1
|
Clark CR, Khalil RA. Regulation of vascular angiotensin II type 1 and type 2 receptor and angiotensin-(1-7)/MasR signaling in normal and hypertensive pregnancy. Biochem Pharmacol 2024; 220:115963. [PMID: 38061417 PMCID: PMC10860599 DOI: 10.1016/j.bcp.2023.115963] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024]
Abstract
Normal pregnancy (Norm-Preg) is associated with a slight reduction in blood pressure (BP) and decreased BP response to vasoconstrictor stimuli such as angiotensin II (Ang II), although the renin-angiotensin-aldosterone system (RAAS) is upregulated. Preeclampsia (PE) is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg), and dysregulation of angiotensin biosynthesis and signaling have been implicated. Ang II activates vascular Ang II type-1 receptor (AT1R) and Ang II type-2 receptor (AT2R), while angiotensin-(1-7) promotes Ang-(1-7)/MasR signaling. The role of AT1R in vasoconstriction and the activated cellular mechanisms are well-characterized. The sensitivity of vascular AT1R to Ang II and consequent activation of vasoconstrictor mechanisms decrease during Norm-Preg, but dramatically increase in HTN-Preg. Placental ischemia in late pregnancy could also initiate the release of AT1R agonistic autoantibodies (AT1AA) with significant impact on endothelial dysfunction and activation of contraction pathways in vascular smooth muscle including [Ca2+]c and protein kinase C. On the other hand, the role of AT2R and Ang-(1-7)/MasR in vascular relaxation, particularly during Norm-Preg and PE, is less clear. During Norm-Preg, increases in the expression/activity of vascular AT2R and Ang-(1-7)/MasR promote the production of endothelium-derived relaxing factors such as nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor leading to generalized vasodilation. Aortic segments of Preg rats show prominent endothelial AT2R staining and increased relaxation and NO production in response to AT2R agonist CGP42112A, and treatment with AT2R antagonist PD123319 enhances phenylephrine-induced contraction. Decreased vascular AT2R and Ang-(1-7)/MasR expression and receptor-mediated mechanisms of vascular relaxation have been suggested in HTN-Preg animal models, but their role in human PE needs further testing. Changes in angiotensin-converting enzyme-2 (ACE2) have been observed in COVID-19 patients, and whether ACE2 influences the course of COVID-19 viral infection/immunity in Norm-Preg and PE is an intriguing area for research.
Collapse
Affiliation(s)
- Caroline R Clark
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Wang X, Shields CA, Ekperikpe U, Amaral LM, Williams JM, Cornelius DC. VASCULAR AND RENAL MECHANISMS OF PREECLAMPSIA. CURRENT OPINION IN PHYSIOLOGY 2023; 33:100655. [PMID: 37009057 PMCID: PMC10062189 DOI: 10.1016/j.cophys.2023.100655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Preeclampsia (PE) is a multisystem obstetric disorder that affects 2-10% of pregnancies worldwide and it is a leading cause of maternal and fetal morbidity and mortality. The etiology of PE development is not clearly delineated, but since delivery of the fetus and placenta often leads to symptom resolution in the most cases of PE, it is hypothesized that the placenta is the inciting factor of the disease. Current management strategies for PE focus on treating the maternal symptoms to stabilize the mother in an attempt to prolong the pregnancy. However, the efficacy of this management strategy is limited. Therefore, identification of novel therapeutic targets and strategies is needed. Here, we provide a comprehensive overview of the current state of knowledge regarding mechanisms of vascular and renal pathophysiology during PE and discuss potential therapeutic targets directed at improving maternal vascular and renal function.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacology, University of Mississippi Medical Center
| | - Corbin A Shields
- Department of Emergency Medicine, University of Mississippi Medical Center
| | - Ubong Ekperikpe
- Department of Pharmacology, University of Mississippi Medical Center
| | - Lorena M Amaral
- Department of Pharmacology, University of Mississippi Medical Center
| | | | - Denise C Cornelius
- Department of Pharmacology, University of Mississippi Medical Center
- Department of Emergency Medicine, University of Mississippi Medical Center
| |
Collapse
|
3
|
Ortiz-Cerda T, Mosso C, Alcudia A, Vázquez-Román V, González-Ortiz M. Pathophysiology of Preeclampsia and L-Arginine/L-Citrulline Supplementation as a Potential Strategy to Improve Birth Outcomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:127-148. [PMID: 37466772 DOI: 10.1007/978-3-031-32554-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In preeclampsia, the shallow invasion of cytotrophoblast cells to uterine spiral arteries, leading to a reduction in placental blood flow, is associated with an imbalance of proangiogenic/antiangiogenic factors to impaired nitric oxide (NO) production. Proangiogenic factors, such as vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), require NO to induce angiogenesis through antioxidant regulation mechanisms. At the same time, there are increases in antiangiogenic factors in preeclampsia, such as soluble fms-like tyrosine kinase type 1 receptor (sFIt1) and toll-like receptor 9 (TLR9), which are mechanism derivates in the reduction of NO bioavailability and oxidative stress in placenta.Different strategies have been proposed to prevent or alleviate the detrimental effects of preeclampsia. However, the only intervention to avoid the severe consequences of the disease is the interruption of pregnancy. In this scenario, different approaches have been analysed to treat preeclamptic pregnant women safely. The supplementation with amino acids is one of them, especially those associated with NO synthesis. In this review, we discuss emerging concepts in the pathogenesis of preeclampsia to highlight L-arginine and L-citrulline supplementation as potential strategies to improve birth outcomes. Clinical and experimental data concerning L-arginine and L-citrulline supplementation have shown benefits in improving NO availability in the placenta and uterine-placental circulation, prolonging pregnancy in patients with gestational hypertension and decreasing maternal blood pressure.
Collapse
Affiliation(s)
- Tamara Ortiz-Cerda
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Constanza Mosso
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Victoria Vázquez-Román
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
4
|
Palei AC, Granger JP, Spradley FT. Placental Ischemia Says "NO" to Proper NOS-Mediated Control of Vascular Tone and Blood Pressure in Preeclampsia. Int J Mol Sci 2021; 22:ijms222011261. [PMID: 34681920 PMCID: PMC8541176 DOI: 10.3390/ijms222011261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we first provide a brief overview of the nitric oxide synthase (NOS) isoforms and biochemistry. This is followed by describing what is known about NOS-mediated blood pressure control during normal pregnancy. Circulating nitric oxide (NO) bioavailability has been assessed by measuring its metabolites, nitrite (NO2) and/or nitrate (NO3), and shown to rise throughout normal pregnancy in humans and rats and decline postpartum. In contrast, placental malperfusion/ischemia leads to systemic reductions in NO bioavailability leading to maternal endothelial and vascular dysfunction with subsequent development of hypertension in PE. We end this article by describing emergent risk factors for placental malperfusion and ischemic disease and discussing strategies to target the NOS system therapeutically to increase NO bioavailability in preeclamptic patients. Throughout this discussion, we highlight the critical importance that experimental animal studies have played in our current understanding of NOS biology in normal pregnancy and their use in finding novel ways to preserve this signaling pathway to prevent the development, treat symptoms, or reduce the severity of PE.
Collapse
Affiliation(s)
- Ana C. Palei
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Joey P. Granger
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Frank T. Spradley
- Department of Surgery, University of Mississippi Medical Center, Jackson, MS 39216, USA;
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA;
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence:
| |
Collapse
|
5
|
Qu H, Khalil RA. Vascular mechanisms and molecular targets in hypertensive pregnancy and preeclampsia. Am J Physiol Heart Circ Physiol 2020; 319:H661-H681. [PMID: 32762557 DOI: 10.1152/ajpheart.00202.2020] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preeclampsia is a major complication of pregnancy manifested as hypertension and often intrauterine growth restriction, but the underlying pathophysiological mechanisms are unclear. Predisposing genetic and environmental factors cause placental maladaptations leading to defective placentation, apoptosis of invasive cytotrophoblasts, inadequate expansive remodeling of the spiral arteries, reduced uteroplacental perfusion pressure, and placental ischemia. Placental ischemia promotes the release of bioactive factors into the maternal circulation, causing an imbalance between antiangiogenic soluble fms-like tyrosine kinase-1 and soluble endoglin and proangiogenic vascular endothelial growth factor, placental growth factor, and transforming growth factor-β. Placental ischemia also stimulates the release of proinflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin type 1 receptor agonistic autoantibodies. These circulating factors target the vascular endothelium, causing generalized endotheliosis in systemic, renal, cerebral, and hepatic vessels, leading to decreases in endothelium-derived vasodilators such as nitric oxide, prostacyclin, and hyperpolarization factor and increases in vasoconstrictors such as endothelin-1 and thromboxane A2. The bioactive factors also target vascular smooth muscle and enhance the mechanisms of vascular contraction, including cytosolic Ca2+, protein kinase C, and Rho-kinase. The bioactive factors could also target matrix metalloproteinases and the extracellular matrix, causing inadequate vascular remodeling, increased arterial stiffening, and further increases in vascular resistance and hypertension. As therapeutic options are limited, understanding the underlying vascular mechanisms and molecular targets should help design new tools for the detection and management of hypertension in pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Hongmei Qu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Cardiac, renal and uterine hemodynamics changes throughout pregnancy in rats with a prolonged high fat diet from an early age. PLoS One 2020; 15:e0234861. [PMID: 32603330 PMCID: PMC7326224 DOI: 10.1371/journal.pone.0234861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/03/2020] [Indexed: 12/23/2022] Open
Abstract
Objective To examine whether the cardiac, renal and uterine physiological hemodynamic changes during gestation are altered in rats with an early and prolonged exposure to a high fat diet (HFD). Methods Arterial pressure and cardiac, renal, uterine and radial arteries hemodynamic changes during gestation were examined in adult SD rats exposed to normal (13%) (n = 8) or high (60%) (n = 8) fat diets from weaning. Plethysmography, high-resolution high-frequency ultrasonography and clearance of an inulin analog were used to evaluate the arterial pressure and hemodynamic changes before and at days 7, 14 and 19 of gestation. Results Arterial pressure was higher (P<0.05) in rats with high than in those with normal (NFD) fat diet before pregnancy (123 ±3 and 110 ±3 mmHg, respectively) and only decreased at day 14 of gestation in rats with NFD (98±4 mmHg, P<0.05). A significant increment in stroke volume (42 ±10%) and cardiac output (51 ±12%) was found at day 19 of pregnancy in rats with NFD. The changes in stroke volume and cardiac output were similar in rats with NFD and HFD. When compared to the values obtained before pregnancy, a transitory elevation in renal blood flow was found at day 14 of pregnancy in both groups. However, glomerular filtration rate only increased (P<0.05) in rats with NFD at days 14 (20 ±7%) and 19 (27 ±8%) of gestation. The significant elevations of mean velocity, and velocity time integral throughout gestation in radial (127 ±26% and 111 ±23%, respectively) and uterine (91 ±16% and 111 ±25%, respectively) arteries of rats with NFD were not found in rats with an early and prolonged HFD. Summary This study reports novel findings showing that the early and prolonged exposure to a HFD leads to a significant impairment in the renal, uterine and radial arteries hemodynamic changes associated to gestation.
Collapse
|
7
|
Nascimento RA, Possomato-Vieira JS, Bonacio GF, Rizzi E, Dias-Junior CA. Reductions of Circulating Nitric Oxide are Followed by Hypertension during Pregnancy and Increased Activity of Matrix Metalloproteinases-2 and -9 in Rats. Cells 2019; 8:cells8111402. [PMID: 31703340 PMCID: PMC6912623 DOI: 10.3390/cells8111402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertensive pregnancy has been associated with reduced nitric oxide (NO), bioavailability, and increased activity of matrix metalloproteinases (MMPs). However, it is unclear if MMPs activation is regulated by NO during pregnancy. To this end, we examined activity of MMP-2 and MMP-9 in plasma, placenta, uterus and aorta, NO bioavailability, oxidative stress, systolic blood pressure (SBP), and fetal-placental development at the early, middle, and late pregnancy stages in normotensive and Nω-Nitro-L-arginine methyl-ester (L-NAME)-induced hypertensive pregnancy in rats. Reduced MMP-2 activity in uterus, placenta, and aorta and reduced MMP-9 activity in plasma and placenta with concomitant increased NO levels were found in normotensive pregnant rats. By contrast, increased MMP-2 activity in uterus, placenta, and aorta, and increased MMP-9 activity in plasma and placenta with concomitant reduced NO levels were observed in hypertensive pregnant rats. Also, elevated oxidative stress was displayed by hypertensive pregnant rats at the middle and late stages. These findings in the L-NAME-treated pregnant rats were also followed by increases in SBP and associated with fetal growth restrictions at the middle and late pregnancy stages. We concluded that NO bioavailability may regulate MMPs activation during normal and hypertensive pregnancy.
Collapse
Affiliation(s)
- Regina A. Nascimento
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University – UNESP, Botucatu, Sao Paulo 18.618-689, Brazil; (R.A.N.); (J.S.P.-V.)
| | - Jose S. Possomato-Vieira
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University – UNESP, Botucatu, Sao Paulo 18.618-689, Brazil; (R.A.N.); (J.S.P.-V.)
| | - Giselle F. Bonacio
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo 14096-900, Brazil; (G.F.B.); (E.R.)
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Ribeirao Preto, Sao Paulo 14096-900, Brazil; (G.F.B.); (E.R.)
| | - Carlos A. Dias-Junior
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University – UNESP, Botucatu, Sao Paulo 18.618-689, Brazil; (R.A.N.); (J.S.P.-V.)
- Correspondence: ; Tel.: +55 14 3880-0214
| |
Collapse
|
8
|
Dymara-Konopka W, Laskowska M. The Role of Nitric Oxide, ADMA, and Homocysteine in The Etiopathogenesis of Preeclampsia-Review. Int J Mol Sci 2019; 20:ijms20112757. [PMID: 31195628 PMCID: PMC6600256 DOI: 10.3390/ijms20112757] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Preeclampsia is a serious, pregnancy-specific, multi-organ disease process of compound aetiology. It affects 3–6% of expecting mothers worldwide and it persists as a leading cause of maternal and foetal morbidity and mortality. In fact, hallmark features of preeclampsia (PE) result from vessel involvement and demonstrate maternal endothelium as a target tissue. Growing evidence suggests that chronic placental hypoperfusion triggers the production and release of certain agents that are responsible for endothelial activation and injury. In this review, we will present the latest findings on the role of nitric oxide, asymmetric dimethylarginine (ADMA), and homocysteine in the etiopathogenesis of preeclampsia and their possible clinical implications.
Collapse
Affiliation(s)
- Weronika Dymara-Konopka
- Department of Obstetrics and Perinatology, Medical University of Lublin, Poland, 20-950 Lublin, Jaczewskiego 8, Poland.
| | - Marzena Laskowska
- Department of Obstetrics and Perinatology, Medical University of Lublin, Poland, 20-950 Lublin, Jaczewskiego 8, Poland.
| |
Collapse
|
9
|
Yu W, Gao W, Rong D, Wu Z, Khalil RA. Molecular determinants of microvascular dysfunction in hypertensive pregnancy and preeclampsia. Microcirculation 2018; 26:e12508. [PMID: 30338879 PMCID: PMC6474836 DOI: 10.1111/micc.12508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension and often fetal intrauterine growth restriction, but the underlying mechanisms are unclear. Defective placentation and apoptosis of invasive cytotrophoblasts cause inadequate remodeling of spiral arteries, placental ischemia, and reduced uterine perfusion pressure (RUPP). RUPP causes imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic vascular endothelial growth factor and placental growth factor, and stimulates the release of proinflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors target the vascular endothelium, smooth muscle and various components of the extracellular matrix. Generalized endotheliosis in systemic, renal, cerebral, and hepatic vessels causes decreases in endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor, and increases in vasoconstrictors such as endothelin-1 and thromboxane A2. Enhanced mechanisms of vascular smooth muscle contraction, such as intracellular Ca2+ , protein kinase C, and Rho-kinase cause further increases in vasoconstriction. Changes in matrix metalloproteinases and extracellular matrix cause inadequate vascular remodeling and increased arterial stiffening, leading to further increases in vascular resistance and hypertension. Therapeutic options are currently limited, but understanding the molecular determinants of microvascular dysfunction could help in the design of new approaches for the prediction and management of preeclampsia.
Collapse
Affiliation(s)
- Wentao Yu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wei Gao
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dan Rong
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhixian Wu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Chen J, Khalil RA. Matrix Metalloproteinases in Normal Pregnancy and Preeclampsia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:87-165. [PMID: 28662830 PMCID: PMC5548443 DOI: 10.1016/bs.pmbts.2017.04.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Normal pregnancy is associated with marked hemodynamic and uterine changes that allow adequate uteroplacental blood flow and uterine expansion for the growing fetus. These pregnancy-associated changes involve significant uteroplacental and vascular remodeling. Matrix metalloproteinases (MMPs) are important regulators of vascular and uterine remodeling. Increases in MMP-2 and MMP-9 have been implicated in vasodilation, placentation, and uterine expansion during normal pregnancy. The increases in MMPs could be induced by the increased production of estrogen and progesterone during pregnancy. MMP expression/activity may be altered during complications of pregnancy. Decreased vascular MMP-2 and MMP-9 may lead to decreased vasodilation, increased vasoconstriction, hypertensive pregnancy, and preeclampsia. Abnormal expression of uteroplacental integrins, cytokines, and MMPs may lead to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate remodeling of spiral arteries, and reduced uterine perfusion pressure (RUPP). RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic vascular endothelial growth factor and placental growth factor, or stimulate the release of inflammatory cytokines, hypoxia-inducible factor, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could target MMPs in the extracellular matrix as well as endothelial and vascular smooth muscle cells, causing generalized vascular dysfunction, increased vasoconstriction and hypertension in pregnancy. MMP activity can also be altered by endogenous tissue inhibitors of metalloproteinases (TIMPs) and changes in the MMP/TIMP ratio. In addition to their vascular effects, decreases in expression/activity of MMP-2 and MMP-9 in the uterus could impede uterine growth and expansion and lead to premature labor. Understanding the role of MMPs in uteroplacental and vascular remodeling and function could help design new approaches for prediction and management of preeclampsia and premature labor.
Collapse
Affiliation(s)
- Juanjuan Chen
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
11
|
Huang H, Chang HH, Xu Y, Reddy DS, Du J, Zhou Y, Dong Z, Falck JR, Wang MH. Epoxyeicosatrienoic Acid Inhibition Alters Renal Hemodynamics During Pregnancy. Exp Biol Med (Maywood) 2016; 231:1744-52. [PMID: 17138762 DOI: 10.1177/153537020623101112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study we examined the expression of cytochrome P450 (CYP) 2C and CYP2J Isoforms in renal proximal tubules and microvessels isolated from rats at different stages of pregnancy. We also selectively inhibited epoxyeicosatrienoic acid (EET) production by the administration of N-methanesulfonyl-6-(2-proparyloxyphenyl)hexanamide (MSPPOH 20 mg/kg/day iv) to rats during Days 14–17 of gestation and to age-matched virgin rats and determined the consequent effects on renal function. Western blot analysis showed that CYP2C11, CYP2C23, and CYP2J2 expression was significantly increased in the renal microvessels of pregnant rats on Day 12 of gestation. In the proximal tubules, CYP2C23 expression was significantly increased throughout pregnancy, while the expression of CYP2C11 was increased in early and late pregnancy and the expression of CYP2J2 was increased in middle and late pregnancy. MSPPOH treatment significantly Increased pregnant rats’ mean arterial pressure, renal vascular resistance, and sodium balance but significantly decreased renal blood flow, glomerular filtration rate, and urinary sodium excretion, as well as fetal pups’ body weight and length. In contrast, MSPPOH treatment had no effect on renal hemodynamics or urinary sodium excretion in age-matched virgin rats. In pregnant rats, MSPPOH treatment also caused selective inhibition of renal cortical EET production and significantly decreased the expression of CYP2C11, CYP2C23, and CYP2J2 in the renal cortex, renal microvessels, and proximal tubules. These results suggest that upregulation of renal vascular and tubular EETs contributes to the control of blood pressure and renal function during pregnancy.
Collapse
Affiliation(s)
- Hui Huang
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Possomato-Vieira JS, Gonçalves-Rizzi VH, Graça TUS, Nascimento RA, Dias-Junior CA. Sodium hydrosulfide prevents hypertension and increases in vascular endothelial growth factor and soluble fms-like tyrosine kinase-1 in hypertensive pregnant rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1325-1332. [DOI: 10.1007/s00210-016-1296-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/29/2016] [Indexed: 12/27/2022]
|
13
|
Stark MJ, Dierkx L, Clifton VL, Wright IMR. Alterations in the Maternal Peripheral Microvascular Response in Pregnancies Complicated by Preeclampsia and the Impact of Fetal Sex. ACTA ACUST UNITED AC 2016; 13:573-8. [PMID: 17055308 DOI: 10.1016/j.jsgi.2006.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Peripheral microvascular function is altered in preeclampsia (PE). Recent studies suggest that maternal physiology varies with fetal sex. We wanted to examine if there were sex-specific differences in maternal peripheral microvascular function in normal pregnancy and pregnancy complicated by PE. METHODS Peripheral microvascular responses were examined using the noninvasive technique of laser Doppler flowmetry in normotensive healthy pregnant women and in women diagnosed with PE. We measured baseline perfusion, response to thermal hyperemia, post-occlusive reperfusion, and vasodilatation in response to corticotropin-releasing hormone (CRH), a potent vasodilator in human skin. RESULTS At 31 to 40 weeks' gestation those women with a male fetus exhibited increased vasodilatation in response to CRH (P <.05) and greater baseline perfusion (P <.05) than those pregnant with a female fetus. PE women pregnant with a male fetus demonstrated a significantly reduced vasodilatation in response to CRH (P <.05), reduced baseline perfusion (P <.05), and reduced response to thermal hyperemia (P <.05) compared to normotensive women pregnant with a male fetus. Microvascular function was not significantly different between preeclamptic and normotensive women with a female fetus. CONCLUSION These data show that there are differences in maternal peripheral microvascular function in relation to fetal sex.
Collapse
Affiliation(s)
- Michael J Stark
- Mother and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | | | | | | |
Collapse
|
14
|
Possomato-Vieira JS, Khalil RA. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia. ADVANCES IN PHARMACOLOGY 2016; 77:361-431. [PMID: 27451103 DOI: 10.1016/bs.apha.2016.04.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral, and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin, and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension, and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic, and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines, and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia.
Collapse
Affiliation(s)
- J S Possomato-Vieira
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
15
|
Harmon AC, Cornelius DC, Amaral LM, Faulkner JL, Cunningham MW, Wallace K, LaMarca B. The role of inflammation in the pathology of preeclampsia. Clin Sci (Lond) 2016; 130:409-19. [PMID: 26846579 PMCID: PMC5484393 DOI: 10.1042/cs20150702] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Preeclampsia (PE) affects 5-7% of all pregnancies in the United States and is the leading cause of maternal and prenatal morbidity. PE is associated with hypertension after week 20 of gestation, decreased renal function and small-for-gestational-age babies. Women with PE exhibit chronic inflammation and production of autoantibodies. It is hypothesized that during PE, placental ischaemia occurs as a result of shallow trophoblast invasion which is associated with an immune imbalance where pro-inflammatory CD4(+) T-cells are increased and T regulatory cells (Tregs) are decreased. This imbalance leads to chronic inflammation characterized by oxidative stress, pro-inflammatory cytokines and autoantibodies. Studies conducted in our laboratory have demonstrated the importance of this immune imbalance in causing hypertension in response to placental ischaemia in pregnant rats. These studies confirm that increased CD4(+) T-cells and decreased Tregs during pregnancy leads to elevated inflammatory cytokines, endothelin (ET-1), reactive oxygen species (ROS) and agonistic autoantibodies to the angiotensin II (Ang II), type 1 receptor (AT1-AA). All of these factors taken together play an important role in increasing the blood pressure during pregnancy. Specifically, this review focuses on the decrease in Tregs, and their associated regulatory cytokine interleukin (IL)-10, which is seen in response to placental ischaemia during pregnancy. This study will also examine the effect of regulatory immune cell repopulation on the pathophysiology of PE. These studies show that restoring the balance of the immune system through increasing Tregs, either by adoptive transfer or by infusing IL-10, reduces the blood pressure and pathophysiology associated with placental ischaemia in pregnant rats.
Collapse
Affiliation(s)
- Ashlyn C Harmon
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Denise C Cornelius
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Lorena M Amaral
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Jessica L Faulkner
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Mark W Cunningham
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Kedra Wallace
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Babbette LaMarca
- Departments of Pharmacology, Physiology, & Ob/Gyn, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A.
| |
Collapse
|
16
|
Ferreira VM, Passos CS, Maquigussa E, Pontes RB, Bergamaschi CT, Campos RR, Boim MA. Chronic Nicotine Exposure Abolishes Maternal Systemic and Renal Adaptations to Pregnancy in Rats. PLoS One 2016; 11:e0150096. [PMID: 26914675 PMCID: PMC4768004 DOI: 10.1371/journal.pone.0150096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/09/2016] [Indexed: 11/18/2022] Open
Abstract
Pregnancy is characterized by maternal systemic and intrarenal vasodilation, leading to increases in the renal plasma flow (RPF) and glomerular filtration rate (GFR). These responses are mainly mediated by nitric oxide (NO) and relaxin. The impact of cigarette smoking on the maternal adaptations to pregnancy is unclear. Here we evaluated the effects of chronic exposure to nicotine on systemic and intrarenal parameters in virgin (V) and 14-day pregnant (P) Wistar rats. V and P groups received saline or nicotine (6 mg·kg-1·day-1) respectively, via osmotic minipumps for 28 days, starting 14 days before pregnancy induction. Nicotine induced a 10% increase in blood pressure in the V group and minimized the characteristic pregnancy-induced hypotension. Renal sympathetic nerve activity (rSNA) and baroreflex sensitivity were impaired by nicotine mainly in the P group, indicating that the effect of nicotine on blood pressure was not mediated by nervous system stimulation. Nicotine had no effect on GFR in the V rats but reduced GFR of the P group by 30%. Renal expression of sodium and water transporters was downregulated by nicotine, resulting in increased fractional sodium excretion mainly in the P group, suggesting that nicotine compromised the sodium and water retention required for normal gestation. There was a reduction in the expression of inducible NO synthase (iNOS) in both the kidney tissue and renal artery, as well as in the expression of the relaxin receptor (LGR7). These results clearly show that nicotine induced deleterious effects in both virgin and pregnant animals, and abolished the maternal capacity to adapt to pregnancy.
Collapse
Affiliation(s)
- Vanessa Meira Ferreira
- Renal Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Clevia Santos Passos
- Renal Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Edgar Maquigussa
- Renal Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Roberto Braz Pontes
- Cardiovascular Division, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Cassia Toledo Bergamaschi
- Cardiovascular Division, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Ruy Ribeiro Campos
- Cardiovascular Division, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Mirian Aparecida Boim
- Renal Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
17
|
Shah DA, Khalil RA. Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochem Pharmacol 2015; 95:211-26. [PMID: 25916268 DOI: 10.1016/j.bcp.2015.04.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/17/2015] [Indexed: 12/29/2022]
Abstract
Preeclampsia is a pregnancy-associated disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality; however, the pathophysiological mechanisms involved are unclear. Predisposing demographic, genetic and environmental risk factors could cause localized abnormalities in uteroplacental cytoactive factors such as integrins, matrix metalloproteinases, cytokines and major histocompatibility complex molecules leading to decreased vascular remodeling, uteroplacental vasoconstriction, trophoblast cells apoptosis, and abnormal development of the placenta. Defective placentation and decreased trophoblast invasion of the myometrium cause reduction in uteroplacental perfusion pressure (RUPP) and placental ischemia/hypoxia, an important event in preeclampsia. RUPP could stimulate the release of circulating bioactive factors such as the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin that cause imbalance with the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or cause the release of inflammatory cytokines, reactive oxygen species, hypoxia-induced factor-1 and AT1 angiotensin receptor agonistic autoantibodies. The circulating bioactive factors target endothelial cells causing generalized endotheliosis, endothelial dysfunction, decreased vasodilators such as nitric oxide and prostacyclin and increased vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction. The bioactive factors also stimulate the mechanisms of VSM contraction including Ca(2+), protein kinase C, and Rho-kinase and induce extracellular matrix remodeling leading to further vasoconstriction and hypertension. While therapeutic options are currently limited, understanding the underlying mechanisms could help design new interventions for management of preeclampsia.
Collapse
Affiliation(s)
- Dania A Shah
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Halls ML, Bathgate RAD, Sutton SW, Dschietzig TB, Summers RJ. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 2015; 67:389-440. [PMID: 25761609 PMCID: PMC4394689 DOI: 10.1124/pr.114.009472] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics.
Collapse
MESH Headings
- Allosteric Regulation
- Animals
- Cell Membrane/enzymology
- Cell Membrane/metabolism
- Cyclic AMP/physiology
- Humans
- International Agencies
- Ligands
- Models, Molecular
- Pharmacology/trends
- Pharmacology, Clinical/trends
- Protein Isoforms/agonists
- Protein Isoforms/chemistry
- Protein Isoforms/classification
- Protein Isoforms/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/agonists
- Receptors, Peptide/chemistry
- Receptors, Peptide/classification
- Receptors, Peptide/metabolism
- Relaxin/agonists
- Relaxin/analogs & derivatives
- Relaxin/antagonists & inhibitors
- Relaxin/metabolism
- Second Messenger Systems
- Societies, Scientific
- Terminology as Topic
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Ross A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Steve W Sutton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Thomas B Dschietzig
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| |
Collapse
|
19
|
Conrad KP, Davison JM. The renal circulation in normal pregnancy and preeclampsia: is there a place for relaxin? Am J Physiol Renal Physiol 2014; 306:F1121-35. [PMID: 24647709 DOI: 10.1152/ajprenal.00042.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During the first trimester of human pregnancy, the maternal systemic circulation undergoes remarkable vasodilation. The kidneys participate in this vasodilatory response resulting in marked increases in renal plasma flow (RPF) and glomerular filtration rate (GFR). Comparable circulatory adaptations are observed in conscious gravid rats. Administration of the corpus luteal hormone relaxin (RLN) to nonpregnant rats and humans elicits vasodilatory changes like those of pregnancy. Systemic and renal vasodilation are compromised in midterm pregnant rats by neutralization or elimination of circulating RLN and in women conceiving with donor eggs who lack a corpus luteum and circulating RLN. Although RLN exerts both rapid (minutes) and sustained (hours to days) vasodilatory actions through different molecular mechanisms, a final common pathway is endothelial nitric oxide. In preeclampsia (PE), maternal systemic and renal vasoconstriction leads to hypertension and modest reduction in GFR exceeding that of RPF. Elevated level of circulating soluble vascular endothelial growth factor receptor-1 arising from the placenta is implicated in the hypertension and disruption of glomerular fenestrae and barrier function, the former causing reduced Kf and the latter proteinuria. Additional pathogenic factors are discussed. Last, potential clinical ramifications include RLN replacement in women conceiving with donor eggs and its therapeutic use in PE. Another goal has been to apply knowledge gained from investigating circulatory adaptations in pregnancy toward identifying and developing novel therapeutic strategies for renal and cardiovascular disease in the nonpregnant population. So far, one candidate to emerge is RLN and its potential therapeutic use in heart failure.
Collapse
Affiliation(s)
- Kirk P Conrad
- Departments of Physiology and Functional Genomics and Obstetrics and Gynecology, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida College of Medicine, Gainesville, Florida; and
| | - John M Davison
- Institute of Cellular Medicine and Royal Victoria Infirmary, Newcastle University and Newcastle Hospitals National Health Service Foundation Trust, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
20
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Cunningham MW, Sasser JM, West CA, Baylis C. Renal redox response to normal pregnancy in the rat. Am J Physiol Regul Integr Comp Physiol 2013; 304:R443-9. [PMID: 23283939 DOI: 10.1152/ajpregu.00496.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal pregnancy involves increased renal sodium reabsorption, metabolism, and oxygen consumption, which can cause increased oxidative stress (OS). OS can decrease nitric oxide (NO) bioavailability and cause pregnancy complications. In this study we examined the NO synthases (NOS) and redox state in the kidney cortex and aorta in early (E), mid (M), and late (L) pregnant (P) (days 3, 12, 20) and 2-4 days postpartum (PP) rats compared with virgin rats (V). Protein abundance of endothelial NOS (eNOS) was unchanged and neuronal NOS (nNOS)α fell at LP in the kidney cortex. Kidney cortex nNOSβ was elevated at MP, LP, and PP. No changes in aortic NOS isoforms were observed. Kidney cortex nitrotyrosine (NT) abundance decreased in EP, MP, and PP, whereas aortic NT increased in EP, MP, and PP. The NADPH oxidase subunit p22phox decreased in the kidney cortex at EP while aortic p22phox increased in EP and LP. No changes in kidney cortex NADPH-dependent superoxide production or hydrogen peroxide levels were noted. Kidney cortex cytosolic (CuZn) superoxide dismutase (SOD) was unchanged, while mitochondrial SOD decreased at EP and extracellular SOD decreased at MP and LP in the kidney cortex. Despite falls in abundance of kidney cortex SODs, total antioxidant capacity (TAC) was elevated in EP, MP, and PP in the kidney cortex. Aortic CuZn SOD deceased at PP, while the other aortic SODs and aortic TAC did not change. Data from this study suggest that the kidney cortex is protected from OS during normal rat pregnancy via an increase in antioxidant activity.
Collapse
Affiliation(s)
- Mark W Cunningham
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
22
|
Yoshida T, Kumagai H, Suzuki A, Kobayashi N, Ohkawa S, Odamaki M, Kohsaka T, Yamamoto T, Ikegaya N. Relaxin ameliorates salt-sensitive hypertension and renal fibrosis. Nephrol Dial Transplant 2012; 27:2190-2197. [DOI: 10.1093/ndt/gfr618] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
23
|
Schwartz IF, Grupper A, Soetendorp H, Hillel O, Laron I, Chernichovski T, Ingbir M, Shtabski A, Weinstein T, Chernin G, Shashar M, Hershkoviz R, Schwartz D. Attenuated glomerular arginine transport prevents hyperfiltration and induces HIF-1α in the pregnant uremic rat. Am J Physiol Renal Physiol 2012; 303:F396-404. [PMID: 22552935 DOI: 10.1152/ajprenal.00488.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pregnancy worsens renal function in females with chronic renal failure (CRF) through an unknown mechanism. Reduced nitric oxide (NO) generation induces renal injury. Arginine transport by cationic amino acid transporter-1 (CAT-1), which governs endothelial NO generation, is reduced in both renal failure and pregnancy. We hypothesize that attenuated maternal glomerular arginine transport promotes renal damage in CRF pregnant rats. In uremic rats, pregnancy induced a significant decrease in glomerular arginine transport and cGMP generation (a measure of NO production) compared with CRF or pregnancy alone and these effects were prevented by l-arginine. While CAT-1 abundance was unchanged in all experimental groups, protein kinase C (PKC)-α, phosphorylated PKC-α (CAT-1 inhibitor), and phosphorylated CAT-1 were significantly augmented in CRF, pregnant, and pregnant CRF animals; phenomena that were prevented by coadministrating l-arginine. α-Tocopherol (PKC inhibitor) significantly increased arginine transport in both pregnant and CRF pregnant rats, effects that were attenuated by ex vivo incubation of glomeruli with PMA (a PKC stimulant). Renal histology revealed no differences between all experimental groups. Inulin and p-aminohippurate clearances failed to augment and renal cortical expression of hypoxia inducible factor-1α (HIF-1α) significantly increased in CRF pregnant rat, findings that were prevented by arginine. These studies suggest that in CRF rats, pregnancy induces a profound decrease in glomerular arginine transport, through posttranslational regulation of CAT-1 by PKC-α, resulting in attenuated NO generation. These events provoke renal damage manifested by upregulation of renal HIF-1α and loss of the ability to increase glomerular filtration rate during gestation.
Collapse
Affiliation(s)
- Idit F Schwartz
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Administering relaxin to conscious rats and humans elicits systemic and renal vasodilation. The molecular mechanisms vary according to the duration of relaxin exposure-so-called "rapid" (within minutes) or "sustained" (hours to days) vasodilatory responses-both being endothelium-dependent. Rapid responses are mediated by G(αi/o) protein coupling to phosphoinositol-3 kinase/Akt (protein kinase B)-dependent phosphorylation and activation of nitric oxide synthase. Sustained responses are mediated by vascular endothelial and placental growth factors, as well as increases in arterial gelatinase activity. Thus, after hours or days of relaxin treatment, respectively, arterial MMP-9 or MMP-2 hydrolyze "big" endothelin (ET) at a gly-leu bond to form ET(1-32), which in turn activates the endothelial ET(B) receptor/nitric oxide vasodilatory pathway. Administration of relaxin to conscious rats also increases global systemic arterial compliance and passive compliance of select isolated blood vessels such as small renal arteries (SRA). The increase in SRA passive compliance is mediated by both geometric remodeling (outward) and compositional remodeling (decreased collagen). Relaxin-induced geometric remodeling has also been observed in brain parenchymal arteries, and this remodeling appears to be via the activation of peroxisome proliferator-activated receptor-γ. Given the vasodilatory and arterial remodeling properties of relaxin, the hormone may have therapeutic potential in the settings of abnormal pregnancies, heart failure, and pathologies associated with stiffening of arteries.
Collapse
|
25
|
Ryan MJ, Gilbert EL, Glover PH, George EM, Masterson CW, McLemore GR, LaMarca B, Granger JP, Drummond HA. Placental ischemia impairs middle cerebral artery myogenic responses in the pregnant rat. Hypertension 2011; 58:1126-31. [PMID: 22068864 DOI: 10.1161/hypertensionaha.111.181453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One potential mechanism contributing to the increased risk for encephalopathies in women with preeclampsia is altered cerebral vascular autoregulation resulting from impaired myogenic tone. Whether placental ischemia, a commonly proposed initiator of preeclampsia, alters cerebral vascular function is unknown. This study tested the hypothesis that placental ischemia in pregnant rats (caused by reduced uterine perfusion pressure [RUPP]) leads to impaired myogenic responses in middle cerebral arteries. Mean arterial pressure was increased by RUPP (135±3 mm Hg) compared with normal pregnant rats (103±2 mm Hg) and nonpregnant controls (116±1 mm Hg). Middle cerebral arteries from rats euthanized on gestation day 19 were assessed in a pressure arteriograph under active (+Ca(2+)) and passive (0 Ca(2+)) conditions, whereas luminal pressure was varied between 25 and 150 mm Hg. The slope of the relationship between tone and pressure in the middle cerebral artery was 0.08±0.01 in control rats and was similar in normal pregnant rats (0.05±0.01). In the RUPP model of placental ischemia, this relationship was markedly reduced (slope=0.01±0.00; P<0.05). Endothelial dependent and independent dilation was not different between groups, nor was there evidence of vascular remodeling assessed by the wall:lumen ratio and calculated wall stress. The impaired myogenic response was associated with brain edema measured by percentage of water content (RUPP P<0.05 versus control and normal pregnant rats). This study demonstrates that placental ischemia in pregnant rats leads to impaired myogenic tone in the middle cerebral arteries and that the RUPP model is a potentially important tool to examine mechanisms leading to encephalopathy during preeclamptic pregnancies.
Collapse
Affiliation(s)
- Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 39047, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Royal CR, Ma H, Walker R, White RE. Estrogen signaling in microvascular arteries: parturition reduces vasodilation by reducing 17β-estradiol and nNOS. Steroids 2011; 76:991-7. [PMID: 21458475 PMCID: PMC3139781 DOI: 10.1016/j.steroids.2011.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/18/2011] [Accepted: 03/24/2011] [Indexed: 12/28/2022]
Abstract
Few studies have examined the potential effects of childbirth on the responses of the female vasculature--especially the resistance microvasculature of non-reproductive tissues. In the present study we have investigated the response of mesenteric microvascular resistance vessels to estrogen (E2), an important vasoactive hormone. Vessels were obtained from either nulliparous or postpartum female Sprague-Dawley rats, and isometric tension studies were performed. We found that E2 induced a concentration-dependent, endothelium-independent relaxation of microvessels precontracted with 10(-5) M phenylephrine; however, E2-induced relaxation was reduced by nearly half in vessels from postpartum animals compared to nulliparous controls. Inhibiting nitric oxide synthase activity with 10(-4) M L-NMMA or L-NPA (which exhibits selectivity for type 1 or nNOS) attenuated the relaxation effect of E2 on arteries from nulliparous animals. In contrast, L-NPA had little effect on arteries from postpartum animals, suggesting a reduced influence of nNOS after parturition. Moreover, expression of nNOS protein in microvessels was decreased 39% in the postpartum state compared to arteries from nulliparous animals. We propose that the impaired E2-induced relaxation response of microvessels from postpartum animals reflects a downregulation of NO production due to lower nNOS expressed in vascular smooth muscle cells. We measured a 73% decrease in serum E2 levels in the postpartum state compared to nulliparous animals. Because E2 has been shown to increase nNOS protein expression, we propose that lower E2 levels after parturition decrease expression of nNOS, leading to a reduced vasodilatory capacity of resistance microvessels.
Collapse
Affiliation(s)
- Crista R. Royal
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912
| | - Handong Ma
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912
| | - Richard Walker
- Department of Biostatistics, Georgia Health Sciences University, Augusta, GA 30912
| | - Richard E. White
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912
| |
Collapse
|
27
|
Hypertension in response to AT1-AA: role of reactive oxygen species in pregnancy-induced hypertension. Am J Hypertens 2011; 24:835-40. [PMID: 21472019 DOI: 10.1038/ajh.2011.62] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Agonistic autoantibodies to the angiotensin II type I receptor (AT1-AA) and reactive oxygen species (ROS) are implicated in the pathophysiology of preeclampsia. The objective of this study was to determine the role of AT1-AA to stimulate placental oxidative stress in vivo and role ROS in mediating hypertension in response to AT1-AA during pregnancy. METHODS To achieve these goals, blood pressure (mean arterial pressure (MAP)) and ROS were analyzed in AT1-AA-induced hypertensive pregnant rats in the presence and absence of a superoxide dismutase mimetic, tempol. Rat AT1-AA (1:50) and tempol (30 mg/kg/day) were administered to pregnant rats beginning on day 12 of gestation. On day 19, MAP was analyzed and tissues collected for ROS analysis via lucigenin chemiluminescence. RESULTS MAP increased from 101 ± 2 normal pregnant (NP) rats to 116 ± 2 mm Hg in chronic AT1-AA infused rats (P = 0.002). Placental basal and NADPH oxidase stimulated ROS was 29 ± 6 and 92 ± 10 relative light units (RLUs) in NP rats. These levels increased to 159 ± 29 (P < 0.0001) and 287 ± 60 RLUs (P < 0.006) in AT1-AA infused rats. MAP in AT1-AA + tempol rats was 109 ± 2 mm Hg, no difference than tempol-treated controls (109 ± 3 mm Hg). Administration of tempol decreased basal and NADPH-stimulated placental ROS in AT1-AA-treated rats (121 ± 13; 262 ± 21 RLUs). Basal and NADPH-stimulated ROS in tempol-treated controls were 69 ± 24; 141 ± 33 RLUs. CONCLUSION This study indicates that AT1-AA's contribute to placental oxidative stress; one mechanism whereby the AT1-AA mediates hypertension during pregnancy.
Collapse
|
28
|
Conrad KP. Maternal vasodilation in pregnancy: the emerging role of relaxin. Am J Physiol Regul Integr Comp Physiol 2011; 301:R267-75. [PMID: 21613576 DOI: 10.1152/ajpregu.00156.2011] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pregnancy is a unique physiological condition of profound maternal renal and systemic vasodilation. Our goal has been to unveil the reproductive hormones mediating this remarkable vasodilatory state and the underlying molecular mechanisms. In addition to advancing our knowledge of pregnancy physiology, reaching this goal may translate into therapeutics for pregnancy pathologies such as preeclampsia and for diseases associated with vasoconstriction and arterial stiffness in nonpregnant women and men. An emerging player is the 6 kDa corpus luteal hormone relaxin, which circulates during pregnancy. Relaxin administration to rats and humans induces systemic and renal vasodilation regardless of sex, thus mimicking the pregnant condition. Immunoneutralization or elimination of the source of circulating relaxin prevents renal and systemic vasodilation in midterm pregnant rats. Infertile women who become pregnant by donor eggs (IVF with embryo transfer) lack a corpus luteum and circulating relaxin, and they show a markedly subdued gestational increase in glomerular filtration rate. These data implicate relaxin as one of the vasodilatory reproductive hormones of pregnancy. There are different molecular mechanisms underlying the so-called rapid and sustained vasodilatory actions of relaxin. The former is mediated by Gα(i/o) protein coupling to phosphatidylinositol-3 kinase/Akt (protein kinase B)-dependent phosphorylation and activation of endothelial nitric oxide synthase, the latter by vascular endothelial and placental growth factors, and increases in arterial gelatinase(s) activity. The gelatinases, in turn, hydrolyze big endothelin (ET) at a gly-leu bond to form ET(1-32), which activates the endothelial ET(B) receptor/nitric oxide vasodilatory pathway.
Collapse
Affiliation(s)
- Kirk P Conrad
- Department of Physiology and Functional Genomics, Department of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida 32610, USA.
| |
Collapse
|
29
|
Abstract
Relaxin is an approximately 6-kilodalton peptide hormone secreted by the corpus luteum, and circulates in the maternal blood during pregnancy. Relaxin administration to awake, chronically instrumented, nonpregnant rats mimics the vasodilatory phenomena of pregnancy. Furthermore, immunoneutralization of relaxin or its elimination from the circulation during midterm pregnancy in awake rats prevents maternal systemic and renal vasodilation, and the increase in global arterial compliance. Human investigation, albeit limited through 2010, also reveals vasodilatory effects of relaxin in the nonpregnant condition and observations consistent with a role for relaxin in gestational renal hyperfiltration. Evidence suggests that the vasodilatory responses of relaxin are mediated by its major receptor, the relaxin/insulin-like family peptide 1 receptor, RFXP1. The molecular mechanisms of relaxin vasodilation depend on the duration of hormone exposure (ie, there are rapid and sustained vasodilatory responses). Newly emerging data support the role of Gα(i/o) protein coupling to phosphatidylinositol-3 kinase/Akt (protein kinase B)-dependent phosphorylation and activation of endothelial nitric oxide synthase in the rapid vasodilatory responses of relaxin. Sustained vasodilatory responses critically depend on vascular endothelial and placental growth factors, and increases in arterial gelatinase(s) activity. Gelatinases hydrolyze big endothelin (ET) at a gly-leu bond to form ET(1-32), which activates the endothelial ET(B)/nitric oxide vasodilatory pathway. Although the relevance of relaxin biology to preeclampsia is largely speculative at this time, there are potential tantalizing links that are discussed in the context of our current understanding of the etiology and pathophysiology of the disease.
Collapse
Affiliation(s)
- Kirk P Conrad
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA.
| |
Collapse
|
30
|
Smith CA, Santymire B, Erdely A, Venkat V, Losonczy G, Baylis C. Renal nitric oxide production in rat pregnancy: role of constitutive nitric oxide synthases. Am J Physiol Renal Physiol 2010; 299:F830-6. [PMID: 20630934 PMCID: PMC2957259 DOI: 10.1152/ajprenal.00300.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/10/2010] [Indexed: 11/22/2022] Open
Abstract
Functional studies show that increased renal nitric oxide (NO) mediates the renal vasodilation and increased glomerular filtration rate that occur during normal pregnancy. We investigated whether changes in the constitutive NO synthases (NOS), endothelial (eNOS) and neuronal (nNOS), were associated with the increased renal NO production in normal midterm pregnancy in the rat. In kidneys from midterm pregnant (MP: 11-13 days gestation), late-term pregnant (LP: 18-20 days gestation), and similarly aged virgin (V) rats, transcript and protein abundance for eNOS and the nNOSα and nNOSβ splice variants, as well as the rate of L-arginine-to-L-citrulline conversion, were determined as a measure of NOS activity. At MP, renal cortical abundance of the total eNOS protein and phosphorylated (Ser(1177)) eNOS was reduced, and L-arginine-to-L-citrulline conversion in the cortical membrane fraction was decreased; these declines were also seen in LP. There were no changes in the eNOS transcript. In contrast, L-arginine-to-L-citrulline conversion in the soluble fraction of renal cortex increased at MP and then declined at LP. This MP increase was ablated by S-methylthiocitrulline, a nNOS inhibitor. Using Western blotting, we did not detect a change in the protein abundance or transcript of the 160-kDa nNOSα, but protein abundance and transcript of the nNOSβ were increased at MP in cortex. Collectively, these studies suggest that the soluble nNOSβ is responsible for the increased renal cortical NO production during pregnancy.
Collapse
Affiliation(s)
- Cheryl A Smith
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
31
|
Conrad KP. Unveiling the vasodilatory actions and mechanisms of relaxin. Hypertension 2010; 56:2-9. [PMID: 20497994 PMCID: PMC3392655 DOI: 10.1161/hypertensionaha.109.133926] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 04/16/2010] [Indexed: 11/16/2022]
Affiliation(s)
- Kirk P Conrad
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd, M552, PO Box 100274, Gainesville, FL 32610, USA.
| |
Collapse
|
32
|
Sheppard SJ, Khalil RA. Risk factors and mediators of the vascular dysfunction associated with hypertension in pregnancy. Cardiovasc Hematol Disord Drug Targets 2010; 10:33-52. [PMID: 20041838 DOI: 10.2174/187152910790780096] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 12/24/2009] [Indexed: 01/24/2023]
Abstract
Normal pregnancy is associated with significant hemodynamic changes and vasodilation in the uterine and systemic circulation in order to meet the metabolic demands of the mother and developing fetus. Hypertension in pregnancy (HTN-Preg) and preeclampsia (PE) are major complications and life-threatening conditions to both the mother and fetus. PE is precipitated by various genetic, dietary and environmental factors. Although the initiating events of PE are unclear, inadequate invasion of cytotrophoblasts into the uterine artery is thought to reduce uteroplacental perfusion pressure and lead to placental ischemia/hypoxia. Placental hypoxia induces the release of biologically active factors such as growth factor inhibitors, anti-angiogenic proteins, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and antibodies to vascular angiotensin II receptor. These bioactive factors affect the production/activity of various vascular mediators in the endothelium, smooth muscle and extracellular matrix, leading to severe vasoconstriction and HTN. As an endothelial cell disorder, PE is associated with decreased vasodilator mediators such as nitric oxide, prostacyclin and hyperpolarizing factor and increased vasoconstrictor mediators such as endothelin, angiotensin II and thromboxane A(2). PE also involves enhanced mechanisms of vascular smooth muscle contraction including intracellular free Ca(2+) concentration ([Ca(2+)](i)), and [Ca(2+)](i) sensitization pathways such as protein kinase C, Rho-kinase and mitogen-activated protein kinase. Changes in extracellular matrix composition and matrix metalloproteases activity also promote vascular remodeling and further vasoconstriction in the uterine and systemic circulation. Characterization of the predisposing risk factors, the biologically active factors, and the vascular mediators associated with PE holds the promise for early detection, and should help design specific genetic and pharmacological tools for the management of the vascular dysfunction associated with HTN-Preg.
Collapse
Affiliation(s)
- Stephanie J Sheppard
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
33
|
Tanbe AF, Khalil RA. Circulating and Vascular Bioactive Factors during Hypertension in Pregnancy. ACTA ACUST UNITED AC 2010; 6:60-75. [PMID: 20419111 DOI: 10.2174/157340710790711737] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal pregnancy is associated with significant vascular remodeling in the uterine and systemic circulation in order to meet the metabolic demands of the mother and developing fetus. The pregnancy-associated vascular changes are largely due to alterations in the amount/activity of vascular mediators released from the endothelium, vascular smooth muscle and extracellular matrix. The endothelium releases vasodilator substances such as nitric oxide, prostacyclin and hyperpolarizing factor as well as vasoconstrictor factors such as endothelin, angiotensin II and thromboxane A(2). Vascular smooth muscle contraction is mediated by intracellular free Ca(2+) concentration ([Ca(2+)](i)), and [Ca(2+)](i) sensitization pathways such as protein kinase C, Rho-kinase and mitogen-activated protein kinase. Extracellular matrix and vascular remodeling are regulated by matrix metalloproteases. Hypertension in pregnancy and preeclampsia are major complications and life threatening conditions to both the mother and fetus, precipitated by various genetic, dietary and environmental factors. The initiating mechanism of preeclampsia and hypertension in pregnancy is unclear; however, most studies have implicated inadequate invasion of cytotrophoblasts into the uterine artery, leading to reduction in the uteroplacental perfusion pressure and placental ischemia/hypoxia. This placental hypoxic state is thought to induce the release of several circulating bioactive factors such as growth factor inhibitors, anti-angiogenic proteins, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and vascular receptor antibodies. Increases in the plasma levels and vascular content of these factors during pregnancy could cause an imbalance in the vascular mediators released from the endothelium, smooth muscle and extracellular matrix, and lead to severe vasoconstriction and hypertension. This review will discuss the interactions between the various circulating bioactive factors and the vascular mediators released during hypertension in pregnancy, and provide an insight into the current and future approaches in the management of preeclampsia.
Collapse
Affiliation(s)
- Alain F Tanbe
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
34
|
Bracho-Valdés I, Godínez-Hernández D, Arroyo-Vicelis B, Bobadilla-Lugo RA, López-Sánchez P. Increased alpha-1 adrenoceptor expression in pregnant rats with subrenal aortic coarctation. Hypertens Pregnancy 2009; 28:402-16. [PMID: 19843003 DOI: 10.3109/10641950802629659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED The progression of pregnancy is associated with attenuation in vasopressor response to adrenergic agonists. In pregnancy-induced hypertension this attenuation is reverted. It is not known if this reversion involves alpha-1 adrenoceptor expression. OBJECTIVE In this work we propose that in pregnant rats with subrenal aortic coarctation there are changes in the expression of alpha-1 adrenergic receptors in the thoracic and abdominal aorta during pregnancy. METHODS We used non-pregnant, normal pregnant and pregnant with subrenal aortic coarctation female Wistar rats. Pregnancy-induced hypertension indicators, systolic blood pressure, 24 hours proteinuria, pup weight and maternal weight were measured. Dose response curves to phenylephrine were carried out to determine vascular reactivity along pregnancy. Alpha 1-adrenoceptors were detected from thoracic and abdominal aorta using immunoblot. RESULTS Results show significant increases in arterial pressure and proteinuria in pregnant rats with SRAC at the end of the third week. Pregnancy reduces alpha-(1-A, -B) and (-D) adrenoceptor expression and this event is reverted by subrenal aortic coarctation. This phenomenon is more apparent in the abdominal segment of the aorta. CONCLUSIONS These findings suggest that subrenal aortic coarctation is a good animal model of pregnancy-induced hypertension and that alpha1-adrenoceptors participate in its physiopathology increasing their expression in a segment-dependent manner.
Collapse
Affiliation(s)
- Ismael Bracho-Valdés
- Departamento de Fisiología y Farmacología, Escuela Superior de Medicina del IPN, Casco de Santo Tomás, México
| | | | | | | | | |
Collapse
|
35
|
Adamova Z, Ozkan S, Khalil RA. Vascular and cellular calcium in normal and hypertensive pregnancy. ACTA ACUST UNITED AC 2009; 4:172-90. [PMID: 19500073 DOI: 10.2174/157488409789375320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 02/16/2009] [Indexed: 01/23/2023]
Abstract
Normal pregnancy is associated with significant hemodynamic changes in the cardiovascular system in order to meet the metabolic demands of mother and fetus. These changes include increased cardiac output, decreased vascular resistance, and vascular remodeling in the uterine and systemic circulation. Preeclampsia (PE) is a major complication of pregnancy characterized by proteinuria and hypertension. Several risk factors have been implicated in the pathogenesis of PE including genetic and dietary factors. Ca2+ is an essential dietary element and an important regulator of many cellular processes including vascular function. The importance of adequate dietary Ca2+ intake during pregnancy is supported by many studies. Pregnancy-associated changes in Ca2+ metabolism and plasma Ca2+ have been observed. During pregnancy, changes in intracellular free Ca2+ concentration ([Ca2+](i)) have been described in red blood cells, platelets and immune cells. Also, during pregnancy, an increase in [Ca2+](i) in endothelial cells (EC) stimulates the production of vasodilator substances such as nitric oxide and prostacyclin. Normal pregnancy is also associated with decreased vascular smooth muscle (VSM) [Ca2+](i) and possibly the Ca2+-sensitization pathways of VSM contraction including protein kinase C, Rho-kinase, and mitogen-activated protein kinase. Ca2+-dependent matrix metalloproteinases could also promote extracellular matrix degradation and vascular remodeling during pregnancy. Disruption in the balance between dietary, plasma and vascular cell Ca2+ may be responsible for some of the manifestation of PE including procoagulation, decreased vasodilation, and increased vasoconstriction and vascular resistance. The potential benefits of Ca2+ supplements during pregnancy, and the use of modulators of vascular Ca2+ to reduce the manifestations of PE in susceptible women remain an important area for experimental and clinical research.
Collapse
Affiliation(s)
- Zuzana Adamova
- Division of Vascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
36
|
Bayrak S, Pehli˙vanogˇlu B, Balkanci ZD, Őzyürek H, Aksoy Y, Ati˙lla P, Cakar AN. The effects of transient systemic hypotension on renal oxidative status, morphology and plasma nitric oxide levels in pregnant rats. J Matern Fetal Neonatal Med 2009; 22:528-36. [DOI: 10.1080/14767050902822229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Stennett AK, Qiao X, Falone AE, Koledova VV, Khalil RA. Increased vascular angiotensin type 2 receptor expression and NOS-mediated mechanisms of vascular relaxation in pregnant rats. Am J Physiol Heart Circ Physiol 2009; 296:H745-55. [PMID: 19151255 DOI: 10.1152/ajpheart.00861.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal pregnancy is associated with reduced blood pressure (BP) and decreased pressor response to vasoconstrictors, even though the renin-angiotensin system is upregulated. Angiotensin II (ANG II) activates both angiotensin type 1 receptors (AT(1)Rs) and angiotensin type 2 receptors (AT(2)Rs). Although the role of the AT(1)R in vascular contraction is well documented, the role of the AT(2)R in vascular relaxation, particularly during pregnancy, is less clear. It was hypothesized that the decreased BP and vasoconstriction during pregnancy was, at least in part, due to changes in AT(2)R amount, distribution, and/or postreceptor mechanisms of vascular relaxation. To test this hypothesis, systolic BP was measured in virgin and pregnant (day 19) Sprague-Dawley rats. Isometric contraction/relaxation was measured in isolated aortic rings, and nitric oxide (NO) production was measured using 4-amino-5-methylamino-2',7'-difluorescein fluorescence. AT(1)R and AT(2)R mRNA expression and protein amount were measured in tissue homogenates using real-time RT-PCR and Western blots, and their local distribution was visualized in cryosections using immunohistochemistry and immunofluorescence. BP was lower in pregnant than virgin rats. Phenylephrine (Phe) caused concentration-dependent contraction that was reduced in the aorta of pregnant compared with virgin rats. Treatment with the AT(2)R antagonist PD-123319 caused greater enhancement of Phe contraction, and the AT(2)R agonist CGP-42112A caused greater relaxation of Phe contraction in the aorta of pregnant than virgin rats. ANG II plus the AT(1)R blocker losartan induced greater NO production in the aorta of pregnant than virgin rats. RT-PCR revealed increased mRNA expression of vascular endothelial NO synthase (eNOS), little change in AT(1)Rs, and increased AT(2)Rs in pregnant compared with virgin rats. Western blots revealed an increased protein amount of activated phospho-eNOS, little change in AT(1)Rs, and increased AT(2)Rs in pregnant compared with virgin rats. Immunohistochemistry and immunofluorescence analysis in aortic sections of virgin rats revealed abundant AT(1)R staining in tunica media that largely colocalized with actin in vascular smooth muscle and less AT(2)Rs mainly in the tunica intima and endothelium. In pregnant rats, AT(1)R staining in the smooth muscle layer and adventitia was reduced, and endothelial AT(2)R staining was enhanced. These data suggest an enhanced AT(2)R-mediated vascular relaxation pathway involving increased expression/activity of endothelial AT(2)Rs and increased postreceptor activated phospho-eNOS, which may contribute to the decreased BP during pregnancy.
Collapse
Affiliation(s)
- Amanda K Stennett
- Div. of Vascular Surgery, Harvard Medical School and Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
38
|
Altun ZS, Uysal S, Guner G, Yilmaz O, Posaci C. Effects of oral L‐arginine supplementation on blood pressure and asymmetric dimethylarginine in stress‐induced preeclamptic rats. Cell Biochem Funct 2008; 26:648-53. [DOI: 10.1002/cbf.1491] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Gamé X, Allard J, Escourrou G, Gourdy P, Tack I, Rischmann P, Arnal JF, Malavaud B. Estradiol increases urethral tone through the local inhibition of neuronal nitric oxide synthase expression. Am J Physiol Regul Integr Comp Physiol 2008; 294:R851-7. [DOI: 10.1152/ajpregu.00467.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogens are known to modulate lower urinary tract (LUT) trophicity and neuronal nitric oxide synthase (nNOS) expression in several organs. The aim of this study was to explore the effects of endogenous and supraestrus levels of 17β-estradiol (E2) on LUT and urethral nNOS expression and function. LUT function and histology and urethral nNOS expression were studied in adult female mice subjected either to sham surgery, surgical castration, or castration plus chronic E2 supplementation (80 μg·kg−1·day−1, i.e., pregnancy level). The micturition pattern was profoundly altered by long-term supraestrus levels of E2 with decreased frequency paralleled by increased residual volumes higher than those of ovariectomized mice. Urethral resistance was increased twofold in E2-treated mice, with no structural changes in urethra, supporting a pure tonic mechanism. Acute nNOS inhibition by 7-nitroindazole decreased frequency and increased residual volumes in ovariectomized mice but had no additive effect on the micturition pattern of long-term supraestrus mice, showing that long-term supraestrus E2 levels and acute inhibition of nNOS activity had similar functional effects. Finally, E2 decreased urethral nNOS expression in ovariectomized mice. Long-term supraestrus levels of E2 increased urethral tone through inhibition of nNOS expression, whereas physiological levels of E2 had no effect.
Collapse
|
40
|
Morgan TK, Montgomery K, Mason V, West RB, Wang L, van de Rijn M, Higgins JP. Upregulation of histidine decarboxylase expression in superficial cortical nephrons during pregnancy in mice and women. Kidney Int 2006; 70:306-14. [PMID: 16760908 DOI: 10.1038/sj.ki.5001553] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mechanisms regulating pregnancy-induced changes in renal function are incompletely understood. Few candidate genes have been identified and data suggest that alternate mechanisms remain to be elucidated. Our objective was to screen thousands of genes expressed in kidneys from mice throughout gestation to identify possible key regulators of renal function during pregnancy. Mouse complementary DNA microarrays were used to screen for differences in expression during pregnancy in C57BL/6 mice. Interesting candidate genes whose expression varied with pregnancy were further analyzed by reverse transcription-PCR and Northern blot. Expression was localized by in situ hybridization and immunohistochemistry. Follow-up immunohistochemical analyses in archival human kidney sections from the fetus, non-pregnant, and pregnant women were also performed. Histidine decarboxylase (HDC), the enzyme that synthesizes histamine, was markedly upregulated in the mouse kidney during pregnancy. HDC expression localized to proximal tubule cells of fetal and adult mice. Females showed strong expression in the juxtamedullary zone before pregnancy and upregulation in the superficial cortical zone (SCZ) by mid-gestation. Histamine colocalized with HDC. Male mice showed only low HDC expression. Similar expression patterns were observed in human kidneys. Our results show that HDC expression and histamine production are increased in the SCZ during pregnancy. If histamine acts as a vasodilator, we speculate that increasing production in the SCZ may increase renal blood flow to this zone and recruit superficial cortical nephrons during pregnancy.
Collapse
Affiliation(s)
- T K Morgan
- Department of Pathology, Stanford University Medical Center, Stanford, California, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
López-Novoa J. Ciclooxigenasas y función renal. HIPERTENSION Y RIESGO VASCULAR 2006. [DOI: 10.1016/s1889-1837(06)71587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Importancia de la ciclooxigenasa-2 en la regulación de la hemodinámica renal durante la gestación en ratas conscientes. HIPERTENSION Y RIESGO VASCULAR 2006. [DOI: 10.1016/s1889-1837(06)71589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Huang H, Zhou Y, Raju VT, Du J, Chang HH, Wang CY, Brands MW, Falck JR, Wang MH. Renal 20-HETE inhibition attenuates changes in renal hemodynamics induced by L-NAME treatment in pregnant rats. Am J Physiol Renal Physiol 2005; 289:F1116-22. [PMID: 15998843 DOI: 10.1152/ajprenal.00149.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that inhibition of nitric oxide (NO) synthesis by N-nitro-L-arginine methyl ester (L-NAME) during late pregnancy leads to increased production of renal vascular 20-hydroxyeicosatetraenoic acid (20-HETE), a cytochrome P-450 (CYP) 4A-derived vasoconstrictor, in pregnant rats. However, the effect of upregulation of vascular 20-HETE production on renal function after NO inhibition is not known. To test the hypothesis that increased gestational vascular 20-HETE synthesis after NO inhibition is involved in mediating blood pressure and renal functional changes, we first determined the IC(50) value of the effect of nitroprusside (SNP), a NO donor, on renal 20-HETE production in cortical microsomes. We then divided pregnant rats and age-matched virgin rats into a vehicle control group, an L-NAME treatment group (0.25 mg/ml in drinking water), and a group treated with L-NAME plus N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS; CYP4A-selective inhibitor, 10 mg.kg(-1).day(-1) iv). After 4 days of treatment, we measured blood pressure, renal blood flow (RBF), renal vascular resistance (RVR), and glomerular filtration rate (GFR) in each group. The addition of SNP (IC(50) = 22 microM) decreased renal cortical 20-HETE production. In pregnant rats, L-NAME treatment led to significantly higher mean arterial pressure (MAP) and RVR, and lower RBF and GFR. Combined treatment with DDMS and L-NAME significantly attenuated the increases in MAP and RVR and the decrease in GFR, but not the reduction in RBF induced by L-NAME treatment. L-NAME and L-NAME plus DDMS had no significant impact on renal hemodynamics in virgin rats. In addition, chronic treatment with DDMS selectively inhibited cortical 20-HETE production without a significant effect on CYP4A expression in L-NAME-treated pregnant rats. In conclusion, NO effectively inhibits renal cortical microsomal 20-HETE production in female rats. In pregnant rats, the augmentation of renal 20-HETE production after NO inhibition is associated with increased MAP and RVR, whereas decreased GFR is negated by treatment of a selective and competitive CYP4A inhibitor. These results demonstrate that the interaction between renal 20-HETE and NO is important in the regulation of renal function and blood pressure in pregnant rats.
Collapse
Affiliation(s)
- Hui Huang
- Dept. of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bobadilla L RA, Pérez-Alvarez V, Bracho Valdés I, López-Sanchez P. Effect of pregnancy on the roles of nitric oxide and prostaglandins in 5-hydroxytryptamine-induced contractions in rat isolated thoracic and abdominal aorta. Clin Exp Pharmacol Physiol 2005; 32:202-9. [PMID: 15743404 DOI: 10.1111/j.1440-1681.2005.04172.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. Vascular resistance and sensitivity to circulating pressor and vasoconstrictor substances are blunted during pregnancy. This has been attributed mainly to an increased production of endothelium-derived mediators. The aim of the present study was to determine whether pregnancy changes the relative participation of nitric oxide (NO) and prostaglandins (PG) in the modulation of the contractile response to 5-hydroxytryptamine (5-HT) in two anatomically distint segments of the rat aorta. 2. Full concentration-response curves to 5-HT were obtained in isolated rings from the thoracic and abdominal portion of the aorta from pregnant and non-pregnant rats in the presence and absence of the NO synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME; 10 micromol/L) or the PG synthesis inhibitor indomethacin (10 micromol/L). Cyclo-oxygenase (COX)-1, COX-2 and endothelial (e) NOS protein expression were determined in the same tissues by immunoblot. 3. The effects of pregnancy were accentuated in the abdominal compared with the thoracic aorta. In addition, the relative participation of the NO and PG pathways seems to be changed during pregnancy. Although NO seems to be the mediator mainly responsible for the effect of pregnancy in the thoracic aorta, our results suggest a complex interaction between NO and PG in the abdominal aorta. Indomethacin significantly reduced the contractile response of both segments of the aorta, whereas expression of COX-1, COX-2 and eNOS were increased only in the abdominal segment of pregnant animals. 4. These results show that the effect of pregnancy is not homogeneous along the aorta. There seems to be a mutual interaction between PG and NO in the abdominal, but not in the thoracic, aorta from pregnant rats: the role of NO becomes evident in the absence of vasodilatory PG, whereas the participation of the latter increases in the absence of NO working as a compensatory mechanism.
Collapse
Affiliation(s)
- Rosa A Bobadilla L
- Departamento de Fisiología y Farmacología, Escuela Superior de Medicina del IPN, Plan de San Luis y Diaz Mirón, Casco de Santo Tomás, México.
| | | | | | | |
Collapse
|
45
|
Kerchner LJ, Novak J, Hanley-Yanez K, Doty KD, Danielson LA, Conrad KP. Evidence against the hypothesis that endothelial endothelin B receptor expression is regulated by relaxin and pregnancy. Endocrinology 2005; 146:2791-7. [PMID: 15761039 DOI: 10.1210/en.2004-1602] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The endothelial endothelin B (ET(B)) receptor subtype is critical for renal vasodilation induced by relaxin in nonpregnant rats and during pregnancy (the latter via endogenous circulating relaxin). Here we tested whether expression of vascular ET(B) receptor protein is regulated by relaxin. Small renal arteries were harvested from virgin and midterm pregnant rats as well as nonpregnant rats that were administered recombinant human relaxin (rhRLX) at 4 mug/h or vehicle for 5 d or 4-6 h. Small renal arteries dissected from additional virgin rats were incubated in vitro with rhRLX or vehicle for 3 h at 37 C. ET(B) expression was also evaluated in cultured human endothelial cells: aortic, coronary, umbilical vein, and dermal microvascular endothelial cells. Cells were incubated for 4, 8, or 24 h with rhRLX (5, 1, or 0.1 ng/ml) or vehicle. ET(B) protein expression in arteries and cells was evaluated by Western analysis. No regulation of ET(B) expression was observed in small renal arteries in any of the experimental protocols, nor was there an increase in the vasorelaxation response to ET-3 in small renal arteries incubated in vitro with rhRLX. rhRLX only sporadically altered ET(B) expression in human coronary artery endothelial cells and human umbilical vein endothelial cells at certain time points or doses, and no regulation was observed in human aortic endothelial cells or human dermal microvascular endothelial cells. These results suggest that regulation of ET(B) receptor protein has little or no role in relaxin stimulation of the endothelial ET(B)/nitric oxide vasodilatory pathway.
Collapse
Affiliation(s)
- Laurie J Kerchner
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee Womens Research Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
46
|
Novak J, Rajakumar A, Miles TM, Conrad KP. Nitric oxide synthase isoforms in the rat kidney during pregnancy. ACTA ACUST UNITED AC 2005; 11:280-8. [PMID: 15219881 DOI: 10.1016/j.jsgi.2003.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Nitric oxide mediates renal vasodilation and hyperfiltration during pregnancy in conscious rats through the endothelin B (ETB) receptor subtype. We tested the hypothesis that immunoreactive levels of endothelial nitric oxide synthase (eNOS) would be greater in the kidneys of midterm pregnant rats compared with virgin rats. METHODS We studied midterm pregnancy because renal plasma flow and glomerular filtration rate are maximal at this gestational stage. Western analysis was used to determine the level of eNOS in the three major zones of the kidney-inner medulla, outer medulla, and cortex-and in isolated small renal arteries, and in purified renal microvessels from the cortex. RESULTS There were no significant differences in eNOS expression between virgin and midterm pregnant rats in any of those renal tissues, regardless of whether immunoreactivity was expressed as arbitrary densitometry units, as "microg placental equivalents" interpolated from the linear portion of a dose-response curve of placental villous protein (2.5-30 microg, positive control) run concurrently on each gel, or normalized for beta-actin. We also investigated other NOS isoforms. In particular, immunoreactive neuronal NOS (nNOS) was detectable in the inner and outer medulla, but it was not significantly different between groups. nNOS immunoreactivity was below the level of detection in the cortex, but mRNA expression was not significantly different between pregnant and virgin rats by reverse transcriptase polymerase chain reaction. CONCLUSION Our results suggest that an increase in eNOS isoform mass does not contribute to the endothelin and NO-dependent renal vasodilation in rat gestation.
Collapse
Affiliation(s)
- Jacqueline Novak
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Women's Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
47
|
Zhou Y, Chang HH, Du J, Wang CY, Dong Z, Wang MH. Renal epoxyeicosatrienoic acid synthesis during pregnancy. Am J Physiol Renal Physiol 2005; 288:F221-6. [PMID: 15383399 DOI: 10.1152/ajprenal.00170.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs), which belong to cytochrome P-450 (CYP)-derived eicosanoids, have been implicated to vasodilate renal arterioles, inhibit sodium transport in the nephron, and regulate blood pressure in several animal models. Because pregnancy is associated with changes of blood pressure, the aim of this study was to examine whether renal EET synthesis is altered and whether EETs are involved in blood pressure regulation during pregnancy in rats. Renal microsomal epoxygenase activity increased by 47, 97, and 63% on days 6, 12, and 19 of gestation, respectively. The elevation of epoxygenase activity during pregnancy was associated with an increase in CYP2C11, CYP2C23, and CYP2J2 protein expression on days 6, 12, and 19 of gestation. Moreover, immunohistochemical analysis showed that renal tubular CYP2C11, CYP2C23, and CYP2J2 expression was significantly increased in pregnant rats on days 6, 12, and 19 of gestation. Administration of 6-(2-propargyloxyphenyl)hexanoic acid (PPOH), a selective epoxygenase inhibitor, caused a dose-dependent inhibition of microsomal expoxygenase activity without a significant effect on ω-hydroxylase activity in female rats. Interestingly, administration of PPOH (20 mg·kg−1·day−1for 4 days starting on day 15 of pregnancy) increased blood pressure by 21 mmHg and caused a significant decrease in the body weight of fetal pups (1.3 ± 0.08 g in control vs. 1.1 ± 0.06 g in PPOH). Moreover, PPOH treatment significantly decreased renal microsomal epoxygenase activity and the expression of CYP2C11, CYP2C23, and CYP2J in pregnant rats. This study demonstrates that EET synthesis in the kidney is elevated during pregnancy, and CYP2C11, 2C23, and CYP2J2 are responsible for the change of renal EET synthesis. The inhibition results demonstrate that the downregulation of renal epoxygenase activity by PPOH causes hypertension in pregnant rats. This study suggests that EETs may contribute to the control of blood pressure during pregnancy.
Collapse
Affiliation(s)
- Yiqiang Zhou
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
48
|
Cherla G, Jaimes EA. Role of L-arginine in the pathogenesis and treatment of renal disease. J Nutr 2004; 134:2801S-2806S; discussion 2818S-2819S. [PMID: 15465789 DOI: 10.1093/jn/134.10.2801s] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
L-arginine is a semi essential amino acid and also a substrate for the synthesis of nitric oxide (NO), polyamines, and agmatine. These L-arginine metabolites may participate in the pathogenesis of renal disease and constitute the rationale for manipulating L-arginine metabolism as a strategy to ameliorate kidney disease. Modification of dietary L-arginine intake in experimental models of kidney diseases has been shown to have both beneficial as well as deleterious effects depending on the specific model studied. L-arginine supplementation in animal models of glomerulonephritis has been shown to be detrimental, probably by increasing the production of NO from increased local expression of inducible NO synthase (iNOS). L-arginine supplementation does not modify the course of renal disease in humans with chronic glomerular diseases. However, beneficial effects of L-arginine supplementation have been reported in several models of chronic kidney disease including renal ablation, ureteral obstruction, nephropathy secondary to diabetes, and salt-sensitive hypertension. L-arginine is reduced in preeclampsia and recent experimental studies indicate that L-arginine supplementation may be beneficial in attenuating the symptoms of preeclampsia. Administration of exogenous L-arginine has been shown to be protective in ischemic acute renal failure. In summary, the role of L-arginine in the pathogenesis and treatment of renal disease is not completely understood and remains to be established.
Collapse
Affiliation(s)
- Gautam Cherla
- Nephrology Section VA Medical Center, Renal Division, Miami, FL 33136, USA
| | | |
Collapse
|
49
|
Orshal JM, Khalil RA. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats. Am J Physiol Regul Integr Comp Physiol 2004; 286:R1013-23. [PMID: 15142856 DOI: 10.1152/ajpregu.00729.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IL-6 is elevated in plasma of preeclamptic women, and twofold elevation of plasma IL-6 increases vascular resistance and arterial pressure in pregnant rats, suggesting a role of the cytokine in hypertension of pregnancy. However, whether the hemodynamic effects of IL-6 reflect direct effects of the cytokine on the mechanisms of vascular contraction/relaxation is unclear. The purpose of this study was to test the hypothesis that IL-6 directly impairs endothelium-dependent relaxation and enhances vascular contraction in systemic vessels of pregnant rats. Active stress was measured in aortic strips isolated from virgin and late pregnant Sprague-Dawley rats and then nontreated or treated for 1 h with IL-6 (10 pg/ml to 10 ng/ml). In endothelium-intact vascular strips, phenylephrine (Phe, 10(-5) M) caused an increase in active stress that was smaller in pregnant (4.2 +/- 0.3) than virgin rats (5.1 +/- 0.3 x 10(4) N/m(2)). IL-6 (1,000 pg/ml) caused enhancement of Phe contraction that was greater in pregnant (10.6 +/- 0.7) than virgin rats (7.5 +/- 0.4 x 10(4) N/m(2)). ACh and bradykinin caused relaxation of Phe contraction and increases in vascular nitrite production that were greater in pregnant than virgin rats. IL-6 caused reductions in ACh- and bradykinin-induced vascular relaxation and nitrite production that were more prominent in pregnant than virgin rats. Incubation of endothelium-intact strips in the presence of N(omega)-nitro-L-arginine methyl ester (10(-4) M) to inhibit nitric oxide (NO) synthase, or 1H-[1,2,4]oxadiazolo[4,3]-quinoxalin-1-one (ODQ, 10(-5) M) to inhibit cGMP production in smooth muscle, inhibited ACh-induced relaxation and enhanced Phe-induced stress in nontreated but to a lesser extent in IL-6-treated vessels, particularly those of pregnant rats. Removal of the endothelium enhanced Phe-induced stress in nontreated but not IL-6-treated vessels, particularly those of pregnant rats. In endothelium-denuded strips, relaxation of Phe contraction with sodium nitroprusside, an exogenous NO donor, was not different between nontreated and IL-6-treated vessels of virgin or pregnant rats. Thus IL-6 inhibits endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of virgin and pregnant rats. The greater IL-6-induced inhibition of vascular relaxation and enhancement of contraction in systemic vessels of pregnant rats supports a direct role for IL-6 as one possible mediator of the increased vascular resistance associated with hypertension of pregnancy.
Collapse
Affiliation(s)
- Julia M Orshal
- Department of Medicine, Veterans Affairs Medical Center, West Roxbury, and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
50
|
Wang MH, Wang J, Chang HH, Zand BA, Jiang M, Nasjletti A, Laniado-Schwartzman M. Regulation of renal CYP4A expression and 20-HETE synthesis by nitric oxide in pregnant rats. Am J Physiol Renal Physiol 2003; 285:F295-302. [PMID: 12684227 DOI: 10.1152/ajprenal.00065.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE), which promotes renal vasoconstriction, is formed in the rat kidney primarily by cytochrome P-450 (CYP) 4A isoforms (4A1, 4A2, 4A3, 4A8). Nitric oxide (NO) has been shown to bind to the heme moiety of the CYP4A2 protein and to inhibit 20-HETE synthesis in renal arterioles of male rats. However, it is not known whether NO interacts with and affects the activity of CYP4A1 and CYP4A3, the major renal CYP4A isoforms in female rats. Incubation of recombinant CYP4A1 and 4A3 proteins with sodium nitroprusside (SNP) shifted the absorbance at 440 nm, indicating the formation of a ferric-nitrosyl-CYP4A complex. The absorbance for CYP4A3 was about twofold higher than that of CYP4A1. Incubation of SNP or peroxynitrite (PN; 0.01-1 mM) with CYP4A recombinant membranes caused a concentration-dependent inhibition of 20-HETE synthesis, with both chemicals having a greater inhibitory effect on CYP4A3-catalyzed activity. Moreover, incubation of CYP4A1 and 4A3 proteins with PN (1 mM) resulted in nitration of tyrosine residues in both proteins. In addition, PN and SNP inhibited 20-HETE synthesis in renal microvessels from female rats by 65 and 59%, respectively. We previously showed that microvessel CYP4A1/CYP4A3 expression and 20-HETE synthesis are decreased in late pregnancy. Therefore, we investigated whether such a decrease is dependent on NO, the synthesis of which has been shown to increase in late pregnancy. Administration of NG-nitro-l-arginine methyl ester (l-NAME) to pregnant rats for 6 days (days 15-20 of pregnancy) caused a significant increase in systolic blood pressure, which was prevented by concurrent treatment with the CYP4A inhibitor 1-aminobenzotriazole (ABT). Urinary NO2/NO3 excretion decreased by 40 and 52% in l-NAME- and l-NAME + ABT-treated groups, respectively. Interestingly, renal microvessel 20-HETE synthesis showed a marked increase following l-NAME treatment, and this increase was diminished with coadministration of ABT. These results demonstrate that NO interacts with CYP4A proteins in a distinct manner and it interferes with renal microvessel 20-HETE synthesis, which may play an important role in the regulation of blood pressure and renal function during pregnancy.
Collapse
Affiliation(s)
- Mong-Heng Wang
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | | | | | |
Collapse
|