukocyte adhesion and blood-brain barrier dysfunction. Through regulating many processes involved in platelet aggregation, curcuminoids collectively demonstrated detectable antiplatelet activity. Curcuminoids may therefore be able to prevent disorders linked to platelet activation as possible therapeutic agents. This review article proposes to highlight and discuss the regulatory effects of curcumin on platelets.
Collapse
|
9
|
Liu Y, Zuo X, Chen P, Hu X, Sheng Z, Liu A, Liu Q, Leng S, Zhang X, Li X, Wang L, Feng Q, Li C, Hou M, Chu C, Ma S, Wang S, Peng J. Deciphering transcriptome alterations in bone marrow hematopoiesis at single-cell resolution in immune thrombocytopenia. Signal Transduct Target Ther 2022; 7:347. [PMID: 36202780 PMCID: PMC9537316 DOI: 10.1038/s41392-022-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder, in which megakaryocyte dysfunction caused by an autoimmune reaction can lead to thrombocytopenia, although the underlying mechanisms remain unclear. Here, we performed single-cell transcriptome profiling of bone marrow CD34+ hematopoietic stem and progenitor cells (HSPCs) to determine defects in megakaryopoiesis in ITP. Gene expression, cell-cell interactions, and transcriptional regulatory networks varied in HSPCs of ITP, particularly in immune cell progenitors. Differentially expressed gene (DEG) analysis indicated that there was an impaired megakaryopoiesis of ITP. Flow cytometry confirmed that the number of CD9+ and HES1+ cells from Lin-CD34+CD45RA- HSPCs decreased in ITP. Liquid culture assays demonstrated that CD9+Lin-CD34+CD45RA- HSPCs tended to differentiate into megakaryocytes; however, this tendency was not observed in ITP patients and more erythrocytes were produced. The percentage of megakaryocytes differentiated from CD9+Lin-CD34+CD45RA- HSPCs was 3-fold higher than that of the CD9- counterparts from healthy controls (HCs), whereas, in ITP patients, the percentage decreased to only 1/4th of that in the HCs and was comparable to that from the CD9- HSPCs. Additionally, when co-cultured with pre-B cells from ITP patients, the differentiation of CD9+Lin-CD34+CD45RA- HSPCs toward the megakaryopoietic lineage was impaired. Further analysis revealed that megakaryocytic progenitors (MkP) can be divided into seven subclusters with different gene expression patterns and functions. The ITP-associated DEGs were MkP subtype-specific, with most DEGs concentrated in the subcluster possessing dual functions of immunomodulation and platelet generation. This study comprehensively dissects defective hematopoiesis and provides novel insights regarding the pathogenesis of ITP.
Collapse
Affiliation(s)
- Yan Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xinyi Zuo
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Peng Chen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiang Hu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zi Sheng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Anli Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shaoqiu Leng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xin Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Limei Wang
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Shangdong Key Laboratory of Immunochematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chaoyang Li
- Shangdong Key Laboratory of Immunochematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Shangdong Key Laboratory of Immunochematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, 02115, MA, USA
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Shuwen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Shangdong Key Laboratory of Immunochematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China.
| |
Collapse
|
10
|
Yoshida Y, Nishi H. The role of the complement system in kidney glomerular capillary thrombosis. Front Immunol 2022; 13:981375. [PMID: 36189215 PMCID: PMC9515535 DOI: 10.3389/fimmu.2022.981375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system is part of the innate immune system. The crucial step in activating the complement system is the generation and regulation of C3 convertase complexes, which are needed to generate opsonins that promote phagocytosis, to generate C3a that regulates inflammation, and to initiate the lytic terminal pathway through the generation and activity of C5 convertases. A growing body of evidence has highlighted the interplay between the complement system, coagulation system, platelets, neutrophils, and endothelial cells. The kidneys are highly susceptible to complement-mediated injury in several genetic, infectious, and autoimmune diseases. Atypical hemolytic uremic syndrome (aHUS) and lupus nephritis (LN) are both characterized by thrombosis in the glomerular capillaries of the kidneys. In aHUS, congenital or acquired defects in complement regulators may trigger platelet aggregation and activation, resulting in the formation of platelet-rich thrombi in the kidneys. Because glomerular vasculopathy is usually noted with immunoglobulin and complement accumulation in LN, complement-mediated activation of tissue factors could partly explain the autoimmune mechanism of thrombosis. Thus, kidney glomerular capillary thrombosis is mediated by complement dysregulation and may also be associated with complement overactivation. Further investigation is required to clarify the interaction between these vascular components and develop specific therapeutic approaches.
Collapse
Affiliation(s)
- Yoko Yoshida
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
11
|
Jiang L, Jing H, Lan L, Liu X, Wang S, Xu Y, Meng N. Effects of Acupuncture Combined with Exercise on Expression of Immune Factors in Aging Rats and Its Significance in Antiaging Intervention. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6833196. [PMID: 36017145 PMCID: PMC9398838 DOI: 10.1155/2022/6833196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022]
Abstract
Background With the improvement of people's living standards, how to maintain health and delay aging to improve the quality of life and achieve longevity has become a hot topic of concern. objective. To investigate the effect of acupuncture combined with exercise on the expression of immune factors in aging rats and its significance in antiaging intervention. Materials and Methods Forty-three SD rats included 12 rats in the control group, and the remaining rats were injected intraperitoneally with D-galactose 500 mg/kg to prepare a subacute aging rat model. The 24 rats that were successfully modeled were divided into acupuncture exercise groups and exercise groups according to the random number table method, with 12 rats in each group. After the modeling, the comparison group did not do any intervention, the exercise group was given aerobic exercise intervention, and the acupuncture exercise group was given acupuncture combined with exercise intervention. The effect of immune factor expression in rats was compared. Results The levels of IgM, IgA, and IgG in the acupuncture exercise group were significantly higher than those in the exercise group (P < 0.05). The IL-10 content in the acupuncture exercise group was significantly higher than that in the exercise group (P < 0.05) and was significantly reduced in the acupuncture exercise group compared with the comparison group (P < 0.05). The level of IL-6 in the acupuncture exercise group was significantly lower than that in the exercise group, and the level of IL-6 in the acupuncture exercise group was significantly increased compared with the comparison group (P < 0.05). The C3 and C4 levels in the acupuncture exercise group were significantly higher than those in the exercise group (P < 0.05). The levels of IFN-γ and TNP-α were significantly lower in the acupuncture exercise group than in the exercise group and significantly increased in the acupuncture exercise group compared with the comparison group (P < 0.05). Conclusion Ling turtle eight method acupuncture combined with exercise promoted the development of immune organ spleen, enhances the body's immune function and complement system, inhibits the immune inflammatory response and regulates immune balance, reduces the inflammatory response caused by the aging of D-type galactose, and achieves the effect of delaying aging.
Collapse
Affiliation(s)
- Lulu Jiang
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China 150008
| | - Hongying Jing
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China 150008
| | - Lan Lan
- College of Sport Humanistic Sociology, Harbin Sport University, Harbin, China 150008
| | - Xia Liu
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China 150008
| | - Su Wang
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China 150008
| | - Yan Xu
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China 150008
| | - Nijia Meng
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China 150008
| |
Collapse
|
12
|
Kurohara K, Shimizu K, Murata T, Koizumi G, Takigawa A, Nagata K, Okumura K, Arai N. Predictive Value of Neutrophil-Lymphocyte Ratio as a Marker in Antiresorptive Agent-Related Osteonecrosis of the Jaw: A Retrospective Analysis. Diagnostics (Basel) 2022; 12:diagnostics12081836. [PMID: 36010185 PMCID: PMC9406977 DOI: 10.3390/diagnostics12081836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Antiresorptive agent-related osteonecrosis of the jaw (ARONJ), a multifactorial disease, can drastically affect a patient’s quality of life. Moreover, disease progression to severe acute inflammation can hinder treatment. Therefore, we aimed to investigate the diagnostic value of the neutrophil−lymphocyte ratio (NLR) and platelet−lymphocyte ratio (PLR) in predicting the risk of acute inflammation in patients with ARONJ. In total, 147 patients with ARONJ were enrolled between 1 January 2011 and 31 December 2019. They were divided into two groups according to their baseline NLR (high NLR vs. low NLR) or PLR (high PLR vs. low PLR) to analyze the relationship between NLR and PLR and the outcomes of acute inflammatory events. An optimal NLR cut-off value of 2.83 was identified for hospitalization for an inflammatory event. Logistic regression analysis showed that NLR > 2.83 was associated with an increased risk of hospitalization for an inflammatory event. A PLR cut-off value of 165.2 was identified for hospitalization for an inflammatory event. However, logistic regression analysis showed that PLR > 165.2 was not significantly associated with hospitalization for an inflammatory event. Our study findings suggest that the NLR has diagnostic value in predicting the risk of hospitalization for inflammatory events among patients with ARONJ.
Collapse
|
13
|
Wang MJ, Sun Y, Song Y, Ma JN, Wang ZQ, Ding XQ, Chen HY, Zhang XB, Song MM, Hu XM. Mechanism and Molecular Targets of Ejiao Siwu Decoction for Treating Primary Immune Thrombocytopenia Based on High-Performance Liquid Chromatograph, Network Pharmacology, Molecular Docking and Cytokines Validation. Front Med (Lausanne) 2022; 9:891230. [PMID: 35911404 PMCID: PMC9326259 DOI: 10.3389/fmed.2022.891230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
We explored the mechanisms and molecular targets of Ejiao Siwu Decoction (EJSW) for treating primary immune thrombocytopenia (ITP) using network pharmacology and molecular docking. Active compounds of EJSW were identified by high-performance liquid chromatography-diode array detector (HPLC-DAD) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) and their targets were obtained from HERB and SwissTargetPrediction, and ITP targets were obtained from Comparative Toxicogenomics Database (CTD) and GeneCards. STRING and Cytoscape were used for protein-protein interaction (PPI) network analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses by WebGestalt yielded a gene-pathway network, Autodock molecular docking was applied to screen targets and active compounds, and cytokines were detected using a cytometric bead array (CBA) human inflammation kit. We identified 14 compounds and 129 targets, and 1,726 ITP targets. RAC-alpha serine/threonine-protein kinase (AKT1), tumour necrosis factor (TNF), interleukin-6 (IL6), caspase-3 (CASP3) and tumour suppressor protein (TP53) were core targets (nodes and edges). Functional annotation identified cofactor binding and coenzyme binding, and 20 significantly enriched pathways. Active compounds of EJSW were successfully docked with ITP targets. Tumour necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) were upregulated in ITP patients, vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor D (VEGF-D) were downregulated, and EJSW treatment reversed these trends. EJSW may regulate key ITP targets based on the in silico analyses, and protect vascular integrity through AGE-RAGE signalling, complement and coagulation cascades, and VEGF signalling by downregulating TNF-α, IL-1β and other inflammatory factors.
Collapse
Affiliation(s)
- Ming Jing Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ju Ning Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zi Qing Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Qing Ding
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hai Yan Chen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Bin Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Min Song
- Nankou Hospital, Beijing, China
- *Correspondence: Min Min Song,
| | - Xiao Mei Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Min Min Song,
| |
Collapse
|
14
|
Al-Kindi S, Zidar DA. COVID-lateral damage: cardiovascular manifestations of SARS-CoV-2 infection. Transl Res 2022; 241:25-40. [PMID: 34780967 PMCID: PMC8588575 DOI: 10.1016/j.trsl.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Early in the pandemic, concern that cardiovascular effects would accompany COVID-19 was fueled by lessons from the first SARS epidemic, knowledge that the SARS-COV2 entry receptor (Angiotensin-converting enzyme 2, ACE2) is highly expressed in the heart, early reports of myocarditis, and first-hand accounts by physicians caring for those with severe COVID-19. Over 18 months, our understanding of the cardiovascular manifestations has expanded greatly, leaving more new questions than those conclusively answered. Cardiac involvement is common (∼20%) but not uniformly observed in those who require treatment in a hospitalized setting. Cardiac MRI studies raise the possibility of manifestations in those with minimal symptoms. Some appear to experience protracted cardiovascular symptoms as part of a larger syndrome of post-acute sequelae of COVID-19. Instances of vaccine induced thrombosis and myocarditis are exceedingly rare but illustrate the need to monitor the cardiovascular safety of interventions that induce inflammation. Here, we will summarize the current understanding of potential cardiovascular manifestations of SARS-COV2. To provide proper context, paradigms of cardiovascular injury due to other inflammatory processes will also be discussed. Ongoing research and a deeper understanding COVID-19 may ultimately reveal new insight into the mechanistic underpinnings of cardiovascular disease. Thus, in this time of unprecedented suffering and risk to global health, there exists the opportunity that well conducted translational research of SARS-COV2 may provide health dividends that outlast the current pandemic.
Collapse
Key Words
- ace2, angiotensin-converting enzyme 2
- pasc, post-acute sequelae of covid-19
- cvd, cardiovascular disease
- tnf, tumor necrosis factor
- pamp, pathogen associated molecular patterns
- damps, damage associated molecular patterns
- car-t, chimeric antigen receptor therapy
- dvt, deep venous thrombosis
- tf, tissue factor
- psgl, p-selectin glycoprotein ligand
- nets, neutrophil extracellular traps
- lv, left ventricular
- crp, c-reactive protein
- lge, late gadolinium enhancement
- cbv, coxsackie virus b
- b19v, parvovirus b12
- car, coxsackievirus and adenovirus receptor
- ns1, nonstructural protein 1
- ec, endothelial cells
- scrnaseq, single cell rna sequencing
- embx, endomyocardial biopsy
- tte, transthoracic echocardiograms
- rv, right ventricular
- gls, global longitudinal strain
- hscrp, high sensitivity c-reative protein
- vitt, vaccine-induced immune thrombotic thrombocytopenia
- dtap, diphtheria, tetanus, and polio
- vaers, vaccine adverse event reporting system
Collapse
Affiliation(s)
- Sadeer Al-Kindi
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio
| | - David A Zidar
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio; Louis Stokes VA Medical Center, Cleveland, Ohio.
| |
Collapse
|
15
|
Platelet Membrane: An Outstanding Factor in Cancer Metastasis. MEMBRANES 2022; 12:membranes12020182. [PMID: 35207103 PMCID: PMC8875259 DOI: 10.3390/membranes12020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022]
Abstract
In addition to being biological barriers where the internalization or release of biomolecules is decided, cell membranes are contact structures between the interior and exterior of the cell. Here, the processes of cell signaling mediated by receptors, ions, hormones, cytokines, enzymes, growth factors, extracellular matrix (ECM), and vesicles begin. They triggering several responses from the cell membrane that include rearranging its components according to the immediate needs of the cell, for example, in the membrane of platelets, the formation of filopodia and lamellipodia as a tissue repair response. In cancer, the cancer cells must adapt to the new tumor microenvironment (TME) and acquire capacities in the cell membrane to transform their shape, such as in the case of epithelial−mesenchymal transition (EMT) in the metastatic process. The cancer cells must also attract allies in this challenging process, such as platelets, fibroblasts associated with cancer (CAF), stromal cells, adipocytes, and the extracellular matrix itself, which limits tumor growth. The platelets are enucleated cells with fairly interesting growth factors, proangiogenic factors, cytokines, mRNA, and proteins, which support the development of a tumor microenvironment and support the metastatic process. This review will discuss the different actions that platelet membranes and cancer cell membranes carry out during their relationship in the tumor microenvironment and metastasis.
Collapse
|
16
|
Nording H, Baron L, Haberthür D, Emschermann F, Mezger M, Sauter M, Sauter R, Patzelt J, Knoepp K, Nording A, Meusel M, Meyer-Saraei R, Hlushchuk R, Sedding D, Borst O, Eitel I, Karsten CM, Feil R, Pichler B, Erdmann J, Verschoor A, Chavakis E, Chavakis T, von Hundelshausen P, Köhl J, Gawaz M, Langer HF. The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets. Nat Commun 2021; 12:3352. [PMID: 34099640 PMCID: PMC8185003 DOI: 10.1038/s41467-021-23499-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1-/- mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo.In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - David Haberthür
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Frederic Emschermann
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Matthias Mezger
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Johannes Patzelt
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Kai Knoepp
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Anne Nording
- grid.10392.390000 0001 2190 1447Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Moritz Meusel
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Roza Meyer-Saraei
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Ruslan Hlushchuk
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Daniel Sedding
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Oliver Borst
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Ingo Eitel
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Robert Feil
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Bernd Pichler
- grid.10392.390000 0001 2190 1447Institute for Preclinical Imaging, Eberhard Karls University, Tübingen, Germany
| | - Jeanette Erdmann
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Admar Verschoor
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Emmanouil Chavakis
- grid.411088.40000 0004 0578 8220Department for Internal Medicine III/Cardiology, University Hospital of the Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Triantafyllos Chavakis
- grid.4488.00000 0001 2111 7257Department of Clinical Pathobiochemistry, Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Philipp von Hundelshausen
- grid.5252.00000 0004 1936 973XInstitute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
| | - Jörg Köhl
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany ,grid.239573.90000 0000 9025 8099Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Meinrad Gawaz
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
17
|
Rawish E, Sauter M, Sauter R, Nording H, Langer HF. Complement, inflammation and thrombosis. Br J Pharmacol 2021; 178:2892-2904. [PMID: 33817781 DOI: 10.1111/bph.15476] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
A mutual relationship exists between immune activation and mechanisms of thrombus formation. In particular, elements of the innate immune response such as the complement system can modulate platelet activation and subsequently thrombus formation. Several components of the complement system including C3 or the membrane attack complex have been reported to be associated with platelets and become functionally active in the micromilieu of platelet activation. The exact mechanisms how this interplay is regulated and its consequences for tissue inflammation, damage or recovery remain to be defined. This review addresses the current state of knowledge on this topic and puts it into context with diseases featuring both thrombosis and complement activation. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
18
|
Anisuzzaman, Frahm S, Prodjinotho UF, Bhattacharjee S, Verschoor A, Prazeres da Costa C. Host-Specific Serum Factors Control the Development and Survival of Schistosoma mansoni. Front Immunol 2021; 12:635622. [PMID: 33968028 PMCID: PMC8103320 DOI: 10.3389/fimmu.2021.635622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/06/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Schistosomiasis is a neglected tropical disease (NTD) caused by blood-dwelling flatworms which develop from skin-penetrating cercariae, the freely swimming water-borne infective stage of Schistosoma mansoni, into adult worms. This natural course of infection can be mimicked in experimental mouse models of schistosomiasis. However, only a maximum of 20-30% of penetrated cercariae mature into fecund adults. The reasons for this are unknown but could potentially involve soluble factors of the innate immune system, such as complement factors and preexisting, natural antibodies. Materials and Methods Using our recently developed novel serum- and cell-free in vitro culture system for newly transformed schistosomula (NTS), which supports long-term larval survival, we investigated the effects of mouse serum and its major soluble complement factors C1q, C3, C4 as well as preexisting, natural IgM in vitro and assessed worm development in vivo by infecting complement and soluble (s)IgM-deficient animals. Results In contrast to sera from humans and a broad variety of mammalian species, serum from mice, surprisingly, killed parasites already at skin stage in vitro. Interestingly, the most efficient killing component(s) were heat-labile but did not include important members of the perhaps best known family of heat-labile serum factors, the complement system, nor consisted of complement-activating natural immunoglobulins. Infection of complement C1q and sIgM-deficient mice with S. mansoni as well as in vitro tests with sera from mice deficient in C3 and C4 revealed no major role for these soluble factors in vivo in regard to parasite maturation, fecundity and associated immunopathology. Rather, the reduction of parasite maturation from cercariae to adult worms was comparable to wild-type mice. Conclusion This study reveals that not yet identified heat-labile serum factors are major selective determinants of the host-specificity of schistosomiasis, by directly controlling schistosomal development and survival.
Collapse
Affiliation(s)
- Anisuzzaman
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sören Frahm
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Ulrich Fabien Prodjinotho
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Sonakshi Bhattacharjee
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Admar Verschoor
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- Centre for Global Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
19
|
Dysregulation of Key Proteinases in Aspergillus fumigatus Induced by Blood Platelets. Rep Biochem Mol Biol 2021; 10:95-104. [PMID: 34277873 DOI: 10.52547/rbmb.10.1.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/13/2020] [Indexed: 11/18/2022]
Abstract
Background Aspergillus fumigatus is the most common species causing invasive aspergillosis (IA), a life-threatening infection with more than 80% mortality. Interactions between A. fumigatus and human blood platelets lead to intravascular thrombosis and localized infarcts. To better understand A. fumigatus pathogenesis, we aimed to analyze the genetic basis of interactions between the pathogen and blood platelets. Methods A bioinformatic pipeline on microarray gene expression dataset, including analysis of differentially expressed genes (DEGs) using Limma R package and their molecular function, as well as biological pathways identification, was conducted to find the effective genes involved in IA. In the wet phase, the gene expression patterns following fungal exposure to blood platelets at 15, 30, 60, and 180 min were evaluated by quantitative reverse transcriptase-PCR analysis. Results Three genes encoding aspartic endopeptidases including (Pep1), (Asp f 13), and (β-glucanase) were the standing candidates. The invasion-promoting fungal proteinase-encoding genes were down-regulated after 30 min of hyphal incubation with blood platelets, and then up-regulated at 60 and 180 min, although only Pep1 was greater than the control at the 60and 180 min time points. Also, the same genes were downregulated in more the clinical isolates relative to the standard strain CBS 144.89. Conclusion Our findings delineate the possible induction of fungal-encoded proteinases by blood platelets. This provides a new research line into A. fumigatus' molecular pathogenesis. Such insight into IA pathogenesis might also guide researchers toward novel platelet-based therapies that involve molecular interventions, especially in IA patients.
Collapse
|
20
|
Non-Criteria Manifestations of Juvenile Antiphospholipid Syndrome. J Clin Med 2021; 10:jcm10061240. [PMID: 33802787 PMCID: PMC8002433 DOI: 10.3390/jcm10061240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder mainly characterised by increased risks of thrombosis and pregnancy morbidity and persistent positive test results for antiphospholipid antibodies (aPLs). The criteria for diagnosing juvenile APS have yet to be validated, while the Sydney classification criteria do not contain several non-thrombotic clinical manifestations associated with the presence of aPLs. As such, difficulties have been encountered in the diagnosis of patients who have no certain thrombotic occlusions. Moreover, extra-criteria manifestations (i.e., clinical manifestations not listed in the classification criteria), including neurologic manifestations (chorea, myelitis and migraine), haematologic manifestations (thrombocytopenia and haemolytic anaemia), livedo reticularis, nephropathy and valvular heart disease have been reported, which suggests that the clinical spectrum of aPL-related manifestations extends beyond that indicated in the classification criteria. Studies have demonstrated that more than 40% of children with aPLs demonstrated non-thrombotic aPL-related clinical manifestations alone. Moreover, our results showed that the pathogenesis of non-criteria manifestations is characterised by “APS vasculopathy”. The present review introduces the characteristics and findings of non-criteria manifestations observed in juvenile APS.
Collapse
|
21
|
Abstract
Thrombosis is the most feared complication of cardiovascular diseases and a main cause of death worldwide, making it a major health-care challenge. Platelets and the coagulation cascade are effectively targeted by antithrombotic approaches, which carry an inherent risk of bleeding. Moreover, antithrombotics cannot completely prevent thrombotic events, implicating a therapeutic gap due to a third, not yet adequately addressed mechanism, namely inflammation. In this Review, we discuss how the synergy between inflammation and thrombosis drives thrombotic diseases. We focus on the huge potential of anti-inflammatory strategies to target cardiovascular pathologies. Findings in the past decade have uncovered a sophisticated connection between innate immunity, platelet activation and coagulation, termed immunothrombosis. Immunothrombosis is an important host defence mechanism to limit systemic spreading of pathogens through the bloodstream. However, the aberrant activation of immunothrombosis in cardiovascular diseases causes myocardial infarction, stroke and venous thromboembolism. The clinical relevance of aberrant immunothrombosis, referred to as thromboinflammation, is supported by the increased risk of cardiovascular events in patients with inflammatory diseases but also during infections, including in COVID-19. Clinical trials in the past 4 years have confirmed the anti-ischaemic effects of anti-inflammatory strategies, backing the concept of a prothrombotic function of inflammation. Targeting inflammation to prevent thrombosis leaves haemostasis mainly unaffected, circumventing the risk of bleeding associated with current approaches. Considering the growing number of anti-inflammatory therapies, it is crucial to appreciate their potential in covering therapeutic gaps in cardiovascular diseases.
Collapse
|
22
|
Shivshankar P, Fekry B, Eckel-Mahan K, Wetsel RA. Circadian Clock and Complement Immune System-Complementary Control of Physiology and Pathology? Front Cell Infect Microbiol 2020; 10:418. [PMID: 32923410 PMCID: PMC7456827 DOI: 10.3389/fcimb.2020.00418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian species contain an internal circadian (i.e., 24-h) clock that is synchronized to the day and night cycles. Large epidemiological studies, which are supported by carefully controlled studies in numerous species, support the idea that chronic disruption of our circadian cycles results in a number of health issues, including obesity and diabetes, defective immune response, and cancer. Here we focus specifically on the role of the complement immune system and its relationship to the internal circadian clock system. While still an incompletely understood area, there is evidence that dysregulated proinflammatory cytokines, complement factors, and oxidative stress can be induced by circadian disruption and that these may feed back into the oscillator at the level of circadian gene regulation. Such a feedback cycle may contribute to impaired host immune response against pathogenic insults. The complement immune system including its activated anaphylatoxins, C3a and C5a, not only facilitate innate and adaptive immune response in chemotaxis and phagocytosis, but they can also amplify chronic inflammation in the host organism. Consequent development of autoimmune disorders, and metabolic diseases associated with additional environmental insults that activate complement can in severe cases, lead to accelerated tissue dysfunction, fibrosis, and ultimately organ failure. Because several promising complement-targeted therapeutics to block uncontrolled complement activation and treat autoimmune diseases are in various phases of clinical trials, understanding fully the circadian properties of the complement system, and the reciprocal regulation by these two systems could greatly improve patient treatment in the long term.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Baharan Fekry
- Center for Metabolic and Degenerative Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kristin Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rick A Wetsel
- Research Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
23
|
Luo S, Hu D, Wang M, Zipfel PF, Hu Y. Complement in Hemolysis- and Thrombosis- Related Diseases. Front Immunol 2020; 11:1212. [PMID: 32754149 PMCID: PMC7366831 DOI: 10.3389/fimmu.2020.01212] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
The complement system, originally classified as part of innate immunity, is a tightly self-regulated system consisting of liquid phase, cell surface, and intracellular proteins. In the blood circulation, the complement system, platelets, coagulation system, and fibrinolysis system form a close and complex network. They activate and regulate each other and jointly mediate immune monitoring and tissue homeostasis. The dysregulation of each cascade system results in clinical manifestations and the progression of different diseases, such as sepsis, atypical hemolytic uremic syndrome, C3 glomerulonephritis, systemic lupus erythematosus, or ischemia–reperfusion injury. In this review, we summarize the crosstalk between the complement system, platelets, and coagulation, provide integrative insights into how complement dysfunction leads to hemopathic progression, and further discuss the therapeutic relevance of complement in hemolytic and thrombotic diseases.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Sauter RJ, Sauter M, Reis ES, Emschermann FN, Nording H, Ebenhöch S, Kraft P, Münzer P, Mauler M, Rheinlaender J, Madlung J, Edlich F, Schäffer TE, Meuth SG, Duerschmied D, Geisler T, Borst O, Gawaz M, Kleinschnitz C, Lambris JD, Langer HF. Functional Relevance of the Anaphylatoxin Receptor C3aR for Platelet Function and Arterial Thrombus Formation Marks an Intersection Point Between Innate Immunity and Thrombosis. Circulation 2019; 138:1720-1735. [PMID: 29802205 DOI: 10.1161/circulationaha.118.034600] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Platelets have distinct roles in the vascular system in that they are the major mediator of thrombosis, critical for restoration of tissue integrity, and players in vascular inflammatory conditions. In close spatiotemporal proximity, the complement system acts as the first line of defense against invading microorganisms and is a key mediator of inflammation. Whereas the fluid phase cross-talk between the complement and coagulation systems is well appreciated, the understanding of the pathophysiological implications of such interactions is still scant. METHODS We analyzed coexpression of the anaphylatoxin receptor C3aR with activated glycoprotein IIb/IIIa on platelets of 501 patients with coronary artery disease using flow cytometry; detected C3aR expression in human or murine specimen by polymerase chain reaction, immunofluorescence, Western blotting, or flow cytometry; and examined the importance of platelet C3aR by various in vitro platelet function tests, in vivo bleeding time, and intravital microscopy. The pathophysiological relevance of C3aR was scrutinized with the use of disease models of myocardial infarction and stroke. To approach underlying molecular mechanisms, we identified the platelet small GTPase Rap1b using nanoscale liquid chromatography coupled to tandem mass spectrometry. RESULTS We found a strong positive correlation of platelet complement C3aR expression with activated glycoprotein IIb/IIIa in patients with coronary artery disease and coexpression of C3aR with glycoprotein IIb/IIIa in thrombi obtained from patients with myocardial infarction. Our results demonstrate that the C3a/C3aR axis on platelets regulates distinct steps of thrombus formation such as platelet adhesion, spreading, and Ca2+ influx. Using C3aR-/- mice or C3-/- mice with reinjection of C3a, we uncovered that the complement activation fragment C3a regulates bleeding time after tail injury and thrombosis. Notably, C3aR-/- mice were less prone to experimental stroke and myocardial infarction. Furthermore, reconstitution of C3aR-/- mice with C3aR+/+ platelets and platelet depletion experiments demonstrated that the observed effects on thrombosis, myocardial infarction, and stroke were specifically caused by platelet C3aR. Mechanistically, C3aR-mediated signaling regulates the activation of Rap1b and thereby bleeding arrest after injury and in vivo thrombus formation. CONCLUSIONS Overall, our findings uncover a novel function of the anaphylatoxin C3a for platelet function and thrombus formation, highlighting a detrimental role of imbalanced complement activation in cardiovascular diseases.
Collapse
Affiliation(s)
- Reinhard J Sauter
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany.,Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Manuela Sauter
- Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia (E.S.R., J.D.L.)
| | - Frederic N Emschermann
- Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Henry Nording
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany.,Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Sonja Ebenhöch
- Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Peter Kraft
- Department of Neurology, University of Würzburg, Germany (P.K.)
| | - Patrick Münzer
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Maximilian Mauler
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine (M.M., D.D.), University of Freiburg, Germany
| | - Johannes Rheinlaender
- Institute of Applied Physics (J.R., T.E.S.), Eberhard Karls-University Tübingen, Germany
| | - Johannes Madlung
- Proteom Center, Interfaculty Institute for Cell Biology (J.M.), Eberhard Karls-University Tübingen, Germany
| | - Frank Edlich
- Institute of Biochemistry (F.E.), University of Freiburg, Germany.,Institute for Biochemistry and Molecular Biology, University of Freiburg, Germany (F.E.).,BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Germany (F.E.)
| | - Tilman E Schäffer
- Institute of Applied Physics (J.R., T.E.S.), Eberhard Karls-University Tübingen, Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster, Germany (S.G.M.)
| | - Daniel Duerschmied
- Cardiology and Angiology I, Heart Center Freiburg University and Faculty of Medicine (M.M., D.D.), University of Freiburg, Germany
| | - Tobias Geisler
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany
| | | | - John D Lambris
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia (E.S.R., J.D.L.)
| | - Harald F Langer
- Department of Cardiology and Cardiovascular Medicine, University Clinic (R.J.S., H.N., P.M., T.G., O.B., M.G., H.F.L.), Eberhard Karls-University Tübingen, Germany.,Section for Cardioimmunology (R.J.S., M.S., F.N.E., H.N., S.E., H.F.L.), Eberhard Karls-University Tübingen, Germany
| |
Collapse
|
25
|
Abstract
Acute kidney injury (AKI), a major public health problem associated with high mortality and increased risk of progression towards end-stage renal disease, is characterized by the activation of intra-renal haemostatic and inflammatory processes. Platelets, which are present in high numbers in the circulation and can rapidly release a broad spectrum of bioactive mediators, are important acute modulators of inflammation and haemostasis, as they are the first cells to arrive at sites of acute injury, where they interact with endothelial cells and leukocytes. Diminished control of platelet reactivity by endothelial cells and/or an increased release of platelet-activating mediators can lead to uncontrolled platelet activation in AKI. As increased platelet sequestration and increased expression levels of the markers P-selectin, thromboxane A2, CC-chemokine ligand 5 and platelet factor 4 on platelets have been reported in kidneys following AKI, platelet activation likely plays a part in AKI pathology. Results from animal models and some clinical studies highlight the potential of antiplatelet therapies in the preservation of renal function in the context of AKI, but as current strategies also affect other cell types and non-platelet-derived mediators, additional studies are required to further elucidate the extent of platelet contribution to the pathology of AKI and to determine the best therapeutic approach by which to specifically target related pathogenic pathways.
Collapse
Affiliation(s)
- Marcel P B Jansen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
26
|
Buelli S, Zoja C, Remuzzi G, Morigi M. Complement Activation Contributes to the Pathophysiology of Shiga Toxin-Associated Hemolytic Uremic Syndrome. Microorganisms 2019; 7:microorganisms7010015. [PMID: 30634669 PMCID: PMC6352217 DOI: 10.3390/microorganisms7010015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections have become a threat to public health globally because of the severe illnesses that they can trigger, such as hemorrhagic colitis and the post-diarrheal hemolytic uremic syndrome (HUS), characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney failure. Glomerular endothelial cells are primary targets of Stx which, after binding to its specific receptor globotriaosylceramide, upregulates proinflammatory proteins involved both in the recruitment and adhesion of leukocytes and thrombus formation at the site of endothelial injury. In this review, we discuss the role of complement activation in promoting glomerular microvascular dysfunction, providing evidence from experimental models and patients with STEC-HUS. Within the glomerulus, an important target for Stx-induced complement activation is the podocyte, a cell type that is in close contact with endothelial cells and participates in maintaining the filtration barrier. Recently, podocyte injury and loss have been indicated as potential risk factors for long-term renal sequelae in patients with STEC-HUS. Therapeutic approaches targeting the complement system, that may be useful options for patients with STEC-HUS, will also be discussed.
Collapse
Affiliation(s)
- Simona Buelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
- L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy.
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| |
Collapse
|
27
|
Eisinger F, Patzelt J, Langer HF. The Platelet Response to Tissue Injury. Front Med (Lausanne) 2018; 5:317. [PMID: 30483508 PMCID: PMC6242949 DOI: 10.3389/fmed.2018.00317] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, various studies have increasingly explained platelet functions not only in their central role as a regulator in cellular hemostasis and coagulation. In fact, there is growing evidence that under specific conditions, platelets act as a mediator between the vascular system, hemostasis, and the immune system. Therefore, they are essential in many processes involved in tissue remodeling and tissue reorganization after injury or inflammatory responses. These processes include the promotion of inflammatory processes, the contribution to innate and adaptive immune responses during bacterial and viral infections, the modulation of angiogenesis, and the regulation of cell apoptosis in steady-state tissue homeostasis or after tissue breakdown. All in all platelets may contribute to the control of tissue homeostasis much more than generally assumed. This review summarizes the current knowledge of platelets as part of the tissue remodeling network and seeks to provide possible translational implications for clinical therapy.
Collapse
Affiliation(s)
- Felix Eisinger
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Johannes Patzelt
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Harald F. Langer
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
28
|
Abstract
SIGNIFICANCE Platelets are anucleate blood cells that are involved in hemostasis and thrombosis. Although no longer able to generate ribonucleic acid (RNA) de novo, platelets contain messenger RNA (mRNA), YRNA fragments, and premature microRNAs (miRNAs) that they inherit from megakaryocytes. Recent Advances: Novel sequencing techniques have helped identify the unexpectedly large number of RNA species present in platelets. Throughout their life time, platelets can process the pre-existing pool of premature miRNA to give the fully functional miRNA that can regulate platelet protein expression and function. CRITICAL ISSUES Platelets make a major contribution to the circulating miRNA pool but platelet activation can have major consequences on Dicer levels and thus miRNA maturation, which has implications for studies that are focused on screening-stored platelets. FUTURE DIRECTIONS It will be important to determine the importance of platelets as donors for miRNA-containing microvesicles that can be taken up and processed by other (particularly vascular) cells, thus contributing to homeostasis as well as disease progression. Antioxid. Redox Signal. 29, 902-921.
Collapse
Affiliation(s)
- Amro Elgheznawy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Platelet communication with the vascular wall: role of platelet-derived microparticles and non-coding RNAs. Clin Sci (Lond) 2018; 132:1875-1888. [PMID: 30185611 DOI: 10.1042/cs20180580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 12/24/2022]
Abstract
Platelets play an important role in vascular homeostasis through their interaction with circulating blood cells as well as the vascular wall. Platelet-mediated communication with other cells can take the form of direct cell-cell interactions via membrane receptors or indirectly through the release of different soluble factors stored in their granules as well as through the release of microparticles. The latter carry different proteins and RNAs which are transferred to the target cells. The aim of this review is to discuss the role of platelet-derived factors, adhesion molecules as well as RNAs as mediators of the cross-talk between platelets and the vessel wall.
Collapse
|
30
|
Deppermann C, Kubes P. Start a fire, kill the bug: The role of platelets in inflammation and infection. Innate Immun 2018; 24:335-348. [PMID: 30049243 PMCID: PMC6830908 DOI: 10.1177/1753425918789255] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 11/19/2022] Open
Abstract
Platelets are the main players in thrombosis and hemostasis; however they also play important roles during inflammation and infection. Through their surface receptors, platelets can directly interact with pathogens and immune cells. Platelets form complexes with neutrophils to modulate their capacities to produce reactive oxygen species or form neutrophil extracellular traps. Furthermore, they release microbicidal factors and cytokines that kill pathogens and influence the immune response, respectively. Platelets also maintain the vascular integrity during inflammation by a mechanism that is different from classical platelet activation. In this review we summarize the current knowledge about how platelets interact with the innate immune system during inflammation and infection and highlight recent advances in the field.
Collapse
Affiliation(s)
- Carsten Deppermann
- Calvin, Phoebe and Joan Snyder Institute for Chronic
Diseases, University of Calgary, Calgary, AB, Canada
| | - Paul Kubes
- Calvin, Phoebe and Joan Snyder Institute for Chronic
Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
31
|
Complement links platelets to innate immunity. Semin Immunol 2018; 37:43-52. [DOI: 10.1016/j.smim.2018.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
|
32
|
From blood coagulation to innate and adaptive immunity: the role of platelets in the physiology and pathology of autoimmune disorders. Rheumatol Int 2018; 38:959-974. [PMID: 29492586 PMCID: PMC5954012 DOI: 10.1007/s00296-018-4001-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Thrombosis and cardiovascular complications are common manifestations of a variety of pathological conditions, including infections and chronic inflammatory diseases. Hence, there is great interest in determining the hitherto unforeseen immune role of the main blood coagulation executor-the platelet. Platelets store and release a plethora of immunoactive molecules, generate microparticles, and interact with cells classically belonging to the immune system. The observed effects of platelet involvement in immune processes, especially in autoimmune diseases, are conflicting-from inciting inflammation to mediating its resolution. An in-depth understanding of the role of platelets in inflammation and immunity could open new therapeutic pathways for patients with autoimmune disorders. This review aims to summarize the current knowledge on the role of platelets in the patomechanisms of autoimmune disorders and suggests directions for future research.
Collapse
|
33
|
Zhu X, Zhang J, Wang Q, Fu H, Chang Y, Kong Y, Lv M, Xu L, Liu K, Huang X, Zhang X. Diminished expression of β2-GPI is associated with a reduced ability to mitigate complement activation in anti-GPIIb/IIIa-mediated immune thrombocytopenia. Ann Hematol 2017; 97:641-654. [PMID: 29350259 DOI: 10.1007/s00277-017-3215-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022]
Abstract
Anti-GPIIb/IIIa-mediated complement activation has been reported to be important in the pathogenesis of immune thrombocytopenia (ITP). However, the role of the complement system and the involved regulatory mechanism remain equivocal. Beta2-glycoprotein I (β2-GPI), known as the main target for antiphospholipid autoantibodies, has been demonstrated as a complement regulator. Here, we investigated the complement-regulatory role of β2-GPI in anti-GPIIb/IIIa-mediated ITP. Plasma complement activation and enhanced complement activation capacity (CAC) were found in ITP patients with anti-GPIIb/IIIa antibodies in vivo and in vitro. Diminished plasma levels of β2-GPI were shown in patients of this group, which was inversely correlated with C5b-9 deposition. C5b-9 generation was inhibited by approximate physiological concentrations of β2-GPI, in a dose-dependent manner. Inhibition of C3a generation by β2-GPI and the existence of β2-GPI/C3 complexes in plasma indicated a regulation on the level of the C3 convertase. Furthermore, β2-GPI down-regulated the phosphorylation levels of c-Jun N-terminal kinase (JNK) and cleavage of BH3 interacting domain death agonist (Bid) and ultimately harbored platelet lysis. Our findings may provide a novel link between diminished plasma levels of β2-GPI and enhanced complement activation, indicating β2-GPI as a potential diagnostic biomarker and therapeutic target in the treatment of anti-GPIIb/IIIa-mediated ITP.
Collapse
Affiliation(s)
- Xiaolu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Jiamin Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Qianming Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Haixia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Kaiyan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.
- Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China.
| |
Collapse
|
34
|
Müller K, Chatterjee M, Rath D, Geisler T. Platelets, inflammation and anti-inflammatory effects of antiplatelet drugs in ACS and CAD. Thromb Haemost 2017. [DOI: 10.1160/th14-11-0947] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SummaryPlatelets play a pivotal role in chronic inflammation leading to progression of atherosclerosis and acute coronary events. Recent discoveries on novel mechanisms and platelet-dependent inflammatory targets underpin the role of platelets to maintain a chronic inflammatory condition in cardiovascular disease. There is strong and clinically relevant crosslink between chronic inflammation and platelet activation. Antiplatelet therapy is a cornerstone in the prevention and treatment of acute cardiovascular events. The benefit of antiplatelet agents has mainly been attributed to their direct anti-aggregatory impact. Some anti-inflammatory off-target effects have also been described. However, it is unclear whether these effects are secondary due to inhibition of platelet activation or are caused by direct distinct mechanisms interfering with inflammatory pathways. This article will highlight novel platelet associated targets that contribute to inflammation in cardiovascular disease and elucidate mechanisms by which currently available antiplatelet agents evolve anti-inflammatory capacities, in particular by carving out the differential mechanisms directly or indirectly affecting platelet mediated inflammation. It will further illustrate the prognostic impact of antiplatelet therapies by reducing inflammatory marker release in recent cardiovascular trials.
Collapse
|
35
|
Bettoni S, Galbusera M, Gastoldi S, Donadelli R, Tentori C, Spartà G, Bresin E, Mele C, Alberti M, Tortajada A, Yebenes H, Remuzzi G, Noris M. Interaction between Multimeric von Willebrand Factor and Complement: A Fresh Look to the Pathophysiology of Microvascular Thrombosis. THE JOURNAL OF IMMUNOLOGY 2017; 199:1021-1040. [PMID: 28652401 DOI: 10.4049/jimmunol.1601121] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 05/23/2017] [Indexed: 12/18/2022]
Abstract
von Willebrand factor (VWF), a multimeric protein with a central role in hemostasis, has been shown to interact with complement components. However, results are contrasting and inconclusive. By studying 20 patients with congenital thrombotic thrombocytopenic purpura (cTTP) who cannot cleave VWF multimers because of genetic ADAMTS13 deficiency, we investigated the mechanism through which VWF modulates complement and its pathophysiological implications for human diseases. Using assays of ex vivo serum-induced C3 and C5b-9 deposits on endothelial cells, we documented that in cTTP, complement is activated via the alternative pathway (AP) on the cell surface. This abnormality was corrected by restoring ADAMTS13 activity in cTTP serum, which prevented VWF multimer accumulation on endothelial cells, or by an anti-VWF Ab. In mechanistic studies we found that VWF interacts with C3b through its three type A domains and initiates AP activation, although assembly of active C5 convertase and formation of the terminal complement products C5a and C5b-9 occur only on the VWF-A2 domain. Finally, we documented that in the condition of ADAMTS13 deficiency, VWF-mediated formation of terminal complement products, particularly C5a, alters the endothelial antithrombogenic properties and induces microvascular thrombosis in a perfusion system. Altogether, the results demonstrated that VWF provides a platform for the activation of the AP of complement, which profoundly alters the phenotype of microvascular endothelial cells. These findings link hemostasis-thrombosis with the AP of complement and open new therapeutic perspectives in cTTP and in general in thrombotic and inflammatory disorders associated with endothelium perturbation, VWF release, and complement activation.
Collapse
Affiliation(s)
- Serena Bettoni
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Miriam Galbusera
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Sara Gastoldi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Roberta Donadelli
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Chiara Tentori
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Giuseppina Spartà
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Elena Bresin
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Caterina Mele
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Marta Alberti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| | - Agustin Tortajada
- Department of Immunology, Complutense University, Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain
| | - Hugo Yebenes
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biologicas, 28040 Madrid, Spain
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy; .,Unità di Nefrologia e Dialisi, Azienda Ospedaliera Papa Giovanni XXIII, 24127 Bergamo, Italy; and.,Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Marina Noris
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," 24020 Ranica Bergamo, Italy
| |
Collapse
|
36
|
Ntelis K, Solomou EE, Sakkas L, Liossis SN, Daoussis D. The role of platelets in autoimmunity, vasculopathy, and fibrosis: Implications for systemic sclerosis. Semin Arthritis Rheum 2017; 47:409-417. [PMID: 28602360 DOI: 10.1016/j.semarthrit.2017.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, autoimmunity, and widespread dermal and visceral fibrosis. This article summarizes the current knowledge about the potential contribution of platelets in the disease process and the rationale of targeting platelets as an adjunct treatment for SSc. METHODS We performed an electronic search (Medline) using the keywords platelets, systemic sclerosis, autoimmunity, fibrosis, Raynaud, and pulmonary arterial hypertension. RESULTS The link that connects vasculopathy, autoimmunity, and fibrosis in SSc remains obscure. Experimental data suggest that platelets are not solely cell fragments regulating hemostasis but they have a pleiotropic role in several biologic processes including immune regulation, vasculopathy, fibrosis, and all key features of SSc. Platelets interplay with the impaired endothelium, can interact with immune cells, and they are storages of bioactive molecules involved in tissue injury and remodeling. The potential role of platelets in the pathogenesis of SSc is further supported by experimental data in animal models of SSc. Platelet-derived serotonin represents a novel target in SSc and serotonin blockade is currently being tested in clinical trials. CONCLUSION Platelets may be actively involved in the pathogenesis of SSc by activating immune responses and facilitating the fibrotic process. However, definite conclusions cannot be drawn until more data from both basic and clinical research are available.
Collapse
Affiliation(s)
- Konstantinos Ntelis
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, 26504 Rion, Patras, Greece
| | - Elena E Solomou
- Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, Patras, Greece
| | - Lazaros Sakkas
- Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, 26504 Rion, Patras, Greece
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, 26504 Rion, Patras, Greece.
| |
Collapse
|
37
|
Awh CC, Modjtahedi BS, Eliott D. Purtscher's retinopathy as the presenting manifestation of immune thrombocytopenic purpura. Am J Ophthalmol Case Rep 2017; 6:77-80. [PMID: 29260065 PMCID: PMC5722137 DOI: 10.1016/j.ajoc.2017.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 01/13/2017] [Indexed: 11/22/2022] Open
Abstract
Purpose To report the case of a 52-year-old man with Purtscher's retinopathy as the presenting manifestation of immune thrombocytopenic purpura (ITP). Observations Treatment with corticosteroids led to the resolution of hematologic findings within 1 week, and normal visual acuity was achieved after 2 months with no additional treatment. Conclusions and importance This is the first reported association between Purtscher's retinopathy and ITP. Complement activation has been implicated in the pathogenesis of both ITP and Purtscher's retinopathy, and we suggest that the patient's systemic process accounted for the retinal findings.
Collapse
Affiliation(s)
- Caroline C Awh
- Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, USA
| | - Bobeck S Modjtahedi
- Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, USA
| | - Dean Eliott
- Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA, USA
| |
Collapse
|
38
|
Abstract
The primary function of platelets is to patrol the vasculature and seal vessel breaches to limit blood loss. However, it is becoming increasingly clear that they also contribute to pathophysiological conditions like thrombosis, atherosclerosis, stroke and infection. Severe sepsis is a devastating disease that claims hundreds of thousands of lives every year in North America and is a major burden to the public health system. Platelet surface receptors like GPIb, αIIbβ3, TLR2 and TLR4 are involved in direct platelet-bacteria interactions. Plasma proteins like fibrinogen and vWF enable indirect interactions. Furthermore, platelet granules contain a plethora of proteins that modulate the immune response as well as microbicidal agents which can directly lyse bacteria. Bacterial toxins are potent platelet activators and can cause intravascular platelet aggregation. Platelets contribute to the antibacterial response of the host involving Kupffer cells, neutrophils and the complement system. In this review we summarize the current knowledge about platelet-bacteria interactions and highlight recent advances in the field.
Collapse
Affiliation(s)
- Carsten Deppermann
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Paul Kubes
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
39
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
40
|
Broadley S, Plaumann A, Coletti R, Lehmann C, Wanisch A, Seidlmeier A, Esser K, Luo S, Rämer P, Massberg S, Busch D, van Lookeren Campagne M, Verschoor A. Dual-Track Clearance of Circulating Bacteria Balances Rapid Restoration of Blood Sterility with Induction of Adaptive Immunity. Cell Host Microbe 2016; 20:36-48. [DOI: 10.1016/j.chom.2016.05.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/15/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022]
|
41
|
Consolini R, Legitimo A, Caparello MC. The Centenary of Immune Thrombocytopenia - Part 1: Revising Nomenclature and Pathogenesis. Front Pediatr 2016; 4:102. [PMID: 27807534 PMCID: PMC5069646 DOI: 10.3389/fped.2016.00102] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022] Open
Abstract
The natural history of the immune thrombocytopenia (ITP) is interesting and intriguing because it traces different steps underlying autoimmune diseases. The review points out the main steps that have accompanied the stages of its history and the consequential changes related to its terminology. ITP is an autoimmune disease resulting from platelet antibody-mediated destruction and impaired megakaryocyte and platelet production. However, research advances highlight that a complex dysregulation of the immune system is involved in the pathogenesis of this condition. The review examines the role of the multiple immune components involved in the autoimmunity process, focusing on the more recent mechanisms, which could be new promising therapeutic targets for ITP patients.
Collapse
Affiliation(s)
- Rita Consolini
- Laboratory of Immunology, Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa , Pisa , Italy
| | - Annalisa Legitimo
- Laboratory of Immunology, Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa , Pisa , Italy
| | - Maria Costanza Caparello
- Laboratory of Immunology, Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa , Pisa , Italy
| |
Collapse
|
42
|
Marín E, Parra-Giraldo CM, Hernández-Haro C, Hernáez ML, Nombela C, Monteoliva L, Gil C. Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface. Front Microbiol 2015; 6:1343. [PMID: 26696967 PMCID: PMC4672057 DOI: 10.3389/fmicb.2015.01343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/16/2015] [Indexed: 01/11/2023] Open
Abstract
Candida albicans is a human opportunistic fungus and it is responsible for a wide variety of infections, either superficial or systemic. C. albicans is a polymorphic fungus and its ability to switch between yeast and hyphae is essential for its virulence. Once C. albicans obtains access to the human body, the host serum constitutes a complex environment of interaction with C. albicans cell surface in bloodstream. To draw a comprehensive picture of this relevant step in host-pathogen interaction during invasive candidiasis, we have optimized a gel-free shaving proteomic strategy to identify both, human serum proteins coating C. albicans cells and fungi surface proteins simultaneously. This approach was carried out with normal serum (NS) and heat inactivated serum (HIS). We identified 214 human and 372 C. albicans unique proteins. Proteins identified in C. albicans included 147 which were described as located at the cell surface and 52 that were described as immunogenic. Interestingly, among these C. albicans proteins, we identified 23 GPI-anchored proteins, Gpd2 and Pra1, which are involved in complement system evasion and 7 other proteins that are able to attach plasminogen to C. albicans surface (Adh1, Eno1, Fba1, Pgk1, Tdh3, Tef1, and Tsa1). Furthermore, 12 proteins identified at the C. albicans hyphae surface induced with 10% human serum were not detected in other hypha-induced conditions. The most abundant human proteins identified are involved in complement and coagulation pathways. Remarkably, with this strategy, all main proteins belonging to complement cascades were identified on the C. albicans surface. Moreover, we identified immunoglobulins, cytoskeletal proteins, metabolic proteins such as apolipoproteins and others. Additionally, we identified more inhibitors of complement and coagulation pathways, some of them serpin proteins (serine protease inhibitors), in HIS vs. NS. On the other hand, we detected a higher amount of C3 at the C. albicans surface in NS than in HIS, as validated by immunofluorescence.
Collapse
Affiliation(s)
- Elvira Marín
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Claudia M Parra-Giraldo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Carolina Hernández-Haro
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - María L Hernáez
- Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| | - Lucía Monteoliva
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| | - Concha Gil
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Unidad de Proteómica, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain ; Instituto Ramón y Cajal de Investigación Sanitaria Madrid, Spain
| |
Collapse
|
43
|
Abstract
The association between antiphospholipid antibodies (aPL) and clinical problems goes beyond what is stated in the antiphospholipid syndrome (APS) classification criteria, namely thrombosis and pregnancy morbidity, and thrombocytopenia is the most common non-criteria hematologic manifestation of aPL with a frequency ranging from 20 to 50 %. Thrombocytopenia is rarely severe, and hemorrhage is far less common than thrombosis. However, when anticoagulation is considered, it may constitute a clinical problem with increased bleeding risk. Furthermore, thrombocytopenia represents a risk factor for thrombosis in aPL-positive patients. Therefore, it is important to understand the pathogenesis and the clinical associations of thrombocytopenia to build the right medical approach in aPL-positive patients. In this paper, we review the literature on aPL/APS-associated thrombocytopenia and briefly discuss the other conditions that can result in thrombocytopenia as they have commonalities with APS and their recognition is important to establish the most appropriate treatment strategy.
Collapse
|
44
|
Schuett KA, Lehrke M, Marx N, Burgmaier M. High-Risk Cardiovascular Patients: Clinical Features, Comorbidities, and Interconnecting Mechanisms. Front Immunol 2015; 6:591. [PMID: 26635805 PMCID: PMC4655316 DOI: 10.3389/fimmu.2015.00591] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/03/2015] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in the Western world with an increase over the last few decades. Atherosclerosis with its different manifestations in the coronary artery tree, the cerebral, as well as peripheral arteries is the basis for cardiovascular events, such as myocardial infarction, stroke, and cardiovascular death. The pathophysiological understanding of the mechanisms that promote the development of vascular disease has changed over the last few decades, leading to the recognition that inflammation and inflammatory processes in the vessel wall are major contributors in atherogenesis. In addition, a subclinical inflammatory status, e.g., in patients with diabetes or the presence of a chronic inflammatory disease, such as rheumatoid arthritis, have been recognized as strong risk factors for cardiovascular disease. The present review will summarize the different inflammatory processes in the vessel wall leading to atherosclerosis and highlight the role of inflammation in diabetes and chronic inflammatory diseases for cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital RWTH Aachen , Aachen , Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital RWTH Aachen , Aachen , Germany
| | - Mathias Burgmaier
- Department of Internal Medicine I, University Hospital RWTH Aachen , Aachen , Germany
| |
Collapse
|
45
|
Speth C, Rambach G, Würzner R, Lass-Flörl C, Kozarcanin H, Hamad OA, Nilsson B, Ekdahl KN. Complement and platelets: Mutual interference in the immune network. Mol Immunol 2015; 67:108-18. [DOI: 10.1016/j.molimm.2015.03.244] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
|
46
|
Abstract
Aspirin is widely used to lessen the risks of cardiovascular events. Some studies suggest that patients with multiple sclerosis have an increased risk for some cardiovascular events, for example, venous thromboembolism and perhaps ischemic strokes, raising the possibility that aspirin could lessen these increased risks in this population or subgroups (patients with limited mobility and/or antiphospholipid antibodies). However, aspirin causes a small increased risk of hemorrhagic stroke, which is a concern as it could potentially worsen a compromised blood-brain barrier. Aspirin has the potential to ameliorate the disease process in multiple sclerosis (for example, by limiting some components of inflammation), but aspirin also has the potential to inhibit mitochondrial complex I activity, which is already reduced in multiple sclerosis. In an experimental setting of a cerebral ischemic lesion, aspirin promoted the proliferation and/or differentiation of oligodendrocyte precursors, raising the possibility that aspirin could facilitate remyelination efforts in multiple sclerosis. Other actions by aspirin may lead to small improvements of some symptoms (for example, lessening fatigue). Here we consider potential benefits and risks of aspirin usage by patients with multiple sclerosis.
Collapse
Affiliation(s)
- Sheila Tsau
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Mitchell R Emerson
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, AZ, USA.
| | - Sharon G Lynch
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Steven M LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
47
|
Hovland A, Jonasson L, Garred P, Yndestad A, Aukrust P, Lappegård KT, Espevik T, Mollnes TE. The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis. Atherosclerosis 2015; 241:480-94. [PMID: 26086357 DOI: 10.1016/j.atherosclerosis.2015.05.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/08/2015] [Accepted: 05/29/2015] [Indexed: 02/08/2023]
Abstract
Despite recent medical advances, atherosclerosis is a global burden accounting for numerous deaths and hospital admissions. Immune-mediated inflammation is a major component of the atherosclerotic process, but earlier research focus on adaptive immunity has gradually switched towards the role of innate immunity. The complement system and toll-like receptors (TLRs), and the crosstalk between them, may be of particular interest both with respect to pathogenesis and as therapeutic targets in atherosclerosis. Animal studies indicate that inhibition of C3a and C5a reduces atherosclerosis. In humans modified LDL-cholesterol activate complement and TLRs leading to downstream inflammation, and histopathological studies indicate that the innate immune system is present in atherosclerotic lesions. Moreover, clinical studies have demonstrated that both complement and TLRs are upregulated in atherosclerotic diseases, although interventional trials have this far been disappointing. However, based on recent research showing an intimate interplay between complement and TLRs we propose a model in which combined inhibition of both complement and TLRs may represent a potent anti-inflammatory therapeutic approach to reduce atherosclerosis.
Collapse
Affiliation(s)
- Anders Hovland
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, 8092 Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway.
| | - Lena Jonasson
- Department of Medical and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631 Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Arne Yndestad
- Research Institute of Internal Medicine and Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine and Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Knut T Lappegård
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, 8092 Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway
| | - Terje Espevik
- Norwegian University of Science and Technology, Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, 7491 Trondheim, Norway
| | - Tom E Mollnes
- Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway; Norwegian University of Science and Technology, Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, 7491 Trondheim, Norway; Research Laboratory, Nordland Hospital, 8092 Bodø, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, 0372 Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9019 Tromsø, Norway
| |
Collapse
|
48
|
Abstract
Throughout evolution, organisms have developed means to contain wounds by simultaneously limiting bleeding and eliminating pathogens and damaged host cells via the recruitment of innate defense mechanisms. Disease emerges when there is unchecked activation of innate immune and/or coagulation responses. A key component of innate immunity is the complement system. Concurrent excess activation of coagulation and complement - two major blood-borne proteolytic pathways - is evident in numerous diseases, including atherosclerosis, diabetes, venous thromboembolic disease, thrombotic microangiopathies, arthritis, cancer, and infectious diseases. Delineating the cross-talk between these two cascades will uncover novel therapeutic insights.
Collapse
Affiliation(s)
- E M Conway
- Centre for Blood Research, Life Sciences Institute, Division of Hematology, Department of Medicine, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
49
|
Cimmino G, Tarallo R, Nassa G, De Filippo MR, Giurato G, Ravo M, Rizzo F, Conte S, Pellegrino G, Cirillo P, Calabro P, Öhman T, Nyman TA, Weisz A, Golino P. Activating stimuli induce platelet microRNA modulation and proteome reorganisation. Thromb Haemost 2015; 114:96-108. [PMID: 25903651 DOI: 10.1160/th14-09-0726] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/27/2015] [Indexed: 11/05/2022]
Abstract
Platelets carry megakaryocyte-derived mRNAs whose translation efficiency before and during activation is not known, although this can greatly affect platelet functions, both under basal conditions and in response to physiological and pathological stimuli, such as those involved in acute coronary syndromes. Aim of the present study was to determine whether changes in microRNA (miRNA) expression occur in response to activating stimuli and whether this affects activity and composition of platelet transcriptome and proteome. Purified platelet-rich plasmas from healthy volunteers were collected and activated with ADP, collagen, or thrombin receptor activating peptide. Transcriptome analysis by RNA-Seq revealed that platelet transcriptome remained largely unaffected within the first 2 hours of stimulation. In contrast, quantitative proteomics showed that almost half of > 700 proteins quantified were modulated under the same conditions. Global miRNA analysis indicated that reorganisation of platelet proteome occurring during activation reflected changes in mature miRNA expression, which therefore, appears to be the main driver of the observed discrepancy between transcriptome and proteome changes. Platelet functions significantly affected by modulated miRNAs include, among others, the integrin/cytoskeletal, coagulation and inflammatory-immune response pathways. These results demonstrate a significant reprogramming of the platelet miRNome during activation, with consequent significant changes in platelet proteome and provide for the first time substantial evidence that fine-tuning of resident mRNA translation by miRNAs is a key event in platelet pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Alessandro Weisz
- Prof. Alessandro Weisz, MD, Laboratory of Molecular Medicine and Genomics, University of Salerno, via S. Allende, 1, 84081 Baronissi (SA), Italy, Tel.: +39 089 965043, Fax: +39 089 969657, E-mail:
| | - Paolo Golino
- Prof. Paolo Golino, MD, Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, Via L. Bianchi, 1, 80131 Naples, Italy, Tel.: +39 0823 306395, Fax: +39 0823 232395, E-mail:
| |
Collapse
|
50
|
Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol 2015; 6:98. [PMID: 25798138 PMCID: PMC4351644 DOI: 10.3389/fimmu.2015.00098] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022] Open
Abstract
Platelets contribute to processes beyond thrombus formation and may play a so far underestimated role as an immune cell in various circumstances. This review outlines immune functions of platelets in host defense, but also how they may contribute to mechanisms of infectious diseases. A particular emphasis is placed on the interaction of platelets with other immune cells. Furthermore, this article outlines the features of atherosclerosis as an inflammatory vascular disease highlighting the role of platelet crosstalk with cellular and soluble factors involved in atheroprogression. Understanding, how platelets influence these processes of vascular remodeling will shed light on their role for tissue homeostasis beyond intravascular thrombosis. Finally, translational implications of platelet-mediated inflammation in atherosclerosis are discussed.
Collapse
Affiliation(s)
- Henry M. Nording
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Peter Seizer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Harald F. Langer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|