1
|
Sule RO, Morisseau C, Yang J, Hammock BD, Gomes AV. Triazine herbicide prometryn alters epoxide hydrolase activity and increases cytochrome P450 metabolites in murine livers via lipidomic profiling. Sci Rep 2024; 14:19135. [PMID: 39160161 PMCID: PMC11333623 DOI: 10.1038/s41598-024-69557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Oxylipins are a group of bioactive fatty acid metabolites generated via enzymatic oxygenation. They are notably involved in inflammation, pain, vascular tone, hemostasis, thrombosis, immunity, and coagulation. Oxylipins have become the focus of therapeutic intervention since they are implicated in many conditions, such as nonalcoholic fatty liver disease, cardiovascular disease, and aging. The liver plays a crucial role in lipid metabolism and distribution throughout the organism. Long-term exposure to pesticides is suspected to contribute to hepatic carcinogenesis via notable disruption of lipid metabolism. Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. The amounts of prometryn documented in the environment, mainly waters, soil and plants used for human and domestic consumption are significantly high. Previous research revealed that prometryn decreased liver development during zebrafish embryogenesis. To understand the mechanisms by which prometryn could induce hepatotoxicity, the effect of prometryn (185 mg/kg every 48 h for seven days) was investigated on hepatic and plasma oxylipin levels in mice. Using an unbiased LC-MS/MS-based lipidomics approach, prometryn was found to alter oxylipins metabolites that are mainly derived from cytochrome P450 (CYP) and lipoxygenase (LOX) in both mice liver and plasma. Lipidomic analysis revealed that the hepatotoxic effects of prometryn are associated with increased epoxide hydrolase (EH) products, increased sEH and mEH enzymatic activities, and induction of oxidative stress. Furthermore, 9-HODE and 13-HODE levels were significantly increased in prometryn treated mice liver, suggesting increased levels of oxidation products. Together, these results support that sEH may be an important component of pesticide-induced liver toxicity.
Collapse
Affiliation(s)
- Rasheed O Sule
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
- Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Zhang Y, Yuan M, Cai W, Sun W, Shi X, Liu D, Song W, Yan Y, Chen T, Bao Q, Zhang B, Liu T, Zhu Y, Zhang X, Li G. Prostaglandin I 2 signaling prevents angiotensin II-induced atrial remodeling and vulnerability to atrial fibrillation in mice. Cell Mol Life Sci 2024; 81:264. [PMID: 38878214 PMCID: PMC11335301 DOI: 10.1007/s00018-024-05259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/07/2024] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia, and atrial fibrosis is a pathological hallmark of structural remodeling in AF. Prostaglandin I2 (PGI2) can prevent the process of fibrosis in various tissues via cell surface Prostaglandin I2 receptor (IP). However, the role of PGI2 in AF and atrial fibrosis remains unclear. The present study aimed to clarify the role of PGI2 in angiotensin II (Ang II)-induced AF and the underlying molecular mechanism. PGI2 content was decreased in both plasma and atrial tissue from patients with AF and mice treated with Ang II. Treatment with the PGI2 analog, iloprost, reduced Ang II-induced AF and atrial fibrosis. Iloprost prevented Ang II-induced atrial fibroblast collagen synthesis and differentiation. RNA-sequencing analysis revealed that iloprost significantly attenuated transcriptome changes in Ang II-treated atrial fibroblasts, especially mitogen-activated protein kinase (MAPK)-regulated genes. We demonstrated that iloprost elevated cAMP levels and then activated protein kinase A, resulting in a suppression of extracellular signal-regulated kinase1/2 and P38 activation, and ultimately inhibiting MAPK-dependent interleukin-6 transcription. In contrast, cardiac fibroblast-specific IP-knockdown mice had increased Ang II-induced AF inducibility and aggravated atrial fibrosis. Together, our study suggests that PGI2/IP system protects against atrial fibrosis and that PGI2 is a therapeutic target for treating AF.The prospectively registered trial was approved by the Chinese Clinical Trial Registry. The trial registration number is ChiCTR2200056733. Data of registration was 2022/02/12.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Wenbin Cai
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China
| | - Weiyan Sun
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China
| | - Xuelian Shi
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China
| | - Daiqi Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Wenhua Song
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Yingqun Yan
- Department of Cardiac Surgery, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Tienan Chen
- Department of Cardiac Surgery, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Qiankun Bao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Bangying Zhang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Xichang Road 295th, Kunming, 650032, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China.
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China.
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China.
- Department of Physiology and Pathophysiology, Tianjin Medical University, Qixiang Tai Road 22nd, Tianjin, 300070, China.
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China.
- Department of Cardiology, The Second Hospital of Tianjin Medical University, Pingjiang Road 23rd, Tianjin, 300211, China.
| |
Collapse
|
3
|
Leow JWH, Chan ECY. CYP2J2-mediated metabolism of arachidonic acid in heart: A review of its kinetics, inhibition and role in heart rhythm control. Pharmacol Ther 2024; 258:108637. [PMID: 38521247 DOI: 10.1016/j.pharmthera.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Cytochrome P450 2 J2 (CYP2J2) is primarily expressed extrahepatically and is the predominant epoxygenase in human cardiac tissues. This highlights its key role in the metabolism of endogenous substrates. Significant scientific interest lies in cardiac CYP2J2 metabolism of arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, to regioisomeric bioactive epoxyeicosatrienoic acid (EET) metabolites that show cardioprotective effects including regulation of cardiac electrophysiology. From an in vitro perspective, the accurate characterization of the kinetics of CYP2J2 metabolism of AA including its inhibition and inactivation by drugs could be useful in facilitating in vitro-in vivo extrapolations to predict drug-AA interactions in drug discovery and development. In this review, background information on the structure, regulation and expression of CYP2J2 in human heart is presented alongside AA and EETs as its endogenous substrate and metabolites. The in vitro and in vivo implications of the kinetics of this endogenous metabolic pathway as well as its perturbation via inhibition and inactivation by drugs are elaborated. Additionally, the role of CYP2J2-mediated metabolism of AA to EETs in cardiac electrophysiology will be expounded.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
4
|
Zakynthinos GE, Tsolaki V, Oikonomou E, Vavouranakis M, Siasos G, Zakynthinos E. New-Onset Atrial Fibrillation in the Critically Ill COVID-19 Patients Hospitalized in the Intensive Care Unit. J Clin Med 2023; 12:6989. [PMID: 38002603 PMCID: PMC10672690 DOI: 10.3390/jcm12226989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
New-onset atrial fibrillation (NOAF) is the most frequently encountered cardiac arrhythmia observed in patients with COVID-19 infection, particularly in Intensive Care Unit (ICU) patients. The purpose of the present review is to delve into the occurrence of NOAF in COVID-19 and thoroughly review recent, pertinent data. However, the causality behind this connection has yet to be thoroughly explored. The proposed mechanisms that could contribute to the development of AF in these patients include myocardial damage resulting from direct virus-induced cardiac injury, potentially leading to perimyocarditis; a cytokine crisis and heightened inflammatory response; hypoxemia due to acute respiratory distress; disturbances in acid-base and electrolyte levels; as well as the frequent use of adrenergic drugs in critically ill patients. Additionally, secondary bacterial sepsis and septic shock have been suggested as primary causes of NOAF in ICU patients. This notion gains strength from the observation of a similar prevalence of NOAF in septic non-COVID ICU patients with ARDS. It is plausible that both myocardial involvement from SARS-CoV-2 and secondary sepsis play pivotal roles in the onset of arrhythmia in ICU patients. Nonetheless, there exists a significant variation in the prevalence of NOAF among studies focused on severe COVID-19 cases with ARDS. This discrepancy could be attributed to the inclusion of mixed populations with varying degrees of illness severity, encompassing not only patients in general wards but also those admitted to the ICU, whether intubated or not. Furthermore, the occurrence of NOAF is linked to increased morbidity and mortality. However, it remains to be determined whether NOAF independently influences outcomes in critically ill COVID-19 ICU patients or if it merely reflects the disease's severity. Lastly, the management of NOAF in these patients has not been extensively studied. Nevertheless, the current guidelines for NOAF in non-COVID ICU patients appear to be effective, while accounting for the specific drugs used in COVID-19 treatment that may prolong the QT interval (although drugs like lopinavir/ritonavir, hydrochlorothiazide, and azithromycin have been discontinued) or induce bradycardia (e.g., remdesivir).
Collapse
Affiliation(s)
- George E. Zakynthinos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
| | - Vasiliki Tsolaki
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
| | - Manolis Vavouranakis
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Epaminondas Zakynthinos
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| |
Collapse
|
5
|
Baena-Montes JM, Kraśny MJ, O’Halloran M, Dunne E, Quinlan LR. In Vitro Models for Improved Therapeutic Interventions in Atrial Fibrillation. J Pers Med 2023; 13:1237. [PMID: 37623487 PMCID: PMC10455620 DOI: 10.3390/jpm13081237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Atrial fibrillation is the most common type of cardiac arrhythmias in humans, mostly caused by hyper excitation of specific areas in the atrium resulting in dyssynchronous atrial contractions, leading to severe consequences such as heart failure and stroke. Current therapeutics aim to target this condition through both pharmacological and non-pharmacological approaches. To test and validate any of these treatments, an appropriate preclinical model must be carefully chosen to refine and optimise the therapy features to correctly reverse this condition. A broad range of preclinical models have been developed over the years, with specific features and advantages to closely mimic the pathophysiology of atrial fibrillation. In this review, currently available models are described, from traditional animal models and in vitro cell cultures to state-of-the-art organoids and organs-on-a-chip. The advantages, applications and limitations of each model are discussed, providing the information to select the appropriate model for each research application.
Collapse
Affiliation(s)
- Jara M. Baena-Montes
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, Human Biology Building, University of Galway, H91 TK33 Galway, Ireland
| | - Marcin J. Kraśny
- Smart Sensors Lab, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Electrical & Electronic Engineering, School of Engineering, University of Galway, H91 TK33 Galway, Ireland
| | - Eoghan Dunne
- Translational Medical Device Lab (TMDLab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Leo R. Quinlan
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, Human Biology Building, University of Galway, H91 TK33 Galway, Ireland
- CÚRAM SFI Centre for Research in Medical Devices, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
6
|
Leow JWH, Gu Y, Chan ECY. Investigating the relevance of CYP2J2 inhibition for drugs known to cause intermediate to high risk torsades de pointes. Eur J Pharm Sci 2023; 187:106475. [PMID: 37225005 DOI: 10.1016/j.ejps.2023.106475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Cardiac cytochrome P450 2J2 (CYP2J2) metabolizes endogenous polyunsaturated fatty acid, arachidonic acid (AA), to bioactive regioisomeric epoxyeicosatrienoic acid (EET) metabolites. This endogenous metabolic pathway has been postulated to play a homeostatic role in cardiac electrophysiology. However, it is unknown if drugs that cause intermediate to high risk torsades de pointes (TdP) exhibit inhibitory effects against CYP2J2 metabolism of AA to EETs. In this study, we demonstrated that 11 out of 16 drugs screened with intermediate to high risk of TdP as defined by the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative are concurrently reversible inhibitors of CYP2J2 metabolism of AA, with unbound inhibitory constant (Ki,AA,u) values ranging widely from 0.132 to 19.9 µM. To understand the physiological relevancy of Ki,AA,u, the in vivo unbound drug concentration within human heart tissue (Cu,heart) was calculated via experimental determination of in vitro unbound partition coefficient (Kpuu) for 10 CYP2J2 inhibitors using AC16 human ventricular cardiomyocytes as well as literature-derived values of fraction unbound in plasma (fu,p) and plasma drug concentrations in clinical scenarios leading to TdP. Notably, all CYP2J2 inhibitors screened belonging to the high TdP risk category, namely vandetanib and bepridil, exhibited highest Kpuu values of 18.2 ± 1.39 and 7.48 ± 1.16 respectively although no clear relationship between Cu,heart and risk of TdP could eventually be determined. R values based on basic models of reversible inhibition as per FDA guidelines were calculated using unbound plasma drug concentrations (Cu,plasma) and adapted using Cu,heart which suggested that 4 out of 10 CYP2J2 inhibitors with intermediate to high risk of TdP demonstrate greatest potential for clinically relevant in vivo cardiac drug-AA interactions. Our results shed novel insights on the relevance of CYP2J2 inhibition in drugs with risk of TdP. Further studies ascertaining the role of CYP2J2 metabolism of AA in cardiac electrophysiology, characterizing inherent cardiac ion channel activities of drugs with risk of TdP as well as in vivo evidence of drug-AA interactions will be required prior to determining if CYP2J2 inhibition could be an alternative mechanism contributing to drug-induced TdP.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543
| | - Yuxiang Gu
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543.
| |
Collapse
|
7
|
Thai PN, Ren L, Xu W, Overton J, Timofeyev V, Nader CE, Haddad M, Yang J, Gomes AV, Hammock BD, Chiamvimonvat N, Sirish P. Chronic Diclofenac Exposure Increases Mitochondrial Oxidative Stress, Inflammatory Mediators, and Cardiac Dysfunction. Cardiovasc Drugs Ther 2023; 37:25-37. [PMID: 34499283 PMCID: PMC8904649 DOI: 10.1007/s10557-021-07253-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE Nonsteroidal anti-inflammatory drugs (NSAIDs) are among one of the most commonly prescribed medications for pain and inflammation. Diclofenac (DIC) is a commonly prescribed NSAID that is known to increase the risk of cardiovascular diseases. However, the mechanisms underlying its cardiotoxic effects remain largely unknown. In this study, we tested the hypothesis that chronic exposure to DIC increases oxidative stress, which ultimately impairs cardiovascular function. METHODS AND RESULTS Mice were treated with DIC for 4 weeks and subsequently subjected to in vivo and in vitro functional assessments. Chronic DIC exposure resulted in not only systolic but also diastolic dysfunction. DIC treatment, however, did not alter blood pressure or electrocardiographic recordings. Importantly, treatment with DIC significantly increased inflammatory cytokines and chemokines as well as cardiac fibroblast activation and proliferation. There was increased reactive oxygen species (ROS) production in cardiomyocytes from DIC-treated mice, which may contribute to the more depolarized mitochondrial membrane potential and reduced energy production, leading to a significant decrease in sarcoplasmic reticulum (SR) Ca2+ load, Ca2+ transients, and sarcomere shortening. Using unbiased metabolomic analyses, we demonstrated significant alterations in oxylipin profiles towards inflammatory features in chronic DIC treatment. CONCLUSIONS Together, chronic treatment with DIC resulted in severe cardiotoxicity, which was mediated, in part, by an increase in mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Phung N Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Lu Ren
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Wilson Xu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - James Overton
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Carol E Nader
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Michael Haddad
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA
| | - Jun Yang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Aldrin V Gomes
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA.
- Department of Pharmacology, University of California, Davis, CA, USA.
- Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Mather, CA, 95655, USA.
| | - Padmini Sirish
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, 451 Health Science Drive, CA, 95616, Davis, USA.
- Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Mather, CA, 95655, USA.
| |
Collapse
|
8
|
Donniacuo M, De Angelis A, Rafaniello C, Cianflone E, Paolisso P, Torella D, Sibilio G, Paolisso G, Castaldo G, Urbanek K, Rossi F, Berrino L, Cappetta D. COVID-19 and atrial fibrillation: Intercepting lines. Front Cardiovasc Med 2023; 10:1093053. [PMID: 36755799 PMCID: PMC9899905 DOI: 10.3389/fcvm.2023.1093053] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Almost 20% of COVID-19 patients have a history of atrial fibrillation (AF), but also a new-onset AF represents a frequent complication in COVID-19. Clinical evidence demonstrates that COVID-19, by promoting the evolution of a prothrombotic state, increases the susceptibility to arrhythmic events during the infective stages and presumably during post-recovery. AF itself is the most frequent form of arrhythmia and is associated with substantial morbidity and mortality. One of the molecular factors involved in COVID-19-related AF episodes is the angiotensin-converting enzyme (ACE) 2 availability. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 to enter and infect multiple cells. Atrial ACE2 internalization after binding to SARS-CoV-2 results in a raise of angiotensin (Ang) II, and in a suppression of cardioprotective Ang(1-7) formation, and thereby promoting cardiac hypertrophy, fibrosis and oxidative stress. Furthermore, several pharmacological agents used in COVID-19 patients may have a higher risk of inducing electrophysiological changes and cardiac dysfunction. Azithromycin, lopinavir/ritonavir, ibrutinib, and remdesivir, used in the treatment of COVID-19, may predispose to an increased risk of cardiac arrhythmia. In this review, putative mechanisms involved in COVID-19-related AF episodes and the cardiovascular safety profile of drugs used for the treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Maria Donniacuo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
9
|
Kornej J, Qadan MA, Alotaibi M, Van Wagoner DR, Watrous JD, Trinquart L, Preis SR, Ko D, Jain M, Benjamin EJ, Cheng S, Lin H. The association between eicosanoids and incident atrial fibrillation in the Framingham Heart Study. Sci Rep 2022; 12:20218. [PMID: 36418854 PMCID: PMC9684401 DOI: 10.1038/s41598-022-21786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Chronic inflammation is a continuous low-grade activation of the systemic immune response. Whereas downstream inflammatory markers are associated with atrial fibrillation (AF), upstream inflammatory effectors including eicosanoids are less studied. To examine the association between eicosanoids and incident AF. We used a liquid chromatography-mass spectrometry for the non-targeted measurement of 161 eicosanoids and eicosanoid-related metabolites in the Framingham Heart Study. The association of each eicosanoid and incident AF was assessed using Cox proportional hazards models and adjusted for AF risk factors, including age, sex, height, weight, systolic/diastolic blood pressure, current smoking, antihypertensive medication, diabetes, history of myocardial infarction and heart failure. False discovery rate (FDR) was used to adjust for multiple testing. Eicosanoids with FDR < 0.05 were considered significant. In total, 2676 AF-free individuals (mean age 66 ± 9 years, 56% females) were followed for mean 10.8 ± 3.4 years; 351 participants developed incident AF. Six eicosanoids were associated with incident AF after adjusting for multiple testing (FDR < 0.05). A joint score was built from the top eicosanoids weighted by their effect sizes, which was associated with incident AF (HR = 2.72, CI = 1.71-4.31, P = 2.1 × 10-5). In conclusion, six eicosanoids were associated with incident AF after adjusting for clinical risk factors for AF.
Collapse
Affiliation(s)
- Jelena Kornej
- National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA. .,Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA.
| | - Maha A. Qadan
- grid.239578.20000 0001 0675 4725Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH USA
| | - Mona Alotaibi
- grid.266100.30000 0001 2107 4242Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA USA
| | - David R. Van Wagoner
- grid.239578.20000 0001 0675 4725Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH USA
| | - Jeramie D. Watrous
- grid.266100.30000 0001 2107 4242Department of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Ludovic Trinquart
- grid.510954.c0000 0004 0444 3861National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA USA ,grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Sarah R. Preis
- grid.510954.c0000 0004 0444 3861National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA USA ,grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Darae Ko
- grid.510954.c0000 0004 0444 3861National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA USA ,grid.189504.10000 0004 1936 7558Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA USA
| | - Mohit Jain
- grid.266100.30000 0001 2107 4242Department of Medicine, University of California, La Jolla, San Diego, CA USA
| | - Emelia J. Benjamin
- grid.510954.c0000 0004 0444 3861National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA USA ,grid.189504.10000 0004 1936 7558Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA USA ,grid.189504.10000 0004 1936 7558Department of Epidemiology, Boston University School of Public Health, Boston, MA USA
| | - Susan Cheng
- grid.512369.aDepartment of Cardiology, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA USA
| | - Honghuang Lin
- grid.510954.c0000 0004 0444 3861National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA USA ,grid.168645.80000 0001 0742 0364Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA USA
| |
Collapse
|
10
|
Kim TH, Kim SY, Jung YK, Yim HJ, Jung JM, Seo WK. FIB-4 index and liver fibrosis are risk factors for long-term outcomes in atrial fibrillation-related stroke. Clin Neurol Neurosurg 2022; 217:107235. [DOI: 10.1016/j.clineuro.2022.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/03/2022]
|
11
|
Sirish P, Diloretto DA, Thai PN, Chiamvimonvat N. The Critical Roles of Proteostasis and Endoplasmic Reticulum Stress in Atrial Fibrillation. Front Physiol 2022; 12:793171. [PMID: 35058801 PMCID: PMC8764384 DOI: 10.3389/fphys.2021.793171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) remains the most common arrhythmia seen clinically. The incidence of AF is increasing due to the aging population. AF is associated with a significant increase in morbidity and mortality, yet current treatment paradigms have proven largely inadequate. Therefore, there is an urgent need to develop new effective therapeutic strategies for AF. The endoplasmic reticulum (ER) in the heart plays critical roles in the regulation of excitation-contraction coupling and cardiac function. Perturbation in the ER homeostasis due to intrinsic and extrinsic factors, such as inflammation, oxidative stress, and ischemia, leads to ER stress that has been linked to multiple conditions including diabetes mellitus, neurodegeneration, cancer, heart disease, and cardiac arrhythmias. Recent studies have documented the critical roles of ER stress in the pathophysiological basis of AF. Using an animal model of chronic pressure overload, we demonstrate a significant increase in ER stress in atrial tissues. Moreover, we demonstrate that treatment with a small molecule inhibitor to inhibit the soluble epoxide hydrolase enzyme in the arachidonic acid metabolism significantly reduces ER stress as well as atrial electrical and structural remodeling. The current review article will attempt to provide a perspective on our recent understandings and current knowledge gaps on the critical roles of proteostasis and ER stress in AF progression.
Collapse
Affiliation(s)
- Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States
| | - Daphne A Diloretto
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States.,Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Imig JD, Cervenka L, Neckar J. Epoxylipids and soluble epoxide hydrolase in heart diseases. Biochem Pharmacol 2022; 195:114866. [PMID: 34863976 PMCID: PMC8712413 DOI: 10.1016/j.bcp.2021.114866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular and heart diseases are leading causes of morbidity and mortality. Coronary artery endothelial and vascular dysfunction, inflammation, and mitochondrial dysfunction contribute to progression of heart diseases such as arrhythmias, congestive heart failure, and heart attacks. Classes of fatty acid epoxylipids and their enzymatic regulation by soluble epoxide hydrolase (sEH) have been implicated in coronary artery dysfunction, inflammation, and mitochondrial dysfunction in heart diseases. Likewise, genetic and pharmacological manipulations of epoxylipids have been demonstrated to have therapeutic benefits for heart diseases. Increasing epoxylipids reduce cardiac hypertrophy and fibrosis and improve cardiac function. Beneficial actions for epoxylipids have been demonstrated in cardiac ischemia reperfusion injury, electrical conductance abnormalities and arrhythmias, and ventricular tachycardia. This review discusses past and recent findings on the contribution of epoxylipids in heart diseases and the potential for their manipulation to treat heart attacks, arrhythmias, ventricular tachycardia, and heart failure.
Collapse
Affiliation(s)
- John D Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ludek Cervenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Neckar
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
13
|
de Groot NMS, Shah D, Boyle PM, Anter E, Clifford GD, Deisenhofer I, Deneke T, van Dessel P, Doessel O, Dilaveris P, Heinzel FR, Kapa S, Lambiase PD, Lumens J, Platonov PG, Ngarmukos T, Martinez JP, Sanchez AO, Takahashi Y, Valdigem BP, van der Veen AJ, Vernooy K, Casado-Arroyo Co-Chair R. Critical appraisal of technologies to assess electrical activity during atrial fibrillation: a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology. Europace 2021; 24:313-330. [PMID: 34878119 DOI: 10.1093/europace/euab254] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter-electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future.
Collapse
Affiliation(s)
- Natasja M S de Groot
- Department of Cardiology, Erasmus University Medical Centre, Rotterdam, Delft University of Technology, Delft the Netherlands
| | - Dipen Shah
- Cardiology Service, University Hospitals Geneva, Geneva, Switzerland
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Elad Anter
- Cardiac Electrophysiology Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich and Technical University of Munich, Munich, Germany
| | - Thomas Deneke
- Department of Cardiology, Rhon-klinikum Campus Bad Neustadt, Germany
| | - Pascal van Dessel
- Department of Cardiology, Medisch Spectrum Twente, Twente, the Netherlands
| | - Olaf Doessel
- Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
| | - Polychronis Dilaveris
- 1st University Department of Cardiology, National & Kapodistrian University of Athens School of Medicine, Hippokration Hospital, Athens, Greece
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Suraj Kapa
- Department of Cardiology, Mayo Clinic, Rochester, USA
| | | | - Joost Lumens
- Cardiovascular Research Institute Maastricht (CARIM) Maastricht University, Maastricht, the Netherlands
| | - Pyotr G Platonov
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Tachapong Ngarmukos
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Juan Pablo Martinez
- Aragon Institute of Engineering Research/IIS-Aragon and University of Zaragoza, Zaragoza, Spain, CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Alejandro Olaya Sanchez
- Department of Cardiology, Hospital San José, Fundacion Universitaia de Ciencas de la Salud, Bogota, Colombia
| | - Yoshihide Takahashi
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Bruno P Valdigem
- Department of Cardiology, Hospital Rede D'or São Luiz, hospital Albert einstein and Dante pazzanese heart institute, São Paulo, Brasil
| | - Alle-Jan van der Veen
- Department Circuits and Systems, Delft University of Technology, Delft, the Netherlands
| | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | | |
Collapse
|
14
|
Yoo S, Geist GE, Pfenniger A, Rottmann M, Arora R. Recent advances in gene therapy for atrial fibrillation. J Cardiovasc Electrophysiol 2021; 32:2854-2864. [PMID: 34053133 PMCID: PMC9281901 DOI: 10.1111/jce.15116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is the most common heart rhythm disorder in adults and a major cause of stroke. Unfortunately, current treatments for AF are suboptimal as they are not targeting the molecular mechanisms underlying AF. In this regard, gene therapy is emerging as a promising approach for mechanism-based treatment of AF. In this review, we summarize recent advances and challenges in gene therapy for this important cardiovascular disease.
Collapse
Affiliation(s)
- Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gail Elizabeth Geist
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Markus Rottmann
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
15
|
Neckář J, Alánová P, Olejníčková V, Papoušek F, Hejnová L, Šilhavý J, Behuliak M, Bencze M, Hrdlička J, Vecka M, Jarkovská D, Švíglerová J, Mistrová E, Štengl M, Novotný J, Ošťádal B, Pravenec M, Kolář F. Excess ischemic tachyarrhythmias trigger protection against myocardial infarction in hypertensive rats. Clin Sci (Lond) 2021; 135:2143-2163. [PMID: 34486670 DOI: 10.1042/cs20210648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
Increased level of C-reactive protein (CRP) is a risk factor for cardiovascular diseases, including myocardial infarction and hypertension. Here, we analyzed the effects of CRP overexpression on cardiac susceptibility to ischemia/reperfusion (I/R) injury in adult spontaneously hypertensive rats (SHR) expressing human CRP transgene (SHR-CRP). Using an in vivo model of coronary artery occlusion, we found that transgenic expression of CRP predisposed SHR-CRP to repeated and prolonged ventricular tachyarrhythmias. Excessive ischemic arrhythmias in SHR-CRP led to a significant reduction in infarct size (IS) compared with SHR. The proarrhythmic phenotype in SHR-CRP was associated with altered heart and plasma eicosanoids, myocardial composition of fatty acids (FAs) in phospholipids, and autonomic nervous system imbalance before ischemia. To explain unexpected IS-limiting effect in SHR-CRP, we performed metabolomic analysis of plasma before and after ischemia. We also determined cardiac ischemic tolerance in hearts subjected to remote ischemic perconditioning (RIPer) and in hearts ex vivo. Acute ischemia in SHR-CRP markedly increased plasma levels of multiple potent cardioprotective molecules that could reduce IS at reperfusion. RIPer provided IS-limiting effect in SHR that was comparable with myocardial infarction observed in naïve SHR-CRP. In hearts ex vivo, IS did not differ between the strains, suggesting that extra-cardiac factors play a crucial role in protection. Our study shows that transgenic expression of human CRP predisposes SHR-CRP to excess ischemic ventricular tachyarrhythmias associated with a drop of pump function that triggers myocardial salvage against lethal I/R injury likely mediated by protective substances released to blood from hypoxic organs and tissue at reperfusion.
Collapse
Affiliation(s)
- Jan Neckář
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Alánová
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Olejníčková
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - František Papoušek
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Hejnová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Šilhavý
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Behuliak
- Laboratory of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Bencze
- Laboratory of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Hrdlička
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Vecka
- 4th Department of Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dagmar Jarkovská
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Jitka Švíglerová
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Eliška Mistrová
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Milan Štengl
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Bohuslav Ošťádal
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - František Kolář
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Ledford HA, Park S, Muir D, Woltz RL, Ren L, Nguyen PT, Sirish P, Wang W, Sihn CR, George AL, Knollmann BC, Yamoah EN, Yarov-Yarovoy V, Zhang XD, Chiamvimonvat N. Different arrhythmia-associated calmodulin mutations have distinct effects on cardiac SK channel regulation. J Gen Physiol 2021; 152:211546. [PMID: 33211795 PMCID: PMC7681919 DOI: 10.1085/jgp.202012667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin (CaM) plays a critical role in intracellular signaling and regulation of Ca2+-dependent proteins and ion channels. Mutations in CaM cause life-threatening cardiac arrhythmias. Among the known CaM targets, small-conductance Ca2+-activated K+ (SK) channels are unique, since they are gated solely by beat-to-beat changes in intracellular Ca2+. However, the molecular mechanisms of how CaM mutations may affect the function of SK channels remain incompletely understood. To address the structural and functional effects of these mutations, we introduced prototypical human CaM mutations in human induced pluripotent stem cell–derived cardiomyocyte-like cells (hiPSC-CMs). Using structural modeling and molecular dynamics simulation, we demonstrate that human calmodulinopathy-associated CaM mutations disrupt cardiac SK channel function via distinct mechanisms. CaMD96V and CaMD130G mutants reduce SK currents through a dominant-negative fashion. By contrast, specific mutations replacing phenylalanine with leucine result in conformational changes that affect helix packing in the C-lobe, which disengage the interactions between apo-CaM and the CaM-binding domain of SK channels. Distinct mutant CaMs may result in a significant reduction in the activation of the SK channels, leading to a decrease in the key Ca2+-dependent repolarization currents these channels mediate. The findings in this study may be generalizable to other interactions of mutant CaMs with Ca2+-dependent proteins within cardiac myocytes.
Collapse
Affiliation(s)
- Hannah A Ledford
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Duncan Muir
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Ryan L Woltz
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Lu Ren
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Phuong T Nguyen
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Wenying Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Choong-Ryoul Sihn
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Björn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA
| |
Collapse
|
17
|
Zhang XD, Thai PN, Ren L, Perez Flores MC, Ledford HA, Park S, Lee JH, Sihn CR, Chang CW, Chen WC, Timofeyev V, Zuo J, Chan JW, Yamoah EN, Chiamvimonvat N. Prestin amplifies cardiac motor functions. Cell Rep 2021; 35:109097. [PMID: 33951436 PMCID: PMC8720583 DOI: 10.1016/j.celrep.2021.109097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/27/2020] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac cells generate and amplify force in the context of cardiac load, yet the membranous sheath enclosing the muscle fibers-the sarcolemma-does not experience displacement. That the sarcolemma sustains beat-to-beat pressure changes without experiencing significant distortion is a muscle-contraction paradox. Here, we report that an elastic element-the motor protein prestin (Slc26a5)-serves to amplify actin-myosin force generation in mouse and human cardiac myocytes, accounting partly for the nonlinear capacitance of cardiomyocytes. The functional significance of prestin is underpinned by significant alterations of cardiac contractility in Prestin-knockout mice. Prestin was previously considered exclusive to the inner ear's outer hair cells; however, our results show that prestin serves a broader cellular motor function.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Veterans Affairs, VA Northern California Health Care System, Mather, CA 95655, USA.
| | - Phung N Thai
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Lu Ren
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Maria Cristina Perez Flores
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hannah A Ledford
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Jeong Han Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Choong-Ryoul Sihn
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Che-Wei Chang
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Wei Chun Chen
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Valeriy Timofeyev
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Jian Zuo
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - James W Chan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Veterans Affairs, VA Northern California Health Care System, Mather, CA 95655, USA.
| |
Collapse
|
18
|
Babapoor-Farrokhran S, Gill D, Alzubi J, Mainigi SK. Atrial fibrillation: the role of hypoxia-inducible factor-1-regulated cytokines. Mol Cell Biochem 2021; 476:2283-2293. [PMID: 33575876 DOI: 10.1007/s11010-021-04082-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/25/2021] [Indexed: 11/25/2022]
Abstract
Atrial fibrillation (AF) is a common arrhythmia that has major morbidity and mortality. Hypoxia plays an important role in AF initiation and maintenance. Hypoxia-inducible factor (HIF), the master regulator of oxygen homeostasis in cells, plays a fundamental role in the regulation of multiple chemokines and cytokines that are involved in different physiological and pathophysiological pathways. HIF is also involved in the pathophysiology of AF induction and propagation mostly through structural remodeling such as fibrosis; however, some of the cytokines discussed have even been implicated in electrical remodeling of the atria. In this article, we highlight the association between HIF and some of its related cytokines with AF. Additionally, we provide an overview of the potential diagnostic benefits of using the mentioned cytokines as AF biomarkers. Research discussed in this review suggests that the expression of these cytokines may correlate with patients who are at an increased risk of developing AF. Furthermore, cytokines that are elevated in patients with AF can assist clinicians in the diagnosis of suspect paroxysmal AF patients. Interestingly, some of the cytokines have been elevated specifically when AF is associated with a hypercoagulable state, suggesting that they could be helpful in the clinician's and patient's decision to begin anticoagulation. Finally, more recent research has demonstrated the promise of targeting these cytokines for the treatment of AF. While still in its early stages, tools such as neutralizing antibodies have proved to be efficacious in targeting the HIF pathway and treating or preventing AF.
Collapse
Affiliation(s)
- Savalan Babapoor-Farrokhran
- Division of Cardiology, Department of Medicine, Einstein Medical Center, 5501 Old York Road, Philadelphia, PA, 19141, USA.
| | - Deanna Gill
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jafar Alzubi
- Division of Cardiology, Department of Medicine, Einstein Medical Center, 5501 Old York Road, Philadelphia, PA, 19141, USA
| | - Sumeet K Mainigi
- Division of Cardiology, Department of Medicine, Einstein Medical Center, 5501 Old York Road, Philadelphia, PA, 19141, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
19
|
Li CY, Zhang JR, Hu WN, Li SN. Atrial fibrosis underlying atrial fibrillation (Review). Int J Mol Med 2021; 47:9. [PMID: 33448312 PMCID: PMC7834953 DOI: 10.3892/ijmm.2020.4842] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/07/2020] [Indexed: 01/17/2023] Open
Abstract
Atrial fibrillation (AF) is one of the most common tachyarrhythmias observed in the clinic and is characterized by structural and electrical remodelling. Atrial fibrosis, an emblem of atrial structural remodelling, is a complex multifactorial and patient-specific process involved in the occurrence and maintenance of AF. Whilst there is already considerable knowledge regarding the association between AF and fibrosis, this process is extremely complex, involving intricate neurohumoral and cellular and molecular interactions, and it is not limited to the atrium. Current technological advances have made the non-invasive evaluation of fibrosis in the atria and ventricles possible, facilitating the selection of patient-specific ablation strategies and upstream treatment regimens. An improved understanding of the mechanisms and roles of fibrosis in the context of AF is of great clinical significance for the development of treatment strategies targeting the fibrous region. In the present review, a focus was placed on the atrial fibrosis underlying AF, outlining its role in the occurrence and perpetuation of AF, by reviewing recent evaluations and potential treatment strategies targeting areas of fibrosis, with the aim of providing a novel perspective on the management and prevention of AF.
Collapse
Affiliation(s)
- Chang Yi Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Jing Rui Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Wan Ning Hu
- Department of Cardiology, Laboratory of Molecular Biology, Head and Neck Surgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Song Nan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| |
Collapse
|
20
|
Liao J, Wu Q, Qian C, Zhao N, Zhao Z, Lu K, Zhang S, Dong Q, Chen L, Li Q, Du Y. TRPV4 blockade suppresses atrial fibrillation in sterile pericarditis rats. JCI Insight 2020; 5:137528. [PMID: 33119551 PMCID: PMC7714415 DOI: 10.1172/jci.insight.137528] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Atrial fibrillation (AF) commonly occurs after surgery and is associated with atrial remodeling. TRPV4 is functionally expressed in the heart, and its activation affects cardiac structure and functions. We hypothesized that TRPV4 blockade alleviates atrial remodeling and reduces AF induction in sterile pericarditis (SP) rats. TRPV4 antagonist GSK2193874 or vehicle was orally administered 1 day before pericardiotomy. AF susceptibility and atrial function were assessed using in vivo electrophysiology, ex vivo optical mapping, patch clamp, and molecular biology on day 3 after surgery. TRPV4 expression increased in the atria of SP rats and patients with AF. GSK2193874 significantly reduced AF vulnerability in vivo and the frequency of atrial ectopy and AF with a reentrant pattern ex vivo. Mechanistically, GSK2193874 reversed the abnormal action potential duration (APD) prolongation in atrial myocytes through the regulation of voltage-gated K+ currents (IK); reduced the activation of atrial fibroblasts by inhibiting P38, AKT, and STAT3 pathways; and alleviated the infiltration of immune cells. Our results reveal that TRPV4 blockade prevented abnormal changes in atrial myocyte electrophysiology and ameliorated atrial fibrosis and inflammation in SP rats; therefore, it might be a promising strategy to treat AF, particularly postoperative AF. TRPV4 blockade prevents abnormal changes in atrial myocyte electrophysiology and ameliorated atrial fibrosis in rats and might be a promising strategy to treat atrial fibrillation.
Collapse
Affiliation(s)
- Jie Liao
- Department of Cardiology.,Research Center of Ion Channelopathy.,Institute of Cardiology, and.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiongfeng Wu
- Department of Cardiology.,Research Center of Ion Channelopathy.,Institute of Cardiology, and.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Qian
- Department of Cardiology.,Research Center of Ion Channelopathy.,Institute of Cardiology, and.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zhao
- Department of Cardiology.,Research Center of Ion Channelopathy.,Institute of Cardiology, and.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoyang Zhao
- Department of Cardiology.,Research Center of Ion Channelopathy.,Institute of Cardiology, and.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Lu
- Department of Cardiology.,Research Center of Ion Channelopathy.,Institute of Cardiology, and.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoshao Zhang
- Department of Cardiology.,Research Center of Ion Channelopathy.,Institute of Cardiology, and.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Dong
- Department of Cardiology.,Research Center of Ion Channelopathy.,Institute of Cardiology, and.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Qince Li
- Harbin Institute of Technology, Nangang District, Harbin, China
| | - Yimei Du
- Department of Cardiology.,Research Center of Ion Channelopathy.,Institute of Cardiology, and.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Sirish P, Thai PN, Lee JH, Yang J, Zhang X, Ren L, Li N, Timofeyev V, Lee KSS, Nader CE, Rowland DJ, Yechikov S, Ganaga S, Young N, Lieu DK, Yamoah EN, Hammock BD, Chiamvimonvat N. Suppression of inflammation and fibrosis using soluble epoxide hydrolase inhibitors enhances cardiac stem cell-based therapy. Stem Cells Transl Med 2020; 9:1570-1584. [PMID: 32790136 PMCID: PMC7695637 DOI: 10.1002/sctm.20-0143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/03/2020] [Accepted: 05/30/2020] [Indexed: 01/29/2023] Open
Abstract
Stem cell replacement offers a great potential for cardiac regenerative therapy. However, one of the critical barriers to stem cell therapy is a significant loss of transplanted stem cells from ischemia and inflammation in the host environment. Here, we tested the hypothesis that inhibition of the soluble epoxide hydrolase (sEH) enzyme using sEH inhibitors (sEHIs) to decrease inflammation and fibrosis in the host myocardium may increase the survival of the transplanted human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) in a murine postmyocardial infarction model. A specific sEHI (1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl)urea [TPPU]) and CRISPR/Cas9 gene editing were used to test the hypothesis. TPPU results in a significant increase in the retention of transplanted cells compared with cell treatment alone. The increase in the retention of hiPSC-CMs translates into an improvement in the fractional shortening and a decrease in adverse remodeling. Mechanistically, we demonstrate a significant decrease in oxidative stress and apoptosis not only in transplanted hiPSC-CMs but also in the host environment. CRISPR/Cas9-mediated gene silencing of the sEH enzyme reduces cleaved caspase-3 in hiPSC-CMs challenged with angiotensin II, suggesting that knockdown of the sEH enzyme protects the hiPSC-CMs from undergoing apoptosis. Our findings demonstrate that suppression of inflammation and fibrosis using an sEHI represents a promising adjuvant to cardiac stem cell-based therapy. Very little is known regarding the role of this class of compounds in stem cell-based therapy. There is consequently an enormous opportunity to uncover a potentially powerful class of compounds, which may be used effectively in the clinical setting.
Collapse
Affiliation(s)
- Padmini Sirish
- Division of Cardiovascular MedicineUniversity of CaliforniaDavisCaliforniaUSA,Department of Veterans AffairsNorthern California Health Care SystemMatherCaliforniaUSA
| | - Phung N. Thai
- Division of Cardiovascular MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Jeong Han Lee
- Department of Physiology and Cell BiologyUniversity of Nevada, RenoRenoNevadaUSA
| | - Jun Yang
- Department of Entomology and Nematology and Comprehensive Cancer CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Xiao‐Dong Zhang
- Division of Cardiovascular MedicineUniversity of CaliforniaDavisCaliforniaUSA,Department of Veterans AffairsNorthern California Health Care SystemMatherCaliforniaUSA
| | - Lu Ren
- Division of Cardiovascular MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Ning Li
- Division of Cardiovascular MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Valeriy Timofeyev
- Division of Cardiovascular MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology and Comprehensive Cancer CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Carol E. Nader
- Division of Cardiovascular MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Douglas J. Rowland
- Center for Molecular and Genomic ImagingUniversity of CaliforniaDavisCaliforniaUSA
| | - Sergey Yechikov
- Division of Cardiovascular MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Svetlana Ganaga
- Department of SurgeryUniversity of CaliforniaDavisCaliforniaUSA
| | - Nilas Young
- Department of SurgeryUniversity of CaliforniaDavisCaliforniaUSA
| | - Deborah K. Lieu
- Division of Cardiovascular MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell BiologyUniversity of Nevada, RenoRenoNevadaUSA
| | - Bruce D. Hammock
- Department of Entomology and Nematology and Comprehensive Cancer CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular MedicineUniversity of CaliforniaDavisCaliforniaUSA,Department of Veterans AffairsNorthern California Health Care SystemMatherCaliforniaUSA,Department of PharmacologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
22
|
Berlin S, Goette A, Summo L, Lossie J, Gebauer A, Al-Saady N, Calo L, Naccarelli G, Schunck WH, Fischer R, Camm AJ, Dobrev D. Assessment of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids, in patients with persistent atrial fibrillation: Rationale and design of the PROMISE-AF phase II study. IJC HEART & VASCULATURE 2020; 29:100573. [PMID: 32685659 PMCID: PMC7356118 DOI: 10.1016/j.ijcha.2020.100573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
We designed a placebo controlled, double-blind, randomized, dose-finding phase II study on OMT-28 in the maintenance of sinus rhythm after electrical cardioversion (DCC) in patients with persistent atrial fibrillation (PROMISE-AF). OMT-28 is a first-in-class, synthetic analog of 17,18-epoxyeicosatetetraenoic acid, a bioactive lipid mediator generated by cytochrome P450 enzymes from the omega-3 fatty acid eicosapentaenoic acid. OMT-28 improves Ca2+-handling and mitochondrial function in cardiomyocytes and reduces pro-inflammatory signaling. This unique mode of action may provide a novel approach to target key mechanism contributing to AF pathophysiology. In a recent phase I study, OMT-28 was safe and well tolerated and showed favorable pharmacokinetics. The PROMISE-AF study (NCT03906799) is designed to assess the efficacy (primary objective), safety, and population pharmacokinetics (secondary objectives) of three different doses of OMT-28, administered once daily, versus placebo until the end of the follow-up period. Recruitment started in March 2019 and the study will include a total of 120 patients. The primary efficacy endpoint is the AF burden (% time with any AF), evaluated over a 13-week treatment period after DCC. AF burden is calculated based on continuous ECG monitoring using an insertable cardiac monitor (ICM). The primary efficacy analysis will be conducted on the modified intention-to-treat (mITT) population, whereas the safety analysis will be done on the safety population. Although ICMs have been used in other interventional studies to assess arrhythmia, PROMISE-AF will be the first study to assess antiarrhythmic efficacy and safety of a novel rhythm-stabilizing drug after DCC by using ICMs.
Collapse
Affiliation(s)
| | - Andreas Goette
- Cardiology and Intensive Care Medicine, St. Vincenz-Hospital, Paderborn, Germany.,Working Group Molecular Electrophysiology, University Hospital Magdeburg, Magdeburg, Germany
| | | | | | | | | | - Leonardo Calo
- Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy
| | - Gerald Naccarelli
- Heart and Vascular Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | - A John Camm
- St. George's University of London, London, United Kingdom
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
Jansen HJ, Bohne LJ, Gillis AM, Rose RA. Atrial remodeling and atrial fibrillation in acquired forms of cardiovascular disease. Heart Rhythm O2 2020; 1:147-159. [PMID: 34113869 PMCID: PMC8183954 DOI: 10.1016/j.hroo.2020.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Atrial fibrillation (AF) is prevalent in common conditions and acquired forms of heart disease, including diabetes mellitus (DM), hypertension, cardiac hypertrophy, and heart failure. AF is also prevalent in aging. Although acquired heart disease is common in aging individuals, age is also an independent risk factor for AF. Importantly, not all individuals age at the same rate. Rather, individuals of the same chronological age can vary in health status from fit to frail. Frailty can be quantified using a frailty index, which can be used to assess heterogeneity in individuals of the same chronological age. AF is thought to occur in association with electrical remodeling due to changes in ion channel expression or function as well as structural remodeling due to fibrosis, myocyte hypertrophy, or adiposity. These forms of remodeling can lead to triggered activity and electrical re-entry, which are fundamental mechanisms of AF initiation and maintenance. Nevertheless, the underlying determinants of electrical and structural remodeling are distinct in different conditions and disease states. In this focused review, we consider the factors leading to atrial electrical and structural remodeling in human patients and animal models of acquired cardiovascular disease or associated risk factors. Our goal is to identify similarities and differences in the cellular and molecular bases for atrial electrical and structural remodeling in conditions including DM, hypertension, hypertrophy, heart failure, aging, and frailty.
Collapse
Affiliation(s)
- Hailey J Jansen
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Loryn J Bohne
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anne M Gillis
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Martins GL, Duarte RCF, Mukhamedyarov MA, Palotás A, Ferreira CN, Reis HJ. Inflammatory and Infectious Processes Serve as Links between Atrial Fibrillation and Alzheimer's Disease. Int J Mol Sci 2020; 21:E3226. [PMID: 32370194 PMCID: PMC7247326 DOI: 10.3390/ijms21093226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022] Open
Abstract
Atrial fibrillation (AF) is one of the most prevalent forms of arrhythmia that carries an increased risk of stroke which, in turn, is strongly associated with cognitive decline. The majority of dementia cases are caused by Alzheimer's disease (AD) with obscure pathogenesis. While the exact mechanisms are unknown, the role of inflammatory processes and infectious agents have recently been implicated in both AD and AF, suggesting a common link between these maladies. Here, we present the main shared pathways underlying arrhythmia and memory loss. The overlapping predictive biomarkers and emerging joint pharmacological approaches are also discussed.
Collapse
Affiliation(s)
- Gabriela Lopes Martins
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, BR-31270-901 Belo Horizonte, Brazil; (G.L.M.); (R.C.F.D.); (C.N.F.); (H.J.R.)
| | - Rita Carolina Figueiredo Duarte
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, BR-31270-901 Belo Horizonte, Brazil; (G.L.M.); (R.C.F.D.); (C.N.F.); (H.J.R.)
| | | | - András Palotás
- Asklepios-Med (Private Medical Practice and Research Center), H-6722 Szeged, Hungary
- Institute of Fundamental Medicine and Biology, Kazan Federal University, R-420008 Kazan, Russia
| | - Cláudia Natália Ferreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, BR-31270-901 Belo Horizonte, Brazil; (G.L.M.); (R.C.F.D.); (C.N.F.); (H.J.R.)
| | - Helton José Reis
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, BR-31270-901 Belo Horizonte, Brazil; (G.L.M.); (R.C.F.D.); (C.N.F.); (H.J.R.)
| |
Collapse
|
25
|
Zi J, Fan Y, Dong C, Zhao Y, Li D, Tan Q. Anxiety Administrated by Dexmedetomidine to Prevent New-Onset of Postoperative Atrial Fibrillation in Patients Undergoing Off-Pump Coronary Artery Bypass Graft. Int Heart J 2020; 61:263-272. [DOI: 10.1536/ihj.19-132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jie Zi
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Yi'ou Fan
- Department of Toxicological and Functional Test, Shandong Centers for Disease Control and Prevention
| | - Chunhui Dong
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Yuping Zhao
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Decai Li
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Qi Tan
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| |
Collapse
|
26
|
Zhang PP, Sun J, Li W. Genome-wide profiling reveals atrial fibrillation-related circular RNAs in atrial appendages. Gene 2019; 728:144286. [PMID: 31838248 DOI: 10.1016/j.gene.2019.144286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Atrial fibrillation (AF) is an abnormal heart rhythm characterized by rapid and irregular beating of the atria. The non-coding RNAs (ncRNAs) have attracted much attention of AF researchers, as they play a critical role in the transcriptional and post-transcriptional regulation, which could greatly benefit the interpretation of the pathogenesis of AF. However, circRNAs, as a special member of the ncRNAs, and their role in the pathogenesis of AF is less understood. In the present study, we detected a total of 14,215 circRNAs in AF patients and healthy controls. Differential expression analysis of these circRNAs revealed 20 upregulated and 3 downregulated circRNAs, which were differentially expressed in both left and right atrial appendages. The association analysis of the AF-related circRNAs and their parental genes revealed that hsa_circ_0003965 had significantly negative correlation with its parental gene TMEM245 (PCC = -0.51), suggesting that the dysregulation of hsa_circ_0003965 was not regulated by the transcription of its parental gene, but could be associated with glucagon signaling pathway. The competing endogenous RNA (ceRNA) network analysis revealed two upregulated genes, IFNG and GDF7, and one downregulated gene, BMP7, all of which were involved in TGF-beta signaling pathway, which further suggested that these circRNAs, namely hsa_circ_0000075 and hsa_circ_0082096, participated in the AF pathogenesis via TGF-beta signaling pathway. Consistently, TGF-beta signaling pathway was a well-recognized player for its association with atrial fibrosis in AF. In summary, we aimed to discover and provide key circRNAs involved in AF for AF-related researchers, which had the potential to greatly improve our understanding of the underlying mechanism behind circRNAs and AF.
Collapse
Affiliation(s)
- Peng-Pai Zhang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian Sun
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
27
|
Li X, Zhu F, Meng W, Zhang F, Hong J, Zhang G, Wang F. CYP2J2/EET reduces vulnerability to atrial fibrillation in chronic pressure overload mice. J Cell Mol Med 2019; 24:862-874. [PMID: 31749335 PMCID: PMC6933320 DOI: 10.1111/jcmm.14796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Growing evidence has well established the protective effects of CYP2J2/EET on the cardiovascular system. The aim of the present study was to determine whether CYP2J2/EET has a preventive effect on atrial fibrillation (AF) and to investigate the underlying mechanisms. Wild‐type mice were injected with or without AAV9‐CYP2J2 before abdominal aortic constriction (AAC) operation. After 8 weeks, compared with wild‐type mice, AAC mice display higher AF inducibility and longer AF durations, which were remarkably attenuated with AAV9‐CYP2J2. Also, AAV9‐CYP2J2 reduced atrial fibrosis area and the deposit of collagen‐I/III in AAC mice, accompanied by the blockade of TGF‐β/Smad‐2/3 signalling pathways, as well as the recovery in Smad‐7 expression. In vitro, isolated atrial fibroblasts were administrated with TGF‐β1, EET, EEZE, GW9662, SiRNA Smad‐7 and pre‐MiR‐21, and EET was demonstrated to restrain the differentiation of atrial fibroblasts largely dependent on Smad‐7, due to the inhibition of EET on MiR‐21. In addition, increased inflammatory cytokines, as well as activated NF‐κB pathways induced by AAC surgery, were also significantly blunted by AAV9‐CYP2J2 treatment. These effects of CYP2J2/EET were partially blocked by GW9662, the antagonist of PPAR‐γ. In conclusion, this study revealed that CYP2J2/EET ameliorates atrial fibrosis through modulating atrial fibroblasts activation by disinhibition of MiR‐21 on Smad‐7, and attenuates atrial inflammatory response by repressing NF‐κB pathways, reducing the vulnerability to AF, and CYP2J2/EET exerts its role at least partially through PPAR‐γ activation. Our findings might provide a novel upstream therapeutic strategy for AF.
Collapse
Affiliation(s)
- Xuguang Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Zhu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Meng
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Zhang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Hong
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guobing Zhang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J Hypertens 2019; 36:1326-1341. [PMID: 29570510 DOI: 10.1097/hjh.0000000000001708] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We examined the effects of treatment with soluble epoxide hydrolase inhibitor (sEHi) and epoxyeicosatrienoic acids (EETs) analogue (EET-A), given alone or combined, on blood pressure (BP) and ischemia/reperfusion myocardial injury in rats with angiotensin II (ANG II)-dependent hypertension. METHODS Ren-2 transgenic rats (TGR) were used as a model of ANG II-dependent hypertension and Hannover Sprague-Dawley rats served as controls. Rats were treated for 14 days with sEHi or EET-A and BP was measured by radiotelemetry. Albuminuria, cardiac hypertrophy and concentrations of ANG II and EETs were determined. Separate groups were subjected to acute myocardial ischemia/reperfusion injury and the infarct size and ventricular arrhythmias were determined. RESULTS Treatment of TGR with sEHi and EET-A, given alone or combined, decreased BP to a similar degree, reduced albuminuria and cardiac hypertrophy to similar extent; only treatment regimens including sEHi increased myocardial and renal tissue concentrations of EETs. sEHi and EET-A, given alone or combined, suppressed kidney ANG II levels in TGR. Remarkably, infarct size did not significantly differ between TGR and Hannover Sprague-Dawley rats, but the incidence of ischemia-induced ventricular fibrillations was higher in TGR. Application of sEHi and EET-A given alone and combined sEHi and EET-A treatment were all equally effective in reducing life-threatening ventricular fibrillation in TGR. CONCLUSION The findings indicate that chronic treatment with either sEHi or EET-A exerts distinct antihypertensive and antiarrhythmic actions in our ANG II-dependent model of hypertension whereas combined administration of sEHi and EET-A does not provide additive antihypertensive or cardioprotective effects.
Collapse
|
29
|
Lakkappa N, Krishnamurthy PT, M D P, Hammock BD, Hwang SH. Soluble epoxide hydrolase inhibitor, APAU, protects dopaminergic neurons against rotenone induced neurotoxicity: Implications for Parkinson's disease. Neurotoxicology 2019; 70:135-145. [PMID: 30472438 PMCID: PMC6873230 DOI: 10.1016/j.neuro.2018.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/20/2023]
Abstract
Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid, play a crucial role in cytoprotection by attenuating oxidative stress, inflammation and apoptosis. EETs are rapidly metabolised in vivo by the soluble epoxide hydrolase (sEH). Increasing the half life of EETs by inhibiting the sEH enzyme is a novel strategy for neuroprotection. In the present study, sEH inhibitors APAU was screened in silico and further evaluated for their antiparkinson activity against rotenone (ROT) induced neurodegeneration in N27 dopaminergic cell line and Drosophila melanogaster model of Parkinson disease (PD). In the in vitro study cell viability (MTT and LDH release assay), oxidative stress parameters (total intracellular ROS, hydroperoxides, protein oxidation, lipid peroxidation, superoxide dismutase, catalase, glutathione peroxidise, glutathione reductase, glutathione, total antioxidant status, mitochondrial complex-1activity and mitochondrial membrane potential), inflammatory markers (IL-6, COX-1 and COX-2), and apoptotic markers (JNK, phospho-JNK, c-jun, phospho-c-jun, pro and active caspase-3) were assessed to study the neuroprotective effects. In vivo activity of APAU was assessed in Drosophila melanogaster by measuring survival rate, negative geotaxis, oxidative stress parameters (total intracellular ROS, hydroperoxides, glutathione levels) were measured. Dopamine and its metabolites were estimated by LC-MS/MS analysis. In the in silico study the molecule, APAU showed good binding interaction at the active site of sEH (PDB: 1VJ5). In the in vitro study, APAU significantly attenuated ROT induced changes in oxidative, pro-inflammatory and apoptotic parameters. In the in vivo study, APAU significantly attenuates ROT induced changes in survival rate, negative geotaxis, oxidative stress, dopamine and its metabolites levels (p < 0.05). Our study, therefore, concludes that the molecule APAU, has significant neuroprotection benefits against rotenone induced Parkinsonism.
Collapse
Affiliation(s)
- Navya Lakkappa
- Department of Pharmacology, JSS College of Pharmacy, Ooty, India
| | | | - Pandareesh M D
- Department of Neurochemistry, National Institute of Mental Health & Neuro Sciences, Bangalore, India
| | - Bruce D Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Research Center, University of California, Davis, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and Comprehensive Cancer Research Center, University of California, Davis, United States
| |
Collapse
|
30
|
Abstract
Therapeutics for arachidonic acid pathways began with the development of non-steroidal anti-inflammatory drugs that inhibit cyclooxygenase (COX). The enzymatic pathways and arachidonic acid metabolites and respective receptors have been successfully targeted and therapeutics developed for pain, inflammation, pulmonary and cardiovascular diseases. These drugs target the COX and lipoxygenase pathways but not the third branch for arachidonic acid metabolism, the cytochrome P450 (CYP) pathway. Small molecule compounds targeting enzymes and CYP epoxy-fatty acid metabolites have evolved rapidly over the last two decades. These therapeutics have primarily focused on inhibiting soluble epoxide hydrolase (sEH) or agonist mimetics for epoxyeicosatrienoic acids (EET). Based on preclinical animal model studies and human studies, major therapeutic indications for these sEH inhibitors and EET mimics/analogs are renal and cardiovascular diseases. Novel small molecules that inhibit sEH have advanced to human clinical trials and demonstrate promise for cardiovascular diseases. Challenges remain for sEH inhibitor and EET analog drug development; however, there is a high likelihood that a drug that acts on this third branch of arachidonic acid metabolism will be utilized to treat a cardiovascular or kidney disease in the next decade.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
31
|
Yamoah MA, Moshref M, Sharma J, Chen WC, Ledford HA, Lee JH, Chavez KS, Wang W, López JE, Lieu DK, Sirish P, Zhang XD. Highly efficient transfection of human induced pluripotent stem cells using magnetic nanoparticles. Int J Nanomedicine 2018; 13:6073-6078. [PMID: 30323594 PMCID: PMC6179720 DOI: 10.2147/ijn.s172254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose The delivery of transgenes into human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) represents an important tool in cardiac regeneration with potential for clinical applications. Gene transfection is more difficult, however, for hiPSCs and hiPSC-CMs than for somatic cells. Despite improvements in transfection and transduction, the efficiency, cytotoxicity, safety, and cost of these methods remain unsatisfactory. The objective of this study is to examine gene transfection in hiPSCs and hiPSC-CMs using magnetic nanoparticles (NPs). Methods Magnetic NPs are unique transfection reagents that form complexes with nucleic acids by ionic interaction. The particles, loaded with nucleic acids, can be guided by a magnetic field to allow their concentration onto the surface of the cell membrane. Subsequent uptake of the loaded particles by the cells allows for high efficiency transfection of the cells with nucleic acids. We developed a new method using magnetic NPs to transfect hiPSCs and hiPSC-CMs. HiPSCs and hiPSC-CMs were cultured and analyzed using confocal microscopy, flow cytometry, and patch clamp recordings to quantify the transfection efficiency and cellular function. Results We compared the transfection efficiency of hiPSCs with that of human embryonic kidney (HEK 293) cells. We observed that the average efficiency in hiPSCs was 43%±2% compared to 62%±4% in HEK 293 cells. Further analysis of the transfected hiPSCs showed that the differentiation of hiPSCs to hiPSC-CMs was not altered by NPs. Finally, robust transfection of hiPSC-CMs with an efficiency of 18%±2% was obtained. Conclusion The difficult-to-transfect hiPSCs and hiPSC-CMs were efficiently transfected using magnetic NPs. Our study offers a novel approach for transfection of hiPSCs and hiPSC-CMs without the need for viral vector generation.
Collapse
Affiliation(s)
- Megan A Yamoah
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Maryam Moshref
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Janhavi Sharma
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Wei Chun Chen
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Hannah A Ledford
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Jeong Han Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, USA
| | - Karen S Chavez
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Wenying Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, USA
| | - Javier E López
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Deborah K Lieu
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Padmini Sirish
- Department of Internal Medicine, University of California, Davis, CA, USA, , .,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA, ,
| | - Xiao-Dong Zhang
- Department of Internal Medicine, University of California, Davis, CA, USA, , .,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA, ,
| |
Collapse
|
32
|
Targeting amino acids metabolic profile to identify novel metabolic characteristics in atrial fibrillation. Clin Sci (Lond) 2018; 132:2135-2146. [PMID: 30190284 PMCID: PMC6365628 DOI: 10.1042/cs20180247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 01/06/2023]
Abstract
Background: Atrial fibrillation (AF) is the most common cardiac arrhythmia whose incidence is on the rise globally. However, the pathophysiologic mechanism of AF remains poorly understood and there has been a lack of circulatory markers to diagnose and predict prognosis of AF. In the present study, by measuring metabolic profile and analyzing plasma amino acid levels in AF patients, we sought to determine whether amino acid metabolism was correlated to the occurrence of AF. Methods: Consecutive patients admitted to hospital for AF were enrolled. Plasma samples were obtained after overnight fast and a profile of 61 amino acids was then measured using gas chromatography/mass spectrometry (GC/MS). Results: Twenty-three AF and thirty-seven control patients were enrolled in the study. A number of plasma amino acids were altered in AF, which showed significant prediction value for AF. Intriguingly, circulating 4-hydroxypyrrolidine-2-carboxylic was gradually lowered with the persistence of AF. Plasma amino acid levels were more strongly correlated with each other in AF as compared with control. Conclusion: By utilizing non-target metabolic profile surveys, we have found a number of altered amino acids, which exhibit diagnostic value for AF. Enhanced amino acids correlation network further identified AF as a metabolism disorder.
Collapse
|
33
|
Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacol Ther 2017; 183:177-204. [PMID: 29080699 DOI: 10.1016/j.pharmthera.2017.10.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Numerous benefits have been attributed to dietary long-chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFAs), including protection against cardiac arrhythmia, triglyceride-lowering, amelioration of inflammatory, and neurodegenerative disorders. This review covers recent findings indicating that a variety of these beneficial effects are mediated by "omega-3 epoxyeicosanoids", a class of novel n-3 LC-PUFA-derived lipid mediators, which are generated via the cytochrome P450 (CYP) epoxygenase pathway. CYP enzymes, previously identified as arachidonic acid (20:4n-6; AA) epoxygenases, accept eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA), the major fish oil n-3 LC-PUFAs, as efficient alternative substrates. In humans and rodents, dietary EPA/DHA supplementation causes a profound shift of the endogenous CYP-eicosanoid profile from AA- to EPA- and DHA-derived metabolites, increasing, in particular, the plasma and tissue levels of 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP). Based on preclinical studies, these omega-3 epoxyeicosanoids display cardioprotective, vasodilatory, anti-inflammatory, and anti-allergic properties that contribute to the beneficial effects of n-3 LC-PUFAs in diverse disease conditions ranging from cardiac disease, bronchial disorders, and intraocular neovascularization, to allergic intestinal inflammation and inflammatory pain. Increasing evidence also suggests that background nutrition as well as genetic and disease state-related factors could limit the response to EPA/DHA-supplementation by reducing the formation and/or enhancing the degradation of omega-3 epoxyeicosanoids. Recently, metabolically robust synthetic analogs mimicking the biological activities of 17,18-EEQ have been developed. These drug candidates may overcome limitations of dietary EPA/DHA supplementation and provide novel options for the treatment of cardiovascular and inflammatory diseases.
Collapse
|
34
|
Sirish P, Ledford HA, Timofeyev V, Thai PN, Ren L, Kim HJ, Park S, Lee JH, Dai G, Moshref M, Sihn CR, Chen WC, Timofeyeva MV, Jian Z, Shimkunas R, Izu LT, Chiamvimonvat N, Chen-Izu Y, Yamoah EN, Zhang XD. Action Potential Shortening and Impairment of Cardiac Function by Ablation of Slc26a6. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.005267. [PMID: 29025768 DOI: 10.1161/circep.117.005267] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Intracellular pH (pHi) is critical to cardiac excitation and contraction; uncompensated changes in pHi impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pHi regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We show that Slc26a6 mediates electrogenic Cl-/HCO3- exchange activities in cardiomyocytes, suggesting the potential role of Slc26a6 in regulation of not only pHi, but also cardiac excitability. METHODS AND RESULTS To test the mechanistic role of Slc26a6 in the heart, we took advantage of Slc26a6 knockout (Slc26a6-/- ) mice using both in vivo and in vitro analyses. Consistent with our prediction of its electrogenic activities, ablation of Slc26a6 results in action potential shortening. There are reduced Ca2+ transient and sarcoplasmic reticulum Ca2+ load, together with decreased sarcomere shortening in Slc26a6-/- cardiomyocytes. These abnormalities translate into reduced fractional shortening and cardiac contractility at the in vivo level. Additionally, pHi is elevated in Slc26a6-/- cardiomyocytes with slower recovery kinetics from intracellular alkalization, consistent with the Cl-/HCO3- exchange activities of Slc26a6. Moreover, Slc26a6-/- mice show evidence of sinus bradycardia and fragmented QRS complex, supporting the critical role of Slc26a6 in cardiac conduction system. CONCLUSIONS Our study provides mechanistic insights into Slc26a6, a unique cardiac electrogenic Cl-/HCO3- transporter in ventricular myocytes, linking the critical roles of Slc26a6 in regulation of pHi, excitability, and contractility. pHi is a critical regulator of other membrane and contractile proteins. Future studies are needed to investigate possible changes in these proteins in Slc26a6-/- mice.
Collapse
Affiliation(s)
- Padmini Sirish
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Hannah A Ledford
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Valeriy Timofeyev
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Phung N Thai
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Lu Ren
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Hyo Jeong Kim
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Seojin Park
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Jeong Han Lee
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Gu Dai
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Maryam Moshref
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Choong-Ryoul Sihn
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Wei Chun Chen
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Maria Valeryevna Timofeyeva
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Zhong Jian
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Rafael Shimkunas
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Leighton T Izu
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Nipavan Chiamvimonvat
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Ye Chen-Izu
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Ebenezer N Yamoah
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Xiao-Dong Zhang
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.).
| |
Collapse
|
35
|
Wang HL, Zhou XH, Li ZQ, Fan P, Zhou QN, Li YD, Hou YM, Tang BP. Prevention of Atrial Fibrillation by Using Sarcoplasmic Reticulum Calcium ATPase Pump Overexpression in a Rabbit Model of Rapid Atrial Pacing. Med Sci Monit 2017; 23:3952-3960. [PMID: 28811460 PMCID: PMC5569926 DOI: 10.12659/msm.904824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent research suggests that abnormal Ca2+ handling plays a role in the occurrence and maintenance of atrial fibrillation (AF). Therefore, Ca2+ release and ingestion depend on properties of the ryanodine receptor (RyR) and sarcoplasmic reticulum Ca2+ATPase2a (SERCA2a). This study aimed to detect whether SERCA2a gene overexpression has a preventive effect on atrial fibrillation caused by rapid pacing right atrium. MATERIAL AND METHODS Forty-eight New Zealand white rabbits were randomly divided into a control group, AF group, AAV9/GFP group, and AAV9/SERCA2a group. The right atrium was rapidly paced at 600 beats/min for 30 days after an intraperitoneal injection of an adeno-associated virus expressing the SERCA2a gene and GFP. The AF induction rate and the effective refraction period (ERP) were measured after 0, 4, 8, 12, and 24 h of pacing. Western blot analysis was used to test for the expression of SERCA2a. Changes in atrial tissue structure were observed by H&E staining and electron microscopy. RESULTS The AF induction rate was higher in the AF groups than in the AAV9/SERCA2a group at different time points of pacing. After 12 h of pacing, ERP was significantly prolonged in the AAV9/SERCA2a group compared to the AF and AAV9/GFP groups (p<0.05). SERCA2a protein expression was significantly lower in the AF and AAV9/GFP groups compared to the control group (p<0.05), while expression was significantly higher in the AAV9/SERCA2a group than in the AF and AAV9/GFP groups (p<0.05). The myocardial structure of the AAV9/SERCA2a group was significantly improved compared with the AF group, indicating that SERCA2a overexpression relieved the structural remodeling of atrial fibrillation. CONCLUSIONS SERCA2a overexpression is capable of suppressing ERP shortening and AF induced by rapid pacing atrium. SERCA2a gene therapy is expected to be a new anti-atrial fibrillation strategy.
Collapse
Affiliation(s)
- Hong li Wang
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Xian hui Zhou
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Zhi qiang Li
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Ping Fan
- Department of Heart Function, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Qi na Zhou
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Yao dong Li
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| | - Yue mei Hou
- Department of Geriatrics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital South Campus, Shanghai, P.R. China
| | - Bao peng Tang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, P.R. China
| |
Collapse
|
36
|
Wan C, Li Z. Serum macrophage migration inhibitory factor is correlated with atrial fibrillation. J Clin Lab Anal 2017; 32. [PMID: 28407372 DOI: 10.1002/jcla.22225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/05/2017] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine secreted by macrophages. This study is performed to investigate whether serum MIF is correlated with atrial fibrillation (AF). METHODS Totally, 186 AF patients and 103 healthy controls were enrolled in this study. AF patients were then divided into paroxysmal AF, persistent AF, and permanent AF subgroups. RESULTS There were higher serum MIF concentrations in AF patients than in healthy subjects. Logistic regression analysis demonstrated that serum MIF was associated with AF. Permanent AF patients exhibited higher serum MIF concentrations than persistent and paroxysmal AF subgroups. Elevated serum MIF concentrations were found in persistent AF patients compared with paroxysmal AF patients. Moreover, serum MIF concentrations were associated with left atrial diameter after Spearman correlation analysis.
Collapse
Affiliation(s)
- Chunfu Wan
- Department of Pain and Rehabilitation, Forth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zhihua Li
- Department of Anaesthesia, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
37
|
Routine 18F-FDG PET/CT does not detect inflammation in the left atrium in patients with atrial fibrillation. Int J Cardiovasc Imaging 2017; 33:1271-1276. [PMID: 28229312 PMCID: PMC5501896 DOI: 10.1007/s10554-017-1094-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/06/2017] [Indexed: 01/12/2023]
Abstract
Increasing evidence supports a role of inflammation in the development of atrial fibrillation (AF). However, direct evidence of persistent inflammatory activity in the atria of AF patients is scarce. In this study, we used 18-Fluor-Deoxyglucose positron emission tomography computed tomography (18F-FDG PET/CT) to determine atrial inflammation in patients with and without AF. Retrospectively, 18F-FDG PET/CT scans were analyzed. 37 patients with a history of AF were compared to an age and sex matched control group with no history of AF. Standardized uptake values were obtained in the atrial walls, in the left ventricular wall, and in the right ventricular blood pool, respectively. Target to background ratios (TBR) were determined in the atrial and left ventricular walls and compared between the two groups. TBR values of the left atrial wall were slightly but not significantly higher in patients with AF (1.21 ± 0.27) compared to those without AF (1.14 ± 0.29; p = 0.85). Likewise, a weak but not significant difference was observed in signal intensities in the right atrial wall between patients in the AF (1.14 ± 0.45) and the control group (0.96 ± 0.2; p = 0.41). TBR values of the left ventricular myocardium did not differ between the groups; no significant correlation was found between the TBR in the left and right atrial wall and blood glucose levels. 18F-FDG PET/CT performed under routine conditions did not detect a significant difference in inflammatory activity in the left or right atrium between patients with and without AF. Contrary to previous reports, these results therefore do not clearly support a role for ongoing atrial inflammation in patients with AF. Prospective clinical studies using myocardial glucose uptake suppression strategies may be helpful to clarify these issues.
Collapse
|
38
|
Lee KSS, Henriksen NM, Ng CJ, Yang J, Jia W, Morisseau C, Andaya A, Gilson MK, Hammock BD. Probing the orientation of inhibitor and epoxy-eicosatrienoic acid binding in the active site of soluble epoxide hydrolase. Arch Biochem Biophys 2016; 613:1-11. [PMID: 27983948 DOI: 10.1016/j.abb.2016.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 11/30/2022]
Abstract
Soluble epoxide hydrolase (sEH) is an important therapeutic target of many diseases, such as chronic obstructive pulmonary disease (COPD) and diabetic neuropathic pain. It acts by hydrolyzing and thus regulating specific bioactive long chain polyunsaturated fatty acid epoxides (lcPUFA), like epoxyeicosatrienoic acids (EETs). To better predict which epoxides could be hydrolyzed by sEH, one needs to dissect the important factors and structural requirements that govern the binding of the substrates to sEH. This knowledge allows further exploration of the physiological role played by sEH. Unfortunately, a crystal structure of sEH with a substrate bound has not yet been reported. In this report, new photoaffinity mimics of a sEH inhibitor and EET regioisomers were prepared and used in combination with peptide sequencing and computational modeling, to identify the binding orientation of different regioisomers and enantiomers of EETs into the catalytic cavity of sEH. Results indicate that the stereochemistry of the epoxide plays a crucial role in dictating the binding orientation of the substrate.
Collapse
Affiliation(s)
- Kin Sing Stephen Lee
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Niel M Henriksen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, MC 0736, La Jolla, CA 92093, USA
| | - Connie J Ng
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jun Yang
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Weitao Jia
- Campus Mass Spectrometry Facilities, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Armann Andaya
- Campus Mass Spectrometry Facilities, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, MC 0736, La Jolla, CA 92093, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|