1
|
Xie Q, Liu C, Liu F, Zhang X, Zhang Z, An X, Yang Y, Li X. Predictive Effect of Alternative Insulin Resistance Indexes on Adverse Cardiovascular Events in Patients with Metabolic Syndrome with Heart Failure. Diabetes Metab Syndr Obes 2024; 17:2347-2356. [PMID: 38881693 PMCID: PMC11178087 DOI: 10.2147/dmso.s457598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose Metabolic Syndrome (MS) greatly increases the risk of heart disease and Heart Failure(HF). Insulin Resistance (IR) is considered to be the key to the pathophysiology of MS. The purpose of this study was to evaluate the predictive effect of different alternative indicators of IR on adverse cardiovascular events in patients with MS complicated with HF. Methods Patients with HF who were diagnosed with MS in the heart center of the first affiliated Hospital of Xinjiang Medical University were selected continuously. The baseline data of the patients in the group were compared. The diagnostic value of alternative indexes of IR was evaluated by the working characteristic curve of subjects. The relationship between different alternative indicators of IR and survival rate was evaluated by survival curve. COX regression was used to analyze the effects of different alternative indicators of IR on the risk of end-point events. Results The levels of TyG, TyG-BMI, TyG-WC, TG/HDL-C and METS-IR were significantly increased in patients with Major Adverse Cardiovascular Events (MACEs). Among the five alternative indexes of IR, METS-IR had the highest AUC (0.691, 95% CI:0.657-0.752, P < 0.001) in predicting MACEs. No matter which alternative index of IR was used, the survival rate of MACEs in High group was significantly decreased. TyG, TyG-BMI, TyG-WC, TG/HDL-C and METS-IR can independently predict the occurrence of MACEs events, even if some confounding factors are adjusted. Conclusion Our study shows that alternative indicators of IR, especially METS-IR, are independently associated with adverse cardiovascular events in patients with MS and HF.
Collapse
Affiliation(s)
- Qian Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Chang Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Xuehe Zhang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Zhiyang Zhang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Xin An
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Yining Yang
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, People's Republic of China
- Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, People's Republic of China
- Key Laboratory of Cardiovascular Disease Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Xiaomei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
2
|
Pagonas N, Mueller R, Weiland L, Jaensch M, Dammermann W, Seibert FS, Hillmeister P, Buschmann I, Christ M, Ritter O, Westhoff TH, Sasko B, Kelesidis T. Oxidized high-density lipoprotein associates with atrial fibrillation. Heart Rhythm 2024; 21:362-369. [PMID: 38040404 PMCID: PMC11073573 DOI: 10.1016/j.hrthm.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/07/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common heart arrhythmia and considered to be a progressive chronic disease associated with increased morbidity and mortality. Recent data suggest a link between inflammation, oxidative stress, and AF, although the underlying mechanisms are not fully understood. Because oxidized lipoproteins cause structural damage and electrophysiologic changes in cardiomyocytes, it is feasible that the transformation of atheroprotective high-density lipoprotein (HDL) into dysfunctional HDL contributes to the development of AF. OBJECTIVE The purpose of this study was to determine whether a reduced antioxidant function of HDL is associated with the presence of AF. METHODS In this multicenter cross-sectional cohort study, we assessed HDL function in sera of 1206 participants. Patients were divided into groups according to the presence of AF (n = 233) or no AF (n = 973). A validated cell-free biochemical assay was used to determine reduced HDL antioxidant function as assessed by increased normalized HDL lipid peroxide content (nHDLox). RESULTS Participants with AF had a 9% higher mean relative nHDLox compared to persons without AF (P = .025). nHDLox was strongly associated with AF in all models of logistic regression, including the analysis adjusted for age, sex, and risk factors for AF (all P ≤.01). CONCLUSION Reduced antioxidant HDL function is associated with the presence of AF, which supports growing evidence that impaired lipoprotein function is linked to electrophysiological changes in cardiomyocytes. nHDLox is one of several contributors to the initiation and perpetuation of AF.
Collapse
Affiliation(s)
- Nikolaos Pagonas
- Department of Cardiology, University Hospital Ruppin-Brandenburg, Medical School Theodor Fontane, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| | - Rhea Mueller
- Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Linda Weiland
- Department of Cardiology, University Hospital Ruppin-Brandenburg, Medical School Theodor Fontane, Neuruppin, Germany
| | - Monique Jaensch
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Werner Dammermann
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Center for Internal Medicine II, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Felix S Seibert
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Herne, Germany
| | - Philipp Hillmeister
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Angiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Ivo Buschmann
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Angiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Martin Christ
- Department of Cardiology, Knappschaftskrankenhaus Bottrop, Academic Teaching Hospital, University Duisburg-Essen, Bottrop, Germany
| | - Oliver Ritter
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Timm H Westhoff
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Herne, Germany
| | - Benjamin Sasko
- Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany; Medical Department II, Marien Hospital Herne, Ruhr-University of Bochum, Herne, Germany
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
3
|
Podolyan NP, Mizeva IA, Mamontov OV, Zaytsev VV, Belaventseva AV, Sakovskaia AV, Romashko RV, Kamshilin AA. Imaging photoplethysmography quantifies endothelial dysfunction in patients with risk factors for cardiovascular complications. Biomed Signal Process Control 2023; 86:105168. [DOI: 10.1016/j.bspc.2023.105168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
4
|
Higashi Y. Endothelial Function in Dyslipidemia: Roles of LDL-Cholesterol, HDL-Cholesterol and Triglycerides. Cells 2023; 12:1293. [PMID: 37174693 PMCID: PMC10177132 DOI: 10.3390/cells12091293] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Dyslipidemia is associated with endothelial dysfunction. Endothelial dysfunction is the initial step for atherosclerosis, resulting in cardiovascular complications. It is clinically important to break the process of endothelial dysfunction to cardiovascular complications in patients with dyslipidemia. Lipid-lowering therapy enables the improvement of endothelial function in patients with dyslipidemia. It is likely that the relationships of components of a lipid profile such as low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides with endothelial function are not simple. In this review, we focus on the roles of components of a lipid profile in endothelial function.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 743-8551, Japan; ; Tel.: +81-82-257-5831
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8553, Japan
| |
Collapse
|
5
|
Klobučar I, Stadler JT, Klobučar L, Lechleitner M, Trbušić M, Pregartner G, Berghold A, Habisch H, Madl T, Marsche G, Frank S, Degoricija V. Associations between Endothelial Lipase, High-Density Lipoprotein, and Endothelial Function Differ in Healthy Volunteers and Metabolic Syndrome Patients. Int J Mol Sci 2023; 24:2073. [PMID: 36768410 PMCID: PMC9916974 DOI: 10.3390/ijms24032073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Metabolic syndrome (MS) is characterized by endothelial- and high-density lipoprotein (HDL) dysfunction and increased endothelial lipase (EL) serum levels. We examined the associations between EL serum levels, HDL (serum levels, lipid content, and function), and endothelial function in healthy volunteers (HV) and MS patients. Flow-mediated dilation (FMD), nitroglycerin-mediated dilation (NMD), serum levels of HDL subclasses (measured by nuclear magnetic resonance (NMR) spectroscopy), and EL serum levels differed significantly between HV and MS patients. The serum levels of triglycerides in large HDL particles were significantly positively correlated with FMD and NMD in HV, but not in MS patients. Cholesterol (C) and phospholipid (PL) contents of large HDL particles, calculated as HDL1-C/HDL1-apoA-I and HDL1-PL/HDL1-apoA-I, respectively, were significantly negatively correlated with FMD in HV, but not in MS patients. Cholesterol efflux capacity and arylesterase activity of HDL, as well as EL, were correlated with neither FMD nor NMD. EL was significantly negatively correlated with HDL-PL/HDL-apoA-I in HV, but not in MS patients, and with serum levels of small dense HDL containing apolipoprotein A-II in MS patients, but not in HV. We conclude that MS modulates the association between HDL and endothelial function, as well as between EL and HDL. HDL cholesterol efflux capacity and arylesterase activity, as well as EL serum levels, are not associated with endothelial function in HV or MS patients.
Collapse
Affiliation(s)
- Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Julia T. Stadler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Lucija Klobučar
- Department of Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Matias Trbušić
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria
| | - Hansjörg Habisch
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Kamshilin AA, Zaytsev VV, Belaventseva AV, Podolyan NP, Volynsky MA, Sakovskaia AV, Romashko RV, Mamontov OV. Novel Method to Assess Endothelial Function via Monitoring of Perfusion Response to Local Heating by Imaging Photoplethysmography. SENSORS (BASEL, SWITZERLAND) 2022; 22:5727. [PMID: 35957284 PMCID: PMC9370951 DOI: 10.3390/s22155727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Endothelial dysfunction is one of the most important markers of the risk of cardiovascular complications. This study is aimed to demonstrate the feasibility of imaging photoplethysmography to assess microcirculation response to local heating in order to develop a novel technology for assessing endothelial function. As a measure of vasodilation, we used the relative dynamics of the pulsatile component of the photoplethysmographic waveform, which was assessed in a large area of the outer surface of the middle third of the subject's forearm. The perfusion response was evaluated in six healthy volunteers during a test with local skin heating up to 40-42 °C and subsequent relaxation. The proposed method is featured by accurate control of the parameters affecting the microcirculation during the prolonged study. It was found that in response to local hyperthermia, a multiple increase in the pulsation component, which has a biphasic character, was observed. The amplitude of the first phase of the perfusion reaction depends on both the initial skin temperature and the difference between the basal and heating temperatures. The proposed method allows the assessment of a reproducible perfusion increase in response to hyperthermia developed due to humoral factors associated with the endothelium, thus allowing detection of its dysfunction.
Collapse
Affiliation(s)
- Alexei A. Kamshilin
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
| | - Valeriy V. Zaytsev
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
- Department of Circulation Physiology, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| | - Anzhelika V. Belaventseva
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
| | - Natalia P. Podolyan
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
| | - Maxim A. Volynsky
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Anastasiia V. Sakovskaia
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
- Institute of Therapy and Instrumental Diagnostics, Pacific State Medical University, Vladivostok 690002, Russia
| | - Roman V. Romashko
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
| | - Oleg V. Mamontov
- Institute of Automation and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690041, Russia; (V.V.Z.); (A.V.B.); (N.P.P.); (M.A.V.); (A.V.S.); (R.V.R.); (O.V.M.)
- Department of Circulation Physiology, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| |
Collapse
|
7
|
Kalayci A, Gibson CM, Ridker PM, Wright SD, Kingwell BA, Korjian S, Chi G, Lee JJ, Tricoci P, Kazmi SH, Fitzgerald C, Shaunik A, Berman G, Duffy D, Libby P. ApoA-I Infusion Therapies Following Acute Coronary Syndrome: Past, Present, and Future. Curr Atheroscler Rep 2022; 24:585-597. [PMID: 35524914 PMCID: PMC9236992 DOI: 10.1007/s11883-022-01025-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW The elevated adverse cardiovascular event rate among patients with low high-density lipoprotein cholesterol (HDL-C) formed the basis for the hypothesis that elevating HDL-C would reduce those events. Attempts to raise endogenous HDL-C levels, however, have consistently failed to show improvements in cardiovascular outcomes. However, steady-state HDL-C concentration does not reflect the function of this complex family of particles. Indeed, HDL functions correlate only weakly with serum HDL-C concentration. Thus, the field has pivoted from simply raising the quantity of HDL-C to a focus on improving the putative anti-atherosclerotic functions of HDL particles. Such functions include the ability of HDL to promote the efflux of cholesterol from cholesterol-laden macrophages. Apolipoprotein A-I (apoA-I), the signature apoprotein of HDL, may facilitate the removal of cholesterol from atherosclerotic plaque, reduce the lesional lipid content and might thus stabilize vulnerable plaques, thereby reducing the risk of cardiac events. Infusion of preparations of apoA-I may improve cholesterol efflux capacity (CEC). This review summarizes the development of apoA-I therapies, compares their structural and functional properties and discusses the findings of previous studies including their limitations, and how CSL112, currently being tested in a phase III trial, may overcome these challenges. RECENT FINDINGS Three major ApoA-I-based approaches (MDCO-216, CER-001, and CSL111/CSL112) have aimed to enhance reverse cholesterol transport. These three therapies differ considerably in both lipid and protein composition. MDCO-216 contains recombinant ApoA-I Milano, CER-001 contains recombinant wild-type human ApoA-I, and CSL111/CSL112 contains native ApoA-I isolated from human plasma. Two of the three agents studied to date (apoA-1 Milano and CER-001) have undergone evaluation by intravascular ultrasound imaging, a technique that gauges lesion volume well but does not assess other important variables that may relate to clinical outcomes. ApoA-1 Milano and CER-001 reduce lecithin-cholesterol acyltransferase (LCAT) activity, potentially impairing the function of HDL in reverse cholesterol transport. Furthermore, apoA-I Milano can compete with and alter the function of the recipient's endogenous apoA-I. In contrast to these agents, CSL112, a particle formulated using human plasma apoA-I and phosphatidylcholine, increases LCAT activity and does not lead to the malfunction of endogenous apoA-I. CSL112 robustly increases cholesterol efflux, promotes reverse cholesterol transport, and now is being tested in a phase III clinical trial. Phase II-b studies of MDCO-216 and CER-001 failed to produce a significant reduction in coronary plaque volume as assessed by IVUS. However, the investigation to determine whether the direct infusion of a reconstituted apoA-I reduces post-myocardial infarction coronary events is being tested using CSL112, which is dosed at a higher level than MDCO-216 and CER-001 and has more favorable pharmacodynamics.
Collapse
Affiliation(s)
- Arzu Kalayci
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C Michael Gibson
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Baim Institute for Clinical Research, Boston, MA, USA
| | - Paul M Ridker
- Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Serge Korjian
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gerald Chi
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jane J Lee
- Baim Institute for Clinical Research, Boston, MA, USA
| | | | - S Hassan Kazmi
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Clara Fitzgerald
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Gail Berman
- Paratek Pharmaceuticals, King of Prussia, PA, USA
| | | | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Потеряева ОН, Усынин ИФ. [Dysfunctional high-density lipoproteins in diabetes mellitus]. PROBLEMY ENDOKRINOLOGII 2022; 68:69-77. [PMID: 36104968 PMCID: PMC9762443 DOI: 10.14341/probl13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/09/2023]
Abstract
The risk of cardiovascular disease (CVD) in persons with type 2 diabetes mellitus (DM2) increases two to four times. One of the main factors increasing cardiovascular risk is dyslipidemia, which includes abnormalities in all lipoproteins, including high-density lipoproteins (HDL). The development of DM2 is accompanied not only by a decrease in the level of HDL, but also by significant changes in their structure. This leads to the transformation of native HDL into so-called dysfunctional or diabetic HDL, which loses their antiatherogenic, cardioprotective, anti-inflammatory and anti-diabetic properties. In poorly controlled diabetes mellitus HDL can not only lose its beneficial functions, but also acquire proatherogenic, proinflammatory ones. Diabetic HDL can contribute to the accumulation of such unfavorable qualities as increased proliferation, migration, and invasion of cancer cells. Given that HDL, in addition to participation in cholesterol transport, performs important regulatory functions in the body, there is reason to assume that structural modifications of HDL (oxidation, glycation, triglyceride enrichment, loss of HDL-associated enzymes, etc.) are one of the causes of vascular complications of diabetes.
Collapse
Affiliation(s)
- О. Н. Потеряева
- Научно-исследовательский институт биохимии Федерального исследовательского центра фундаментальной и трансляционной медицины
| | - И. Ф. Усынин
- Научно-исследовательский институт биохимии Федерального исследовательского центра фундаментальной и трансляционной медицины
| |
Collapse
|
9
|
Kingwell BA, Nicholls SJ, Velkoska E, Didichenko SA, Duffy D, Korjian S, Gibson CM. Antiatherosclerotic Effects of CSL112 Mediated by Enhanced Cholesterol Efflux Capacity. J Am Heart Assoc 2022; 11:e024754. [PMID: 35411789 PMCID: PMC9238469 DOI: 10.1161/jaha.121.024754] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Approximately 12% of patients with acute myocardial infarction (AMI) experience a recurrent major adverse cardiovascular event within 1 year of their primary event, with most occurring within the first 90 days. Thus, there is a need for new therapeutic approaches that address this 90-day post-AMI high-risk period. The formation and eventual rupture of atherosclerotic plaque that leads to AMI is elicited by the accumulation of cholesterol within the arterial intima. Cholesterol efflux, a mechanism by which cholesterol is removed from plaque, is predominantly mediated by apolipoprotein A-I, which is rapidly lipidated to form high-density lipoprotein in the circulation and has atheroprotective properties. In this review, we outline how cholesterol efflux dysfunction leads to atherosclerosis and vulnerable plaque formation, including inflammatory cell recruitment, foam cell formation, the development of a lipid/necrotic core, and degradation of the fibrous cap. CSL112, a human plasma-derived apolipoprotein A-I, is in phase 3 of clinical development and aims to reduce the risk of recurrent cardiovascular events in patients with AMI in the first 90 days after the index event by increasing cholesterol efflux. We summarize evidence from preclinical and clinical studies suggesting that restoration of cholesterol efflux by CSL112 can stabilize plaque by several anti-inflammatory/immune-regulatory processes. These effects occur rapidly and could stabilize vulnerable plaques in patients who have recently experienced an AMI, thereby reducing the risk of recurrent major adverse cardiovascular events in the high-risk early post-AMI period.
Collapse
Affiliation(s)
| | | | | | | | | | - Serge Korjian
- PERFUSE Study Group, Cardiovascular Division Departments of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| | - C Michael Gibson
- PERFUSE Study Group, Cardiovascular Division Departments of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| |
Collapse
|
10
|
First Recombinant High-Density Lipoprotein Particles Administration in a Severe ICU COVID-19 Patient, a Multi-Omics Exploratory Investigation. Biomedicines 2022; 10:biomedicines10040754. [PMID: 35453504 PMCID: PMC9029957 DOI: 10.3390/biomedicines10040754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 12/02/2022] Open
Abstract
High-density lipoproteins (HDLs) have multiple endothelioprotective properties. During SARS-CoV-2 infection, HDL-cholesterol (HDL-C) concentration is markedly reduced, and studies have described severe impairment of the functionality of HDL particles. Here, we report a multi-omic investigation of the first administration of recombinant HDL (rHDL) particles in a severe COVID-19 patient in an intensive care unit. Plasma ApoA1 increased and HDL-C decreased after each recombinant HDL injection, suggesting that these particles were functional in terms of reverse cholesterol transport. The proportion of large HDL particles also increased after injection of recombinant HDL. Shotgun proteomics performed on HDLs isolated by ultracentrifugation indicated that ApoA1 was more abundant after injections whereas most of the pro-inflammatory proteins identified were less abundant. Assessment of Serum amyloid A-1, inflammatory markers, and cytokines showed a significant decrease for most of them during recombinant HDL infusion. Our results suggest that recombinant HDL infusion is feasible and a potential therapeutic strategy to be explored in COVID-19 patients.
Collapse
|
11
|
Hwang S, Kang SW, Choi KJ, Son KY, Lim DH, Shin DW, Kim K, Kim SJ. High-density Lipoprotein Cholesterol and the Risk of Future Retinal Artery Occlusion Development: A Nationwide Cohort Study. Am J Ophthalmol 2022; 235:188-196. [PMID: 34624247 DOI: 10.1016/j.ajo.2021.09.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To evaluate the association between high-density lipoprotein (HDL) cholesterol levels and the future risk of retinal artery occlusion (RAO). DESIGN Population-based cohort study. METHODS This study used data provided by the Korean National Health Insurance Service. A total of 9,316,212 individuals aged > 40 years who participated in the Korean National Health Screening Program in 2013 or 2014 were included. Data on risk factors - including age, sex, income level, systemic comorbidities, behavioral factors, and baseline lipid profiles - were collected from health screening results and claims data. Patients were followed up until December 2018 and incident cases of RAO were identified using registered diagnostic codes from claims data. A prospective association between HDL cholesterol level and incident RAO was investigated using the multivariable-adjusted Cox proportional hazard model. RESULTS During an average follow-up period of 4.93 years, 9878 patients were newly diagnosed with RAO. Compared with those with low HDL cholesterol levels (< 40 mg/dL), patients with high HDL cholesterol levels (≥ 60 mg/dL) had a lower risk of future RAO development, with a hazard ratio (95% CI) of 0.78 (0.73-0.83) in the age-adjusted and sex-adjusted model and 0.88 (0.83-0.95) in the full-adjusted model. The younger subgroup (< 60 years) had an HR of 0.81 in the high HDL cholesterol group compared with the low HDL cholesterol group, while the older subgroup (≥ 60 years) had an HR of 0.93 (P for interaction = .012). CONCLUSION A low HDL cholesterol level is an independent risk factor for the development of RAO.
Collapse
Affiliation(s)
- Sungsoon Hwang
- From Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine (S.H, S.W.K, K.J.C, K.Y.S, D.H.L, S.J.K); Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (S.H, D.H.L, D.W.S)
| | - Se Woong Kang
- From Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine (S.H, S.W.K, K.J.C, K.Y.S, D.H.L, S.J.K)
| | - Kyung Jun Choi
- From Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine (S.H, S.W.K, K.J.C, K.Y.S, D.H.L, S.J.K)
| | - Ki Young Son
- From Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine (S.H, S.W.K, K.J.C, K.Y.S, D.H.L, S.J.K)
| | - Dong Hui Lim
- From Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine (S.H, S.W.K, K.J.C, K.Y.S, D.H.L, S.J.K); Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (S.H, D.H.L, D.W.S)
| | - Dong Wook Shin
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (S.H, D.H.L, D.W.S); Department of Family Medicine and Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine (D.W.S); Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (D.W.S, K.K)
| | - Kyunga Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University (D.W.S, K.K); Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea, (K.K)
| | - Sang Jin Kim
- From Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine (S.H, S.W.K, K.J.C, K.Y.S, D.H.L, S.J.K).
| |
Collapse
|
12
|
Schrijver DP, Dreu A, Hofstraat SRJ, Kluza E, Zwolsman R, Deckers J, Anbergen T, Bruin K, Trines MM, Nugraha EG, Ummels F, Röring RJ, Beldman TJ, Teunissen AJP, Fayad ZA, Meel R, Mulder WJM. Nanoengineering Apolipoprotein A1‐Based Immunotherapeutics. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David P. Schrijver
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Anne Dreu
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Stijn R. J. Hofstraat
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Ewelina Kluza
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Robby Zwolsman
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Jeroen Deckers
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Tom Anbergen
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Koen Bruin
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Mirre M. Trines
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Eveline G. Nugraha
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Floor Ummels
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Rutger J. Röring
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Center Nijmegen 6525 GA The Netherlands
| | - Thijs J. Beldman
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Center Nijmegen 6525 GA The Netherlands
| | - Abraham J. P. Teunissen
- Biomedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York NY 10029‐6574 USA
| | - Zahi A. Fayad
- Biomedical Engineering and Imaging Institute Icahn School of Medicine at Mount Sinai New York NY 10029‐6574 USA
| | - Roy Meel
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
| | - Willem J. M. Mulder
- Laboratory of Chemical Biology Department of Biomedical Engineering Eindhoven University of Technology Eindhoven 5612 AZ The Netherlands
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI) Radboud University Nijmegen Medical Center Nijmegen 6525 GA The Netherlands
| |
Collapse
|
13
|
Stasi A, Franzin R, Fiorentino M, Squiccimarro E, Castellano G, Gesualdo L. Multifaced Roles of HDL in Sepsis and SARS-CoV-2 Infection: Renal Implications. Int J Mol Sci 2021; 22:5980. [PMID: 34205975 PMCID: PMC8197836 DOI: 10.3390/ijms22115980] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins (HDLs) are a class of blood particles, principally involved in mediating reverse cholesterol transport from peripheral tissue to liver. Omics approaches have identified crucial mediators in the HDL proteomic and lipidomic profile, which are involved in distinct pleiotropic functions. Besides their role as cholesterol transporter, HDLs display anti-inflammatory, anti-apoptotic, anti-thrombotic, and anti-infection properties. Experimental and clinical studies have unveiled significant changes in both HDL serum amount and composition that lead to dysregulated host immune response and endothelial dysfunction in the course of sepsis. Most SARS-Coronavirus-2-infected patients admitted to the intensive care unit showed common features of sepsis disease, such as the overwhelmed systemic inflammatory response and the alterations in serum lipid profile. Despite relevant advances, episodes of mild to moderate acute kidney injury (AKI), occurring during systemic inflammatory diseases, are associated with long-term complications, and high risk of mortality. The multi-faceted relationship of kidney dysfunction with dyslipidemia and inflammation encourages to deepen the clarification of the mechanisms connecting these elements. This review analyzes the multifaced roles of HDL in inflammatory diseases, the renal involvement in lipid metabolism, and the novel potential HDL-based therapies.
Collapse
Affiliation(s)
- Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Marco Fiorentino
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| | - Enrico Squiccimarro
- Department of Emergency and Organ Transplant (DETO), University of Bari, 70124 Bari, Italy;
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), 6229HX Maastricht, The Netherlands
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy;
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (R.F.); (M.F.)
| |
Collapse
|
14
|
B Uribe K, Benito-Vicente A, Martin C, Blanco-Vaca F, Rotllan N. (r)HDL in theranostics: how do we apply HDL's biology for precision medicine in atherosclerosis management? Biomater Sci 2021; 9:3185-3208. [PMID: 33949389 DOI: 10.1039/d0bm01838d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-density lipoproteins (HDL) are key players in cholesterol metabolism homeostasis since they are responsible for transporting excess cholesterol from peripheral tissues to the liver. Imbalance in this process, due to either excessive accumulation or impaired clearance, results in net cholesterol accumulation and increases the risk of cardiovascular disease (CVD). Therefore, significant effort has been focused on the development of therapeutic tools capable of either directly or indirectly enhancing HDL-guided reverse cholesterol transport (RCT). More recently, in light of the emergence of precision nanomedicine, there has been renewed research interest in attempting to take advantage of the development of advanced recombinant HDL (rHDL) for both therapeutic and diagnostic purposes. In this review, we provide an update on the different approaches that have been developed using rHDL, focusing on the rHDL production methodology and rHDL applications in theranostics. We also compile a series of examples highlighting potential future perspectives in the field.
Collapse
Affiliation(s)
- Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.
| | - Asier Benito-Vicente
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Cesar Martin
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Francisco Blanco-Vaca
- Servei de Bioquímica, Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain. and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain and Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Spain and Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
| | - Noemi Rotllan
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain and Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
| |
Collapse
|
15
|
Robert J, Osto E, von Eckardstein A. The Endothelium Is Both a Target and a Barrier of HDL's Protective Functions. Cells 2021; 10:1041. [PMID: 33924941 PMCID: PMC8146309 DOI: 10.3390/cells10051041] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelium serves as a barrier between the intravascular and extravascular compartments. High-density lipoproteins (HDL) have two kinds of interactions with this barrier. First, bloodborne HDL must pass the endothelium to access extravascular tissues, for example the arterial wall or the brain, to mediate cholesterol efflux from macrophages and other cells or exert other functions. To complete reverse cholesterol transport, HDL must even pass the endothelium a second time to re-enter circulation via the lymphatics. Transendothelial HDL transport is a regulated process involving scavenger receptor SR-BI, endothelial lipase, and ATP binding cassette transporters A1 and G1. Second, HDL helps to maintain the integrity of the endothelial barrier by (i) promoting junction closure as well as (ii) repair by stimulating the proliferation and migration of endothelial cells and their progenitor cells, and by preventing (iii) loss of glycocalix, (iv) apoptosis, as well as (v) transmigration of inflammatory cells. Additional vasoprotective functions of HDL include (vi) the induction of nitric oxide (NO) production and (vii) the inhibition of reactive oxygen species (ROS) production. These vasoprotective functions are exerted by the interactions of HDL particles with SR-BI as well as specific agonists carried by HDL, notably sphingosine-1-phophate (S1P), with their specific cellular counterparts, e.g., S1P receptors. Various diseases modify the protein and lipid composition and thereby the endothelial functionality of HDL. Thorough understanding of the structure-function relationships underlying the multiple interactions of HDL with endothelial cells is expected to elucidate new targets and strategies for the treatment or prevention of various diseases.
Collapse
Affiliation(s)
| | | | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, 8091 Zurich, Switzerland; (J.R.); (E.O.)
| |
Collapse
|
16
|
Wang L, Xiang F, Ji J, Ding X, Shen B, Chen J, Chen Y, Xue N, Zhang L, Jiang X, Cao X. Indoxyl sulfate and high-density lipoprotein cholesterol in early stages of chronic kidney disease. Ren Fail 2020; 42:1157-1163. [PMID: 33191829 PMCID: PMC7671672 DOI: 10.1080/0886022x.2020.1845731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background High IS level has been demonstrated to be associated with vascular calcification and lymphocyte functional disorders, which are both risk factors of CVD. Low HDL-c level is a risk factor of CVD in CKD patients. This study was designed to explore the potential relationship between IS and HDL-c levels in early stages of CKD population. Methods Patients of CKD stage 1-3 were enrolled in this cross-sectional study. Correlations between HDL-c and IS levels were investigated among various clinicopathological variables through independent samples t test and multivariate logistic regression. Results A total of 205 CKD patients (96 men) aged 43.27 ± 13.80 years old were included in this research. There were 96 patients (46 men) in CKD stage1 and 109 (50 men) in CKD stage 2 or stage 3. IS levels were significantly higher in CKD 2 + 3 group (1.50 ± 1.74 μg/ml vs. 0.94 ± 0.66 μg/ml, p = 0.007), while HDL-c levels were lower (1.19 ± 0.39 mmol/L vs. 1.33 ± 0.45 mmol/L, p = 0.017) compared to CKD 1 group. Among all the patients, a negative correlation was observed between IS and HDL-c levels (r = −0.244, p = 0.001). IS level was an independent risk factor for low HDL-c (<1.04 mmol/L) incidence even after controlling for potential confounders including concomitant disease, age, sex, blood pressure, BMI and laboratory biochemical test including eGFR (OR = 1.63, 95% CI: 1.11–2.39, p = 0.013). IS and HDL-c were both risk factors for predicting CKD stage 3. Conclusions In early CKD stages, low HDL-c level is associated with increased IS levels, which may be an important contributor in the development of dyslipidemia in CKD patients.
Collapse
Affiliation(s)
- Li Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Fangfang Xiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Jun Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Yunqin Chen
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Lin Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaotian Jiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| |
Collapse
|
17
|
Martínez-Ayala P, Alanis-Sánchez GA, González-Hernández LA, Álvarez-Zavala M, Cabrera-Silva RI, Andrade-Villanueva JF, Sánchez-Reyes K, Ramos-Solano M, Castañeda-Zaragoza DA, Cardona-Müller D, Totsuka-Sutto S, Cardona-Muñoz E, Ramos-Becerra CG. Aortic stiffness and central hemodynamics in treatment-naïve HIV infection: a cross-sectional study. BMC Cardiovasc Disord 2020; 20:440. [PMID: 33028211 PMCID: PMC7542972 DOI: 10.1186/s12872-020-01722-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
Background Human immunodeficiency virus (HIV) infection is associated with a greater risk of cardiovascular disease (CVD). HIV infection causes a chronic inflammatory state and increases oxidative stress which can cause endothelial dysfunction and arterial stiffness. Aortic stiffness measured by carotid femoral-pulse wave velocity (cfPWV) and central hemodynamics are independent cardiovascular risk factors and have the prognostic ability for CVD. We assessed cfPWV and central hemodynamics in young individuals with recent HIV infection diagnosis and without antiretroviral therapy. We hypothesized that individuals living with HIV would present greater cfPWV and central hemodynamics (central systolic blood pressure and pulse pressure) compared to uninfected controls. Methods We recruited 51 treatment-naïve individuals living with HIV (HIV(+)) without previous CVD and 51 age- and sex-matched controls (HIV negative (−)). We evaluated traditional CVD risk factors including metabolic profile, blood pressure (BP), smoking, HIV viral load, and CD4+ T-cells count. Arterial stiffness and central hemodynamics were evaluated by cfPWV, central systolic BP, and central pulse pressure (cPP) via applanation tonometry. Results HIV(+) individuals presented a greater prevalence of smoking, reduced high-density lipoprotein cholesterol, and body mass index. 65.9% of HIV(+) individuals exhibited lymphocyte CD4+ T-cells count < 500 cells/μL. There was no difference in brachial or central BP between groups; however, HIV(+) individuals showed significantly lower cPP. We observed a greater cfPWV (mean difference = 0.5 m/s; p < 0.01) in HIV(+) compared to controls, even after adjusting for heart rate, mean arterial pressure and smoking. Conclusion In the early stages of infection, non-treated HIV individuals present a greater prevalence of traditional CVD risk factors, arterial stiffness, and normal or in some cases central hemodynamics.
Collapse
Affiliation(s)
- Pedro Martínez-Ayala
- HIV Unit Department, University Hospital "Fray Antonio Alcalde", Universidad de Guadalajara, Guadalajara, Mexico
| | - Guillermo Adrián Alanis-Sánchez
- Arterial Stiffness Laboratory, Department of Physiology, Universidad de Guadalajara, Sierra Mojada 950, Building Q, Ground Floor, District Independencia, 44340, Guadalajara, Jalisco, Mexico
| | - Luz Alicia González-Hernández
- HIV Unit Department, University Hospital "Fray Antonio Alcalde", Universidad de Guadalajara, Guadalajara, Mexico.,HIV and Immunodeficiencies Research Institute, Clinical Medicine Department, CUCS-Universidad de Guadalajara, Guadalajara, Mexico
| | - Monserrat Álvarez-Zavala
- HIV and Immunodeficiencies Research Institute, Clinical Medicine Department, CUCS-Universidad de Guadalajara, Guadalajara, Mexico
| | - Rodolfo Ismael Cabrera-Silva
- HIV and Immunodeficiencies Research Institute, Clinical Medicine Department, CUCS-Universidad de Guadalajara, Guadalajara, Mexico
| | - Jaime Federico Andrade-Villanueva
- HIV Unit Department, University Hospital "Fray Antonio Alcalde", Universidad de Guadalajara, Guadalajara, Mexico.,HIV and Immunodeficiencies Research Institute, Clinical Medicine Department, CUCS-Universidad de Guadalajara, Guadalajara, Mexico
| | - Karina Sánchez-Reyes
- HIV and Immunodeficiencies Research Institute, Clinical Medicine Department, CUCS-Universidad de Guadalajara, Guadalajara, Mexico
| | - Moisés Ramos-Solano
- HIV and Immunodeficiencies Research Institute, Clinical Medicine Department, CUCS-Universidad de Guadalajara, Guadalajara, Mexico
| | - Diego Alberto Castañeda-Zaragoza
- Arterial Stiffness Laboratory, Department of Physiology, Universidad de Guadalajara, Sierra Mojada 950, Building Q, Ground Floor, District Independencia, 44340, Guadalajara, Jalisco, Mexico
| | - David Cardona-Müller
- Arterial Stiffness Laboratory, Department of Physiology, Universidad de Guadalajara, Sierra Mojada 950, Building Q, Ground Floor, District Independencia, 44340, Guadalajara, Jalisco, Mexico
| | - Sylvia Totsuka-Sutto
- Arterial Stiffness Laboratory, Department of Physiology, Universidad de Guadalajara, Sierra Mojada 950, Building Q, Ground Floor, District Independencia, 44340, Guadalajara, Jalisco, Mexico
| | - Ernesto Cardona-Muñoz
- Arterial Stiffness Laboratory, Department of Physiology, Universidad de Guadalajara, Sierra Mojada 950, Building Q, Ground Floor, District Independencia, 44340, Guadalajara, Jalisco, Mexico
| | - Carlos G Ramos-Becerra
- Arterial Stiffness Laboratory, Department of Physiology, Universidad de Guadalajara, Sierra Mojada 950, Building Q, Ground Floor, District Independencia, 44340, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
18
|
Busatto S, Walker SA, Grayson W, Pham A, Tian M, Nesto N, Barklund J, Wolfram J. Lipoprotein-based drug delivery. Adv Drug Deliv Rev 2020; 159:377-390. [PMID: 32791075 PMCID: PMC7747060 DOI: 10.1016/j.addr.2020.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Lipoproteins (LPs) are circulating heterogeneous nanoparticles produced by the liver and intestines. LPs play a major role in the transport of dietary and endogenous lipids to target cells through cell membrane receptors or cell surface-bound lipoprotein lipase. The stability, biocompatibility, and selective transport of LPs make them promising delivery vehicles for various therapeutic and imaging agents. This review discusses isolation, manufacturing, and drug loading techniques used for LP-based drug delivery, as well as recent applications for diagnosis and treatment of cancer, atherosclerosis, and other life-threatening diseases.
Collapse
Affiliation(s)
- Sara Busatto
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA.
| | - Sierra A Walker
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Whisper Grayson
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Anthony Pham
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ming Tian
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nicole Nesto
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Jacqueline Barklund
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Biology, University of North Florida, Jacksonville, FL 32224, USA; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Roumeliotis S, Mallamaci F, Zoccali C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J Clin Med 2020; 9:jcm9082359. [PMID: 32718053 PMCID: PMC7465707 DOI: 10.3390/jcm9082359] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The vascular endothelium is a dynamic, functionally complex organ, modulating multiple biological processes, including vascular tone and permeability, inflammatory responses, thrombosis, and angiogenesis. Endothelial dysfunction is a threat to the integrity of the vascular system, and it is pivotal in the pathogenesis of atherosclerosis and cardiovascular disease. Reduced nitric oxide (NO) bioavailability is a hallmark of chronic kidney disease (CKD), with this disturbance being almost universal in patients who reach the most advanced phase of CKD, end-stage kidney disease (ESKD). Low NO bioavailability in CKD depends on several mechanisms affecting the expression and the activity of endothelial NO synthase (eNOS). Accumulation of endogenous inhibitors of eNOS, inflammation and oxidative stress, advanced glycosylation products (AGEs), bone mineral balance disorders encompassing hyperphosphatemia, high levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23), and low levels of the active form of vitamin D (1,25 vitamin D) and the anti-ageing vasculoprotective factor Klotho all impinge upon NO bioavailability and are critical to endothelial dysfunction in CKD. Wide-ranging multivariate interventions are needed to counter endothelial dysfunction in CKD, an alteration triggering arterial disease and cardiovascular complications in this high-risk population.
Collapse
Affiliation(s)
- Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, School of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Francesca Mallamaci
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
| | - Carmine Zoccali
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
- Correspondence: ; Tel.: +39-340-73540-62
| |
Collapse
|
20
|
Takaeko Y, Matsui S, Kajikawa M, Maruhashi T, Yamaji T, Harada T, Han Y, Hashimoto H, Kihara Y, Hida E, Chayama K, Goto C, Aibara Y, Yusoff FM, Kishimoto S, Nakashima A, Higashi Y. Relationship between high-density lipoprotein cholesterol levels and endothelial function in women: a cross-sectional study. BMJ Open 2020; 10:e038121. [PMID: 32641366 PMCID: PMC7342861 DOI: 10.1136/bmjopen-2020-038121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The purpose of this study was to evaluate the relationship between high-density lipoprotein cholesterol (HDL-C) levels and endothelial function in women. DESIGN Cross-sectional study. SETTING 22 university hospitals and affiliated clinics in Japan. PARTICIPANTS 1719 Japanese women aged 17-90 years who were not receiving lipid-lowering therapy. MEASURES We evaluated flow-mediated vasodilation (FMD) and serum levels of HDL-C. All participants were divided into four groups by HDL-C level: low HDL-C (<40 mg/dL), moderate HDL-C (40-59 mg/dL), high HDL-C (60-79 md/dL) and extremely high HDL-C (≥80 mg/dL). RESULTS Univariate regression analysis revealed a significant relationship between FMD and HDL-C (r=0.12, p<0.001). FMD values were significantly smaller in the low HDL-C group (5.2%±3.8%) and moderate HDL-C group (5.2%±3.8%) than in the extremely high HDL-C group (6.7%±3.4%) (p=0.024 and p=0.003, respectively), while there was no significant difference in FMD between the high HDL-C group and the extremely high HDL-C group. Multiple logistic regression analysis did not show a significant association between HDL-C levels and FMD. CONCLUSIONS Endothelial function increased in relation to HDL-C levels. However, there was no association of HDL-C levels with endothelial function after adjustment of traditional cardiovascular risk factors in women. TRIAL REGISTRATION NUMBER UMIN000012950; Results.
Collapse
Affiliation(s)
- Yuji Takaeko
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shogo Matsui
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takayuki Yamaji
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takahiro Harada
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yiming Han
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Haruki Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Eisuke Hida
- Department of Biostatistics and Data Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Chikara Goto
- Department of Physical Therapy, Hiroshima International University, HigashiHiroshima, Hiroshima, Japan
| | - Yoshiki Aibara
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukihito Higashi
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| |
Collapse
|
21
|
Georgakis MK, Malik R, Anderson CD, Parhofer KG, Hopewell JC, Dichgans M. Genetic determinants of blood lipids and cerebral small vessel disease: role of high-density lipoprotein cholesterol. Brain 2020; 143:597-610. [PMID: 31968102 DOI: 10.1093/brain/awz413] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/26/2019] [Accepted: 11/19/2019] [Indexed: 01/14/2023] Open
Abstract
Blood lipids are causally involved in the pathogenesis of atherosclerosis, but their role in cerebral small vessel disease remains largely elusive. Here, we explored associations of genetic determinants of blood lipid levels, lipoprotein particle components, and targets for lipid-modifying drugs with small vessel disease phenotypes. We selected genetic instruments for blood levels of high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides, for cholesterol and triglycerides components of size-defined lipoprotein particles, and for lipid-modifying drug targets based on published genome-wide association studies (up to 617 303 individuals). Applying two-sample Mendelian randomization approaches we investigated associations with ischaemic and haemorrhagic manifestations of small vessel disease [small vessel stroke: 11 710 cases, 287 067 controls; white matter hyperintensities (WMH): 10 597 individuals; intracerebral haemorrhage: 1545 cases, 1481 controls]. We applied the inverse-variance weighted method and multivariable Mendelian randomization as our main analytical approaches. Genetic predisposition to higher HDL-C levels was associated with lower risk of small vessel stroke [odds ratio (OR) per standard deviation = 0.85, 95% confidence interval (CI) = 0.78-0.92] and lower WMH volume (β = -0.07, 95% CI = -0.12 to -0.02), which in multivariable Mendelian randomization remained stable after adjustments for LDL-C and triglycerides. In analyses of lipoprotein particle components by size, we found these effects to be specific for cholesterol concentration in medium-sized high-density lipoprotein, and not large or extra-large high-density lipoprotein particles. Association estimates for intracerebral haemorrhage were negatively correlated with those for small vessel stroke and WMH volume across all lipid traits and lipoprotein particle components. HDL-C raising genetic variants in the gene locus of the target of CETP inhibitors were associated with lower risk of small vessel stroke (OR: 0.82, 95% CI = 0.75-0.89) and lower WMH volume (β = -0.08, 95% CI = -0.13 to -0.02), but a higher risk of intracerebral haemorrhage (OR: 1.64, 95% CI = 1.26-2.13). Genetic predisposition to higher HDL-C, specifically to cholesterol in medium-sized high-density lipoprotein particles, is associated with both a lower risk of small vessel stroke and lower WMH volume. These analyses indicate that HDL-C raising strategies could be considered for the prevention of ischaemic small vessel disease but the net benefit of such an approach would need to be tested in a randomized controlled trial.
Collapse
Affiliation(s)
- Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital of Ludwig-Maximilians-University (LMU), Munich, Germany.,Graduate School for Systemic Neurosciences (GSN), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital of Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christopher D Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.,Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Klaus G Parhofer
- Department of Internal Medicine IV, University Hospital of Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jemma C Hopewell
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital of Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
22
|
Chuang ST, Cruz S, Narayanaswami V. Reconfiguring Nature's Cholesterol Accepting Lipoproteins as Nanoparticle Platforms for Transport and Delivery of Therapeutic and Imaging Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E906. [PMID: 32397159 PMCID: PMC7279153 DOI: 10.3390/nano10050906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Apolipoproteins are critical structural and functional components of lipoproteins, which are large supramolecular assemblies composed predominantly of lipids and proteins, and other biomolecules such as nucleic acids. A signature feature of apolipoproteins is the preponderance of amphipathic α-helical motifs that dictate their ability to make extensive non-covalent inter- or intra-molecular helix-helix interactions in lipid-free states or helix-lipid interactions with hydrophobic biomolecules in lipid-associated states. This review focuses on the latter ability of apolipoproteins, which has been capitalized on to reconstitute synthetic nanoscale binary/ternary lipoprotein complexes composed of apolipoproteins/peptides and lipids that mimic native high-density lipoproteins (HDLs) with the goal to transport drugs. It traces the historical development of our understanding of these nanostructures and how the cholesterol accepting property of HDL has been reconfigured to develop them as drug-loading platforms. The review provides the structural perspective of these platforms with different types of apolipoproteins and an overview of their synthesis. It also examines the cargo that have been loaded into the core for therapeutic and imaging purposes. Finally, it lays out the merits and challenges associated with apolipoprotein-based nanostructures with a future perspective calling for a need to develop "zip-code"-based delivery for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
| | | | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA; (S.T.C.); (S.C.)
| |
Collapse
|
23
|
Wu BJ, Li Y, Ong KL, Sun Y, Johns D, Barter PJ, Rye KA. The Cholesteryl Ester Transfer Protein Inhibitor, des-Fluoro-Anacetrapib, Prevents Vein Bypass-induced Neointimal Hyperplasia in New Zealand White Rabbits. Sci Rep 2019; 9:16183. [PMID: 31700015 PMCID: PMC6838195 DOI: 10.1038/s41598-019-52510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/18/2019] [Indexed: 11/25/2022] Open
Abstract
Coronary artery bypass grafting is among the most commonly performed of all cardiovascular surgical procedures. However, graft failure due to stenosis reduces the long-term benefit of the intervention. This study asks if elevating plasma high density lipoprotein cholesterol (HDL-C) levels by inhibition of cholesteryl ester transfer protein (CETP) activity with des-fluoro-anacetrapib, an analog of the CETP inhibitor anacetrapib, prevents vein bypass-induced neointimal hyperplasia. NZW rabbits were placed on a normal chow diet or chow containing 0.14% (wt/wt) des-fluoro-anacetrapib for 6 weeks. Bypass grafting of the jugular vein to the common carotid artery was performed 2 weeks after starting dietary des-fluoro-anacetrapib supplementation. The animals were euthanised 4 weeks post-bypass grafting. Relative to control, dietary supplementation with des-fluoro-anacetrapib reduced plasma CETP activity by 89 ± 6.9%, increased plasma apolipoprotein A-I levels by 24 ± 5.5%, increased plasma HDL-C levels by 93 ± 26% and reduced intimal hyperplasia in the grafted vein by 38 ± 6.2%. Des-fluoro-anacetrapib treatment was also associated with decreased bypass grafting-induced endothelial expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), endothelial dysfunction, and smooth muscle cell (SMC) proliferation in the grafted vein. In conclusion, increasing HDL-C levels by inhibiting CETP activity is associated with inhibition of intimal hyperplasia in grafted veins, reduced inflammatory responses, improved endothelial function, and decreased SMC proliferation.
Collapse
Affiliation(s)
- Ben J Wu
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia.
| | - Yue Li
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia
| | - Kwok-Leung Ong
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia
| | - Yidan Sun
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | - Philip J Barter
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia.
| |
Collapse
|
24
|
Nicholls SJ, Puri R, Ballantyne CM, Jukema JW, Kastelein JJP, Koenig W, Wright RS, Kallend D, Wijngaard P, Borgman M, Wolski K, Nissen SE. Effect of Infusion of High-Density Lipoprotein Mimetic Containing Recombinant Apolipoprotein A-I Milano on Coronary Disease in Patients With an Acute Coronary Syndrome in the MILANO-PILOT Trial: A Randomized Clinical Trial. JAMA Cardiol 2019; 3:806-814. [PMID: 30046837 DOI: 10.1001/jamacardio.2018.2112] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Importance Infusing a high-density lipoprotein mimetic containing apolipoprotein A-I Milano demonstrated potential atheroma regression in patients following an acute coronary syndrome. To our knowledge, the effect of infusing a new mimetic preparation (MDCO-216) with contemporary statin therapy is unknown. Objective To determine the effect of infusing MDCO-216 on coronary atherosclerosis progression. Design, Setting, and Participants This double-blind, randomized clinical trial conducted in 22 hospitals in Canada and Europe compared the effects of 5 weekly intravenous infusions of MDCO-216 at a dose of 20 mg/kg weekly (n = 59) with placebo (n = 67) in statin-treated patients with an acute coronary syndrome. Main Outcomes and Measures The primary efficacy measure was the nominal change in percent atheroma volume (PAV) from baseline to day 36 as measured by serial intravascular ultrasonography. The secondary efficacy measures were the nominal changes in normalized total atheroma volume (TAV), atheroma volume in the most diseased 10-mm segment, and the percentage of patients who demonstrated plaque regression. Safety and tolerability were also evaluated. Results Among 122 randomized patients (mean [SD] age, 61.8 [10.4] years; 93 men [76.2%]; 61 [50.0%] with prior statin use; and a mean [SD] low-density lipoprotein cholesterol [LDL-C] level of 87.6 [40.5] mg/dL [to convert to millimoles per liter, multiply by 0.0259]), 113 (92.6%) had evaluable imaging results at follow-up. The receiving-treatment LDL-C levels were comparable with the placebo and MDCO-216 (68.6 vs 70.5 mg/dL; difference, -2.5 mg/dL; 95% CI, -10.1 to 5.0; P = .51). A reduction in high-density lipoprotein cholesterol levels was observed in MDCO, but not placebo patients (-3.3 vs 3.0 mg/dL [to convert to millimoles per liter, multiply by 0.0259]; difference, -6.3 mg/dL; 95% CI, -8.5 to -4.1; P < .001). Percent atheroma volume, which was adjusted for baseline values, decreased 0.94% with the placebo and 0.21% with MDCO-216 (difference, 0.73%; 95% CI, -0.07 to 1.52; P = .07). Normalized TAV decreased 7.9 mm3 with the placebo and 6.4 mm3 with MDCO-216 (difference, 1.6 mm3; 95% CI, -5.6 to 8.7; P = .67), and atheroma volume in the most diseased segment decreased 1.8 mm3 with the placebo and 2.2 mm3 with MDCO-216 (difference 0.4 mm3; 95% CI, -4.4 to 3.5; P = .83). A similar percentage of patients demonstrated a regression of PAV (67.2% vs 55.8%; P = .21) and TAV (68.9% vs 71.2%; P = .79) in the placebo and MDCO-216 groups, respectively. Conclusions and Relevance Among patients with an acute coronary syndrome, infusing MDCO-216 did not produce an incremental plaque regression in the setting of contemporary statin therapy. Trial Registration ClinicalTrials.gov Identifier: NCT02678923.
Collapse
Affiliation(s)
- Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia.,Department of Cardiovascular Medicine and Cleveland Clinic Coordinating Center for Clinical Research, Cleveland, Ohio
| | - Rishi Puri
- Department of Cardiovascular Medicine and Cleveland Clinic Coordinating Center for Clinical Research, Cleveland, Ohio
| | - Christie M Ballantyne
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, Texas.,Methodist DeBakey Heart and Vascular Center, Houston, Texas
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung E.V., partner site Munich Heart Alliance, Munich, Germany.,Department of Internal Medicine, University of Ulm Medical Center, Ulm, Germany
| | - R Scott Wright
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | | - Marilyn Borgman
- Department of Cardiovascular Medicine and Cleveland Clinic Coordinating Center for Clinical Research, Cleveland, Ohio
| | - Kathy Wolski
- Department of Cardiovascular Medicine and Cleveland Clinic Coordinating Center for Clinical Research, Cleveland, Ohio
| | - Steven E Nissen
- Department of Cardiovascular Medicine and Cleveland Clinic Coordinating Center for Clinical Research, Cleveland, Ohio
| |
Collapse
|
25
|
Bordy R, Totoson P, Prati C, Marie C, Wendling D, Demougeot C. Microvascular endothelial dysfunction in rheumatoid arthritis. Nat Rev Rheumatol 2019; 14:404-420. [PMID: 29855620 DOI: 10.1038/s41584-018-0022-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The systemic autoimmune disease rheumatoid arthritis (RA) is characterized by increased cardiovascular mortality and morbidity and is an independent cardiovascular risk factor. Cardiovascular diseases (CVDs) result from accelerated atherogenesis, which is a consequence of endothelial dysfunction in the early stages of the disease. Endothelial dysfunction is a functional and reversible alteration of endothelial cells and leads to a shift in the properties of the endothelium towards reduced vasodilation, a pro-inflammatory state, and proliferative and prothrombotic properties. In RA, endothelial dysfunction can occur in the large vessels (such as the conduit arteries) and in the small vessels of the microvasculature, which supply oxygen and nutrients to the tissue and control inflammation, repair and fluid exchange with the surrounding tissues. Growing evidence suggests that microvascular endothelial dysfunction contributes to CVD development, as it precedes and predicts the development of conduit artery atherosclerosis and associated risk factors. As such, numerous studies have investigated microvascular endothelial dysfunction in RA, including its link with disease activity, disease duration and inflammation, the effect of treatments on endothelial function, and possible circulating biomarkers of microvascular endothelial dysfunction. Such findings could have important implications in the cardiovascular risk management of patients with RA.
Collapse
Affiliation(s)
- Romain Bordy
- PEPITE EA4267, FHU INCREASE, Universitaire Bourgogne Franche-Comté, UFR Santé, F-25000, Besançon, France
| | - Perle Totoson
- PEPITE EA4267, FHU INCREASE, Universitaire Bourgogne Franche-Comté, UFR Santé, F-25000, Besançon, France
| | - Clément Prati
- PEPITE EA4267, FHU INCREASE, Universitaire Bourgogne Franche-Comté, UFR Santé, F-25000, Besançon, France.,Service de Rhumatologie, Centre Hospitalier Régional et Universitaire de Besançon, F-25000, Besançon, France
| | - Christine Marie
- INSERM UMR1093 CAPS, Universitaire Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000, Dijon, France
| | - Daniel Wendling
- Service de Rhumatologie, Centre Hospitalier Régional et Universitaire de Besançon, F-25000, Besançon, France.,EA 4266, Universitaire Bourgogne Franche-Comté, UFR Santé, F-25000, Besançon, France
| | - Céline Demougeot
- PEPITE EA4267, FHU INCREASE, Universitaire Bourgogne Franche-Comté, UFR Santé, F-25000, Besançon, France.
| |
Collapse
|
26
|
Cabou C, Honorato P, Briceño L, Ghezali L, Duparc T, León M, Combes G, Frayssinhes L, Fournel A, Abot A, Masri B, Parada N, Aguilera V, Aguayo C, Knauf C, González M, Radojkovic C, Martinez LO. Pharmacological inhibition of the F 1 -ATPase/P2Y 1 pathway suppresses the effect of apolipoprotein A1 on endothelial nitric oxide synthesis and vasorelaxation. Acta Physiol (Oxf) 2019; 226:e13268. [PMID: 30821416 DOI: 10.1111/apha.13268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/14/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
AIM The contribution of apolipoprotein A1 (APOA1), the major apolipoprotein of high-density lipoprotein (HDL), to endothelium-dependent vasodilatation is unclear, and there is little information regarding endothelial receptors involved in this effect. Ecto-F1 -ATPase is a receptor for APOA1, and its activity in endothelial cells is coupled to adenosine diphosphate (ADP)-sensitive P2Y receptors (P2Y ADP receptors). Ecto-F1 -ATPase is involved in APOA1-mediated cell proliferation and HDL transcytosis. Here, we investigated the effect of lipid-free APOA1 and the involvement of ecto-F1 -ATPase and P2Y ADP receptors on nitric oxide (NO) synthesis and the regulation of vascular tone. METHOD Nitric oxide synthesis was assessed in human endothelial cells from umbilical veins (HUVECs) and isolated mouse aortas. Changes in vascular tone were evaluated by isometric force measurements in isolated human umbilical and placental veins and by assessing femoral artery blood flow in conscious mice. RESULTS Physiological concentrations of lipid-free APOA1 enhanced endothelial NO synthesis, which was abolished by inhibitors of endothelial nitric oxide synthase (eNOS) and of the ecto-F1 -ATPase/P2Y1 axis. Accordingly, APOA1 inhibited vasoconstriction induced by thromboxane A2 receptor agonist and increased femoral artery blood flow in mice. These effects were blunted by inhibitors of eNOS, ecto-F1 -ATPase and P2Y1 receptor. CONCLUSIONS Using a pharmacological approach, we thus found that APOA1 promotes endothelial NO production and thereby controls vascular tone in a process that requires activation of the ecto-F1 -ATPase/P2Y1 pathway by APOA1. Pharmacological targeting of this pathway with respect to vascular diseases should be explored.
Collapse
Affiliation(s)
- Cendrine Cabou
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
- Department of Human Physiology, Faculty of Pharmacy University Paul Sabatier Toulouse France
| | - Paula Honorato
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Luis Briceño
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Lamia Ghezali
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Thibaut Duparc
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Marcelo León
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Guillaume Combes
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Laure Frayssinhes
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Audren Fournel
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Anne Abot
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Bernard Masri
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Nicol Parada
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Valeria Aguilera
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health) Chillan Chile
| | - Claude Knauf
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Marcelo González
- Group of Research and Innovation in Vascular Health (GRIVAS Health) Chillan Chile
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, and Department of Obstetrics and Gynecology, Faculty of Medicine Universidad de Concepción Concepción Chile
| | - Claudia Radojkovic
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Laurent O. Martinez
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| |
Collapse
|
27
|
Role of microcirculatory function and plasma biomarkers in determining the development of cardiovascular adverse events in patients with peripheral arterial disease: A 5-year follow-up. Anatol J Cardiol 2019; 20:220-228. [PMID: 30297580 PMCID: PMC6249531 DOI: 10.14744/anatoljcardiol.2018.04578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The aim of this long-term follow-up study was to investigate the association of local and systemic cardiovascular complications with endothelium-dependent and-independent microvascular relaxations and blood biomarkers and biochemicals in patients with peripheral arterial disease (PAD) caused by atherosclerosis. METHODS This prospective study included 67 patients with PAD who had not undergone any endovascular intervention, peripheral arterial surgery, or major amputation. Changes in the microvascular blood flow were measured using laser Doppler imaging after iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP). The biochemical markers of high sensitivity C reactive protein (hs-CRP), nitric oxide (NO), total antioxidant capacity (TAC), asymmetric dimethyl arginine (ADMA), and hydrogen sulfide (H2S) levels were measured from blood samples. All the patients were followed up for 5 years to determine the development of cardiovascular adverse events (CVAEs) and major amputation. At the end of the follow-up period, the patients were classified into two groups: those who had a CVAE [CVAE (+)] and those who did not experience CVAE [CVAE (-)]. Parameters such as demographic features, atherosclerotic risk factors, chronic ischemia category, microvascular endothelial functions, and plasma biomarkers were compared between the groups. RESULTS A total of 67 patients comprising 61 (91%) males and 6 (9%) females with a mean age of 62.3±9.7 years were included. During the follow-up period, 29 patients had CVAE (43.3%) and 38 patients did not have CVAE (56.7%). There was no difference between the groups in terms of ACh and SNP-induced vasodilation responses. Plasma high density lipoprotein (HDL) cholesterol values were lower in the CVAE (+) group [(CVAE+HDL: 38.4±9.1), (CVAE-HDL: 44.7±11.1), p=0.02]. Plasma hs-CRP values were significantly higher in the CVAE (+) group [(CVAE+ hs-CRP: 14.3±20.6), (CVAE-hs-CRP: 5.9±10.9), p=0.004]. No significant difference was observed between the groups in terms of plasma biomarkers and other biochemical levels. CONCLUSION Based on the study findings, it was concluded that only low plasma HDL and high hs-CRP levels were risk factors for the development of CVAEs during follow-up of patients with PAD.
Collapse
|
28
|
Trieb M, Kornej J, Knuplez E, Hindricks G, Thiele H, Sommer P, Scharnagl H, Dagres N, Dinov B, Bollmann A, Husser D, Marsche G, Buettner P. Atrial fibrillation is associated with alterations in HDL function, metabolism, and particle number. Basic Res Cardiol 2019; 114:27. [PMID: 31069509 DOI: 10.1007/s00395-019-0735-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
Increased morbidity and mortality in atrial fibrillation (AF) are related to the pro-fibrotic, pro-thrombotic, and pro-inflammatory processes that underpin the disease. High-density lipoproteins (HDL) have anti-inflammatory, anti-oxidative, and anti-thrombotic properties. Functional impairment of HDL may, therefore, associate with AF initiation or progression. We studied indices of HDL quality and quantity of AF patients and healthy controls, including HDL-particle number, HDL cholesterol, apolipoprotein (apo) A-I levels, serum amyloid A (SAA) content and HDL-cholesterol efflux capacity, and paraoxonase activity of apoB-depleted serum. Serum samples were collected from AF patients (n = 91) before catheter ablation and from age- and sex-matched control subjects (n = 54). HDL-cholesterol efflux capacity was assessed in a validated assay using [3H]-cholesterol-labeled J774 macrophages. Lecithin-cholesterol acyltransferase (LCAT) and paraoxonase activities were assessed using fluorometric assays, SAA levels were determined by ELISA, and total and subclass HDL-particle number was assessed by nuclear magnetic resonance spectroscopy. ApoA-I levels were determined by immunoturbidimetry. HDL-cholesterol efflux capacity, HDL-particle number, apoA-I levels, and LCAT activity were markedly reduced in AF patients when compared to healthy individuals (all p < 0.001), whereas HDL-associated paraoxonase activity and SAA content were not altered (p = 0.578, p = 0.681). Notably, cholesterol efflux capacity, HDL-particle number, apoA-I levels as well as LCAT activity recovered following restoration of sinus rhythm (all p < 0.001). We identified marked alterations in HDL function, HDL maturation, and HDL-particle number in AF patients. Assessing HDL-particle number and function in AF may be used as a surrogate marker of AF onset and progression and may help identifying patients at high risk.
Collapse
Affiliation(s)
- Markus Trieb
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Jelena Kornej
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig-University Hospital of Cardiology, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Philipp Sommer
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Borislav Dinov
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Daniela Husser
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Petra Buettner
- Department of Electrophysiology, Heart Center Leipzig-University Hospital of Cardiology, Leipzig, Germany.
- Department of Internal Medicine/Cardiology, Heart Center Leipzig-University Hospital of Cardiology, Strümpellstr. 39, 04289, Leipzig, Germany.
| |
Collapse
|
29
|
Nicholls SJ, Nelson AJ. HDL and cardiovascular disease. Pathology 2019; 51:142-147. [PMID: 30612759 DOI: 10.1016/j.pathol.2018.10.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/28/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022]
Abstract
High-density lipoprotein (HDL) has received increasing interest due to observations of an inverse relationship between its systemic levels and cardiovascular risk and targeted interventions in animal models that have had favourable effects on atherosclerotic plaque. In addition to its pivotal role in reverse cholesterol transport, HDL has been reported to possess a range of functional properties, which may exert a protective influence on inflammation, oxidation, angiogenesis and glucose homeostasis. This has led to the development of a range of HDL targeted therapeutics, which have undergone evaluation in clinical trials. The current state of HDL in cardiovascular prevention will be reviewed.
Collapse
Affiliation(s)
- Stephen J Nicholls
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Monash University, Adelaide, SA, Australia.
| | - Adam J Nelson
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
30
|
Theofilatos D, Fotakis P, Valanti E, Sanoudou D, Zannis V, Kardassis D. HDL-apoA-I induces the expression of angiopoietin like 4 (ANGPTL4) in endothelial cells via a PI3K/AKT/FOXO1 signaling pathway. Metabolism 2018; 87:36-47. [PMID: 29928895 DOI: 10.1016/j.metabol.2018.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/17/2018] [Accepted: 06/17/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND High Density Lipoprotein (HDL) and its main protein component, apolipoprotein A-I (apoA-I), have numerous atheroprotective functions on various tissues including the endothelium. Therapies based on reconstituted HDL containing apoA-I (rHDL-apoA-I) have been used successfully in patients with acute coronary syndrome, peripheral vascular disease or diabetes but very little is known about the genomic effects of rHDL-apoA-I and how they could contribute to atheroprotection. OBJECTIVE The present study aimed to understand the endothelial signaling pathways and the genes that may contribute to rHDL-apoA-I-mediated atheroprotection. METHODS Human aortic endothelial cells (HAECs) were treated with rHDL-apoA-I and their total RNA was analyzed with whole genome microarrays. Validation of microarray data was performed using multiplex RT-qPCR. The expression of ANGPTL4 in EA.hy926 endothelial cells was determined by RT-qPCR and Western blotting. The contribution of signaling kinases and transcription factors in ANGPTL4 gene regulation by HDL-apoA-I was assessed by RT-qPCR, Western blotting and immunofluorescence using chemical inhibitors or siRNA-mediated gene silencing. RESULTS It was found that 410 transcripts were significantly changed in the presence of rHDL-apoA-I and that angiopoietin like 4 (ANGPTL4) was one of the most upregulated and biologically relevant molecules. In validation experiments rHDL-apoA-I, as well as natural HDL from human healthy donors or from transgenic mice overexpressing human apoA-I (TgHDL-apoA-I), increased ANGPTL4 mRNA and protein levels. ANGPTL4 gene induction by HDL was direct and was blocked in the presence of inhibitors for the AKT or the p38 MAP kinases. TgHDL-apoA-I caused phosphorylation of the transcription factor forkhead box O1 (FOXO1) and its translocation from the nucleus to the cytoplasm. Importantly, a FOXO1 inhibitor or a FOXO1-specific siRNA enhanced ANGPTL4 expression, whereas administration of TgHDL-apoA-I in the presence of the FOXO1 inhibitor or the FOXO1-specific siRNA did not induce further ANGPTL4 expression. These data suggest that FOXO1 functions as an inhibitor of ANGPTL4, while HDL-apoA-I blocks FOXO1 activity and induces ANGPTL4 through the activation of AKT. CONCLUSION Our data provide novel insights into the global molecular effects of HDL-apoA-I on endothelial cells and identify ANGPTL4 as a putative mediator of the atheroprotective functions of HDL-apoA-I on the artery wall, with notable therapeutic potential.
Collapse
Affiliation(s)
- Dimitris Theofilatos
- Laboratory of Biochemistry, University of Crete School of Medicine, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Panagiotis Fotakis
- Section of Molecular Genetics, Boston University Medical School, Boston, USA
| | - Efi Valanti
- 4th Department of Internal Medicine, "Attikon" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, "Attikon" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis Zannis
- Section of Molecular Genetics, Boston University Medical School, Boston, USA
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete School of Medicine, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| |
Collapse
|
31
|
Di Bartolo BA, Psaltis PJ, Bursill CA, Nicholls SJ. Translating Evidence of HDL and Plaque Regression. Arterioscler Thromb Vasc Biol 2018; 38:1961-1968. [DOI: 10.1161/atvbaha.118.307026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Considerable evidence from preclinical and population studies suggests that HDLs (high-density lipoproteins) possess atheroprotective properties. Reports from HDL infusion studies in animals and early clinical imaging trials reported evidence of plaque regression. These findings have stimulated further interest in developing new agents targeting HDL. However, the results of more recent imaging studies in the setting of high-intensity statin use have been disappointing. As the concept of plaque changes with HDL therapeutics evolves and imaging technology to evaluate these effects advances, there will become increasing opportunity to determine the effects of HDL agents on atherosclerotic plaque (Graphic Abstract).
Collapse
Affiliation(s)
- Belinda A. Di Bartolo
- From the South Australian Health and Medical Research Institute, University of Adelaide
| | - Peter J. Psaltis
- From the South Australian Health and Medical Research Institute, University of Adelaide
| | - Christina A. Bursill
- From the South Australian Health and Medical Research Institute, University of Adelaide
| | - Stephen J. Nicholls
- From the South Australian Health and Medical Research Institute, University of Adelaide
| |
Collapse
|
32
|
Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol 2018; 17:121. [PMID: 30170601 PMCID: PMC6117983 DOI: 10.1186/s12933-018-0763-3] [Citation(s) in RCA: 418] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
The incidence and prevalence of diabetes mellitus is rapidly increasing worldwide at an alarming rate. Type 2 diabetes mellitus (T2DM) is the most prevalent form of diabetes, accounting for approximately 90-95% of the total diabetes cases worldwide. Besides affecting the ability of body to use glucose, it is associated with micro-vascular and macro-vascular complications. Augmented atherosclerosis is documented to be the key factor leading to vascular complications in T2DM patients. The metabolic milieu of T2DM, including insulin resistance, hyperglycemia and release of excess free fatty acids, along with other metabolic abnormalities affects vascular wall by a series of events including endothelial dysfunction, platelet hyperactivity, oxidative stress and low-grade inflammation. Activation of these events further enhances vasoconstriction and promotes thrombus formation, ultimately resulting in the development of atherosclerosis. All these evidences are supported by the clinical trials reporting the importance of endothelial dysfunction and platelet hyperactivity in the pathogenesis of atherosclerotic vascular complications. In this review, an attempt has been made to comprehensively compile updated information available in context of endothelial and platelet dysfunction in T2DM.
Collapse
Affiliation(s)
- Raminderjit Kaur
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jatinder Singh
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
33
|
Akbari-Fakhrabadi M, Heshmati J, Sepidarkish M, Shidfar F. Effect of sumac (Rhus Coriaria) on blood lipids: A systematic review and meta-analysis. Complement Ther Med 2018; 40:8-12. [PMID: 30219474 DOI: 10.1016/j.ctim.2018.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 11/26/2022] Open
Abstract
Cardiovascular diseases (CVD) are the prominent cause of mortality worldwide. Hypercholesterolemia is a chief risk factor for the progress of atherosclerotic vascular disease. Complementary and alternative medicine (CAM) such as herbal interventions has received much attention in literature. Rhus Coriaria (RC) with the general name Sumac is a medicinal spice, especially in Middle Eastern countries which is well known as an anti-lipid spice. This study aimed to summarize the existing findings regarding the effect of RC on the lipid profile. In this review randomized controlled trials (RCTs) assessing the effect of RC on blood lipids were included. Electronic searches using the MeSH terms were conducted in the following databases: Medline, Embase, Scopus, Web of Science and The Cochrane Library. The effect of RC on serum lipid concentration were measured as standardized mean difference (SMD) and 95% confidence intervals (CI) by the random-effects model. The initial search extracted 119 potentially relevant articles. After studying these publications, 4 were potentially eligible and retrieved in full text (four RCTs). Based on the results of the systematic review, RC has positive effects on different indices of the lipid profile including increasing Apo A-I and HDL; decreasing Apo B, Apo B/ Apo A1 ratio, total cholesterol, LDL and triglyceride. However the meta-analysis conducted on three studies on total cholesterol, HDL, LDL and triglyceride individually did not show any significant difference between intervention and control groups. No definite conclusion could be made on the effect of RC on serum blood lipids due to lack of sufficient clinical trials and variable inconsistency. Future trials with desirable designs that would eliminate the limitations in the current evidence are needed before conclusive claims can be made about the effect of RC on the lipid profile.
Collapse
Affiliation(s)
- Maryam Akbari-Fakhrabadi
- Nutrition Department, School of Public Health, International Campus, Iran University of Medical Sciences, Tehran, Iran.
| | - Javad Heshmati
- Songhor Healthcare Center, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Mahdi Sepidarkish
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Farzad Shidfar
- Nutrition Department, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Abstract
High-density lipoproteins (HDLs) have presented an attractive target for development of new therapies for cardiovascular prevention on the basis of epidemiology and preclinical studies demonstrating their protective properties. Development of HDL mimetics provides an opportunity to administer functional HDL. However, clinical trials have produced variable results, with no evidence to date that they reduce cardiovascular events. This article reviews development programs of HDL mimetics.
Collapse
Affiliation(s)
- Kohei Takata
- South Australian Health and Medical Research Institute, University of Adelaide, PO Box 11060, Adelaide, SA 5001, Australia
| | - Belinda A Di Bartolo
- South Australian Health and Medical Research Institute, University of Adelaide, PO Box 11060, Adelaide, SA 5001, Australia
| | - Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, PO Box 11060, Adelaide, SA 5001, Australia.
| |
Collapse
|
35
|
Vaisar T, Couzens E, Hwang A, Russell M, Barlow CE, DeFina LF, Hoofnagle AN, Kim F. Type 2 diabetes is associated with loss of HDL endothelium protective functions. PLoS One 2018; 13:e0192616. [PMID: 29543843 PMCID: PMC5854245 DOI: 10.1371/journal.pone.0192616] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/27/2018] [Indexed: 11/18/2022] Open
Abstract
Aims/Hypothesis One of the hallmarks of diabetes is impaired endothelial function. Previous studies showed that HDL can exert protective effects on endothelium stimulating NO production and protecting from inflammation and suggested that HDL in obese people with diabetes and dyslipidemia may have lower endothelial protective function. We aimed to investigate whether type 2 diabetes impairs HDL endothelium protective functions in people with otherwise normal lipid profile. Methods In a case-control study (n = 41 per group) nested in the Cooper Center Longitudinal Study we tested the ability of HDL to protect endothelium by stimulating endothelial nitric oxide synthase activity and suppressing NFκB-mediated inflammatory response in endothelial cells. In parallel we measured HDL protein composition, sphinogosine-1-phosphate and P-selectin. Results Despite similar levels of plasma HDL-C the HDL in individuals with type 2 diabetes lost almost 40% of its ability to stimulate eNOS activity (P<0.001) and 20% of its ability to suppress TNFα-dependent NFκB-mediated inflammatory response in endothelial cells (P<0.001) compared to non-T2D controls despite similar BMI and lipid profile (HDL-C, LDL-C, TC, TG). Significantly, the ability of HDL to stimulate eNOS activity was negatively associated with plasma levels of P-selectin, an established marker of endothelial dysfunction (r = −0.32, P<0.001). Furthermore, sphingosine-1-phosphate (S1P) levels were decreased in diabetic plasma (P = 0.017) and correlated with HDL-mediated eNOS activation. Conclusions/Interpretations Collectively, our data suggest that HDL in individuals with type 2 diabetes loses its ability to maintain proper endothelial function independent of HDL-C, perhaps due to loss of S1P, and may contribute to development of diabetic complications.
Collapse
Affiliation(s)
- Tomáš Vaisar
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Erica Couzens
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Arnold Hwang
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Michael Russell
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Laura F DeFina
- The Cooper Institute, Dallas, Texas, United States of America
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Francis Kim
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
36
|
Ong KL, Waters DD, Fayyad R, Vogt L, Melamed S, DeMicco DA, Rye KA, Barter PJ. Relationship of High-Density Lipoprotein Cholesterol With Renal Function in Patients Treated With Atorvastatin. J Am Heart Assoc 2018; 7:JAHA.117.007387. [PMID: 29358194 PMCID: PMC5850159 DOI: 10.1161/jaha.117.007387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background It is not known whether the concentration of high‐density lipoprotein (HDL) cholesterol is related to renal function in statin‐treated patients. We therefore investigated whether HDL cholesterol levels predicted renal function in atorvastatin‐treated patients in the TNT (Treating to New Targets) trial. Methods and Results A total of 9542 participants were included in this analysis. Renal function was assessed by estimated glomerular filtration rate (eGFR). HDL cholesterol levels at month 3 were used as this is the time point at which on‐treatment HDL cholesterol levels became stable. Among 6319 participants with a normal eGFR (≥60 mL/min per 1.73 m2) at baseline, higher HDL cholesterol levels at month 3 were significantly associated with lower risk of decline in eGFR (ie, having eGFR <60 mL/min per 1.73 m2) during follow‐up (HR of 1.04, 0.88, 0.85, and 0.77 for HDL cholesterol quintiles 2, 3, 4, and 5, respectively, relative to quintile 1, P for trend=0.006). Among 3223 participants with an eGFR (<60 mL/min per 1.73 m2) at baseline, higher HDL cholesterol levels at month 3 had less impact on eGFR during follow‐up, with statistical significance observed only when analyzing HDL cholesterol levels as a continuous variable (P=0.043), but not as a categorical quintile variable (P for trend=0.27). Conclusions In patients treated with atorvastatin, higher HDL cholesterol levels were associated with lower risk of eGFR decline in patients with normal eGFR at baseline. However, further study is needed to establish whether there is any causal relationship between HDLs and renal function. Clinical Trial Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT00327691.
Collapse
Affiliation(s)
- Kwok Leung Ong
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - David D Waters
- Division of Cardiology, San Francisco General Hospital, University of California at San Francisco, CA
| | | | - Liffert Vogt
- Section of Nephrology, Department of Internal Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Philip J Barter
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
37
|
He D, Zhao M, Wu C, Zhang W, Niu C, Yu B, Jin J, Ji L, Willard B, Mathew AV, Chen YE, Pennathur S, Yin H, He Y, Pan B, Zheng L. Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1. Redox Biol 2017; 15:228-242. [PMID: 29277016 PMCID: PMC5975068 DOI: 10.1016/j.redox.2017.11.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 01/24/2023] Open
Abstract
Disruption of endothelial monolayer integrity is the primary instigating factor for many cardiovascular diseases. High density lipoprotein (HDL) oxidized by heme enzyme myeloperoxidase (MPO) is dysfunctional in promoting endothelial repair. Apolipoprotein A-1 mimetic 4F with its pleiotropic benefits has been proven effective in many in vivo models. In this study we investigated whether 4F promotes endothelial repair and restores the impaired function of oxidized HDL (Cl/NO2-HDL) in promoting re-endothelialization. We demonstrate that 4F and Cl/NO2-HDL act on scavenger receptor type I (SR-B1) using human aorta endothelial cells (HAEC) and SR-B1 (-/-) mouse aortic endothelial cells. Wound healing, transwell migration, lamellipodia formation and single cell migration assay experiments show that 4F treatment is associated with a recovery of endothelial cell migration and associated with significantly increased endothelial nitric oxide synthase (eNOS) activity, Akt phosphorylation and SR-B1 expression. 4F increases NO generation and diminishes oxidative stress. In vivo, 4F can stimulate cell proliferation and re-endothelialization in the carotid artery after treatment with Cl/NO2-HDL in a carotid artery electric injury model but fails to do so in SR-B1(-/-) mice. These findings demonstrate that 4F promotes endothelial cell migration and has a potential therapeutic benefit against early endothelial injury in cardiovascular diseases. 4F restores the decreased ability of Cl/NO2-HDL in promoting endothelial repair. 4F increases NO generation and diminishes oxidative stress. 4F increases eNOS activity, Akt phosphorylation and SR-B1 expression. 4F can stimulate re-endothelialization in a carotid artery electric injury model.
Collapse
Affiliation(s)
- Dan He
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Congying Wu
- The Institute of Systems Biomedicine, Department of Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Wenjing Zhang
- The Military General Hospital of Beijing, Beijing 100700, China
| | - Chenguang Niu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Baoqi Yu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Jingru Jin
- The Military General Hospital of Beijing, Beijing 100700, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China
| | - Belinda Willard
- Proteomics Laboratory, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anna V Mathew
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Yuan He
- National Research Institute for Health and Family Planning, Beijing 100081, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing 100191, China.
| |
Collapse
|
38
|
Wu BJ, Li Y, Ong KL, Sun Y, Shrestha S, Hou L, Johns D, Barter PJ, Rye KA. Reduction of In-Stent Restenosis by Cholesteryl Ester Transfer Protein Inhibition. Arterioscler Thromb Vasc Biol 2017; 37:2333-2341. [PMID: 29025709 DOI: 10.1161/atvbaha.117.310051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Angioplasty and stent implantation, the most common treatment for atherosclerotic lesions, have a significant failure rate because of restenosis. This study asks whether increasing plasma high-density lipoprotein (HDL) levels by inhibiting cholesteryl ester transfer protein activity with the anacetrapib analog, des-fluoro-anacetrapib, prevents stent-induced neointimal hyperplasia. APPROACH AND RESULTS New Zealand White rabbits received normal chow or chow supplemented with 0.14% (wt/wt) des-fluoro-anacetrapib for 6 weeks. Iliac artery endothelial denudation and bare metal steel stent deployment were performed after 2 weeks of des-fluoro-anacetrapib treatment. The animals were euthanized 4 weeks poststent deployment. Relative to control, dietary supplementation with des-fluoro-anacetrapib reduced plasma cholesteryl ester transfer protein activity and increased plasma apolipoprotein A-I and HDL cholesterol levels by 53±6.3% and 120±19%, respectively. Non-HDL cholesterol levels were unaffected. Des-fluoro-anacetrapib treatment reduced the intimal area of the stented arteries by 43±5.6% (P<0.001), the media area was unchanged, and the arterial lumen area increased by 12±2.4% (P<0.05). Des-fluoro-anacetrapib treatment inhibited vascular smooth muscle cell proliferation by 41±4.5% (P<0.001). Incubation of isolated HDLs from des-fluoro-anacetrapib-treated animals with human aortic smooth muscle cells at apolipoprotein A-I concentrations comparable to their plasma levels inhibited cell proliferation and migration. These effects were dependent on scavenger receptor-B1, the adaptor protein PDZ domain-containing protein 1, and phosphatidylinositol-3-kinase/Akt activation. HDLs from des-fluoro-anacetrapib-treated animals also inhibited proinflammatory cytokine-induced human aortic smooth muscle cell proliferation and stent-induced vascular inflammation. CONCLUSIONS Inhibiting cholesteryl ester transfer protein activity in New Zealand White rabbits with iliac artery balloon injury and stent deployment increases HDL levels, inhibits vascular smooth muscle cell proliferation, and reduces neointimal hyperplasia in an scavenger receptor-B1, PDZ domain-containing protein 1- and phosphatidylinositol-3-kinase/Akt-dependent manner.
Collapse
Affiliation(s)
- Ben J Wu
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.).
| | - Yue Li
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Kwok L Ong
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Yidan Sun
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Sudichhya Shrestha
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Liming Hou
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Douglas Johns
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Philip J Barter
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.)
| | - Kerry-Anne Rye
- From the School of Medical Sciences, The University of New South Wales Sydney, Australia (B.J.W., K.L.O., Y.S., S.S., L.H., P.J.B., K.-A.R.); Institute of Pathophysiology and Immunology, Medical University of Graz, Austria (Y.S.); and Merck & Co., Inc, Kenilworth, NJ (D.J.).
| |
Collapse
|
39
|
Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I, Li H, Lamas S, Münzel T. Targeting vascular (endothelial) dysfunction. Br J Pharmacol 2017; 174:1591-1619. [PMID: 27187006 PMCID: PMC5446575 DOI: 10.1111/bph.13517] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases are major contributors to global deaths and disability-adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti-inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Andreas Daiber
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
| | - Sebastian Steven
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- Center of Thrombosis and HemostasisMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Alina Weber
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Vladimir V. Shuvaev
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Huige Li
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
- Department of PharmacologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Santiago Lamas
- Department of Cell Biology and ImmunologyCentro de Biología Molecular "Severo Ochoa" (CSIC‐UAM)MadridSpain
| | - Thomas Münzel
- Center of CardiologyMedical Center of the Johannes Gutenberg UniversityMainzGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Rhine‐MainMainzGermany
| |
Collapse
|
40
|
Andrews J, Janssan A, Nguyen T, Pisaniello AD, Scherer DJ, Kastelein JJP, Merkely B, Nissen SE, Ray K, Schwartz GG, Worthley SG, Keyserling C, Dasseux JL, Butters J, Girardi J, Miller R, Nicholls SJ. Effect of serial infusions of reconstituted high-density lipoprotein (CER-001) on coronary atherosclerosis: rationale and design of the CARAT study. Cardiovasc Diagn Ther 2017; 7:45-51. [PMID: 28164012 DOI: 10.21037/cdt.2017.01.01] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND High-density lipoprotein (HDL) is believed to have atheroprotective properties, but an effective HDL-based therapy remains elusive. Early studies have suggested that infusion of reconstituted HDL promotes reverse cholesterol transport and vascular reactivity. The CER-001 Atherosclerosis Regression Acute Coronary Syndrome Trial (CARAT) is investigating the impact of infusing an engineered pre-beta HDL mimetic containing sphingomyelin (SM) and dipalmitoyl phosphatidlyglycerol (CER-001) on coronary atheroma volume in patients with a recent acute coronary syndrome (ACS). METHODS The CARAT is a phase 2, multicenter trial in which 292 patients with an ACS undergoing intracoronary ultrasonography and showing percent atheroma volume (PAV) greater than 30% are randomly assigned to treatment with ten infusions of CER-001 3 mg/kg or matching placebo, administered at weekly intervals. Intracoronary ultrasonography is repeated at the end of the treatment period. RESULTS The primary endpoint is the nominal change in PAV. Safety and tolerability will also be evaluated. CONCLUSIONS CARAT will establish whether serial 3 mg/kg infusions of an engineered pre-beta HDL mimetic containing SM and dipalmitoyl phosphatidlyglycerol (CER-001) will regress atherosclerotic plaque in patients with a recent ACS.
Collapse
Affiliation(s)
- Jordan Andrews
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Alex Janssan
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Tracy Nguyen
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Anthony D Pisaniello
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Daniel J Scherer
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - John J P Kastelein
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Kausik Ray
- School of Public Health, Imperial College London, London, UK
| | | | - Stephen G Worthley
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | | | | | - Julie Butters
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Jacinta Girardi
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Rosemary Miller
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| |
Collapse
|
41
|
Simic B, Mocharla P, Crucet M, Osto E, Kratzer A, Stivala S, Kühnast S, Speer T, Doycheva P, Princen HM, van der Hoorn JW, Jukema JW, Giral H, Tailleux A, Landmesser U, Staels B, Lüscher TF. Anacetrapib, but not evacetrapib, impairs endothelial function in CETP-transgenic mice in spite of marked HDL-C increase. Atherosclerosis 2017; 257:186-194. [PMID: 28152406 DOI: 10.1016/j.atherosclerosis.2017.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/24/2016] [Accepted: 01/12/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS High-density lipoprotein cholesterol (HDL-C) is inversely related to cardiovascular risk. HDL-C raising ester transfer protein (CETP) inhibitors, are novel therapeutics. We studied the effects of CETP inhibitors anacetrapib and evacetrapib on triglycerides, cholesterol and lipoproteins, cholesterol efflux, paraoxonase activity (PON-1), reactive oxygen species (ROS), and endothelial function in E3L and E3L.CETP mice. METHODS Triglycerides and cholesterol were measured at weeks 5, 14 and 21 in E3L.CETP mice on high cholesterol diet and treated with anacetrapib (3 mg/kg/day), evacetrapib (3 mg/kg/day) or placebo. Cholesterol efflux was assessed ex-vivo in mice treated with CETP inhibitors for 3 weeks on a normal chow diet. Endothelial function was analyzed at week 21 in isolated aortic rings, and serum lipoproteins assessed by fast-performance liquid chromatography. RESULTS Anacetrapib and evacetrapib increased HDL-C levels (5- and 3.4-fold, resp.) and reduced triglycerides (-39% vs. placebo, p = 0.0174). Total cholesterol levels were reduced only in anacetrapib-treated mice (-32%, p = 0.0386). Cholesterol efflux and PON-1 activity (+45% and +35% vs. control, p < 0.005, resp.) were increased, while aortic ROS production was reduced with evacetrapib (-49% vs. control, p = 0.020). Anacetrapib, but not evacetrapib, impaired endothelium dependent vasorelaxation (p < 0.05). In contrast, no such effects were observed in E3L mice for all parameters tested. CONCLUSIONS Notwithstanding a marked rise in HDL-C, evacetrapib did not improve endothelial function, while anacetrapib impaired it, suggesting that CETP inhibition does not provide vascular protection. Anacetrapib exerts unfavorable endothelial effects beyond CETP inhibition, which may explain the neutral results of large clinical trials in spite of increased HDL-C.
Collapse
Affiliation(s)
- Branko Simic
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland.
| | - Pavani Mocharla
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Margot Crucet
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Elena Osto
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Adelheid Kratzer
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Simona Stivala
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Susan Kühnast
- TNO - Metabolic Health Research, Leiden, The Netherlands
| | - Thimoteus Speer
- Department of Internal Medicine IV, Saarland University Medical Centre, Homburg, Germany
| | - Petia Doycheva
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Hans M Princen
- TNO - Metabolic Health Research, Leiden, The Netherlands
| | | | | | - Hector Giral
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Anne Tailleux
- Institute Pasteur de Lille, Inserm UMR 1011, University of Lille, France
| | - Ulf Landmesser
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Bart Staels
- Institute Pasteur de Lille, Inserm UMR 1011, University of Lille, France
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland.
| |
Collapse
|
42
|
Di Bartolo BA, Scherer DJ, Nicholls SJ. Inducing apolipoprotein A-I synthesis to reduce cardiovascular risk: from ASSERT to SUSTAIN and beyond. Arch Med Sci 2016; 12:1302-1307. [PMID: 27904522 PMCID: PMC5108390 DOI: 10.5114/aoms.2016.62906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/17/2015] [Indexed: 12/29/2022] Open
Abstract
Increasing attention has focused on efforts to promote the biological activities of high-density lipoproteins (HDL) in order to reduce cardiovascular risk. Targeting apolipoprotein A-I (apoA-I), the major protein carried on HDL particles, represents an attractive approach to promoting HDL by virtue of its ability to increase endogenous synthesis of functional HDL particles. A number of pharmacological strategies that target apoA-I, including upregulation of its production with the bromodomain and extraterminal (BET) protein inhibitor RVX-208, development of short peptide sequences that mimic its action, and administration as a component of reconstituted HDL particles, have undergone clinical development. The impact of these approaches on cardiovascular biomarkers will be reviewed.
Collapse
Affiliation(s)
- Belinda A Di Bartolo
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Daniel J Scherer
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| |
Collapse
|
43
|
Karathanasis SK, Freeman LA, Gordon SM, Remaley AT. The Changing Face of HDL and the Best Way to Measure It. Clin Chem 2016; 63:196-210. [PMID: 27879324 DOI: 10.1373/clinchem.2016.257725] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND HDL cholesterol (HDL-C) is a commonly used lipid biomarker for assessing cardiovascular health. While a central focus has been placed on the role of HDL in the reverse cholesterol transport (RCT) process, our appreciation for the other cardioprotective properties of HDL continues to expand with further investigation into the structure and function of HDL and its specific subfractions. The development of novel assays is empowering the research community to assess different aspects of HDL function, which at some point may evolve into new diagnostic tests. CONTENT This review discusses our current understanding of the formation and maturation of HDL particles via RCT, as well as the newly recognized roles of HDL outside RCT. The antioxidative, antiinflammatory, antiapoptotic, antithrombotic, antiinfective, and vasoprotective effects of HDL are all discussed, as are the related methodologies for assessing these different aspects of HDL function. We elaborate on the importance of protein and lipid composition of HDL in health and disease and highlight potential new diagnostic assays based on these parameters. SUMMARY Although multiple epidemiologic studies have confirmed that HDL-C is a strong negative risk marker for cardiovascular disease, several clinical and experimental studies have yielded inconsistent results on the direct role of HDL-C as an antiatherogenic factor. As of yet, our increased understanding of HDL biology has not been translated into successful new therapies, but will undoubtedly depend on the development of alternative ways for measuring HDL besides its cholesterol content.
Collapse
Affiliation(s)
| | - Lita A Freeman
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Scott M Gordon
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD.
| |
Collapse
|
44
|
Endothelial Dysfunction of Patients with Peripheral Arterial Disease Measured by Peripheral Arterial Tonometry. Int J Vasc Med 2016; 2016:3805380. [PMID: 27853624 PMCID: PMC5088270 DOI: 10.1155/2016/3805380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/17/2016] [Accepted: 09/27/2016] [Indexed: 01/22/2023] Open
Abstract
Objective. Endothelial dysfunction plays a key role in atherosclerotic disease. Several methods have been reported to be useful for evaluating the endothelial dysfunction, and we investigated the endothelial dysfunction in patients with peripheral arterial disease (PAD) using peripheral arterial tonometry (PAT) test in this study. Furthermore, we examined the factors significantly correlated with PAT test. Methods. We performed PAT tests in 67 patients with PAD. In addition, we recorded the patients' demographics, including comorbidities, and hemodynamical status, such as ankle brachial pressure index (ABI). Results. In a univariate analysis, the ABI value (r = 0.271, P = 0.029) and a history of cerebrovascular disease (r = 0.208, P = 0.143) were found to significantly correlate with PAT test, which calculated the reactive hyperemia index (RHI). In a multivariate analysis, only the ABI value significantly and independently correlated with RHI (β = 0.254, P = 0.041). Conclusion. This study showed a significant correlation between RHI and ABI. The PAT test is a useful tool for evaluating not only endothelial dysfunction but also the hemodynamical state in patients with PAD.
Collapse
|
45
|
Yoneyama K, Donekal S, Venkatesh BA, Wu CO, Liu CY, Souto Nacif M, Armstrong A, Gomes AS, Hundley WG, McClelland RL, Bluemke DA, Lima JA. Natural History of Myocardial Function in an Adult Human Population. JACC Cardiovasc Imaging 2016; 9:1164-1173. [DOI: 10.1016/j.jcmg.2016.01.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 01/09/2023]
|
46
|
Zhao D, Yang LY, Wang XH, Yuan SS, Yu CG, Wang ZW, Lang JN, Feng YM. Different relationship between ANGPTL3 and HDL components in female non-diabetic subjects and type-2 diabetic patients. Cardiovasc Diabetol 2016; 15:132. [PMID: 27620179 PMCID: PMC5020513 DOI: 10.1186/s12933-016-0450-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/03/2016] [Indexed: 01/03/2023] Open
Abstract
Background Angiopoietin-like protein 3 (ANGPTL3) is a major lipoprotein regulator and shows positive correlation with high-density lipoprotein-cholesterol (HDL-c) in population studies and ANGPTL3 mutated subjects. However, no study has looked its correlation with HDL components nor with HDL function in patients with type 2 diabetes mellitus (T2DM). Methods We studied 298 non-diabetic subjects and 300 T2DM patients who were randomly recruited in the tertiary referral centre. Plasma levels of ANGPTL3 were quantified by ELISA. Plasma samples were fractionated to obtain HDLs. HDL components including apolipoprotein A-I (apoA-I), triglyceride, serum amyloid A (SAA), phospholipid and Sphingosine-1-phosphate were measured. HDLs were isolated from female controls and T2DM patients by ultracentrifugation to assess cholesterol efflux against HDLs. A Pearson unadjusted correlation analysis and a linear regression analysis adjusting for age, body mass index and lipid lowering drugs were performed in male or female non-diabetic participants or diabetic patients, respectively. Results We demonstrated that plasma level of ANGPTL3 was lower in female T2DM patients than female controls although no difference of ANGPTL3 levels was detected between male controls and T2DM patients. After adjusting for confounding factors, one SD increase of ANGPTL3 (164.6 ng/ml) associated with increase of 2.57 mg/dL cholesterol and 1.14 μg/mL apoA-I but decrease of 47.07 μg/L of SAA in HDL particles of non-diabetic females (p < 0.05 for cholesterol and SAA; p < 0.0001 for apoA-I). By contrast, 1-SD increase of ANGPTL3 (159.9 ng/ml) associated with increase of 1.69 mg/dl cholesterol and 1.25 μg/mL apoA-I but decrease of 11.70 μg/L of SAA in HDL particles of female diabetic patients (p < 0.05 for cholesterol; p < 0.0001 for apoA-I; p = 0.676 for SAA). Moreover, one SD increase of ANGPTL3 associated with increase of 2.11 % cholesterol efflux against HDLs in non-diabetic females (p = 0.071) but decrease of 1.46 % in female T2DM patients (p = 0.13) after adjusting for confounding factors. Conclusions ANGPTL3 is specifically correlated with HDL-c, apoA-I, SAA and HDL function in female non-diabetic participants. The decrease of ANGPTL3 level in female T2DM patients might contribute to its weak association to HDL components and function. ANGPTL3 could be considered as a novel therapeutic target for HDL metabolism for treating diabetes. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0450-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Long-Yan Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Xu-Hong Wang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Sha-Sha Yuan
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Cai-Guo Yu
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Zong-Wei Wang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Jia-Nan Lang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Ying-Mei Feng
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, 101149, China. .,Stem Cell Institute, University of Leuven, 3000, Louvain, Belgium.
| |
Collapse
|
47
|
Impact of Rosuvastatin Treatment on HDL-Induced PKC-βII and eNOS Phosphorylation in Endothelial Cells and Its Relation to Flow-Mediated Dilatation in Patients with Chronic Heart Failure. Cardiol Res Pract 2016; 2016:4826102. [PMID: 27563480 PMCID: PMC4985575 DOI: 10.1155/2016/4826102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022] Open
Abstract
Background. Endothelial function is impaired in chronic heart failure (CHF). Statins upregulate endothelial NO synthase (eNOS) and improve endothelial function. Recent studies demonstrated that HDL stimulates NO production due to eNOS phosphorylation at Ser(1177), dephosphorylation at Thr(495), and diminished phosphorylation of PKC-βII at Ser(660). The aim of this study was to elucidate the impact of rosuvastatin on HDL mediated eNOS and PKC-βII phosphorylation and its relation to endothelial function. Methods. 18 CHF patients were randomized to 12 weeks of rosuvastatin or placebo. At baseline, 12 weeks, and 4 weeks after treatment cessation we determined lipid levels and isolated HDL. Human aortic endothelial cells (HAEC) were incubated with isolated HDL and phosphorylation of eNOS and PKC-βII was evaluated. Flow-mediated dilatation (FMD) was measured at the radial artery. Results. Rosuvastatin improved FMD significantly. This effect was blunted after treatment cessation. LDL plasma levels were reduced after rosuvastatin treatment whereas drug withdrawal resulted in significant increase. HDL levels remained unaffected. Incubation of HAEC with HDL had no impact on phosphorylation of eNOS or PKC-βII. Conclusion. HDL mediated eNOS and PKC-βII phosphorylation levels in endothelial cells do not change with rosuvastatin in CHF patients and do not mediate the marked improvement in endothelial function.
Collapse
|
48
|
Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl Res 2016; 173:30-57. [PMID: 26972566 DOI: 10.1016/j.trsl.2016.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Low plasma levels of high-density lipoprotein (HDL) cholesterol are associated with increased risks of coronary heart disease. HDL mediates cholesterol efflux from macrophages for reverse transport to the liver and elicits many anti-inflammatory and anti-oxidative activities which are potentially anti-atherogenic. Nevertheless, HDL has not been successfully targeted by drugs for prevention or treatment of cardiovascular diseases. One potential reason is the targeting of HDL cholesterol which does not capture the structural and functional complexity of HDL particles. Hundreds of lipid species and dozens of proteins as well as several microRNAs have been identified in HDL. This physiological heterogeneity is further increased in pathologic conditions due to additional quantitative and qualitative molecular changes of HDL components which have been associated with both loss of physiological function and gain of pathologic dysfunction. This structural and functional complexity of HDL has prevented clear assignments of molecules to the functions of normal HDL and dysfunctions of pathologic HDL. Systematic analyses of structure-function relationships of HDL-associated molecules and their modifications are needed to test the different components and functions of HDL for their relative contribution in the pathogenesis of atherosclerosis. The derived biomarkers and targets may eventually help to exploit HDL for treatment and diagnostics of cardiovascular diseases.
Collapse
Affiliation(s)
- Wijtske Annema
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
49
|
Huang L, Li T, Liu YW, Zhang L, Dong ZH, Liu SY, Gao YT. Plasma Metabolic Profile Determination in Young ST-segment Elevation Myocardial Infarction Patients with Ischemia and Reperfusion: Ultra-performance Liquid Chromatography and Mass Spectrometry for Pathway Analysis. Chin Med J (Engl) 2016; 129:1078-1086. [PMID: 27098794 PMCID: PMC4852676 DOI: 10.4103/0366-6999.180527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study was to establish a disease differentiation model for ST-segment elevation myocardial infarction (STEMI) youth patients experiencing ischemia and reperfusion via ultra-performance liquid chromatography and mass spectrometry (UPLC/MS) platform, which searches for closely related characteristic metabolites and metabolic pathways to evaluate their predictive value in the prognosis after discharge. METHODS Forty-seven consecutive STEMI patients (23 patients under 45 years of age, referred to here as "youth," and 24 "elderly" patients) and 48 healthy control group members (24 youth, 24 elderly) were registered prospectively. The youth patients were required to provide a second blood draw during a follow-up visit one year after morbidity (n = 22, one lost). Characteristic metabolites and relative metabolic pathways were screened via UPLC/MS platform base on the Kyoto encyclopedia of genes and genomes (KEGG) and Human Metabolome Database. Receiver operating characteristic (ROC) curves were drawn to evaluate the predictive value of characteristic metabolites in the prognosis after discharge. RESULTS We successfully established an orthogonal partial least squares discriminated analysis model (R2X = 71.2%, R2Y = 79.6%, and Q2 = 55.9%) and screened out 24 ions; the sphingolipid metabolism pathway showed the most drastic change. The ROC curve analysis showed that ceramide [Cer(d18:0/16:0), Cer(t18:0/12:0)] and sphinganine in the sphingolipid pathway have high sensitivity and specificity on the prognosis related to major adverse cardiovascular events after youth patients were discharged. The area under curve (AUC) was 0.671, 0.750, and 0.711, respectively. A follow-up validation one year after morbidity showed corresponding AUC of 0.778, 0.833, and 0.806. CONCLUSIONS By analyzing the plasma metabolism of myocardial infarction patients, we successfully established a model that can distinguish two different factors simultaneously: pathological conditions and age. Sphingolipid metabolism is the top most altered pathway in young STEMI patients and as such may represent a valuable prognostic factor and potential therapeutic target.
Collapse
Affiliation(s)
| | - Tong Li
- Department of Heart Center, Tianjin Medical University, the Third Central Clinical Medicine College, Tianjin 300170, China
| | | | | | | | | | | |
Collapse
|
50
|
Kuai R, Li D, Chen YE, Moon JJ, Schwendeman A. High-Density Lipoproteins: Nature's Multifunctional Nanoparticles. ACS NANO 2016; 10:3015-41. [PMID: 26889958 PMCID: PMC4918468 DOI: 10.1021/acsnano.5b07522] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
High-density lipoproteins (HDL) are endogenous nanoparticles involved in the transport and metabolism of cholesterol, phospholipids, and triglycerides. HDL is well-known as the "good" cholesterol because it not only removes excess cholesterol from atherosclerotic plaques but also has anti-inflammatory and antioxidative properties, which protect the cardiovascular system. Circulating HDL also transports endogenous proteins, vitamins, hormones, and microRNA to various organs. Compared with other synthetic nanocarriers, such as liposomes, micelles, and inorganic and polymeric nanoparticles, HDL has unique features that allow them to deliver cargo to specific targets more efficiently. These attributes include their ultrasmall size (8-12 nm in diameter), high tolerability in humans (up to 8 g of protein per infusion), long circulating half-life (12-24 h), and intrinsic targeting properties to different recipient cells. Various recombinant ApoA proteins and ApoA mimetic peptides have been recently developed for the preparation of reconstituted HDL that exhibits properties similar to those of endogenous HDL and has a potential for industrial scale-up. In this review, we will summarize (a) clinical pharmacokinetics and safety of reconstituted HDL products, (b) comparison of HDL with inorganic and other organic nanoparticles,
Collapse
Affiliation(s)
- Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y. Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence should be addressed to A. S. () or J.J.M. ()
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence should be addressed to A. S. () or J.J.M. ()
| |
Collapse
|