1
|
An C, Li Z, Chen Y, Huang S, Yang F, Hu Y, Xu T, Zhang C, Ge S. The cGAS-STING pathway in cardiovascular diseases: from basic research to clinical perspectives. Cell Biosci 2024; 14:58. [PMID: 38720328 PMCID: PMC11080250 DOI: 10.1186/s13578-024-01242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, an important component of the innate immune system, is involved in the development of several diseases. Ectopic DNA-induced inflammatory responses are involved in several pathological processes. Repeated damage to tissues and metabolic organelles releases a large number of damage-associated molecular patterns (mitochondrial DNA, nuclear DNA, and exogenous DNA). The DNA fragments released into the cytoplasm are sensed by the sensor cGAS to initiate immune responses through the bridging protein STING. Many recent studies have revealed a regulatory role of the cGAS-STING signaling pathway in cardiovascular diseases (CVDs) such as myocardial infarction, heart failure, atherosclerosis, and aortic dissection/aneurysm. Furthermore, increasing evidence suggests that inhibiting the cGAS-STING signaling pathway can significantly inhibit myocardial hypertrophy and inflammatory cell infiltration. Therefore, this review is intended to identify risk factors for activating the cGAS-STING pathway to reduce risks and to simultaneously further elucidate the biological function of this pathway in the cardiovascular field, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
- Cheng An
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Zhen Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Shaojun Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Fan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
2
|
Prince S. Gene-environment interaction: why genetic enhancement might never be distributed fairly. JOURNAL OF MEDICAL ETHICS 2024; 50:272-277. [PMID: 37268408 DOI: 10.1136/jme-2023-109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
Ethical debates around genetic enhancement tend to include an argument that the technology will eventually be fairly accessible once available. That we can fairly distribute genetic enhancement has become a moral defence of genetic enhancement. Two distribution solutions are argued for, the first being equal distribution. Equality of access is generally believed to be the fairest and most just method of distribution. Second, equitable distribution: providing genetic enhancements to reduce social inequalities. In this paper, I make two claims. I first argue that the very assumption that genetic enhancements can be distributed fairly is problematic when considering our understanding of gene-environment interactions, for example, epigenetics. I then argue that arguments that genetic enhancements are permissible because the intended benefits can be distributed fairly as intended are misinformed. My first claim rests on the assertion that genetic enhancements do not enhance traits in a vacuum; genes are dependent on conducive environments for expression. If society cannot guarantee fair environments, then any benefit conferred from being genetically enhanced will be undermined. Thus, any argument that the distribution of genetic enhancements will be fair and that the technology is therefore morally permissible, is mistaken.
Collapse
Affiliation(s)
- Sinead Prince
- Faculty of Business and Law, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Business and Law, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Fujii R, Ando Y, Yamada H, Tsuboi Y, Munetsuna E, Yamazaki M, Mizuno G, Maeda K, Ohashi K, Ishikawa H, Watanabe M, Imaeda N, Goto C, Wakai K, Hashimoto S, Suzuki K. Integration of methylation quantitative trait loci (mQTL) on dietary intake on DNA methylation levels: an example of n-3 PUFA and ABCA1 gene. Eur J Clin Nutr 2023; 77:881-887. [PMID: 37542202 DOI: 10.1038/s41430-023-01315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Epigenetic studies have reported relationships between dietary nutrient intake and methylation levels. However, genetic variants that may affect DNA methylation (DNAm) pattern, called methylation quantitative loci (mQTL), are usually overlooked in these analyses. We investigated whether mQTL change the relationship between dietary nutrient intake and leukocyte DNAm levels with an example of estimated fatty acid intake and ATP-binding cassette transporter A1 (ABCA1). METHODS A cross-sectional study on 231 participants (108 men, mean age: 62.7 y) without clinical history of cancer and no prescriptions for dyslipidemia. We measured leukocyte DNAm levels of 8 CpG sites within ABCA1 gene by pyrosequencing method and used mean methylation levels for statistical analysis. TaqMan assay was used for genotyping a genetic variant of ABCA1 (rs1800976). Dietary fatty acid intake was estimated with a validated food frequency questionnaire and adjusted for total energy intake by using residual methods. RESULTS Mean ABCA1 DNAm levels were 5% lower with the number of minor alleles in rs1800976 (CC, 40.6%; CG, 35.9%; GG, 30.6%). Higher dietary n-3 PUFA intake was associated with lower ABCA1 DNAm levels (1st (ref) vs. 4th, β [95% CI]: -2.52 [-4.77, -0.28]). After controlling for rs180076, the association between dietary n-3 PUFA intake and ABCA1 DNAm levels was attenuated, but still showed an independent association (1st (ref) vs. 4th, β [95% CI]: -2.00 [-3.84, -0.18]). The interaction of mQTL and dietary n-3 PUFA intake on DNAm levels was not significant. CONCLUSIONS This result suggested that dietary n-3 PUFA intake would be an independent predictor of DNAm levels in ABCA1 gene after adjusting for individual genetic background. Considering mQTL need to broaden into other genes and nutrients for deeper understanding of DNA methylation, which can contribute to personalized nutritional intervention.
Collapse
Affiliation(s)
- Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Alessandro Volta 21, Bolzano/Bozen, Italy
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure-cho, Takamatsu, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, 5-23-22 Nishi-Kamata, Ota-ku, Japan
| | - Keisuke Maeda
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Mami Watanabe
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Nahomi Imaeda
- Department of Nutrition, Faculty of Wellness, Shigakkan University, 55 Nakoyama, Yokonemachi, Obu, Japan
| | - Chiho Goto
- Department of Health and Nutrition, Nagoya Bunri University, 365 Maeda, Inazawa-city, Inazawa, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan.
| |
Collapse
|
4
|
Perceived Influence of Plain Cigarette Packaging on Smoking Behavior: A Systematic Review. JOURNAL OF PUBLIC HEALTH MANAGEMENT AND PRACTICE 2022; 28:E757-E763. [PMID: 35452436 DOI: 10.1097/phh.0000000000001517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CONTEXT Worldwide, the number of cigarette smokers is increasing. All tobacco products come in packs. Packaging and branding are important elements of advertising and promotion. The plain packaging concept introduced by the World Health Organization, where marketing elements such as branding appeal are removed from the cigarette pack, is said to be effective for reducing smoking habits. The objective of this systematic review was to determine the influence of plain packaging on smoking behavior. METHOD This systematic review was conducted using 2 databases (Scopus and Web of Science). We did not search for unpublished reports. The search was performed from September 2020 to December 2020 in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The inclusion criteria were original article that used a qualitative or quantitative method, English-language article, published in 2016-2020, and availability of full-text article. RESULTS A total of 15 studies were included. All of the studies had adequate methodological quality. Most of the studies reported the effectiveness of plain packaging in preventing smoking initiation among nonsmokers. However, more studies reported no effect of plain packaging on smoking behavior among smokers. Furthermore, there was a greater impact of plain packaging on smoking behavior among female smokers and those who had recently started smoking. CONCLUSIONS Plain packaging is more effective for evoking negative smoking behavior among nonsmokers than among smokers. As many of the included studies did not stratify the results based on age group and gender, future research should address these issues.
Collapse
|
5
|
Zillich L, Poisel E, Streit F, Frank J, Fries GR, Foo JC, Friske MM, Sirignano L, Hansson AC, Nöthen MM, Witt SH, Walss-Bass C, Spanagel R, Rietschel M. Epigenetic Signatures of Smoking in Five Brain Regions. J Pers Med 2022; 12:566. [PMID: 35455681 PMCID: PMC9029407 DOI: 10.3390/jpm12040566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: Epigenome-wide association studies (EWAS) in peripheral blood have repeatedly found associations between tobacco smoking and aberrant DNA methylation (DNAm), but little is known about DNAm signatures of smoking in the human brain, which may contribute to the pathophysiology of addictive behavior observed in chronic smokers. (2) Methods: We investigated the similarity of DNAm signatures in matched blood and postmortem brain samples (n = 10). In addition, we performed EWASs in five brain regions belonging to the neurocircuitry of addiction: anterior cingulate cortex (ACC), Brodmann Area 9, caudate nucleus, putamen, and ventral striatum (n = 38-72). (3) Results: cg15925993 within the LOC339975 gene was epigenome-wide significant in the ACC. Of 16 identified differentially methylated regions, two (PRSS50 and LINC00612/A2M-AS1) overlapped between multiple brain regions. Functional enrichment was detected for biological processes related to neuronal development, inflammatory signaling and immune cell migration. Additionally, our results indicate the association of the well-known AHRR CpG site cg05575921 with smoking in the brain. (4) Conclusion: The present study provides further evidence of the strong relationship between aberrant DNAm and smoking.
Collapse
Affiliation(s)
- Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| | - Eric Poisel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| | - Gabriel R. Fries
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (G.R.F.); (C.W.-B.)
| | - Jerome C. Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| | - Marion M. Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany; (M.M.F.); (A.C.H.)
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| | - Anita C. Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany; (M.M.F.); (A.C.H.)
| | - Markus M. Nöthen
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
- Center for Innovative Psychiatric and Psychotherapeutic Research, Biobank, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (G.R.F.); (C.W.-B.)
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany; (M.M.F.); (A.C.H.)
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; (L.Z.); (E.P.); (F.S.); (J.F.); (J.C.F.); (L.S.); (S.H.W.); (M.R.)
| |
Collapse
|
6
|
Xu Z, Lv B, Qin Y, Zhang B. Emerging Roles and Mechanism of m6A Methylation in Cardiometabolic Diseases. Cells 2022; 11:cells11071101. [PMID: 35406663 PMCID: PMC8997388 DOI: 10.3390/cells11071101] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiometabolic diseases (CMDs) are currently the leading cause of death and disability worldwide, and their underlying regulatory mechanisms remain largely unknown. N6-methyladenosine (m6A) methylation, the most common and abundant epigenetic modification of eukaryotic mRNA, is regulated by m6A methyltransferase, demethylase, and the m6A binding protein, which affect the transcription, cleavage, translation, and degradation of target mRNA. m6A methylation plays a vital role in the physiological and pathological processes of CMDs. In this review, we summarize the role played by m6A methylation in CMDs, including obesity, hypertension, pulmonary hypertension, ischemic heart disease, myocardial hypertrophy, heart failure, and atherosclerosis. We also describe mechanisms that potentially involve the participation of m6A methylation, such as those driving calcium homeostasis, circadian rhythm, lipid metabolism, autophagy, macrophage response, and inflammation. m6A methylation and its regulators are expected to be targets for the treatment of CMDs.
Collapse
|
7
|
Jin SW, Im JS, Park JH, Kim HG, Lee GH, Kim SJ, Kwack SJ, Kim KB, Chung KH, Lee BM, Kacew S, Jeong HG, Kim HS. Effects of tobacco compound 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) on the expression of epigenetically regulated genes in lung carcinogenesis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:1004-1019. [PMID: 34459362 DOI: 10.1080/15287394.2021.1965059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cigarette smoking is a major cause of lung cancer. Although tobacco smoking-induced genotoxicity has been well established, there is apparent lack of abundance functional epigenetic effects reported On cigarette smoke-induced lung carcinogenesis. The aim of this study was to determine effects of intratracheal administration of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) utilizing target gene expression DNA methylation patterns in lung tissues of mice following twice weekly for 8 weeks treatment. An unbiased approach where genomic regions was undertaken to assess early methylation changes within mouse pulmonary tissues. A methylated-CpG island recovery assay (MIRA) was performed to map the DNA methylome in lung tissues, with the position of methylated DNA determined using a Genome Analyzer (MIRA-SEQ). Alterations in epigenetic-regulated target genes were confirmed with quantitative reverse transcription-PCR, which revealed 35 differentially hypermethylated genes including Cdkn1C, Hsf4, Hnf1a, Cdx1, and Hoxa5 and 30 differentially hypomethylated genes including Ddx4, Piwi1, Mdm2, and Pce1 in NNK-exposed lung tissue compared with controls. The main pathway of these genes for mediating biological information was analyzed using the Kyoto Encyclopedia of Genes and Genomes database. Among them, Rssf1 and Mdm2 were closely associated with NNK-induced lung carcinogenesis. Taken together, our data provide valuable resources for detecting cigarette smoke-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Sun Woo Jin
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jong Seung Im
- School Of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hyeon Park
- School Of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Gyun Kim
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gi Ho Lee
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Se Jong Kim
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seung Jun Kwack
- Department Of Biochemistry And Health Science, Changwon National University, Gyeongnam Republic of Korea
| | - Kyu-Bong Kim
- College Of Pharmacy, Dankook University, Chungnam, Republic of Korea
| | - Kyu Hyuck Chung
- School Of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Byung Mu Lee
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University Of Ottawa, Ottawa, ON, Canada
| | - Hye Gwang Jeong
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hyung Sik Kim
- School Of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
8
|
Reid S, Hagberg N, Sandling JK, Alexsson A, Pucholt P, Sjöwall C, Lerang K, Jönsen A, Gunnarsson I, Syvänen AC, Troldborg AM, Voss A, Bengtsson AA, Molberg Ø, Jacobsen S, Svenungsson E, Rönnblom L, Leonard D. Interaction between the STAT4 rs11889341(T) risk allele and smoking confers increased risk of myocardial infarction and nephritis in patients with systemic lupus erythematosus. Ann Rheum Dis 2021; 80:1183-1189. [PMID: 33766895 PMCID: PMC8372395 DOI: 10.1136/annrheumdis-2020-219727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 03/06/2021] [Indexed: 12/17/2022]
Abstract
Objective To investigate how genetics influence the risk of smoking-related systemic lupus erythematosus (SLE) manifestations. Methods Patients with SLE (ndiscovery cohort=776, nreplication cohort=836) were genotyped using the 200K Immunochip single nucleotide polymorphisms (SNP) Array (Illumina) and a custom array. Sixty SNPs with SLE association (p<5.0×10−8) were analysed. Signal transducer and activator of transcription 4 (STAT4) activation was assessed in in vitro stimulated peripheral blood mononuclear cells from healthy controls (n=45). Results In the discovery cohort, smoking was associated with myocardial infarction (MI) (OR 1.96 (95% CI 1.09 to 3.55)), with a greater effect in patients carrying any rs11889341 STAT4 risk allele (OR 2.72 (95% CI 1.24 to 6.00)) or two risk alleles (OR 8.27 (95% CI 1.48 to 46.27)). Smokers carrying the risk allele also displayed an increased risk of nephritis (OR 1.47 (95% CI 1.06 to 2.03)). In the replication cohort, the high risk of MI in smokers carrying the risk allele and the association between the STAT4 risk allele and nephritis in smokers were confirmed (OR 6.19 (95% CI 1.29 to 29.79) and 1.84 (95% CI 1.05 to 3.29), respectively). The interaction between smoking and the STAT4 risk allele resulted in further increase in the risk of MI (OR 2.14 (95% CI 1.01 to 4.62)) and nephritis (OR 1.53 (95% CI 1.08 to 2.17)), with 54% (MI) and 34% (nephritis) of the risk attributable to the interaction. Levels of interleukin-12-induced phosphorylation of STAT4 in CD8+ T cells were higher in smokers than in non-smokers (mean geometric fluorescence intensity 1063 vs 565, p=0.0063). Lastly, the IL12A rs564799 risk allele displayed association with MI in both cohorts (OR 1.53 (95% CI 1.01 to 2.31) and 2.15 (95% CI 1.08 to 4.26), respectively). Conclusions Smoking in the presence of the STAT4 risk gene variant appears to increase the risk of MI and nephritis in SLE. Our results also highlight the role of the IL12−STAT4 pathway in SLE-cardiovascular morbidity.
Collapse
Affiliation(s)
- Sarah Reid
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Niklas Hagberg
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johanna K Sandling
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andrei Alexsson
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Pucholt
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linkoping, Sweden
| | - Karoline Lerang
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skane University Hospital, Lund, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anne Margrethe Troldborg
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anne Voss
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Anders A Bengtsson
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skane University Hospital, Lund, Sweden
| | - Øyvind Molberg
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| | - Søren Jacobsen
- Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dag Leonard
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Junqueira JJM, Lourenço JD, da Silva KR, Cervilha DADB, da Silveira LKR, Correia AT, Silva LEDF, Teodoro WR, Tibério IDFLC, Barbosa AP, Lopes FDTQDS. Decreased Bone Type I Collagen in the Early Stages of Chronic Obstructive Pulmonary Disease (COPD). COPD 2020; 17:575-586. [PMID: 32814449 DOI: 10.1080/15412555.2020.1808605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Smoking is the main risk factor for the development of chronic obstructive pulmonary disease (COPD) and is known to have deleterious effects on bone metabolism. However, the effects on bone collagen matrix during the development of COPD are unclear. The aim of this study was to evaluate the temporal effect of cigarette smoke exposure on bone type I collagen during COPD development in a cigarette smoke-induced model. C57BL/6 mice were allocated to three groups: control (C), animals exposed to filtered air for 1, 3 and 6 months; cigarette smoke (S), animals exposed to cigarette smoke for 1, 3 and 6 months; provisional smoking (PS), animals exposed to cigarette smoke for 3 months, followed by another 3 months of filtered air exposure. Evaluation of the respiratory mechanics and alveolar enlargement were performed. Femoral and tibial extraction was also performed to evaluate the type I collagen by immunofluorescence and COL1A1 gene expression. Exposure to cigarette smoke led to an alveolar enlargement and progressive reduction in lung tissue resistance and elastance, progressive reduction of type I collagen and reduction in COL1A1 gene expression. Although we did not observe any improvement in the functional and histological parameters in the provisional smoking group, we detected an increase in COL1A1 gene expression. A worsening in bone collagen matrix is part of the initial physiopathological events during COPD development and the smoking cessation induced an evident recovery of COL1A1 expression, possibly to attempt at tissue repair.
Collapse
Affiliation(s)
- Jader Joel Machado Junqueira
- Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Juliana Dias Lourenço
- Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Kaique Rodrigues da Silva
- Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Daniela Aparecida de Brito Cervilha
- Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Aristides Tadeu Correia
- Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Larissa Emidio de França Silva
- Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Walcy Rosolia Teodoro
- Rheumatology Division (LIM-17), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Alexandre Póvoa Barbosa
- Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
10
|
Wang Z, Zhao YT, Zhao TC. Histone deacetylases in modulating cardiac disease and their clinical translational and therapeutic implications. Exp Biol Med (Maywood) 2020; 246:213-225. [PMID: 32727215 DOI: 10.1177/1535370220944128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and morbidity worldwide. Histone deacetylases (HDACs) play an important role in the epigenetic regulation of genetic transcription in response to stress or pathological conditions. HDACs interact with a complex co-regulatory network of transcriptional regulators, deacetylate histones or non-histone proteins, and modulate gene expression in the heart. The selective HDAC inhibitors have been considered to be a critical target for the treatment of cardiac disease, especially for ameliorating cardiac dysfunction. In this review, we discuss our current knowledge of the cellular and molecular basis of HDACs in mediating cardiac development and hypertrophy and related pharmacologic interventions in heart disease.
Collapse
Affiliation(s)
- Zhengke Wang
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI 02908, USA
| | - Yu Tina Zhao
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ting C Zhao
- Departments of Surgery and Plastic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
11
|
Association of smoking habits with TXNIP DNA methylation levels in leukocytes among general Japanese population. PLoS One 2020; 15:e0235486. [PMID: 32609762 PMCID: PMC7329107 DOI: 10.1371/journal.pone.0235486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP) inhibits the activity of thioredoxin (TXN), leading to increased oxidative stress. Expression of the TXNIP gene is regulated by DNA methylation. However, no study has reported the influence of lifestyle factors on TXNIP DNA methylation. Our goal was to determine the association between smoking habits and TXNIP DNA methylation levels in a Japanese population. We conducted a cross-sectional study of 417 subjects (180 males and 237 females) participating in a health examination. We used a pyrosequencing assay to determine TXNIP DNA methylation levels in leukocytes. The mean TXNIP DNA methylation level in current smokers (75.3%) was significantly lower than that in never and ex-smokers (never: 78.1%, p < 0.001; ex: 76.9%, p = 0.013). Multivariable logistic regression analyses showed that the OR for TXNIP DNA hypomethylation was significantly higher in current smokers than that in never smokers, and significantly higher in current smokers with years of smoking ≥ 35 and Brinkman Index ≥ 600 compared to that in non-smokers. In conclusion, we found that current smokers had TXNIP DNA hypomethylation compared to never and ex-smokers. Moreover, long-term smoking and high smoking exposure also were associated with TXNIP DNA hypomethylation.
Collapse
|
12
|
Tu G, Fang Z, Zhao Y, Wu Q. Association of +138I/D and Lys198Asn Polymorphisms in the Endothelin-1 Gene with Early Onset of Coronary Artery Disease among the Chinese Han Population. Med Sci Monit 2020; 26:e921542. [PMID: 32499477 PMCID: PMC7297021 DOI: 10.12659/msm.921542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Human endothelin-1 (ET-1) gene polymorphism is closely associated with coronary artery disease (CAD). This study aimed to investigate the association of 2 single-nucleotide polymorphisms (SNPs), +138 I/D and Lys198Asn) of the ET-1 gene,with early onset of CAD in Han Chinese patients. We investigated the effects of Lys198Asn polymorphism on ET-1 protein expression upon stimulation with pro-inflammatory factors. Material/Methods Genotyping of the 2 SNPs +138 I/D and Lys198Asn was performed in 88 early-onset CAD patients (≤55 years for males; ≤60 years for females) and 52 healthy control participants using a polymerase chain reaction direct sequencing method. The association of the 2 SNPs was analyzed with SPSS 17.0 software. Western blotting was performed to assess the effects of ET-1 polymorphisms on ET-1 protein expression upon tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and lipopolysaccharide (LPS) stimulation in HEK-293T cells. Results Fisher’s exact test showed that the T allele (odds ratio [OR]=3.38, P=0.02) and GT/TT genotype (OR=3.76, P=0.02) of the ET-1 gene Lys198Asn were associated with increased early-onset CAD risk. Multivariate logistic regression analysis showed smoking was the single independent variable related to early-onset CAD (P<0.05). An increase of ET-1 protein levels in cells transfected with Asn198 plasmid was seen upon TNF-α or IL-6 stimulation. Conclusions T allele frequency in Lys198Asn loci might be associated with the pathogenesis of early-onset CAD. T-variant might contribute to early-onset CAD by upregulating ET-1 expression upon inflammatory cytokines stimulation, and smokers who have the T allele might be vulnerable to CAD in the Chinese population.
Collapse
Affiliation(s)
- Guosheng Tu
- Department of Cardiology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Zhengxu Fang
- Department of Cardiology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yu Zhao
- Department of Cardiology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Qinghua Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
13
|
Lee J, Papa F, Jaini PA, Alpini S, Kenny T. An Epigenetics-Based, Lifestyle Medicine-Driven Approach to Stress Management for Primary Patient Care: Implications for Medical Education. Am J Lifestyle Med 2020; 14:294-303. [PMID: 32477032 PMCID: PMC7232902 DOI: 10.1177/1559827619847436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Over 75% of patients in the primary care setting present with stress-related complaints. Curiously, patients and health care providers all too often see stress as a relatively benign sequela of many common illnesses such as heart disease, cancer, lung disease, dementia, diabetes, and mental illness. Unfortunately, various day-to-day lifestyle choices and environmental factors, unrelated to the presence of any disease, can cause stress sufficient to contribute to the development of various diseases/disorders and suboptimal health. There is evidence suggesting that counseling in stress management-oriented therapeutic interventions (as offered by lifestyle medicine-oriented practitioners) may prevent or reduce the onset, severity, duration, and/or overall burden of stress-related illnesses. Such counseling often involves considerations such as the patient's nutrition, physical activity, interest in/capacity to meditate, drug abuse/cessation, and so on. Unfortunately, lifestyle medicine-oriented approaches to stress management are rarely offered in primary care-the patient care arena wherein such counseling would likely be best received by patients. Would health care outcomes improve if primary care providers offered counseling in both stress management and positive lifestyle choices? The purpose of this article is to provide both primary care practitioners and educators in health care training programs with an introductory overview of epigenetics. An emerging field of science offering insights into how factors such as stress and lifestyle choices interact with our genes in ways that can both positively and negatively impact the various micro (eg, cellular) through macro (eg, physiologic, pathophysiologic) processes that determine our tendencies toward illness or wellness. A deeper understanding of epigenetics, as provided herein, should enable primary care providers and medical educators to more confidently advocate for the primary benefits associated with counseling in both stress reduction and the pursuit of healthy lifestyle choices.
Collapse
Affiliation(s)
- Jenny Lee
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Frank Papa
- Frank Papa, DO, PhD, Medical Education, UNT Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107; e-mail:
| | - Paresh Atu Jaini
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Sarah Alpini
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Tim Kenny
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| |
Collapse
|
14
|
Heuslein JL, Gorick CM, Price RJ. Epigenetic regulators of the revascularization response to chronic arterial occlusion. Cardiovasc Res 2020; 115:701-712. [PMID: 30629133 DOI: 10.1093/cvr/cvz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Peripheral arterial disease (PAD) is the leading cause of lower limb amputation and estimated to affect over 202 million people worldwide. PAD is caused by atherosclerotic lesions that occlude large arteries in the lower limbs, leading to insufficient blood perfusion of distal tissues. Given the severity of this clinical problem, there has been long-standing interest in both understanding how chronic arterial occlusions affect muscle tissue and vasculature and identifying therapeutic approaches capable of restoring tissue composition and vascular function to a healthy state. To date, the most widely utilized animal model for performing such studies has been the ischaemic mouse hindlimb. Despite not being a model of PAD per se, the ischaemic hindlimb model does recapitulate several key aspects of PAD. Further, it has served as a valuable platform upon which we have built much of our understanding of how chronic arterial occlusions affect muscle tissue composition, muscle regeneration and angiogenesis, and collateral arteriogenesis. Recently, there has been a global surge in research aimed at understanding how gene expression is regulated by epigenetic factors (i.e. non-coding RNAs, histone post-translational modifications, and DNA methylation). Thus, perhaps not unexpectedly, many recent studies have identified essential roles for epigenetic factors in regulating key responses to chronic arterial occlusion(s). In this review, we summarize the mechanisms of action of these epigenetic regulators and highlight several recent studies investigating the role of said regulators in the context of hindlimb ischaemia. In addition, we focus on how these recent advances in our understanding of the role of epigenetics in regulating responses to chronic arterial occlusion(s) can inform future therapeutic applications to promote revascularization and perfusion recovery in the setting of PAD.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| | - Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| |
Collapse
|
15
|
Sverre E, Peersen K, Weedon-Fekjær H, Perk J, Gjertsen E, Husebye E, Gullestad L, Dammen T, Otterstad JE, Munkhaugen J. Preventable clinical and psychosocial factors predicted two out of three recurrent cardiovascular events in a coronary population. BMC Cardiovasc Disord 2020; 20:61. [PMID: 32024471 PMCID: PMC7003324 DOI: 10.1186/s12872-020-01368-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The relative importance of lifestyle, medical and psychosocial factors on the risk of recurrent major cardiovascular (CV) events (MACE) in coronary patients' needs to be identified. The main objective of this study is to estimate the association between potentially preventable factors on MACE in an outpatient coronary population from routine clinical practice. METHODS This prospective follow-up study of recurrent MACE, determine the predictive impact of risk factors and a wide range of relevant co-factors recorded at baseline. The baseline study included 1127 consecutive patients 2-36 months after myocardial infarction (MI) and/or revascularization procedure. The primary composite endpoint of recurrent MACE defined as CV death, hospitalization due to MI, revascularization, stroke/transitory ischemic attacks or heart failure was obtained from hospital records. Data were analysed using cox proportional hazard regression, stratified by prior coronary events before the index event. RESULTS During a mean follow-up of 4.2 years from study inclusion (mean time from index event to end of study 5.7 years), 364 MACE occurred in 240 patients (21, 95% confidence interval: 19 to 24%), of which 39 were CV deaths. In multi-adjusted analyses, the strongest predictor of MACE was not taking statins (Relative risk [RR] 2.13), succeeded by physical inactivity (RR 1.73), peripheral artery disease (RR 1.73), chronic kidney failure (RR 1.52), former smoking (RR 1.46) and higher Hospital Anxiety and Depression Scale-Depression subscale score (RR 1.04 per unit increase). Preventable and potentially modifiable factors addressed accounted for 66% (95% confidence interval: 49 to 77%) of the risk for recurrent events. The major contributions were smoking, low physical activity, not taking statins, not participating in cardiac rehabilitation and diabetes. CONCLUSIONS Coronary patients were at high risk of recurrent MACE. Potentially preventable clinical and psychosocial factors predicted two out of three MACE, which is why these factors should be targeted in coronary populations. TRIAL REGISTRATION Registered at ClinicalTrials.gov: NCT02309255. Registered at December 5th, 2014, registered retrospectively.
Collapse
Affiliation(s)
- E Sverre
- Department of Medicine, Drammen Hospital, Drammen, Norway. .,Department of Behavioural Sciences in Medicine and Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - K Peersen
- Department of Medicine, Vestfold Hospital, Oslo, Norway
| | - H Weedon-Fekjær
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - J Perk
- Department of Cardiology, Public Health Department Linnaeus University, Kalmar, Sweden
| | - E Gjertsen
- Department of Medicine, Drammen Hospital, Drammen, Norway
| | - E Husebye
- Department of Medicine, Drammen Hospital, Drammen, Norway
| | - L Gullestad
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Faculty of Medicine, University of Oslo, Oslo, Norway.,KG Jebsen Cardiac Research Center, Oslo University Hospital Ullevål, Oslo, Norway
| | - T Dammen
- Department of Behavioural Sciences in Medicine and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - J E Otterstad
- Department of Medicine, Vestfold Hospital, Oslo, Norway
| | - J Munkhaugen
- Department of Medicine, Drammen Hospital, Drammen, Norway.,Department of Behavioural Sciences in Medicine and Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Barbosa AP, Lourenço JD, Junqueira JJM, Larissa Emidio de França S, Martins JS, Oliveira Junior MC, Begalli I, Velosa APP, Olivo CR, Bastos TB, Jorgetti V, Rodolfo de Paula V, Teodoro WR, Lopes FD. The deleterious effects of smoking in bone mineralization and fibrillar matrix composition. Life Sci 2020; 241:117132. [DOI: 10.1016/j.lfs.2019.117132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/31/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022]
|
17
|
Corley J, Cox SR, Harris SE, Hernandez MV, Maniega SM, Bastin ME, Wardlaw JM, Starr JM, Marioni RE, Deary IJ. Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian Birth Cohort 1936. Transl Psychiatry 2019; 9:248. [PMID: 31591380 PMCID: PMC6779733 DOI: 10.1038/s41398-019-0576-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/29/2019] [Indexed: 12/18/2022] Open
Abstract
Recent advances in genome-wide DNA methylation (DNAm) profiling for smoking behaviour have given rise to a new, molecular biomarker of smoking exposure. It is unclear whether a smoking-associated DNAm (epigenetic) score has predictive value for ageing-related health outcomes which is independent of contributions from self-reported (phenotypic) smoking measures. Blood DNA methylation levels were measured in 895 adults aged 70 years in the Lothian Birth Cohort 1936 (LBC1936) study using the Illumina 450K assay. A DNA methylation score based on 230 CpGs was used as a proxy for smoking exposure. Associations between smoking variables and health outcomes at age 70 were modelled using general linear modelling (ANCOVA) and logistic regression. Additional analyses of smoking with brain MRI measures at age 73 (n = 532) were performed. Smoking-DNAm scores were positively associated with self-reported smoking status (P < 0.001, eta-squared ɳ2 = 0.63) and smoking pack years (r = 0.69, P < 0.001). Higher smoking DNAm scores were associated with variables related to poorer cognitive function, structural brain integrity, physical health, and psychosocial health. Compared with phenotypic smoking, the methylation marker provided stronger associations with all of the cognitive function scores, especially visuospatial ability (P < 0.001, partial eta-squared ɳp2 = 0.022) and processing speed (P < 0.001, ɳp2 = 0.030); inflammatory markers (all P < 0.001, ranges from ɳp2 = 0.021 to 0.030); dietary patterns (healthy diet (P < 0.001, ɳp2 = 0.052) and traditional diet (P < 0.001, ɳp2 = 0.032); stroke (P = 0.006, OR 1.48, 95% CI 1.12, 1.96); mortality (P < 0.001, OR 1.59, 95% CI 1.42, 1.79), and at age 73; with MRI volumetric measures (all P < 0.001, ranges from ɳp2 = 0.030 to 0.052). Additionally, education was the most important life-course predictor of lifetime smoking tested. Our results suggest that a smoking-associated methylation biomarker typically explains a greater proportion of the variance in some smoking-related morbidities in older adults, than phenotypic measures of smoking exposure, with some of the accounted-for variance being independent of phenotypic smoking status.
Collapse
Affiliation(s)
- Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Maria Valdéz Hernandez
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Brain Research Imaging Centre, Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Susana Muñoz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Brain Research Imaging Centre, Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Brain Research Imaging Centre, Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Brain Research Imaging Centre, Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Royal Victoria Building, Western General Hospital, Porterfield Road, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
18
|
Barcelona V, Huang Y, Brown K, Liu J, Zhao W, Yu M, Kardia SL, Smith JA, Taylor JY, Sun YV. Novel DNA methylation sites associated with cigarette smoking among African Americans. Epigenetics 2019; 14:383-391. [PMID: 30915882 PMCID: PMC6557550 DOI: 10.1080/15592294.2019.1588683] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Cigarette smoking has been associated with adverse health outcomes for mothers and children and is a major contributor to heart disease. Although cigarette smoking is known to affect the epigenome, few studies have been done in African American populations. In this study, we investigated the association between cigarette smoking and DNA methylation (DNAm) among African Americans from the Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure Study (InterGEN), and the Genetic Epidemiology Network of Arteriopathy (GENOA). METHODS The InterGEN study aims to examine the effects of genetic and psychological factors on blood pressure among African American women and their children. Current cigarette smoking was assessed at baseline. DNAm of saliva was assessed using the 850K EPIC Illumina BeadChip for Epigenome-Wide Association analyses. A replication study was conducted among 1100 participants in the GENOA study using the same BeadChip. RESULTS After controlling for age, body mass index, population structure and cell composition, 26 epigenome-wide significant sites (FDR q < 0.05) were identified, including the AHRR and PHF14 genes associated with atherosclerosis and lung disease, respectively. Six novel CpG sites were discovered in the InterGEN sample and replicated in the GENOA sample. Genes mapped include RARA, FSIP1, ALPP, PIK3R5, KIAA0087, and MGAT3, which were largely associated with cancer development. CONCLUSION We observed significant epigenetic associations between smoking and disease-associated genes (e.g., cardiovascular disease, lung cancer). Six novel CpG sites were identified and replicated across saliva and blood samples.
Collapse
Affiliation(s)
| | - Yunfeng Huang
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Kristen Brown
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Jiaxuan Liu
- School of Public Health, University of Michigan, Department of Epidemiology, Ann Arbor, MI, USA
| | - Wei Zhao
- School of Public Health, University of Michigan, Department of Epidemiology, Ann Arbor, MI, USA
| | - Miao Yu
- School of Public Health, University of Michigan, Department of Epidemiology, Ann Arbor, MI, USA
| | - Sharon L.R. Kardia
- School of Public Health, University of Michigan, Department of Epidemiology, Ann Arbor, MI, USA
| | - Jennifer A. Smith
- School of Public Health, University of Michigan, Department of Epidemiology, Ann Arbor, MI, USA
| | | | - Yan V. Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| |
Collapse
|
19
|
Vedøy TF. The role of demographic and behavioural change for the long-term decline in daily smoking in Norway. Eur J Public Health 2019; 29:760-765. [DOI: 10.1093/eurpub/cky273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
The aim of this paper was to compare the effects of demography (population aging and the increasing fraction of tertiary educated) and behaviour (intra-cohort ageing and inter-cohort change) on long-term change in the fraction of daily smokers (FrS), using a counterfactual framework.
Methods
Using aggregated data on smoking prevalence, education and population size from Norway 1978 to 2017, the probabilities of smoking for men and women were calculated using a pseudo-panel approach. From these estimates, four counterfactual scenarios of FrS were constructed by holding the age effect, the cohort effect and the distribution of age and education constant over time.
Results
FrS decreased from 45 to 14% among men, and from 33 to 14% among women over the study period. Holding the age distribution constant did not have any substantial effect on FrS. Holding the distribution of education constant led to a five percentage points increase in FrS among women, but not among men. In the case of no intra-cohort ageing, FrS would have been 11/12 percentage points higher among women/men. The corresponding figures for no inter-cohort change were 13 points for women and 27 points for men.
Conclusions
If the age distribution had remained stable over time, FrS would have been almost identical to the current level. In contrast, if smoking behaviour had remained stable over the life course or between birth cohorts, FrS would have been substantially higher than it is today. These results highlight the large cumulative effect of reducing smoking uptake in successive cohorts.
Collapse
Affiliation(s)
- Tord F Vedøy
- Department of Alcohol, Tobacco and Drugs, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
20
|
Ji C, Nagaoka K, Zou J, Casulli S, Lu S, Cao KY, Zhang H, Iwagami Y, Carlson RI, Brooks K, Lawrence J, Mueller W, Wands JR, Huang CK. Chronic ethanol-mediated hepatocyte apoptosis links to decreased TET1 and 5-hydroxymethylcytosine formation. FASEB J 2018; 33:1824-1835. [PMID: 30188753 DOI: 10.1096/fj.201800736r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 5-hydroxymethylcytosine (5hmc) is a newly identified epigenetic modification thought to be regulated by the TET family of proteins. Little information is available about how ethanol consumption may modulate 5hmC formation and alcoholic liver disease (ALD) progression. A rat ALD model was used to study 5hmC in relationship to hepatocyte apoptosis. Human ALD liver samples were also used to validate these findings. It was found that chronic ethanol feeding significantly reduced 5hmC formation in a rat ALD model. There were no significant changes in TET2 and TET3 between the control- and ethanol-fed animals. In contrast, methylcytosine dioxygenase TET1 (TET1) expression was substantially reduced in the ethanol-fed rats and was accompanied by increased hepatocyte apoptosis. Similarly, knockdown of TET1 in human hepatocyte-like cells also significantly promoted apoptosis. Down-regulation of TET1 resulted in elevated expression of the DNA damage marker, suggesting a role for 5hmc in hepatocyte DNA damage as well. Mechanistic studies revealed that inhibition of TET1 promoted apoptotic gene expression. Similarly, targeting TET1 activity by removing cosubstrate promoted apoptosis and DNA damage. Furthermore, treatment with 5-azacitidine significantly mimics these effects, suggesting that chronic ethanol consumption promotes hepatocyte apoptosis and DNA damage by diminishing TET1-mediated 5hmC formation and DNA methylation. In summary, the current study provides a novel molecular insight that TET1-mediated 5hmC is involved in hepatocyte apoptosis in ALD progression.-Ji, C., Nagaoka, K., Zou, J., Casulli, S., Lu, S., Cao, K. Y., Zhang, H., Iwagami, Y., Carlson, R. I., Brooks, K., Lawrence, J., Mueller, W., Wands, J. R., Huang, C.-K. Chronic ethanol-mediated hepatocyte apoptosis links to decreased TET1 and 5-hydroxymethylcytosine formation.
Collapse
Affiliation(s)
- Chengcheng Ji
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Critical Care Center, Beijing 302 Hospital, Beijing, China
| | - Katsuya Nagaoka
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jing Zou
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sarah Casulli
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Kevin Y Cao
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Hongyu Zhang
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yoshifumi Iwagami
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Rolf I Carlson
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Keri Brooks
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jonathan Lawrence
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - William Mueller
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jack R Wands
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Chiung-Kuei Huang
- Division of Gastroenterology and Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
21
|
Smoking is Associated to DNA Methylation in Atherosclerotic Carotid Lesions. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e002030. [DOI: 10.1161/circgen.117.002030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Carta CFL, Oliveira Alves MG, de Barros PP, Campos MS, Scholz J, Jorge AOC, Nunes FD, Almeida JD. Screening methylation of DNA repair genes in the oral mucosa of chronic smokers. Arch Oral Biol 2018; 92:83-87. [DOI: 10.1016/j.archoralbio.2018.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
23
|
Dupras C, Song L, Saulnier KM, Joly Y. Epigenetic Discrimination: Emerging Applications of Epigenetics Pointing to the Limitations of Policies Against Genetic Discrimination. Front Genet 2018; 9:202. [PMID: 29937773 PMCID: PMC6002493 DOI: 10.3389/fgene.2018.00202] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
Over more than two decades, various policies have been adopted worldwide to restrict the use of individual genetic information for non-medical reasons by third parties and prevent ‘genetic discrimination’. In this paper, we bring attention to the growing interest for individual epigenetic information by insurers and forensic scientists. We question whether such interest could lead to ‘epigenetic discrimination’ – the differential adverse treatment or abusive profiling of individuals or groups based on their actual or presumed epigenetic characteristics – and argue that we might already be facing the limitations of recently adopted normative approaches against genetic discrimination. First, we highlight some similarities and differences between genetic and epigenetic modifications, and stress potential challenges to regulating epigenetic discrimination. Second, we argue that most existing normative approaches against genetic discrimination fall short in providing oversight into the field of epigenetics. We conclude with a call for discussion on the issue, and the development of comprehensive and forward-looking preventive strategies against epigenetic discrimination.
Collapse
Affiliation(s)
- Charles Dupras
- Centre of Genomics and Policy, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Lingqiao Song
- Centre of Genomics and Policy, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Katie M Saulnier
- Centre of Genomics and Policy, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Yann Joly
- Centre of Genomics and Policy, McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| |
Collapse
|
24
|
Tilson MD. Autoimmunity in the Abdominal Aortic Aneurysm and its Association with Smoking. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2018; 5:159-167. [PMID: 29766007 DOI: 10.12945/j.aorta.2017.17.693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022]
Abstract
Smoking increases the risk of abdominal aortic aneurysm (AAA) in both humans and mice, although the underlying mechanisms are not completely understood. An adventitial aortic antigen, AAAP-40, has been partially sequenced. It has motifs with similarities to all three fibrinogen chains and appears to be connected in evolution to a large family of proteins called fibrinogen-related proteins. Fibrinogen may undergo non-enzymatic nitration, which may result from exposure to nitric oxide in cigarette smoke. Nitration of proteins renders them more immunogenic. It has recently been reported that anti-fibrinogen antibody promotes AAA development in mice. Also, anti-fibrinogen antibodies are present in patients with AAA. These matters are reviewed in the overall context of autoimmunity in AAA. The evidence suggests that smoking amplifies an auto-immune reaction that is critical to the pathogenesis of AAA.
Collapse
Affiliation(s)
- M David Tilson
- Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
25
|
Wan M, Bennett BD, Pittman GS, Campbell MR, Reynolds LM, Porter DK, Crowl CL, Wang X, Su D, Englert NA, Thompson IJ, Liu Y, Bell DA. Identification of Smoking-Associated Differentially Methylated Regions Using Reduced Representation Bisulfite Sequencing and Cell type-Specific Enhancer Activation and Gene Expression. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:047015. [PMID: 29706059 PMCID: PMC6071796 DOI: 10.1289/ehp2395] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Cigarette smoke is a causal factor in cancers and cardiovascular disease. Smoking-associated differentially methylated regions (SM-DMRs) have been observed in disease studies, but the causal link between altered DNA methylation and transcriptional change is obscure. OBJECTIVE Our objectives were to finely resolve SM-DMRs and to interrogate the mechanistic link between SM-DMRs and altered transcription of enhancer noncoding RNA (eRNA) and mRNA in human circulating monocytes. METHOD We integrated SM-DMRs identified by reduced representation bisulfite sequencing (RRBS) of circulating CD14+ monocyte DNA collected from two independent human studies [n=38 from Clinical Research Unit (CRU) and n=55 from the Multi-Ethnic Study of Atherosclerosis (MESA), about half of whom were active smokers] with gene expression for protein-coding genes and noncoding RNAs measured by RT-PCR or RNA sequencing. Candidate SM-DMRs were compared with RRBS of purified CD4+ T cells, CD8+ T cells, CD15+ granulocytes, CD19+ B cells, and CD56+ NK cells (n=19 females, CRU). DMRs were validated using pyrosequencing or bisulfite amplicon sequencing in up to 85 CRU volunteers, who also provided saliva DNA. RESULTS RRBS identified monocyte SM-DMRs frequently located in putative gene regulatory regions. The most significant monocyte DMR occurred at a poised enhancer in the aryl-hydrocarbon receptor repressor gene (AHRR) and it was also detected in both granulocytes and saliva DNA. To our knowledge, we identify for the first time that SM-DMRs in or near AHRR, C5orf55-EXOC-AS, and SASH1 were associated with increased noncoding eRNA as well as mRNA in monocytes. Functionally, the AHRR SM-DMR appeared to up-regulate AHRR mRNA through activating the AHRR enhancer, as suggested by increased eRNA in the monocytes, but not granulocytes, from smokers compared with nonsmokers. CONCLUSIONS Our findings suggest that AHRR SM-DMR up-regulates AHRR mRNA in a monocyte-specific manner by activating the AHRR enhancer. Cell type-specific activation of enhancers at SM-DMRs may represent a mechanism driving smoking-related disease. https://doi.org/10.1289/EHP2395.
Collapse
Affiliation(s)
- Ma Wan
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Gary S Pittman
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Michelle R Campbell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Lindsay M Reynolds
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Devin K Porter
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Christopher L Crowl
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Xuting Wang
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Dan Su
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Neal A Englert
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Isabel J Thompson
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Douglas A Bell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
26
|
Fiatal S, Ádány R. Application of Single-Nucleotide Polymorphism-Related Risk Estimates in Identification of Increased Genetic Susceptibility to Cardiovascular Diseases: A Literature Review. Front Public Health 2018; 5:358. [PMID: 29445720 PMCID: PMC5797796 DOI: 10.3389/fpubh.2017.00358] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022] Open
Abstract
Background Although largely preventable, cardiovascular diseases (CVDs) are the biggest cause of death worldwide. Common complex cardiovascular disorders (e.g., coronary heart disease, hypertonia, or thrombophilia) result from a combination of genetic alterations and environmental factors. Recent advances in the genomics of CVDs have fostered huge expectations about future use of susceptibility variants for prevention, diagnosis, and treatment. Our aim was to summarize the latest developments in the field from a public health perspective focusing on the applicability of data on single-nucleotide polymorphisms (SNPs), through a systematic review of studies from the last decade on genetic risk estimating for common CVDs. Methods Several keywords were used for searching the PubMed, Embase, CINAHL, and Web of Science databases. Recent advances were summarized and structured according to the main public health domains (prevention, early detection, and treatment) using a framework suggested recently for translational research. This framework includes four recommended phases: “T1. From gene discovery to candidate health applications; T2. From health application to evidence-based practice guidelines; T3. From evidence-based practice guidelines to health practice; and T4. From practice to population health impacts.” Results The majority of translation research belongs to the T1 phase “translation of basic genetic/genomic research into health application”; there are only a few population-based impacts estimated. The studies suggest that an SNP is a poor estimator of individual risk, whereas an individual’s genetic profile combined with non-genetic risk factors may better predict CVD risk among certain patient subgroups. Further research is needed to validate whether these genomic profiles can prospectively identify individuals at risk to develop CVDs. Several research gaps were identified: little information is available on studies suggesting “Health application to evidence-based practice guidelines”; no study is available on “Guidelines to health practice.” It was not possible to identify studies that incorporate environmental or lifestyle factors in the risk estimation. Conclusion Currently, identifying populations having a larger risk of developing common CVDs may result in personalized prevention programs by reducing people’s risk of onset or disease progression. However, limited evidence is available on the application of genomic results in health and public health practice.
Collapse
Affiliation(s)
- Szilvia Fiatal
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.,WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.,WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.,MTA-DE Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
27
|
Haque S, Sinha N, Ranjit S, Midde NM, Kashanchi F, Kumar S. Monocyte-derived exosomes upon exposure to cigarette smoke condensate alter their characteristics and show protective effect against cytotoxicity and HIV-1 replication. Sci Rep 2017; 7:16120. [PMID: 29170447 PMCID: PMC5701054 DOI: 10.1038/s41598-017-16301-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/10/2017] [Indexed: 01/10/2023] Open
Abstract
Smoking is known to exacerbate HIV-1 pathogenesis, especially in monocytes, through the oxidative stress pathway. Exosomes are known to alter HIV-1 pathogenesis through inter-cellular communication. However, the role of exosomes in smoking-mediated HIV-1 pathogenesis is unknown. In this study, we investigated the effect of cigarette smoke condensate (CSC) on the characteristics of monocyte-derived exosomes and their influence on HIV-1 replication. Initially, we demonstrated that CSC reduced total protein and antioxidant capacity in exosomes derived from HIV-1-infected and uninfected macrophages. The exosomes from CSC-treated uninfected cells showed a protective effect against cytotoxicity and viral replication in HIV-1-infected macrophages. However, exosomes derived from HIV-1-infected cells lost their protective capacity. The results suggest that the exosomal defense is likely to be more effective during the early phase of HIV-1 infection and diminishes at the latter phase. Furthermore, we showed CSC-mediated upregulation of catalase in exosomes from uninfected cells, with a decrease in the levels of catalase and PRDX6 in exosomes derived from HIV-1-infected cells. These results suggest a potential role of antioxidant enzymes, which are differentially packaged into CSC-exposed HIV-1-infected and uninfected cell-derived exosomes, on HIV-1 replication of recipient cells. Overall, our study suggests a novel role of exosomes in tobacco-mediated HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Sanjana Haque
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sabina Ranjit
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Narasimha M Midde
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, 20110, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
28
|
Ahsan M, Ek WE, Rask-Andersen M, Karlsson T, Lind-Thomsen A, Enroth S, Gyllensten U, Johansson Å. The relative contribution of DNA methylation and genetic variants on protein biomarkers for human diseases. PLoS Genet 2017; 13:e1007005. [PMID: 28915241 PMCID: PMC5617224 DOI: 10.1371/journal.pgen.1007005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/27/2017] [Accepted: 08/31/2017] [Indexed: 01/03/2023] Open
Abstract
Associations between epigenetic alterations and disease status have been identified for many diseases. However, there is no strong evidence that epigenetic alterations are directly causal for disease pathogenesis. In this study, we combined SNP and DNA methylation data with measurements of protein biomarkers for cancer, inflammation or cardiovascular disease, to investigate the relative contribution of genetic and epigenetic variation on biomarker levels. A total of 121 protein biomarkers were measured and analyzed in relation to DNA methylation at 470,000 genomic positions and to over 10 million SNPs. We performed epigenome-wide association study (EWAS) and genome-wide association study (GWAS) analyses, and integrated biomarker, DNA methylation and SNP data using between 698 and 1033 samples depending on data availability for the different analyses. We identified 124 and 45 loci (Bonferroni adjusted P < 0.05) with effect sizes up to 0.22 standard units' change per 1% change in DNA methylation levels and up to four standard units' change per copy of the effective allele in the EWAS and GWAS respectively. Most GWAS loci were cis-regulatory whereas most EWAS loci were located in trans. Eleven EWAS loci were associated with multiple biomarkers, including one in NLRC5 associated with CXCL11, CXCL9, IL-12, and IL-18 levels. All EWAS signals that overlapped with a GWAS locus were driven by underlying genetic variants and three EWAS signals were confounded by smoking. While some cis-regulatory SNPs for biomarkers appeared to have an effect also on DNA methylation levels, cis-regulatory SNPs for DNA methylation were not observed to affect biomarker levels. We present associations between protein biomarker and DNA methylation levels at numerous loci in the genome. The associations are likely to reflect the underlying pattern of genetic variants, specific environmental exposures, or represent secondary effects to the pathogenesis of disease.
Collapse
Affiliation(s)
- Muhammad Ahsan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Weronica E. Ek
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Torgny Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Allan Lind-Thomsen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
29
|
Istas G, Declerck K, Pudenz M, Szic KSV, Lendinez-Tortajada V, Leon-Latre M, Heyninck K, Haegeman G, Casasnovas JA, Tellez-Plaza M, Gerhauser C, Heiss C, Rodriguez-Mateos A, Berghe WV. Identification of differentially methylated BRCA1 and CRISP2 DNA regions as blood surrogate markers for cardiovascular disease. Sci Rep 2017; 7:5120. [PMID: 28698603 PMCID: PMC5506022 DOI: 10.1038/s41598-017-03434-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
Abstract
Genome-wide Illumina InfiniumMethylation 450 K DNA methylation analysis was performed on blood samples from clinical atherosclerosis patients (n = 8) and healthy donors (n = 8) in the LVAD study (NCT02174133, NCT01799005). Multiple differentially methylated regions (DMR) could be identified in atherosclerosis patients, related to epigenetic control of cell adhesion, chemotaxis, cytoskeletal reorganisations, cell proliferation, cell death, estrogen receptor pathways and phagocytic immune responses. Furthermore, a subset of 34 DMRs related to impaired oxidative stress, DNA repair, and inflammatory pathways could be replicated in an independent cohort study of donor-matched healthy and atherosclerotic human aorta tissue (n = 15) and human carotid plaque samples (n = 19). Upon integrated network analysis, BRCA1 and CRISP2 DMRs were identified as most central disease-associated DNA methylation biomarkers. Differentially methylated BRCA1 and CRISP2 regions were verified by MassARRAY Epityper and pyrosequencing assays and could be further replicated in blood, aorta tissue and carotid plaque material of atherosclerosis patients. Moreover, methylation changes at BRCA1 and CRISP2 specific CpG sites were consistently associated with subclinical atherosclerosis measures (coronary calcium score and carotid intima media thickness) in an independent sample cohort of middle-aged men with subclinical cardiovascular disease in the Aragon Workers’ Health Study (n = 24). Altogether, BRCA1 and CRISP2 DMRs hold promise as novel blood surrogate markers for early risk stratification and CVD prevention.
Collapse
Affiliation(s)
- Geoffrey Istas
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Düsseldorf University, Düsseldorf, Germany.,Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College, London, UK
| | - Ken Declerck
- Laboratory of Protein chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Antwerp (Wilrijk), Belgium
| | - Maria Pudenz
- Workgroup Cancer Chemoprevention and Epigenomics, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katarzyna Szarc Vel Szic
- Division of Hematology, Oncology and Stem Cell Transplantation, Center for Translational Cell Research, The University Medical Center Freiburg, Freiburg, Germany
| | - Veronica Lendinez-Tortajada
- Genomic and Genetic Diagnosis Unit, Institute for Biomedical Research Hospital Clinic de Valencia, Valencia, Spain
| | | | - Karen Heyninck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - Guy Haegeman
- Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | - Jose A Casasnovas
- IIS de Aragon, Zaragoza, Spain.,Instituto Aragonés de Ciencias de Salud, Zaragoza, Spain.,Universidad de Zaragoza, Zaragoza, Spain
| | - Maria Tellez-Plaza
- Workgroup Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic de Valencia, Valencia, Spain
| | - Clarissa Gerhauser
- Workgroup Cancer Chemoprevention and Epigenomics, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Heiss
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Düsseldorf University, Düsseldorf, Germany
| | - Ana Rodriguez-Mateos
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Düsseldorf University, Düsseldorf, Germany.,Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College, London, UK
| | - Wim Vanden Berghe
- Laboratory of Protein chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Antwerp (Wilrijk), Belgium. .,Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium.
| |
Collapse
|
30
|
Gao X, Thomsen H, Zhang Y, Breitling LP, Brenner H. The impact of methylation quantitative trait loci (mQTLs) on active smoking-related DNA methylation changes. Clin Epigenetics 2017; 9:87. [PMID: 28824732 PMCID: PMC5561570 DOI: 10.1186/s13148-017-0387-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/10/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Methylation quantitative trait loci (mQTLs) are the genetic variants that may affect the DNA methylation patterns of CpG sites. However, their roles in influencing the disturbances of smoking-related epigenetic changes have not been well established. This study was conducted to address whether mQTLs exist in the vicinity of smoking-related CpG sites (± 50 kb) and to examine their associations with smoking exposure and all-cause mortality in older adults. RESULTS We obtained DNA methylation profiles in whole blood samples by Illumina Infinium Human Methylation 450 BeadChip array of two independent subsamples of the ESTHER study (discovery set, n = 581; validation set, n = 368) and their corresponding genotyping data using the Illumina Infinium OncoArray BeadChip. After correction for multiple testing (FDR), we successfully identified that 70 out of 151 previously reported smoking-related CpG sites were significantly associated with 192 SNPs within the 50 kb search window of each locus. The 192 mQTLs significantly influenced the active smoking-related DNA methylation changes, with percentage changes ranging from 0.01 to 18.96%, especially for the weakly/moderately smoking-related CpG sites. However, these identified mQTLs were not directly associated with active smoking exposure or all-cause mortality. CONCLUSIONS Our findings clearly demonstrated that if not dealt with properly, the mQTLs might impair the power of epigenetic-based models of smoking exposure to a certain extent. In addition, such genetic variants could be the key factor to distinguish between the heritable and smoking-induced impact on epigenome disparities. These mQTLs are of special importance when DNA methylation markers measured by Illumina Infinium assay are used for any comparative population studies related to smoking-related cancers and chronic diseases.
Collapse
Affiliation(s)
- Xu Gao
- 0000 0004 0492 0584grid.7497.dDivision of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Hauke Thomsen
- 0000 0004 0492 0584grid.7497.dDivision of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Yan Zhang
- 0000 0004 0492 0584grid.7497.dDivision of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Lutz Philipp Breitling
- 0000 0004 0492 0584grid.7497.dDivision of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Hermann Brenner
- 0000 0004 0492 0584grid.7497.dDivision of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- 0000 0004 0492 0584grid.7497.dDivision of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- 0000 0004 0492 0584grid.7497.dGerman Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Molecular Genetic and Epigenetic Basis of Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 958:65-90. [DOI: 10.1007/978-3-319-47861-6_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Tuovinen EL, Saarni SE, Männistö S, Borodulin K, Patja K, Kinnunen TH, Kaprio J, Korhonen T. Smoking status and abdominal obesity among normal- and overweight/obese adults: Population-based FINRISK study. Prev Med Rep 2016; 4:324-30. [PMID: 27486563 PMCID: PMC4959936 DOI: 10.1016/j.pmedr.2016.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022] Open
Abstract
Several studies have reported direct associations of smoking with body mass index (BMI) and abdominal obesity. However, the interplay between them is poorly understood. Our first aim was to investigate the interaction between smoking status and BMI on abdominal obesity (waist circumference, WC). Our second aim was to examine how the association of smoking status with WC varies among normal and overweight/obese men and women. We examined 5833 participants from the National FINRISK 2007 Study. The interactions between smoking and BMI on WC were analyzed. Participants were categorized into eight groups according to BMI (normal weight vs. overweight/obese) and smoking status (never smoker, ex-smoker, occasional/light/moderate daily smoker, heavy daily smoker). The associations between each BMI/smoking status -group and WC were analyzed by multiple regressions, the normal-weight never smokers as the reference group. The smoking status by BMI-interaction on WC was significant for women, but not for men. Among the overweight/obese women, ex-smokers (β = 2.73; 1.99, 3.46) and heavy daily smokers (β = 4.90; 3.35, 6.44) had the highest estimates for WC when adjusted for age, BMI, alcohol consumption and physical activity. In comparison to never smoking overweight/obese women, the β-coefficients of ex-smokers and heavy daily smokers were significantly higher. Among men and normal weight women the β -coefficients did not significantly differ by smoking status. An interaction between smoking status and BMI on abdominal obesity was observed in women: overweight/obese heavy daily smokers were particularly vulnerable for abdominal obesity. This risk group should be targeted for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Eeva-Liisa Tuovinen
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Suoma E. Saarni
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Hospital District of Southwest Finland and Turku University Hospital, Turku, Finland
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Satu Männistö
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Katja Borodulin
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Tellervo Korhonen
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
33
|
Lin BH, Tsai MH, Lii CK, Wang TS. IP3 and calcium signaling involved in the reorganization of the actin cytoskeleton and cell rounding induced by cigarette smoke extract in human endothelial cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:1293-1306. [PMID: 25758670 DOI: 10.1002/tox.22133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
Smoking increases the risk of cardiovascular disorders and leads to damage caused by inflammation and oxidative stress. The actin cytoskeleton is a key player in the response to inflammatory stimuli and is an early target of cellular oxidative stress. The purpose of this study was to investigate the changes in actin cytoskeleton dynamics in human endothelial EA.hy926 cells exposed to cigarette smoke extract (CSE). Immunostaining revealed that CSE exposure resulted in modification of the actin cytoskeleton and led to cell rounding in a dose- and time-dependent manner. In addition, the intracellular calcium concentration was increased by treatment with CSE. Pretreatment with antioxidants (lipoic acid, glutathione, N-acetyl cysteine, aminoguanidine, α-tocopherol, and vitamin C) significantly attenuated the CSE-induced actin cytoskeleton reorganization and cell rounding. Calcium ion chelators (EGTA, BAPTA-AM AM) and a potent store-operated calcium channel inhibitor (MRS 1845) also reduced CSE-induced intracellular calcium changes and attenuated actin cytoskeleton reorganization and cell morphology change. Moreover, the CSE-induced intracellular calcium increase was suppressed by pretreatment with the inositol trisphosphate receptor (IP3R) inhibitor xestospongin C, the phospholipase C (PLC) inhibitor U-73122, and the protein kinase C (PKC) inhibitor GF109203X. These results suggest that reactive oxygen species production and intracellular calcium increase play an essential role in CSE-induced actin disorganization and cell rounding through a PLC-IP3-PKC signaling pathway. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1293-1306, 2016.
Collapse
Affiliation(s)
- Bo-Hong Lin
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Hsuan Tsai
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Tsu-Shing Wang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
34
|
Qiu W, Wan E, Morrow J, Cho MH, Crapo JD, Silverman EK, DeMeo DL. The impact of genetic variation and cigarette smoke on DNA methylation in current and former smokers from the COPDGene study. Epigenetics 2016; 10:1064-73. [PMID: 26646902 DOI: 10.1080/15592294.2015.1106672] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
DNA methylation can be affected by systemic exposures, such as cigarette smoking and genetic sequence variation; however, the relative impact of each on the epigenome is unknown. We aimed to assess if cigarette smoking and genetic variation are associated with overlapping or distinct sets of DNA methylation marks and pathways. We selected 85 Caucasian current and former smokers with genome-wide single nucleotide polymorphism (SNP) genotyping available from the COPDGene study. Genome-wide methylation was obtained on DNA from whole blood using the Illumina HumanMethylation27 platform. To determine the impact of local sequence variation on DNA methylation (mQTL), we examined the association between methylation and SNPs within 50 kb of each CpG site. To examine the impact of cigarette smoking on DNA methylation, we examined the differences in methylation by current cigarette smoking status. We detected 770 CpG sites annotated to 708 genes associated at an FDR < 0.05 in the cis-mQTL analysis and 1,287 CpG sites annotated to 1,242 genes, which were nominally associated in the smoking-CpG association analysis (P(unadjusted) < 0.05). Forty-three CpG sites annotated to 40 genes were associated with both SNP variation and current smoking; this overlap was not greater than that expected by chance. Our results suggest that cigarette smoking and genetic variants impact distinct sets of DNA methylation marks, the further elucidation of which may partially explain the variable susceptibility to the health effects of cigarette smoking. Ascertaining how genetic variation and systemic exposures differentially impact the human epigenome has relevance for both biomarker identification and therapeutic target development for smoking-related diseases.
Collapse
Affiliation(s)
- Weiliang Qiu
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | - Emily Wan
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA.,b Division of Pulmonary/Critical Care; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | - Jarrett Morrow
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | - Michael H Cho
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA.,b Division of Pulmonary/Critical Care; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | | | - Edwin K Silverman
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA.,b Division of Pulmonary/Critical Care; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| | - Dawn L DeMeo
- a Channing Division of Network Medicine; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA.,b Division of Pulmonary/Critical Care; Brigham and Women's Hospital/Harvard Medical School ; Boston , MA USA
| |
Collapse
|
35
|
Ambatipudi S, Cuenin C, Hernandez-Vargas H, Ghantous A, Le Calvez-Kelm F, Kaaks R, Barrdahl M, Boeing H, Aleksandrova K, Trichopoulou A, Lagiou P, Naska A, Palli D, Krogh V, Polidoro S, Tumino R, Panico S, Bueno-de-Mesquita B, Peeters PH, Quirós JR, Navarro C, Ardanaz E, Dorronsoro M, Key T, Vineis P, Murphy N, Riboli E, Romieu I, Herceg Z. Tobacco smoking-associated genome-wide DNA methylation changes in the EPIC study. Epigenomics 2016; 8:599-618. [PMID: 26864933 DOI: 10.2217/epi-2016-0001] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM Epigenetic changes may occur in response to environmental stressors, and an altered epigenome pattern may represent a stable signature of environmental exposure. MATERIALS & METHODS Here, we examined the potential of DNA methylation changes in 910 prediagnostic peripheral blood samples as a marker of exposure to tobacco smoke in a large multinational cohort. RESULTS We identified 748 CpG sites that were differentially methylated between smokers and nonsmokers, among which we identified novel regionally clustered CpGs associated with active smoking. Importantly, we found a marked reversibility of methylation changes after smoking cessation, although specific genes remained differentially methylated up to 22 years after cessation. CONCLUSION Our study has comprehensively cataloged the smoking-associated DNA methylation alterations and showed that these alterations are reversible after smoking cessation.
Collapse
Affiliation(s)
| | - Cyrille Cuenin
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Akram Ghantous
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Myrto Barrdahl
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Krasimira Aleksandrova
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition & Health, Unit of Nutritional Epidemiology & Nutrition in Public Health, Department of Hygiene, Epidemiology & Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Pagona Lagiou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition & Health, Unit of Nutritional Epidemiology & Nutrition in Public Health, Department of Hygiene, Epidemiology & Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Androniki Naska
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition & Health, Unit of Nutritional Epidemiology & Nutrition in Public Health, Department of Hygiene, Epidemiology & Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Domenico Palli
- Molecular & Nutritional Epidemiology Unit, Cancer Research & Prevention Institute-ISPO, Florence, Italy
| | - Vittorio Krogh
- Epidemiology & Prevention Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | | | - Rosario Tumino
- Cancer Registry & Histopathology Unit, 'Civic MP Arezzo' Hospital, ASP Ragusa, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Bas Bueno-de-Mesquita
- Department of Determinants of Chronic Diseases (DCD), National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology & Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Epidemiology & Biostatistics, The School of Public Health, Imperial College London, London, UK
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Petra Hm Peeters
- Department of Epidemiology, Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- MRC-PHE Centre for Environment & Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | | | - Carmen Navarro
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Department of Health & Social Sciences, Universidad de Murcia, Spain
| | - Eva Ardanaz
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Public Health Institute of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Miren Dorronsoro
- Public Health Direction and Biodonostia-Ciberesp, Basque Regional Health Department, San Sebastian, Spain
| | - Tim Key
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Paolo Vineis
- School of Public Health, Imperial College London, London, UK
| | - Neil Murphy
- School of Public Health, Imperial College London, London, UK
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
| | - Isabelle Romieu
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
36
|
Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther 2016; 13:975-87. [PMID: 26308600 DOI: 10.1586/14779072.2015.1074861] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An aortic aneurysm is a dilatation in which the aortic diameter is ≥3.0 cm. If left untreated, the aortic wall continues to weaken and becomes unable to withstand the forces of the luminal blood pressure resulting in progressive dilatation and rupture, a catastrophic event associated with a mortality of 50-80%. Smoking and positive family history are important risk factors for the development of abdominal aortic aneurysms (AAA). Several genetic risk factors have also been identified. On the histological level, visible hallmarks of AAA pathogenesis include inflammation, smooth muscle cell apoptosis, extracellular matrix degradation and oxidative stress. We expect that large genetic, genomic, epigenetic, proteomic and metabolomic studies will be undertaken by international consortia to identify additional risk factors and biomarkers, and to enhance our understanding of the pathobiology of AAA. Collaboration between different research groups will be important in overcoming the challenges to develop pharmacological treatments for AAA.
Collapse
Affiliation(s)
- Helena Kuivaniemi
- a 1 Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA
| | | | | | | |
Collapse
|
37
|
Hossain MB, Li H, Hedmer M, Tinnerberg H, Albin M, Broberg K. Exposure to welding fumes is associated with hypomethylation of the F2RL3 gene: a cardiovascular disease marker. Occup Environ Med 2015; 72:845-51. [PMID: 26395445 PMCID: PMC4680149 DOI: 10.1136/oemed-2015-102884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/14/2015] [Indexed: 11/03/2022]
Abstract
Background Welders are at risk for cardiovascular disease. Recent studies linked tobacco smoke exposure to hypomethylation of the F2RL3 (coagulation factor II (thrombin) receptor-like 3) gene, a marker for cardiovascular disease prognosis and mortality. However, whether welding fumes cause hypomethylation of F2RL3 remains unknown. Methods We investigated 101 welders (median span of working as a welder: 7 years) and 127 unexposed controls (non-welders with no obvious exposure to respirable dust at work), age range 23–60 years, all currently non-smoking, in Sweden. The participants were interviewed about their work history, lifestyle factors and diseases. Personal sampling of respirable dust was performed for the welders. DNA methylation of F2RL3 in blood was assessed by pyrosequencing of four CpG sites, CpG_2 (corresponds to cg03636183) to CpG_5, in F2RL3. Multivariable linear regression analysis was used to assess the association between exposure to welding fumes and F2RL3 methylation. Results Welders had 2.6% lower methylation of CpG_5 than controls (p<0.001). Higher concentrations of measured respirable dust among the welders were associated with hypomethylation of CpG_2, CpG_4 and CpG_5 (β=−0.49 to −1.4, p<0.012); p<0.029 adjusted for age, previous smoking, passive smoking, education, current residence and respirator use. Increasing the number of years working as a welder was associated with hypomethylation of CpG_4 (linear regression analysis, β=−0.11, p=0.039, adjusted for previous smoking). Previous tobacco smokers had 1.5–4.7% (p<0.014) lower methylation of 3 of the 4 CpG sites in F2RL3 (CpG_2, CpG_4 and CpG_5) compared to never-smokers. A non-significant lower risk of cardiovascular disease with more methylation was observed for all CpG sites. Conclusions Welding fumes exposure and previous smoking were associated with F2RL3 hypomethylation. This finding links low-to-moderate exposure to welding fumes to adverse effects on the cardiovascular system, and suggests a potential mechanistic pathway for this link, via epigenetic effects on F2RL3 expression.
Collapse
Affiliation(s)
- Mohammad B Hossain
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Huiqi Li
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Hedmer
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Håkan Tinnerberg
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Albin
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Karin Broberg
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden Unit of Metals & Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Reynolds LM, Wan M, Ding J, Taylor JR, Lohman K, Su D, Bennett BD, Porter DK, Gimple R, Pittman GS, Wang X, Howard TD, Siscovick D, Psaty BM, Shea S, Burke GL, Jacobs DR, Rich SS, Hixson JE, Stein JH, Stunnenberg H, Barr RG, Kaufman JD, Post WS, Hoeschele I, Herrington DM, Bell DA, Liu Y. DNA Methylation of the Aryl Hydrocarbon Receptor Repressor Associations With Cigarette Smoking and Subclinical Atherosclerosis. ACTA ACUST UNITED AC 2015; 8:707-16. [PMID: 26307030 DOI: 10.1161/circgenetics.115.001097] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tobacco smoke contains numerous agonists of the aryl hydrocarbon receptor (AhR) pathway, and activation of the AhR pathway was shown to promote atherosclerosis in mice. Intriguingly, cigarette smoking is most strongly and robustly associated with DNA modifications to an AhR pathway gene, the AhR repressor (AHRR). We hypothesized that altered AHRR methylation in monocytes, a cell type sensitive to cigarette smoking and involved in atherogenesis, may be a part of the biological link between cigarette smoking and atherosclerosis. METHODS AND RESULTS DNA methylation profiles of AHRR in monocytes (542 CpG sites ± 150 kb of AHRR, using Illumina 450K array) were integrated with smoking habits and ultrasound-measured carotid plaque scores from 1256 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Methylation of cg05575921 significantly associated (P=6.1 × 10(-134)) with smoking status (current versus never). Novel associations between cg05575921 methylation and carotid plaque scores (P=3.1 × 10(-10)) were identified, which remained significant in current and former smokers even after adjusting for self-reported smoking habits, urinary cotinine, and well-known cardiovascular disease risk factors. This association replicated in an independent cohort using hepatic DNA (n=141). Functionally, cg05575921 was located in a predicted gene expression regulatory element (enhancer) and had methylation correlated with AHRR mRNA profiles (P=1.4 × 10(-17)) obtained from RNA sequencing conducted on a subset (n=373) of the samples. CONCLUSIONS These findings suggest that AHRR methylation may be functionally related to AHRR expression in monocytes and represents a potential biomarker of subclinical atherosclerosis in smokers.
Collapse
|
39
|
Kullo IJ, Leeper NJ. The genetic basis of peripheral arterial disease: current knowledge, challenges, and future directions. Circ Res 2015; 116:1551-60. [PMID: 25908728 DOI: 10.1161/circresaha.116.303518] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several risk factors for atherosclerotic peripheral arterial disease (PAD), such as dyslipidemia, diabetes mellitus, and hypertension, are heritable. However, predisposition to PAD may be influenced by genetic variants acting independently of these risk factors. Identification of such genetic variants will provide insights into underlying pathophysiologic mechanisms and facilitate the development of novel diagnostic and therapeutic approaches. In contrast to coronary heart disease, relatively few genetic variants that influence susceptibility to PAD have been discovered. This may be, in part, because of greater clinical and genetic heterogeneity in PAD. In this review, we (1) provide an update on the current state of knowledge about the genetic basis of PAD, including results of family studies and candidate gene, linkage as well as genome-wide association studies; (2) highlight the challenges in investigating the genetic basis of PAD and possible strategies to overcome these challenges; and (3) discuss the potential of genome sequencing, RNA sequencing, differential gene expression, epigenetic profiling, and systems biology in increasing our understanding of the molecular genetics of PAD.
Collapse
Affiliation(s)
- Iftikhar J Kullo
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (I.J.K.); and Department of Vascular Surgery, Stanford, Stanford, CA (N.J.L.).
| | - Nicholas J Leeper
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (I.J.K.); and Department of Vascular Surgery, Stanford, Stanford, CA (N.J.L.)
| |
Collapse
|
40
|
Fraser SD, George S. Perspectives on differing health outcomes by city: accounting for Glasgow's excess mortality. Risk Manag Healthc Policy 2015; 8:99-110. [PMID: 26124684 PMCID: PMC4476473 DOI: 10.2147/rmhp.s68925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Several health outcomes (including mortality) and health-related behaviors are known to be worse in Scotland than in comparable areas of Europe and the United Kingdom. Within Scotland, Greater Glasgow (in West Central Scotland) experiences disproportionately poorer outcomes independent of measurable variation in socioeconomic status and other important determinants. Many reasons for this have been proposed, particularly related to deprivation, inequalities, and variation in health behaviors. The use of models (such as the application of Bradford Hill's viewpoints on causality to the different hypotheses) has provided useful insights on potentially causal mechanisms, with health behaviors and inequalities likely to represent the strongest individual candidates. This review describes the evolution of our understanding of Glasgow's excess mortality, summarizes some of the key work in this area, and provides some suggestions for future areas of exploration. In the context of demographic change, the experience in Glasgow is an important example of the complexity that frequently lies behind observed variations in health outcomes within and between populations. A comprehensive explanation of Glasgow's excess mortality may continue to remain elusive, but is likely to lie in a complex and difficult-to-measure interplay of health determinants acting at different levels in society throughout the life course. Lessons learned from the detailed examination of different potentially causative determinants in Scotland may provide useful methodological insights that may be applied in other settings. Ongoing efforts to unravel the causal mechanisms are needed to inform public health efforts to reduce health inequalities and improve outcomes in Scotland.
Collapse
Affiliation(s)
- Simon Ds Fraser
- Academic Unit of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Steve George
- Academic Unit of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| |
Collapse
|
41
|
Alcohol-induced histone H3K9 hyperacetylation and cardiac hypertrophy are reversed by a histone acetylases inhibitor anacardic acid in developing murine hearts. Biochimie 2015; 113:1-9. [DOI: 10.1016/j.biochi.2015.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/11/2015] [Indexed: 01/04/2023]
|
42
|
Ryer EJ, Ronning KE, Erdman R, Schworer CM, Elmore JR, Peeler TC, Nevius CD, Lillvis JH, Garvin RP, Franklin DP, Kuivaniemi H, Tromp G. The potential role of DNA methylation in abdominal aortic aneurysms. Int J Mol Sci 2015; 16:11259-75. [PMID: 25993294 PMCID: PMC4463699 DOI: 10.3390/ijms160511259] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/19/2015] [Indexed: 12/14/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a complex disorder that has a significant impact on the aging population. While both genetic and environmental risk factors have been implicated in AAA formation, the precise genetic markers involved and the factors influencing their expression remain an area of ongoing investigation. DNA methylation has been previously used to study gene silencing in other inflammatory disorders and since AAA has an extensive inflammatory component, we sought to examine the genome-wide DNA methylation profiles in mononuclear blood cells of AAA cases and matched non-AAA controls. To this end, we collected blood samples and isolated mononuclear cells for DNA and RNA extraction from four all male groups: AAA smokers (n = 11), AAA non-smokers (n = 9), control smokers (n = 10) and control non-smokers (n = 11). Methylation data were obtained using the Illumina 450k Human Methylation Bead Chip and analyzed using the R language and multiple Bioconductor packages. Principal component analysis and linear analysis of CpG island subsets identified four regions with significant differences in methylation with respect to AAA: kelch-like family member 35 (KLHL35), calponin 2 (CNN2), serpin peptidase inhibitor clade B (ovalbumin) member 9 (SERPINB9), and adenylate cyclase 10 pseudogene 1 (ADCY10P1). Follow-up studies included RT-PCR and immunostaining for CNN2 and SERPINB9. These findings are novel and suggest DNA methylation may play a role in AAA pathobiology.
Collapse
Affiliation(s)
- Evan J Ryer
- Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, PA 17822, USA.
| | - Kaitryn E Ronning
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
- Department of Biology, Susquehanna University, Selinsgrove, PA 17870, USA.
| | - Robert Erdman
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
| | - Charles M Schworer
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
| | - James R Elmore
- Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, PA 17822, USA.
| | - Thomas C Peeler
- Department of Biology, Susquehanna University, Selinsgrove, PA 17870, USA.
| | - Christopher D Nevius
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
| | - John H Lillvis
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48202, USA.
| | - Robert P Garvin
- Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, PA 17822, USA.
| | - David P Franklin
- Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, PA 17822, USA.
| | - Helena Kuivaniemi
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | - Gerard Tromp
- Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA.
| |
Collapse
|
43
|
Affiliation(s)
- Lea M D Delbridge
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia; Department of Physiology, University of Auckland, New Zealand
| | - Loren E Wold
- College of Nursing, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
44
|
Ko CH, Chan RLY, Siu WS, Shum WT, Leung PC, Zhang L, Cho CH. Deteriorating effect on bone metabolism and microstructure by passive cigarette smoking through dual actions on osteoblast and osteoclast. Calcif Tissue Int 2015; 96:389-400. [PMID: 25694359 DOI: 10.1007/s00223-015-9966-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/09/2015] [Indexed: 12/11/2022]
Abstract
There is no clear evidence to show the direct causal relationship between passive cigarette smoking and osteoporosis. Furthermore, the underlying mechanism is unknown. The objective of this study is to demonstrate the effects of long-term passive cigarette smoking on bone metabolism and microstructure by a mouse model and cell culture systems. BALB/c mice were exposed to 2 or 4 % cigarette smoke for 14 weeks. The bone turnover biochemical markers in urine and serum and also the bone micro-architecture by micro-CT were compared with the control group exposed to normal ambient air. In the cell culture experiments, mouse MC3T3-E1 and RAW264.7 cell lines to be employed as osteoblast and osteoclast, respectively, were treated with the sera obtained from 4 % smoking or control mice. Their actions on cell viability, differentiation, and function on these bone cells were assessed. The urinary mineral and deoxypyridinoline (DPD) levels, and also the serum alkaline phosphatase activity, were significantly higher in the 4 % smoking group when compared with the control group, indicating an elevated bone metabolism after cigarette smoking. In addition, femoral osteopenic condition was observed in the 4 % smoking group, as shown by the decrease of relative bone volume and trabecular thickness. In isolated cell studies, osteoblast differentiation and bone formation were inhibited while osteoclast differentiation was increased. The current mouse smoking model and the isolated cell studies demonstrate that passive cigarette smoke could induce osteopenia by exerting a direct detrimental effect on bone cells differentiation and further on bone remodeling process.
Collapse
Affiliation(s)
- Chun Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
45
|
The relevance of epigenetics to occlusive cerebral and peripheral arterial disease. Clin Sci (Lond) 2015; 128:537-58. [PMID: 25671777 DOI: 10.1042/cs20140491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Athero-thrombosis of the arteries supplying the brain and lower limb are the main causes of stroke and limb loss. New therapies are needed to improve the outcomes of athero-thrombosis. Recent evidence suggests a role for epigenetic changes in the development and progression of ischaemic injury due to atherosclerotic occlusion of peripheral arteries. DNA hypermethylation have been associated with cardiovascular diseases. Histone post-translational modifications have also been implicated in atherosclerosis. Oxidized low-density lipoprotein regulated pro-inflammatory gene expression within endothelial cells is controlled by phosphorylation/acetylation of histone H3 and acetylation of histone H4 for example. There are a number of challenges in translating the growing evidence implicating epigenetics in atherosclerosis to improved therapies for patients. These include the small therapeutic window in conditions such as acute stroke and critical limb ischaemia, since interventions introduced in such patients need to act rapidly and be safe in elderly patients with many co-morbidities. Pre-clinical animal experiments have also reported conflicting effects of some novel epigenetic drugs, which suggest that further in-depth studies are required to better understand their efficacy in resolving ischaemic injury. Effective ways of dealing with these challenges are needed before epigenetic approaches to therapy can be introduced into practice.
Collapse
|
46
|
Jiang Y, Xia W, Yang J, Zhu Y, Chang H, Liu J, Huo W, Xu B, Chen X, Li Y, Xu S. BPA-induced DNA hypermethylation of the master mitochondrial gene PGC-1α contributes to cardiomyopathy in male rats. Toxicology 2015; 329:21-31. [PMID: 25572651 DOI: 10.1016/j.tox.2015.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/24/2014] [Accepted: 01/02/2015] [Indexed: 01/08/2023]
|
47
|
Cheah NP, Pennings JL, Vermeulen JP, Godschalk RW, van Schooten FJ, Opperhuizen A. In vitro effects of low-level aldehyde exposures on human umbilical vein endothelial cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00213j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aldehydes cause gene expression changes for genes associated with cardiovascular disease. Exposure to aldehydes from tobacco smoke needs to be controlled.
Collapse
Affiliation(s)
- Nuan P. Cheah
- Department of Toxicology
- Maastricht University
- Maastricht
- The Netherlands
- Centre for Health Protection
| | - Jeroen L.A. Pennings
- Centre for Health Protection
- National Institute for Public Health and the Environment (RIVM)
- Bilthoven
- The Netherlands
| | - Jolanda P. Vermeulen
- Centre for Health Protection
- National Institute for Public Health and the Environment (RIVM)
- Bilthoven
- The Netherlands
| | | | | | - Antoon Opperhuizen
- Department of Toxicology
- Maastricht University
- Maastricht
- The Netherlands
- Netherlands Food and Consumer Product Safety Authority (NVWA)
| |
Collapse
|
48
|
Kim M, Han CH, Lee MY. NADPH oxidase and the cardiovascular toxicity associated with smoking. Toxicol Res 2014; 30:149-57. [PMID: 25343008 PMCID: PMC4206741 DOI: 10.5487/tr.2014.30.3.149] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 11/20/2022] Open
Abstract
Smoking is one of the most serious but preventable causes of cardiovascular disease (CVD). Key aspects of pathological process associated with smoking include endothelial dysfunction, a prothrombotic state, inflammation, altered lipid metabolism, and hypoxia. Multiple molecular events are involved in smokinginduced CVD. However, the dysregulations of reactive oxygen species (ROS) generation and metabolism mainly contribute to the development of diverse CVDs, and NADPH oxidase (NOX) has been established as a source of ROS responsible for the pathogenesis of CVD. NOX activation and resultant ROS production by cigarette smoke (CS) treatment have been widely observed in isolated blood vessels and cultured vascular cells, including endothelial and smooth muscle cells. NOX-mediated oxidative stress has also been demonstrated in animal studies. Of the various NOX isoforms, NOX2 has been reported to mediate ROS generation by CS, but other isoforms were not tested thoroughly. Of the many CS constituents, nicotine, methyl vinyl ketone, and α,β-unsaturated aldehydes, such as, acrolein and crotonaldehyde, appear to be primarily responsible for NOX-mediated cytotoxicity, but additional validation will be needed. Human epidemiological studies have reported relationships between polymorphisms in the CYBA gene encoding p22phox, a catalytic subunit of NOX and susceptibility to smoking-related CVDs. In particular, G allele carriers of A640G and -930A/G polymorphisms were found to be vulnerable to smoking-induced cardiovascular toxicity, but results for C242T studies are conflicting. On the whole, evidence implicates the etiological role of NOX in smoking-induced CVD, but the clinical relevance of NOX activation by smoking and its contribution to CVD require further validation in human studies. A detailed understanding of the role of NOX would be helpful to assess the risk of smoking to human health, to define high-risk subgroups, and to develop strategies to prevent or treat smoking-induced CVD.
Collapse
Affiliation(s)
- Mikyung Kim
- College of Pharmacy, Dongguk University, Goyang, Korea ; Research Institute of Oriental Medicine, College of Korean Medicine, Dongguk University, Gyeongju, Korea
| | - Chang-Ho Han
- Research Institute of Oriental Medicine, College of Korean Medicine, Dongguk University, Gyeongju, Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang, Korea
| |
Collapse
|
49
|
Mudd-Martin G, Rayens MK, Lennie TA, Chung ML, Gokun Y, Wiggins AT, Biddle MJ, Bailey AL, Novak MJ, Casey BR, Moser DK. Fatalism moderates the relationship between family history of cardiovascular disease and engagement in health-promoting behaviors among at-risk rural Kentuckians. J Rural Health 2014; 31:206-16. [PMID: 25252080 DOI: 10.1111/jrh.12094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE In rural communities that experience high rates of cardiovascular disease (CVD) morbidity and mortality, family history education may enhance risk awareness and support engagement in healthy behaviors but could also engender fatalism. This study was conducted to assess if the relationship between family history and adherence to healthy lifestyle behaviors is moderated by fatalism. METHODS Baseline data were obtained from 1,027 adult participants in the HeartHealth in Rural Kentucky study. Multiple linear regression was used to determine whether fatalism moderated the relationship between high-risk family history of CVD and adherence to healthy lifestyle behaviors, controlling for sociodemographic variables and CVD risk factors. The relationship between family history and healthy behaviors was assessed for subgroups of participants divided according to the upper and lower quartiles of fatalism score. FINDINGS The relationship between high-risk family history of CVD and adherence to healthy behaviors was moderated by fatalism. Among those with the highest quartile of fatalism scores, high-risk family history predicted greater adherence to healthy behaviors, while among those in the lowest quartile, and among those with the middle 50% of fatalism scores, there was no association between family history and healthy behavior scores. CONCLUSIONS Family history education can provide people at increased risk for CVD important information to guide health practices. This may be particularly relevant for those with a high degree of fatalistic thinking. In rural communities with limited health resources, family history education, combined with assessment of fatalism, may support better targeted interventions to enhance engagement in healthy behaviors.
Collapse
Affiliation(s)
- Gia Mudd-Martin
- College of Nursing, University of Kentucky, Lexington, Kentucky
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Whayne TF. Epigenetics in the development, modification, and prevention of cardiovascular disease. Mol Biol Rep 2014; 42:765-76. [DOI: 10.1007/s11033-014-3727-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
|