1
|
Connolly BJ, Saxton SN. Recent updates on the influence of iron and magnesium on vascular, renal, and adipose inflammation and possible consequences for hypertension. J Hypertens 2024; 42:1848-1861. [PMID: 39258532 PMCID: PMC11451934 DOI: 10.1097/hjh.0000000000003829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
The inflammatory status of the kidneys, vasculature, and perivascular adipose tissue (PVAT) has a significant influence on blood pressure and hypertension. Numerous micronutrients play an influential role in hypertension-driving inflammatory processes, and recent reports have provided bases for potential targeted modulation of these micronutrients to reduce hypertension. Iron overload in adipose tissue macrophages and adipocytes engenders an inflammatory environment and may contribute to impaired anticontractile signalling, and thus a treatment such as chelation therapy may hold a key to reducing blood pressure. Similarly, magnesium intake has proven to greatly influence inflammatory signalling and concurrent hypertension in both healthy animals and in a model for chronic kidney disease, demonstrating its potential clinical utility. These findings highlight the importance of further research to determine the efficacy of micronutrient-targeted treatments for the amelioration of hypertension and their potential translation into clinical application.
Collapse
Affiliation(s)
- Benjamin J Connolly
- Divison of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | | |
Collapse
|
2
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
3
|
Woolf EK, Lee SY, Ghanem N, Vazquez AR, Johnson SA. Protective effects of blueberries on vascular function: A narrative review of preclinical and clinical evidence. Nutr Res 2023; 120:20-57. [PMID: 37913730 DOI: 10.1016/j.nutres.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 11/03/2023]
Abstract
Blueberries are rich in nutrients and (poly)phenols, popular with consumers, and a major agricultural crop with year-round availability supporting their use in food-based strategies to promote human health. Accumulating evidence indicates blueberry consumption has protective effects on cardiovascular health including vascular dysfunction (i.e., endothelial dysfunction and arterial stiffening). This narrative review synthesizes evidence on blueberries and vascular function and provides insight into underlying mechanisms with a focus on oxidative stress, inflammation, and gut microbiota. Evidence from animal studies supports beneficial impacts on vascular function. Human studies indicate acute and chronic blueberry consumption can improve endothelial function in healthy and at-risk populations and may modulate arterial stiffness, but that evidence is less certain. Results from cell, animal, and human studies suggest blueberry consumption improves vascular function through improving nitric oxide bioavailability, oxidative stress, and inflammation. Limited data in animals suggest the gut microbiome mediates beneficial effects of blueberries on vascular function; however, there is a paucity of studies evaluating the gut microbiome in humans. Translational evidence indicates anthocyanin metabolites mediate effects of blueberries on endothelial function, though this does not exclude potential synergistic and/or additive effects of other blueberry components. Further research is needed to establish the clinical efficacy of blueberries to improve vascular function in diverse human populations in a manner that provides mechanistic information. Translation of clinical research to the community/public should consider feasibility, social determinants of health, culture, community needs, assets, and desires, barriers, and drivers to consumption, among other factors to establish real-world impacts of blueberry consumption.
Collapse
Affiliation(s)
- Emily K Woolf
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Sylvia Y Lee
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Nancy Ghanem
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Allegra R Vazquez
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Sarah A Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
4
|
Rade JJ, Barton BA, Vasan RS, Kronsberg SS, Xanthakis V, Keaney JF, Hamburg NM, Kakouros N, Kickler TA. Association of Thromboxane Generation With Survival in Aspirin Users and Nonusers. J Am Coll Cardiol 2022; 80:233-250. [PMID: 35660296 DOI: 10.1016/j.jacc.2022.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Persistent systemic thromboxane generation, predominantly from nonplatelet sources, in aspirin (ASA) users with cardiovascular disease (CVD) is a mortality risk factor. OBJECTIVES This study sought to determine the mortality risk associated with systemic thromboxane generation in an unselected population irrespective of ASA use. METHODS Stable thromboxane B2 metabolites (TXB2-M) were measured by enzyme-linked immunosorbent assay in banked urine from 3,044 participants (mean age 66 ± 9 years, 53.8% women) in the Framingham Heart Study. The association of TXB2-M to survival over a median observation period of 11.9 years (IQR: 10.6-12.7 years) was determined by multivariable modeling. RESULTS In 1,363 (44.8%) participants taking ASA at the index examination, median TXB2-M were lower than in ASA nonusers (1,147 pg/mg creatinine vs 4,179 pg/mg creatinine; P < 0.0001). TXB2-M were significantly associated with all-cause and cardiovascular mortality irrespective of ASA use (HR: 1.96 and 2.41, respectively; P < 0.0001 for both) for TXB2-M in the highest quartile based on ASA use compared with lower quartiles, and remained significant after adjustment for mortality risk factors for similarly aged individuals (HR: 1.49 and 1.82, respectively; P ≤ 0.005 for both). In 2,353 participants without CVD, TXB2-M were associated with cardiovascular mortality in ASA nonusers (adjusted HR: 3.04; 95% CI: 1.29-7.16) but not in ASA users, while ASA use was associated with all-cause mortality in those with low (adjusted HR: 1.46; 95% CI: 1.14-1.87) but not elevated TXB2-M. CONCLUSIONS Systemic thromboxane generation is an independent risk factor for all-cause and cardiovascular mortality irrespective of ASA use, and its measurement may be useful for therapy modification, particularly in those without CVD.
Collapse
Affiliation(s)
- Jeffrey J Rade
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | - Bruce A Barton
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Shari S Kronsberg
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - John F Keaney
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Boston University School of Medicine, Boston, Massachusetts, USA
| | - Naomi M Hamburg
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nikolaos Kakouros
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
5
|
Wang L, Cheng CK, Yi M, Lui KO, Huang Y. Targeting endothelial dysfunction and inflammation. J Mol Cell Cardiol 2022; 168:58-67. [PMID: 35460762 DOI: 10.1016/j.yjmcc.2022.04.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
Abstract
Vascular endothelium maintains vascular homeostasis through liberating a spectrum of vasoactive molecules, both protective and harmful regulators of vascular tone, structural remodeling, inflammation and atherogenesis. An intricate balance between endothelium-derived relaxing factors (nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor) and endothelium-derived contracting factors (superoxide anion, endothelin-1 and constrictive prostaglandins) tightly regulates vascular function. Disruption of such balance signifies endothelial dysfunction, a critical contributor in aging and chronic cardiometabolic disorders, such as obesity, diabetes, hypertension, dyslipidemia and atherosclerotic vascular diseases. Among many proposed cellular and molecular mechanisms causing endothelial dysfunction, oxidative stress and inflammation are often the pivotal players and they are naturally considered as useful targets for intervention in patients with cardiovascular and metabolic diseases. In this article, we provide a recent update on the therapeutic values of pharmacological agents, such as cyclooxygenase-2 inhibitors, renin-angiotensin-system inhibitors, bone morphogenic protein 4 inhibitors, peroxisome proliferator-activated receptor δ agonists, and glucagon-like peptide 1-elevating drugs, and the physiological factors, particularly hemodynamic forces, that improve endothelial function by targeting endothelial oxidative stress and inflammation.
Collapse
Affiliation(s)
- Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Min Yi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Kathy O Lui
- Department of Chemical Pathology and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Uremic toxins activate CREB/ATF1 in endothelial cells related to chronic kidney disease. Biochem Pharmacol 2022; 198:114984. [PMID: 35245485 DOI: 10.1016/j.bcp.2022.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Uremic toxins, such as p-cresyl sulfate (PCS) and indoxyl sulfate (IS), contribute to endothelial dysfunction in chronic kidney disease (CKD). This process is mediated by several cellular pathways, but it is unclear whether cAMP-responsive element-binding protein (CREB) and activating transcription factor 1 (ATF1) participate in endothelial dysfunction in uremic conditions despite playing roles in inflammatory modulation. This study aimed to evaluate the expression, activation, and transcriptional activity of CREB/ATF1 in endothelial cells exposed to PCS, IS, and uremic serum (US). In vitro, ATF1 protein levels were increased by PCS and IS, whereas CREB levels were enhanced only by IS. Activation through CREB-Ser133 and ATF1-Ser63 phosphorylation was induced by PCS, IS, and US. We evaluated the CREB/ATF1 transcriptional activity by analyzing the expression of their target genes, including ICAM1, PTGS2, NOX1, and SLC22A6, which are related to endothelial dysfunction through their roles in vascular inflammation, oxidative stress, and cellular uptake of PCS and IS. The expression of ICAM1, PTGS2 and NOX1 genes was increased by PCS, IS, and US, whereas that of SLC22A6 was induced only by IS. KG-501, a CREB inhibitor, restored the inductive effects of PCS on ICAM1, PTGS2, and NOX1 expression; IS on ICAM1, PTGS2 and SLC22A6 expression; and US on NOX1 expression. The presence of CREB and ATF1 was observed in healthy arteries and in arteries of patients with CKD, which were structurally damaged. These findings suggest that CREB/ATF1 is activated by uremic toxins and may play a relevant role in endothelial dysfunction in CKD.
Collapse
|
7
|
Topiramate treatment in Wistar rats during childhood induces sex-specific vascular dysfunction in adulthood. Life Sci 2022; 288:120189. [PMID: 34863798 DOI: 10.1016/j.lfs.2021.120189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
The present study determined whether treatment during childhood with topiramate (TPM), a new generation antiepileptic drug, results in altered aortic reactivity in adult male and female rats. We also sought to understand the role of endothelium-derived contractile factors in TPM-induced vascular dysfunction. Male and female Wistar rats were treated with TPM (41 mg/kg/day) or water (TPM vehicle) by gavage during childhood (postnatal day, 16-28). In adulthood, thoracic aorta reactivity to phenylephrine (phenyl), as well as aortic thickness and expression of cyclooxygenases (COX-1 and COX-2), NOX2, and p47phox were evaluated. The aortic response to phenyl was increased in male and female rats from the TPM group when compared with the control group. In TPM male rats, the hyperreactivity to phenyl was abrogated by the inhibition of NADPH oxidase and COX-2, while in female rats, responses were restored only by inhibition of COX-2. In addition, TPM male rats presented aortic hypertrophy and increased expression of NOX-2 and p47phox, while TPM female rats showed increased COX-2 aortic expression. Taken together, for the first-time, the present study provides evidence that treatment with TPM during childhood causes vascular dysfunction in adulthood, and that the mechanism underlying the vascular effects of TPM is sex-specific.
Collapse
|
8
|
Zhou Y, Khan H, Xiao J, Cheang WS. Effects of Arachidonic Acid Metabolites on Cardiovascular Health and Disease. Int J Mol Sci 2021; 22:12029. [PMID: 34769460 PMCID: PMC8584625 DOI: 10.3390/ijms222112029] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid (AA) is an essential fatty acid that is released by phospholipids in cell membranes and metabolized by cyclooxygenase (COX), cytochrome P450 (CYP) enzymes, and lipid oxygenase (LOX) pathways to regulate complex cardiovascular function under physiological and pathological conditions. Various AA metabolites include prostaglandins, prostacyclin, thromboxanes, hydroxyeicosatetraenoic acids, leukotrienes, lipoxins, and epoxyeicosatrienoic acids. The AA metabolites play important and differential roles in the modulation of vascular tone, and cardiovascular complications including atherosclerosis, hypertension, and myocardial infarction upon actions to different receptors and vascular beds. This article reviews the roles of AA metabolism in cardiovascular health and disease as well as their potential therapeutic implication.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Wai San Cheang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China;
| |
Collapse
|
9
|
Youwakim J, Girouard H. Inflammation: A Mediator Between Hypertension and Neurodegenerative Diseases. Am J Hypertens 2021; 34:1014-1030. [PMID: 34136907 DOI: 10.1093/ajh/hpab094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the most prevalent and modifiable risk factor for stroke, vascular cognitive impairment, and Alzheimer's disease. However, the mechanistic link between hypertension and neurodegenerative diseases remains to be understood. Recent evidence indicates that inflammation is a common pathophysiological trait for both hypertension and neurodegenerative diseases. Low-grade chronic inflammation at the systemic and central nervous system levels is now recognized to contribute to the physiopathology of hypertension. This review speculates that inflammation represents a mediator between hypertension and neurodegenerative diseases, either by a decrease in cerebral blood flow or a disruption of the blood-brain barrier which will, in turn, let inflammatory cells and neurotoxic molecules enter the brain parenchyma. This may impact brain functions including cognition and contribute to neurodegenerative diseases. This review will thus discuss the relationship between hypertension, systemic inflammation, cerebrovascular functions, neuroinflammation, and brain dysfunctions. The potential clinical future of immunotherapies against hypertension and associated cerebrovascular risks will also be presented.
Collapse
Affiliation(s)
- Jessica Youwakim
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
| | - Hélène Girouard
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériaterie de Montréal, Montreal, QC, Canada
| |
Collapse
|
10
|
Tai Y, Zhao C, Zhang L, Tang S, Jia X, Tong H, Liu R, Tang C, Gao J. Celecoxib reduces hepatic vascular resistance in portal hypertension by amelioration of endothelial oxidative stress. J Cell Mol Med 2021; 25:10389-10402. [PMID: 34609050 PMCID: PMC8581330 DOI: 10.1111/jcmm.16968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 02/05/2023] Open
Abstract
The balance between endothelial nitric oxide (NO) synthase (eNOS) activation and production of reactive oxygen species (ROS) is very important for NO homeostasis in liver sinusoidal endothelial cells (LSECs). Overexpression of cyclooxygenase‐2 (COX‐2), a major intravascular source of ROS production, has been observed in LSECs of cirrhotic liver. However, the links between low NO bioavailability and COX‐2 overexpression in LSECs are unknown. This study has confirmed the link between low NO bioavailability and COX‐2 overexpression by COX‐2‐dependent PGE2‐EP2‐ERK1/2‐NOX1/NOX4 signalling pathway in LSECs in vivo and in vitro. In addition, the regulation of COX‐2‐independent LKB1‐AMPK‐NRF2‐HO‐1 signalling pathway on NO homeostasis in LSECs was also elucidated. The combinative effects of celecoxib on diminishment of ROS via COX‐2‐dependent and COX‐2‐independent signalling pathways greatly decreased NO scavenging. As a result, LSECs capillarisation was reduced, and endothelial dysfunction was corrected. Furthermore, portal hypertension of cirrhotic liver was ameliorated with substantial decreasing hepatic vascular resistance and great increase of portal blood flow. With the advance understanding of the mechanisms of LSECs protection, celecoxib may serve as a potential therapeutic candidate for patients with cirrhotic portal hypertension.
Collapse
Affiliation(s)
- Yang Tai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linhao Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shihang Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xintong Jia
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Liu
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Barberio L, Paulesu L, Canesi L, Grasselli E, Mandalà M. Bisphenol a Interferes with Uterine Artery Features and Impairs Rat Feto-Placental Growth. Int J Mol Sci 2021; 22:ijms22136912. [PMID: 34199136 PMCID: PMC8268965 DOI: 10.3390/ijms22136912] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
Bisphenol A (BPA) is a widespread environmental contaminant, found in human fluids and tissues. Maternal BPA exposure is associated with alterations in pregnancy outcomes. Because maternal uterine circulation plays a crucial role in normal placenta and fetal growth, we hypothesized that BPA compromises the function of uterine arteries (UAs) and fetoplacental development. Female rats were orally administered with BPA (2.5, 25 and 250 µg/kg/day) or with its vehicle (ethanol) for 30 days before pregnancy and during the first 20 days of pregnancy. To compare the effect of BPA in the reproductive vs. systemic circulation, it was tested on UAs and mesenteric arteries (MAs). Arteries were isolated and examined by pressure myography. Moreover, fetuses and placentas were weighed to provide an index of reproductive performance. In UAs of BPA-treated rats, lumen diameter, acetylcholine-relaxation and expressions of endothelial nitric oxide synthase 3 (NOS3), estrogen receptor α (ERα) and peroxisome proliferator-activated receptor ɣ (PPARɣ) were reduced. Conversely, no changes were observed in MAs. BPA treatment also reduced placental weights, while fetal weights were increased. For the first time, our results indicate that UAs represent a specific target of BPA during pregnancy and provide insight into the molecular mechanisms that underlie its negative effects on pregnancy outcomes.
Collapse
Affiliation(s)
- Laura Barberio
- Department of Biology, Ecology & Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Luana Paulesu
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (L.C.); (E.G.)
| | - Elena Grasselli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (L.C.); (E.G.)
| | - Maurizio Mandalà
- Department of Biology, Ecology & Earth Sciences, University of Calabria, 87036 Rende, Italy;
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
12
|
Cheng J, Gu W, Lan T, Deng J, Ni Z, Zhang Z, Hu Y, Sun X, Yang Y, Xu Q. Single-cell RNA sequencing reveals cell type- and artery type-specific vascular remodelling in male spontaneously hypertensive rats. Cardiovasc Res 2021; 117:1202-1216. [PMID: 32589721 PMCID: PMC7983007 DOI: 10.1093/cvr/cvaa164] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/08/2020] [Accepted: 06/18/2020] [Indexed: 01/09/2023] Open
Abstract
AIMS Hypertension is a major risk factor for cardiovascular diseases. However, vascular remodelling, a hallmark of hypertension, has not been systematically characterized yet. We described systematic vascular remodelling, especially the artery type- and cell type-specific changes, in hypertension using spontaneously hypertensive rats (SHRs). METHODS AND RESULTS Single-cell RNA sequencing was used to depict the cell atlas of mesenteric artery (MA) and aortic artery (AA) from SHRs. More than 20 000 cells were included in the analysis. The number of immune cells more than doubled in aortic aorta in SHRs compared to Wistar Kyoto controls, whereas an expansion of MA mesenchymal stromal cells (MSCs) was observed in SHRs. Comparison of corresponding artery types and cell types identified in integrated datasets unravels dysregulated genes specific for artery types and cell types. Intersection of dysregulated genes with curated gene sets including cytokines, growth factors, extracellular matrix (ECM), receptors, etc. revealed vascular remodelling events involving cell-cell interaction and ECM re-organization. Particularly, AA remodelling encompasses upregulated cytokine genes in smooth muscle cells, endothelial cells, and especially MSCs, whereas in MA, change of genes involving the contractile machinery and downregulation of ECM-related genes were more prominent. Macrophages and T cells within the aorta demonstrated significant dysregulation of cellular interaction with vascular cells. CONCLUSION Our findings provide the first cell landscape of resistant and conductive arteries in hypertensive animal models. Moreover, it also offers a systematic characterization of the dysregulated gene profiles with unbiased, artery type-specific and cell type-specific manners during hypertensive vascular remodelling.
Collapse
Affiliation(s)
- Jun Cheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King’s College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ting Lan
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Jiacheng Deng
- School of Cardiovascular Medicine and Sciences, King’s College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Zhichao Ni
- School of Cardiovascular Medicine and Sciences, King’s College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Zhongyi Zhang
- School of Cardiovascular Medicine and Sciences, King’s College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Yanhua Hu
- School of Cardiovascular Medicine and Sciences, King’s College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Xiaolei Sun
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
- School of Cardiovascular Medicine and Sciences, King’s College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, Sichuan, China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
| | - Qingbo Xu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, 319 Zhongshan Road, Luzhou 646000, China
- School of Cardiovascular Medicine and Sciences, King’s College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
13
|
Liu Y, Yin HL, Li C, Jiang F, Zhang SJ, Zhang XR, Li YL. Sinapine Thiocyanate Ameliorates Vascular Endothelial Dysfunction in Hypertension by Inhibiting Activation of the NLRP3 Inflammasome. Front Pharmacol 2021; 11:620159. [PMID: 33633569 PMCID: PMC7901921 DOI: 10.3389/fphar.2020.620159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/22/2020] [Indexed: 12/23/2022] Open
Abstract
The increase of blood pressure is accompanied by the changes in the morphology and function of vascular endothelial cells. Vascular endothelial injury and hypertension actually interact as both cause and effect. A large number of studies have proved that inflammation plays a significant role in the occurrence and development of hypertension, but the potential mechanism between inflammation and hypertensive endothelial injury is still ambiguous. The purpose of this study was to explore the association between the activation of NLRP3 inflammasome and hypertensive endothelial damage, and to demonstrate the protective effect of sinapine thiocyanate (ST) on endothelia in hypertension. The expression of NLRP3 gene was silenced by tail vein injection of adeno-associated virus (AAVs) in spontaneously hypertensive rats (SHRs), indicating that activation of NLRP3 inflammasome accelerated hypertensive endothelial injury. ST not only protected vascular endothelial function in SHRs by inhibiting the activation of NLRP3 inflammasome and the expression of related inflammatory mediators, but also improved AngII-induced huvec injury. In summary, our results show that alleviative NLRP3 inflammasome activation attenuates hypertensive endothelial damage and ST ameliorates vascular endothelial dysfunction in hypertension via inhibiting activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yang Liu
- First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,ICU, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Lin Yin
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Jiang
- First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Jun Zhang
- First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin-Rong Zhang
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun-Lun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Suo Z, Liu Y, Li Y, Xu C, Liu Y, Gao M, Dong J. Calcitriol inhibits COX-1 and COX-2 expressions of renal vasculature in hypertension: Reactive oxygen species involved? Clin Exp Hypertens 2021; 43:91-100. [PMID: 32909857 DOI: 10.1080/10641963.2020.1817473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Vitamin D modulates about 3% human gene transcription besides the classical action on calcium/phosphorus homeostasis. The blood pressure-lowing and other protective action on cardiovascular disease have been reported. The present study aims to examine whether COX-1 and COX-2 were implicated in endothelial dysfunction in hypertension and calcitriol, an active form of vitamin D preserved endothelial function through regulating COX expression. Isometric study demonstrated the impaired endothelium-dependent relaxation (EDR) in renal arteries from spontaneously hypertensive rats were reversed by 12 h-calcitriol treatment and COX-1 and COX-2 inhibitors. Combined uses of COX-1 and COX-2 inhibitor induced more improved relaxations. Exaggerated expressions of COX-1 and COX-2 in renal artery from SHR were inhibited by 12 h-administration of calcitriol, NADPH oxidase inhibitor DPI, or reactive oxygen species (ROS) scavenger tempol. Furthermore, in normotensive WKY rats, calcitriol prevents against the blunted EDR in renal arteries by 12 h-Ang II exposure, with similar improvements by COX-1 and COX-2 inhibitors. Accordingly, increased COX-1 and COX-2 expressions by Ang II exposure were corrected by losartan, DPI, or tempol. Studies on human renal artery also revealed the beneficial action of calcitriol is mediated by suppressing COX-1 and COX-2 expressions, dependent on vitamin D receptor (VDR) activation. Taken together, our findings showed that COX-1 and COX-2 are positively involved in the renovascular dysfunction in hypertension and via VDR, calcitriol benefits renovasular function by suppressing COX-1 and COX-2 expressions. Furthermore, ROS is involved in the COX-1 and COX-2 up-regulations of renal arteries, maybe serving as a mediator in the inhibitory action of calcitriol on COX expression.
Collapse
Affiliation(s)
- Zizheng Suo
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Yanzhi Liu
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Yueyi Li
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Cong Xu
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Yuhan Liu
- School of Basic Medicine, Hebei Medical University , Shijiazhuang, China
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Hebei Medical University , Shijiazhuang, China
| | - Jinghui Dong
- Department of Physiology, Hebei Medical University , Shijiazhuang, China
| |
Collapse
|
15
|
Mitchell JA, Kirkby NS, Ahmetaj-Shala B, Armstrong PC, Crescente M, Ferreira P, Lopes Pires ME, Vaja R, Warner TD. Cyclooxygenases and the cardiovascular system. Pharmacol Ther 2021; 217:107624. [DOI: 10.1016/j.pharmthera.2020.107624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
|
16
|
Chen P, Zhao Y, Gao H, Huang J, Lu Y, Song J, Lin L, Lin Z, Ou C, Sun H, Li Y, Zeng C, Cooper DKC, Zhan Y, Deng X, Mou L. Selective inhibition of cyclooxygenase‐2 protects porcine aortic endothelial cells from human antibody‐mediated complement‐dependent cytotoxicity. Xenotransplantation 2019; 26:e12536. [PMID: 31724835 DOI: 10.1111/xen.12536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/20/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Pengfei Chen
- Department of Traumatic Orthopedics Shenzhen Longhua District Central Hospital Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen University Shenzhen Second People's Hospital Shenzhen China
- Department of Central Laboratory Shenzhen Longhua District Central Hospital Shenzhen China
| | - Yanli Zhao
- Department of Central Laboratory Shenzhen Longhua District Central Hospital Shenzhen China
| | - Hanchao Gao
- Department of Central Laboratory Shenzhen Longhua District Central Hospital Shenzhen China
| | - Jiabao Huang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen University Shenzhen Second People's Hospital Shenzhen China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen University Shenzhen Second People's Hospital Shenzhen China
| | - Jinqi Song
- Department of Traumatic Orthopedics Shenzhen Longhua District Central Hospital Shenzhen China
| | - Lizhong Lin
- Department of Traumatic Orthopedics Shenzhen Longhua District Central Hospital Shenzhen China
| | - Zejin Lin
- Department of Traumatic Orthopedics Shenzhen Longhua District Central Hospital Shenzhen China
| | - Chunpei Ou
- Department of Traumatic Orthopedics Shenzhen Longhua District Central Hospital Shenzhen China
| | - Huimin Sun
- Department of Central Laboratory Shenzhen Longhua District Central Hospital Shenzhen China
| | - Yajing Li
- Department of Central Laboratory Shenzhen Longhua District Central Hospital Shenzhen China
| | - Changchun Zeng
- Department of Central Laboratory Shenzhen Longhua District Central Hospital Shenzhen China
| | - David K. C. Cooper
- Department of Surgery, Xenotransplantation Program University of Alabama at Birmingham Birmingham Alabama
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital Shenzhen China
| | - Xuefeng Deng
- Department of Traumatic Orthopedics Shenzhen Longhua District Central Hospital Shenzhen China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen University Shenzhen Second People's Hospital Shenzhen China
| |
Collapse
|
17
|
Diaz M, Parikh V, Ismail S, Maxamed R, Tye E, Austin C, Dew T, Graf BA, Vanhees L, Degens H, Azzawi M. Differential effects of resveratrol on the dilator responses of femoral arteries, ex vivo. Nitric Oxide 2019; 92:1-10. [DOI: 10.1016/j.niox.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022]
|
18
|
Khan S, Andrews KL, Chin-Dusting JPF. Cyclo-Oxygenase (COX) Inhibitors and Cardiovascular Risk: Are Non-Steroidal Anti-Inflammatory Drugs Really Anti-Inflammatory? Int J Mol Sci 2019; 20:ijms20174262. [PMID: 31480335 PMCID: PMC6747368 DOI: 10.3390/ijms20174262] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Cyclo-oxygenase (COX) inhibitors are among the most commonly used drugs in the western world for their anti-inflammatory and analgesic effects. However, they are also well-known to increase the risk of coronary events. This area is of renewed significance given alarming new evidence suggesting this effect can occur even with acute usage. This contrasts with the well-established usage of aspirin as a mainstay for cardiovascular prophylaxis, as well as overwhelming evidence that COX inhibition induces vasodilation and is protective for vascular function. Here, we present an updated review of the preclinical and clinical literature regarding the cardiotoxicity of COX inhibitors. While studies to date have focussed on the role of COX in influencing renal and vascular function, we suggest an interaction between prostanoids and T cells may be a novel factor, mediating elevated cardiovascular disease risk with NSAID use.
Collapse
Affiliation(s)
- Shanzana Khan
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Karen L Andrews
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Jaye P F Chin-Dusting
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| |
Collapse
|
19
|
Low-Fat Diet Designed for Weight Loss But Not Weight Maintenance Improves Nitric Oxide-Dependent Arteriolar Vasodilation in Obese Adults. Nutrients 2019; 11:nu11061339. [PMID: 31207908 PMCID: PMC6627594 DOI: 10.3390/nu11061339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 01/26/2023] Open
Abstract
Obesity is associated with microvascular dysfunction. While low-fat diet improves cardiovascular risk, its contributions on microvascular function, independent of weight loss, is unknown. We tested the hypothesis that nitric oxide (NO)-dependent vasodilation in microvessels is improved by low-fat diets designed for weight loss (LFWL) compared to low-fat weight maintenance (LFWM) diet. Obese adults were randomly assigned to either a LFWL diet (n = 11) or LFWM diet (n = 10) for six weeks. Microvessels were obtained from gluteal subcutaneous fat biopsies before and after the intervention for vascular reactivity measurements to acetylcholine (Ach) and flow, with and without L-NAME or indomethacin. Vascular and serum NO and C-reactive protein (CRP) were also measured. LFWL diet increased flow-induced (FID) and ACh-induced dilation (AChID); an effect that was inhibited by L-NAME. Conversely, LFWM diet did not affect FID or AChID. Indomethacin improved FID and AChID in the baseline and this effect was minimized in response to both diets. Serum NO or CRP did not change in response to either diet. In conclusion, LFWL diet improves microvascular reactivity compared to LFWM diet and increased vascular NO contribution to the improved microvascular dilation. These data suggest that weight reduction on low fat diet is critical for microvascular health.
Collapse
|
20
|
Grimm H, Kretzschmar J, Cook MD, Brown MD. The Effects of Exercise, Aspirin, and Celecoxib in an Atherogenic Environment. Med Sci Sports Exerc 2019; 50:2033-2039. [PMID: 29771821 DOI: 10.1249/mss.0000000000001657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Optimal vascular function is a hallmark of cardiovascular health. Specifically, the balance of vasoconstricting and vasodilating substances is recognized as a marker of vascular health. One of the greatest challenges to vascular health and vasodilatory balance is tumor necrosis factor alpha (TNFα)-mediated inflammation. Uncovering effective strategies that maintain a vascular environment that is more vasodilatory and antithrombotic in the face of an inflammatory challenge is favorable. PURPOSE To test the ability of various antithrombotic and provasodilatory treatments, as well as combinations thereof, to prevent unfavorable changes in markers of endothelial dysfunction in human umbilical vein endothelial cells when presented with an inflammatory challenge. METHODS Human umbilical vein endothelial cells were pretreated with exercise-like levels of laminar shear stress (LSS), aspirin, celecoxib, and their combination before a TNFα challenge. Western blot analysis as well as colorimetric assays were used to determine levels of endothelial nitric oxide synthase (eNOS) and prostacyclin (6-keto PGF1α)/thromboxane (TXB2) metabolite ratio, respectively. RESULTS Neither aspirin nor celecoxib were effective in preventing TNFα-induced reduction in eNOS. Further, aspirin was unable to maintain baseline levels of prostacyclin/thromboxane ratio in the face of the inflammatory challenge. Laminar shear stress, aspirin/LSS combination, and celecoxib/LSS combination were all able to prevent TNFα-induced alterations in eNOS levels and prostacyclin/thromboxane ratio. CONCLUSIONS Effective strategies to maintain a healthy endothelium, and therefore resistance vessel health, need to include exercise-levels of shear stress to be effective.
Collapse
Affiliation(s)
- Heather Grimm
- Kings College, Department of Sports Medicine, Wilke-Barre, PA
| | - Jan Kretzschmar
- Kings College, Department of Sports Medicine, Wilke-Barre, PA
| | - Marc D Cook
- North Carolina A&T State University, Department of Human Performance and Leisure Studies, Greensboro, NC
| | | |
Collapse
|
21
|
Fiordelisi A, Iaccarino G, Morisco C, Coscioni E, Sorriento D. NFkappaB is a Key Player in the Crosstalk between Inflammation and Cardiovascular Diseases. Int J Mol Sci 2019; 20:ijms20071599. [PMID: 30935055 PMCID: PMC6480579 DOI: 10.3390/ijms20071599] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023] Open
Abstract
Inflammation is a key mechanism of cardiovascular diseases. It is an essential component of atherosclerosis and a significant risk factor for the development of cardiovascular events. In the crosstalk between inflammation and cardiovascular diseases, the transcription factor NFκB seems to be a key player since it is involved in the development and progression of both inflammation and cardiac and vascular damage. In this review, we deal with the recent findings of the role of inflammation in cardiac diseases, focusing, in particular, on NFκB as a functional link. We describe strategies for the therapeutic targeting of NFκB as a potential strategy for the failing heart.
Collapse
Affiliation(s)
- Antonella Fiordelisi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Napoli, Italy.
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Napoli, Italy.
| | - Carmine Morisco
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Napoli, Italy.
| | - Enrico Coscioni
- Division of Cardiac Surgery, AOU San Giovanni di Dio e Ruggi d'Aragona, 84131 Salerno, Italy.
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Napoli, Italy.
| |
Collapse
|
22
|
Are All Oral COX-2 Selective Inhibitors the Same? A Consideration of Celecoxib, Etoricoxib, and Diclofenac. Int J Rheumatol 2018; 2018:1302835. [PMID: 30631366 PMCID: PMC6304524 DOI: 10.1155/2018/1302835] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely used for the treatment of arthritic conditions. Drugs in this heterogeneous class alleviate pain and inflammation by inhibiting cyclooxygenase-2 (COX-2). Cyclooxygenase-1 (COX-1) inhibition has traditionally been associated with increased gastrointestinal (GI) harm, whereas increased COX-2 selectivity has more recently become associated with greater risk of cardiovascular (CV) harm. When the entirety of data is considered, NSAIDs can be seen to exhibit a range of COX isoform selectivity, with all oral NSAIDs appearing to be associated with an increase in CV events. This review focuses on a comparison of the efficacy and the GI and CV safety profiles of three commonly used NSAIDs-celecoxib, etoricoxib, and diclofenac-using direct comparisons where available. While all three treatments are shown to have comparable efficacy, there are differences in their safety profiles. Both celecoxib and etoricoxib are associated with less GI harm than diclofenac despite the similarity of its COX-2 selectivity to celecoxib. Each of the three medicines under consideration is associated with a similar overall risk of CV events (fatal and nonfatal heart attacks and strokes). However, there are consistent differences in effects on blood pressure (BP), reported both from trials using ambulatory techniques and from meta-analyses of randomized trials, reporting investigator determined effects, with etoricoxib being associated with a greater propensity to destabilize BP control than either diclofenac or celecoxib.
Collapse
|
23
|
Ruschitzka F, Borer JS, Krum H, Flammer AJ, Yeomans ND, Libby P, Lüscher TF, Solomon DH, Husni ME, Graham DY, Davey DA, Wisniewski LM, Menon V, Fayyad R, Beckerman B, Iorga D, Lincoff AM, Nissen SE. Differential blood pressure effects of ibuprofen, naproxen, and celecoxib in patients with arthritis: the PRECISION-ABPM (Prospective Randomized Evaluation of Celecoxib Integrated Safety Versus Ibuprofen or Naproxen Ambulatory Blood Pressure Measurement) Trial. Eur Heart J 2018; 38:3282-3292. [PMID: 29020251 DOI: 10.1093/eurheartj/ehx508] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/21/2017] [Indexed: 12/24/2022] Open
Abstract
Aims Non-steroidal anti-inflammatory drugs (NSAIDs), both non-selective and selective cyclooxygenase-2 (COX-2) inhibitors, are among the most widely prescribed drugs worldwide, but associate with increased blood pressure (BP) and adverse cardiovascular (CV) events. PRECISION-ABPM, a substudy of PRECISION was conducted at 60 sites, to determine BP effects of the selective COX-2 inhibitor celecoxib vs. the non-selective NSAIDs naproxen and ibuprofen. Methods and results In this double-blind, randomized, multicentre non-inferiority CV-safety trial, 444 patients (mean age 62 ± 10 years, 54% female) with osteoarthritis (92%) or rheumatoid arthritis (8%) and evidence of or at increased risk for coronary artery disease received celecoxib (100-200 mg bid), ibuprofen (600-800 mg tid), or naproxen (375-500 mg bid) with matching placebos in a 1: 1: 1 allocation, to assess the effect on 24-h ambulatory BP after 4 months. The change in mean 24-h systolic BP (SBP) in celecoxib, ibuprofen and naproxen-treated patients was -0.3 mmHg [95% confidence interval (CI), -2.25, 1.74], 3.7 (95% CI, 1.72, 5.58) and 1.6 mmHg (95% CI, -0.40, 3.57), respectively. These changes resulted in a difference of - 3.9 mmHg (P = 0.0009) between celecoxib and ibuprofen, of - 1.8 mmHg (P = 0.12) between celecoxib and naproxen, and of - 2.1 mmHg (P = 0.08) between naproxen and ibuprofen. The percentage of patients with normal baseline BP who developed hypertension (mean 24-h SBP ≥ 130 and/or diastolic BP ≥ 80 mmHg) was 23.2% for ibuprofen, 19.0% for naproxen, and 10.3% for celecoxib (odds ratio 0.39, P = 0.004 and odds ratio 0.49, P = 0.03 vs. ibuprofen and naproxen, respectively). Conclusions In PRECISION-ABPM, allocation to the non-selective NSAID ibuprofen, compared with the COX-2 selective inhibitor celecoxib was associated with a significant increase of SBP, and a higher incidence of new-onset hypertension. ClinicalTrials gov number NCT00346216.
Collapse
Affiliation(s)
- Frank Ruschitzka
- Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Jeffrey S Borer
- Cardiovascular Medicine, Schiavone Cardiovascular Translational Research Institute, State University of New York, Downstate College of Medicine, New York, NY, USA
| | | | - Andreas J Flammer
- Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Neville D Yeomans
- Cardiovascular Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Peter Libby
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas F Lüscher
- Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Daniel H Solomon
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Elaine Husni
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - David Y Graham
- Cardiovascular Medicine, Baylor College of Medicine, Veterans Affairs Medical Center, Houston, TX, USA
| | - Deborah A Davey
- Department for Cleveland Clinic, Cleveland Clinic, Cleveland, OH, USA
| | - Lisa M Wisniewski
- Department for Cleveland Clinic, Cleveland Clinic, Cleveland, OH, USA
| | - Venu Menon
- Department for Cleveland Clinic, Cleveland Clinic, Cleveland, OH, USA
| | - Rana Fayyad
- Cardiovascular Medicine, Pfizer, New York, NY, USA
| | | | - Dinu Iorga
- Cardiovascular Medicine, Pfizer, New York, NY, USA
| | - A Michael Lincoff
- Cardiovascular Medicine, Baylor College of Medicine, Veterans Affairs Medical Center, Houston, TX, USA
| | - Steven E Nissen
- Cardiovascular Medicine, Baylor College of Medicine, Veterans Affairs Medical Center, Houston, TX, USA
| |
Collapse
|
24
|
Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling. Sci Rep 2018; 8:6271. [PMID: 29674687 PMCID: PMC5908847 DOI: 10.1038/s41598-018-24548-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 04/05/2018] [Indexed: 01/13/2023] Open
Abstract
Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα(Thr172) and CREB-1(Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65(Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1β-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs.
Collapse
|
25
|
Influence of the selective COX-2 inhibitor celecoxib on sex differences in blood pressure and albuminuria in spontaneously hypertensive rats. Prostaglandins Other Lipid Mediat 2018; 135:16-20. [PMID: 29425800 DOI: 10.1016/j.prostaglandins.2018.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
Abstract
We previously reported that female spontaneously hypertensive rats (SHR) have greater cyclooxygenase-2 (COX-2) expression in the renal medulla and enhanced urinary excretion of prostaglandin (PG) E2 (PGE2) metabolites compared to male SHR. Based on the role of COX-2-derived prostanoids in the regulation of cardiovascular health, the aim of the current study was to test the hypothesis that blood pressure (BP) in female SHR is more sensitive to COX-2 inhibition than in males. Seven week old male and female SHR were implanted with telemetry transmitters for continuous BP recording. After one week of baseline BP recording, male and female SHR were randomized to receive the selective COX-2 inhibitor celecoxib (10 mg/kg/day) or vehicle for six weeks (from 9 to 14 weeks of age). Female SHR had lower BP and albuminuria compared to male SHR as well as enhanced urinary excretion of PGE metabolite (PGEM), 6-keto PGF1α and thromboxane B2, indicators of PGE2, PGI2 and TXA2, respectively. Treatment with celecoxib did not significantly alter BP or albuminuria in either female or male SHR. Celecoxib did not change PGs metabolites excretion in male SHR; however, excretion levels of PGEM and 6-keto PGF1α were reduced in female SHR. COX-2 derived PG can also induce oxidative stress. Markers of oxidative stress (thiobarbituric acid reactive substances (TBARs) and H2O2 excretion) were lesser in female SHR versus male SHR. Celecoxib treatment did not significantly change markers of oxidative stress in female SHR, however, urinary TBARs excretion was significantly reduced in male SHR after 6 weeks of treatment with celecoxib. Therefore, although celecoxib treatment appears to have distinct effects on prostanoids levels in female SHR vs. males, it is unlikely that COX-2 contributes to established sex differences in BP in SHR.
Collapse
|
26
|
García-Redondo AB, Esteban V, Briones AM, Díaz Del Campo LS, González-Amor M, Méndez-Barbero N, Campanero MR, Redondo JM, Salaices M. Regulator of calcineurin 1 modulates vascular contractility and stiffness through the upregulation of COX-2-derived prostanoids. Pharmacol Res 2018; 133:236-249. [PMID: 29309904 DOI: 10.1016/j.phrs.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022]
Abstract
Cyclooxygenase-2 (COX-2) derived-prostanoids participate in the altered vascular function and mechanical properties in cardiovascular diseases. We investigated whether regulator of calcineurin 1 (Rcan1) participates in vascular contractility and stiffness through the regulation of COX-2. For this, wild type (Rcan1+/+) and Rcan1-deficient (Rcan1-/-) mice untreated or treated with the COX-2 inhibitor rofecoxib were used. Vascular function and structure were analysed by myography. COX-2 and phospo-p65 expression were studied by western blotting and immunohistochemistry and TXA2 production by ELISA. We found that Rcan1 deficiency increases COX-2 and IL-6 expression and NF-κB activation in arteries and vascular smooth muscle cells (VSMC). Adenoviral-mediated re-expression of Rcan1.4 in Rcan1-/- VSMC normalized COX-2 expression. Phenylephrine-induced vasoconstrictor responses were greater in aorta from Rcan1-/- compared to Rcan1+/+ mice. This increased response were diminished by etoricoxib, furegrelate, SQ 29548, cyclosporine A and parthenolide, inhibitors of COX-2, TXA2 synthase, TP receptors, calcineurin and NF-κB, respectively. Endothelial removal and NOS inhibition increased phenylephrine responses only in Rcan1+/+ mice. TXA2 levels were greater in Rcan1-/- mice. In small mesenteric arteries, vascular function and structure were similar in both groups of mice; however, vessels from Rcan1-/- mice displayed an increase in vascular stiffness that was diminished by rofecoxib. In conclusion, our results suggest that Rcan1 might act as endogenous negative modulator of COX-2 expression and activity by inhibiting calcineurin and NF-kB pathways to maintain normal contractility and vascular stiffness in aorta and small mesenteric arteries, respectively. Our results uncover a new role for Rcan1 in vascular contractility and mechanical properties.
Collapse
Affiliation(s)
- Ana B García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | - Vanesa Esteban
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Departamento de Inmunología, Instituto de Investigación Fundación Jiménez Díaz, Madrid, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain.
| | - Lucía S Díaz Del Campo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - María González-Amor
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Nerea Méndez-Barbero
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel R Campanero
- CIBER de Enfermedades Cardiovasculares, Spain; Departmento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Juan M Redondo
- CIBER de Enfermedades Cardiovasculares, Spain; Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain.
| |
Collapse
|
27
|
Ho KY, Gwee KA, Cheng YK, Yoon KH, Hee HT, Omar AR. Nonsteroidal anti-inflammatory drugs in chronic pain: implications of new data for clinical practice. J Pain Res 2018; 11:1937-1948. [PMID: 30288088 PMCID: PMC6160277 DOI: 10.2147/jpr.s168188] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
COX2-selective and nonselective (ns) nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used for chronic pain management. There are marked differences in the risk of adverse gastrointestinal (GI) and cardiovascular (CV) events among different NSAIDs. In 2017, publication of two randomized controlled trials and an individual patient-data meta-analysis provided robust data on the relative GI and CV tolerability profiles of currently available NSAIDs. The PRECISION study showed similar CV-event rates with celecoxib vs naproxen and ibuprofen, but GI tolerability was better for celecoxib. In the CONCERN study of high-GI-risk patients, celecoxib was associated with fewer adverse GI-tract events than naproxen. The meta-analysis showed no significant difference between celecoxib and ns-NSAIDs in the rate of acute myocardial infarction, and celecoxib was the only COX2-selective NSAID with a lower risk of adverse CV and GI events vs ns-NSAIDs. These data add to the body of knowledge about the relative tolerability of different NSAIDs and were used to propose an updated treatment algorithm. The decision about whether to use an NSAID and which one should be based on a patient's risk of developing adverse GI and CV events. Lower- and upper-GI-tract events need to be considered. Celecoxib has a better lower-GI-tract tolerability profile than ns-NSAIDs plus a proton-pump inhibitor. In addition, the latest data suggest that long-term use of celecoxib 200 mg/day may be appropriate for patients at increased CV risk.
Collapse
Affiliation(s)
| | - Kok Ann Gwee
- Stomach, Liver, and Bowel Centre, Gleneagles Hospital
| | - Yew Kuang Cheng
- Farrer Park Hospital
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Kam Hon Yoon
- El Shaddai Arthritis and Rheumatism Specialist Medical Centre
| | - Hwan Tak Hee
- Pinnacle Spine and Scoliosis Centre, Mt Elizabeth Medical Centre
| | - Abdul Razakjr Omar
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
28
|
Walker C, Biasucci LM. Cardiovascular safety of non-steroidal anti-inflammatory drugs revisited. Postgrad Med 2017; 130:55-71. [DOI: 10.1080/00325481.2018.1412799] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chris Walker
- Global Product Director, Pfizer, Walton Oaks, UK
| | | |
Collapse
|
29
|
Widlansky ME, Puppala VK, Suboc TM, Malik M, Branum A, Signorelli K, Wang J, Ying R, Tanner MJ, Tyagi S. Impact of DPP-4 inhibition on acute and chronic endothelial function in humans with type 2 diabetes on background metformin therapy. Vasc Med 2017; 22:189-196. [PMID: 28145158 DOI: 10.1177/1358863x16681486] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell culture and animal work indicate that dipeptidyl peptidase-4 (DPP-4) inhibition may exert cardiovascular benefits through favorable effects on the vascular endothelium. Prior human studies evaluating DPP-4 inhibition have shown conflicting results that may in part be related to heterogeneity of background anti-diabetes therapies. No study has evaluated the acute response of the vasculature to DPP-4 inhibition in humans. We recruited 38 patients with type 2 diabetes on stable background metformin therapy for a randomized, double-blind, placebo-controlled crossover trial of DPP-4 inhibition with sitagliptin (100 mg/day). Each treatment period was 8 weeks long separated by 4 weeks of washout. Endothelial function and plasma markers of endothelial activation (intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1)) were measured prior to and 2 hours following acute dosing of sitagliptin or placebo, as well as following 8 weeks of intervention with each pill. Thirty subjects completed the study and were included in analyses. Neither acute nor chronic sitagliptin therapy resulted in significant changes in vascular endothelial function. While post-acute sitagliptin ICAM-1 levels were lower than that post-chronic sitagliptin, the ICAM-1 concentration was not significantly different than pre-acute sitagliptin levels or levels measured in relationship to placebo. There were no significant changes in plasma VCAM-1 levels at any time point. Acute and chronic sitagliptin therapies have neutral effects on the vascular endothelium in the setting of metformin background therapy. In conclusion, our findings suggest DPP-4 inhibition has a neutral effect on cardiovascular risk in patients without a history of heart failure or renal insufficiency. TRIAL REGISTRATION NCT01859793.
Collapse
Affiliation(s)
- Michael E Widlansky
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Venkata K Puppala
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tisha M Suboc
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mobin Malik
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amberly Branum
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kara Signorelli
- 2 Medical College of Wisconsin School of Medicine, Milwaukee, WI, USA
| | - Jingli Wang
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rong Ying
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Tanner
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sudhi Tyagi
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
30
|
Hall MH, Mulukutla S, Kline CE, Samuelsson LB, Taylor BJ, Thayer JF, Krafty RT, Frank E, Kupfer DJ. Objective Sleep Duration Is Prospectively Associated With Endothelial Health. Sleep 2017; 40:2845957. [PMID: 28364470 PMCID: PMC6084747 DOI: 10.1093/sleep/zsw003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2017] [Indexed: 01/25/2023] Open
Abstract
Study Objectives The mechanisms linking short sleep duration to cardiovascular disease (CVD) are poorly understood. Emerging evidence suggests that endothelial dysregulation may lie along the causal pathway linking sleep duration to cardiovascular risk, although current evidence in humans is based on cross-sectional studies. Our objective was to evaluate the prospective association between objectively assessed sleep duration and clinical indices of endothelial health. Methods A total of 141 medically healthy adults underwent an overnight laboratory sleep study when they were between the ages of 21 and 60 years. Total sleep time was objectively assessed by polysomnography at study entry. Endothelial health, including brachial artery diameter (BAD) and flow-mediated dilation (FMD), was measured 18.9 ± 4.6 years later. Medical health and psychiatric status were assessed at both time points. Approximately half of the sample had a lifetime history of major depressive disorder. Results In univariate analyses, shorter sleep duration was associated with increased BAD (β = -0.24, p = .004) and decreased FMD (β = 0.17, p = .042). BAD, but not FMD, remained significantly associated with sleep duration after adjusting for sex, age, body mass index (BMI), smoking, diabetes, hypertension, and lifetime history of major depressive disorder (MDD) at T2. The association between sleep duration and BAD was stronger than the association between BAD and an aggregate measure of CVD risk including three or more of the following risk factors: male sex, age ≥ 65 years, smoker, BMI ≥ 30, diabetes, hypertension, and MDD. Conclusions Objectively assessed short sleep duration was prospectively associated with increased BAD over a 12- to 30-year period.
Collapse
Affiliation(s)
- Martica H Hall
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Suresh Mulukutla
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christopher E Kline
- Department of Health and Physical Activity, University of Pittsburgh, Pittsburgh, PA
| | | | - Briana J Taylor
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Julian F Thayer
- Department of Psychology, Ohio State University, Columbus, OH
| | - Robert T Krafty
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Ellen Frank
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - David J Kupfer
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
31
|
Demethoxycurcumin Preserves Renovascular Function by Downregulating COX-2 Expression in Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9045736. [PMID: 28105253 PMCID: PMC5220467 DOI: 10.1155/2016/9045736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022]
Abstract
Hypertension-associated endothelial dysfunction is largely due to the exaggerated vasoconstrictor generation by cyclooxygenase-2 (COX-2). COX-2 is induced under inflammatory condition. Demethoxycurcumin (DMC) is a major component of Curcuma longa L, which possesses anti-inflammatory action. This study aimed to examine whether DMC protects endothelial function in hypertension by modulating COX-2. Changes in isometric tension showed that in vivo and ex vivo treatment with DMC rescued the attenuated endothelium-dependent relaxations (EDRs) and elevated endothelium-dependent contractions (EDCs) in the renal arteries of SHR, which were also corrected by acute usage of the COX-2 inhibitor celecoxib. The restoration of renovascular activity by DMC was accompanied by the normalization of COX-2 expression. The enhanced COX-2 expression observed in the renal arteries of hypertensive patients was suppressed by incubation of excised arteries with DMC for 12 hrs. In the renal arteries of Wistar-Kyoto rats (WKY), DMC prevented the endothelial dysfunction caused by angiotensin II. The reduction in the generation of nitric oxide (NO) and expression of eNOS phosphorylation (Ser1177) in human umbilical vein endothelial cells caused by angiotensin II (Ang II) were restored by DMC or celecoxib. Our findings suggest that DMC may decrease COX-2 expression and improve endothelial function in hypertension.
Collapse
|
32
|
Patrono C. Cardiovascular effects of cyclooxygenase-2 inhibitors: a mechanistic and clinical perspective. Br J Clin Pharmacol 2016; 82:957-64. [PMID: 27317138 PMCID: PMC5137820 DOI: 10.1111/bcp.13048] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/26/2016] [Accepted: 06/05/2016] [Indexed: 12/14/2022] Open
Abstract
LINKED ARTICLES This article is part of a joint Themed section with the British Journal of Pharmacology on Targeting Inflammation to Reduce Cardiovascular Disease Risk: a Realistic Clinical Prospect? The rest of the Themed section will appear in a future issue of BJP and will be available at http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1476-5381 Prostaglandin (PG) H synthase 2 [also referred to colloquially as cyclooxygenase (COX) 2] represents a key enzyme in arachidonic acid metabolism in health and disease. It is both constitutively expressed in several human tissues (e.g. kidney and brain) and induced in various cell types (including monocytes/macrophages, vascular endothelial cells and colorectal cancer cells) in response to inflammatory cytokines, laminar shear stress and growth factors. Products of COX-2 activity (e.g. PGE2 and prostacyclin) are involved in diverse physiological and pathophysiological processes, including renal haemodynamics and the control of blood pressure, endothelial thromboresistance, pain and inflammation, and colorectal tumorigenesis. Therefore, it is not surprising that COX-2 inhibitors display multifaceted clinical effects, ranging from reduced pain and inflammation to increased blood pressure, an increased risk of atherothrombotic events and a decreased risk of colorectal cancer. The aim of the present article was to review the cardiovascular effects of COX-2 inhibitors [traditional nonsteroidal anti-inflammatory drugs (tNSAIDs) and coxibs alike], with a focus on the mechanisms contributing to the clinical readouts of COX-2 inhibition.
Collapse
Affiliation(s)
- Carlo Patrono
- Department of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| |
Collapse
|
33
|
Liang Z, Zheng Y, Wang J, Zhang Q, Ren S, Liu T, Wang Z, Luo D. Low molecular weight fucoidan ameliorates streptozotocin-induced hyper-responsiveness of aortic smooth muscles in type 1 diabetes rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:341-349. [PMID: 27346541 DOI: 10.1016/j.jep.2016.06.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/13/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Low molecular weight fucoidan (LMWF) was prepared from Laminaria japonica Areschoug, a popular seafood and medicinal plant consumed in Asia. Chinese have long been using it as a traditional medicine for curing hypertension and edema. AIM OF THE STUDY This study was intent to investigate the possible beneficial effect of LMWF on hyper-responsiveness of aortic smooth muscles instreptozotocin (STZ)-induced type 1 diabetic rats. MATERIALS AND METHODS Sprague-Dawley rats were made diabetic by injection of STZ, followed by the administration of LMWF (50 or 100mg/kg/day) or probucol (100mg/kg/day) for 12 weeks. Body weight, blood glucose level, basal blood pressure, serum lipid profiles, oxidative stress, prostanoids production, and vasoconstriction response of endothelium-denuded aorta rings to phenylephrine were measured by Real time-PCR, Western blots, ELISA assay, and force myograph, respectively. RESULTS LMWF (100mg/kg/day)-treated group showed robust improvements on STZ-induced body weight-loss, hypertension, and hyperlipidaemia as indicated by decreased serum level of total cholesterol, triglyceride, and low density lipoprotein cholesterol; while probucol, a lipid-modifying drug with antioxidant properties, displayed mild effects. In addition, LMWF appreciably ameliorated STZ-elicited hyper-responsiveness and oxidative stress in aortic smooth muscles as indicated by decreased superoxide level, increased glutathione content and higher superoxide dismutase activity. Furthermore, administration with LMWF dramatically prevented cyclooxygenase-2 stimulation and restored the up-regulation of thromboxane synthase and down-regulation of 6-keto-PGF1α (a stable metabolic product of prostaglandin I2) in the STZ-administered rats. CONCLUSION This study demonstrates for the first time that LMWF can protect against hyperlipidaemia, hypertension, and hyper-responsiveness of aortic smooth muscles in type 1 diabetic rat via, at least in part, amelioration of oxidative stress and restoration of prostanoids levels in aortic smooth muscles. Therefore, LMWF can be a potential adjuvant treatment against cardiovascular complications in type 1 diabetes.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/chemistry
- Antihypertensive Agents/pharmacology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiopathology
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Angiopathies/blood
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/prevention & control
- Dose-Response Relationship, Drug
- Glutathione/metabolism
- Hyperlipidemias/blood
- Hyperlipidemias/physiopathology
- Hyperlipidemias/prevention & control
- Hypertension/blood
- Hypertension/physiopathology
- Hypertension/prevention & control
- Hypolipidemic Agents/chemistry
- Hypolipidemic Agents/pharmacology
- Lipids/blood
- Male
- Molecular Weight
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Oxidative Stress/drug effects
- Polysaccharides/chemistry
- Polysaccharides/pharmacology
- Prostaglandins/metabolism
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Streptozocin
- Superoxide Dismutase/metabolism
- Superoxides/metabolism
- Vasodilation/drug effects
- Weight Gain/drug effects
Collapse
Affiliation(s)
- Zhengyang Liang
- Department of Pharmacology, Capital Medical University, Beijing 100069, PR China.
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing 100069, PR China.
| | - Jing Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Quanbin Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Shuang Ren
- Department of Pharmacology, Capital Medical University, Beijing 100069, PR China.
| | - Tiantian Liu
- Department of Pharmacology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiqiang Wang
- Department of Pharmacology, Capital Medical University, Beijing 100069, PR China.
| | - Dali Luo
- Department of Pharmacology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
34
|
Title LM, Ur E, Giddens K, McQueen MJ, Nassar BA. Folic acid improves endothelial dysfunction in type 2 diabetes - an effect independent of homocysteine-lowering. Vasc Med 2016; 11:101-9. [PMID: 16886840 DOI: 10.1191/1358863x06vm664oa] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Diabetes is associated with endothelial dysfunction, which in part may be related to uncoupling of the endothelial nitric oxide (NO) synthase enzyme, thus reducing the availability of NO. As folates may potentially reverse the uncoupling of NO synthase, we wanted to determine whether folic acid supplementation could modulate endothelial function and markers of inflammation in patients with type 2 diabetes without vascular disease. Nineteen patients with type 2 diabetes were treated with folic acid (10 mg/day for 2 weeks) versus placebo in a randomized, placebo-controlled, cross-over study with an 8-week washout period between treatments. Fasting endothelium-dependent flow-mediated dilatation (FMD) of the brachial artery, endothelium-independent nitroglycerin-mediated dilatation (NMD), plasma homocysteine, serum lipids, folate, and inflammatory markers (high-sensitivity C-reactive protein, soluble intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, interleukin-18, tumor necrosis factor-alpha) were assessed after each 2-week treatment period. Folic acid supplementation significantly increased folate levels and lowered plasma homocysteine levels. Folic acid significantly improved FMD compared to placebo (5.8 4.8% vs 3.2 2.7%, p 0.02). There were no significant effects of folic acid supplementation on lipids, NMD, or the inflammatory markers. There was no relationship between the change in homocysteine and the improvement in FMD. Thus, 2 weeks of folic acid supplementation can improve endothelial dysfunction in type 2 diabetics independent of homocysteine-lowering, but does not modulate markers of inflammation.
Collapse
Affiliation(s)
- Lawrence M Title
- Queen Elizabeth II Health Sciences Centre, Division of Cardiology, 6896-1796 Summer St, Halifax, NS, Canada.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Recently there has been considerable interest in the role of cyclooxygenase-2 (COX-2) in thrombosis and myocardial infarction. A large number of clinical and basic studies have focused on whether COX-2 inhibitors can induce a prothrombotic disorder and increase the risk of cardiovascular thrombosis. This article reviews (1) the roles of COX-2 in the metabolism of prostaglandins; (2) the influence of COX-2 inhibition in the platelet aggregation and the antithrombotic function of vascular endothelium; (3) the roles of COX-2 inhibition in atherothrombosis; and (4) clinical trials that examine COX-2 inhibition in relationship to the risk of myocardial infarction. Based on the published data, this review suggests that COX-2 plays varying and sometimes conflicting roles in thrombogenesis, in prostaglandins' metabolism of endothelium in healthy or dysfunctional conditions, and in atherothrombosis. Future investigations under different pathologic conditions are needed to fully understand the net effect of COX-2 inhibition on thrombogenesis. The roles of COX-2 in the pathophysiologic process of cardiovascular thrombosis are diverse and controversial, and need to be further studied to guide clinical practice.
Collapse
Affiliation(s)
- Wangde Dai
- The Heart Institute, Good Samaritan Hospital, University of Southern California, 1225 Wilshire Boulevard, Los Angeles, CA 90017, USA
| | | |
Collapse
|
36
|
Luo W, Liu B, Zhou Y. The endothelial cyclooxygenase pathway: Insights from mouse arteries. Eur J Pharmacol 2016; 780:148-58. [PMID: 27020548 DOI: 10.1016/j.ejphar.2016.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 02/05/2023]
Abstract
To date, cyclooxygenase-2 (COX-2) is commonly believed to be the major mediator of endothelial prostacyclin (prostaglandin I2; PGI2) synthesis that balances the effect of thromboxane (Tx) A2 synthesis mediated by the other COX isoform, COX-1 in platelets. Accordingly, selective inhibition of COX-2 is considered to cause vasoconstriction, platelet aggregation, and hence increase the incidence of cardiovascular events. This idea has been claimed to be substantiated by experiments on mouse models, some of which are deficient in one of the two COX isoforms. However, results from our studies and those of others using similar mouse models suggest that COX-1 is the major functional isoform in vascular endothelium. Also, although PGI2 is recognized as a potent vasodilator, in some arteries endothelial COX activation causes vasoconstrictor response. This has again been recognized by studies, especially those performed on mouse arteries, to result largely from endothelial PGI2 synthesis. Therefore, evidence that supports a role for COX-1 as the major mediator of PGI2 synthesis in mouse vascular endothelium, reasons for the inconsistency, and results that elucidate underlying mechanisms for divergent vasomotor reactions to endothelial COX activation will be discussed in this review. In addition, we address the possible pathological implications and limitations of findings obtained from studies performed on mouse arteries.
Collapse
Affiliation(s)
- Wenhong Luo
- Central Lab, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
37
|
Dewi L. In Silico Analysis of the Potential of the Active Compounds Fucoidan and Alginate Derived from Sargassum Sp. as Inhibitors of COX-1 and COX-2. Med Arch 2016; 70:172-6. [PMID: 27594740 PMCID: PMC5010064 DOI: 10.5455/medarh.2016.70.172-176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The enzyme cyclooxygenase (COX) is an enzyme that catalyzes the formation of one of the mediators of inflammation, the prostaglandins. Inhibition of COX allegedly can improve inflammation-induced pathological conditions. AIM The purpose of the present study was to evaluate the potential of Sargassum sp. components, Fucoidan and alginate, as COX inhibitors. MATERIAL AND METHODS The study was conducted by means of a computational (in silico) method. It was performed in two main stages, the docking between COX-1 and COX-2 with Fucoidan, alginate and aspirin (for comparison) and the analysis of the amount of interactions formed and the residues directly involved in the process of interaction. RESULTS Our results showed that both Fucoidan and alginate had an excellent potential as inhibitors of COX-1 and COX-2. Fucoidan had a better potential as an inhibitor of COX than alginate. COX inhibition was expected to provide a more favorable effect on inflammation-related pathological conditions. CONCLUSION The active compounds Fucoidan and alginate derived from Sargassum sp. were suspected to possess a good potential as inhibitors of COX-1 and COX-2.
Collapse
Affiliation(s)
- Lestari Dewi
- Department of Pharmacology, Medical Faculty, Hang Tuah University, Surabaya, East Java, Indonesia. Address: Jl. Gadung No. 1, Surabaya, East Java, Indonesia
| |
Collapse
|
38
|
The Coxib case: Are EP receptors really guilty? Atherosclerosis 2016; 249:164-73. [DOI: 10.1016/j.atherosclerosis.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/21/2016] [Accepted: 04/05/2016] [Indexed: 01/08/2023]
|
39
|
Avendaño MS, Martínez-Revelles S, Aguado A, Simões MR, González-Amor M, Palacios R, Guillem-Llobat P, Vassallo DV, Vila L, García-Puig J, Beltrán LM, Alonso MJ, Cachofeiro MV, Salaices M, Briones AM. Role of COX-2-derived PGE2 on vascular stiffness and function in hypertension. Br J Pharmacol 2016; 173:1541-55. [PMID: 26856544 DOI: 10.1111/bph.13457] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/08/2016] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Prostanoids derived from COX-2 and EP receptors are involved in vascular remodelling in different cardiovascular pathologies. This study evaluates the contribution of COX-2 and EP1 receptors to vascular remodelling and function in hypertension. EXPERIMENTAL APPROACH Spontaneously hypertensive rats (SHR) and angiotensin II (AngII)-infused (1.44 mg · kg(-1) · day(-1), 2 weeks) mice were treated with the COX-2 inhibitor celecoxib (25 mg · kg(-1) · day(-1) i.p) or with the EP1 receptor antagonist SC19220 (10 mg · kg(-1) · day(-1) i.p.). COX-2(-/-) mice with or without AngII infusion were also used. KEY RESULTS Celecoxib and SC19220 treatment did not modify the altered lumen diameter and wall : lumen ratio in mesenteric resistance arteries from SHR-infused and/or AngII-infused animals. However, both treatments and COX-2 deficiency decreased the augmented vascular stiffness in vessels from hypertensive animals. This was accompanied by diminished vascular collagen deposition, normalization of altered elastin structure and decreased connective tissue growth factor and plasminogen activator inhibitor-1 gene expression. COX-2 deficiency and SC19220 treatment diminished the increased vasoconstrictor responses and endothelial dysfunction induced by AngII infusion. Hypertensive animals showed increased mPGES-1 expression and PGE2 production in vascular tissue, normalized by celecoxib. Celecoxib treatment also decreased AngII-induced macrophage infiltration and TNF-α expression. Macrophage conditioned media (MCM) increased COX-2 and collagen type I expression in vascular smooth muscle cells; the latter was reduced by celecoxib treatment. CONCLUSIONS AND IMPLICATIONS COX-2 and EP1 receptors participate in the increased extracellular matrix deposition and vascular stiffness, the impaired vascular function and inflammation in hypertension. Targeting PGE2 receptors might have benefits in hypertension-associated vascular damage.
Collapse
Affiliation(s)
- M S Avendaño
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - S Martínez-Revelles
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - A Aguado
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - M R Simões
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain.,Dept. Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - M González-Amor
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - R Palacios
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - P Guillem-Llobat
- Centro de Biología Molecular "Severo Ochoa", UAM-CSIC, Madrid, Spain
| | - D V Vassallo
- Dept. Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - L Vila
- Laboratorio de Angiología, Biología Vascular e Inflamación, Instituto de Investigación Biomédica (IIB Sant Pau), Barcelona, Spain
| | - J García-Puig
- Servicio de Medicina Interna, Hospital Universitario La Paz, UAM, IdiPaz, Madrid, Spain
| | - L M Beltrán
- Servicio de Medicina Interna, Hospital Universitario La Paz, UAM, IdiPaz, Madrid, Spain
| | - M J Alonso
- Dept Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - M V Cachofeiro
- Dept. Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - M Salaices
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - A M Briones
- Dept. Farmacología, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
40
|
Cavka A, Cosic A, Jukic I, Jelakovic B, Lombard JH, Phillips SA, Seric V, Mihaljevic I, Drenjancevic I. The role of cyclo-oxygenase-1 in high-salt diet-induced microvascular dysfunction in humans. J Physiol 2015; 593:5313-24. [PMID: 26498129 DOI: 10.1113/jp271631] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Recent studies have shown that some of the deleterious effects of a high-salt (HS) diet are independent of elevated blood pressure and are associated with impaired endothelial function. Increased generation of cyclo-oxygenase (COX-1 and COX-2)-derived vasoconstrictor factors and endothelial activation may contribute to impaired vascular relaxation during HS loading. The present study aimed to assess the regulation of microvascular reactivity and to clarify the role of COX-1 and COX-2 in normotensive subjects on a short-term HS diet. The present study demonstrates the important role of COX-1 derived vasoconstrictor metabolites in regulation of microvascular blood flow during a HS diet. These results help to explain how even short-term HS diets may impact upon microvascular reactivity without changes in blood pressure and suggest that a vasoconstrictor metabolite of COX-1 could play a role in this impaired tissue blood flow. ABSTRACT The present study aimed to assess the effect of a 1-week high-salt (HS) diet on the role of cyclo-oxygenases (COX-1 and COX-2) and the vasoconstrictor prostaglandins, thromboxane A2 (TXA2 ) and prostaglandin F2α (PGF2α ), on skin microcirculatory blood flow, as well as to detect its effect on markers of endothelial activation such as soluble cell adhesion molecules. Young women (n = 54) were assigned to either the HS diet group (N = 30) (∼14 g day(-1) NaCl ) or low-salt (LS) diet group (N = 24) (<2.3 g day(-1) NaCl ) for 7 days. Post-occlusive reactive hyperaemia (PORH) in the skin microcirculation was assessed by laser Doppler flowmetry. Plasma renin activity, plasma aldosterone, plasma and 24 h urine sodium and potassium, plasma concentrations of TXB2 (stable TXA2 metabolite) and PGF2α , soluble cell adhesion molecules and blood pressure were measured before and after the diet protocols. One HS diet group subset received 100 mg of indomethacin (non-selective COX-1 and COX-2 inhibitor), and another HS group subset received 200 mg of celecoxib (selective COX-2 inhibitor) before repeating laser Doppler flowmetry measurements. Blood pressure was unchanged after the HS diet, although it significantly reduced after the LS diet. Twenty-four hour urinary sodium was increased, and plasma renin activity and plasma aldosterone levels were decreased after the HS diet. The HS diet significantly impaired PORH and increased TXA2 but did not change PGF2α levels. Indomethacin restored microcirculatory blood flow and reduced TXA2 . By contrast, celecoxib decreased TXA2 levels but had no significant effects on blood flow. Restoration of of PORH by indomethacin during a HS diet suggests an important role of COX-1 derived vasoconstrictor metabolites in the regulation of microvascular blood flow during HS intake.
Collapse
Affiliation(s)
- Ana Cavka
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Cosic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Bojan Jelakovic
- School of Medicine University of Zagreb, Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shane A Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois in Chicago, Chicago, IL, USA
| | - Vatroslav Seric
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
| | - Ivan Mihaljevic
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, Osijek, Croatia
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
41
|
COX-2 mediated induction of endothelium-independent contraction to bradykinin in endotoxin-treated porcine coronary artery. J Cardiovasc Pharmacol 2015; 64:209-17. [PMID: 25192543 DOI: 10.1097/fjc.0000000000000105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examined the vascular effects of bradykinin in health and vascular inflammation comparing responses of isolated pig coronary arteries in the absence and presence of endotoxins. Bradykinin induced contractions in lipopolysaccharide-treated, but not untreated, arterial rings without endothelium. The B2-receptor antagonist HOE140, but not the B1-receptor inhibitor SSR240612, blocked these endothelium-independent contractions in response to bradykinin. The bradykinin-induced contractions were blocked by indomethacin, celecoxib, and terbogrel but not valeryl salicylate, AH6809, AL 8810, or RO1138452. They were attenuated by N-(p-amylcinnamoyl) anthranilic acid, and by diethyldithiocarbamate plus tiron but not by L-NAME. Quantitative reverse-transcription polymerase chain reaction revealed significant upregulations of messenger RNA expressions of B1 receptors, COX-2, and thromboxane A synthase 1 (TBXAS1) following lipopolysaccharide incubation but not of B2 receptors or COX-1. The present data demonstrate that bradykinin induces contractions mediated by the COX-2 pathway in endotoxin-treated pig coronary arteries. These results support differential roles of bradykinin in health and disease.
Collapse
|
42
|
Liu B, Li Z, Zhang Y, Luo W, Zhang J, Li H, Zhou Y. Vasomotor Reaction to Cyclooxygenase-1-Mediated Prostacyclin Synthesis in Carotid Arteries from Two-Kidney-One-Clip Hypertensive Mice. PLoS One 2015; 10:e0136738. [PMID: 26308616 PMCID: PMC4550394 DOI: 10.1371/journal.pone.0136738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/05/2015] [Indexed: 02/05/2023] Open
Abstract
This study tested the hypothesis that in hypertensive arteries cyclooxygenase-1 (COX-1) remains as a major form, mediating prostacyclin (prostaglandin I2; PGI2) synthesis that may evoke a vasoconstrictor response in the presence of functional vasodilator PGI2 (IP) receptors. Two-kidney-one-clip (2K1C) hypertension was induced in wild-type (WT) mice and/or those with COX-1 deficiency (COX-1-/-). Carotid arteries were isolated for analyses 4 weeks after. Results showed that as in normotensive mice, the muscarinic receptor agonist ACh evoked a production of the PGI2 metabolite 6-keto-PGF1α and an endothelium-dependent vasoconstrictor response; both of them were abolished by COX-1 inhibition. At the same time, PGI2, which evokes contraction of hypertensive vessels, caused relaxation after thromboxane-prostanoid (TP) receptor antagonism that abolished the contraction evoked by ACh. Antagonizing IP receptors enhanced the contraction to the COX substrate arachidonic acid (AA). Also, COX-1-/- mice was noted to develop hypertension; however, their increase of blood pressure and/or heart mass was not to a level achieved with WT mice. In addition, we found that either the contraction in response to ACh or that evoked by AA was abolished in COX-1-/- hypertensive mice. These results demonstrate that as in normotensive conditions, COX-1 is a major contributor of PGI2 synthesis in 2K1C hypertensive carotid arteries, which leads to a vasoconstrictor response resulting from opposing dilator and vasoconstrictor activities of IP and TP receptors, respectively. Also, our data suggest that COX-1-/- attenuates the development of 2K1C hypertension in mice, reflecting a net adverse role yielded from all COX-1-mediated activities under the pathological condition.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenhua Li
- Department of Pathology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Wenhong Luo
- The Central Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiling Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Li
- The Central Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, China
- * E-mail:
| |
Collapse
|
43
|
Phillips SA, Mahmoud AM, Brown MD, Haus JM. Exercise interventions and peripheral arterial function: implications for cardio-metabolic disease. Prog Cardiovasc Dis 2014; 57:521-34. [PMID: 25529367 DOI: 10.1016/j.pcad.2014.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Physical inactivity is a major risk factor for the development of obesity and other cardiovascular (CV) disease (CVD). Vascular endothelial dysfunction is a key event in the development of CVD and is associated with a sedentary lifestyle in otherwise healthy adults. In addition, vascular endothelial dysfunction may be exacerbated in sedentary individuals who are obese and insulin resistant, since excess body fat is associated with elevated levels of pro-atherogenic inflammatory adipokines and cytokines that reduce the nitric oxide (NO) and other upstream paracrine signaling substances which reduces vascular health. Since blood flow-related shear stress is a major stimulus to NO release from the endothelium, disturbed flow or low shear stress is the likely mechanism by which vascular endothelial function is altered with inactivity. Evidence shows that regular physical exercise has beneficial effects on CVD and the risk factors that promote peripheral arterial function and health. Both aerobic and resistance exercise training are generally believed to improve endothelial function and are commonly recommended for CV health, including the management of obesity, hypertension, and insulin resistance. However, many factors including age, disease status, and race appear to influence these outcomes. Although evidence supporting the health benefits of exercise is compelling, the optimum prescription (volume and intensity) and the exact mechanism underlying the effects of exercise training on arterial function and cardiometabolic risk has yet to be identified. The focus of this review will be on the evidence supporting exercise interventions for peripheral arterial function.
Collapse
Affiliation(s)
- Shane A Phillips
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL; Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL.
| | - Abeer M Mahmoud
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL; Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| | - Michael D Brown
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL; Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| | - Jacob M Haus
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL; Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
44
|
Farb MG, Tiwari S, Karki S, Ngo DTM, Carmine B, Hess DT, Zuriaga MA, Walsh K, Fetterman JL, Hamburg NM, Vita JA, Apovian CM, Gokce N. Cyclooxygenase inhibition improves endothelial vasomotor dysfunction of visceral adipose arterioles in human obesity. Obesity (Silver Spring) 2014; 22:349-55. [PMID: 23640904 PMCID: PMC3766380 DOI: 10.1002/oby.20505] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/24/2013] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether cyclooxygenase inhibition improves vascular dysfunction of adipose microvessels from obese humans. DESIGN AND METHODS In 20 obese subjects (age 37 ± 12 years, BMI 47 ± 8 kg/m²), subcutaneous and visceral fat were collected during bariatric surgery and characterized for adipose depot-specific gene expression, endothelial cell phenotype, and microvascular function. Vasomotor function was assessed in response to endothelium-dependent agonists using videomicroscopy of small arterioles from fat. RESULTS Arterioles from visceral fat exhibited impaired endothelium-dependent, acetylcholine-mediated vasodilation, compared to the subcutaneous depot (P < 0.001). Expression of mRNA transcripts relevant to the cyclooxygenase pathway was upregulated in visceral compared to subcutaneous fat. Pharmacological inhibition of cyclooxygenase with indomethacin improved endothelium-dependent vasodilator function of arterioles from visceral fat by twofold (P = 0.01), whereas indomethacin had no effect in the subcutaneous depot. Indomethacin increased activation via serine-1177 phosphorylation of endothelial nitric oxide synthase in response to acetylcholine in endothelial cells from visceral fat. Inhibition of endothelial nitric oxide synthase with N(ω)-nitro-L-arginine methyl ester abrogated the effects of cyclooxygenase-inhibition suggesting that vascular actions of indomethacin were related to increased nitric oxide bioavailability. CONCLUSIONS Our findings suggest that cyclooxygenase-mediated vasoconstrictor prostanoids partly contribute to endothelial dysfunction of visceral adipose arterioles in human obesity.
Collapse
MESH Headings
- Adult
- Arterioles/drug effects
- Arterioles/metabolism
- Arterioles/pathology
- Arterioles/physiopathology
- Body Mass Index
- Cells, Cultured
- Cyclooxygenase Inhibitors/pharmacology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Humans
- Intra-Abdominal Fat/blood supply
- Intra-Abdominal Fat/drug effects
- Intra-Abdominal Fat/metabolism
- Intra-Abdominal Fat/pathology
- Male
- Microscopy, Video
- Nitric Oxide Synthase Type III/antagonists & inhibitors
- Nitric Oxide Synthase Type III/chemistry
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Obesity/drug therapy
- Obesity/metabolism
- Obesity/pathology
- Obesity/physiopathology
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Subcutaneous Fat, Abdominal/blood supply
- Subcutaneous Fat, Abdominal/drug effects
- Subcutaneous Fat, Abdominal/metabolism
- Subcutaneous Fat, Abdominal/pathology
- Tissue Culture Techniques
- Vasoconstriction/drug effects
- Vasomotor System/drug effects
- Vasomotor System/metabolism
- Vasomotor System/pathology
- Vasomotor System/physiopathology
Collapse
Affiliation(s)
- Melissa G. Farb
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Stephanie Tiwari
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Shakun Karki
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Doan TM Ngo
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Brian Carmine
- Department of General Surgery, Boston University School of Medicine, Boston, MA
| | - Donald T. Hess
- Department of General Surgery, Boston University School of Medicine, Boston, MA
| | - Maria A. Zuriaga
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Kenneth Walsh
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Jessica L. Fetterman
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Naomi M. Hamburg
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Joseph A. Vita
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Caroline M. Apovian
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, MA
| | - Noyan Gokce
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| |
Collapse
|
45
|
Grześk G, Szadujkis-Szadurska K, Matusiak G, Malinowski B, Gajdus M, Wiciński M, Szadujkis-Szadurski L. Influence of celecoxib on the vasodilating properties of human mesenteric arteries constricted with endothelin-1. Biomed Rep 2014; 2:412-418. [PMID: 24748985 PMCID: PMC3990212 DOI: 10.3892/br.2014.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/10/2014] [Indexed: 12/20/2022] Open
Abstract
The mitogenic and vasoconstrictive properties of the vascular system are attributed to endothelin-1 (ET-1). ET-1 serum concentration increases in a number of pathological conditions, particularly in those associated with blood vessel constriction. ET-1 is also associated with the underlying pathomechanisms of primary pulmonary hypertension, arterial hypertension and eclampsia. The aim of this study was to compare the vasodilating properties of selected phosphodiesterase (PDE) inhibitors and celecoxib in human mesenteric arteries constricted with ET-1, and investigate the role of the endothelium in relaxation. Perfused human mesenteric arteries were collected and stored under the same conditions as organs for transplantation. The mesenteric arteries (with and without the endothelium) were constricted by the addition of ET-1 and treated with one of the following: sildenafil (PDE5 inhibitor), zaprinast (PDE5 and 6 inhibitor), rolipram (PDE4 inhibitor) and celecoxib [cyclooxygenase-2 (COX-2) inhibitor]. Based on the observed changes of the perfusion pressure, concentration response curves (CRCs) were prepared for the respective inhibitors and the EC50 (concentration causing an effect equal to half of the maximum effect), pD2 (negative common logarithm of EC50) and relative potency (RP) were calculated. The results suggested that all the inhibitors triggered a concentration-dependent decrease in the perfusion pressure in isolated human superior mesenteric arteries with endothelium constricted by the addition of ET-1. In the arteries without endothelium, CRCs for celecoxib and rolipram were shifted to the right without a significant decrease in the maximum dilating effect. Moreover, CRCs for sildenafil and zaprinast were shifted to the right with a simultaneous significant decrease in the maximum dilating effect and with an increased inclination angle in reference to the concentration axis. In the presence of the endothelium, all of the evaluated PDE inhibitors, as well as celecoxib, reduced the reactivity of the mesenteric arteries caused by ET-1. Sildenafil indicated the lowest efficacy in the presence of the endothelium, but showed a higher potency compared to that of the other compounds. Removing the endothelium significantly reduced the vasodilating efficacy of PDE5 and 6 inhibitors and a statistically significant influence on the vasodilating efficacy of PDE4 inhibitor and celecoxib was observed. The high vasorelaxing efficacy of celecoxib at the background of the PDE inhibitors was observed, not only in the presence, but also in the absence of the endothelium and may be evidence for the relaxation induced by this COX-2 inhibitor in the cAMP- and cGMP-dependent pathways.
Collapse
Affiliation(s)
- Grzegorz Grześk
- Department of Pharmacology and Therapeutics, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| | - Katarzyna Szadujkis-Szadurska
- Department of Pharmacology and Therapeutics, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| | - Grzegorz Matusiak
- Department of Pharmacology and Therapeutics, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| | - Marta Gajdus
- Department of Pharmacology and Therapeutics, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| | - Leszek Szadujkis-Szadurski
- Department of Pharmacology and Therapeutics, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz 85-094, Poland
| |
Collapse
|
46
|
Abstract
Selective cyclooxygenase-2 inhibitors represent a significant advance in the management of inflammatory disorders. They have similar efficacy to nonselective 'conventional' nonsteroidal anti-inflammatory drugs, but a superior gastrointestinal safety profile. However, a significant caveat is the perceived potential of cyclooxygenase-2 inhibitors to cause adverse cardiovascular effects, an issue first raised by the Vioxx Gastrointestinal Outcomes Research (VIGOR) study of rofecoxib (Vioxx, Merck & Co. Inc.). Mechanisms by which cyclooxygenase-2 inhibitors may increase cardiovascular risk are selective inhibition of prostaglandin I2 over thromboxane A2 within the eicosanoid pathway, which promotes thrombosis, and inhibition of prostaglandins E2 and I2 within the kidney, which leads to sodium and water retention and blood pressure elevation. In spite of this, the cardiovascular findings from VIGOR are not firmly supported by observations from large cohort studies and other clinical trials of selective cyclooxygenase-2 inhibitors, including the Celecoxib Long-term Arthritis Safety Study. The two main theories that explain the VIGOR findings are that the comparator used (naproxen; Naprosyn, Roche) is cardioprotective and that very high doses of rofecoxib were used, but at present neither is backed by firm evidence. Indeed, there is now early evidence that selective cyclooxygenase-2 inhibition with celecoxib may even protect against the progression of cardiovascular disease, on the basis that cyclooxygenase-2 mediates key processes in atherothrombosis. Currently, it is not clear what the net cardiovascular effects of cyclooxygenase-2 inhibitors are. The data are inconsistent and at best, speculative. It may be also that celecoxib and rofecoxib differ in their cardiovascular effects. Clarification of these issues is of vital importance given the vast number of patients presently taking both types of cyclooxygenase-2 inhibitors. Therefore, what is clear in this situation is the urgent need for randomized clinical trials designed specifically to examine the impact of selective cyclooxygenase-2 inhibitors on cardiovascular risk.
Collapse
Affiliation(s)
- Henry Krum
- NHMRC Centre of Clinical Excellence in Therapeutics, Departments of Medicine, Epidemiology and Preventive Medicine, Monash University Central and Eastern Clinical School, Alfred Hospital, Melbourne, Victoria 3004, Australia.
| | | | | | | |
Collapse
|
47
|
Davies NM, Reynolds JK, Undeberg MR, Gates BJ, Ohgami Y, Vega-Villa KR. Minimizing risks of NSAIDs: cardiovascular, gastrointestinal and renal. Expert Rev Neurother 2014; 6:1643-55. [PMID: 17144779 DOI: 10.1586/14737175.6.11.1643] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective in treating inflammation, pain and fever, but their cardiovascular, renal and gastrointestinal toxicity can result in significant morbidity and mortality to patients. Techniques for minimizing the adverse risks of NSAIDs include avoiding use of NSAIDs where possible, particularly in high-risk patients; keeping NSAID dosages low; prescribing modified-release and enteric-coated NSAIDs; prescribing cyclooxygenase-2-selective inhibitors where appropriate; monitoring for early signs of side effects; prescribing treatments designed to minimize NSAID side effects; and developing new therapeutic strategies beyond the inhibition of cyclooxygenase. All of the above strategies can be useful in reducing the risk of NSAID complications. The optimal use and management of NSAIDs involves an individualized paradigm approach to establish efficacy with optimal tolerability given the patient risk factors for adverse events.
Collapse
Affiliation(s)
- Neal M Davies
- College of Pharmacy Department of Pharmaceutical Sciences and Pharmacotherapy Washington State University, Pullman/Spokane, WA 99164-6534, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Endothelial dysfunction in diabetes and hypertension: cross talk in RAS, BMP4, and ROS-dependent COX-2-derived prostanoids. J Cardiovasc Pharmacol 2013; 61:204-14. [PMID: 23232839 DOI: 10.1097/fjc.0b013e31827fe46e] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vascular endothelium regulates cardiovascular function, and endothelial dysfunction is the key initiator for arteriosclerosis and thrombosis and their complications. The endothelium is a dynamic interface that responds to various stimuli and synthesizes and liberates vasoactive molecules such as nitric oxide, prostaglandins, hyperpolarizing factor, and endothelin. Risk factors such as hypertension, hypercholesterolemia, smoking, and hyperglycemia impair the ability of the endothelium to respond to physical or chemical stimulation appropriately, and increased oxidative stress is believed to be a major culprit. This brief article reviews the interplay among several oxidative stress regulators in the vascular wall and highlights therapeutic relevance through deeper understanding of the interplay between the renin-angiotensin system, nicotinamide adenine dinucleotide phosphate, reduced oxidase, bone morphogenic protein 4, and cyclooxygenase 2-derived prostaglandins as a concerted pathogenic cascade in inducing and maintaining endothelial dysfunction in hypertension and diabetes.
Collapse
|
49
|
Virdis A, Bacca A, Colucci R, Duranti E, Fornai M, Materazzi G, Ippolito C, Bernardini N, Blandizzi C, Bernini G, Taddei S. Endothelial Dysfunction in Small Arteries of Essential Hypertensive Patients. Hypertension 2013; 62:337-44. [DOI: 10.1161/hypertensionaha.111.00995] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Essential hypertensive patients show a reduced nitric oxide availability secondary to oxidative stress generation in peripheral microcirculation. Cyclooxygenase (COX) contributes to reduce nitric oxide availability. We assessed the possible vascular sources of oxidative stress, including COX-1, COX-2, and nicotinamide adenine dinucleotide phosphate oxidase, as determinants of endothelial dysfunction in small arteries isolated from essential hypertensive patients or normotensive controls. Small arteries were dissected after subcutaneous fat biopsies and evaluated on a pressurized micromyograph. Endothelium-dependent vasodilation was assessed by acetylcholine, repeated under NG-nitro-
l
-arginine methyl ester, SC-560 (COX-1 inhibitor), DuP-697 (COX-2 inhibitor), ascorbic acid, or the nicotinamide adenine dinucleotide phosphate oxidase inhibitors apocynin or diphenylene iodonium. Vascular oxidative stress generation (fluorescent dihydroethidium), COX-1 and COX-2 expression (Western blot), and localization (immunohistochemistry) were also assessed. In controls, response to acetylcholine was blunted by NG-nitro-
l
-arginine methyl ester (
P
<0.001) and unmodified by SC-560, DuP-697, or ascorbic acid. In hypertensive patients, relaxation to acetylcholine was blunted, resistant to NG-nitro-
l
-arginine methyl ester or SC-560, and enhanced (
P
<0.01) by DuP-697, apocynin, or diphenylene iodonium (
P
<0.05). Furthermore, in hypertensive patients, response to acetylcholine was normalized by ascorbic acid or apocynin+DuP-697. Intravascular oxidative stress generation was enhanced in hypertensive patients, decreased (
P
<0.01) by DuP-697, partly attenuated by apocynin or diphenylene iodonium, and prevented by ascorbic acid. Enhanced COX-2 expression and localization in the vascular media of hypertensive patients were also detected. In small resistance arteries of essential hypertensive patients, COX-2 is overexpressed and reduces nitric oxide availability. COX-2 represents a major source of oxidative stress generation, whereas nicotinamide adenine dinucleotide phosphate oxidase plays a minor, but significant, role in promoting superoxide generation.
Collapse
Affiliation(s)
- Agostino Virdis
- From the Department of Clinical and Experimental Medicine (A.V., A.B., R.C., E.D., M.F., C.I., N.B., C.B., G.B., S.T.) and Department of Surgery (G.M.), University of Pisa, Pisa, Italy
| | - Alessandra Bacca
- From the Department of Clinical and Experimental Medicine (A.V., A.B., R.C., E.D., M.F., C.I., N.B., C.B., G.B., S.T.) and Department of Surgery (G.M.), University of Pisa, Pisa, Italy
| | - Rocchina Colucci
- From the Department of Clinical and Experimental Medicine (A.V., A.B., R.C., E.D., M.F., C.I., N.B., C.B., G.B., S.T.) and Department of Surgery (G.M.), University of Pisa, Pisa, Italy
| | - Emiliano Duranti
- From the Department of Clinical and Experimental Medicine (A.V., A.B., R.C., E.D., M.F., C.I., N.B., C.B., G.B., S.T.) and Department of Surgery (G.M.), University of Pisa, Pisa, Italy
| | - Matteo Fornai
- From the Department of Clinical and Experimental Medicine (A.V., A.B., R.C., E.D., M.F., C.I., N.B., C.B., G.B., S.T.) and Department of Surgery (G.M.), University of Pisa, Pisa, Italy
| | - Gabriele Materazzi
- From the Department of Clinical and Experimental Medicine (A.V., A.B., R.C., E.D., M.F., C.I., N.B., C.B., G.B., S.T.) and Department of Surgery (G.M.), University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- From the Department of Clinical and Experimental Medicine (A.V., A.B., R.C., E.D., M.F., C.I., N.B., C.B., G.B., S.T.) and Department of Surgery (G.M.), University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- From the Department of Clinical and Experimental Medicine (A.V., A.B., R.C., E.D., M.F., C.I., N.B., C.B., G.B., S.T.) and Department of Surgery (G.M.), University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- From the Department of Clinical and Experimental Medicine (A.V., A.B., R.C., E.D., M.F., C.I., N.B., C.B., G.B., S.T.) and Department of Surgery (G.M.), University of Pisa, Pisa, Italy
| | - Giampaolo Bernini
- From the Department of Clinical and Experimental Medicine (A.V., A.B., R.C., E.D., M.F., C.I., N.B., C.B., G.B., S.T.) and Department of Surgery (G.M.), University of Pisa, Pisa, Italy
| | - Stefano Taddei
- From the Department of Clinical and Experimental Medicine (A.V., A.B., R.C., E.D., M.F., C.I., N.B., C.B., G.B., S.T.) and Department of Surgery (G.M.), University of Pisa, Pisa, Italy
| |
Collapse
|
50
|
Dong J, Wong SL, Lau CW, Liu J, Wang YX, Dan He Z, Fai Ng C, Yu Chen Z, Yao X, Xu A, Ni X, Wang H, Huang Y. Calcitriol restores renovascular function in estrogen-deficient rats through downregulation of cyclooxygenase-2 and the thromboxane-prostanoid receptor. Kidney Int 2013; 84:54-63. [PMID: 23423254 DOI: 10.1038/ki.2013.12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 11/19/2012] [Accepted: 11/30/2012] [Indexed: 01/18/2023]
Abstract
Cardiovascular risks increase in postmenopausal women. While vitamin D is supplemented for osteoporosis, it is not known whether it protects renal arterial function during estrogen deficiency. Here we measured changes in renovascular reactivity induced by ovariectomy in rats and examined whether calcitriol, the most active form of vitamin D, was able to correct such changes. The impairment of endothelium-dependent relaxation in renal arteries from ovariectomized rats was effectively reversed by long-term calcitriol treatment. It was also corrected by acute exposure to cyclooxygenase-2 (COX-2) inhibitors and a thromboxane-prostanoid receptor antagonist, respectively. Calcitriol normalized the overexpression of COX-2 and thromboxane-prostanoid receptors in intralobal renal artery segments and aortic endothelial cells isolated from ovariectomized rats. In vitro exposure of the arterial segments to calcitriol for 12 h improved relaxation and downregulated thromboxane-prostanoid receptors. The attenuated nitric oxide production in ovariectomized rat aortic endothelial cells was restored following a 12-h treatment with calcitriol, COX-2 inhibition, or thromboxane-prostanoid receptor antagonism. Thus, impaired endothelium-dependent renal artery relaxation in ovariectomized rats is mediated largely through increased activity and expression of COX-2 and the thromboxane-prostanoid receptor. Calcitriol restores endothelial function through downregulating both signaling proteins during estrogen deficiency.
Collapse
Affiliation(s)
- Jinghui Dong
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, and School of Biomedical Sciences, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|