1
|
Zaman S, Wasfy JH, Kapil V, Ziaeian B, Parsonage WA, Sriswasdi S, Chico TJA, Capodanno D, Colleran R, Sutton NR, Song L, Karam N, Sofat R, Fraccaro C, Chamié D, Alasnag M, Warisawa T, Gonzalo N, Jomaa W, Mehta SR, Cook EES, Sundström J, Nicholls SJ, Shaw LJ, Patel MR, Al-Lamee RK. The Lancet Commission on rethinking coronary artery disease: moving from ischaemia to atheroma. Lancet 2025; 405:1264-1312. [PMID: 40179933 DOI: 10.1016/s0140-6736(25)00055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/01/2025] [Accepted: 01/09/2025] [Indexed: 04/05/2025]
Affiliation(s)
- Sarah Zaman
- Westmead Applied Research Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia
| | - Jason H Wasfy
- Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Vikas Kapil
- William Harvey Research Institute, Centre for Cardiovascular Medicine and Devices, NIHR Barts Biomedical Research Centre, Queen Mary University of London, St Bartholomew's Hospital, London, UK
| | - Boback Ziaeian
- Division of Cardiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - William A Parsonage
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD, Australia; Department of Cardiology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Chulalongkorn University, Pathum Wan, Bangkok, Thailand; Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Timothy J A Chico
- School of Medicine and Population Health, University of Sheffield, Sheffield, UK; British Heart Foundation Data Science Centre, Health Data Research UK, London, UK
| | - Davide Capodanno
- Division of Cardiology, Azienda Ospedaliero Universitaria Policlinico, University of Catania, Catania, Italy
| | - Róisín Colleran
- Department of Cardiology and Cardiovascular Research Institute, Mater Private Network, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Nadia R Sutton
- Department of Internal Medicine, and Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Lei Song
- Department of Cardiology, National Clinical Research Centre for Cardiovascular Diseases, Fuwai Hospital, Beijing, China; Peking Union Medical College (Chinese Academy of Medical Sciences), Beijing, China
| | - Nicole Karam
- Cardiology Department, European Hospital Georges Pompidou, Paris City University, Paris, France
| | - Reecha Sofat
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Chiara Fraccaro
- Division of Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Daniel Chamié
- Section of Cardiovascular Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Mirvat Alasnag
- Cardiac Center, King Fahd Armed Forces Hospital, Jeddah, Saudi Arabia
| | | | - Nieves Gonzalo
- Cardiology Department, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Walid Jomaa
- Cardiology B Department, Fattouma Bourguiba University Hospital, University of Monastir, Monastir, Tunisia
| | - Shamir R Mehta
- Population Health Research Institute, Hamilton Health Sciences, McMaster University Medical Centre, Hamilton, ON, Canada
| | - Elizabeth E S Cook
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Johan Sundström
- Uppsala University, Uppsala, Sweden; The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | | | - Leslee J Shaw
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manesh R Patel
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA; Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Rasha K Al-Lamee
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
2
|
Dong TF, Sun WQ, Li XY, Sun L, Li HB, Liu LL, Wang Y, Wang HL, Yang LS, Zha ZQ. Short-term associations between ambient PM 1, PM 2.5, and PM 10 and hospital admissions, length of hospital stays, and hospital expenses for patients with cardiovascular diseases in rural areas of Fuyang, East China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:1059-1071. [PMID: 39041841 DOI: 10.1080/09603123.2024.2380353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Evidence on the impacts of PM1, PM2.5, and PM10 on the hospital admissions, length of hospital stays (LOS), and hospital expenses among patients with cardiovascular disease (CVD) is still limited in China, especially in rural areas. This study was performed in eight counties of Fuyang from 1 January 2015 to 30 June 2017. We use a three-stage time-series analysis to explore the effects of short-term exposure to PM1, PM2.5, and PM10 on hospital admissions, LOS, and hospital expenses for CVDs. An increment of 10 ug/m3 in PM1, PM2.5, and PM10 corresponded to an increment of 1.82% (95% CI: 1.34, 2.30), 0.96% (95% CI: 0.44, 1.48), and 0.79% (95% CI: 0.63%, 0.95%) in CVD hospital admissions, respectively. We observed that daily concentrations of PMs were associated with an increase in hospital admissions, LOS, and expenses for CVDs. Sustained endeavors are required to reduce air pollution so as to attenuate disease burdens from CVDs.
Collapse
Affiliation(s)
- Teng-Fei Dong
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Wan-Qi Sun
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Xing-Yang Li
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Liang Sun
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Huai-Biao Li
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Ling-Li Liu
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Yuan- Wang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Hong-Li Wang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Lin-Sheng Yang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
| | - Zhen-Qiu Zha
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| |
Collapse
|
3
|
Langenbach MC, Mayrhofer T, Langenbach IL, Lu MT, Karady J, Maintz D, Abohashem S, Tawakol A, Pagidipati NJ, Shah SH, Ferencik M, Motsinger-Reif A, Douglas PS, Foldyna B. Air pollution, coronary artery disease, and cardiovascular events: Insights from the PROMISE trial. J Cardiovasc Comput Tomogr 2025:S1934-5925(25)00048-6. [PMID: 40107947 DOI: 10.1016/j.jcct.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Air pollution is associated with mortality and major adverse cardiovascular events (MACE) in the general population. However, little is known about the relationship between air pollution and coronary artery disease (CAD) and how this relates to MACE. METHODS This study utilized data from the computed tomography (CT) arm of the PROMISE trial investigating symptomatic individuals with suspected CAD. We linked levels of air pollutants (PM2·5, PM10, NO2, and ozone) at U.S. zip codes of residence CT-derived CAD and adjudicated MACE (all-cause death, myocardial infarction, and hospitalization for unstable angina). Multivariable analyses were adjusted for the ASCVD risk score and socioeconomic determinants of health. Mediation analyses were used to test putative pathways. RESULTS In 4343 individuals (48 % males; age: 61 ± 8 years), elevated exposures to PM2.5 (≥9.4 μg/m3) and NO2 (≥5.3 ppb) were independently associated with obstructive CAD (aOR = 1.23, 95%CI: 1.03-1.48, p = 0.024; aOR = 1.56, 95%CI: 1.02-2.40, p = 0.042), while there were no significant associations with PM10 (≥15 μg/m3) or ozone (≥51 ppb). Increased PM2.5, PM10 and ozone were independently associated with MACE (aHR = 1.56, 95%CI: 1.12-2.18, p = 0.008; aHR = 2.09, 95%CI: 1.18-3.70, p = 0.011, aHR = 1.96, 95%CI: 1.20-3.21, p = 0.008). In the mediation analysis, obstructive CAD accounted for 9 % of the total effect (p = 0.012) between PM2.5 and MACE. CONCLUSION Exposure to air pollution, particularly PM2.5, was independently associated with obstructive CAD and MACE, with obstructive CAD mediating a small but significant portion of the association between air pollution and MACE.
Collapse
Affiliation(s)
- Marcel C Langenbach
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA; Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Kerpener Str 62, 50937, Cologne, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Thomas Mayrhofer
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA; Center for Preventive Medicine and Digital Health, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany; School of Business Studies, Stralsund University of Applied Sciences, Zur Schwedenschanze 15, 18435, Stralsund, Germany
| | - Isabel L Langenbach
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA; Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Kerpener Str 62, 50937, Cologne, Germany
| | - Michael T Lu
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA
| | - Julia Karady
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA
| | - David Maintz
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Kerpener Str 62, 50937, Cologne, Germany
| | - Shady Abohashem
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA
| | - Ahmed Tawakol
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA
| | - Neha J Pagidipati
- Duke Clinical Research Institute, Duke University School of Medicine, 300 W. Morgan St, Durham, NC, 27701, USA; Division of Cardiology, Department of Medicine, Duke University Medical Center, 10 Duke Medicine Cir, Durham, NC, 27710, USA
| | - Svati H Shah
- Duke Clinical Research Institute, Duke University School of Medicine, 300 W. Morgan St, Durham, NC, 27701, USA; Division of Cardiology, Department of Medicine, Duke University Medical Center, 10 Duke Medicine Cir, Durham, NC, 27710, USA
| | - Maros Ferencik
- Knight Cardiovascular Institute, Oregon Health & Science University, 15700 S.W. Greystone Ct, Beaverton, OR, 97006, USA
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 Tw Alexander Dr, Research Triangle Park, NC, 27709, USA
| | - Pamela S Douglas
- Duke Clinical Research Institute, Duke University School of Medicine, 300 W. Morgan St, Durham, NC, 27701, USA
| | - Borek Foldyna
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge St, Suite 400, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Joshi M, Joshi A, Bartter T. The impact of climate change on respiratory health: current understanding and knowledge gaps. Curr Opin Pulm Med 2025; 31:79-88. [PMID: 39620702 DOI: 10.1097/mcp.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
PURPOSE OF REVIEW To present an overview of the impact of climate change upon human respiratory health. RECENT FINDINGS Climate change is directly impacting air quality. Particulate matter clearly increases mortality rates. Ozone, a longstanding suspect in climate-related injury, turns out not to have the major impact that had been projected at current levels of exposure. The key factors in global warming have been clearly identified, but while these factors collectively cause deleterious changes, a close look at the literature shows that it is unclear to what extent each factor individually is a driver of a specific process. This article summarizes some of those studies. SUMMARY A better understanding of which components of climate change most impact human health is needed in order to re-define environmental standards. PM 2.5 needs to be broken down by chemical composition to study the differential impacts of different sources of PM 2.5 . The detection and study of climate-related changes in respiratory infectious diseases is in a state of relative infancy.
Collapse
Affiliation(s)
- Manish Joshi
- University of Arkansas for Medical Sciences
- Central Arkansas Veterans Healthcare System
| | - Anita Joshi
- Fay W Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Thaddeus Bartter
- University of Arkansas for Medical Sciences
- Central Arkansas Veterans Healthcare System
| |
Collapse
|
5
|
Niu X, Yu J, Sun J, Zhang X, Zhou L, Liu X, He K, Peng Z, Niu X, Xu H, Cao J, Ho KF, Liu P, Shen Z. New mechanisms of PM 2.5 induced atherosclerosis: Source dependent toxicity and pathogenesis. ENVIRONMENTAL RESEARCH 2025; 266:120535. [PMID: 39643260 DOI: 10.1016/j.envres.2024.120535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Exposure to fine particulate matter (PM2.5) is recognized to induce atherosclerosis, but the underlying mechanisms are not fully understood. This study used ambient PM2.5 samples collected in one of the highly polluted regions of Guanzhong Plain in China (2017-2020) and an ApoE-/- mouse model to investigate the association between exposure to PM2.5 and atherosclerosis. Despite a substantial decrease in the ambient concentration of PM2.5 from 266.7 ± 63.9 to 124.4 ± 37.7 μg m-3 due to the execution of a series of emission controls, cardiovascular toxicity due to exposure to PM2.5 remained at a significantly high level compared with the Control group. Moreover, the result highlighted that biomass burning (BB) showed an increased contribution to PM2.5 while most anthropogenic sources decreased. This study found that PM2.5 exposure led to vascular oxidative stress and inflammation, accelerated atherosclerotic plaque growth, and altered vascular proliferation pathways. The latter two mechanisms provide new insights into how PM2.5 enhanced the processes of atherosclerosis, promoted lipoprotein cholesterol (LDL-C) absorption in vascular cells, and directed stimulation of cell function factors (VEGF and MCP-1), which are highly associated by PI3K/AKT signaling pathway. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and certain biomarkers showed strong correlations with bio-reactivity, while BB was identified as a major contributor to toxicity of PM2.5. The findings offer new insights into the role of PM2.5 promoting atherosclerosis and provide recommendations for controlling PM2.5 pollution to prevent and treat the disease particularly for susceptible populations.
Collapse
Affiliation(s)
- Xinyi Niu
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jinjin Yu
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xinya Zhang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lili Zhou
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xinyao Liu
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Kun He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zezhi Peng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofeng Niu
- Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, China
| | - Pengfei Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, GA, USA.
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
6
|
Zhang XJ, Tan Q, Xu ZY, Wen S, Chen SB. Global hotspots and trends on environmental exposure and cardiovascular disease from 1999 to 2022. World J Cardiol 2025; 17:102409. [PMID: 39866218 PMCID: PMC11755122 DOI: 10.4330/wjc.v17.i1.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/24/2024] [Accepted: 12/20/2024] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND The increasing risk of cardiovascular disease (CVD) associated with worsening environmental exposure is a critical health concern garnering global research attention. AIM To systematically assess the scope and characteristics of research on the relationship between environmental exposure and CVD. METHODS A thorough examination of publications on the relationship between environmental exposure and CVD from 1999 to 2022 was carried out by extensively screening the literature using the Web of Science Core Collection. The language of the selected publications was standardized to English. Afterward, different academic tools such as CiteSpace, VOSviewer, HistCite, Python, Matplotlib, and Bibliometrix were utilized to examine the research trends in this field. RESULTS The study's findings indicated a steady increase in scientific publications among the 1640 analyzed documents, peaking in 2022 with 197 publications. The United States emerged as the leading nation regarding high-quality publications and international collaboration. Harvard University was identified as the most prolific institution. "Environmental research" was the most frequently contributing journal, and Muenzel T was recognized as the top contributor. Current research hotspots are primarily concentrated on themes such as "cardiovascular disease", "exposure", "risk", "mortality", and "air pollution". CONCLUSION This study highlights increasing research on the link between environmental exposure and CVD, identifying key exposures and diseases while emphasizing the need for further investigation into underlying mechanisms.
Collapse
Affiliation(s)
- Xin-Jie Zhang
- Department of Graduate, Chengde Medical University, Shijiazhuang 067000, Hebei Province, China
- Department of Surgical Urology, Hebei Province Xingtai People's Hospital, Xingtai 054031, Hebei Province, China
| | - Qing Tan
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Zheng-Yu Xu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Song Wen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, Guangdong Province, China
| | - Shu-Bo Chen
- Department of Surgical Urology, Hebei Province Xingtai People's Hospital, Xingtai 054031, Hebei Province, China.
| |
Collapse
|
7
|
Jeong YW, Choi HM, Park Y, Lee Y, Jung JY, Kang DR. Association between exposure to particulate matter and heart rate variability in vulnerable and susceptible individuals. NPJ Digit Med 2025; 8:52. [PMID: 39856241 PMCID: PMC11760931 DOI: 10.1038/s41746-024-01373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/06/2024] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM) exposure can reduce heart rate variability (HRV), a cardiovascular health marker. This study examines PM1.0 (aerodynamic diameters <1 μm), PM2.5 (≥1 μm and <2.5 μm), and PM10 (≥2.5 μm and <10 μm) effects on HRV in patients with environmental diseases as chronic disease groups and vulnerable populations as control groups. PM levels were measured indoors and outdoors for five days in 97 participants, with 24-h HRV monitoring via wearable devices. PM exposure was assessed by categorizing daily cumulative PM concentrations into higher and lower exposure days, while daily average PM concentrations were used for analysis. Results showed significant negative associations between exposure to single and mixtures of different PM metrics and HRV across all groups, particularly in chronic airway disease and higher air pollution exposed groups. These findings highlight that even lower PM levels may reduce HRV, suggesting a need for stricter standards to protect sensitive individuals.
Collapse
Affiliation(s)
- Yong Whi Jeong
- Department of Medical Informatics and Biostatistics, Graduate School, Yonsei University, Wonju, South Korea
| | - Hayon Michelle Choi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Youhyun Park
- Department of Medical Informatics and Biostatistics, Graduate School, Yonsei University, Wonju, South Korea
| | - Yongjin Lee
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Ye Jung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| | - Dae Ryong Kang
- Department of Precision Medicine, Wonju College of Medicine, Yonsei University, Wonju, South Korea.
| |
Collapse
|
8
|
Hua Q, Meng X, Gong J, Qiu X, Shang J, Xue T, Zhu T. Ozone exposure and cardiovascular disease: A narrative review of epidemiology evidence and underlying mechanisms. FUNDAMENTAL RESEARCH 2025; 5:249-263. [PMID: 40166088 PMCID: PMC11955045 DOI: 10.1016/j.fmre.2024.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2025] Open
Abstract
Ozone (O3) poses a significant global public health concern as it exerts adverse effects on human cardiovascular health. Nevertheless, there remains a lack of comprehensive understanding regarding the relationships between O3 exposure and the risk of cardiovascular diseases (CVD), as well as the underlying biological mechanisms. To address this knowledge gap, this narrative review meticulously summarizes the existing epidemiological evidence, susceptibility, and potential underlying biological mechanisms linking O3 exposure with CVD. An increasing body of epidemiological studies has demonstrated that O3 exposure heightens the incidence and mortality of CVD, including specific subtypes such as ischemic heart disease, hypertension, and heart failure. Certain populations display heightened vulnerability to these effects, particularly children, the elderly, obese individuals, and those with pre-existing conditions. Proposed biological mechanisms suggest that O3 exposure engenders respiratory and systemic inflammation, oxidative stress, disruption of autonomic nervous and neuroendocrine systems, as well as impairment of coagulation function, glucose, and lipid metabolism. Ultimately, these processes contribute to vascular dysfunction and the development of CVD. However, some studies have reported the absence of associations between O3 and CVD, or even potentially protective effects of O3. Inconsistencies among the literature may be attributed to inaccurate assessment of personal O3 exposure levels in epidemiologic studies, as well as confounding effects stemming from co-pollutants and temperature. Consequently, our findings underscore the imperative for further research, including the development of reliable methodologies for assessing personal O3 exposure, exploration of O3 exposure's impact on cardiovascular health, and elucidation of its biological mechanisms. These endeavors will consolidate the causal relationship between O3 and cardiovascular diseases, subsequently aiding efforts to mitigate the risks associated with O3 exposure.
Collapse
Affiliation(s)
- Qiaoyi Hua
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jing Shang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Yang Z, Chen Q, Wang J, Qiu Y, Thepsuwan P, Yi Z, Heng HH, Sun Q, Chen X, Li L, He P, Zhang R, Zhang K. Inhalation exposure to airborne PM 2.5 attenuates hepatic metabolic pathways through S-nitrosylation of the primary ER stress sensor. Am J Physiol Cell Physiol 2025; 328:C212-C226. [PMID: 39607384 PMCID: PMC11901345 DOI: 10.1152/ajpcell.00385.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Inhalation exposure to airborne fine particulate matter (aerodynamic diameter: <2.5 µm, PM2.5) is known to cause metabolic dysfunction-associated steatohepatitis (MASH) and the associated metabolic syndrome. Hepatic lipid accumulation and inflammation are the key characteristics of MASH. However, the mechanism by which PM2.5 exposure induces lipid accumulation and inflammation in the liver remains to be further elucidated. In this study, we revealed that inhalation exposure to PM2.5 induces nitrosative stress in mouse livers by suppressing hepatic S-nitrosoglutathione reductase activities, which leads to S-nitrosylation modification of the primary unfolded protein response (UPR) transducer inositol-requiring 1 α (IRE1α), an endoplasmic reticulum-resident protein kinase and endoribonuclease (RNase). S-nitrosylation suppresses the RNase activity of IRE1α and subsequently decreases IRE1α-mediated splicing of the mRNA encoding X-box binding protein 1 (XBP1) and IRE1α-dependent degradation of select microRNAs (miRNAs), including miR-200 family members, miR-34, miR-223, miR-155, and miR-146, in the livers of the mice exposed to PM2.5. Elevation of IRE1α-target miRNAs, due to impaired IRE1α RNase activity by PM2.5-triggered S-nitrosylation, leads to decreased expression of the major regulators of fatty acid oxidation, lipolysis, and anti-inflammatory response, including XBP1, sirtuin 1, peroxisome proliferator-activated receptor α, and peroxisome proliferator-activated receptor γ, in the liver, which account at least partially for hepatic lipid accumulation and inflammation in mice exposed to airborne PM2.5. In summary, our study revealed a novel pathway by which PM2.5 causes cytotoxicity and promotes MASH-like phenotypes through inducing hepatic nitrosative stress and S-nitrosylation of the primary UPR transducer and subsequent elevation of select miRNAs involved in metabolism and inflammation in the liver.NEW & NOTEWORTHY Exposure to fine airborne particulate matter PM2.5 causes metabolic dysfunction-associated steatohepatitis characterized by hepatic steatosis, inflammation, and fibrosis. Here, we discovered that inhalation exposure to environmental PM2.5 induces nitrosative stress in livers by suppressing hepatic S-nitrosoglutathione reductase activities, which leads to S-nitrosylation of the unfolded protein response transducer IRE1α. S-nitrosylation decreases IRE1α-dependent degradation of miRNAs in the livers of mice exposed to PM2.5, leading to downregulation of major regulators of energy metabolism and anti-inflammatory response.
Collapse
Affiliation(s)
- Zhao Yang
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Qi Chen
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Jiemei Wang
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Yining Qiu
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Pattaraporn Thepsuwan
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, Michigan, United States
| | - Henry H Heng
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Xuequn Chen
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Li Li
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ren Zhang
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kezhong Zhang
- Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States
- Department of Biochemistry, Microbiology, and Immunology, The Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
10
|
Panahi S, Atighechian G, Heidarpour M, Heidari Z, Ashrafi-rizi H. Disaster health literacy for diabetics: A scoping review towards a framework. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2024; 13:475. [PMID: 39850306 PMCID: PMC11756659 DOI: 10.4103/jehp.jehp_1415_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/23/2023] [Indexed: 01/25/2025]
Abstract
Due to the increasing occurrence of natural disasters, it is essential to prioritize the improvement of health literacy during emergencies, particularly for individuals with chronic illnesses like diabetes who are especially vulnerable in the medical sector. The primary objective of this study was to identify the key themes within an emerging framework for disaster health literacy specifically tailored for diabetics. A scoping review design was selected based on the Arksey and O'Malley framework. The published articles indexed in PubMed, Embase, Scopus, and Web of Science databases were retrieved up to April 2023, applying related keywords. There restrictions were placed in the English language and the study design. Textual analysis method to identify themes in the articles. The research team conducted multiple collaborative sessions to identify the themes related to health literacy during disasters based on a comprehensive review of existing literature. Three challenges were identified during the analysis process. These challenges include the difficulties encountered by diabetic patients in the early stages of disasters, the physical side effects they experience, and the major recommendations for preparedness and initial response. Subsequently, a framework was developed based on the extracted main challenges and the established logical connections between the conceptual codes, achieved through consensus among the research team. The study emphasized the importance of integrating health literacy assessment and training initiatives throughout all stages of the disaster cycle, with a specific emphasis on individuals with diabetes. By implementing such programs, it is anticipated that the overall health literacy of diabetic patients during disasters can be enhanced.
Collapse
Affiliation(s)
- Somayeh Panahi
- Medical Library and Information Science Department, Health Information Technology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Social Determinants of Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golrokh Atighechian
- Health Management and Economics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Heidarpour
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Biostatistics Department of Epidemiology and Biostatistics, School of Health Isfahan, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hasan Ashrafi-rizi
- Medical Library and Information Science Department, Health Information Technology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Zhang Y, Zhong L, Zhan J, Yin Z, Pei Y, Cao D, Liu QS, Zhou Q, Liu Q, Jiang G. Unraveling Potential Causative Components for the Deleterious Effect of Atmospheric Fine Particulate Matter on Red Blood Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21954-21965. [PMID: 39601440 DOI: 10.1021/acs.est.4c06657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Atmospheric fine particulate matter (PM2.5) poses threats to the cardiovascular system. Red blood cells (RBCs) are the most abundant cells in blood, which are actively involved in multiple hematological diseases, such as blood clot formation and thrombosis. Exploring how PM2.5 with spatiotemporal heterogeneity influences the hematological system by targeting RBCs would help gain insights into the deleterious effects of PM2.5 and provide clues for finding the causative components therein. Herein, the PM2.5 samples collected from 3 urban sites in Beijing (i.e., Chaoyang, Shunyi, and Yanqing districts) during 4 seasons of 2022 were studied for their toxicities to mouse RBCs, and the main contributing components were further explored through chemical analysis and correlation measure. The results showed that exposure to PM2.5 samples decreased adenosine triphosphate (ATP) levels and increased phosphatidylserine (PS) externalization of RBCs, causing cell morphological deformity. The Pearson correlation analysis showed that the aromaticity of the dissolved organic matter (DOM) in PM2.5 samples was positively correlated with PS exposure of RBCs, showing that the lignin-like compounds were the potential contributors. The negative correlation of zeta potentials of PM2.5 samples with PS exposure of RBCs showed the particle-derived bioactivities of this airborne pollutant. The simulative test based on artificial nanomaterials of carbon black (CB) and oxidized CB (OCB) confirmed the crucial role of particulate carbon in PM2.5-induced effects on RBCs, and soot with a certain oxidation degree was, thus, recognized as another contributor, given its ubiquitous existence in PM2.5 samples. This study, for the first time, revealed PM2.5-induced PS exposure of RBCs, and the causative components of DOM and soot were unraveled. Considering the inevitable contact of airborne PM2.5 with RBCs in the blood circulatory system, the findings obtained herein would help bridge the gap between PM2.5 exposure and the risk of cardiovascular diseases, like thrombogenesis.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laijin Zhong
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jing Zhan
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Zhipeng Yin
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
12
|
Wang S, Jiang Y, Xu Z, Di Tanna GL, Lewis S, Chen M, Downey L, Jan S, Si L. Cardiovascular health and economic outcomes under improved air quality in China: a modelling study. BMJ Glob Health 2024; 9:e016974. [PMID: 39638607 PMCID: PMC11624721 DOI: 10.1136/bmjgh-2024-016974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION China faces the dual challenge of high air pollution and an increasing burden of cardiovascular disease (CVD). We aimed to estimate the healthcare costs associated with CVD and the quality-adjusted life years (QALYs) under scenarios of improved air quality in China. METHODS A health prediction model was developed to estimate 10-year CVD-related costs and QALY associated with PM2.5 levels in 2015, as well as two hypothetical improved air quality scenarios: (1) the China national PM2.5 target of 35 µg/m³, and (2) the World Health Organization's (WHO) PM2.5 guideline of 5 µg/m³. Population CVD risks were estimated from the 2015 China Health and Retirement Longitudinal Study. Hazard ratios from WHO risk curves were subsequently applied to baseline cardiovascular risks to predict national 10-year estimates of ischaemic stroke and coronary heart disease-related healthcare expenditures and QALYs for individuals aged 45-85 under the three air quality scenarios. RESULTS Under PM2.5 levels in 2015, we estimated a cumulative 10-year incidence of 35.40 million CVD events, resulting in healthcare costs of US$96.12 billion and 4.44 billion QALYs. Under the national target of 35 µg/m³, the projected 10-year CVD incidence was 31.92 million cases, resulting in cost savings of US$9.29 billion and 3.43 million QALY gains compared with 2015 levels. If PM2.5 concentration levels meet the WHO's guideline of 5 µg/m³, the projected number of CVD events would decrease to 24.18 million, translating to cost savings of approximately US$30.10 billion and gains of 11.29 million QALYs. CONCLUSION Our findings indicate that achieving the WHO recommended PM2.5 concentration level of 5 µg/m³ could lead to over threefold greater health and economic benefits than those achievable under national standards of 35 µg/m³. This underscores the potential need for stricter future national PM2.5 standards. Our findings also inform other low- and middle-income countries in establishing effective long-term PM2.5 targets.
Collapse
Affiliation(s)
- Siyuan Wang
- The George Institute for Global Health, UNSW, Sydney, New South Wales, Australia
| | - Yawen Jiang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Gian Luca Di Tanna
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland
| | - Sarah Lewis
- School of Health Sciences, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Mingsheng Chen
- School of Health Policy and Management, Nanjing Medical University, Nanjing, China
- Jiangsu Health Vocational College, Nanjing, China
| | - Laura Downey
- The George Institute for Global Health, UNSW, Sydney, New South Wales, Australia
- Faculty of Medicine, Imperial College, London, UK
| | - Stephen Jan
- The George Institute for Global Health, UNSW, Sydney, New South Wales, Australia
- Faculty of Medicine, Imperial College, London, UK
| | - Lei Si
- School of Health Sciences, Western Sydney University, Campbelltown, New South Wales, Australia
- Translational Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
13
|
Liu D, Xu S, Lang Y, Hou S, Wei L, Pan X, Sun Y, Wang Z, Kawamura K, Fu P. Seasonal variation and size distribution of aromatic acids in urban aerosols in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176504. [PMID: 39341241 DOI: 10.1016/j.scitotenv.2024.176504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Aromatic acids are an integral component of organic acids in the atmosphere, contributing to the formation of climate-altering brown carbon (BrC). To better understand the sources and formation processes of aromatic acids, we collected size-segregated particulate matter samples in urban Beijing from April 2017 to January 2018, which were analyzed using solvent-extraction followed by gas chromatography/mass spectrometry. Phthalic acid (o-PhA) had the greatest average annual concentration, followed by terephthalic acid (p-PhA), 4-hydroxybenzoic acid (4-OHBA), dehydroabietic acid (DA), syringic acid (SA), 3-hydroxybenzoic acid (3-OHBA), isophthalic acid (m-PhA), and vanillic acid (VA). We identified distinct seasonal variations in aromatic acids, with o-PhA peaking in summer due to photochemical activity, while p-PhA and 4-OHBA elevated in autumn and summer, respectively, influenced by open waste and biomass burning. Wintertime variations in all aromatic acids were driven by complex meteorology and increased anthropogenic emissions, including rural biomass burning for cooking and heating. Particle size distribution of aromatic acids was affected by seasonal agricultural activities and dust storms, multiple emission sources, and formation mechanisms. The o-PhA has predominantly bimodal distribution, with diverse sources and complex formation mechanisms including gas- and aqueous-phase chemistry. The applicability of o-PhA as a tracer for specific secondary organic aerosols has been questioned due to its potential primary sources. The 3-OHBA, 4-OHBA, VA, SA, and DA exhibited bimodal or trimodal patterns during haze and non-haze periods across different particle size ranges. The seasonal variation in VA/SA and VA/4-OHBA ratios demonstrated the complexity of biomass burning types, influenced by season, particle size, meteorological conditions, and combustion sources.
Collapse
Affiliation(s)
- Di Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Shaofeng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yunchao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shengjie Hou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lianfang Wei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Owokoniran OH, Honda A, Ichinose T, Ishikawa R, Nagao M, Miyasaka N, Wang Z, Takai S, Omori I, Zhang K, Liu W, Higaki Y, Kameda T, Matsuda T, Fujiwara T, Okuda T, Takano H. Co-exposure of ferruginous components of subway particles with lipopolysaccharide impairs vascular function: A comparative study with ambient particulate matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117356. [PMID: 39579445 DOI: 10.1016/j.ecoenv.2024.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Several empirical studies have linked subway and ambient particle exposure to toxicity, pro-inflammatory responses, and vascular dysfunction. However, the health effects of pollutants generated from varying sources, particularly when combined with lipopolysaccharide (LPS), are still unexplored. Therefore, the aim of this study was to investigate the characteristic health effects of iron oxide particles (the main components of subway particles) in comparison with urban aerosols (UA) and vehicle exhaust particles (VEP), alone and in combination with LPS. This study revealed that iron oxides caused a more significant reduction in human umbilical vein endothelial cell viability, increased lactate dehydrogenase release, and decreased the production of plasminogen activator inhibitor-1, a fibrinolytic modulator, and endothelin-1, a vasoconstrictor, compared to those by VEP and UA at marginally toxic and toxic concentrations. While VEP and UA induced an increase in interleukin (IL)-6 production, iron oxides, particularly Fe3O4, increased IL-8 production at slightly toxic and non-cytotoxic concentrations. In addition, co-exposure of all particles and LPS at non-cytotoxic concentrations promoted pro-inflammatory cytokine (IL-6 and IL-8) production relative to exposure to the particles alone. Interestingly, the tendency towards either coagulation or fibrinolytic conditions was dependent on the concentration of exposed particles at the same LPS concentration. Furthermore, increases in inflammation, neutrophil and lymphocyte recruitment around blood vessels, and edema were observed in murine lungs exposed to a combination of iron oxides and LPS compared to those in mice exposed to iron oxide alone. Thus, iron oxide-rich subway particulate poses more health risks than outdoor ambient particles since they can significantly impair endothelial function, particularly through gross cellular and vascular homeostatic protein damage, and induce exacerbated inflammatory responses during co-exposure. These findings provide novel empirical evidence for epidemiological studies seeking mechanisms responsible for the observed health impact of transport- and occupational-related exposures on vascular dysfunction.
Collapse
Affiliation(s)
| | - Akiko Honda
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Takamichi Ichinose
- Environmental Health Division, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Raga Ishikawa
- Environmental Health Division, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Megumi Nagao
- Environmental Health Division, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Natsuko Miyasaka
- Environmental Health Division, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Zaoshi Wang
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Satsuki Takai
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Issei Omori
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kerui Zhang
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Wei Liu
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuya Higaki
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takayuki Kameda
- Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Kyoto, Japan
| | - Tomonari Matsuda
- Environmental Health Division, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Taku Fujiwara
- Environmental Health Division, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Tomoaki Okuda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Hirohisa Takano
- Environmental Health Division, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan; Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto, Japan; Research Institute for Coexistence and Health Science, Kyoto University of Advanced Science, Kyoto, Japan
| |
Collapse
|
15
|
Rhee TM, Ji Y, Yang S, Lee H, Park JB, Kim HK, Kim YJ, Kim JB, Won S, Lee SP. Combined Effect of Air Pollution and Genetic Risk on Incident Cardiovascular Diseases. J Am Heart Assoc 2024; 13:e033497. [PMID: 39547964 DOI: 10.1161/jaha.123.033497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Whether genetic susceptibility to cardiovascular diseases (CVDs) enhances the vulnerability to adverse cardiovascular outcomes by air pollution is unknown. We assessed the combined effect of air pollution and genetic predispositions on CVD risk. METHODS AND RESULTS From the UK Biobank cohort, we selected genetically unrelated White British participants without CVD. Levels of ambient particulate matter with a diameter of <2.5 μm (PM2.5) and <10 μm were estimated using land use regression models. An individual's genetic predisposition to CVDs was determined by polygenic risk scores for coronary artery disease, myocardial infarction, stroke, ischemic stroke, heart failure, and atrial fibrillation. We stratified mortality and CVD risk by PM2.5 exposure across high and low genetic risk groups. A total of 249 082 participants (aged 56.9±8.0 years, 46.8% men) were followed for a median of 10.8 years. The combined effect of PM2.5 exposure and the genetic predisposition of CVD demonstrated the highest risk of cardiovascular death in the high genetic risk group with the greatest PM2.5 exposure (adjusted hazard ratios ranging from 1.73 to 2.12 across the polygenic risk score of each CVD). The combination of higher exposure to ambient PM2.5 and high genetic risk was associated with higher incidence of all CVDs, although no significant interactions were observed between genetic risk and PM2.5 exposure on cardiovascular death or CVD events. CONCLUSIONS A combination of greater PM2.5 exposure and higher genetic predisposition to particular CVDs was modestly associated with elevated risks of cardiovascular death and CVDs. Not only alleviating PM2.5 exposure in the general population but also implementing individualized preventive approach for those at high genetic risk might be beneficial.
Collapse
Affiliation(s)
- Tae-Min Rhee
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
- Department of Internal Medicine Seoul National University Hospital Healthcare System Gangnam Center Seoul Republic of Korea
| | - Yunmi Ji
- College of Natural Sciences, Interdisciplinary Program in Bioinformatics Seoul National University Seoul Republic of Korea
| | - Seokhun Yang
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
| | - Heesun Lee
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
- Department of Internal Medicine Seoul National University Hospital Healthcare System Gangnam Center Seoul Republic of Korea
| | - Jun-Bean Park
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
- Department of Internal Medicine Seoul National University College of Medicine Seoul Republic of Korea
| | - Hyung-Kwan Kim
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
- Department of Internal Medicine Seoul National University College of Medicine Seoul Republic of Korea
| | - Yong-Jin Kim
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
- Department of Internal Medicine Seoul National University College of Medicine Seoul Republic of Korea
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine Stanford University Stanford CA
| | - Sungho Won
- College of Natural Sciences, Interdisciplinary Program in Bioinformatics Seoul National University Seoul Republic of Korea
- Department of Public Health Sciences Seoul National University Seoul Republic of Korea
| | - Seung-Pyo Lee
- Department of Internal Medicine Seoul National University Hospital Seoul Republic of Korea
- Department of Internal Medicine Seoul National University College of Medicine Seoul Republic of Korea
- Center for Precision Medicine Seoul National University Hospital Seoul Republic of Korea
| |
Collapse
|
16
|
Gaona GA, Kassamali AA, Isakadze N, Martin SS. Harnessing Wearables and Digital Technologies to Decode the Cardiovascular Exposome. Methodist Debakey Cardiovasc J 2024; 20:59-70. [PMID: 39525376 PMCID: PMC11545923 DOI: 10.14797/mdcvj.1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024] Open
Abstract
The cardiovascular exposome encompasses the array of external and internal factors affecting cardiovascular health throughout life, inviting comprehensive monitoring and analysis to enhance prevention, diagnosis, and treatment strategies. Wearable and digital technologies have emerged as promising tools in this domain, offering longitudinal, real-time data on physiological parameters such as heart rate, heart rhythm, physical activity, and sleep patterns. This review explores the advancements in wearable sensor technology, the methodologies for data collection and analysis, and the integration of these technologies into clinical practice and research. Primary findings indicate significant improvements in device accuracy and functionality, facilitated by enhanced sensor technology, artificial intelligence, and data connectivity. These advancements enable precise monitoring, early detection of cardiovascular anomalies, and personalized healthcare interventions. Ultimately, wearables and digital health technologies have the potential to facilitate a deeper understanding of cardiovascular disease and behavior and bridge gaps in traditional healthcare models to help usher in more efficient, personalized, patient-centered care.
Collapse
Affiliation(s)
- Geyner A. Gaona
- Osler Medical Residency, Johns Hopkins Hospital, Baltimore, Maryland, US
| | | | - Nino Isakadze
- Johns Hopkins School of Medicine, Baltimore, Maryland, US
| | - Seth S. Martin
- Johns Hopkins School of Medicine, Baltimore, Maryland, US
| |
Collapse
|
17
|
Warnakulasuriya T, Medagoda K, Kottahachchi D, Luke D, Wadasinghe D, Rathnayake P, Ariyawansa J, Dissanayake T, Sandeepani P, De Silva DC, Devanarayana NM. Exploring the impact of occupational exposure: A study on cardiovascular autonomic functions of male gas station attendants in Sri Lanka. Physiol Rep 2024; 12:e70071. [PMID: 39462981 PMCID: PMC11513408 DOI: 10.14814/phy2.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
Fuel dispensing at fuel stations is performed manually by unprotected male gas station attendants in Sri Lanka, who have long working hours. These workers are exposed to hydrocarbon fuels associated with multiple health effects by modulation of the autonomic nervous system. This study was performed to determine cardiovascular autonomic functions among fuel pump attendants in Sri Lanka. Fuel pump attendants (n = 50) aged between 19 and 65 years were identified for the study from seven fuel stations. They were compared with age- and gender-matched controls (n = 46) without occupational exposure to fuel. A physical examination was performed before the autonomic function and heart rate variability (HRV) assessment. There were no significant differences in weight, height, or BMI between the study and the control populations (p > 0.05). Both the systolic blood pressure (SBP) (Mann Whitney U (MWU) = 743.5, p = 0.003) and diastolic blood pressure (DBP) (MWU = 686.5, p = 0.001) were significantly higher among the gas station attendants compared to controls. Valsalva ratio was significantly higher among the study group (MW U = 874.00, p = 0.043) compared to controls. The HRV analysis showed significantly higher SDNN and SD2 (MWU = 842.00, p = 0.034, and MWU = 843.50, p = 0.035 respectively) among the gas station attendants compared to controls. The changes to the cardiovascular autonomic parameters among those exposed to fuel vapor as a gas station attendant indicate an increase in sympathetic outflow to the vessels. In the occupational setting as fuel pump attendants need periodic monitoring.
Collapse
Affiliation(s)
| | - Kushan Medagoda
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Dulani Kottahachchi
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Dunya Luke
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Dilesha Wadasinghe
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Prasanna Rathnayake
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Janaki Ariyawansa
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Tharuka Dissanayake
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Pavani Sandeepani
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | - Deepthi C. De Silva
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaSri Lanka
| | | |
Collapse
|
18
|
Liu M, Gao M, Zhu Z, Hu J, Wu J, Chen H, Kuang X, Chen J. Air pollutants, residential greenspace, and the risk of kidney stone disease: a large prospective cohort study from the UK Biobank. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00728-0. [PMID: 39438733 DOI: 10.1038/s41370-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The epidemiological evidence regarding the correlation between air pollution, residential greenspace, and the risk of kidney stone disease (KSD) is limited, with no large-scale prospective studies conducted on this relationship. OBJECTIVE We conducted a large-scale prospective study from the UK Biobank to explore the correlation between air pollution, residential greenspace, and the risk of KSD. METHODS This study included 419,835 UK Biobank participants who did not have KSD at baseline. An air pollution score was derived through the summation of concentrations for five air pollutants, including particulate matter (PM) with aerodynamic diameter ≤2.5 μm (PM2.5), ranging from 2.5 to 10 μm (PM2.5-10), ≤10 μm (PM10), nitrogen dioxide (NO2), and nitrogen oxides (NOx). Various covariates were adjusted for in Cox proportional hazard regression to evaluate the risk of KSD associated with air pollution score, single air pollutant, and residential greenspace. RESULTS During a follow-up period of 12.7 years, 4503 cases of KSD were diagnosed. Significant associations were found between KSD risk and air pollution score (HR: 1.08, 95% CI: 1.03-1.13), PM2.5 (1.06, 1.02-1.11), PM10 (1.04, 1.01-1.07), NO2 (1.09, 1.02-1.16), NOx (1.08, 1.02-1.11), greenspace buffered at 300 m (0.95, 0.91-0.99), and greenspace buffered at 1000 m (0.92, 0.86-0.98) increase per interquartile range (IQR). PM2.5 and NO2 reductions may be a key mechanism for the protective impact of residential greenspace on KSD (P for indirect path < 0.05). IMPACT Prolonged exposure to air pollution was correlated with a higher risk of KSD, while residential greenspace exhibits an inverse association with KSD risk, partially mediated by the reduction in air pollutants concentrations. These findings emphasize the significance of mitigating air pollution and maintaining substantial greenspace exposure as preventive measures against KSD.
Collapse
Affiliation(s)
- Minghui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Gao
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaogen Kuang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Office of Public Health and Medical Emergency Management, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
19
|
Nho KJ, Shin JH, Baek JE, Choi SW. Transcriptome and RNA sequencing analysis of H9C2 cells exposed to diesel particulate matter. Heliyon 2024; 10:e38082. [PMID: 39386855 PMCID: PMC11462235 DOI: 10.1016/j.heliyon.2024.e38082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Although air pollution has been classified as a risk factor for heart disease, the underlying mechanisms remain nebulous. Therefore, this study investigated the effect of diesel particulate matter (DPM) exposure on cardiomyocytes and identified differentially expressed genes (DEGs) induced by DPM. DPM treatment decreased H9C2 cell viability and increased cytotoxicity. Ten genes showed statistically significant differential expression following treatment with DPM at 25 and 100 μg/ml for 3 h. A total of 273 genes showed statistically significant differential expression following treatment with DPM at 25 and 100 μg/ml for 24 h. Signaling pathway analysis revealed that the DEGs were related to the 'reactive oxygens species,' 'IL-17,' and 'fluid shear stress and atherosclerosis' signaling pathways. Hmox1, Fos, and Fosb genes were significantly upregulated among the selected DEGs. This study identified DPM-induced DEGs and verified the selected genes using qRT-PCR and western blotting. The findings provide insights into the molecular events in cardiomyocytes following exposure to DPM.
Collapse
Affiliation(s)
- Kyoung Jin Nho
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Jae Hoon Shin
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Jin Ee Baek
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Sung Won Choi
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| |
Collapse
|
20
|
Tian X, Cheng Y, Chen S, Liu S, Wang Y, Niu X, Sun J. The Emission Characteristics and Health Risks of Firefighter-Accessed Fire: A Review. TOXICS 2024; 12:739. [PMID: 39453159 PMCID: PMC11511337 DOI: 10.3390/toxics12100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
The exacerbation of wildfires caused by global warming poses a significant threat to human health and environmental integrity. This review examines the particulate matter (PM) and gaseous pollutants resulting from fire incidents and their impacts on individual health, with a specific focus on the occupational hazards faced by firefighters. Of particular concern is the release of carbon-containing gases and fine particulate matter (PM2.5) from forest fires and urban conflagrations, which exceed the recommended limits and pose severe health risks. Firefighters exposed to these pollutants demonstrate an elevated risk of developing pulmonary and cardiovascular diseases and cancer compared to the general population, indicating an urgent need for enhanced protective measures and health management strategies for firefighters. Through a meticulous analysis of the current research findings, this review delineates future research directions, focusing on the composition and properties of these pollutants, the impacts of fire-emitted pollutants on human health, and the development of novel protective technologies.
Collapse
Affiliation(s)
- Xuan Tian
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (X.T.); (S.C.); (S.L.); (Y.W.)
| | - Yan Cheng
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (X.T.); (S.C.); (S.L.); (Y.W.)
| | - Shiting Chen
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (X.T.); (S.C.); (S.L.); (Y.W.)
| | - Song Liu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (X.T.); (S.C.); (S.L.); (Y.W.)
| | - Yanli Wang
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (X.T.); (S.C.); (S.L.); (Y.W.)
| | - Xinyi Niu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710049, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710049, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| |
Collapse
|
21
|
Ren W, Yang H, Liu W, Zhang S, Yang Y, Yang L, Liu W, Zhang H, He K, Li X, Ge J. Exposure to mixtures of PM 2.5 components and term premature rupture of membranes: a case-crossover study in Shijiazhuang, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3400-3412. [PMID: 38269576 DOI: 10.1080/09603123.2024.2308017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
This study aims to explore the acute effects of short-term exposure to PM2.5 components and their mixture on PROM. Counts of hospital admissions due to PROM were collected at the Fourth Hospital of Shijiazhuang. The associations between the PROM and PM2.5 components was examined using a time-stratified case-crossover approach. The overall effects of components on TPROM were examined using the BKMR. During the study period 30,709 cases of PROMwere identified. The relative risks and the 95% CI of TPROM were 1.013 (1.002, 1.028) and 1.015 (1.003, 1.028) associated with per interquartile range increase in nitrate and ammonium ion on the current day and they were 1.007 (1.001, 1.013) and 1.003 (1.000, 1.005) on the previous day. The results from the BKMR models showed a higher risk of TPROM was associated with exposure to mixtures, in which, nitrate and organic matter were the main contributors to the overall effect.
Collapse
Affiliation(s)
- Weiyan Ren
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Huangmin Yang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wencong Liu
- Department of Ultrasonics, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shaochong Zhang
- Department of Medical Records, Shijiazhuang Fourth Hospital, shijiazhuang, China
| | - Yanjing Yang
- Department of Medical Records, Shijiazhuang Fourth Hospital, shijiazhuang, China
| | - Lei Yang
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Wenxuan Liu
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Haijuan Zhang
- Department of Medical Records, Shijiazhuang Fourth Hospital, shijiazhuang, China
| | - Ke He
- Department of Medical Records, Shijiazhuang Fourth Hospital, shijiazhuang, China
| | - Xia Li
- Department of Medical Records, Shijiazhuang Fourth Hospital, shijiazhuang, China
| | - Jun Ge
- Department of Medical Records, Shijiazhuang Fourth Hospital, shijiazhuang, China
| |
Collapse
|
22
|
Wu C, Liu J, Li Y, Qin L, Gu R, Feng J, Xu L, Meng X, Chen J, Chen R, Shi Y, Kan H. Association of residential air pollution and green space with all-cause and cause-specific mortality in individuals with diabetes: an 11-year prospective cohort study. EBioMedicine 2024; 108:105376. [PMID: 39353278 PMCID: PMC11472637 DOI: 10.1016/j.ebiom.2024.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND To assess the long-term impact of residential air pollution and green space exposure on cause-specific mortality in individuals with type 2 diabetes mellitus (T2DM). METHODS This study includes 174,063 participants newly diagnosed with T2DM from a prospective cohort in Shanghai, China, enrolled between 2011 and 2013. Residential annual levels of air pollutants, including fine (PM2.5) and coarse (PM2.5-10) particulate matter, nitrogen dioxide (NO2), along with the normalized difference vegetation index (NDVI), were derived from satellite-based exposure models. FINDINGS During a median follow-up of 7.9 years (equivalent to 1,333,343 person-years), this study recorded 22,205 deaths. Higher exposure to PM2.5 was significantly associated with increased risks for all mortality outcomes, whilst PM2.5-10 showed no significant impacts. The strongest associations of PM2.5 were observed for diabetes with peripheral vascular diseases [hazard ratio (HR): 2.70; per 10 μg/m3 increase] and gastrointestinal cancer (2.44). Effects of NO2 became significant at concentrations exceeding approximately 45 μg/m³, with the highest associations for lung cancer (1.20) and gastrointestinal cancer (1.19). Conversely, each interquartile range increase in NDVI (0.10) was linked to reduced mortality risks across different causes, with HRs ranging from 0.76 to 1.00. The association between greenness and mortality was partly and significantly mediated by reduced PM2.5 (23.80%) and NO2 (26.60%). There was a significant and negative interaction between NO2 and greenness, but no interaction was found between PM2.5 and greenness. INTERPRETATION Our findings highlight the vulnerability of individuals with T2DM to the adverse health effects of air pollution and emphasise the potential protective effects of greenness infrastructure. FUNDING The 6th Three-year Action Program of Shanghai Municipality for Strengthening the Construction of Public Health System (GWVI-11.1-22), the National Key Research and Development Program (2022YFC3702701), and the National Natural Science Foundation of China (82030103, 82373532).
Collapse
Affiliation(s)
- Chunfeng Wu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Division of Integrated Management, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Jiangdong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yanyun Li
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Luxin Qin
- Division of Integrated Management, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Ruilong Gu
- Division of Integrated Management, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Jiachen Feng
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Lulu Xu
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jiaxin Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Yan Shi
- Division of Chronic Non-Communicable Disease and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| |
Collapse
|
23
|
Bhetraratana M, Orozco LD, Bennett BJ, Luna K, Yang X, Lusis AJ, Araujo JA. Diesel exhaust particle extract elicits an oxPAPC-like transcriptomic profile in macrophages across multiple mouse strains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124415. [PMID: 38908672 DOI: 10.1016/j.envpol.2024.124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Air pollution is a prominent cause of cardiopulmonary illness, but uncertainties remain regarding the mechanisms mediating those effects as well as individual susceptibility. Macrophages are highly responsive to particles, and we hypothesized that their responses would be dependent on their genetic backgrounds. We conducted a genome-wide analysis of peritoneal macrophages harvested from 24 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). Cells were treated with a DEP methanol extract (DEPe) to elucidate potential pathways that mediate acute responses to air pollution exposures. This analysis showed that 1247 genes were upregulated and 1383 genes were downregulated with DEPe treatment across strains. Pathway analysis identified oxidative stress responses among the most prominent upregulated pathways; indeed, many of the upregulated genes included antioxidants such as Hmox1, Txnrd1, Srxn1, and Gclm, with NRF2 (official gene symbol: Nfe2l2) being the most significant driver. DEPe induced a Mox-like transcriptomic profile, a macrophage subtype typically induced by oxidized phospholipids and likely dependent on NRF2 expression. Analysis of individual strains revealed consistency of overall responses to DEPe and yet differences in the degree of Mox-like polarization across the various strains, indicating DEPe × genetic interactions. These results suggest a role for macrophage polarization in the cardiopulmonary toxicity induced by air pollution.
Collapse
Affiliation(s)
- May Bhetraratana
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Luz D Orozco
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Brian J Bennett
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA
| | - Karla Luna
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Department of Biology, College of Science and Math, California State University-Northridge, 18111 Nordhoff Street, Northridge, CA, 91330, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA, 612 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Institute for Quantitative and Computational Biosciences, UCLA, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Jesus A Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA, 90095, USA; Department of Environmental Health Sciences, Fielding School of Public Health, UCLA, 650 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
24
|
Chu Z, Zhang Y, Guo B, Zhang X, Cao Y, Ji H, Sun B, Schikowski T, Zhao Q, Wang J, Chen Y. Long-term PM 2.5 exposure associated with severity of angina pectoris and related health status in patients admitted with acute coronary syndrome: Modification effect of genetic susceptibility and disease history. ENVIRONMENTAL RESEARCH 2024; 257:119232. [PMID: 38810823 DOI: 10.1016/j.envres.2024.119232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Long-term particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5) exposure has been associated with the occurrence of acute coronary syndrome (ACS). However, the impact of PM2.5 exposure and its components on the severity of angina pectoris and disease-related health status in patients hospitalized for ACS is understudied. To assess the association between long-term exposure to PM2.5 components and the angina pectoris severity in ACS patients, as well as the modification effects of genetic factors and disease history in north China. During 2017-2019, 6729 ACS patients were collected in Shandong Province and Beijing, with their angina pectoris severity evaluated using Seattle Angina Questionnaire (SAQ). The 0-3 years' average concentrations of PM2.5 and its five major components were assigned to each patient's residential address. Linear mixed-effects model, weighted quantile regression, and quantile g-computation were used to estimate the effects of both single and joint associations between PM2.5 components and SAQ scores. The interactive effect was estimated by polygenic risk scores and disease history. For each interquartile range increase in PM2.5, the overall SAQ score changed by -3.71% (95%CI: -4.54% to -2.88%), with score of angina stability more affected than angina frequency and other dimensions of angina pectoris severity. Sulfate and ammonium were major contributors to the effect of PM2.5 exposure. Significant modification effect was only observed for disease history, especially for the dimension of physical limitation. Among a series of pre-existing diseases, patients with a family history of coronary artery disease, previous percutaneous coronary intervention or coronary artery bypass grafting, and stroke were more susceptible to PM2.5 exposure than others. Greater exposure to PM2.5 is associated with more serious angina pectoris and worse disease-related health status in ACS patients. Public health and clinical priority should be given to cutting down key effective components and protecting highly vulnerable individuals.
Collapse
Affiliation(s)
- Zunyan Chu
- Department of Epidemiology, School of Public Health/Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bangjie Guo
- Department of Epidemiology, School of Public Health/Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiao Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yingying Cao
- Department of Epidemiology, School of Public Health/Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongmei Ji
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Bo Sun
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Tamara Schikowski
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Qi Zhao
- Department of Epidemiology, School of Public Health/Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
25
|
Sun W, Zhong J, Gao B, Feng J, Ye Z, Lin Y, Zhang K, Su W, Zhu S, Li Y, Jia W. In vitro/In vivo Evaluations of Hydroxyapatite Nanoparticles with Different Geometry. Int J Nanomedicine 2024; 19:8661-8679. [PMID: 39193530 PMCID: PMC11348988 DOI: 10.2147/ijn.s469687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Purpose Hydroxyapatite-based nanoparticles have found diverse applications in drug delivery, gene carriers, diagnostics, bioimaging and tissue engineering, owing to their ability to easily enter the bloodstream and target specific sites. However, there is limited understanding of the potential adverse effects and molecular mechanisms of these nanoparticles with varying geometries upon their entry into the bloodstream. Here, we used two commercially available hydroxyapatite nanoparticles (HANPs) with different geometries (less than 100 nm in size each) to investigate this issue. Methods First, the particle size, Zeta potential, and surface morphology of nano-hydroxyapatite were characterized. Subsequently, the effects of 2~2000 μM nano-hydroxyapatite on the proliferation, migration, cell cycle distribution, and apoptosis levels of umbilical vein endothelial cells were evaluated. Additionally, the impact of nanoparticles of various shapes on the differential expression of genes was investigated using transcriptome sequencing. Additionally, we investigated the in vivo biocompatibility of HANPs through gavage administration of nanohydroxyapatite in mice. Results Our results demonstrate that while rod-shaped HANPs promote proliferation in Human Umbilical Vein Endothelial Cell (HUVEC) monolayers at 200 μM, sphere-shaped HANPs exhibit significant toxicity to these monolayers at the same concentration, inducing apoptosis/necrosis and S-phase cell cycle arrest through inflammation. Additionally, sphere-shaped HANPs enhance SULT1A3 levels relative to rod-shaped HANPs, facilitating chemical carcinogenesis-DNA adduct signaling pathways in HUVEC monolayers. In vivo experiments have shown that while HANPs can influence the number of blood cells and comprehensive metabolic indicators in blood, they do not exhibit significant toxicity. Conclusion In conclusion, this study has demonstrated that the geometry and surface area of HANPs significantly affect VEC survival status and proliferation. These findings hold significant implications for the optimization of biomaterials in cell engineering applications.
Collapse
Affiliation(s)
- Weitang Sun
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingbin Zhong
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Buyun Gao
- School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Jieling Feng
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zijie Ye
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yueling Lin
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Kelan Zhang
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wenqi Su
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Shibo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
26
|
Lusk JB, Blass B, Mahoney H, Hoffman MN, Clark AG, Bae J, Mentz RJ, Wang TY, Patel M, Hammill BG. Neighborhood Socioeconomic Disadvantage and 30-Day Outcomes for Common Cardiovascular Conditions. J Am Heart Assoc 2024; 13:e036265. [PMID: 39119993 PMCID: PMC11963947 DOI: 10.1161/jaha.124.036265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/14/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Understanding the relationship between neighborhood environment and cardiovascular outcomes is important to achieve health equity and implement effective quality strategies. We conducted a population-based cohort study to determine the association of neighborhood socioeconomic deprivation and 30-day mortality and readmission rate for patients admitted with common cardiovascular conditions. METHODS AND RESULTS We examined claims data from fee-for-service Medicare beneficiaries aged ≥65 years between 2017 and 2019 admitted for heart failure, valvular heart disease, ischemic heart disease, or cardiac arrhythmias. The primary exposure was the Area Deprivation Index; outcomes were 30-day all-cause death and unplanned readmission. More than 2 million admissions were included. After sequential adjustment for patient characteristics (demographics, dual eligibility, comorbidities), area health care resources (primary care clinicians, specialists, and hospital beds per capita), and admitting hospital characteristics (ownership, size, teaching status), there was a dose-dependent association between neighborhood socioeconomic deprivation and 30-day mortality rate for all conditions. In the fully adjusted model for death, estimated effect sizes of residence in the most disadvantaged versus least disadvantaged neighborhoods ranged from adjusted odds ratio 1.29 (95% CI, 1.22-1.36) for the heart failure group to adjusted odds ratio 1.63 (95% CI, 1.36-1.95) for the valvular heart disease group. Neighborhood deprivation was associated with increased adjusted 30-day readmission rates, with estimated effect sizes from adjusted odds ratio 1.09 (95% CI, 1.05-1.14) for heart failure to adjusted odds ratio 1.19 (95% CI, 1.13-1.26) for arrhythmia. CONCLUSIONS Neighborhood socioeconomic disadvantage was associated with 30-day mortality rate and readmission for patients admitted with common cardiovascular conditions independent of individual demographics, socioeconomic status, medical risk, care access, or admitting hospital characteristics.
Collapse
Affiliation(s)
- Jay B. Lusk
- Duke University School of MedicineDurhamNCUSA
- Duke University Fuqua School of BusinessDurhamNCUSA
| | - Beau Blass
- Duke University School of MedicineDurhamNCUSA
| | - Hannah Mahoney
- Duke University Department of Population Health SciencesDurhamNCUSA
| | - Molly N. Hoffman
- Duke University Department of Population Health SciencesDurhamNCUSA
| | - Amy G. Clark
- Duke University Department of Population Health SciencesDurhamNCUSA
| | - Jonathan Bae
- Duke University Health SystemDurhamNCUSA
- Division of CardiologyDuke University Department of MedicineDurhamNCUSA
| | - Robert J. Mentz
- Division of CardiologyDuke University Department of MedicineDurhamNCUSA
| | - Tracy Y. Wang
- Patient Centered Outcomes Research InstituteDurhamNCUSA
| | - Manesh Patel
- Division of CardiologyDuke University Department of MedicineDurhamNCUSA
| | - Bradley G. Hammill
- Duke University School of MedicineDurhamNCUSA
- Duke University Department of Population Health SciencesDurhamNCUSA
| |
Collapse
|
27
|
Sadeghi M, Sadeghifar M, Golshahi J, Khani A, Rouhani S, Shokri K, Rabiei K. Exposure to occupational air pollution and vascular endothelial dysfunction in workers of the steel industry in Iran. Toxicol Ind Health 2024; 40:425-431. [PMID: 38743474 DOI: 10.1177/07482337241254630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Air pollution is recognized as a risk factor for cardiovascular diseases; however, the precise underlying mechanisms remain unclear. This study investigated the impact of occupational air pollution exposure on endothelial function in workers within the steel industry. Specifically, we examined male employees in the coke-making division of the Isfahan Steel Company in Iran, as well as those in administrative roles with no known history of cardiovascular risk. Data on age, body mass index, duration of employment, blood pressure, fasting blood sugar, and lipid profile were collected. To assess endothelial function, flow-mediated dilation (FMD) was measured. The baseline brachial artery diameter was greater (mean difference [95% CI] = 0.068 mm [0.008 to 0.128]), while the FMD was lower (mean difference [95% CI] = -0.908 % [-1.740 to -0.075]) in the coke-making group than in the control group. After controlling for potential confounding variables, it was observed that working in the coke-making sector of the industry was associated with lower FMD (F = 3.954, p = .049). These findings indicated that occupational air pollution exposure among workers in the steel industry is linked to impaired endothelium-dependent vasodilation.
Collapse
Affiliation(s)
- Masoumeh Sadeghi
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mostafa Sadeghifar
- Isfahan Cardiovascular Research Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Golshahi
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Khani
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Rouhani
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kasra Shokri
- Chamran Cardiovascular Medical and Research Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Katayoun Rabiei
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Zhu A, Cao Y, Li C, Yu J, Liu M, Xu K, Ruan Y. Effects of major air pollutants on angina hospitalizations: a correlation study. BMC Public Health 2024; 24:1877. [PMID: 39004712 PMCID: PMC11247793 DOI: 10.1186/s12889-024-19380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Angina is a crucial risk signal for cardiovascular disease. However, few studies have evaluated the effects of ambient air pollution exposure on angina. OBJECTIVE We aimed to explore the short-term effects of air pollution on hospitalization for angina and its lag effects. METHODS We collected data on air pollutant concentrations and angina hospitalizations from 2013 to 2020. Distributed lag nonlinear model (DLNM) was used to evaluate the short-term effects of air pollutants on angina hospitalization under different lag structures. Stratified analysis by sex, age and season was obtained. RESULTS A total of 39,110 cases of angina hospitalization were included in the study. The results showed a significant positive correlation between PM2.5, SO2, NO2, and CO and angina hospitalization. Their maximum harmful effects were observed at lag0-7 (RR = 1.042; 95% CI: 1.017, 1.068), lag0-3 (RR = 1.067; 95% CI: 1.005, 1.133), lag0-6 (RR = 1.078; 95% CI: 1.041, 1.117), and lag0-6 (RR = 1.244; 95% CI: 1.109, 1.397), respectively. PM10 did not have an overall risk effect on angina hospitalization, but it did have a risk effect on women and the elderly. O3 was significantly negatively correlated with angina hospitalization, with the most pronounced effect observed at lag0-6 (RR = 0.960; 95% CI: 0.940, 0.982). Stratified analysis results showed that women and the elderly were more susceptible to pollutants, and the adverse effects of pollutants were stronger in the cold season. CONCLUSION Short-term exposure to PM2.5, SO2, NO2, and CO increases the risk of hospitalization for angina.
Collapse
Affiliation(s)
- Anning Zhu
- School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Yongqin Cao
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730000, PR China
| | - Chunlan Li
- Third People's Hospital of Gansu Province, Lanzhou, 730000, PR China
| | - Jingze Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Miaoxin Liu
- School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Ke Xu
- School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
29
|
Chaudhary RS, Srinivasapura Venkateshmurthy N, Dubey M, Jarhyan P, Prabhakaran D, Mohan S. Regional and socio-demographic variation in laboratory-based predictions of 10-year cardiovascular disease risk among adults in north and south India. Indian Heart J 2024; 76:271-279. [PMID: 39025430 PMCID: PMC11451347 DOI: 10.1016/j.ihj.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/28/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in India. There is no laboratory-based CVD risk data among Indians from different regions and backgrounds. This study estimated laboratory-based 10-year CVD risk across different population sub-groups. METHODS Data from UDAY derived from cross-sectional surveys of rural and urban populations of northern (Haryana) and southern (Andhra Pradesh) India were analysed. World Health Organization/International Society of Hypertension laboratory-based equations calculated 10-year CVD risk among participants without CVD history. Wilcoxon rank sum test analyzed average CVD risk across subgroups. Chi-square test compared population proportions in different CVD risk categories. Regression analysis assessed the association between CVD risk and participant characteristics. RESULTS The mean (SD) age of the participants (n = 8448) was 53.2 (9.2) years. Males in Haryana had increased CVD risk compared to those in Andhra Pradesh (p < 0.01). In both states, female gender was shown to have a protective effect on CVD risk (p < 0.01). Age correlated with increased risk (p < 0.01). Education level did not affect CVD risk however employment status may have. Hypertension, diabetes, hyperlipidemia, smoking, and insufficient exercise were associated with increased CVD risk (p < 0.01). Residence (urban versus rural) and wealth index did not largely affect CVD risk. CONCLUSION Minor differences exist in the distribution of laboratory-based CVD risk across Indian population cohorts. CVD risk was similar in urban wealthy participants and rural poor and working-class communities in northern and southern India. Public health efforts need to target all major segments of the Indian population to curb the CVD epidemic.
Collapse
Affiliation(s)
- Richard S Chaudhary
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | - Manisha Dubey
- Centre for Chronic Disease Control, New Delhi, India
| | - Prashant Jarhyan
- Public Health Foundation of India, New Delhi, India; Centre for Chronic Disease Control, New Delhi, India
| | - Dorairaj Prabhakaran
- Public Health Foundation of India, New Delhi, India; Centre for Chronic Disease Control, New Delhi, India; London School of Hygiene and Tropical Medicine, London, UK
| | - Sailesh Mohan
- Public Health Foundation of India, New Delhi, India; Centre for Chronic Disease Control, New Delhi, India; Deakin University, Burwood, VIC, Australia
| |
Collapse
|
30
|
Padhi BK, Singh S, Gaidhane AM, Abu Serhan H, Khatib MN, Zahiruddin QS, Rustagi S, Sharma RK, Sharma D, Arora M, Satapathy P. Inequalities in cardiovascular disease among elderly Indians: A gender perspective analysis using LASI wave-I (2017-18). Curr Probl Cardiol 2024; 49:102605. [PMID: 38692448 DOI: 10.1016/j.cpcardiol.2024.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND While Cardiovascular disease (CVD) affects both men and women, emerging evidence suggests notable gender differentials in disease prevalence. This study aims to explore and analyse the gender differentials in CVD disease prevalence in India. METHODS The present study utilizes data from first wave of the nationally representative survey "Longitudinal Ageing Study in India" (LASI, WAVE-I, 2017-18) with the eligible sample size of 31,464 individuals aged 60 years and above. Logistic regression analysis was used to understand risk of CVD by demographic characteristics. Factors contribution to gender differences in CVD prevalence was examined using a non-linear Fairlie decomposition. RESULTS The prevalence of CVD was lower in men (31.06%) compared to women (38.85%). Women have a 33% higher likelihood of CVD compared to men (OR: 1.33; 95% CI: 1.25-1.42). Lack of education also confers a lower risk, more pronounced in women with no schooling (OR: 0.81; 95% CI: 0.7-0.94) compared to men (OR: 0.52; 95% CI: 0.47-0.58). Morbidity influences CVD presence more among women than men, with individuals suffering from three or more diseases having markedly increased odds (Men: OR: 3.89; 95% CI: 3.54-4.3, Women: OR: 6.97; 95% CI: 6.48-10.11). Smoking accounted increase in (20.52%) the gender gap while years of schooling dramatically lessened the gender gap (-46.30%). CONCLUSION Result show gender differential in CVD prevalence and underlying risk factors, underscoring the need for gender-specific preventive strategies and interventions. Our findings highlight the importance of refined approach to cardiovascular health that considers the complex interplay of biological, social, and environmental determinants.
Collapse
Affiliation(s)
- Bijaya K Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Saurabh Singh
- Research Scholar, International Institute for Population Sciences, Mumbai, India
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health. Datta Meghe Institute of Higher Education, Wardha, India
| | - Hashem Abu Serhan
- Department of Ophthalmology, Hamad Medical Corporation, Doha, Qatar.
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Quazi Syed Zahiruddin
- South Asia Infant Feeding Research Network (SAIFRN), Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rakesh Kumar Sharma
- Graphic Era (Deemed to be University), Clement Town, Dehradun, India; Graphic Era Hill University, Clement Town, Dehradun, India
| | - Divya Sharma
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India
| | - Mithhil Arora
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103 India
| | - Prakasini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Medical Laboratories Techniques Department, AL-Mustaqbal University, 51001 Hillah, Babil, Iraq
| |
Collapse
|
31
|
Bochenek T, Pytlewski A, Bride D, Gruchlik B, Lelek M, Teodorska M, Nowok M, Wita K, Mizia-Stec K, Horne BD. Associations of air pollution with acute coronary syndromes based on A/B/AB versus O blood types: case-crossover study. Sci Rep 2024; 14:14580. [PMID: 38918482 PMCID: PMC11199661 DOI: 10.1038/s41598-024-65506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Short-term exposure to air pollutants may contribute to an increased risk of acute coronary syndrome (ACS). This study assessed the role of short-term exposure to fine particulate matter (PM2.5) as well as fine and coarse PM (PM10) air pollution in ACS events and the effect of blood groups on this phenomenon. A retrospectively collected database of 9026 patients was evaluated. The study design was a case-crossover using a conditional logistic regression model. The main analysis focused on PM2.5 levels with a 1 day lag until the ACS event, using threshold-modelled predictor for all patients. Secondary analyses utilized separate threshold-modelled predictors for 2-7-days moving averages and for patients from specific ABO blood groups. Additional analysis was performed with the non-threshold models and for PM10 levels. Short-term exposure to increased PM2.5 and PM10 levels at a 1-day lag was associated with elevated risks of ACS (PM2.5: OR = 1.012 per + 10 µg/m3, 95% CI 1.003, 1.021; PM10: OR = 1.014 per + 10 µg/m3, CI 1.002, 1.025) for all patients. Analysis showed that exposure to PM2.5 was associated with increased risk of ACS at a 1-day lag for the A, B or AB group (OR = 1.012 per + 10 µg/m3, CI 1.001, 1.024), but not O group (OR = 1.011 per + 10 µg/m3, CI 0.994, 1.029). Additional analysis showed positive associations between exposure to PM10 and risk of ACS, with 7-days moving average models stratified by blood group revealing that exposures to PM2.5 and PM10 were associated with elevated risk of ACS for patients with group O. Short-term exposures to PM2.5 and PM10 were associated with elevated risk of ACS. Short-term exposure to PM2.5 was positively associated with the risk of ACS for patients with A, B, or AB blood groups for a 1-day lag, while risk in O group was delayed to 7 days.
Collapse
Affiliation(s)
- Tomasz Bochenek
- First Department of Cardiology, Medical University of Silesia, Ul. Ziołowa 47, 40-635, Katowice, Poland.
- European Reference Network for Rare, Low Prevalence, Or Complex Diseases of the Heart (ERN GUARD Heart), Amsterdam, The Netherlands.
| | | | - Daniel Bride
- Intermountain Medical Center Heart Institute, Salt Lake City, UT, USA
| | - Bartosz Gruchlik
- First Department of Cardiology, Medical University of Silesia, Ul. Ziołowa 47, 40-635, Katowice, Poland
- European Reference Network for Rare, Low Prevalence, Or Complex Diseases of the Heart (ERN GUARD Heart), Amsterdam, The Netherlands
| | - Michał Lelek
- First Department of Cardiology, Medical University of Silesia, Ul. Ziołowa 47, 40-635, Katowice, Poland
- European Reference Network for Rare, Low Prevalence, Or Complex Diseases of the Heart (ERN GUARD Heart), Amsterdam, The Netherlands
| | | | | | - Krystian Wita
- First Department of Cardiology, Medical University of Silesia, Ul. Ziołowa 47, 40-635, Katowice, Poland
- European Reference Network for Rare, Low Prevalence, Or Complex Diseases of the Heart (ERN GUARD Heart), Amsterdam, The Netherlands
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, Medical University of Silesia, Ul. Ziołowa 47, 40-635, Katowice, Poland
- European Reference Network for Rare, Low Prevalence, Or Complex Diseases of the Heart (ERN GUARD Heart), Amsterdam, The Netherlands
| | - Benjamin D Horne
- Intermountain Medical Center Heart Institute, Salt Lake City, UT, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
32
|
Curtis KL, Chang A, Johnston JD, Beard JD, Collingwood SC, LeCheminant JD, Peterson NE, South AJ, Farnsworth CB, Sanjel S, Bikman BT, Arroyo JA, Reynolds PR. Differential Inflammatory Cytokine Elaboration in Serum from Brick Kiln Workers in Bhaktapur, Nepal. Diseases 2024; 12:129. [PMID: 38920561 PMCID: PMC11203241 DOI: 10.3390/diseases12060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Previous studies involving workers at brick kilns in the Kathmandu Valley of Nepal have investigated chronic exposure to hazardous levels of fine particulate matter (PM2.5) common in ambient and occupational environments. Such exposures are known to cause and/or exacerbate chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. However, there is a paucity of data regarding the status of systemic inflammation observed in exposed workers at brick manufacturing facilities within the country. In the current study, we sought to elucidate systemic inflammatory responses by quantifying the molecular cytokine/chemokine profiles in serum from the study participants. A sample of participants were screened from a kiln in Bhaktapur, Nepal (n = 32; 53% female; mean ± standard deviation: 28.42 ± 11.47 years old) and grouped according to job category. Blood was procured from participants on-site, allowed to clot at room temperature, and centrifuged to obtain total serum. A human cytokine antibody array was used to screen the inflammatory mediators in serum samples from each of the participants. For the current study, four job categories were evaluated with n = 8 for each. Comparisons were generated between a control group of administration workers vs. fire master workers, administration workers vs. green brick hand molders, and administration workers vs. top loaders. We discovered significantly increased concentrations of eotaxin-1, eotaxin-2, GCSF, GM-CSF, IFN-γ, IL-1α, IL-1β, IL-6, IL-8, TGF-β1, TNF-α, and TIMP-2 in serum samples from fire master workers vs. administration workers (p < 0.05). Each of these molecules was also significantly elevated in serum from green brick hand molders compared to administration workers (p < 0.05). Further, each molecule in the inflammatory screening with the exception of TIMP-2 was significantly elevated in serum from top loaders compared to administration workers (p < 0.05). With few exceptions, the fire master workers expressed significantly more systemic inflammatory molecular abundance when compared to all other job categories. These results reveal an association between pulmonary exposure to PM2.5 and systemic inflammatory responses likely mediated by cytokine/chemokine elaboration. The additional characterization of a broader array of inflammatory molecules may provide valuable insight into the susceptibility to lung diseases among this population.
Collapse
Affiliation(s)
- Katrina L. Curtis
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Ashley Chang
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - James D. Johnston
- Department of Public Health, Brigham Young University, Provo, UT 84602, USA
| | - John D. Beard
- Department of Public Health, Brigham Young University, Provo, UT 84602, USA
| | - Scott C. Collingwood
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT 84112, USA
| | - James D. LeCheminant
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Neil E. Peterson
- College of Nursing, Brigham Young University, Provo, UT 84602, USA
| | - Andrew J. South
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Clifton B. Farnsworth
- Department of Civil and Construction Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Seshananda Sanjel
- Department of Community Medicine and Public Health, Karnali Academy of Health Sciences, Jumla 21200, Nepal
| | - Benjamin T. Bikman
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Juan A. Arroyo
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Paul R. Reynolds
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
33
|
Luo Z, Feng C, Yang J, Dai Q, Dai T, Zhang Y, Liang D, Feng Y. Assessing emission-driven changes in health risk of source-specific PM 2.5-bound heavy metals by adjusting meteorological covariates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172038. [PMID: 38552967 DOI: 10.1016/j.scitotenv.2024.172038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
Heavy metals (HMs) in PM2.5 gain much attention for their toxicity and carcinogenic risk. This study evaluates the health risks of PM2.5-bound HMs, focusing on how meteorological conditions affect these risks against the backdrop of PM2.5 reduction trends in China. By applying a receptor model with a meteorological normalization technique, followed by health risk assessment, this work reveals emission-driven changes in health risk of source-specific HMs in the outskirt of Tianjin during the implementation of China' second Clean Air Action (2018-2020). Sources of PM2.5-bound HMs were identified, with significant contributions from vehicular emissions (on average, 33.4 %), coal combustion (26.3 %), biomass burning (14.1 %), dust (11.7 %), industrial boilers (9.7 %), and shipping emission and sea salt (4.7 %). The source-specific emission-driven health risk can be enlarged or dwarfed by the changing meteorological conditions over time, demonstrating that the actual risks from these source emissions for a given time period may be higher or smaller than those estimated by traditional assessments. Meteorology contributed on average 56.1 % to the interannual changes in source-specific carcinogenic risk of HMs from 2018 to 2019, and 5.6 % from 2019 to 2020. For the source-specific noncarcinogenic risk changes, the contributions were 38.3 % and 46.4 % for the respective periods. Meteorology exerts a more profound impact on daily risk (short-term trends) than on annual risk (long-term trends). Such meteorological impacts differ among emission sources in both sign and magnitude. Reduced health risks of HMs were largely from targeted regulatory measures on sources. Therefore, the meteorological covariates should be considered to better evaluate the health benefits attributable to pollution control measures in health risk assessment frameworks.
Collapse
Affiliation(s)
- Zhongwei Luo
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Chengliang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Jingyi Yang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China; Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Tianjiao Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yufen Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China; Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Danni Liang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China; Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
34
|
Li Q, Zhang Y, Fang J, Sun Q, Du Y, Wang Y, Lei J, Zhu Y, Xue X, Chen R, Kan H, Li T. Effect of air purification on blood pressure and heart rate among school children: A cluster, randomized, double-blind crossover trial. CHINESE SCIENCE BULLETIN 2024; 69:2454-2462. [DOI: 10.1360/tb-2023-1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
35
|
Hemstock EJ, Bigaran A, Allgood S, Wheeler AJ, Dalton M, Williamson GJ, Gao CX, Abramson MJ, Negishi K, Johnston FH, Zosky GR. Increased vascular stiffness in children exposed in utero but not children exposed postnatally to emissions from a coal mine fire. Environ Epidemiol 2024; 8:e309. [PMID: 38799260 PMCID: PMC11115982 DOI: 10.1097/ee9.0000000000000309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
Background Chronic, low-intensity air pollution exposure has been consistently associated with increased atherosclerosis in adults. However, there was limited research regarding the implications of acute, high-intensity air pollution exposure during childhood. We aimed to determine whether there were any associations between early-life exposure to such an episode and early-life vascular function changes. Methods We conducted a prospective cohort study of children (<9 years old) who lived in the vicinity of the Hazelwood coal mine fire (n = 206). Vascular function was measured using noninvasive diagnostic methods including carotid intima-media thickness and pulse wave velocity (PWV). Exposure estimates were calculated from prognostic models and location diaries during the exposure period completed by each participant's parent. Linear mixed-effects models were used to determine whether there were any associations between exposure and changes in vascular outcomes at the 3- and 7-year follow-ups and over time. Results At the 7-year follow-up, each 10 μg/m3 increase in daily PM2.5 in utero was associated with increased PWV (β = 0.13 m/s; 95% confidence interval [CI] = 0.02, 0.24; P = 0.02). The association between in utero exposure to daily PM2.5 was not altered by adjustment for covariates, body mass index, and maternal fire stress. Each 1 µg/m3 increase in background PM2.5 was associated with increased PWV (β = 0.68 m/s; 95% CI = 0.10, 1.26; P = 0.025), in children from the in utero exposure group. There was a trend toward smaller PWV (β = -0.17 m/s; 95% CI = -0.366, 0.02) from the 3- to 7-year follow-up clinic suggesting that the deficits observed previously in children exposed postnatally did not persist. Conclusion There was a moderate improvement in vascular stiffness of children exposed to PM2.5 from a local coal mine fire in infancy. There was a mild increase in vascular stiffness in children exposed to PM2.5 from a local coal mine fire while their mothers were pregnant.
Collapse
Affiliation(s)
- Emily J. Hemstock
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Air Pollution, Energy and Health Research, NHMRC CRE, Glebe, New South Wales, Australia
| | - Ashley Bigaran
- Department of Surgery, Faculty of Medicine, Science and Dentistry, University of Melbourne, Melbourne, Victoria, Australia
- Wellness and Supportive Care, Olivia Newton-John Cancer Research and Wellness Centre, Austin Health, Victoria, Australia
| | - Shantelle Allgood
- School of Rural Health, Monash University, Churchill, Victoria, Australia
| | - Amanda J. Wheeler
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Commonwealth Scientific and Industrial Research Organization, Environment, Aspendale, Victoria, Australia
| | - Marita Dalton
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Grant J. Williamson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Caroline X. Gao
- Centre for Youth Mental Health (Orygen), University of Melbourne, Parkville, Victoria, Australia
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Michael J. Abramson
- Centre for Air Pollution, Energy and Health Research, NHMRC CRE, Glebe, New South Wales, Australia
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Kazuaki Negishi
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Sydney Medical School Nepean, University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Kingswood, New South Wales, Australia
| | - Fay H. Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Air Pollution, Energy and Health Research, NHMRC CRE, Glebe, New South Wales, Australia
| | - Graeme R. Zosky
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Air Pollution, Energy and Health Research, NHMRC CRE, Glebe, New South Wales, Australia
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
36
|
Leinweber ME, Meisenbacher K, Schmandra T, Karl T, Torsello G, Walensi M, Geisbuesch P, Schmitz-Rixen T, Jung G, Hofmann AG. Exploring the Effects of Local Air Pollution on Popliteal Artery Aneurysms. J Clin Med 2024; 13:3250. [PMID: 38892961 PMCID: PMC11172973 DOI: 10.3390/jcm13113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Objectives: A growing body of evidence highlights the effects of air pollution on chronic and acute cardiovascular diseases, such as associations between PM10 and several cardiovascular events. However, evidence of the impact of fine air pollutants on the development and progression of peripheral arterial aneurysms is not available. Methods: Data were obtained from the multicenter PAA outcome registry POPART and the German Environment Agency. Means of the mean daily concentration of PM10, PM2.5, NO2, and O3 concentrations were calculated for 2, 10, and 3650 days prior to surgery for each patient. Additionally, weighted ten-year averages were analyzed. Correlation was assessed by calculating Pearson correlation coefficients, and regression analyses were conducted as multiple linear or multiple logistic regression, depending on the dependent variable. Results: For 1193 patients from the POPART registry, paired air pollution data were available. Most patients were male (95.6%) and received open surgical repair (89.9%). On a regional level, the arithmetic means of the daily means of PM10 between 2000 and 2022 were neither associated with average diameters nor runoff vessels. Negative correlations for mean PAA diameter and mean NO2, as well as a positive correlation with mean O3, were found; however, they were not statistically significant. On patient level, no evidence for an association of mean PM10 exposure over ten years prior to inclusion in the registry and PAA diameter or the number of runoff vessels was found. Weighted PM10, NO2, and O3 exposure over ten years also did not result in significant associations with aneurysm diameter or runoff vessels. Short-term air pollutant concentrations were not associated with symptomatic PAAs or with perioperative complications. Conclusions: We found no indication that long-term air pollutant concentrations are associated with PAA size or severity, neither on a regional nor individual level. Additionally, short-term air pollution showed no association with clinical presentation or treatment outcomes.
Collapse
Affiliation(s)
| | - Katrin Meisenbacher
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Schmandra
- Department of Vascular Surgery, Sana Klinikum Offenbach, 63069 Offenbach, Germany
| | - Thomas Karl
- Department of Vascular and Endovascular Surgery, Klinikum am Plattenwald, SLK-Kliniken Heilbronn GmbH, 74177 Bad Friedrichshall, Germany
| | - Giovanni Torsello
- Department for Vascular Surgery, Franziskus Hospital Münster, 48145 Münster, Germany
| | - Mikolaj Walensi
- Department of Vascular Surgery and Phlebology, Contilia Heart and Vascular Center, 45138 Essen, Germany
| | - Phillip Geisbuesch
- Department of Vascular and Endovascular Surgery, Klinikum Stuttgart, 70199 Stuttgart, Germany
| | - Thomas Schmitz-Rixen
- German Society of Surgery, Langenbeck-Virchow-Haus, Luisenstraße 58/59, 10117 Berlin, Germany
| | - Georg Jung
- Department of Vascular and Endovascular Surgery, Luzerner Kantonsspital, 6000 Lucern, Switzerland
| | - Amun Georg Hofmann
- FIFOS—Forum for Integrative Research and Systems Biology, 1170 Vienna, Austria
| |
Collapse
|
37
|
Han S, Xie M, Cheng S, Han Y, Li P, Guo J. Associations between specific volatile organic chemical exposures and cardiovascular disease risks: insights from NHANES. Front Public Health 2024; 12:1378444. [PMID: 38846604 PMCID: PMC11153666 DOI: 10.3389/fpubh.2024.1378444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction An increasing body of research has demonstrated a correlation between pollutants from the environment and the development of cardiovascular diseases (CVD). However, the impact of volatile organic chemicals (VOC) on CVD remains unknown and needs further investigation. Objectives This study assessed whether exposure to VOC was associated with CVD in the general population. Methods A cross-sectional analysis was conducted utilizing data from five survey cycles (2005-2006, 2011-2012, 2013-2014, 2015-2016, and 2017-2018) of the National Health and Nutrition Examination Survey (NHANES) program. We analyzed the association between urinary VOC metabolites (VOCs) and participants by multiple logistic regression models, further Bayesian Kernel Machine Regression (BKMR) models and Weighted Quantile Sum (WQS) regression were performed for mixture exposure analysis. Results Total VOCs were found to be positively linked with CVD in multivariable-adjusted models (p for trend = 0.025), independent of established CVD risk variables, such as hypertension, diabetes, drinking and smoking, and total cholesterol levels. Compared with the reference quartile of total VOCs levels, the multivariable-adjusted odds ratios in increasing quartiles were 1.01 [95% confidence interval (CI): 0.78-1.31], 1.26 (95% CI: 1.05-1.21) and 1.75 (95% CI: 1.36-1.64) for total CVD. Similar positive associations were found when considering individual VOCs, including AAMA, CEMA, CYMA, 2HPMA, 3HPMA, IPM3 and MHBMA3 (acrolein, acrylamide, acrylonitrile, propylene oxide, isoprene, and 1,3-butadiene). In BKMR analysis, the overall effect of a mixture is significantly related to VOCs when all chemicals reach or exceed the 75th percentile. Moreover, in the WQS models, the most influential VOCs were found to be CEMA (40.30%), DHBMA (21.00%), and AMCC (19.70%). Conclusion The results of our study indicated that VOC was all found to have a significant association with CVD when comparing results from different models. These findings hold significant potential for public health implications and offer valuable insights for future research directions.
Collapse
Affiliation(s)
- Shaojie Han
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Min Xie
- Department of Cardiology, Seventh People’s Hospital of Chengdu, Chengdu, China
| | - Siyuan Cheng
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuchen Han
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Panpan Li
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Guo
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
38
|
Ruggles A, Benakis C. Exposure to Environmental Toxins: Potential Implications for Stroke Risk via the Gut- and Lung-Brain Axis. Cells 2024; 13:803. [PMID: 38786027 PMCID: PMC11119296 DOI: 10.3390/cells13100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Recent evidence indicates that exposure to environmental toxins, both short-term and long-term, can increase the risk of developing neurological disorders, including neurodegenerative diseases (i.e., Alzheimer's disease and other dementias) and acute brain injury (i.e., stroke). For stroke, the latest systematic analysis revealed that exposure to ambient particulate matter is the second most frequent stroke risk after high blood pressure. However, preclinical and clinical stroke investigations on the deleterious consequences of environmental pollutants are scarce. This review examines recent evidence of how environmental toxins, absorbed along the digestive tract or inhaled through the lungs, affect the host cellular response. We particularly address the consequences of environmental toxins on the immune response and the microbiome at the gut and lung barrier sites. Additionally, this review highlights findings showing the potential contribution of environmental toxins to an increased risk of stroke. A better understanding of the biological mechanisms underlying exposure to environmental toxins has the potential to mitigate stroke risk and other neurological disorders.
Collapse
Affiliation(s)
| | - Corinne Benakis
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, 81337 Munich, Germany;
| |
Collapse
|
39
|
Karim N, Hod R, Wahab MIA, Ahmad N. Projecting non-communicable diseases attributable to air pollution in the climate change era: a systematic review. BMJ Open 2024; 14:e079826. [PMID: 38719294 PMCID: PMC11086555 DOI: 10.1136/bmjopen-2023-079826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVES Climate change is a major global issue with significant consequences, including effects on air quality and human well-being. This review investigated the projection of non-communicable diseases (NCDs) attributable to air pollution under different climate change scenarios. DESIGN This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 flow checklist. A population-exposure-outcome framework was established. Population referred to the general global population of all ages, the exposure of interest was air pollution and its projection, and the outcome was the occurrence of NCDs attributable to air pollution and burden of disease (BoD) based on the health indices of mortality, morbidity, disability-adjusted life years, years of life lost and years lived with disability. DATA SOURCES The Web of Science, Ovid MEDLINE and EBSCOhost databases were searched for articles published from 2005 to 2023. ELIGIBILITY CRITERIA FOR SELECTING STUDIES The eligible articles were evaluated using the modified scale of a checklist for assessing the quality of ecological studies. DATA EXTRACTION AND SYNTHESIS Two reviewers searched, screened and selected the included studies independently using standardised methods. The risk of bias was assessed using the modified scale of a checklist for ecological studies. The results were summarised based on the projection of the BoD of NCDs attributable to air pollution. RESULTS This review included 11 studies from various countries. Most studies specifically investigated various air pollutants, specifically particulate matter <2.5 µm (PM2.5), nitrogen oxides and ozone. The studies used coupled-air quality and climate modelling approaches, and mainly projected health effects using the concentration-response function model. The NCDs attributable to air pollution included cardiovascular disease (CVD), respiratory disease, stroke, ischaemic heart disease, coronary heart disease and lower respiratory infections. Notably, the BoD of NCDs attributable to air pollution was projected to decrease in a scenario that promotes reduced air pollution, carbon emissions and land use and sustainable socioeconomics. Contrastingly, the BoD of NCDs was projected to increase in a scenario involving increasing population numbers, social deprivation and an ageing population. CONCLUSION The included studies widely reported increased premature mortality, CVD and respiratory disease attributable to PM2.5. Future NCD projection studies should consider emission and population changes in projecting the BoD of NCDs attributable to air pollution in the climate change era. PROSPERO REGISTRATION NUMBER CRD42023435288.
Collapse
Affiliation(s)
- Norhafizah Karim
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala lumpur, Malaysia
| | - Rozita Hod
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala lumpur, Malaysia
| | - Muhammad Ikram A Wahab
- Center of Toxicology and Health Risk Studies (CORE), Universiti Kebangsaan Malaysia Fakulti Sains Kesihatan, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Norfazilah Ahmad
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala lumpur, Malaysia
| |
Collapse
|
40
|
Craver A, Luo J, Kibriya MG, Randorf N, Bahl K, Connellan E, Powell J, Zakin P, Jones RR, Argos M, Ho J, Kim K, Daviglus ML, Greenland P, Ahsan H, Aschebrook-Kilfoy B. Air quality and cancer risk in the All of Us Research Program. Cancer Causes Control 2024; 35:749-760. [PMID: 38145439 PMCID: PMC11045436 DOI: 10.1007/s10552-023-01823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/31/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION The NIH All of Us Research Program has enrolled over 544,000 participants across the US with unprecedented racial/ethnic diversity, offering opportunities to investigate myriad exposures and diseases. This paper aims to investigate the association between PM2.5 exposure and cancer risks. MATERIALS AND METHODS This work was performed on data from 409,876 All of Us Research Program participants using the All of Us Researcher Workbench. Cancer case ascertainment was performed using data from electronic health records and the self-reported Personal Medical History questionnaire. PM2.5 exposure was retrieved from NASA's Earth Observing System Data and Information Center and assigned using participants' 3-digit zip code prefixes. Multivariate logistic regression was used to estimate the odds ratio (OR) and 95% confidence interval (CI). Generalized additive models (GAMs) were used to investigate non-linear relationships. RESULTS A total of 33,387 participants and 46,176 prevalent cancer cases were ascertained from participant EHR data, while 20,297 cases were ascertained from self-reported survey data from 18,133 participants; 9,502 cancer cases were captured in both the EHR and survey data. Average PM2.5 level from 2007 to 2016 was 8.90 μg/m3 (min 2.56, max 15.05). In analysis of cancer cases from EHR, an increased odds for breast cancer (OR 1.17, 95% CI 1.09-1.25), endometrial cancer (OR 1.33, 95% CI 1.09-1.62) and ovarian cancer (OR 1.20, 95% CI 1.01-1.42) in the 4th quartile of exposure compared to the 1st. In GAM, higher PM2.5 concentration was associated with increased odds for blood cancer, bone cancer, brain cancer, breast cancer, colon and rectum cancer, endocrine system cancer, lung cancer, pancreatic cancer, prostate cancer, and thyroid cancer. CONCLUSIONS We found evidence of an association of PM2.5 with breast, ovarian, and endometrial cancers. There is little to no prior evidence in the literature on the impact of PM2.5 on risk of these cancers, warranting further investigation.
Collapse
Affiliation(s)
- Andrew Craver
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Jiajun Luo
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Muhammad G Kibriya
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Nina Randorf
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Kendall Bahl
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Elizabeth Connellan
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Johnny Powell
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Paul Zakin
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Joyce Ho
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karen Kim
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Habibul Ahsan
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
- Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Briseis Aschebrook-Kilfoy
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA.
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
- Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
41
|
Arrúe M, Penalba A, Rodriguez-Bodero A, Elicegui A, de Homdedeu M, Cruz MJ, Simats A, Rodriguez S, Buxó X, Garcia-Rodriguez N, Pizarro J, Turner MC, Delgado P, Rosell A. Diesel exhaust particles exposure exacerbates pro-thrombogenic plasma features ex-vivo after cerebral ischemia and accelerates tPA-induced clot-lysis in hypertensive subjects. J Cereb Blood Flow Metab 2024; 44:772-786. [PMID: 37974302 PMCID: PMC11197133 DOI: 10.1177/0271678x231214826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
The combustion of fossil fuels, mainly by diesel engines, generates Diesel Exhaust Particles (DEP) which are the main source of Particulate Matter (PM), a major air pollutant in urban areas. These particles are a risk factor for stroke with 5.6% of cases attributed to PM exposure. Our aim was to evaluate the effect of DEP exposure on clot formation and lysis in the context of stroke. An ex-vivo clot formation and lysis turbidimetric assay has been conducted in human and mouse plasma samples from ischemic stroke or control subjects exposed to DEP or control conditions. Experimental DEP exposure was achieved by nasal instillation in mice, or by ex-vivo exposure in human plasma. Results show consistent pro-thrombogenic features in plasma after human ischemic stroke and mouse cerebral ischemia (distal MCAo), boosted by the presence of DEP. Otherwise, thrombolysis times were increased after ischemia in chronically exposed mice but not in the DEP exposed group. Finally, subjects living in areas with high PM levels presented accelerated thrombolysis compared to those living in low polluted areas. Overall, our results point at a disbalance of the thrombogenic/lytic system in presence of DEP which could impact on ischemic stroke onset, clot size and thrombolytic treatment.
Collapse
Affiliation(s)
- Mercedes Arrúe
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Penalba
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ane Rodriguez-Bodero
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Amaia Elicegui
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miquel de Homdedeu
- Pneumology Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber de Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - María-Jesús Cruz
- Pneumology Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber de Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Rodriguez
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | - Xavier Buxó
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | - Nicolás Garcia-Rodriguez
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | - Jesús Pizarro
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Galli TT, de Campos EC, do Nascimento Camargo L, Fukuzaki S, Dos Santos TM, Hamaguchi SSS, Bezerra SKM, Silva FJA, Rezende BG, Dos Santos Lopes FTQ, Olivo CR, Saraiva-Romanholo BM, Prado CM, Leick EA, Bourotte CLM, Benseñor IJM, Lotufo PA, Righetti RF, Tibério IFLC. Effects of environmental exposure to iron powder on healthy and elastase-exposed mice. Sci Rep 2024; 14:9134. [PMID: 38644380 PMCID: PMC11033283 DOI: 10.1038/s41598-024-59573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/12/2024] [Indexed: 04/23/2024] Open
Abstract
Prolonged exposure to iron powder and other mineral dusts can threaten the health of individuals, especially those with COPD. The goal of this study was to determine how environmental exposure to metal dust from two different mining centers in Brazil affects lung mechanics, inflammation, remodeling and oxidative stress responses in healthy and elastase-exposed mice. This study divided 72 male C57Bl/6 mice into two groups, the summer group and the winter group. These groups were further divided into six groups: control, nonexposed (SAL); nonexposed, given elastase (ELA); exposed to metal powder at a mining company (SAL-L1 and ELA-L1); and exposed to a location three miles away from the mining company (SAL-L2 and ELA-L2) for four weeks. On the 29th day of the protocol, the researchers assessed lung mechanics, bronchoalveolar lavage fluid (BALF), inflammation, remodeling, oxidative stress, macrophage iron and alveolar wall alterations (mean linear intercept-Lm). The Lm was increased in the ELA, ELA-L1 and ELA-L2 groups compared to the SAL group (p < 0.05). There was an increase in the total number of cells and macrophages in the ELA-L1 and ELA-L2 groups compared to the other groups (p < 0.05). Compared to the ELA and SAL groups, the exposed groups (ELA-L1, ELA-L2, SAL-L1, and SAL-L2) exhibited increased expression of IL-1β, IL-6, IL-10, IL-17, TNF-α, neutrophil elastase, TIMP-1, MMP-9, MMP-12, TGF-β, collagen fibers, MUC5AC, iNOS, Gp91phox, NFkB and iron positive macrophages (p < 0.05). Although we did not find differences in lung mechanics across all groups, there were low to moderate correlations between inflammation remodeling, oxidative stress and NFkB with elastance, resistance of lung tissue and iron positive macrophages (p < 0.05). Environmental exposure to iron, confirmed by evaluation of iron in alveolar macrophages and in air, exacerbated inflammation, initiated remodeling, and induced oxidative stress responses in exposed mice with and without emphysema. Activation of the iNOS, Gp91phox and NFkB pathways play a role in these changes.
Collapse
Affiliation(s)
| | | | | | - Silvia Fukuzaki
- Faculdade de Medicina (FMUSP), São Paulo, Brazil
- Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Renato Fraga Righetti
- Faculdade de Medicina (FMUSP), São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
| | - Iolanda Fátima Lopes Calvo Tibério
- Faculdade de Medicina (FMUSP), São Paulo, Brazil.
- University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, SP, 01246-903 - Laboratory LIM20, Brazil.
| |
Collapse
|
43
|
Revand R, Dontham A, Sarkar S, Patil A. Subacute Exposure to Gaseous Pollutants from Diesel Engine Exhaust Attenuates Capsaicin-Induced Cardio-Pulmonary Reflex Responses Involving Oxidant Stress Mechanisms in Adult Wistar Rats. Cardiovasc Toxicol 2024; 24:396-407. [PMID: 38451349 DOI: 10.1007/s12012-024-09842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
Intravenous injection of capsaicin produces vagal-mediated protective cardio-pulmonary (CP) reflexes manifesting as tachypnea, bradycardia, and triphasic blood pressure (BP) response in anesthetized rats. Particulate matter from diesel engine exhaust has been reported to attenuate these reflexes. However, the effects of gaseous constituents of diesel exhaust are not known. Therefore, the present study was designed to investigate the effects of gaseous pollutants in diesel exhaust, on capsaicin-induced CP reflexes in rat model. Adult male rats were randomly assigned to three groups: Non-exposed (NE) group, filtered diesel exhaust-exposed (FDE) group and N-acetyl cysteine (NAC)-treated FDE group. FDE group of rats (n = 6) were exposed to filtered diesel exhaust for 5 h a day for 5 days (D1-D5), and were taken for dissection on day 6 (D6), while NE group of rats (n = 6) remained unexposed. On D6, rats were anesthetized, following which jugular vein was cannulated for injection of chemicals, and femoral artery was cannulated to record the BP. Lead II electrocardiogram and respiratory movements were also recorded. Results show that intravenous injection of capsaicin (0.1 ml; 10 µg/kg) produced immediate tachypneic, hyperventilatory, hypotensive, and bradycardiac responses in both NE and FDE groups of rats. However, these capsaicin-induced CP responses were significantly attenuated in FDE group as compared to the NE group of rats. Further, FDE-induced attenuation of capsaicin-evoked CP responses were diminished in the N-acetyl cysteine-treated FDE rats. These findings demonstrate that oxidant stress mechanisms could possibly be involved in inhibition of CP reflexes by gaseous pollutants in diesel engine exhaust.
Collapse
Affiliation(s)
- Ravindran Revand
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aditya Dontham
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Swarnabha Sarkar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Asmita Patil
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
44
|
Zhang X, Zhang T, Chen X, Ni J, Xu S, Peng Y, Wang G, Sun W, Liu X, Pan F. The impact of short-term exposure to meteorological factors on the risk of death from hypertension and its major complications: a time series analysis based on Hefei, China. Int Arch Occup Environ Health 2024; 97:313-329. [PMID: 38403848 DOI: 10.1007/s00420-024-02046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES This study aimed to reveal the short-term impact of meteorological factors on the mortality risk in hypertensive patients, providing a scientific foundation for formulating pertinent prevention and control policies. METHODS In this research, meteorological factor data and daily death data of hypertensive patients in Hefei City from 2015 to 2018 were integrated. Time series analysis was performed using distributed lag nonlinear model (DLNM) and generalized additive model (GAM). Furthermore, we conducted stratified analysis based on gender and age. Relative risk (RR) combined with 95% confidence interval (95% CI) was used to represent the mortality risk of single day and cumulative day in hypertensive patients. RESULTS Single-day lag results indicated that high daily mean temperature (T mean) (75th percentile, 24.9 °C) and low diurnal temperature range (DTR) (25th percentile, 4.20 °C) levels were identified as risk factors for death in hypertensive patients (maximum effective RR values were 1.144 and 1.122, respectively). Extremely high levels of relative humidity (RH) (95th percentile, 94.29%) reduced the risk of death (RR value was 0.893). The stratified results showed that the elderly and female populations are more susceptible to low DTR levels, whereas extremely high levels of RH have a more significant protective effect on both populations. CONCLUSION Overall, we found that exposure to low DTR and high T mean environments increases the risk of death for hypertensive patients, while exposure to extremely high RH environments significantly reduces the risk of death for hypertensive patients. These findings contribute valuable insights for shaping targeted prevention and control strategies.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xuyang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Hospital Management Research, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jianping Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Hospital Management Research, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Siwen Xu
- School of Medicine, Tongji University, 500 Zhennan Road, Shanghai, 200333, China
| | - Yongzhen Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Hospital Management Research, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Guosheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Hospital Management Research, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Wanqi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Hospital Management Research, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xuxiang Liu
- Hefei Center for Disease Control and Prevention, 86 Luan Road, Hefei, 230032, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
45
|
Lin Z, Fan X, Chen G, Hong Y, Li M, Xu L, Hu B, Yang C, Chen Y, Shao Z, Chen J. Sources appointment and health risks of PM 2.5-bound trace elements in a coastal city of southeastern China. J Environ Sci (China) 2024; 138:561-571. [PMID: 38135420 DOI: 10.1016/j.jes.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 12/24/2023]
Abstract
To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM2.5 concentrations, 15 trace elements (Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Sn, Ba, Pb) in PM2.5 were monitored from December 2020 to November 2021 in a representative city, Xiamen. The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K, Fe, Al, Ca and Zn. Based on Positive Matrix Factorization analysis, source appointment revealed that the major sources of trace elements in Xiamen were traffic, dust, biomass and firework combustion, industrial manufacture and shipping emission. According to health risk assessment combined with the source appointment results, it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals (Cr, Ni, As, Pb) exceeded the threshold (10-6). Traffic-related source had almost half amount of contribution to the health risk induced by PM2.5-bound trace elements. During the dust transport period or Spring Festival period, the health risks exceeded an acceptable threshold even an order of magnitude higher, suggesting that the serious health risks still existed in low PM2.5 environment at certain times. Health risk assessment reminded that the health risk reduction in PM2.5 at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.
Collapse
Affiliation(s)
- Ziyi Lin
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Fan
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gaojie Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mengren Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lingling Xu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Baoye Hu
- Minnan Normal University, Zhangzhou 363000, China
| | - Chen Yang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhiqian Shao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
46
|
Zhang K. Environmental PM 2.5-triggered stress responses in digestive diseases. EGASTROENTEROLOGY 2024; 2:e100063. [PMID: 38895535 PMCID: PMC11185827 DOI: 10.1136/egastro-2024-100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Airborne particulate matter in fine and ultrafine ranges (aerodynamic diameter less than 2.5 μm, PM2.5) is a primary air pollutant that poses a serious threat to public health. Accumulating evidence has pointed to a close association between inhalation exposure to PM2.5 and increased morbidity and mortality associated with modern human complex diseases. The adverse health effect of inhalation exposure to PM2.5 pollutants is systemic, involving multiple organs, different cell types and various molecular mediators. Organelle damages and oxidative stress appear to play a major role in the cytotoxic effects of PM2.5 by mediating stress response pathways related to inflammation, metabolic alteration and cell death programmes. The organs or tissues in the digestive tract, such as the liver, pancreas and small intestines, are susceptible to PM2.5 exposure. This review underscores PM2.5-induced inflammatory stress responses and their involvement in digestive diseases caused by PM2.5 exposure.
Collapse
Affiliation(s)
- Kezhong Zhang
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
47
|
Amnuaylojaroen T, Parasin N. Pathogenesis of PM 2.5-Related Disorders in Different Age Groups: Children, Adults, and the Elderly. EPIGENOMES 2024; 8:13. [PMID: 38651366 PMCID: PMC11036283 DOI: 10.3390/epigenomes8020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/07/2024] [Accepted: 03/08/2024] [Indexed: 04/25/2024] Open
Abstract
The effects of PM2.5 on human health fluctuate greatly among various age groups, influenced by a range of physiological and immunological reactions. This paper compares the pathogenesis of the disease caused by PM2.5 in people of different ages, focusing on how children, adults, and the elderly are each susceptible to it because of differences in their bodies. Regarding children, exposure to PM2.5 is linked to many negative consequences. These factors consist of inflammation, oxidative stress, and respiratory problems, which might worsen pre-existing conditions and potentially cause neurotoxicity and developmental issues. Epigenetic changes can affect the immune system and make people more likely to get respiratory diseases. On the other hand, exposures during pregnancy can change how the cardiovascular and central nervous systems develop. In adults, the inhalation of PM2.5 is associated with a wide range of health problems. These include respiratory difficulties, reduced pulmonary function, and an increased susceptibility to illnesses such as asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. In addition, exposure to PM2.5 induces systemic inflammation, cardiovascular diseases, insulin resistance, and neurotoxic consequences. Evident disturbances in the immune system and cognitive function demonstrate the broad impact of PM2.5. The elderly population is prone to developing respiratory and cardiovascular difficulties, which worsen their pre-existing health issues and raise the risk of cognitive decline and neurological illnesses. Having additional medical conditions, such as peptic ulcer disease, significantly increases the likelihood of being admitted to hospital.
Collapse
Affiliation(s)
- Teerachai Amnuaylojaroen
- School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
- Atmospheric Pollution and Climate Research Unit, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
| | - Nichapa Parasin
- School of Allied Health Science, University of Phayao, Phayao 56000, Thailand;
| |
Collapse
|
48
|
Somayajulu M, Muhammed FS, Wright R, McClellan SA, Hazlett LD. Mechanisms of PM 10 Disruption of the Nrf2 Pathway in Cornea. Int J Mol Sci 2024; 25:3754. [PMID: 38612568 PMCID: PMC11011424 DOI: 10.3390/ijms25073754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
We have previously shown that PM10 exposure causes oxidative stress and reduces Nrf2 protein levels, and SKQ1 pre-treatment protects against this damage in human corneal epithelial cells (HCE-2). The current study focuses on uncovering the mechanisms underlying acute PM10 toxicity and SKQ1-mediated protection. HCE-2 were pre-treated with SKQ1 and then exposed to 100 μg/mL PM10. Cell viability, oxidative stress markers, programmed cell death, DNA damage, senescence markers, and pro-inflammatory cytokines were analyzed. Nrf2 cellular location and its transcriptional activity were determined. Effects of the Nrf2 inhibitor ML385 were similarly evaluated. Data showed that PM10 decreased cell viability, Nrf2 transcriptional activity, and mRNA levels of antioxidant enzymes, but increased p-PI3K, p-NFκB, COX-2, and iNOS proteins levels. Additionally, PM10 exposure significantly increased DNA damage, phosphor-p53, p16 and p21 protein levels, and β-galactosidase (β-gal) staining, which confirmed the senescence. SKQ1 pre-treatment reversed these effects. ML385 lowered the Nrf2 protein levels and mRNA levels of its downstream targets. ML385 also abrogated the protective effects of SKQ1 against PM10 toxicity by preventing the restoration of cell viability and reduced oxidative stress. In conclusion, PM10 induces inflammation, reduces Nrf2 transcriptional activity, and causes DNA damage, leading to a senescence-like phenotype, which is prevented by SKQ1.
Collapse
Affiliation(s)
| | | | | | | | - Linda D. Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA; (M.S.); (F.S.M.); (R.W.); (S.A.M.)
| |
Collapse
|
49
|
Dabas J, Shunmukha Priya S, Alawani A, Budhrani P. What could be the reasons for not losing weight even after following a weight loss program? JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:37. [PMID: 38429842 PMCID: PMC10908186 DOI: 10.1186/s41043-024-00516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/28/2024] [Indexed: 03/03/2024]
Abstract
INTRODUCTION Approximately four million people worldwide die annually because of obesity. Weight loss is commonly recommended as a first-line therapy in overweight and obese patients. Although many individuals attempt to lose weight, not everyone achieves optimal success. Few studies point out that weight loss eventually slows down, stagnates or reverses in 85% of the cases. RESEARCH QUESTION What could be the reasons for not losing weight even after following a weight loss program? METHODS A scoping review of the literature was performed using weight loss-related search terms such as 'Obesity,' 'Overweight,' 'Lifestyle,' 'weight loss,' 'Basal Metabolism,' 'physical activity,' 'adherence,' 'energy balance,' 'Sleep' and 'adaptations. The search involved reference tracking and database and web searches (PUBMED, Science Direct, Elsevier, Web of Science and Google Scholar). Original articles and review papers on weight loss involving human participants and adults aged > 18 years were selected. Approximately 231 articles were reviewed, and 185 were included based on the inclusion criteria. DESIGN Scoping review. RESULTS In this review, the factors associated with not losing weight have broadly been divided into five categories. Studies highlighting each subfactor were critically reviewed and discussed. A wide degree of interindividual variability in weight loss is common in studies even after controlling for variables such as adherence, sex, physical activity and baseline weight. In addition to these variables, variations in factors such as previous weight loss attempts, sleep habits, meal timings and medications can play a crucial role in upregulating or downregulating the association between energy deficit and weight loss results. CONCLUSION This review identifies and clarifies the role of several factors that may hinder weight loss after the exploration of existing evidence. Judging the effectiveness of respective lifestyle interventions by simply observing the 'general behavior of the groups' is not always applicable in clinical practice. Each individual must be monitored and advised as per their requirements and challenges.
Collapse
Affiliation(s)
- Jyoti Dabas
- Institute of Nutrition and Fitness Sciences, Platinum Square, 4th floor, Office, 403, Opp. WNS, Sakore Nagar, Viman Nagar, Pune, Maharashtra, 411014, India
| | - S Shunmukha Priya
- Institute of Nutrition and Fitness Sciences, Platinum Square, 4th floor, Office, 403, Opp. WNS, Sakore Nagar, Viman Nagar, Pune, Maharashtra, 411014, India.
| | - Akshay Alawani
- Institute of Nutrition and Fitness Sciences, Platinum Square, 4th floor, Office, 403, Opp. WNS, Sakore Nagar, Viman Nagar, Pune, Maharashtra, 411014, India
| | - Praveen Budhrani
- Institute of Nutrition and Fitness Sciences, Platinum Square, 4th floor, Office, 403, Opp. WNS, Sakore Nagar, Viman Nagar, Pune, Maharashtra, 411014, India
| |
Collapse
|
50
|
Khan SU, Al-Mallah MH. Air pollution and acute coronary syndrome: The air we breathe. Atherosclerosis 2024; 390:117453. [PMID: 38262845 DOI: 10.1016/j.atherosclerosis.2024.117453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Affiliation(s)
- Safi U Khan
- Department of Cardiovascular Medicine, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Mouaz H Al-Mallah
- Department of Cardiovascular Medicine, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, USA.
| |
Collapse
|