1
|
Hashimoto R, Koide H, Katoh Y. MEK inhibitors increase the mortality rate in mice with LPS-induced inflammation through IL-12-NO signaling. Cell Death Discov 2023; 9:374. [PMID: 37833247 PMCID: PMC10575927 DOI: 10.1038/s41420-023-01674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin that can cause an acute inflammatory response. Nitric oxide (NO) is one of the most important innate immune system components and is synthesized by inducible NOS (iNOS) in macrophages in response to stimulation with LPS. LPS activates the RAS-RAF-mitogen-activated protein kinase/ERK kinase (MEK)-extracellular-signal-regulated kinase (ERK) signaling cascade in macrophages. The purpose of this study was to examine how the combination of LPS and MEK inhibitors, which have been used as anticancer agents in recent years, affects inflammation. We showed that MEK inhibitors enhanced iNOS expression and NO production in LPS-stimulated mouse bone marrow-derived macrophages. A MEK inhibitor increased the mortality rate in mice with LPS-induced inflammation. The expression of the cytokine interleukin-12 (IL-12) in macrophages was enhanced by the MEK inhibitor, as shown by a cytokine array and ELISA. IL-12 enhanced iNOS expression and NO production in response to LPS. We also showed that tumor necrosis factor (TNF-α) was secreted by macrophage after stimulation with LPS and that TNF-α and IL-12 synergistically induced iNOS expression and NO production. An anti-IL-12 neutralizing antibody prevented NO production and mortality in an LPS-induced inflammation mouse model in the presence of a MEK inhibitor. These results suggest that the MEK inhibitor increases the mortality rate in mice with LPS-induced inflammation through IL-12-NO signaling.
Collapse
Affiliation(s)
- Ryota Hashimoto
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Physiology, Juntendo University Faculty of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Hiroshi Koide
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Youichi Katoh
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Juntendo University Faculty of International Liberal Arts, Hongo 2-1-1, Bunkyo-ku, Tokyo, 112-8421, Japan.
| |
Collapse
|
2
|
Lin L, Zhang Q, Fan H, Zhao H, Yang Y. Myocardin-Related Transcription Factor A Mediates LPS-Induced iNOS Transactivation. Inflammation 2021; 43:1351-1361. [PMID: 32440986 DOI: 10.1007/s10753-020-01213-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Macrophage-dependent inflammation plays a critical role in atherogenesis. Inducible nitric oxide synthase (iNOS) is one of key pro-inflammatory mediators produced in macrophages and its levels can be upregulated by lipopolysaccharide (LPS). The epigenetic mechanism whereby LPS induces iNOS transcription is incompletely understood. We show here myocardin-related transcription factor A (MRTF-A) potentiated iNOS promoter activity in macrophages. There was a decrease in LPS-induced iNOS expression in several cell models due to the lack of MRTF-A. LPS treatment promoted nuclear accumulation of MRTF-A and its interaction with NF-κB/p65 on the iNOS promoter. The absence of MRTF-A prevented the accumulation of active histone marks on the iNOS promoter in response to LPS treatment. Mechanistically, MRTF-A recruited ASH2, a key component of the mammalian histone H3K4 methyltransferase complex, to the iNOS promoter. Silencing of ASH2 attenuated iNOS expression following LPS treatment. Together, our data highlight a role for MRTF-A-dependent recruitment of H3K4 methyltransferase in iNOS induction and as such provide a novel target in the intervention of atherosclerosis.
Collapse
Affiliation(s)
- Lin Lin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Qiumei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Hongwei Fan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Hongwei Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
3
|
Mirmiran P, Bahadoran Z, Tahmasebinejad Z, Azizi F, Ghasemi A. Circulating nitric oxide metabolites and the risk of cardiometabolic outcomes: a prospective population-based study. Biomarkers 2019; 24:325-333. [PMID: 30624084 DOI: 10.1080/1354750x.2019.1567816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aim: This study was conducted to investigate whether serum NO metabolites (NOx) could predict the occurrence of type 2 diabetes (T2DM), hypertension (HTN) and metabolic syndrome (MetS). Methods: We measured serum NOx concentrations in the Tehran Lipid and Glucose Study participants (aged ≥19 years) and followed them for a median of 7.7 years for the incidence of outcomes. To determine the appropriate cut-off points of serum NOx for predicting clinical events, a random sampling method (50:50 ratio) was used for the population and for analysis, receiver operator characteristic curve was used. Multivariable Cox proportional hazard models were used to estimate the hazard ratios (HRs) with 95% confidence intervals (95% CIs) of T2DM, HTN and MetS in response to serum NOx values. Results: The optimal cut-off points of serum NOx levels for predicting T2DM, HTN and MetS were 26.5, 25.5 and 25.5 µmol/L, respectively. Participants with serum NOx levels ≥25.5 µmol/L had increased risk of MetS (HR = 1.31, 95% CI = 1.01-1.72). No evidence was found for any association of serum NOx with incidence of T2DM and HTN (HR = 1.03, 95% CI = 0.83-1.77 and HR = 1.09, 95% CI = 0.88-1.35). Conclusion: In this prospective population-based investigation, a higher circulating NOx was associated with development of MetS.
Collapse
Affiliation(s)
- Parvin Mirmiran
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zahra Bahadoran
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zhaleh Tahmasebinejad
- a Nutrition and Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Fereidoun Azizi
- b Endocrine Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Asghar Ghasemi
- c Endocrine Physiology Research Center , Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
4
|
Beyond the Foam Cell: The Role of LXRs in Preventing Atherogenesis. Int J Mol Sci 2018; 19:ijms19082307. [PMID: 30087224 PMCID: PMC6121590 DOI: 10.3390/ijms19082307] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic condition associated with cardiovascular disease. While largely identified by the accumulation of lipid-laden foam cells within the aorta later on in life, atherosclerosis develops over several stages and decades. During atherogenesis, various cell types of the aorta acquire a pro-inflammatory phenotype that initiates the cascade of signaling events facilitating the formation of these foam cells. The liver X receptors (LXRs) are nuclear receptors that upon activation induce the expression of transporters responsible for promoting cholesterol efflux. In addition to promoting cholesterol removal from the arterial wall, LXRs have potent anti-inflammatory actions via the transcriptional repression of key pro-inflammatory cytokines. These beneficial functions sparked an interest in the potential to target LXRs and the development of agonists as anti-atherogenic agents. These early studies focused on mediating the contributions of macrophages to the underlying pathogenesis. However, further evidence has since demonstrated that LXRs reduce atherosclerosis through their actions in multiple cell types apart from those monocytes/macrophages that infiltrate the lesion. LXRs and their target genes have profound effects on multiple other cells types of the hematopoietic system. Furthermore, LXRs can also mediate dysfunction within vascular cell types of the aorta including endothelial and smooth muscle cells. Taken together, these studies demonstrate the whole-body benefits of LXR activation with respect to anti-atherogenesis, and that LXRs remain a viable target for the treatment of atherosclerosis, with a reach which extends beyond plaque macrophages.
Collapse
|
5
|
Hiller S, DeKroon R, Hamlett ED, Xu L, Osorio C, Robinette J, Winnik W, Simington S, Maeda N, Alzate O, Yi X. Alpha-lipoic acid supplementation protects enzymes from damage by nitrosative and oxidative stress. Biochim Biophys Acta Gen Subj 2015; 1860:36-45. [PMID: 26344063 DOI: 10.1016/j.bbagen.2015.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/29/2015] [Accepted: 09/02/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND S-nitrosylation of mitochondrial enzymes involved in energy transfer under nitrosative stress may result in ATP deficiency. We investigated whether α-lipoic acid, a powerful antioxidant, could alleviate nitrosative stress by regulating S-nitrosylation, which could result in retaining the mitochondrial enzyme activity. METHODS In this study, we have identified the S-nitrosylated forms of subunit 1 of dihydrolipoyllysine succinyltransferase (complex III), and subunit 2 of the α-ketoglutarate dehydrogenase complex by implementing a fluorescence-based differential quantitative proteomics method. RESULTS We found that the activities of these two mitochondrial enzymes were partially but reversibly inhibited by S-nitrosylation in cultured endothelial cells, and that their activities were partially restored by supplementation of α-lipoic acid. We show that protein S-nitrosylation affects the activity of mitochondrial enzymes that are central to energy supply, and that α-lipoic acid protects mitochondrial enzymes by altering S-nitrosylation levels. CONCLUSIONS Inhibiting protein S-nitrosylation with α-lipoic acid seems to be a protective mechanism against nitrosative stress. GENERAL SIGNIFICANCE Identification and characterization of these new protein targets should contribute to expanding the therapeutic power of α-lipoic acid and to a better understanding of the underlying antioxidant mechanisms.
Collapse
Affiliation(s)
- Sylvia Hiller
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert DeKroon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric D Hamlett
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
| | - Longquan Xu
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cristina Osorio
- Systems Proteomics Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer Robinette
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States; Systems Proteomics Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Witold Winnik
- Proteomic Research Core Unit, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Stephen Simington
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Oscar Alzate
- Texas A&M Health Science Center, College Station, TX, United States.
| | - Xianwen Yi
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
6
|
Protective vascular and cardiac effects of inducible nitric oxide synthase in mice with hyperhomocysteinemia. PLoS One 2014; 9:e107734. [PMID: 25226386 PMCID: PMC4167199 DOI: 10.1371/journal.pone.0107734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022] Open
Abstract
Diet-induced hyperhomocysteinemia produces endothelial and cardiac dysfunction and promotes thrombosis through a mechanism proposed to involve oxidative stress. Inducible nitric oxide synthase (iNOS) is upregulated in hyperhomocysteinemia and can generate superoxide. We therefore tested the hypothesis that iNOS mediates the adverse oxidative, vascular, thrombotic, and cardiac effects of hyperhomocysteinemia. Mice deficient in iNOS (Nos2-/-) and their wild-type (Nos2+/+) littermates were fed a high methionine/low folate (HM/LF) diet to induce mild hyperhomocysteinemia, with a 2-fold increase in plasma total homocysteine (P<0.001 vs. control diet). Hyperhomocysteinemic Nos2+/+ mice exhibited endothelial dysfunction in cerebral arterioles, with impaired dilatation to acetylcholine but not nitroprusside, and enhanced susceptibility to carotid artery thrombosis, with shortened times to occlusion following photochemical injury (P<0.05 vs. control diet). Nos2-/- mice had decreased rather than increased dilatation responses to acetylcholine (P<0.05 vs. Nos2+/+ mice). Nos2-/- mice fed control diet also exhibited shortened times to thrombotic occlusion (P<0.05 vs. Nos2+/+ mice), and iNOS deficiency failed to protect from endothelial dysfunction or accelerated thrombosis in mice with hyperhomocysteinemia. Deficiency of iNOS did not alter myocardial infarct size in mice fed the control diet but significantly increased infarct size and cardiac superoxide production in mice fed the HM/LF diet (P<0.05 vs. Nos2+/+ mice). These findings suggest that endogenous iNOS protects from, rather than exacerbates, endothelial dysfunction, thrombosis, and hyperhomocysteinemia-associated myocardial ischemia-reperfusion injury. In the setting of mild hyperhomocysteinemia, iNOS functions to blunt cardiac oxidative stress rather than functioning as a source of superoxide.
Collapse
|
7
|
Ghasemi A, Zahediasl S, Azizi F. High serum nitric oxide metabolites and incident metabolic syndrome. Scand J Clin Lab Invest 2013; 72:523-30. [PMID: 23050497 DOI: 10.3109/00365513.2012.701322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Endothelial dysfunction, synonymous with reduced biological activity of nitric oxide, is related to all cardiovascular risk factors. Association between metabolic syndrome and nitric oxide metabolites (nitrite + nitrate = NO(x)) has been previously shown in cross-sectional studies. The aim of this study was to determine the ability of serum NO(x) levels in predicting the incidence of metabolic syndrome in a population-based study. METHODS Serum NO(x) levels measured in 2098 adult subjects, participants of Tehran Lipid and Glucose Study, without metabolic syndrome at baseline. After 3.3 years follow-up, logistic regression analysis was used to calculate the odds ratio (OR) and 95% confidence interval for developing metabolic syndrome, with serum NO(x) quartiles as independent variables. RESULTS Incident metabolic syndrome was diagnosed in 23.0% of men and 16.3% of women after 3.3 years. Age-adjusted risk for developing metabolic syndrome in women who had higher NO(x) values (above 75th percentile vs. lower 75th percentile) at baseline, was significantly higher [OR: 1.59 (1.11-2.27), p = 0.011]; OR remained significant after multivariable-adjustment including adjustment for components of metabolic syndrome [OR: 1.75 (1.19-2.59), p = 0.005]. Serum NO(x) could not predict the incidence of metabolic syndrome in men. CONCLUSIONS High serum NO(x) level is an independent predictor of incident metabolic syndrome in women, but not in men, a finding which presents serum NO(x) level as a potential biomarker for assessing cardiometabolic disturbances.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
8
|
Wang W, Lee Y, Lee CH. Review: the physiological and computational approaches for atherosclerosis treatment. Int J Cardiol 2012; 167:1664-76. [PMID: 23103138 DOI: 10.1016/j.ijcard.2012.09.195] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/23/2012] [Accepted: 09/26/2012] [Indexed: 01/13/2023]
Abstract
The cardiovascular disease has long been an issue that causes severe loss in population, especially those conditions associated with arterial malfunction, being attributable to atherosclerosis and subsequent thrombotic formation. This article reviews the physiological mechanisms that underline the transition from plaque formation in atherosclerotic process to platelet aggregation and eventually thrombosis. The physiological and computational approaches, such as percutaneous coronary intervention and stent design modeling, to detect, evaluate and mitigate this malicious progression were also discussed.
Collapse
Affiliation(s)
- Wuchen Wang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
9
|
Khazaei M, Mobarakeh JI, Rahimi AA, Razavi MR. Effect of chronic L-Arginine supplementation on aortic fatty streak formation and serum nitric oxide concentration in normal and high-cholesterol fed rabbits. ACTA ACUST UNITED AC 2012; 99:87-93. [PMID: 22425811 DOI: 10.1556/aphysiol.99.2012.1.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several reports indicated the beneficial effects of short-term L-Arginine (L-Arg) administration on atherosclerosis processes. The aim of this study was to evaluate the effect of chronic L-Arg supplementation on serum lipid profile, aortic Fatty Streak (FS) formation, and serum Nitric oxide (NO) concentration in Normal Diet (ND) and High-Cholesterol Diet (HCD) fed rabbits. 24 male rabbits were randomly divided into four groups (n=6 in each group) (i): ND for seven months; (ii): ND for 1 month plus ND + L-Arg for six months; (iii): HCD (1%) for 1 month plus HCD (0.5%) for six months; (iv): HCD (1%) for 1 month plus HCD (0.5%) + L-Arg for six months. At the end of the study, histological evaluation of aortic FS formation was performed. Blood samples were taken for serum lipid profile and NO concentrations. L-Arg did not change serum total cholesterol, triglyceride, LDL and LDL/HDL ratio in normal and hypercholesterolemic rabbits (p>0.05). Histological examination of thoracic aortae revealed that the HCD group had higher FS formation compared to the ND group (2.1 ± 0.16 vs. 0 ± 0; respectively; p<0.05) and L-Arg supplementation did not attenuate FS formation in the HCD group (1.93 ± 0.17 compare to 2.1 ± 0.16; p>0.05). Serum NO level in the HCD group was higher than ND groups (p<0.05). Chronic L-Arg supplementation did not alter serum NO concentration either in the hypercholesterolemic or in the ND group (p>0.05). It seems that chronic L-Arg supplementation does not have beneficial effects on aortic fatty streak formation, serum lipids and NO concentrations in this model of experimental hypercholesterolemia.
Collapse
Affiliation(s)
- M Khazaei
- Isfahan University of Medical Sciences Department of Physiology Isfahan Iran
| | | | | | | |
Collapse
|
10
|
Cha HN, Song SE, Kim YW, Kim JY, Won KC, Park SY. Lack of inducible nitric oxide synthase prevents lipid-induced skeletal muscle insulin resistance without attenuating cytokine level. J Pharmacol Sci 2012; 117:77-86. [PMID: 22001626 DOI: 10.1254/jphs.11093fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
We examined whether deletion of inducible nitric oxide synthase (iNOS) could prevent lipid infusion-induced insulin resistance in iNOS-knockout and wild-type mice with the in vivo euglycemic-hyperinsulinemic clamp technique. Plasma NO metabolites were increased in lipid-infused wild-type mice, while they were not increased in iNOS-knockout mice. Plasma tumor necrosis factor-α levels were increased in both wild-type and iNOS-knockout by lipid-infusion. Lipid infusion reduced glucose infusion rate (GIR) and whole body glucose uptake in wild-type mice, whereas iNOS-knockout mice displayed comparable GIR and whole body glucose uptake compared with the control. In the gastrocnemius, lipid infusion decreased glucose uptake and glycolysis that were accompanied with increased phosphorylation of c-Jun N-terminal kinase and reduced phosphorylation of phosphoinositide 3-kinases and serine/threonine kinase Akt. However, lipid infusion did not affect glucose uptake or phosphorylation of these proteins in iNOS-knockout mice. The mRNA levels of inflammatory cytokines were also increased in the gastrocnemis of wild-type and iNOS-knockout mice by lipid infusion. Nitrotyrosine level in the gastrocnemius was increased in lipid-infused wild-type mice but it was not increased in iNOS-knockout mice. These results suggest that lack of iNOS prevents lipid infusion-induced skeletal muscle insulin resistance without attenuating cytokine levels.
Collapse
Affiliation(s)
- Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, South Korea
| | | | | | | | | | | |
Collapse
|
11
|
Shen KP, Lin HL, Chang WT, An LM, Chen IJ, Wu BN. Suppression of inflammatory response and endothelial nitric oxide synthase downregulation in hyperlipidaemic C57BL/6J mice by eugenosedin-A. J Pharm Pharmacol 2011; 63:860-8. [DOI: 10.1111/j.2042-7158.2011.01285.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Objectives
Eugenosedin-A has been found to ameliorate high-fat diet (HFD)-induced hyperglycaemia and hyperlipidaemia in C57BL/6J mice. This study aimed to investigate the mechanisms of action of eugenosedin-A on endothelial function and inflammation in hyperlipidaemic mice.
Methods
C57BL/6J mice were randomly divided into two control groups and two treatment groups. The control mice received either a regular diet or HFD, and the treatment groups were fed HFD with either 5 mg/kg eugenosedin-A or atorvastatin for eight weeks.
Key findings
Mice fed a HFD had higher concentrations of nitrate (NO) but not prostaglandin E2 (PGE2), increased tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) mRNA and inducible nitric oxide synthase (iNOS) proteins, but decreased endothelial nitric oxide synthase (eNOS) proteins. HFD-induced upregulation of iNOS is associated with p38, extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK), PI3K and Akt/IKKα/p65. Eugenosedin-A and atorvastatin reduced HFD-induced TNF-α and IFN-γ mRNA, NO generation, upregulation of iNOS protein, and down-regulation of eNOS protein. Both agents inhibited p38, ERK, JNK and Akt/IKKα/p65 protein levels in the aorta. However, eugenosedin-A did not significantly reduce p38 in the liver.
Conclusions
Our results showed an association between obesity-induced inflammation and altered levels of TNF-α, IFN-γ, p38, ERK, JNK and Akt/IKKα/p65. Eugenosedin-A, like atorvastatin, could inhibit p38, ERK, JNK, Akt/IKKα/p65 proteins, as well as TNF-α and IFN-γ mRNA during the regulation of the obesity-induced inflammatory process.
Collapse
Affiliation(s)
- Kuo-Ping Shen
- Department of Early Childhood Care and Education, Meiho Institute of Technology, Pingtung, Taiwan
| | - Hui-Li Lin
- Department of Food and Nutrition, Meiho Institute of Technology, Pingtung, Taiwan
| | - Wen-Tsan Chang
- Division of Hepatobiliarypancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Taiwan
| | - Li-Mei An
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Atheroprotective effects of dietary L-arginine increase with age in cholesterol-fed rabbits. Br J Nutr 2011; 105:1439-47. [PMID: 21269531 DOI: 10.1017/s0007114510005234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
NO has several putative atheroprotective properties but its precursor, L-arginine, and inhibitors of its synthesis have had inconsistent effects on the extent of experimental atherosclerosis in rabbits. The location and character of experimental atherosclerosis differ between immature and mature rabbits; both phenomena have been attributed to changes with age in the NO pathway. We investigated whether the influence of dietary L-arginine on experimental atherosclerosis is also age-related. The frequency of lesions was mapped in the descending thoracic and upper abdominal aorta of immature and mature rabbits fed 1 % cholesterol, with or without supplementary L-arginine, for 8 weeks. Consistent with earlier data, the distribution of lesions around the branch points changed with age in control rabbits. The mean frequency of lesions was essentially the same at both ages. L-Arginine supplements had no effect on the distribution of lesions at either age. They significantly reduced the mean frequency of lesions in mature animals but not in immature animals. Thus, the atheroprotective effect of dietary L-arginine in cholesterol-fed rabbits increases with age.
Collapse
|
13
|
Wang P, Sun H, Lv H, Sun W, Yuan Y, Han Y, Wang D, Zhang A, Wang X. Thyroxine and reserpine-induced changes in metabolic profiles of rat urine and the therapeutic effect of Liu Wei Di Huang Wan detected by UPLC-HDMS. J Pharm Biomed Anal 2010; 53:631-45. [DOI: 10.1016/j.jpba.2010.04.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/25/2010] [Accepted: 04/26/2010] [Indexed: 12/28/2022]
|
14
|
Enhancement of interleukin-1β-induced iNOS expression in cultured vascular smooth muscle cells of Goto–Kakizaki diabetes rats. Eur J Pharmacol 2010; 629:1-6. [DOI: 10.1016/j.ejphar.2009.11.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/18/2009] [Accepted: 11/24/2009] [Indexed: 11/23/2022]
|
15
|
Nachtigal P, Kopecky M, Solichova D, Zdansky P, Semecky V. The changes in the endothelial expression of cell adhesion molecules and iNOS in the vessel wall after the short-term administration of simvastatin in rabbit model of atherosclerosis. J Pharm Pharmacol 2010; 57:197-203. [PMID: 15720783 DOI: 10.1211/0022357055353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Cell adhesion molecules P-selectin, VCAM-1 and ICAM-1 play an important role in the pathogenesis of atherosclerosis. High levels of nitric oxide (NO) produced by inducible NO synthase (iNOS) have been associated with atherosclerotic processes. Simvastatin is an HMG-CoA reductase inhibitor responsible for many clinical benefits. The aim of this study was to detect and quantify changes in endothelial expression of P-selectin, VCAM-1, ICAM-1 and iNOS in the vessel wall after the short-term administration of simvastatin in a rabbit model of atherosclerosis. Eighteen New Zealand White rabbits were randomly divided into three groups (n = 6). In the cholesterol group, rabbits consumed an atherogenic diet (0.4% cholesterol) for eight weeks. In the simvastatin group, rabbits consumed an atherogenic diet for six weeks and then consumed an atherogenic diet supplemented with simvastatin (10 mg kg−1) for two weeks. Biochemical analysis showed that administration of simvastatin led to an almost two-fold lowering of the total serum cholesterol, VLDL, LDL and HDL, but not triglycerides, compared with the cholesterol-fed rabbits only. Stereological analysis of the immuno-histochemical staining revealed that administration of simvastatin (10 mg kg−1 daily) in an atherogenic diet decreased the endothelial expression of P-selectin, ICAM-1 and iNOS in both aortic arch and carotid artery compared with the cholesterol fed-rabbits only. We conclude that simvastatin has beneficial effects on endothelial function by decreasing expression of P-selectin, ICAM-1 and iNOS in endothelial cells in the very early stages of atherogenesis.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiology
- Aorta, Thoracic/ultrastructure
- Arteriosclerosis/chemically induced
- Arteriosclerosis/drug therapy
- Arteriosclerosis/physiopathology
- Carotid Arteries/pathology
- Carotid Arteries/physiology
- Carotid Arteries/ultrastructure
- Cell Adhesion Molecules/blood
- Cell Adhesion Molecules/drug effects
- Cell Adhesion Molecules/genetics
- Cholesterol/blood
- Cholesterol/chemistry
- Diet, Atherogenic
- Disease Models, Animal
- Drug Administration Schedule
- Endothelial Cells/physiology
- Immunohistochemistry/methods
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type II
- Rabbits
- Simvastatin/administration & dosage
- Simvastatin/pharmacokinetics
- Simvastatin/therapeutic use
- Time Factors
Collapse
Affiliation(s)
- Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy, Charles University Hradec Kralove, Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic.
| | | | | | | | | |
Collapse
|
16
|
Cai XJ, Chen L, Li L, Feng M, Li X, Zhang K, Rong YY, Hu XB, Zhang MX, Zhang Y, Zhang M. Adiponectin inhibits lipopolysaccharide-induced adventitial fibroblast migration and transition to myofibroblasts via AdipoR1-AMPK-iNOS pathway. Mol Endocrinol 2009; 24:218-28. [PMID: 19889816 DOI: 10.1210/me.2009-0128] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adiponectin is an important antiatherogenic adipocytokine that inhibits inflammation, insulin resistance, and oxide stress. Inflammation in the vascular adventitia is a crucial factor in the pathogenesis of atherosclerosis. Adventitial fibroblasts (AFs) can proliferate, divide into myofibroblasts, and migrate to the intima to become a new component of atherosclerotic plaque under inflammation and atherosclerosis. We investigated whether adiponectin might prevent AFs from proliferating, migrating, and transforming into myofibroblasts. Cultured AFs were stimulated with lipopolysaccharide (LPS) in the presence or absence of adiponectin. Methyl thiazolyl tetrazolium assay and migration and scratch-wound assays demonstrated that adiponectin reduced the AF proliferation and migration induced by LPS, respectively, whereas treatment with AdipoR1 small interfering (si) RNA (siAdipoR1), AMP-activated protein kinase (AMPK) siRNA (siAMPK), and an AMPK inhibitor reversed the effect. Immunocytochemistry and Western blot revealed that adiponectin reduced the transition of AFs to myofibroblasts, and treatment with siAdipoR1, siAMPK, and the AMPK inhibitor increased the transition. RT-PCR, Western blotting, and nitric oxide (NO) assay showed that adiponectin reduces induced NO synthase (iNOS) and nitrotyrosine expression and NO and ONOO(-) production induced by LPS. Treatment with siAdipoR1, siAMPK, and the AMPK inhibitor significantly attenuated adiponectin-induced phosphorylation of AMPK and its downstream target acetyl-coenzyme A carboxylase and up-regulated iNOS mRNA and protein expression, which resulted in a marked increase of NO and ONOO(-) production. In apolipoprotein E-deficient mice, immunohistochemistry of treated vascular adventitia showed that both iNOS expression and ONOO(-) production could be reversed with an adenovirus-adiponectin vector. Taken together, these results suggest that adiponectin reduces LPS-induced NO production and nitrosative stress and prevents AFs from proliferating, transforming to myoflbroblasts, and migrating to the intima, thus worsening atherosclerosis, by inhibiting the AdipoR1-AMPK-iNOS pathway in AFs.
Collapse
Affiliation(s)
- Xiao-jun Cai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tanaka J, Qiang L, Banks AS, Welch CL, Matsumoto M, Kitamura T, Ido-Kitamura Y, DePinho RA, Accili D. Foxo1 links hyperglycemia to LDL oxidation and endothelial nitric oxide synthase dysfunction in vascular endothelial cells. Diabetes 2009; 58:2344-54. [PMID: 19584310 PMCID: PMC2750207 DOI: 10.2337/db09-0167] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Atherosclerotic cardiovascular disease is the leading cause of death among people with diabetes. Generation of oxidized LDLs and reduced nitric oxide (NO) availability because of endothelial NO synthase (eNOS) dysfunction are critical events in atherosclerotic plaque formation. Biochemical mechanism leading from hyperglycemia to oxLDL formation and eNOS dysfunction is unknown. RESEARCH DESIGN AND METHODS We show that glucose, acting through oxidative stress, activates the transcription factor Foxo1 in vascular endothelial cells. RESULTS Foxo1 promotes inducible NOS (iNOS)-dependent NO-peroxynitrite generation, which leads in turn to LDL oxidation and eNOS dysfunction. We demonstrate that Foxo1 gain-of-function mimics the effects of hyperglycemia on this process, whereas conditional Foxo1 knockout in vascular endothelial cells prevents it. CONCLUSIONS The findings reveal a hitherto unsuspected role of the endothelial iNOS-NO-peroxynitrite pathway in lipid peroxidation and eNOS dysfunction and suggest that Foxo1 activation in response to hyperglycemia brings about proatherogenic changes in vascular endothelial cell function.
Collapse
Affiliation(s)
- Jun Tanaka
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Li Qiang
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Alexander S. Banks
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Carrie L. Welch
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Michihiro Matsumoto
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Yukari Ido-Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Ronald A. DePinho
- Center for Applied Cancer Science, Departments of Medical Oncology, Medicine and Genetics, and Belfer Institute for Innovative Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Domenico Accili
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
- Corresponding author: Domenico Accili,
| |
Collapse
|
18
|
Oral supplementation with L-aspartate and L-glutamate inhibits atherogenesis and fatty liver disease in cholesterol-fed rabbit. Amino Acids 2009; 38:1323-31. [PMID: 19701712 DOI: 10.1007/s00726-009-0340-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 08/08/2009] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that dietary supplementation with L-aspartate and L-glutamate inhibits fatty streak initiation in cholesterol-fed rabbit. The present study investigates the role of dicarboxylic amino acids on the progression of fatty streaks and the development of fatty liver disease, which were caused in New Zealand White rabbits after a 0.5% w/w cholesterol diet for 7 weeks. A group of animals additionally received a combination of 12.5 mM L-aspartate and 12.5 mM L-glutamate per day through drinking water. Total cholesterol (TC), high-density lipoproteins cholesterol (HDLC), non-HDLC and triacylglycerol (TAG) concentrations were measured in plasma. Serum gamma-glutamyl transferase (gamma-GT), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were also determined. At the end of dietary intervention, animals were sacrificed. Aortic, hepatic and brain lesions were evaluated after staining with hematoxylin and eosin. Supplementation with dicarboxylic amino acids inhibited the progression of aortic intima thickness (P < 0.05) and the development of liver lesions (P < 0.05). TC, non-HDLC and TAG were similarly increased in both cholesterol-fed groups. Serum gamma-GT and AST activities elevated during the study in all cholesterol-fed animals but the elevation of gamma-GT was milder and significantly lower in rabbits treated with L-aspartate and L-glutamate (P < 0.05). ALT activity was not affected by cholesterol feeding. In conclusion, oral supplementation with L-aspartate and L-glutamate inhibits the progression of atherogenesis and the development of fatty liver disease in the animal model of cholesterol-fed rabbit. The beneficial effects of dicarboxylic amino acids reflect the limited elevation of serum gamma-GT activity.
Collapse
|
19
|
Ponnuswamy P, Ostermeier E, Schröttle A, Chen J, Huang PL, Ertl G, Nieswandt B, Kuhlencordt PJ. Oxidative stress and compartment of gene expression determine proatherosclerotic effects of inducible nitric oxide synthase. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2400-10. [PMID: 19465644 DOI: 10.2353/ajpath.2009.080730] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genetic and pharmacological inhibition of inducible nitric oxide synthase (iNOS) decreases atherosclerosis development. Potential proatherogenic effects of iNOS include iNOS mediated oxidative stress and iNOS expression in different cellular compartments. Lesional iNOS can potentially produce nitric oxide radicals (NO), superoxide radicals (O2(-)), or both; these radicals may then react to form peroxynitrite. Alternatively, O2(-) radicals from oxidases co-expressed with iNOS could react with NO to produce peroxynitrite. Therefore, the expression profiles of the genes that modulate the redox system in different iNOS-expressing cell compartments may determine the role of iNOS in atherosclerosis. We used apoE (apoE(-/-)) and apoE/iNOS double knockout (apoE(-/-)/ iNOS(-/-)) mice to assess vascular NO, O2(-), and peroxynitrite formation by electron spin resonance spectroscopy, high performance liquid chromatography, and 3-nitrotyrosine staining. The relevance of the iNOS expressing cell compartment was tested by bone marrow transplantation. We show that iNOS significantly contributes to vascular NO production and itself produces O2(-), leading to peroxynitrite formation in atherosclerotic lesions. Our bone marrow transplantation experiments show that bone marrow derived cells exclusively mediate the proatherosclerotic effects of iNOS in males, while both parenchymal and bone marrow derived iNOS equally contribute to atherosclerosis in females. Moreover, iNOS expression affects vascular remodeling. These findings establish for the first time that the proatherosclerotic effects of iNOS vary with sex in addition to the compartment of its expression.
Collapse
Affiliation(s)
- Padmapriya Ponnuswamy
- Medizinische Poliklinik, Standort Innenstadt, Ludwig Maximilians University, Pettenkoferstrasse-8a, 80336 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
González GE, Seropian IM, Krieger ML, Palleiro J, Lopez Verrilli MA, Gironacci MM, Cavallero S, Wilensky L, Tomasi VH, Gelpi RJ, Morales C. Effect of early versus late AT(1) receptor blockade with losartan on postmyocardial infarction ventricular remodeling in rabbits. Am J Physiol Heart Circ Physiol 2009; 297:H375-86. [PMID: 19429818 DOI: 10.1152/ajpheart.00498.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To characterize the temporal activation of the renin-angiotensin system after myocardial infarction (MI) in rabbits, we examined cardiac ANG II type 1 receptor (AT(1)R) expression and ANG II levels from 3 h to 35 days. The effects of losartan (12.5 mg.kg(-1).day(-1)) on functional and histomorphometric parameters when treatment was initiated early (3 h) and late (day 15) post-MI and maintained for different periods of time [short term (4 days), midterm (20 days), and long term (35 days)] were also studied. AT(1)R expression increased in the MI zone at 15 and 35 days (P < 0.05). ANG II levels increased (P < 0.05) in the non-MI zone at 24 h and in the MI zone as well as in plasma at 4 days and then progressively decreased until 35 days. The survival rate was significantly lower in untreated MI and early long-term-treated animals. Diastolic pressure-volume curves in MI at 35 and 56 days shifted to the right (P < 0.05). This shift was even more pronounced in long-term-treated groups (P < 0.05). Contractility decreased (P < 0.05 vs. sham) in the untreated and long-term-treated groups and was attenuated in the midterm-treated group. The early administration of losartan reduced RAM 11-positive macrophages from 4.15 +/- 0.05 to 3.05 +/- 0.02 cells/high-power field (HPF; P < 0.05) and CD45 RO-positive lymphocytes from 2.23 +/- 0.05 to 1.48 +/- 0.01 cells/HPF (P < 0.05) in the MI zone at 4 days. Long-term treatment reduced the scar collagen (MI: 70.50 +/- 2.35% and MI + losartan: 57.50 +/- 2.48, P < 0.05), determined the persistency of RAM 11-positive macrophages (3.02 +/- 0.13 cells/HPF) and CD45 RO-positive lymphocytes (2.77 +/- 0.58 cells/HPF, P < 0.05 vs. MI), and reduced the scar thinning ratio at 35 days (P < 0.05). Consequently, the temporal expressions of cardiac AT(1)R and ANG II post-MI in rabbits are different from those described in other species. Long-term treatment unfavorably modified post-MI remodeling, whereas midterm treatment attenuated this harmful effect. The delay in wound healing (early reduction and late persistency of inflammatory infiltrate) and adverse remodeling observed in long-term-treated animals might explain the unfavorable effect observed in rabbits.
Collapse
Affiliation(s)
- Germán E González
- Institute of Cardiovascular Physiopathology, Department of Pathology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Terra X, Fernández-Larrea J, Pujadas G, Ardèvol A, Bladé C, Salvadó J, Arola L, Blay M. Inhibitory effects of grape seed procyanidins on foam cell formation in vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:2588-2594. [PMID: 19292475 DOI: 10.1021/jf803450a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human and animal studies have demonstrated that procyanidin-rich diets reduce the risk of cardiovascular diseases and atherosclerosis. Some beneficial effects have been attributed to the well-known antioxidant activity of procyanidins. This study investigated another potential corrective role of procyanidins in cholesterol flux and inflammation in macrophage-derived foam cells. RAW 264.7 macrophages were cultured with moderately oxidized LDL (oxLDL), minimally oxidized LDL (moxLDL), or LPS (0.5 microg/mL) and oxLDL (LPS + oxLDL) to induce foam cells. Then, cells were treated with procyanidins derived from grape seed (PE, 45 microg/mL) for the last 12 h of incubation with the different lipoproteins (25 microg/mL). After lipid extraction, it was determined that total and esterified cholesterol and triglyceride accumulations in foam cells were increased by lipoprotein treatment but reduced by PE incubation. To asses the effect of PE on gene expression, the relative mRNA levels of CD36, ABCA1, iNOS, COX-2, and IkappaBalpha were determined by RT-PCR. It was shown that PE reduced the oxLDL scavenger receptor expression (CD36) and enhanced ATP-binding cassette A1 (ABCA1) expression, a key regulator of macrophage cholesterol efflux. PE also down-regulated inflammatory-related genes such as inducible nitric oxide synthase (iNOS) and kappa beta inhibitor-alpha (IkappaBalpha) without modifying COX-2 expression. In conclusion, evidence is provided that procyanidins may attenuate the development of foam cell formation by reducing cholesterol accumulation and modulating the expression of key genes in cholesterol flux and inflammation.
Collapse
Affiliation(s)
- Ximena Terra
- Department of Biochemistry and Biotechnology, Unitat d'Enologia del Centre de Referencia en Tecnologia dels Aliments de la Generalitat de Catalunya, Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nachtigal P, Pospisilova N, Vecerova L, Micuda S, Brcakova E, Pospechova K, Semecky V. Atorvastatin Increases Endoglin, SMAD2, Phosphorylated SMAD2/3 and eNOS Expression in ApoE/LDLR Double Knockout Mice. J Atheroscler Thromb 2009; 16:265-74. [DOI: 10.5551/jat.e745] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
23
|
Hamilton RT, Asatryan L, Nilsen JT, Isas JM, Gallaher TK, Sawamura T, Hsiai TK. LDL protein nitration: implication for LDL protein unfolding. Arch Biochem Biophys 2008; 479:1-14. [PMID: 18713619 PMCID: PMC2649963 DOI: 10.1016/j.abb.2008.07.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 07/12/2008] [Accepted: 07/17/2008] [Indexed: 01/06/2023]
Abstract
Oxidatively- or enzymatically-modified low-density lipoprotein (LDL) is intimately involved in the initiation and progression of atherosclerosis. The in vivo modified LDL is electro-negative (LDL(-)) and consists of peroxidized lipid and unfolded apoB-100 protein. This study was aimed at establishing specific protein modifications and conformational changes in LDL(-) assessed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) and circular dichroism analyses, respectively. The functional significance of these chemical modifications and structural changes were validated with binding and uptake experiments to- and by bovine aortic endothelial cells (BAEC). The plasma LDL(-) fraction showed increased nitrotyrosine and lipid peroxide content as well as a greater cysteine oxidation as compared with native- and total-LDL. LC/MS/MS analyses of LDL(-) revealed specific modifications in the apoB-100 moiety, largely involving nitration of tyrosines in the alpha-helical structures and beta(2) sheet as well as cysteine oxidation to cysteic acid in beta(1) sheet. Circular dichroism analyses showed that the alpha-helical content of LDL(-) was substantially lower ( approximately 25%) than that of native LDL ( approximately 90%); conversely, LDL(-) showed greater content of beta-sheet and random coil structure, in agreement with unfolding of the protein. These results were mimicked by treatment of LDL subfractions with peroxynitrite (ONOO(-)) or SIN-1: similar amino acid modifications as well as conformational changes (loss of alpha-helical structure and gain in beta-sheet structure) were observed. Both LDL(-) and ONOO(-)-treated LDL showed a statistically significant increase in binding and uptake to- and by BAEC compared to native LDL. We further found that most binding and uptake in control-LDL was through LDL-R with minimal oxLDL-R-dependent uptake. ONOO(-)-treated LDL was significantly bound and endocytosed by LOX-1, CD36, and SR-A with minimal contribution from LDL-R. It is suggested that lipid peroxidation and protein nitration may account for the mechanisms leading to apoB-100 protein unfolding and consequential increase in modified LDL binding and uptake to and by endothelial cells that is dependent on oxLDL scavenger receptors.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Apolipoprotein B-100/chemistry
- Apolipoprotein B-100/metabolism
- Cattle
- Cells, Cultured
- Cysteine/metabolism
- Dose-Response Relationship, Drug
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Humans
- Lipid Peroxidation/drug effects
- Lipid Peroxides/analysis
- Lipoproteins, LDL/chemistry
- Lipoproteins, LDL/isolation & purification
- Lipoproteins, LDL/metabolism
- Models, Chemical
- Molsidomine/analogs & derivatives
- Molsidomine/pharmacology
- Oxidation-Reduction
- Peroxynitrous Acid/pharmacology
- Protein Conformation/drug effects
- Protein Denaturation
- Protein Processing, Post-Translational
- Protein Structure, Secondary
- Proteins/chemistry
- Proteins/metabolism
- Reproducibility of Results
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Ryan T. Hamilton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Liana Asatryan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Jon T. Nilsen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Jose M. Isas
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
| | - Timothy K. Gallaher
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Tatsuya Sawamura
- Department of Pharmaceutical Sciences and Division of Cell Biology, Department of Bioscience, National Cardiovascular Center Research Institute, Osaka University, Japan
| | - Tzung K. Hsiai
- Department of Biomedical Engineering and Division of Cardiovascular Medicine, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
24
|
Zahedi Asl S, Ghasemi A, Azizi F. Serum nitric oxide metabolites in subjects with metabolic syndrome. Clin Biochem 2008; 41:1342-7. [PMID: 18793628 DOI: 10.1016/j.clinbiochem.2008.08.076] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/22/2008] [Accepted: 08/14/2008] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Evidence are available showing that higher nitric oxide production is associated with metabolic disorders. The aim of this study was to determine serum nitric oxide metabolites (NOx) concentration in subjects with metabolic syndrome (MetS). DESIGN AND METHODS In a cross-sectional study, NOx was measured in 3505 subjects, aged 20-94 years, using the Griess reaction. After excluding subjects taking medications for hypertension and dyslipidemia, data for 3148 subjects were analyzed. RESULTS There was a direct association between the numbers of metabolic risk factors and serum NOx values in both genders (p for trend<0.05). After multivariable adjustment, serum NOx concentration was significantly higher in subjects with MetS [(31.9 (29.4-34.6) vs. 29.8 (27.6-32.1), p<0.01) or type 2 diabetes (34.6 (31.3-38.2) vs. 30.2 (27.9-32.6), p<0.001) as compared to their corresponding controls. CONCLUSIONS Higher NOx concentrations in subjects with MetS and type 2 diabetes support the existing hypothesis that NO overproduction affects insulin's metabolic actions.
Collapse
Affiliation(s)
- Saleh Zahedi Asl
- Endocrine Physiology Laboratory, Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University (M.C.), Tehran, Iran
| | | | | |
Collapse
|
25
|
Oxidative stress in children late after Kawasaki disease: relationship with carotid atherosclerosis and stiffness. BMC Pediatr 2008; 8:20. [PMID: 18466622 PMCID: PMC2396619 DOI: 10.1186/1471-2431-8-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 05/08/2008] [Indexed: 02/07/2023] Open
Abstract
Background Persistent arterial dysfunction in patients with a history of Kawasaki disease (KD) and an integral role of oxidative stress in the development of cardiovascular disease are increasingly recognized. We sought to test the hypothesis that oxidative stress is increased in KD patients and related to carotid atherosclerotic changes and stiffness. Methods We compared the serum levels of oxidative stress biomarkers, carotid intima-media thickness (IMT), and carotid stiffness index among KD patients with coronary aneurysms (n = 32), those without coronary complications (n = 19), and controls (n = 32). Results Compared with controls, patients with coronary aneurysms had significantly higher serum levels of malonaldehyde (2.62 ± 0.12 μM vs 2.22 ± 0.07 μM, p = 0.014) and hydroperoxides (26.50 ± 1.13 μM vs 22.50 ± 0.62 μM, p = 0.008). A linear trend of the magnitude of oxidative stress in relation to inflammatory damage was observed for malonaldehyde (p = 0.018) and hydroperoxides (p = 0.014) levels. Serum malonaldehyde and hydroperoxide levels correlated positively with carotid IMT (p < 0.001 and p = 0.034, respectively) and stiffness index (p = 0.001 and p = 0.021, respectively). Multiple linear regression analysis identified serum malonaldehyde level as a significant determinant of carotid IMT (β = 0.31, p = 0.006) and stiffness (β = 0.27, p = 0.008). Conclusion Our findings suggest oxidative stress is increased in KD patients with coronary aneurysms and is associated with carotid intima-media thickening and stiffening.
Collapse
|
26
|
Abstract
Hyperhomocysteinemia is a risk factor for cardiovascular disease, stroke, and thrombosis. Several animal models of hyperhomocysteinemia have been developed by using both dietary and genetic approaches. These animal models have provided considerable insight into the mechanisms underlying the adverse vascular effects of hyperhomocysteinemia. Accumulating evidence suggests a significant role of altered cellular redox reactions in the vascular phenotype of hyperhomocysteinemia. Redox effects of hyperhomocysteinemia are particularly important in mediating the adverse effects of hyperhomocysteinemia on the endothelium, leading to loss of endothelium-derived nitric oxide and vasomotor dysfunction. Redox reactions also may be key factors in the development of vascular hypertrophy, thrombosis, and atherosclerosis in hyperhomocysteinemic animals. In this review, we summarize the metabolic relations between homocysteine and the cellular redox state, the vascular phenotypes that have been observed in hyperhomocysteinemic animals, the evidence for altered redox reactions in vascular tissue, and the specific redox reactions that may mediate the vascular effects of hyperhomocysteinemia.
Collapse
Affiliation(s)
- Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | |
Collapse
|
27
|
Sato M, Sato H, Ogawa A, Nomura R, Takashima S, Bang HJ, Matsuoka H, Imaizumi K. Antiatherogenic effect of isoflavones in ovariectomized apolipoprotein e-deficient mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:8967-71. [PMID: 17902622 DOI: 10.1021/jf071771q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The consumption of isoflavone-containing foods such as soybean and soybean products has been reported to have beneficial effects on the cardiovascular system in postmenopausal women. The present study was carried out to examine the mechanism underlying the beneficial effects of isoflavones in apolipoprotein (apo) E-deficient mice subjected to ovarian resection. Compared with sham-operated mice, ovariectomized mice had a larger arterial lesion area in the aortic root. Feeding the ovariectomized mice an isoflavone-containing diet (0.055 mg/kJ of total isoflavones/cal of diet) reduced the size of these lesions more than did feeding them with an isoflavone-free diet. Neither ovariectomy nor diet had a significant effect on the concentration of cholesterol in serum and urinary levels of isoprostanes, which are biomarkers for oxidative stress in vivo. The ovariectomized mice showed a greater increase in mRNA abundance for monocyte chemoattractant protein (MCP)-I in the aorta and in the level of nitric oxide (NO) secreted by peritoneal macrophages in culture than did the sham-operated mice. The isoflavone-containing diet lowered the MCP-I expression and the NO secretion more than did the isoflavone-free diet. These results suggest that dietary isoflavones confer an antiatherogenic effect by preventing the activation of macrophages due to the removal of ovaries.
Collapse
Affiliation(s)
- Masao Sato
- Laboratory of Nutrition Chemistry, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cai XJ, Li CJ, Chen L, Rong YY, Zhang Y, Zhang M. A hypothesis: adiponectin mediates anti-atherosclerosis via adventitia-AMPK-iNOS pathway. Med Hypotheses 2007; 70:1044-7. [PMID: 17910991 DOI: 10.1016/j.mehy.2007.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 11/23/2022]
Abstract
Adiponectin is an adipocyte-derived protein with insulin-sensitizing, anti-inflammatory, and anti-atherogenic properties and is abundantly found in plasma. Vascular adventitia is the outermost connective and supporting tissue of vessels. Recently, increasing evidence has shown that infection in the adventitia is one of the causes of atherosclerosis and restenosis. Our previous study indicated that local transferring adenovirus expressing adiponectin gene (Ad-APN) to intima and adventitia can suppress atherosclerosis, but the exact mechanism is still obscure. We speculate that with infection in the adventitia, adiponectin can activate AMP-activated protein kinase (AMPK) through adiponectin receptors in the membranes of adventitial fibroblasts and then inhibit the expression and activity of inducible nitric oxide synthase (iNOS); secretion of adventitial infective factors; division, proliferation and translation of adventitial fibroblasts; and change of adventitial fibroblasts to myofibroblasts, finally decreasing oxidative/nitrative stress to reduce atherosclerotic plaque area and stabilize atherosclerotic plaques. The proposition may provide clues into the development of a novel treatment for atherosclerosis.
Collapse
Affiliation(s)
- Xiao-jun Cai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Atherothrombosis is a complex disease which includes two different pathologies: atherosclerosis, the process of plaque formation in the arterial wall and thrombosis, the formation of a blood clot mostly at the site of a ruptured atherosclerotic lesion. Animal models for both pathologies have been useful to understand their aetiology and their evolution and they were used to evaluate the efficacy of new treatments. Numerous models to study venous and arterial thrombosis have been described. Thus in the rat, venous thrombosis induced by lesion/stasis, e.g. in the vena cava, and arterial thrombosis by lesioning of the vessel wall are frequently used. The resulting blood clot formation is measured either directly (weight of the thrombus) or indirectly (reduction in blood flow). More complex models have been developed in large animals such as dogs and pigs in order to examine coronary thrombosis; the principle always being the arterial lesion that causes the thrombus formation. The effect of the TP-receptor antagonist terutroban (S 18886) on different thrombosis models has been evaluated and this has allowed to conclude on the powerful anti-thrombotic effects of this agent and has contributed to its progression into clinical development. In the past the most frequently used model of atherosclerosis was the hypercholesterolemic rabbit; both plaque formation and its consequences on vascular, endothelial, function have been largely studied in this model. More recently genetically engineered mouse models of atherosclerosis have been introduced and they are now largely studied to characterize the disease and to evaluate new drugs. The two models mostly used are the ApoE(-/-) and the LDL receptor(-/-) mice. Studies with terutroban have illustrated that this TP-receptor antagonist prevents lesion formation in mouse and rabbit models illustrating its interesting anti-atherosclerotic properties and demonstrating the role played by endothelial TP-receptors in atherogenesis. In conclusion, experimental models to study atherosclerosis and thrombosis have been developed and used to study the etiology and the evolution of atherothrombotic disease. They have also been of great value to predict anti-thrombotic and/or anti-atherosclerotic properties of new substances such as terutroban, that may become novel treatments for this complex cardiovascular disease.
Collapse
Affiliation(s)
- Tony J Verbeuren
- Division Angiology, Institut de Recherches Servier, Suresnes, France.
| |
Collapse
|
30
|
Kang JS, Yoon YD, Han MH, Han SB, Lee K, Park SK, Kim HM. Equol inhibits nitric oxide production and inducible nitric oxide synthase gene expression through down-regulating the activation of Akt. Int Immunopharmacol 2007; 7:491-9. [PMID: 17321472 DOI: 10.1016/j.intimp.2006.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 12/05/2006] [Accepted: 12/08/2006] [Indexed: 10/23/2022]
Abstract
In the present study, we report the inhibitory effect of equol on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression in murine macrophages. In vivo administration of equol (i.p.) attenuated NO production by peritoneal adherent cells isolated from lipopolysaccharide (LPS)-treated mice. Equol dose-dependently inhibited the LPS-induced production of NO in isolated peritoneal adherent cells and RAW 264.7 cells. The mRNA expression of iNOS was also blocked by equol in LPS-stimulated RAW 264.7 cells. Further study demonstrated that the LPS-induced activation of Akt was suppressed by equol in RAW 264.7 cells while the activation of ERK, SAPK/JNK and p38 MAP kinase was not affected. Equol also blocked LPS-induced NF-kappaB activation. Moreover, the LPS-induced NO production and NF-kappaB activation was inhibited by LY294002, a specific inhibitor of phosphatidylinositol 3-kinase/Akt pathway, in RAW 264.7 cells. These results suggest that equol might inhibit NO production and iNOS gene expression, at least in part, by blocking Akt activation and subsequent down-regulation of NF-kappaB activity.
Collapse
Affiliation(s)
- Jong Soon Kang
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Taejon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Wang BS, Chang LW, Yen WJ, Duh PD. Antioxidative effect of sesame coat on LDL oxidation and oxidative stress in macrophages. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Wang BS, Yen GC, Chang LW, Yen WJ, Duh PD. Protective effects of burdock (Arctium lappa Linne) on oxidation of low-density lipoprotein and oxidative stress in RAW 264.7 macrophages. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.01.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the Western world. Its incidence has been increasing lately in developing countries. Several lines of evidence support a role for oxidative stress in atherogenesis. Growing evidence indicates that chronic and acute overproduction of reactive oxygen species (ROS) under pathophysiologic conditions is integral in the development of cardiovascular diseases (CVD). ROS mediate various signaling pathways that underlie vascular inflammation in atherogenesis from the initiation of fatty streak development through lesion progression to ultimate plaque rupture. Various animal models of oxidative stress support the notion that ROS have a causal role in atherosclerosis and other cardiovascular diseases. Human investigations also support the oxidative stress hypothesis of atherosclerosis. Oxidative stress is the unifying mechanism for many CVD risk factors, which additionally supports its central role in CVD. A main source of ROS in vascular cells is the reduced nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase system. This is a membrane-associated enzyme, composed of five subunits, catalyzing the one-electron reduction of oxygen, using NADH or NADPH as the electron donor. This system is an important target for genetic investigations. Identification of groups of patients with genetically prone or resistant of oxidative stress is therefore an obvious target of investigation. A better understanding of the complexity of cellular redox reactions, development of a new class of antioxidants targeted to specific subcellular sites, and the phenotype-genotype linkage analysis for oxidative stress will likely be avenues for future research with regards to the broader use of pharmacological therapies in the treatment and prevention of CVD.
Collapse
Affiliation(s)
- Uma Singh
- The Laboratory for Atherosclerosis and Metabolic Research, UC Davis Medical Center, Sacramento, CA, United States
| | | |
Collapse
|
34
|
Chen X, Niroomand F, Liu Z, Zankl A, Katus HA, Jahn L, Tiefenbacher CP. Expression of nitric oxide related enzymes in coronary heart disease. Basic Res Cardiol 2006; 101:346-53. [PMID: 16705470 DOI: 10.1007/s00395-006-0592-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 12/22/2005] [Indexed: 11/27/2022]
Abstract
Enzymes involved in the metabolism nitric oxide (NO) and reactive oxygen species (ROS) may play a role for the decreased availability of NO in atherosclerosis. We, therefore, hypothesized that the pattern of gene expression of these enzymes is altered in atherosclerosis. Myocardial tissue from patients with coronary heart disease (CHD) or without CHD (control group) was investigated. The level of enzymes related to NO/ROS metabolism was determined both at mRNA level and protein level by rt-PCR, real-time PCR, and western blot. The expression of NOS1-3 (synthesis of NO), arginase1 (reduction of L-arginine), p22phox (active subunit of NADPH oxidase), GTPCH (rate limiting enzyme for tetrahydrobiopterin), SOD1-3 (scavengers of superoxide anions), PRTMT1-3, and DDAH2 (involved in the metabolism of ADMA) was determined. All enzymes were found to be expressed in human myocardium. NOS isoforms were decreased in CHD in protein level, but only the downregulation of NOS3 expression reached statistical significance. The expression of PRMT1 and PRMT3 was increased. In addition, the expression of DDAH2 was reduced, both theoretically leading to an increase of ADMA concentration. SOD3 was downregulated in tissue from patients with CHD. Taken together, in myocardial tissue from patients with atherosclerosis, the expression of genes increasing ADMA levels is enhanced in contrast to a reduced expression of genes promoting NO synthesis. These results may contribute to the explanation of increased oxidative stress in atherosclerosis on the level of gene expression.
Collapse
Affiliation(s)
- X Chen
- Department of Cardiology, University of Heidelberg, INF 410, 69120, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Kasina S, Wasia R, Fasim A, Radhika KVN, Singh SS. Phorbol ester mediated activation of inducible nitric oxide synthase results in platelet profilin nitration. Nitric Oxide 2006; 14:65-71. [PMID: 16288977 DOI: 10.1016/j.niox.2005.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 08/05/2005] [Accepted: 09/27/2005] [Indexed: 01/16/2023]
Abstract
Nitric oxide is an important precursor for peroxynitrite production under in vivo conditions leading to cell injury and cell death. In platelets, a number of cytosolic and actin binding proteins were shown to be nitrated [K.M. Naseem, S.Y. Low, M. Sabetkar, N.J. Bradley, J. Khan, M. Jacobs, K.R. Bruckdorfer, The nitration of platelet cytosolic proteins during agonist-induced activation of platelets. FEBS Lett. 473 (1) (2000) 199-122 and M. Sabetkar, S.Y. Low, K.M. Naseem, K.R. Bruckdorfer, The nitration of proteins in platelets: significance in platelet function, Free Radic. Biol. Med. 33 (6) (2002) 728-736]. We investigated the possible mechanism that regulates profilin (an actin binding protein) nitration in platelets. Activation of bovine platelets with arachidonic acid, thrombin, and phorbol 12,13-dibutyrate resulted in nitration of profilin on tyrosine residue. In vivo profilin nitration showed a four- and eight-fold increase in the presence of thrombin and phorbol 12,13-dibutyrate, respectively. Analysis of nitroprofilin levels in the presence of NOS inhibitors (1400W and EGTA), indicated that profilin nitration in phorbol 12,13-dibutyrate treated platelets is mediated by inducible nitric oxide synthase. Phorbol ester treated platelets exhibited higher levels by inducible nitric oxide synthase (491% over control), while total nitric oxide synthase activity increased by 5% over control. Higher levels of peroxynitrite in platelets treated with phorbol 12,13-dibutyrate indicated that profilin nitration is mediated by peroxynitrite. Increase in phosphatidylinositol 3-kinase (PI 3-kinase) activity in platelets treated with thrombin and phorbol 12,13-dibutyrate indicates that nitration of platelet profilin could be mediated by PI 3-kinase. A decrease in the level of nitroprofilin in PDBu treated platelets in the presence of inducible nitric oxide synthase inhibitor, 1400W, was observed suggesting that profilin nitration is mediated by PI 3-kinase dependent activation of inducible nitric oxide synthase.
Collapse
Affiliation(s)
- S Kasina
- Department of Biochemistry, Osmania University, Hyderabad, India [corrected]
| | | | | | | | | |
Collapse
|
36
|
Nakai Y, Voisine P, Bianchi C, Xu SH, Feng J, Malik T, Rosinberg A, Sellke FW. Effects of L-arginine on the endogenous angiogenic response in a model of hypercholesterolemia. Surgery 2005; 138:291-8. [PMID: 16153439 DOI: 10.1016/j.surg.2005.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 06/01/2005] [Accepted: 06/05/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND The angiogenic properties of vascular endothelial growth factor and fibroblast growth factor-2 are mediated in part through nitric oxide release, whose availability is decreased in endothelial dysfunction associated with advanced coronary artery disease. We examined the influence of L-arginine supplementation on the endogenous angiogenic response to ischemia in a porcine model of hypercholesterolemia. METHODS Eighteen Yucatan pigs were fed either a normal (NORM, n=6) or a high-cholesterol diet, with (CHOL-ARG, n=6) or without (CHOL, n=6) L-arginine (100 mg/kg/day), throughout the experiment. All pigs underwent ameroid constrictor placement on the circumflex artery (LCx). Seven weeks later, endothelium-dependent coronary microvascular responses to fibroblast growth factor-2 and vascular endothelial growth factor were assessed by videomicroscopy. Perfusion was assessed with radioactive microspheres; angiogenesis was evaluated by platelet-endothelial cell adhesion molecule-1 (CD-31) staining. Regional myocardial function was assessed by sonomicrometry. Expression of endothelial nitric oxide synthase and inducible nitric oxide synthase was measured by Western blot analyses. RESULTS Pigs from the CHOL group showed significant endothelial dysfunction in the LCx territory. The dysfunction was normalized partially by L-arginine supplementation, which restored the response in the LCx territory to the level of the nonischemic anterior wall. L-arginine supplementation resulted in increases of perfusion, density of capillary endothelial, and level of endothelial nitric oxide synthase in the ischemic region. Despite these findings, no improvement in myocardial regional function was found. CONCLUSIONS L-arginine supplementation can partially restore endothelium-dependent vasorelaxation and improve myocardial perfusion in a swine model of chronic myocardial ischemia with hypercholesterolemia-induced endothelial dysfunction. These findings suggest a putative role for L-arginine in combination with growth factor therapy for end-stage coronary artery disease.
Collapse
Affiliation(s)
- Yasunari Nakai
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Reactive oxygen and nitrogen species (ROS and RNS) recently emerged as critical signaling molecules in cardiovascular research. Several studies over the past decade have shown that physiological effects of vasoactive factors are mediated by these reactive species and, conversely, that altered redox mechanisms are implicated in the occurrence of metabolic and cardiovascular diseases. Oxidant stress occurs when ROS and/or RNS production exceeds the cell natural antioxidant systems, and pathological events ensue. Cardiovascular risk factors are associated with an imbalance of the redox equilibrium toward oxidative stress, leading to endothelial activation and proinflammatory processes implicated in atherogenesis and metabolic disorders. Recent studies indicate that insulin and insulin-sensitizing drugs activate antiinflammatory pathways that may limit oxidant stress in insulin target tissues. The main goal of this brief review is to discuss recent progress in the field of cellular redox signaling as it pertains to insulin modulation of vascular endothelial function in cardiovascular diseases.
Collapse
Affiliation(s)
- Raymond Christon
- Lipides Membranaires et Fonctions Cardiovasculaires, UMR INRA-Université Paris XI, Faculté de Pharmacie, Châtenay-Malabry
| | | | | |
Collapse
|
38
|
Wang BS, Chen JH, Liang YC, Duh PD. Effects of Welsh onion on oxidation of low-density lipoprotein and nitric oxide production in macrophage cell line RAW 264.7. Food Chem 2005. [DOI: 10.1016/j.foodchem.2004.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Poteser M, Wakabayashi I. Serum albumin induces iNOS expression and NO production in RAW 267.4 macrophages. Br J Pharmacol 2004; 143:143-51. [PMID: 15289288 PMCID: PMC1575263 DOI: 10.1038/sj.bjp.0705897] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We investigated the effects of serum albumin on inducible nitric oxide synthase (iNOS) expression in RAW 267.4 macrophages. Crude fraction-V type albumin as well as bovine serum albumin filtrated for endotoxin induced concentration-dependent iNOS expression in macrophages. Accordingly, NO production (estimated by supernatant nitrite) was markedly (up to 10-fold) increased in the presence of albumin. 2. Albumin-induced expression of iNOS protein was inhibited by cycloheximide and NO production was abolished after incubation of the cells with an iNOS inhibitor, N(G)-monomethyl-l-arginine (LNMMA). 3. An inhibitor of the NF-kappaB pathway, pyrrolidine dithiocarbamate (PDTC), as well as inhibitors of JAK2/STAT and ERK, AG490 and U0126, respectively, significantly reduced albumin-induced iNOS expression and NO production, while an inhibitor of the p38 pathway, SB203580, did not significantly affect NO production induced by albumin. 4. Both types of serum albumin were contaminated with traces of endotoxin. The endotoxin levels were found not to be sufficient for the observed induction of nitrite production in RAW 267.4 cells. In addition, the albumin-stimulated induction of iNOS was not reduced by preincubation of albumin-containing media with polymyxin B, a LPS inhibitor. 5. Polymerised albumin fractions were detected in the commercially available albumin tested in this study. A monomeric albumin-rich fraction, separated by ultrafiltration, showed a potent inducing effect on iNOS expression and NO production, while a polymer-rich fraction showed a smaller effect. 6. Advanced glycation endproducts (AGE) of albumin were not formed by interaction with glucose in incubation medium, as AGE was not increased even after long-time (4 weeks) incubation in albumin-containing media [3.2-4.4 microg ml(-1) (basal) vs 4.8-5.6 microg ml(-1) (in glucose-containing media)]. However, the duration of albumin exposure to glucose influenced the basal stimulatory properties of albumin. 7. Our results suggest that serum albumin fractions, as gained by cold alcoholic extraction, may include determinants that stimulate or further enhance stimulation of RAW 267.4 cells and are different from endotoxin, polymeric albumin and AGE.
Collapse
Affiliation(s)
- Michael Poteser
- Department of Hygiene and Preventive Medicine, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Ichiro Wakabayashi
- Department of Hygiene and Preventive Medicine, Yamagata University School of Medicine, Yamagata 990-9585, Japan
- Author for correspondence:
| |
Collapse
|
40
|
Simonet S, Rupin A, Badier-Commander C, Coumailleau S, Behr-Roussel D, Verbeuren TJ. Evidence for superoxide anion generation in aortas of cholesterol-fed rabbits treated with l -arginine. Eur J Pharmacol 2004; 492:211-6. [PMID: 15178367 DOI: 10.1016/j.ejphar.2004.03.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 03/25/2004] [Indexed: 11/30/2022]
Abstract
The inducible form of nitric oxide synthase (iNOS) is present in advanced atherosclerotic lesions. The aim of the present paper was to compare the functionality of iNOS in rabbits fed a 0.3% cholesterol-diet for 24 weeks (Baseline), and 36 weeks, with l-arginine (l-Arg) or vehicle supplementation (Saline) for the last 12 weeks. N-iminoethyl-l-lysine (l-NIL; 10 microM), a selective inhibitor of iNOS, potentiated the contractions to phenylephrine in aortas from Baseline, Saline and l-Arg rabbits confirming the presence of a functional iNOS. In l-Arg rabbits, the contractions induced by l-NIL were less pronounced than those noted in Baseline and Saline rabbits; superoxide dismutase (150 U/ml) significantly increased the phenylephrine-induced contractions only in the l-Arg rabbits. In the presence of NADPH, aortas from l-Arg rabbits produced more superoxide anions than aortas from saline rabbits as evidenced by the lucigenin-enhanced chemiluminescence technique. In conclusion, our results show functional and biochemical evidence for an increased superoxide anion production in atherosclerotic aortas from hypercholesterolemic rabbits treated with l-Arg for 12 weeks. These data may thus help to explain the lack of beneficial effects of l-Arg on atherosclerosis progression in long-term experimental hypercholesterolemia as well as in severely atherosclerotic humans.
Collapse
Affiliation(s)
- Serge Simonet
- Division of Angiology, Servier Research Institute, 11 Rue des Moulineaux, 92150 Suresnes, France
| | | | | | | | | | | |
Collapse
|
41
|
Pilon G, Dallaire P, Marette A. Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase: a new mechanism of action of insulin-sensitizing drugs. J Biol Chem 2004; 279:20767-74. [PMID: 14985344 DOI: 10.1074/jbc.m401390200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK), an energy-sensing enzyme that is activated in response to cellular stress, is a critical signaling molecule for the regulation of multiple metabolic processes. AMPK has recently emerged as an attractive novel target for the treatment of obesity and type 2 diabetes because its activation increases fatty acid oxidation and improves glucose homeostasis. Here we show that pharmacological activation of AMPK by insulin-sensitizing drugs markedly inhibits inducible nitric-oxide synthase (iNOS), a proinflammatory mediator in endotoxic shock and in chronic inflammatory states including obesity-linked diabetes. AMPK-mediated iNOS inhibition was observed in several cell types (myocytes, adipocytes, macrophages) and primarily resulted from post-transcriptional regulation of the iNOS protein. AMPK activation in vivo also blunted iNOS induction in muscle and adipose tissues of endotoxin-challenged rats. Reduction of AMPK expression by small interfering RNA reversed the inhibitory effects of AMPK activators on iNOS expression and nitric oxide production in myocytes. These results indicate that AMPK is a novel anti-inflammatory signaling pathway and thus represents a promising therapeutic target for immune-inflammatory disorders.
Collapse
Affiliation(s)
- Geneviève Pilon
- Department of Anatomy and Physiology, and Lipid Research Unit, Laval University Hospital Research Center, 2705 Laurier Boulevard, Sainte-Foy, Québec G1V 4G2, Canada
| | | | | |
Collapse
|
42
|
Kunnas TA, Mikkelsson J, Ilveskoski E, Tanner MM, Laippala P, Penttilä A, Perola M, Nikkari ST, Karhunen PJ. A functional variant of the iNOS gene flanking region is associated with LAD coronary artery disease: an autopsy study. Eur J Clin Invest 2003; 33:1032-7. [PMID: 14636285 DOI: 10.1111/j.1365-2362.2003.01271.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent studies using reporter gene constructs have indicated significant differences in the promoter activity of inducible nitric oxide synthase (iNOS) gene variants. Although the exact role of iNOS in atherogenesis is unclear, it is possible that this variation site may influence the extent of coronary artery disease (CAD). METHODS We amplified these (AAAT) repeat variants from the NOS2A gene (denoted iNOS R4 and iNOS R5) from 325 Finnish men included in the Helsinki Sudden Death Study, and studied their association with indices of stenosis and atherosclerosis of the left anterior descending artery (LAD), right coronary artery (RCA) and left circumflex artery (LCX). In order to understand the effect of iNOS genotype on different stages of CAD, our study population was divided into age groups. RESULTS In the LAD, the progression of atherosclerosis seemed to be more pronounced in the 4/5 genotype carriers than in those with the 4/4 genotype when the different age groups were compared. More specifically, statistically significant differences between the genotypes were found in the subgroup of men aged > 55 years. In this group, men carrying the rare R4/5 genotype presented higher mean values of stenosis percentages (55% vs. 42%, P = 0.008), larger areas of fatty streaks (10.4% vs. 5.9%; P = 0.01) and complicated lesions (3.5% vs. 1.3%; P = 0.001) compared with the R4/4 carriers. No significant association of iNOS genotypes with stenosis and atherosclerosis of RCA and LCX was found. CONCLUSIONS It appears unlikely the R4/5 genotype plays a major role in the pathogenesis of CAD, as it was not associated with stenosis and atherosclerosis in RCA and LCX. However this genotype may have some role in more pronounced CAD, as seen in the LAD.
Collapse
Affiliation(s)
- T A Kunnas
- University of Tampere, Tampere University Hospital, Tampere, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Choi JH, Jeong TS, Kim DY, Kim YM, Na HJ, Nam KH, Lee SB, Kim HC, Oh SR, Choi YK, Bok SH, Oh GT. Hematein inhibits atherosclerosis by inhibition of reactive oxygen generation and NF-kappaB-dependent inflammatory mediators in hyperlipidemic mice. J Cardiovasc Pharmacol 2003; 42:287-95. [PMID: 12883334 DOI: 10.1097/00005344-200308000-00019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hematein, a natural compound, is a known anti-inflammatory and antiatherogenic agent in the rabbit model. The authors investigated the effects of this compound on atherogenesis and possible mechanisms of the actions in the hyperlipidemic mice. Low-density lipoprotein receptor-deficient (Ldlr-/-) mice fed a high-cholesterol diet alone for 8 weeks developed the fatty streak lesion in the aortic sinus, whereas this lesion was significantly reduced by hematein treatment without a change in plasma lipid levels compared with control mice. Hematein treatment reduced plasma levels of lipid peroxide and superoxide generation in LPS-stimulated peritoneal macrophage. Hematein treatment inhibited NF-kappaB-DNA binding activity in peritoneal macrophages from Ldlr-/- mice and the activation of NF-kappaB in RAW264.7 macrophages. This compound suppressed plasma nitrite/nitrate levels in Ldlr-/- mice and NO production and iNOS expression in LPS+IFNgamma-stimulated peritoneal macrophages. Hematein treatment also suppressed the activity of iNOS promoters in RAW264.7 macrophages, and reduced the plasma levels of TNF-alpha and IL-1beta and the production of these cytokines in LPS+IFNgamma-stimulated peritoneal macrophages. These results suggest that hematein inhibits atherosclerotic lesion formation, possibly by reducing proinflammatory mediators through a decrease in reactive oxygen species generation and NF-kappaB activation.
Collapse
Affiliation(s)
- Jae-Hoon Choi
- Department of Veterinary Pathology, College of Veterinary Medicine and Agricultural Biotechnology, Seoul National University, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tousoulis D, Antoniades C, Tentolouris C, Goumas G, Stefanadis C, Toutouzas P. L-arginine in cardiovascular disease: dream or reality? Vasc Med 2002; 7:203-11. [PMID: 12553744 DOI: 10.1191/1358863x02vm434ra] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
L-arginine is the substrate for endothelial nitric oxide synthase (eNOS), and the precursor for the synthesis of nitric oxide (NO). This amino acid exerts a number of actions in the cardiovascular system, mainly through the production of NO. However, it also has a number of NO-independent properties, such as the ability to regulate blood and intracellular pH and the effect on the depolarization of endothelial cell membranes. It also has antihypertensive and antioxidant properties, it influences blood viscosity and the coagulation/fibrinolysis system, and it affects the metabolism of glucose, lipids and proteins. L-arginine influences a number of atherosclerosis risk factors such as hypercholesterolemia, hypertension and smoking, improving endothelial function in these patients. However, it does not affect endothelial function in patients with diabetes mellitus. The role of L-arginine in coronary artery disease is still controversial, but it seems that oral or parenteral administration of this amino acid restores endothelial function in the brachial artery and improves coronary microcirculation. The role of L-arginine in heart failure is currently under investigation, and the first results are rather hopeful. In conclusion, L-arginine seems to provide a hopeful prospect for the treatment of cardiovascular diseases. However, more data derived from large-scale prospective studies evaluating the effects of long-term treatment with L-arginine are needed.
Collapse
Affiliation(s)
- Dimitris Tousoulis
- Cardiology Unit, Hippokration Hospital, Athens University Medical School, Athens, Greece.
| | | | | | | | | | | |
Collapse
|
45
|
Takahashi M, Takahashi S, Shimpo M, Naito A, Ogata Y, Kobayashi E, Ikeda U, Shimada K. beta-very low density lipoprotein enhances inducible nitric oxide synthase expression in cytokine-stimulated vascular smooth muscle cells. Atherosclerosis 2002; 162:307-13. [PMID: 11996950 DOI: 10.1016/s0021-9150(01)00727-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
beta-very low-density lipoprotein (beta-VLDL), a collective term for VLDL and chylomicron remnants, has recently shown to potently promote the development of atherosclerosis. However, the effects of beta-VLDL on the accumulation of nitric oxide (NO) and the expression of inducible NO synthase (iNOS) in vascular smooth muscle cells (VSMC) have not been determined. In this study, we measured the accumulation of nitrite, stable metabolite of NO and examined the expression of iNOS protein and mRNA using Western blotting and RT-PCR, respectively, in VSMC. NF-kappaB activation in VSMC was examined by gel retardation assay. Incubation of cell cultures with interleukin-1beta (IL-1beta) for 24 h caused a significant increase in nitrite accumulation. Although beta-VLDL alone did not increase nitrite accumulation in unstimulated VSMC, beta-VLDL significantly enhanced nitrite accumulation in IL-1beta-stimulated VSMC in a time- and dose-dependent manner. beta-VLDL-induced nitrite accumulation in IL-1beta-stimulated VSMC was accompanied by an increase in iNOS protein and mRNA expression. In addition, IL-1beta induced NF-kappaB activation in VSMC, an effect that was increased by the addition of beta-VLDL. Use of specific tyrosine kinase inhibitor herbimycin A, genistein, or PP2 (Src family kinase inhibitor) indicated that tyrosine kinases are required for IL-1beta-stimulated and beta-VLDL-enhanced nitrite accumulation, while specific inhibition of ERK1/2 or p38-MAP kinase had no effects. Our results suggest that beta-VLDL enhances iNOS expression and nitrite accumulation in IL-1beta-stimulated VSMC through tyrosine kinase(s)-dependent mechanisms.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Interleukin-1/pharmacology
- Lipoproteins/pharmacology
- Lipoproteins, VLDL/pharmacology
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- NF-kappa B/physiology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Nitrites/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Masafumi Takahashi
- Department of Internal Medicine, Division of Cardiology, Jichi Medical School, Minamikawachi-machi, 329-0498, Tochigi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med 2001; 7:1138-43. [PMID: 11590438 DOI: 10.1038/nm1001-1138] [Citation(s) in RCA: 378] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is induced by inflammatory cytokines in skeletal muscle and fat. It has been proposed that chronic iNOS induction may cause muscle insulin resistance. Here we show that iNOS expression is increased in muscle and fat of genetic and dietary models of obesity. Moreover, mice in which the gene encoding iNOS was disrupted (Nos2-/- mice) are protected from high-fat-induced insulin resistance. Whereas both wild-type and Nos2-/- mice developed obesity on the high-fat diet, obese Nos2-/- mice exhibited improved glucose tolerance, normal insulin sensitivity in vivo and normal insulin-stimulated glucose uptake in muscles. iNOS induction in obese wild-type mice was associated with impairments in phosphatidylinositol 3-kinase and Akt activation by insulin in muscle. These defects were fully prevented in obese Nos2-/- mice. These findings provide genetic evidence that iNOS is involved in the development of muscle insulin resistance in diet-induced obesity.
Collapse
Affiliation(s)
- M Perreault
- Department of Anatomy and Physiology, Lipid Research Unit and Research Center on Energy Metabolism, Laval University Hospital Research Center, Ste-Foy, Québec, Canada
| | | |
Collapse
|
47
|
Marchesi S, Lupattelli G, Siepi D, Roscini AR, Vaudo G, Sinzinger H, Mannarino E. Oral L-arginine administration attenuates postprandial endothelial dysfunction in young healthy males. J Clin Pharm Ther 2001; 26:343-9. [PMID: 11679024 DOI: 10.1046/j.1365-2710.2001.00362.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Endothelial dysfunction is considered the earliest stage of atherosclerosis. Postprandial phase is associated with a transient impairment of endothelial function concomitantly with the triglyceride-rich lipoprotein increase. This phenomenon may be explained by the oxidative burden induced by triglyceride-rich lipoproteins, reducing nitric oxide bioavailability. OBJECTIVE To investigate the effect of a diet enriched with L-arginine, the substrate for nitric oxide synthesis on endothelial function in healthy volunteers. METHODS Endothelial function (expressed as flow-mediated vasodilation (FMV) of the brachial artery), total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, LDL-size, Lp (a) and reduced glutathione (GSH) were evaluated in seven healthy males (mean age 23 +/- 3 years) without cardiovascular risk factors. Measurements were made at baseline and 2, 4 and 6 h after a standardized oral fat load. L-arginine (6 g daily) was administered for 10 days. On the 11th day the oral fat load and the parameters examined previously at entry were repeated. RESULTS After the first oral fat load, FMV significantly decreased at 2 and 4 h, and overlapped with the basal levels at 6 h. After L-arginine treatment, FMV significantly decreased at 2 h and normalized after 4 and 6 h. Triglycerides increased at 2 and 4 h and decreased after 6 h in both sets of observations relating to before and after L-arginine administration. GSH dropped 2 h after the fat load, both before and after L-arginine. Before L-arginine, FMV exhibited a significant correlation with triglycerides (r= -0.426, P= 0.024) and GSH (r=0.48; P=0.009). After L-arginine, FMV was related to GSH (r=0.39; P=0.03) but not to triglycerides (r= -0.12; P=0.52). CONCLUSION Postprandial endothelial impairment is partly abolished by L-arginine administration. These data, which require confirmation, suggest the importance of dietary choice for atherosclerosis prevention even in young healthy subjects.
Collapse
Affiliation(s)
- S Marchesi
- Department of Internal Medicine, Angiology and Atherosclerosis, University of Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Chen H, Li D, Saldeen T, Mehta JL. TGF-beta(1) modulates NOS expression and phosphorylation of Akt/PKB in rat myocytes exposed to hypoxia-reoxygenation. Am J Physiol Heart Circ Physiol 2001; 281:H1035-9. [PMID: 11514268 DOI: 10.1152/ajpheart.2001.281.3.h1035] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial hypoxia-reoxygenation (H-R) is associated with upregulation of inducible nitric oxide synthase (iNOS), decrease in endothelial NOS (eNOS), and increase in protein kinase B (PKB). Previous work also shows that transforming growth factor-beta(1) (TGF-beta(1)) can attenuate myocardial injury induced by H-R. We examined the modulation of NOS and PKB expression in response to H-R by TGF- beta(1). Myocytes from Sprague-Dawley rat hearts were cultured and exposed to hypoxia (95% N(2)-5% CO(2), PO(2) ~30 mmHg) for 24 h and reoxygenation (95% air-5% CO(2)) for 3 h. Myocytes were then examined for lactate dehydrogenase (LDH) release, iNOS activity (conversion of L-[(3)H]arginine to L-[(3)H]citrulline), iNOS and eNOS expression, and PKB phosphorylation. H-R alone resulted in myocyte injury, upregulation of iNOS activity and expression, decrease in eNOS expression, and increase in PKB phosphorylation (all P < 0.05 vs. cells cultured in normoxic conditions). Treatment of myocytes with TGF-beta(1) (1 ng/ml) resulted in a reduction in LDH release, attenuation of the alterations in NOS expression (both iNOS and eNOS), and PKB phosphorylation in response to H-R (all P < 0.05 vs. H-R alone). These observations suggest that TGF-beta(1) decreases H-R injury and attenuates alterations in NOS and PKB phosphorylation in myocytes exposed to H-R.
Collapse
Affiliation(s)
- H Chen
- Department of Medicine and Physiology, University of Arkansas and Central Arkansas Veterans Health Care System, Little Rock, Arkansas 72205-7199, USA
| | | | | | | |
Collapse
|
49
|
Abstract
The oxidative theory suggests that LDL oxidation contributes to atherogenesis, implying that attenuation of this process by antioxidants should decrease atherosclerosis. However, a causative link between LDL oxidation and atherogenesis is not firmly established. It requires the identification of the oxidants that are responsible for the initiation of LDL oxidation, and an understanding of the modified moieties that are responsible for the proatherogenic activities of oxidized LDL. The present review summarizes recent data on potential biological oxidants for LDL in the vessel wall, and discusses the antiatherogenic role(s) of selected antioxidants.
Collapse
Affiliation(s)
- R Mashima
- Biochemistry Group, The Heart Research Institute, Sydney, Australia
| | | | | |
Collapse
|
50
|
Napoli C, Lerman LO. Involvement of oxidation-sensitive mechanisms in the cardiovascular effects of hypercholesterolemia. Mayo Clin Proc 2001; 76:619-31. [PMID: 11393501 DOI: 10.4065/76.6.619] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hypercholesterolemia is a common clinical metabolic and/or genetic disorder that promotes functional and structural vascular wall injury. The underlying mechanisms for these deleterious effects involve a local inflammatory response and release of cytokines and growth factors. Consequent activation of oxidation-sensitive mechanisms in the arterial wall, modulation of intracellular signaling pathways, increased oxidation of low-density lipoprotein cholesterol, and quenching of nitric oxide can all impair the functions controlled by the vascular wall and lead to the development of atherosclerosis. This cascade represents a common pathological mechanism activated by various cardiovascular risk factors and may partly underlie synergism among them as well as the early pathogenesis of atherosclerosis. Antioxidant intervention and restoration of the bioavailability of nitric oxide have been shown to mitigate functional and structural arterial alterations and improve cardiovascular outcomes. Elucidation of the precise nature and role of early transductional signaling pathways and transcriptional events activated in hypercholesterolemia in children and adults, including mothers during pregnancy, and understanding their downstream effects responsible for atherogenesis may help in directing preventive and interventional measures against atherogenesis and vascular dysfunction.
Collapse
Affiliation(s)
- C Napoli
- Department of Medicine, University of Naples, Italy.
| | | |
Collapse
|