1
|
Lv N, Zhang Y, Wang L, Suo Y, Zeng W, Yu Q, Yu B, Jiang X. LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress. Curr Pharm Biotechnol 2024; 25:1021-1040. [PMID: 37842894 DOI: 10.2174/0113892010267577231005102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Mi S, Wang P, Lin L. miR-188-3p Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Targeting Fibroblast Growth Factor 1 (FGF1). Med Sci Monit 2020; 26:e924394. [PMID: 33020467 PMCID: PMC7547530 DOI: 10.12659/msm.924394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background As one of the crucial causes leading to cardiovascular disease, atherosclerosis (AS) develops in association with the dysfunction of vascular smooth muscle cells (VSMCs). However, the associated mechanism of the proliferation and migration in VSMCs requires further elucidation. Material/Methods Human VSMCs and ApoE-knockout (ApoE−/−) mice were used to establish AS cell and animal models, respectively. Expression levels of miR-188-3p and fibroblast growth factor 1 (FGF1) mRNA were detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Western blot was used to assess FGF1 protein expression. The proliferation, migration, and apoptosis of the cells were determined using MTT, BrdU, and Transwell assays, as well as flow cytometry analysis. The interaction between miR-188-3p and FGF1 was validated using dual-luciferase reporter gene assay, qRT-PCR, and Western blot analysis. Results MiR-188-3p was found to be significantly decreased in the serum of AS patients and ApoE−/− mice as well as VSMCs of ApoE−/− mice and human VSMCs treated with oxidized low-density lipoprotein. MiR-188-3p repressed the proliferation and migration of VSMCs but promoted apoptosis of VSMCs. The binding site between miR-188-3p and 3′ untranslated region (3′-UTR) of FGF1 was identified, and FGF1 was verified as a target gene of miR-188-3p. Restoration of FGF1 reversed the effects of miR-188-3p on VSMCs. Conclusions MiR-188-3p suppresses the proliferation and migration of VSMCs and induces their apoptosis through targeting FGF1.
Collapse
Affiliation(s)
- Shaohua Mi
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China (mainland)
| | - Pengfei Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Laishan Branch, Yantai, Shandong, China (mainland)
| | - Lejun Lin
- Nuclear Medicine Department, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China (mainland)
| |
Collapse
|
3
|
Saber GY, Kasabri V, Saleh MI, Suyagh M, Halaseh L, Jaber R, Abu-Hassan H, Alalawi S. Increased irisin versus reduced fibroblast growth factor1 (FGF1) in relation to adiposity, atherogenicity and hematological indices in metabolic syndrome patients with and without prediabetes. Horm Mol Biol Clin Investig 2019; 38:hmbci-2018-0063. [PMID: 30840586 DOI: 10.1515/hmbci-2018-0063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022]
Abstract
Background Irisin and fibroblast growth factor 1 (FGF1) are intricately involved in metabolic syndrome (MetS) and prediabetes (preDM) pathophysiology. This study aimed to compare and correlate irisin and FGF1 plasma levels, adiposity, atherogenicity and hematological indices in 29 normoglycemic MetS and 30 newly diagnosed drug naive prediabetic (PreDM) MetS patients vs. 29 lean and normoglycemic controls. Materials and methods Irisin and FGF1 plasma levels were measured using colorimetric assays. Intergroup comparisons were conducted by analysis of variance (ANOVA). Spearman's rank correlation was also examined. Results The mean circulating irisin levels (ng/mL) were significantly higher in the normoglycemic (but not prediabetic) MetS group (p < 0.01), while the mean circulating FGF1 levels (pg/mL) were markedly lower in the prediabetic (but not normoglycemic) MetS group (p < 0.05). Of note unlike FGF1, irisin in the MetS (both normoglycemic and prediabetic;N=59) groups correlated significantly and positively with each of waist circumference (WC), hip circumference (HC), body mass index (BMI), body adiposity index (BAI) and high-density lipoprotein-cholesterol (HDL-C) but not the non-HDL-C. Distinctively MetS-irisin negatively associated with the non-HDL-C/HDL-C ratio, total cholesterol (TC)/HDL-C ratio and the low-density lipoprotein-cholesterol (LDL-C)/HDL-C ratio, but positively with the red cell distribution width (RDW). In the same pool of 59 MetS reruits; Neither biomarker had a relationship with the visceral adiposity index (VAI), the lipid accumulation product (LAP), the conicity index (CI), the waist-hip ratio (WHR), the waist-to-height ratio (WHtR), the blood ratios or the atherogenicity index of plasma (AIP). Conclusions As any potential molecular crosstalk of irisin and FGF1 in MetS or its related dysregularities cannot be ruled out; Conversely the utility of irisin and FGF1 as surrogate prognostic biomarkers and putative pharmacotherapeutic targets in the predtion/prevention/management of diabetes and MetS is strongly suggested.
Collapse
Affiliation(s)
| | - Violet Kasabri
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | | | - Maysa Suyagh
- School of Pharmacy, University of Jordan, Amman, Jordan
| | - Lana Halaseh
- School of Medicine, University of Jordan, Amman, Jordan
| | - Ruba Jaber
- School of Medicine, University of Jordan, Amman, Jordan
| | | | | |
Collapse
|
4
|
Zhang L, Cheng H, Yue Y, Li S, Zhang D, He R. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovasc Pathol 2017; 33:6-15. [PMID: 29268138 DOI: 10.1016/j.carpath.2017.11.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been revealed to participate in the pathological events associated with atherosclerosis. However, the exact role of lncRNA taurine-up-regulated gene 1 (TUG1) and its possible molecular mechanism in atherosclerosis remain unidentified. METHODS High-fat diet (HFD)-treated ApoE-/- mice were used as an in vivo model of atherosclerosis. Ox-LDL-induced macrophages and vascular smooth muscle cells (VSMCs) were employed as cell models of atherosclerosis. qRT-PCR was performed to detect the expression of TUG1 and miR-133a. Serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were analyzed by commercially available enzyme kits. Oil red O and hematoxylin and eosin (H&E) staining were conducted to examine atherosclerotic lesion. Luciferase reporter assay combined with RNA immunoprecipitation (RIP) was applied to confirm the interaction between TUG1, miR-133a and FGF1. Cell proliferation ability was determined by Cell Counting Kit-8 (CCK-8) assay and trypan blue dye exclusion test. Cell apoptosis was evaluated with TUNEL assay. Expression and production of inflammatory cytokines was measured with western blot and ELISA analysis. RESULTS TUG1 expression was up-regulated in HFD-treated ApoE-/- mice, as well as in ox-LDL-induced RAW264.7 and MOVAS cells. TUG1 knockdown inhibited hyperlipidemia, decreased inflammatory response, and attenuated atherosclerotic lesion in HFD-treated ApoE-/- mice. TUG1 could function as a molecular sponge of miR-133a to suppress its expression. TUG1 overexpression accelerated cell growth, improved inflammatory factor expression, and inhibited apoptosis in ox-LDL-stimulated RAW264.7 and MOVAS cells, while this effect was abated after transfection with miR-133 mimic. Moreover, fibroblast growth factor 1 (FGF1) was identified as a direct target of miR-133a. Restored expression of FGF1 overturned the effect of miR-133a on cell proliferation, inflammatory factor secretion and apoptosis in ox-LDL-treated RAW264.7 and MOVAS cells. Finally, TUG1 was revealed to up-regulate FGF1 expression by sponging miR-133a. CONCLUSION TUG1 knockdown ameliorates atherosclerosis by modulating FGF1 via miR-133a, raising the possibility of targeting TUG1 as an atheroprotective therapeutic strategy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Hailing Cheng
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yuxia Yue
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Shuangzhan Li
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Daping Zhang
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Ruili He
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|
5
|
Izaguirre M, Gil MJ, Monreal I, Montecucco F, Frühbeck G, Catalán V. The Role and Potential Therapeutic Implications of the Fibroblast Growth Factors in Energy Balance and Type 2 Diabetes. Curr Diab Rep 2017; 17:43. [PMID: 28451950 DOI: 10.1007/s11892-017-0866-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Obesity and its associated metabolic diseases have reached epidemic proportions worldwide, reducing life expectancy and quality of life. Several drugs have been tested to treat these diseases but many of them have damaging side effects. Consequently, there is an urgent need to develop more effective therapies. Recently, endocrine fibroblast growth factors (FGFs) have become attractive targets in the treatment of metabolic diseases. This review summarizes their most important functions as well as FGF-based therapies for the treatment of obesity and type 2 diabetes (T2D). RECENT FINDINGS Recent studies demonstrate that circulating levels of FGF19 are reduced in obesity. In fact, exogenous FGF19 administration is associated with a reduction in food intake as well as with improvements in glycaemia. In contrast, FGF21 levels are elevated in subjects with abdominal obesity, insulin resistance and T2D, probably representing a compensatory response. Additionally, elevated levels of circulating FGF23 in individuals with obesity and T2D are reported in most clinical studies. Finally, increased FGF1 levels in obese patients associated with adipogenesis have been described. FGFs constitute important molecules in the treatment of metabolic diseases due to their beneficial effects on glucose and lipid metabolism. Among all members, FGF19 and FGF21 have demonstrated the ability to improve glucose, lipid and energy homeostasis, along with FGF1, which was recently discovered to have beneficial effects on metabolic homeostasis. Additionally, FGF23 may also play a role in insulin resistance or energy homeostasis beyond mineral metabolism control. These results highlight the relevant use of FGFs as potential biomarkers for the early diagnosis of metabolic diseases. In this regard, notable progress has been made in the development of FGF-based therapies and different approaches are being tested in different clinical trials. However, further studies are needed to determine their potential therapeutic use in the treatment of obesity and obesity-related comorbidities.
Collapse
Affiliation(s)
- Maitane Izaguirre
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
| | - María J Gil
- Department of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Monreal
- Department of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino-IST, Genoa, Italy
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Avda. Pío XII, 36, 31008, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
6
|
Kirov A, Kacer D, Conley BA, Vary CPH, Prudovsky I. AHNAK2 Participates in the Stress-Induced Nonclassical FGF1 Secretion Pathway. J Cell Biochem 2016; 116:1522-31. [PMID: 25560297 DOI: 10.1002/jcb.25047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/22/2022]
Abstract
FGF1 is a nonclassically released growth factor that regulates carcinogenesis, angiogenesis, and inflammation. In vitro and in vivo, FGF1 export is stimulated by cell stress. Upon stress, FGF1 is transported to the plasma membrane where it localizes prior to transmembrane translocation. To determine which proteins participate in the submembrane localization of FGF1 and its export, we used immunoprecipitation mass spectrometry to identify novel proteins that associate with FGF1 during heat shock. The heat shock-dependent association of FGF1 with the large protein AHNAK2 was observed. Heat shock induced the translocation of FGF1 and AHNAK2 to the cytoskeletal fraction. In heat-shocked cells, FGF1 and the C-terminal fragment of AHNAK2 colocalized with F-actin in the vicinity of the cell membrane. Depletion of AHNAK2 resulted in a drastic decrease of stress-induced FGF1 export but did not affect spontaneous FGF2 export and FGF1 release induced by the inhibition of Notch signaling. Thus, AHNAK2 is an important element of the FGF1 nonclassical export pathway.
Collapse
Affiliation(s)
- Aleksandr Kirov
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| | - Doreen Kacer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| | - Barbara A Conley
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| | - Calvin P H Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| | - Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, 04074, Maine
| |
Collapse
|
7
|
Li M, Page-McCaw P, Chen W. FGF1 Mediates Overnutrition-Induced Compensatory β-Cell Differentiation. Diabetes 2016; 65:96-109. [PMID: 26420862 PMCID: PMC4686947 DOI: 10.2337/db15-0085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022]
Abstract
Increased insulin demand resulting from insulin resistance and/or overnutrition induces a compensatory increase in β-cell mass. The physiological factors responsible for the compensation have not been fully characterized. In zebrafish, overnutrition rapidly induces compensatory β-cell differentiation through triggering the release of a paracrine signal from persistently activated β-cells. We identified Fgf1 signaling as a key component of the overnutrition-induced β-cell differentiation signal in a small molecule screen. Fgf1 was confirmed as the overnutrition-induced β-cell differentiation signal, as inactivation of fgf1 abolished the compensatory β-cell differentiation. Furthermore, expression of human FGF1 solely in β-cells in fgf1(-/-) animals rescued the compensatory response, indicating that β-cells can be the source of FGF1. Additionally, constitutive secretion of FGF1 with an exogenous signal peptide increased β-cell number in the absence of overnutrition. These results demonstrate that fgf1 is necessary and FGF1 expression in β-cells is sufficient for the compensatory β-cell differentiation. We further show that FGF1 is secreted during prolonged activation of cultured mammalian β-cells and that endoplasmic reticulum stress acts upstream of FGF1 release. Thus, the recently discovered antidiabetes function of FGF1 may act partially through increasing β-cell differentiation.
Collapse
Affiliation(s)
- Mingyu Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Patrick Page-McCaw
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
8
|
CHENG YUNPENG, LIU XIAOYUN, ZHANG LIJIAO, ZHANG YING, LIU YING, LU YAN, JIANG YINONG. Effect of oxidized low-density lipoprotein on the expression of the prorenin receptor in human aortic smooth muscle cells. Mol Med Rep 2015; 11:4341-4. [DOI: 10.3892/mmr.2015.3254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 12/17/2014] [Indexed: 11/06/2022] Open
|
9
|
A Network Map of FGF-1/FGFR Signaling System. JOURNAL OF SIGNAL TRANSDUCTION 2014; 2014:962962. [PMID: 24829797 PMCID: PMC4009234 DOI: 10.1155/2014/962962] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/03/2014] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor-1 (FGF-1) is a well characterized growth factor among the 22 members of the FGF superfamily in humans. It binds to all the four known FGF receptors and regulates a plethora of functions including cell growth, proliferation, migration, differentiation, and survival in different cell types. FGF-1 is involved in the regulation of diverse physiological processes such as development, angiogenesis, wound healing, adipogenesis, and neurogenesis. Deregulation of FGF-1 signaling is not only implicated in tumorigenesis but also is associated with tumor invasion and metastasis. Given the biomedical significance of FGFs and the fact that individual FGFs have different roles in diverse physiological processes, the analysis of signaling pathways induced by the binding of specific FGFs to their cognate receptors demands more focused efforts. Currently, there are no resources in the public domain that facilitate the analysis of signaling pathways induced by individual FGFs in the FGF/FGFR signaling system. Towards this, we have developed a resource of signaling reactions triggered by FGF-1/FGFR system in various cell types/tissues. The pathway data and the reaction map are made available for download in different community standard data exchange formats through NetPath and NetSlim signaling pathway resources.
Collapse
|
10
|
Prudovsky I, Kumar TKS, Sterling S, Neivandt D. Protein-phospholipid interactions in nonclassical protein secretion: problem and methods of study. Int J Mol Sci 2013; 14:3734-72. [PMID: 23396106 PMCID: PMC3588068 DOI: 10.3390/ijms14023734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 12/30/2022] Open
Abstract
Extracellular proteins devoid of signal peptides use nonclassical secretion mechanisms for their export. These mechanisms are independent of the endoplasmic reticulum and Golgi. Some nonclassically released proteins, particularly fibroblast growth factors (FGF) 1 and 2, are exported as a result of their direct translocation through the cell membrane. This process requires specific interactions of released proteins with membrane phospholipids. In this review written by a cell biologist, a structural biologist and two membrane engineers, we discuss the following subjects: (i) Phenomenon of nonclassical protein release and its biological significance; (ii) Composition of the FGF1 multiprotein release complex (MRC); (iii) The relationship between FGF1 export and acidic phospholipid externalization; (iv) Interactions of FGF1 MRC components with acidic phospholipids; (v) Methods to study the transmembrane translocation of proteins; (vi) Membrane models to study nonclassical protein release.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | | | - Sarah Sterling
- Department of Chemical and Biological Engineering, University of Maine, Orono, ME 04469, USA; E-Mails: (S.S.); (D.N.)
| | - David Neivandt
- Department of Chemical and Biological Engineering, University of Maine, Orono, ME 04469, USA; E-Mails: (S.S.); (D.N.)
| |
Collapse
|
11
|
Karagiannis GS, Weile J, Bader GD, Minta J. Integrative pathway dissection of molecular mechanisms of moxLDL-induced vascular smooth muscle phenotype transformation. BMC Cardiovasc Disord 2013; 13:4. [PMID: 23324130 PMCID: PMC3556327 DOI: 10.1186/1471-2261-13-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 12/29/2012] [Indexed: 01/08/2023] Open
Abstract
Background Atherosclerosis (AT) is a chronic inflammatory disease characterized by the accumulation of inflammatory cells, lipoproteins and fibrous tissue in the walls of arteries. AT is the primary cause of heart attacks and stroke and is the leading cause of death in Western countries. To date, the pathogenesis of AT is not well-defined. Studies have shown that the dedifferentiation of contractile and quiescent vascular smooth muscle cells (SMC) to the proliferative, migratory and synthetic phenotype in the intima is pivotal for the onset and progression of AT. To further delineate the mechanisms underlying the pathogenesis of AT, we analyzed the early molecular pathways and networks involved in the SMC phenotype transformation. Methods Quiescent human coronary artery SMCs were treated with minimally-oxidized LDL (moxLDL), for 3 hours and 21 hours, respectively. Transcriptomic data was generated for both time-points using microarrays and was subjected to pathway analysis using Gene Set Enrichment Analysis, GeneMANIA and Ingenuity software tools. Gene expression heat maps and pathways enriched in differentially expressed genes were compared to identify functional biological themes to elucidate early and late molecular mechanisms of moxLDL-induced SMC dedifferentiation. Results Differentially expressed genes were found to be enriched in cholesterol biosynthesis, inflammatory cytokines, chemokines, growth factors, cell cycle control and myogenic contraction themes. These pathways are consistent with inflammatory responses, cell proliferation, migration and ECM production, which are characteristic of SMC dedifferentiation. Furthermore, up-regulation of cholesterol synthesis and dysregulation of cholesterol metabolism was observed in moxLDL-induced SMC. These observations are consistent with the accumulation of cholesterol and oxidized cholesterol esters, which induce proinflammatory reactions during atherogenesis. Our data implicate for the first time IL12, IFN-α, HGF, CSF3, and VEGF signaling in SMC phenotype transformation. GPCR signaling, HBP1 (repressor of cyclin D1 and CDKN1B), and ID2 and ZEB1 transcriptional regulators were also found to have important roles in SMC dedifferentiation. Several microRNAs were observed to regulate the SMC phenotype transformation via an interaction with IFN-γ pathway. Also, several “nexus” genes in complex networks, including components of the multi-subunit enzyme complex involved in the terminal stages of cholesterol synthesis, microRNAs (miR-203, miR-511, miR-590-3p, miR-346*/miR- 1207-5p/miR-4763-3p), GPCR proteins (GPR1, GPR64, GPRC5A, GPR171, GPR176, GPR32, GPR25, GPR124) and signal transduction pathways, were found to be regulated. Conclusions The systems biology analysis of the in vitro model of moxLDL-induced VSMC phenotype transformation was associated with the regulation of several genes not previously implicated in SMC phenotype transformation. The identification of these potential candidate genes enable hypothesis generation and in vivo functional experimentation (such as gain and loss-of-function studies) to establish causality with the process of SMC phenotype transformation and atherogenesis.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, and Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5S 1A8, Canada
| | | | | | | |
Collapse
|
12
|
Kirov A, Al-Hashimi H, Solomon P, Mazur C, Thorpe PE, Sims PJ, Tarantini F, Kumar TKS, Prudovsky I. Phosphatidylserine externalization and membrane blebbing are involved in the nonclassical export of FGF1. J Cell Biochem 2012; 113:956-66. [PMID: 22034063 DOI: 10.1002/jcb.23425] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanisms of nonclassical export of signal peptide-less proteins remain insufficiently understood. Here, we demonstrate that stress-induced unconventional export of FGF1, a potent and ubiquitously expressed mitogenic and proangiogenic protein, is associated with and dependent on the formation of membrane blebs and localized cell surface exposure of phosphatidylserine (PS). In addition, we found that the differentiation of promonocytic cells results in massive FGF1 release, which also correlates with membrane blebbing and exposure of PS. These findings indicate that the externalization of acidic phospholipids could be used as a pharmacological target to regulate the availability of FGF1 in the organism.
Collapse
Affiliation(s)
- Aleksandr Kirov
- Maine Medical Center Research Institute, Scarborough, Maine Medical Center, ME 04074, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mishra P, Samanta L. Oxidative stress and heart failure in altered thyroid States. ScientificWorldJournal 2012; 2012:741861. [PMID: 22649319 PMCID: PMC3354657 DOI: 10.1100/2012/741861] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/25/2011] [Indexed: 02/07/2023] Open
Abstract
Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with a faster heart rate, enhanced left ventricular systolic and diastolic function whereas hypothyroidism is characterized by the opposite changes. Hyperthyroidism and hypothyroidism represent opposite clinical conditions, albeit not mirror images. Recent experimental and clinical studies have suggested the involvement of ROS tissue damage under altered thyroid status. Altered-thyroid state-linked changes in heart modify their susceptibility to oxidants and the extent of the oxidative damage they suffer following oxidative challenge. Chronic increase in the cellular levels of ROS can lead to a catastrophic cycle of DNA damage, mitochondrial dysfunction, further ROS generation and cellular injury. Thus, these cellular events might play an important role in the development and progression of myocardial remodeling and heart failure in altered thyroid states (hypo- and hyper-thyroidism). The present review aims at elucidating the various signaling pathways mediated via ROS and their modulation under altered thyroid state and the possibility of antioxidant therapy.
Collapse
Affiliation(s)
- Pallavi Mishra
- Department of Zoology, Utkal University, Odisha, Bhubaneswar 751004, India
| | | |
Collapse
|
14
|
Fabian E, Bogner M, Elmadfa I. Age-related modification of antioxidant enzyme activities in relation to cardiovascular risk factors. Eur J Clin Invest 2012; 42:42-8. [PMID: 21722101 DOI: 10.1111/j.1365-2362.2011.02554.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Since oxidative stress might cause and promote cardiovascular risk factors such as oxidized low-density lipoproteins (oxLDL), apolipoprotein(a) [apo(a)], asymmetric dimethylarginine (ADMA) and fetuin A, we investigated antioxidant enzyme activities in relation to the vascular redox balance and these risk factors in elderly people. MATERIALS AND METHODS For this observational study, a total of 102 subjects were recruited and divided into three groups: A (70-74 years/n = 48), B (75-79 years/n = 35) and C (≥ 80 years/n = 19). Activities of the erythrocyte antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) were determined photometrically oxLDL, apo(a), ADMA and fetuin A by ELISA. Plasma concentrations of the lipid peroxidation products malondialdehyde (MDA) and conjugated dienes (CD) were analysed with HPLC. RESULTS There were no significant age-associated alterations in apo(a) levels, but there was a significant age-related decrease in activities of SOD (A>C, B>C: P < 0·01), CAT (A>C: P < 0·05) and GSH-Px (A>C: P < 0·05), accompanied by a significant increase in oxLDL (A<C: P < 0·001; B<C: P < 0·05), ADMA (A<B: P < 0·05; A<C: P < 0·001), MDA (A<C, B<C: P < 0·01) and CD (A<C, B<C: P < 0·01), and a significant decrease in fetuin A (A>C: P < 0·01; B>C: P < 0·05). Consequently, all groups showed significant negative age-associated correlations between CAT and MDA (A, B, C: P < 0·05), GSH-Px and CD (A, C: P < 0·01; B: P < 0·05), SOD and oxLDL (A, B: P < 0·05; C: P < 0·01), and fetuin A and MDA (A: P < 0·01; B, C: P < 0·05), and a significant positive correlation between oxLDL and ADMA (A, B: P < 0·05; C: P < 0·01). CONCLUSIONS This study indicates a significant age-related decrease in antioxidant enzyme activities accompanied by significantly increased systemic oxidative stress, which promotes the cardiovascular risk factors oxLDL, ADMA and fetuin A in elderly people.
Collapse
Affiliation(s)
- Elisabeth Fabian
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
15
|
Oxidized Low-Density Lipoprotein and Atherosclerosis Implications in Antioxidant Therapy. Am J Med Sci 2011; 342:135-42. [DOI: 10.1097/maj.0b013e318224a147] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Leopold JA, Loscalzo J. Oxidative risk for atherothrombotic cardiovascular disease. Free Radic Biol Med 2009; 47:1673-706. [PMID: 19751821 PMCID: PMC2797369 DOI: 10.1016/j.freeradbiomed.2009.09.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/31/2009] [Accepted: 09/06/2009] [Indexed: 02/07/2023]
Abstract
In the vasculature, reactive oxidant species, including reactive oxygen, nitrogen, or halogenating species, and thiyl, tyrosyl, or protein radicals may oxidatively modify lipids and proteins with deleterious consequences for vascular function. These biologically active free radical and nonradical species may be produced by increased activation of oxidant-generating sources and/or decreased cellular antioxidant capacity. Once formed, these species may engage in reactions to yield more potent oxidants that promote transition of the homeostatic vascular phenotype to a pathobiological state that is permissive for atherothrombogenesis. This dysfunctional vasculature is characterized by lipid peroxidation and aberrant lipid deposition, inflammation, immune cell activation, platelet activation, thrombus formation, and disturbed hemodynamic flow. Each of these pathobiological states is associated with an increase in the vascular burden of free radical species-derived oxidation products and, thereby, implicates increased oxidant stress in the pathogenesis of atherothrombotic vascular disease.
Collapse
Affiliation(s)
- Jane A Leopold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
17
|
NMR characterization of copper and lipid interactions of the C2B domain of synaptotagmin I-relevance to the non-classical secretion of the human acidic fibroblast growth factor (hFGF-1). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:297-302. [PMID: 19835837 DOI: 10.1016/j.bbamem.2009.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 09/18/2009] [Accepted: 09/30/2009] [Indexed: 11/21/2022]
Abstract
Human fibroblast growth factor (hFGF-1) is a approximately 17 kDa heparin binding cytokine. It lacks the conventional hydrophobic N-terminal signal sequence and is secreted through non-classical secretion routes. Under stress, hFGF-1 is released as a multiprotein complex consisting of hFGF-1, S100A13 (a calcium binding protein), and p40 synaptotagmin (Syt1). Copper (Cu(2+)) is shown to be required for the formation of the multiprotein hFGF-1 release complex (Landriscina et al. ,2001; Di Serio et al., 2008). Syt1, containing the lipid binding C2B domain, is believed to play an important role in the eventual export of the hFGF-1 across the lipid bilayer. In this study, we characterize Cu(2+) and lipid interactions of the C2B domain of Syt1 using multidimensional NMR spectroscopy. The results highlight how Cu(2+) appears to stabilize the protein bound to pS vesicles. Cu(2+) and lipid binding interface mapped using 2D (1)H-(15)N heteronuclear single quantum coherence experiments reveal that residues in beta-strand I contributes to the unique Cu(2+) binding site in the C2B domain. In the absence of metal ions, residues located in Loop II and beta-strand IV contribute to binding to unilamelar pS vesicles. In the presence of Cu(2+), additional residues located in Loops I and III appear to stabilize the protein-lipid interactions. The results of this study provide valuable information towards understanding the molecular mechanism of the Cu(2+)-induced non-classical secretion of hFGF-1.
Collapse
|
18
|
Eyries M, Collins T, Khachigian LM. Modulation of Growth Factor Gene Expression in Vascular Cells by Oxidative Stress. ACTA ACUST UNITED AC 2009; 11:133-9. [PMID: 15370072 DOI: 10.1080/10623320490482691] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Reactive oxygen species (ROS) generated in and around vascular endothelium may play a role in normal cellular signaling mechanisms but may also be an important causative factor in endothelial dysfunction underlying the development of atherosclerosis, diabetes complications, and ischemia-reperfusion injury. ROS influence a variety of molecular and cellular activities, including changes in the cellular localization of regulatory factors, protein modification, and altered gene expression, which in turn influence cellular phenotype. One mechanism by which ROS exert their cellular effects involves their ability to modulate the expression and function of vascular genes, such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF), which play key atherogenic roles by their regulation of cell growth, differentiation, and fibroproliferative responsiveness. In this review the authors describe the changes induced by oxidative stress on the profile of growth factor gene expression in endothelial cells, and the impact these modifications have on endothelial phenotype as well as on the behavior of neighboring vascular smooth muscle cells and fibroblasts. The authors also discuss the involvement of redox-sensitive transcription factors in these regulatory processes.
Collapse
Affiliation(s)
- Melanie Eyries
- The Centre for Vascular Research, Department of Pathology, The University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
19
|
Graziani I, Doyle A, Sterling S, Kirov A, Tarantini F, Landriscina M, Kumar TKS, Neivandt D, Prudovsky I. Protein folding does not prevent the nonclassical export of FGF1 and S100A13. Biochem Biophys Res Commun 2009; 381:350-4. [PMID: 19233122 DOI: 10.1016/j.bbrc.2009.02.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 11/18/2022]
Abstract
Newly synthesized proteins are usually exported through the endoplasmic reticulum (ER) and Golgi due to the presence in their primary sequence of a hydrophobic signal peptide that is recognized by the ER translocation system. However, some secreted proteins lack a signal peptide and are exported independently of ER-Golgi. Fibroblast growth factor (FGF)1 is included in this group of polypeptides, as well as S100A13 that is a small calcium-binding protein critical for FGF1 export. Classically secreted proteins are transported into ER in their unfolded states. To determine the role of protein tertiary structure in FGF1 export through the cell membrane, we produced the chimeras of FGF1 and S100A13 with dihydrofolate reductase (DHFR). The specific DHFR inhibitor, aminopterin, prevents its unfolding. We found that aminopterin did not inhibit the release of FGF1:DHFR and S100A13:DHFR. Thus, FGF1 and S100A13 can be exported in folded conformation.
Collapse
Affiliation(s)
- Irene Graziani
- Maine Medical Center Research Institute, Scarborough, 81 Research Dr., Scarborough, ME 04074, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zakrzewska M, Marcinkowska E, Wiedlocha A. FGF-1: From Biology Through Engineering to Potential Medical Applications. Crit Rev Clin Lab Sci 2008; 45:91-135. [DOI: 10.1080/10408360701713120] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Pandolfi A, De Filippis EA. Chronic hyperglicemia and nitric oxide bioavailability play a pivotal role in pro-atherogenic vascular modifications. GENES AND NUTRITION 2007; 2:195-208. [PMID: 18850175 DOI: 10.1007/s12263-007-0050-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 11/10/2006] [Indexed: 02/07/2023]
Abstract
Diabetes is associated with accelerated atherosclerosis and macrovascular complications are a major cause of morbidity and mortality in this disease. Although our understanding of vascular pathology has lately greatly improved, the mechanism(s) underlying enhanced atherosclerosis in diabetes remain unclear. Endothelial cell dysfunction is emerging as a key component in the pathophysiology of cardiovascular abnormalities associated with diabetes. Although it has been established that endothelium plays a critical role in overall homeostasis of the vessels, vascular smooth muscle cells (vSMC) in the arterial intima have a relevant part in the development of atherosclerosis in diabetes. However, high glucose induced alterations in vSMC behaviour are not fully characterized. Several studies have reported that impaired nitric oxide (NO) synthesis and/or actions are often present in diabetes and endothelial dysfunction. Furthermore, although endothelial cells are by far the main site of vascular NO synthesis, vSMC do express nitric oxyde synthases (NOSs) and NO synthesis in vSMC might be important in vessel's function. Although it is known that vSMC contribute to vascular pathology in diabetes by their change from a quiescent state to an activated proliferative and migratory phenotype (termed phenotypic modulation), whether this altered phenotypic modulation might also involve alterations in the nitrergic systems is still controversial. Our recent data indicate that, in vivo, chronic hyperglycemia might induce an increased number of vSMC proliferative clones which persist in culture and are associated with increased eNOS expression and activity. However, upregulation of eNOS and increased NO synthesis occur in the presence of a marked concomitant increase of O(2-) production. Since NO bioavailabilty might not be increased in high glucose stimulated vSMC, it is tempting to hypothesize that the proliferative phenotype observed in cells from diabetic rats is associated with a redox imbalance responsible quenching and/or trapping of NO, with the consequent loss of its biological activity. This might provide new insight on the mechanisms responsible for accelerated atherosclerosis in diabetes.
Collapse
Affiliation(s)
- Assunta Pandolfi
- Aging Research Center, Ce.S.I., "Gabriele D'Annunzio" University Foundation, Department of Biomedical Science, University of "G. D'Annunzio", Room 458, Via Colle dell'Ara, 66013, Chieti-Pescara, Italy,
| | | |
Collapse
|
22
|
Abstract
Anemia is prevalent in renal transplant recipients (RTRs), as it is in all chronic kidney disease (CKD) populations. Mild anemia occurs in up to 40% of RTRs, and more severe anemia (110 g/L) occurs in about 9% to 22% of patients. As in CKD, impaired graft (renal) function is a major predictor of anemia identified in nearly all studies, suggesting a major role for erythropoietin deficiency. Chronic inflammation, malnutrition, iron deficiency, and medications (angiotensin converting enzyme inhibitors, angiotensin receptor blockers, mycophenolate, azathioprine, and sirolimus) are contributory factors seen in some, but not all, studies. Although pathophysiologic and observational data strongly support a causal association between low hemoglobin levels and cardiovascular outcomes in RTRs, no randomized controlled trial to date has been able to show a clear benefit of anemia treatment on cardiovascular outcomes or mortality in either RTR or other CKD populations. This important paradox has led some investigators to question the causal nature of the association between anemia and heart disease. Resolution of this paradox, at least for patients with stage 2/3 CKD, will depend on the outcome of randomized controlled trials currently in progress. Similar trials sorely are needed in renal transplant populations. In the interim, current opinion favors treating persistent anemia in RTRs to achieve targets similar to those recommended for dialysis and CKD patients.
Collapse
Affiliation(s)
- Claudio Rigatto
- Department of Medicine, University of Manitoba, Section of Nephrology, St. Boniface General Hospital, Winnipeg, Manitoba, Canada.
| |
Collapse
|
23
|
Graziani I, Bagalá C, Duarte M, Soldi R, Kolev V, Tarantini F, Suresh Kumar TK, Doyle A, Neivandt D, Yu C, Maciag T, Prudovsky I. Release of FGF1 and p40 synaptotagmin 1 correlates with their membrane destabilizing ability. Biochem Biophys Res Commun 2006; 349:192-9. [PMID: 16930531 PMCID: PMC1779946 DOI: 10.1016/j.bbrc.2006.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
Fibroblast growth factor (FGF)1 is released from cells as a constituent of a complex that contains the small calcium binding protein S100A13, and the p40 kDa form of synaptotagmin (Syt)1, through an ER-Golgi-independent stress-induced pathway. FGF1 and the other components of its secretory complex are signal peptide-less proteins. We examined their capability to interact with lipid bilayers by studying protein-induced carboxyfluorescein release from liposomes of different phospholipid (pL) compositions. FGF1, p40 Syt1, and S100A13 induced destabilization of liposomes composed of acidic but not of zwitterionic pL. We produced mutants of FGF1 and p40 Syt1, in which specific basic amino acid residues in the regions that bind acidic pL were substituted. The ability of these mutants to induce liposomes destabilization was strongly attenuated, and they exhibited drastically diminished spontaneous and stress-induced release. Apparently, the non-classical release of FGF1 and p40 Syt1 involves destabilization of membranes containing acidic pL.
Collapse
Affiliation(s)
- Irene Graziani
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Cinzia Bagalá
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Maria Duarte
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Raffaella Soldi
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Vihren Kolev
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Francesca Tarantini
- Department of Critical Care Medicine and Surgery, Gerontology and Geriatrics Unit, University of Florence, Florence 50139, Italy
| | | | - Andrew Doyle
- Department of Chemical and Biological Engineering, and Functional Genomics Program, University of Maine, Orono, ME 04469 USA
| | - David Neivandt
- Department of Chemical and Biological Engineering, and Functional Genomics Program, University of Maine, Orono, ME 04469 USA
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan
| | - Thomas Maciag
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | - Igor Prudovsky
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
- * To whom correspondence should be addressed. Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough ME 04074. Telephone: 207-885-8146; Fax 201-885-8179;
| |
Collapse
|
24
|
Wilson PWF, Ben-Yehuda O, McNamara J, Massaro J, Witztum J, Reaven PD. Autoantibodies to oxidized LDL and cardiovascular risk: the Framingham Offspring Study. Atherosclerosis 2006; 189:364-8. [PMID: 16476434 DOI: 10.1016/j.atherosclerosis.2005.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 12/16/2005] [Indexed: 11/17/2022]
Abstract
BACKGROUND The relation between measures of oxidation of lipid particles and cardiovascular disease has not been extensively investigated prospectively on a population basis. METHODS A community cohort of 1192 men and 1427 women with measures of IgG antibodies to oxidized LDL were followed 8 years for the development of initial coronary heart disease (CHD) and cardiovascular disease (CVD) events. RESULTS Levels of IgG autoantibodies to a form of oxidized LDL were significantly associated with age in both sexes, positively with fibrinogen in men and negatively with HDL cholesterol in women. In sex-specific models that adjusted for age alone or those that adjusted for age, cholesterol, HDL cholesterol, smoking, and diabetes mellitus, there was no relation between level of antibodies to oxidized LDL and the development of CHD or CVD. CONCLUSION Autoantibodies to oxidized LDL were strongly related to age and were not related to incident CHD or CVD over 8 years of follow up.
Collapse
Affiliation(s)
- Peter W F Wilson
- Medical University of South Carolina, 96 Jonathan Lucas St, Suite 815, P.O. Box 250609, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Prudovsky I, Mandinova A, Soldi R, Bagala C, Graziani I, Landriscina M, Tarantini F, Duarte M, Bellum S, Doherty H, Maciag T. The non-classical export routes: FGF1 and IL-1alpha point the way. J Cell Sci 2004; 116:4871-81. [PMID: 14625381 DOI: 10.1242/jcs.00872] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Non-classical protein release independent of the ER-Golgi pathway has been reported for an increasing number of proteins lacking an N-terminal signal sequence. The export of FGF1 and IL-1alpha, two pro-angiogenic polypeptides, provides two such examples. In both cases, export is based on the Cu2+-dependent formation of multiprotein complexes containing the S100A13 protein and might involve translocation of the protein across the membrane as a 'molten globule'. FGF1 and IL-1alpha are involved in pathological processes such as restenosis and tumor formation. Inhibition of their export by Cu2+ chelators is thus an effective strategy for treatment of several diseases.
Collapse
Affiliation(s)
- Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Faggin E, Zambon A, Puato M, Deeb SS, Bertocco S, Sartore S, Crepaldi G, Pessina AC, Pauletto P. Association between the --514 C-->T polymorphism of the hepatic lipase gene promoter and unstable carotid plaque in patients with severe carotid artery stenosis. J Am Coll Cardiol 2002; 40:1059-66. [PMID: 12354428 DOI: 10.1016/s0735-1097(02)02116-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE We investigated the potential association between -514 C-->T polymorphism in the promoter of the hepatic lipase gene (LIPC) and the prevalence of inflammatory cells in the plaque of patients with severe carotid artery stenosis. BACKGROUND This common LIPC polymorphism has been related to the presence of an atherogenic lipoprotein pattern. METHODS We studied 68 consecutive patients undergoing carotid endarterectomy. The LIPC genotype was determined by polymerase chain reaction. Endarterectomy specimens were examined by immunocytochemistry using monoclonal antibodies for smooth muscle cells, macrophages, or lymphocytes. RESULTS In 50 of 68 patients who had evidence of previous ipsilateral ischemic events, 36 (72%) were carriers of the CC genotype, whereas only 14 (28%) were carriers of the CT/TT genotype (p = 0.002). Among the 18 patients without evidence of events, the two genotypes were equally distributed (9 vs. 9). The low-density lipoprotein (LDL) particles were denser in CC than in CT/TT genotype carriers (flotation rate: 0.315 +/- 0.025 vs. 0.356 +/- 0.019, p < 0.0005). The CC genotype was associated with an abundance of macrophages (6.7 +/- 3.5 vs. 2.1 +/- 2.1 cells/area unit in the CT/TT group, p < 0.0005) and a reduced number of smooth muscle cells (6.9 +/- 6.2 vs. 14.5 +/- 6.4 in the CT/TT group, p < 0.0005) in the plaque. An inverse relationship was found between LDL buoyancy and the number of macrophages in the plaque (r = -0.639, p < 0.0005). CONCLUSION We provide evidence, for the first time, that LIPC promoter -514 C-->T polymorphism, by modulating LDL density, significantly affects the number of macrophages in the plaque and possibly affects the occurrence of cerebrovascular events in patients with carotid artery stenosis.
Collapse
Affiliation(s)
- Elisabetta Faggin
- Dipartimento di Medicina Clinica e Sperimentale, Università di, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Hervé Benoist
- Inserm U466, Institut Louis Bugnard, CHU Rangueil, 31403 Toulouse, France
| | | | | |
Collapse
|
28
|
Chai YC, Binion DG, Macklis R, Chisolm GM. Smooth muscle cell proliferation induced by oxidized LDL-borne lysophosphatidylcholine. Evidence for FGF-2 release from cells not extracellular matrix. Vascul Pharmacol 2002; 38:229-37. [PMID: 12449019 DOI: 10.1016/s1537-1891(02)00173-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxidized low-density lipoprotein (oxLDL), which accumulates in vascular lesions, alters vascular cell function in ways that can be construed as atherogenic. Among these is the observation that oxLDL and its lipids promote smooth muscle cell (SMC) proliferation. A number of schemes have been proposed to explain this phenomenon. Our published data support the concept that part of the proliferation is mediated by lysophosphatidylcholine (lysoPC) and structurally related phospholipids borne by oxLDL, which cause FGF-2 release via an oxidant-dependent mechanism. Since FGF-2 can bind extracellular matrices, we wanted to determine whether the FGF-2 released came from an intracellular or an extracellular matrix-bound pool. We tested whether lysoPC was capable of releasing FGF-2 from SMC matrices, whether agents that release FGF-2 from matrices could cause proliferation, and whether lysoPC-mediated proliferation could occur by stimulating metalloproteinase (MMP)-induced matrix degradation, which released matrix-bound FGF-2. Our results indicate that the source of FGF-2 released by lysoPC and related lipids is a preexisting cellular pool and not from matrix, and that the mechanism likely involves transient, sublethal cell permeabilization. These results enhance understanding of a mechanism by which oxLDL could contribute to SMC proliferation in arterial lesions.
Collapse
Affiliation(s)
- Yuh-Cherng Chai
- Department of Cell Biology, Department of Radiation Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
29
|
Reddy ST, Grijalva V, Ng C, Hassan K, Hama S, Mottahedeh R, Wadleigh DJ, Navab M, Fogelman AM. Identification of genes induced by oxidized phospholipids in human aortic endothelial cells. Vascul Pharmacol 2002; 38:211-8. [PMID: 12449017 DOI: 10.1016/s1537-1891(02)00171-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidized-L-alpha-1-Palmitoyl-2-Arachidonoyl-sn-glycero-3-Phosphorylcholine (Ox-PAPC), a component of mildly oxidized/minimally modified low-density lipoprotein (MM-LDL), accounts for many of the biological activities of MM-LDL. Having hypothesized that Ox-PAPC initiates gene expression changes in endothelial cells that result in enhanced endothelial/monocyte interactions and the subsequent development of atherosclerotic lesions, we used the suppression subtractive hybridization (SSH) procedure to compare mRNA isolated from PAPC-treated human aortic endothelial cells (HAEC) with mRNA isolated from Ox-PAPC-treated cells. Genes induced by Ox-PAPC but not by PAPC in HAEC included genes involved in signal transduction, extracellular matrix, growth factors, chemokines and several genes with unknown functions. The observed pattern of gene induction suggests that Ox-PAPC may play multiple roles in angiogenesis, atherosclerosis, and inflammation and wound healing.
Collapse
MESH Headings
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Blotting, Northern
- Chemokines/pharmacology
- Cloning, Molecular
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- Gene Expression Regulation/drug effects
- Growth Substances/pharmacology
- Humans
- In Vitro Techniques
- Inflammation/genetics
- Inflammation/pathology
- Lipoproteins, LDL/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Nucleic Acid Hybridization
- Oxidation-Reduction
- Phosphatidylcholines/pharmacology
- Phospholipids/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Signal Transduction/drug effects
- Transcriptional Activation
Collapse
Affiliation(s)
- Srinivasa T Reddy
- Atherosclerosis Research Unit, Department of Medicine, Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E. Young Drive South, A8-131 CHS, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Watanabe T, Pakala R, Katagiri T, Benedict CR. Antioxidant N-acetylcysteine inhibits vasoactive agents-potentiated mitogenic effect of mildly oxidized LDL on vascular smooth muscle cells. Hypertens Res 2002; 25:311-5. [PMID: 12047048 DOI: 10.1291/hypres.25.311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mildly oxidized LDL (mox-LDL) has been shown to induce monocyte-endothelial interactions and vascular smooth muscle cell (VSMC) proliferation, key events in the formation of the atherosclerotic lesion. Growth factors and vasoactive peptides are also thought to play a major role in atherogenesis. We examined the interaction between mox-LDL and well-known vasoactive agents such as serotonin (5-HT), angiotensin II (Ang-II), endothelin-1 (ET-1), or urotensin II (U-II) in inducing DNA synthesis in VSMCs. Growth-arrested VSMCs were incubated with different concentrations of native LDL, mox-LDL, or highly oxidized LDL (ox-LDL) with 5-HT, Ang-II, ET-1, or U-II in the absence or presence of N-acetylcysteine (NAC), an intracellular free radical scavenger. DNA synthesis in VSMCs was examined by [3H]thymidine incorporation into cellular DNA. Mox-LDL and ox-LDL stimulated [3H]thymidine incorporation with a maximal effect at 5 microg/ml (211%, 154%), which values were significantly greater than that for native LDL (128%). 5-HT, Ang-II, ET-1, or U-II also stimulated [3H]thymidine incorporation in a dose-dependent manner. 5-HT had a maximal stimulatory effect at a concentration of 50 micromol/l (205%), Ang-II at 1.75 micromol/l (202%), ET-1 at 0.1 micromol/l (205%), and U-II at 0.05 micromol/l (161%). When added together, mox-LDL (100 ng/ml)-induced [3H]thymidine incorporation was potentiated by low concentrations of 5-HT (1 micromol/l), Ang-II (0.5 micromol/l), ET-1 (1 nmol/l), or U-II (10 nmol/l) (114% to 330%, 325%, 338%, or 345%, respectively). Synergistic interactions of mox-LDL with 5-HT, Ang-II, ET-1, or U-II were significantly inhibited by NAC (400 micromol/l). Our results suggest that mild oxidation of LDL may enhance its atherogenic potential and exert a synergistic interaction with vasoactive agents in inducing DNA synthesis via the generation of reactive oxygen species in VSMCs.
Collapse
Affiliation(s)
- Takuya Watanabe
- Third Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
31
|
|
32
|
Mouta Carreira C, Landriscina M, Bellum S, Prudovsky I, Maciag T. The comparative release of FGF1 by hypoxia and temperature stress. Growth Factors 2001; 18:277-85. [PMID: 11519826 DOI: 10.3109/08977190109029116] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The signal peptide-less FGF gene family prototype, FGF1 is released in response to temperature stress in vitro as a latent reducing agent-sensitive homodimer non-covalently complexed with the extravesicular p40 domain of p65 synaptotagmin (Syt)1. Because FGF1 is well recognized as an angiogenesis factor in vivo and angiogenesis is known to be induced by hypoxia, we examined the release of FGF1 and p40 Syt1 under conditions of hypoxia and temperature stress using a chemostatic microcarrier cell culture system. We report that like the pathway used by FGF1 and p40 Syt1 release under temperature stress, hypoxia also induces the release of FGF1 and p40 Syt1 with similar kinetic and pharmacologic properties including the requirement for functional cysteine residues. Lastly, FGF1 and p40 Syt1 release in response to hypoxia and temperature stress is sensitive to lipoxygenase and cyclooxygenase inhibitors suggesting that arachidonic acid metabolism may play an important role in the mechanism of FGF1 release in vitro.
Collapse
Affiliation(s)
- C Mouta Carreira
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough 04074, USA
| | | | | | | | | |
Collapse
|
33
|
Bryckaert M, Guillonneau X, Hecquet C, Perani P, Courtois Y, Mascarelli F. Regulation of proliferation-survival decisions is controlled by FGF1 secretion in retinal pigmented epithelial cells. Oncogene 2000; 19:4917-29. [PMID: 11039909 DOI: 10.1038/sj.onc.1203872] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor 1 (FGF1) induces proliferation and differentiation in a wide variety of cells of mesodermal and neuroectodermal origin. FGF1 has no 'classical' signal sequence to direct its secretion, and there has been considerable debate concerning FGF1 secretion and its role in the biological activities of FGF1. We investigated the effects of FGF1 secretion and the signalling induced by signal peptide (SP)-containing FGFI and SP-less FGF1, on the proliferation and the apoptosis in retinal pigmented epithelial (RPE) cells. Primary RPE cell cultures were transfected with FGF1 (FGF1 cells) and SP-FGF1 (SP-FGF1 cells) cDNAs. SP-FGF1 cells secreted large amount of FGF1 and actively proliferated, whereas FGF1 and control cells did not. Secreted FGF1 induced short-term activation of both FGFR1 and ERK2, which were required for cell proliferation. In contrast, SP-FGF1 cells stopped secreting FGF1 and died rapidly, if cultured in the absence of serum. Surprisingly, FGF1 cells, but not control cells, secreted FGF1 and were resistant to apoptosis induced by serum depletion. Secreted FGF1 induced long-term activation of FGFR1 and ERK2, which was necessary to induce a constant and high level of Bcl-x production, and to induce cell survival in FGFI cells. Downregulation of ERK2 and Bcl-x increased apoptosis. Thus, the proliferation and survival activities of FGF1 depend on the secretion of FGF1 which is determined by the cell culture conditions. Cell proliferation was SP-dependent, whereas cell survival was not. The signal peptide controls the level and duration, 'whispering or shouting', of ERK2 activation cells which determines FGF1 biological function and may have important implications for anti-degenerative and anti-proliferative treatments.
Collapse
Affiliation(s)
- M Bryckaert
- INSERM U. 348, IFR Circulation, Paris, France
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The first reports of the influences of oxidized LDL (oxLDL) on cell function pertained to negative effects on cell growth-growth arrest, injury, and toxicity. Since these studies, it has become apparent that sublethal levels of oxLDL cause some, but not all, cells to proliferate. This review highlights the growth-promoting effects of oxLDL rather than its inhibitory or injurious effects. Smooth muscle cells (SMCs) and monocyte-macrophages proliferate after exposure to oxLDL; endothelial cells do not. Scavenger receptors are involved in the proliferative effects on monocyte-macrophages, whereas the effects of oxLDL on SMCs appear to be receptor independent. Lysophosphatidylcholine (lysoPC), and structurally related lipids are among the growth-promoting constituents of oxLDL. OxLDL exerts at least a part of its effects by inducing expression or causing the release of growth factors. OxLDL (or lysoPC) can cause the release of basic fibroblast growth factor (bFGF) from SMCs; oxLDL (or lysoPC) can induce heparin binding EGF-like growth factor (HB-EGF) synthesis and release from macrophages. An imposing array of changes in cytokine and growth factor expression and/or release can be imposed by oxLDL on a wide variety of cell types. These effects and the studies probing the cell signaling events leading to them are described.
Collapse
Affiliation(s)
- G M Chisolm
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
35
|
Metzler B, Hu Y, Dietrich H, Xu Q. Increased expression and activation of stress-activated protein kinases/c-Jun NH(2)-terminal protein kinases in atherosclerotic lesions coincide with p53. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1875-86. [PMID: 10854211 PMCID: PMC1850074 DOI: 10.1016/s0002-9440(10)65061-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hyperlipidemia alters gene expression of arterial endothelial and smooth muscle cells (SMCs) and induces atherosclerotic lesions, in which cell proliferation and apoptosis co-exist. The signal transduction pathways that mediate these responses in the vessel wall in vivo have yet to be identified. Stress-activated protein kinases (SAPKs) or c-Jun NH(2)-terminal protein kinases (JNKs) are thought to be crucial in transmitting transmembrane signals required for cell differentiation and apoptosis in vitro. In the present study, we investigated the localization and activity of SAPK/JNK in atherosclerotic lesions of cholesterol-fed rabbits. Immunofluorescence analysis revealed abundant and heterogeneous distribution of pan-SAPK/JNK and phosphorylated SAPK/JNK, which were mainly localized in cell nuclei of the lesional cap and basal regions. Double staining of the lesions demonstrated that a portion of alpha-actin(+) SMCs and RAM11(+) macrophages contained abundant phosphorylated SAPK/JNK proteins. SAPK/JNK protein levels in protein extracts from atherosclerotic lesions were two- to threefold higher than the vessels of chow-fed rabbits. SAPK/JNK activities were elevated three- to fivefold higher than the normal vessels. Interestingly, increased SAPK/JNK in lesions was co-localized or coincided with high levels of transcription factor p53 as identified by double labeling and immunoprecipitation. Abundant pro-apoptotic protein BAX and BCL-X(S) were also observed. Furthermore, low-density lipoprotein (LDL) and oxidized LDL stimulated SAPK/JNK activation in cultured SMCs in a time- and dose-dependent manner. LDL also induced SAPK/JNK activation in vascular SMCs derived from LDL-receptor-deficient Watanabe rabbits, indicating a LDL-receptor-independent process. Thus, SAPK/JNK persistently hyperexpressed and activated in lesions may play a key role in mediating cell differentiation and apoptosis during the development of atherosclerosis via activation of transcription factor p53.
Collapse
Affiliation(s)
- B Metzler
- Department of Internal Medicine, and the Institute for General and Experimental Pathology, University of Innsbruck Medical School, Austrian Academy of Sciences, Innsbruck
| | | | | | | |
Collapse
|
36
|
Klingenberg O, Wiedocha A, Citores L, Olsnes S. Requirement of phosphatidylinositol 3-kinase activity for translocation of exogenous aFGF to the cytosol and nucleus. J Biol Chem 2000; 275:11972-80. [PMID: 10766827 DOI: 10.1074/jbc.275.16.11972] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acidic fibroblast growth factor (aFGF) is a potent mitogen for many cells. Exogenous aFGF is able to enter the cytosol and nucleus of sensitive cells. There are indications that both activation of the receptor tyrosine kinase and translocation of aFGF to the nucleus are of importance for mitogenesis. However, the mechanism of transport of aFGF from the cell surface to the nucleus is poorly understood. In this work we demonstrate that inhibition of phosphatidylinositol (PI) 3-kinase by chemical inhibitors and by expression of a dominant negative mutant of PI 3-kinase blocks translocation of aFGF to the cytosol and nucleus. Translocation to the cytosol and nucleus was monitored by cell fractionation, by farnesylation of aFGF modified to contain a farnesylation signal, and by phosphorylation by protein kinase C of aFGF added externally to cells. If aFGF is fused to diphtheria toxin A-fragment, it can be artificially translocated from the cell surface to the cytoplasm by the diphtheria toxin pathway. Upon further incubation, the fusion protein enters the nucleus due to a nuclear localization sequence in aFGF. We demonstrate here that upon inhibition of PI 3-kinase the fusion protein remains in the cytosol. We also provide evidence that the phosphorylation status of the fusion protein does not regulate its nucleocytoplasmic distribution.
Collapse
Affiliation(s)
- O Klingenberg
- Department of Biochemistry at The Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
37
|
Parthasarathy S, Santanam N, Ramachandran S, Meilhac O. Oxidants and antioxidants in atherogenesis: an appraisal. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32089-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
38
|
Szebenyi G, Fallon JF. Fibroblast growth factors as multifunctional signaling factors. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 185:45-106. [PMID: 9750265 DOI: 10.1016/s0074-7696(08)60149-7] [Citation(s) in RCA: 356] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fibroblast growth factor (FGF) family consists of at least 15 structurally related polypeptide growth factors. Their expression is controlled at the levels of transcription, mRNA stability, and translation. The bioavailability of FGFs is further modulated by posttranslational processing and regulated protein trafficking. FGFs bind to receptor tyrosine kinases (FGFRs), heparan sulfate proteoglycans (HSPG), and a cysteine-rich FGF receptor (CFR). FGFRs are required for most biological activities of FGFs. HSPGs alter FGF-FGFR interactions and CFR participates in FGF intracellular transport. FGF signaling pathways are intricate and are intertwined with insulin-like growth factor, transforming growth factor-beta, bone morphogenetic protein, and vertebrate homologs of Drosophila wingless activated pathways. FGFs are major regulators of embryonic development: They influence the formation of the primary body axis, neural axis, limbs, and other structures. The activities of FGFs depend on their coordination of fundamental cellular functions, such as survival, replication, differentiation, adhesion, and motility, through effects on gene expression and the cytoskeleton.
Collapse
Affiliation(s)
- G Szebenyi
- Anatomy Department, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|