1
|
Barakat AJ, Butler MG. Genetics of anomalies of the kidney and urinary tract with congenital heart disease: A review. Clin Genet 2024; 106:667-678. [PMID: 39289831 DOI: 10.1111/cge.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) and congenital heart disease (CHD) are the most common congenital defects and constitute a major cause of morbidity in children. Anomalies of both systems may be isolated or associated with congenital anomalies of other organ systems. Various reports support the co-occurrence of CAKUT and CHD, although the prevalence can vary. Cardiovascular anomalies occur in 11.2% to 34% of patients with CAKUT, and CAKUT occur in 5.3% to 35.8% of those with CHD. The co-occurrence of genetic factors in both CAKUT and CHD would raise common etiologies including genetics, genetic-environmental interactions, or shared molecular mechanisms and pathways such as NODAL, NOTCH, BMP, WNT, and VEGF. Studies in animal models and humans have indicated a genetic etiology for CHD and CAKUT with hundreds of genes recognized and thousands of entries, found in a catalog of human genetic disorders. There are over 80 CAKUT genes and over 100 CHD genes available for clinical testing. For example, the HNFIB gene accounts for 5% to 31% of reported cases of CAKUT. In view of the association between CAKUT and CHD, a thorough cardiac examination should be performed in patients with CAKUT, and a similar evaluation for CAKUT in the presence of CHD. This will allow early diagnosis and therapeutic intervention to improve the long- term outcome of patients affected, and test for at-risk family members. We present here evidence for an association of anomalies involving the two organ systems, and discuss possible etiologies of targeted genes, their functions, biological processes and interactions on embryogenesis.
Collapse
Affiliation(s)
- Amin J Barakat
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
2
|
Chen CP, Huang JP, Wu FT, Wu PS, Pan YT, Lee CC, Chen WL, Wang W. Prenatal diagnosis of Jacobsen syndrome associated with a distal 11q deletion and a distal 8q duplication by chromosome microarray analysis in a fetus with a de novo unbalanced translocation of 46,XX,der(11)t(8;11)(q24.13;q23.3) and multiple congenital anomalies on fetal ultrasound. Taiwan J Obstet Gynecol 2024; 63:922-926. [PMID: 39482005 DOI: 10.1016/j.tjog.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE We present prenatal diagnosis of Jacobsen syndrome associated with a distal 11q deletion and a distal 8q duplication by chromosome microarray analysis (CMA) in a fetus with multiple congenital anomalies on fetal ultrasound. CASE REPORT A 41-year-old, gravida 2, para 1, woman underwent amniocentesis at 25 weeks of gestation because of intrauterine growth restriction, endocardial cushion defect, clenched hands, arthrogryposis, rocker bottom feet and craniosynostosis on fetal ultrasound. Amniocentesis revealed a karyotype of 46,XX,add(11)(q23.3). Array comparative genomic hybridization (aCGH) analysis of the DNA extracted from the uncultured amniocytes revealed the result of arr 8q24.13q24.3 × 3, 11q23.3q25 × 1. Analysis of FGFR2 revealed no mutation. The karyotype was 46,XX,der(11)t(8;11)(q24.13;q23.3). The parental karyotypes were normal. The pregnancy was subsequently terminated, and a dead malformed fetus was delivered with craniofacial dysmorphism of low-set malformed ears, depressed nasal bridge, hypertelorism, small mouth, clenched hands and rocker bottom feet. Cytogenetic analysis of the placenta revealed a karyotype of 46,XX,der(11)t(8;11)(q24.13;q23.3). aCGH analysis of the DNA extracted from the umbilical cord showed the result of arr 8q24.13q24.3 (126,302,369-146,280,020) × 3.0, arr 11q23.3q25 (120,469,928-134,868,407) × 1.0 [GRCh37] with a 19.978-Mb duplication of 8q24.13-q24.3 and a 14.398-Mb deletion of 11q23.3-q25 encompassing the genes of BSX, ETS1, FLI1 and ARHGAP32. CONCLUSION CMA is useful for detection of de novo chromosomal rearrangement in the fetus with multiple congenital anomalies on fetal ultrasound.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical & Health Science, Asia University, Taichung, Taiwan.
| | - Jian-Pei Huang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Yen-Ting Pan
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chen-Chi Lee
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Lin Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Wan Y, Helenek C, Coraci D, Balázsi G. Optimizing a CRISPR-Cas13d Gene Circuit for Tunable Target RNA Downregulation with Minimal Collateral RNA Cutting. ACS Synth Biol 2024; 13:3212-3230. [PMID: 39377757 PMCID: PMC11494644 DOI: 10.1021/acssynbio.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
The invention of RNA-guided DNA cutting systems has revolutionized biotechnology. More recently, RNA-guided RNA cutting by Cas13d entered the scene as a highly promising alternative to RNA interference to engineer cellular transcriptomes for biotechnological and therapeutic purposes. Unfortunately, "collateral damage" by indiscriminate off-target cutting tampered enthusiasm for these systems. Yet, how collateral activity, or even RNA target reduction depends on Cas13d and guide RNA abundance has remained unclear due to the lack of expression-tuning studies to address this question. Here we use precise expression-tuning gene circuits to show that both nonspecific and specific, on-target RNA reduction depend on Cas13d and guide RNA levels, and that nonspecific RNA cutting from trans cleavage might contribute to on-target RNA reduction. Using RNA-level control techniques, we develop new Multi-Level Optimized Negative-Autoregulated Cas13d and crRNA Hybrid (MONARCH) gene circuits that achieve a high dynamic range with low basal on-target RNA reduction while minimizing collateral activity in human kidney cells and green monkey cells most frequently used in human virology. MONARCH should bring RNA-guided RNA cutting systems to the forefront, as easily applicable, programmable tools for transcriptome engineering in biotechnological and medical applications.
Collapse
Affiliation(s)
- Yiming Wan
- The
Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Christopher Helenek
- The
Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Damiano Coraci
- Department
of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Gábor Balázsi
- The
Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Stony
Brook Cancer Center, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
4
|
Carlisle SG, Albasha H, Michelena HI, Sabate-Rotes A, Bianco L, De Backer J, Mosquera LM, Yetman AT, Bissell MM, Andreassi MG, Foffa I, Hui DS, Caffarelli A, Kim YY, Guo D, Citro R, De Marco M, Tretter JT, McBride KL, Milewicz DM, Body SC, Prakash SK. Rare genomic copy number variants implicate new candidate genes for bicuspid aortic valve. PLoS One 2024; 19:e0304514. [PMID: 39240962 PMCID: PMC11379187 DOI: 10.1371/journal.pone.0304514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/14/2024] [Indexed: 09/08/2024] Open
Abstract
Bicuspid aortic valve (BAV), the most common congenital heart defect, is a major cause of aortic valve disease requiring valve interventions and thoracic aortic aneurysms predisposing to acute aortic dissections. The spectrum of BAV ranges from early onset valve and aortic complications (EBAV) to sporadic late onset disease. Rare genomic copy number variants (CNVs) have previously been implicated in the development of BAV and thoracic aortic aneurysms. We determined the frequency and gene content of rare CNVs in EBAV probands (n = 272) using genome-wide SNP microarray analysis and three complementary CNV detection algorithms (cnvPartition, PennCNV, and QuantiSNP). Unselected control genotypes from the Database of Genotypes and Phenotypes were analyzed using identical methods. We filtered the data to select large genic CNVs that were detected by multiple algorithms. Findings were replicated in a BAV cohort with late onset sporadic disease (n = 5040). We identified 3 large and rare (< 1,1000 in controls) CNVs in EBAV probands. The burden of CNVs intersecting with genes known to cause BAV when mutated was increased in case-control analysis. CNVs intersecting with GATA4 and DSCAM were enriched in cases, recurrent in other datasets, and segregated with disease in families. In total, we identified potentially pathogenic CNVs in 9% of EBAV cases, implicating alterations of candidate genes at these loci in the pathogenesis of BAV.
Collapse
Affiliation(s)
- Steven G Carlisle
- University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Hasan Albasha
- University College Dublin School of Medicine, Dublin, Ireland
| | | | | | - Lisa Bianco
- Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | - Anji T Yetman
- University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | | | | | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dawn S Hui
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Anthony Caffarelli
- Hoag Memorial Hospital Presbyterian, Newport Beach, California, United States of America
| | - Yuli Y Kim
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dongchuan Guo
- University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Rodolfo Citro
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | | | - Kim L McBride
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Dianna M Milewicz
- University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Simon C Body
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Siddharth K Prakash
- University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
5
|
Sha Z, Sun KY, Jung B, Barzilay R, Moore TM, Almasy L, Forsyth JK, Prem S, Gandal MJ, Seidlitz J, Glessner JT, Alexander-Bloch AF. The copy number variant architecture of psychopathology and cognitive development in the ABCD ® study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.14.24307376. [PMID: 38798629 PMCID: PMC11118651 DOI: 10.1101/2024.05.14.24307376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Importance Childhood is a crucial developmental phase for mental health and cognitive function, both of which are commonly affected in patients with psychiatric disorders. This neurodevelopmental trajectory is shaped by a complex interplay of genetic and environmental factors. While common genetic variants account for a large proportion of inherited genetic risk, rare genetic variations, particularly copy number variants (CNVs), play a significant role in the genetic architecture of neurodevelopmental disorders. Despite their importance, the relevance of CNVs to child psychopathology and cognitive function in the general population remains underexplored. Objective Investigating CNV associations with dimensions of child psychopathology and cognitive functions. Design Setting and Participants ABCD® study focuses on a cohort of over 11,875 youth aged 9 to 10, recruited from 21 sites in the US, aiming to investigate the role of various factors, including brain, environment, and genetic factors, in the etiology of mental and physical health from middle childhood through early adulthood. Data analysis occurred from April 2023 to April 2024. Main Outcomes and Measures In this study, we utilized PennCNV and QuantiSNP algorithms to identify duplications and deletions larger than 50Kb across a cohort of 11,088 individuals from the Adolescent Brain Cognitive Development® study. CNVs meeting quality control standards were subjected to a genome-wide association scan to identify regions associated with quantitative measures of broad psychiatric symptom domains and cognitive outcomes. Additionally, a CNV risk score, reflecting the aggregated burden of genetic intolerance to inactivation and dosage sensitivity, was calculated to assess its impact on variability in overall and dimensional child psychiatric and cognitive phenotypes. Results In a final sample of 8,564 individuals (mean age=9.9 years, 4,532 males) passing quality control, we identified 4,111 individuals carrying 5,760 autosomal CNVs. Our results revealed significant associations between specific CNVs and our phenotypes of interest, psychopathology and cognitive function. For instance, a duplication at 10q26.3 was associated with overall psychopathology, and somatic complaints in particular. Additionally, deletions at 1q12.1, along with duplications at 14q11.2 and 10q26.3, were linked to overall cognitive function, with particular contributions from fluid intelligence (14q11.2), working memory (10q26.3), and reading ability (14q11.2). Moreover, individuals carrying CNVs previously associated with neurodevelopmental disorders exhibited greater impairment in social functioning and cognitive performance across multiple domains, in particular working memory. Notably, a higher deletion CNV risk score was significantly correlated with increased overall psychopathology (especially in dimensions of social functioning, thought disorder, and attention) as well as cognitive impairment across various domains. Conclusions and Relevance In summary, our findings shed light on the contributions of CNVs to interindividual variability in complex traits related to neurocognitive development and child psychopathology.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Kevin Y. Sun
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Benjamin Jung
- Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ran Barzilay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Tyler M. Moore
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Almasy
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Michael J. Gandal
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Joseph T. Glessner
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
7
|
Franzese M, Zanfardino M, Soricelli A, Coppola A, Maiello C, Salvatore M, Schiano C, Napoli C. Familial Dilated Cardiomyopathy: A Novel MED9 Short Isoform Identification. Int J Mol Sci 2024; 25:3057. [PMID: 38474301 DOI: 10.3390/ijms25053057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Familial dilated cardiomyopathy (DCM) is among the leading indications for heart transplantation. DCM alters the transcriptomic profile. The alteration or activation/silencing of physiologically operating transcripts may explain the onset and progression of this pathological state. The mediator complex (MED) plays a fundamental role in the transcription process. The aim of this study is to investigate the MED subunits, which are altered in DCM, to identify target crossroads genes. RNA sequencing allowed us to identify specific MED subunits that are altered during familial DCM, transforming into human myocardial samples. N = 13 MED subunits were upregulated and n = 7 downregulated. MED9 alone was significantly reduced in patients compared to healthy subjects (HS) (FC = -1.257; p < 0.05). Interestingly, we found a short MED9 isoform (MED9s) (ENSG00000141026.6), which was upregulated when compared to the full-transcript isoform (MED9f). Motif identification analysis yielded several significant matches (p < 0.05), such as GATA4, which is downregulated in CHD. Moreover, although the protein-protein interaction network showed FOG2/ZFPM2, FOS and ID2 proteins to be the key interacting partners of GATA4, only FOG2/ZFPM2 overexpression showed an interaction score of "high confidence" ≥ 0.84. A significant change in the MED was observed during HF. For the first time, the MED9 subunit was significantly reduced between familial DCM and HS (p < 0.05), showing an increased MED9s isoform in DCM patients with respect to its full-length transcript. MED9 and GATA4 shared the same sequence motif and were involved in a network with FOG2/ZFPM2, FOS, and ID2, proteins already implicated in cardiac development.
Collapse
Affiliation(s)
| | | | - Andrea Soricelli
- IRCCS SYNLAB SDN, 80143 Naples, Italy
- Department of Exercise and Wellness Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Annapaola Coppola
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 81100 Naples, Italy
| | - Ciro Maiello
- Department of Cardiothoracic Science, U.O.S.D. of Heart Transplantation, Monaldi Hospital, 80131 Naples, Italy
| | | | - Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 81100 Naples, Italy
| | - Claudio Napoli
- IRCCS SYNLAB SDN, 80143 Naples, Italy
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 81100 Naples, Italy
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), 80131 Naples, Italy
| |
Collapse
|
8
|
Li JP, Zhang FB, Li LJ, Chen WK, Wu JG, Tian YH, Liang ZY, Chen C, Jin F. Y chromosome polymorphisms contribute to an increased risk of non-obstructive azoospermia: a retrospective study of 32,055 Chinese men. J Assist Reprod Genet 2024; 41:757-765. [PMID: 38270748 PMCID: PMC10957810 DOI: 10.1007/s10815-024-03022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
PURPOSE To investigate the prevalence of Y chromosome polymorphisms in Chinese men and analyze their associations with male infertility and female adverse pregnancy outcomes. METHODS The clinical data of 32,055 Chinese men who underwent karyotype analysis from October 2014 to September 2019 were collected. Fisher's exact test, chi-square test, or Kruskal-Wallis test was used to analyze the effects of Y chromosome polymorphism on semen parameters, azoospermia factor (AZF) microdeletions, and female adverse pregnancy outcomes. RESULTS The incidence of Y chromosome polymorphic variants was 1.19% (381/32,055) in Chinese men. The incidence of non-obstructive azoospermia (NOA) was significantly higher in men with the Yqh- variant than that in men with normal karyotype and other Y chromosome polymorphic variants (p < 0.050). The incidence of AZF microdeletions was significantly different among the normal karyotype and different Y chromosome polymorphic variant groups (p < 0.001). The detection rate of AZF microdeletions was 28.92% (24/83) in the Yqh- group and 2.50% (3/120) in the Y ≤ 21 group. The AZFb + c region was the most common AZF microdeletion (78.57%, 22/28), followed by AZFc microdeletion (7.14%,2/28) in NOA patients with Yqh- variants. There was no significant difference in the distribution of female adverse pregnancy outcomes among the normal karyotype and different Y chromosome polymorphic variant groups (p = 0.528). CONCLUSIONS Patients with 46,XYqh- variant have a higher incidence of NOA and AZF microdeletions than patients with normal karyotype and other Y chromosome polymorphic variants. Y chromosome polymorphic variants do not affect female adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Jing-Ping Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Feng-Bin Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Le-Jun Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Wei-Kang Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jing-Gen Wu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yong-Hong Tian
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhong-Yan Liang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chong Chen
- Department of Ultrasound, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
9
|
Cao J, Wei Z, Nie Y, Chen HZ. Therapeutic potential of alternative splicing in cardiovascular diseases. EBioMedicine 2024; 101:104995. [PMID: 38350330 PMCID: PMC10874720 DOI: 10.1016/j.ebiom.2024.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
RNA splicing is an important RNA processing step required by multiexon protein-coding mRNAs and some noncoding RNAs. Precise RNA splicing is required for maintaining gene and cell function; however, mis-spliced RNA transcripts can lead to loss- or gain-of-function effects in human diseases. Mis-spliced RNAs induced by gene mutations or the dysregulation of splicing regulators may result in frameshifts, nonsense-mediated decay (NMD), or inclusion/exclusion of exons. Genetic animal models have characterised multiple splicing factors required for cardiac development or function. Moreover, sarcomeric and ion channel genes, which are closely associated with cardiovascular function and disease, are hotspots for AS. Here, we summarise splicing factors and their targets that are associated with cardiovascular diseases, introduce some therapies potentially related to pathological AS targets, and raise outstanding questions and future directions in this field.
Collapse
Affiliation(s)
- Jun Cao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China; University of Texas Medical Branch at Galveston, TX, 77555, USA
| | - Ziyu Wei
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Narayan P, Richter F, Morton S. Genetics and etiology of congenital heart disease. Curr Top Dev Biol 2024; 156:297-331. [PMID: 38556426 DOI: 10.1016/bs.ctdb.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common severe birth anomaly, affecting almost 1% of infants. Most CHD is genetic, but only 40% of patients have an identifiable genetic risk factor for CHD. Chromosomal variation contributes significantly to CHD but is not readily amenable to biological follow-up due to the number of affected genes and lack of evolutionary synteny. The first CHD genes were implicated in extended families with syndromic CHD based on the segregation of risk alleles in affected family members. These have been complemented by more CHD gene discoveries in large-scale cohort studies. However, fewer than half of the 440 estimated human CHD risk genes have been identified, and the molecular mechanisms underlying CHD genetics remains incompletely understood. Therefore, model organisms and cell-based models are essential tools for improving our understanding of cardiac development and CHD genetic risk. Recent advances in genome editing, cell-specific genetic manipulation of model organisms, and differentiation of human induced pluripotent stem cells have recently enabled the characterization of developmental stages. In this chapter, we will summarize the latest studies in CHD genetics and the strengths of various study methodologies. We identify opportunities for future work that will continue to further CHD knowledge and ultimately enable better diagnosis, prognosis, treatment, and prevention of CHD.
Collapse
Affiliation(s)
| | - Felix Richter
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sarah Morton
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
11
|
Perrot A, Rickert-Sperling S. Human Genetics of Ventricular Septal Defect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:505-534. [PMID: 38884729 DOI: 10.1007/978-3-031-44087-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.
Collapse
Affiliation(s)
- Andreas Perrot
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
12
|
Voskamp SM, Hammonds MA, Knapp TM, Pekmezian AL, Hadley D, Nelson JS. Meta-analysis reveals differential gene expression in tetralogy of Fallot versus controls. Birth Defects Res 2024; 116:e2293. [PMID: 38146097 DOI: 10.1002/bdr2.2293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVES Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart defect in the United States. We aimed to identify genetic variations associated with TOF using meta-analysis of publicly available digital samples to spotlight targets for prevention, screening, and treatment strategies. METHODS We used the Search Tag Analyze Resource for Gene Expression Omnibus (STARGEO) platform to identify 39 TOF and 19 non-TOF right ventricle tissue samples from microarray data and identified upregulated and downregulated genes. Associated gene expression data were analyzed using ingenuity pathway analysis and restricted to genes with a statistically significant (p < .05) difference and an absolute experimental log ratio >0.1 between disease and control samples. RESULTS Our analysis identified 220 genes whose expression profiles were significantly altered in TOF vs. non-TOF samples. The most striking differences identified in gene expression included genes FBXO32, PTGES, MYL12a, and NR2F2. Some top associated canonical pathways included adrenergic signaling, estrogen receptor signaling, and the role of NFAT in cardiac hypertrophy. In general, genes involved in adaptive, defensive, and reparative cardiovascular responses showed altered expression in TOF vs. non-TOF samples. CONCLUSIONS We introduced the interpretation of open "big data" using the STARGEO platform to define robust genomic signatures of congenital heart disease pathology of TOF. Overall, our meta-analysis results indicated increased metabolism, inflammation, and altered gene expression in TOF patients. Estrogen receptor signaling and the role of NFAT in cardiac hypertrophy represent unique pathways upregulated in TOF patients and are potential targets for future pharmacologic treatments.
Collapse
Affiliation(s)
- Sarah Mae Voskamp
- University of Central Florida College of Medicine, Orlando, Florida, USA
| | | | - Thomas M Knapp
- University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Ashley L Pekmezian
- University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Dexter Hadley
- University of Central Florida College of Medicine, Orlando, Florida, USA
- Department of Clinical Sciences, University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Jennifer S Nelson
- University of Central Florida College of Medicine, Orlando, Florida, USA
- Department of Cardiovascular Services, Nemours Children's Health, Orlando, Florida, USA
| |
Collapse
|
13
|
Perrot A, Rickert-Sperling S. Human Genetics of Defects of Situs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:705-717. [PMID: 38884744 DOI: 10.1007/978-3-031-44087-8_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Defects of situs are associated with complex sets of congenital heart defects in which the normal concordance of asymmetric thoracic and abdominal organs is disturbed. The cellular and molecular mechanisms underlying the formation of the embryonic left-right axis have been investigated extensively in the past decade. This has led to the identification of mutations in at least 33 different genes in humans with heterotaxy and situs defects. Those mutations affect a broad range of molecular components, from transcription factors, signaling molecules, and chromatin modifiers to ciliary proteins. A substantial overlap of these genes is observed with genes associated with other congenital heart diseases such as tetralogy of Fallot and double-outlet right ventricle, d-transposition of the great arteries, and atrioventricular septal defects. In this chapter, we present the broad genetic heterogeneity of situs defects including recent human genomics efforts.
Collapse
Affiliation(s)
- Andreas Perrot
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
14
|
Wilsdon A, Loughna S. Human Genetics of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:57-75. [PMID: 38884704 DOI: 10.1007/978-3-031-44087-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Congenital heart diseases (or congenital heart defects/disorders; CHDs) are structural abnormalities of the heart and/or great vessels that are present at birth. CHDs include an extensive range of defects that may be minor and require no intervention or may be life-limiting and require complex surgery shortly after birth. This chapter reviews the current knowledge on the genetic causes of CHD.
Collapse
Affiliation(s)
- Anna Wilsdon
- School of Life Sciences, University of Nottingham, Nottingham, UK.
- Clinical Geneticist at Nottingham Clinical Genetics Department, Nottingham University Hospitals, City Hospital, Nottingham, UK.
| | - Siobhan Loughna
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
15
|
Pfitzer C, Schmitt KRL, Benson WD. Human Genetics of Hypoplastic Left Heart Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:937-945. [PMID: 38884762 DOI: 10.1007/978-3-031-44087-8_60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Hypoplastic left heart syndrome (HLHS) is a severe congenital cardiovascular malformation characterized by hypoplasia of the left ventricle, aorta, and other structures on the left side of the heart. The pathologic definition includes atresia or stenosis of both the aortic and mitral valves. Despite considerable progress in clinical and surgical management of HLHS, mortality and morbidity remain concerns. One barrier to progress in HLHS management is poor understanding of its cause. Several lines of evidence point to genetic origins of HLHS. First, some HLHS cases have been associated with cytogenetic abnormalities (e.g., Turner syndrome). Second, studies of family clustering of HLHS and related cardiovascular malformations have determined HLHS is heritable. Third, genomic regions that encode genes influencing the inheritance of HLHS have been identified. Taken together, these diverse studies provide strong evidence for genetic origins of HLHS and related cardiac phenotypes. However, using simple Mendelian inheritance models, identification of single genetic variants that "cause" HLHS has remained elusive, and in most cases, the genetic cause remains unknown. These results suggest that HLHS inheritance is complex rather than simple. The implication of this conclusion is that researchers must move beyond the expectation that a single disease-causing variant can be found. Utilization of complex models to analyze high-throughput genetic data requires careful consideration of study design.
Collapse
Affiliation(s)
- Constanze Pfitzer
- Department of Congenital Heart Disease/Paediatric Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Katharina R L Schmitt
- Department of Congenital Heart Disease/Paediatric Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Woodrow D Benson
- Department of Pediatrics, Herma Heart Center, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
16
|
Dorn C, Perrot A, Grunert M, Rickert-Sperling S. Human Genetics of Tetralogy of Fallot and Double-Outlet Right Ventricle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:629-644. [PMID: 38884738 DOI: 10.1007/978-3-031-44087-8_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Tetralogy of Fallot (TOF) and double-outlet right ventricle (DORV) are conotruncal defects resulting from disturbances of the second heart field and the neural crest, which can occur as isolated malformations or as part of multiorgan syndromes. Their etiology is multifactorial and characterized by overlapping genetic causes. In this chapter, we present the different genetic alterations underlying the two diseases, which range from chromosomal abnormalities like aneuploidies and structural mutations to rare single nucleotide variations affecting distinct genes. For example, mutations in the cardiac transcription factors NKX2-5, GATA4, and HAND2 have been identified in isolated TOF cases, while mutations of TBX5 and 22q11 deletion, leading to haploinsufficiency of TBX1, cause Holt-Oram and DiGeorge syndrome, respectively. Moreover, genes involved in signaling pathways, laterality determination, and epigenetic mechanisms have also been found mutated in TOF and/or DORV patients. Finally, genome-wide association studies identified common single nucleotide polymorphisms associated with the risk for TOF.
Collapse
Affiliation(s)
- Cornelia Dorn
- Cardiovascular Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Perrot
- Cardiovascular Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel Grunert
- Cardiovascular Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
- DiNAQOR AG, Schlieren, Switzerland
| | | |
Collapse
|
17
|
Chhatwal K, Smith JJ, Bola H, Zahid A, Venkatakrishnan A, Brand T. Uncovering the Genetic Basis of Congenital Heart Disease: Recent Advancements and Implications for Clinical Management. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:464-480. [PMID: 38205435 PMCID: PMC10777202 DOI: 10.1016/j.cjcpc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart disease (CHD) is the most prevalent hereditary disorder, affecting approximately 1% of all live births. A reduction in morbidity and mortality has been achieved with advancements in surgical intervention, yet challenges in managing complications, extracardiac abnormalities, and comorbidities still exist. To address these, a more comprehensive understanding of the genetic basis underlying CHD is required to establish how certain variants are associated with the clinical outcomes. This will enable clinicians to provide personalized treatments by predicting the risk and prognosis, which might improve the therapeutic results and the patient's quality of life. We review how advancements in genome sequencing are changing our understanding of the genetic basis of CHD, discuss experimental approaches to determine the significance of novel variants, and identify barriers to use this knowledge in the clinics. Next-generation sequencing technologies are unravelling the role of oligogenic inheritance, epigenetic modification, genetic mosaicism, and noncoding variants in controlling the expression of candidate CHD-associated genes. However, clinical risk prediction based on these factors remains challenging. Therefore, studies involving human-induced pluripotent stem cells and single-cell sequencing help create preclinical frameworks for determining the significance of novel genetic variants. Clinicians should be aware of the benefits and implications of the responsible use of genomics. To facilitate and accelerate the clinical integration of these novel technologies, clinicians should actively engage in the latest scientific and technical developments to provide better, more personalized management plans for patients.
Collapse
Affiliation(s)
- Karanjot Chhatwal
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Jacob J. Smith
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Harroop Bola
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Abeer Zahid
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Ashwin Venkatakrishnan
- Imperial College School of Medicine, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, Imperial Center of Clinical and Translational Medicine, London, United Kingdom
| |
Collapse
|
18
|
Queen R, Crosier M, Eley L, Kerwin J, Turner JE, Yu J, Alqahtani A, Dhanaseelan T, Overman L, Soetjoadi H, Baldock R, Coxhead J, Boczonadi V, Laude A, Cockell SJ, Kane MA, Lisgo S, Henderson DJ. Spatial transcriptomics reveals novel genes during the remodelling of the embryonic human arterial valves. PLoS Genet 2023; 19:e1010777. [PMID: 38011284 PMCID: PMC10703419 DOI: 10.1371/journal.pgen.1010777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/07/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
Abnormalities of the arterial valves, including bicuspid aortic valve (BAV) are amongst the most common congenital defects and are a significant cause of morbidity as well as predisposition to disease in later life. Despite this, and compounded by their small size and relative inaccessibility, there is still much to understand about how the arterial valves form and remodel during embryogenesis, both at the morphological and genetic level. Here we set out to address this in human embryos, using Spatial Transcriptomics (ST). We show that ST can be used to investigate the transcriptome of the developing arterial valves, circumventing the problems of accurately dissecting out these tiny structures from the developing embryo. We show that the transcriptome of CS16 and CS19 arterial valves overlap considerably, despite being several days apart in terms of human gestation, and that expression data confirm that the great majority of the most differentially expressed genes are valve-specific. Moreover, we show that the transcriptome of the human arterial valves overlaps with that of mouse atrioventricular valves from a range of gestations, validating our dataset but also highlighting novel genes, including four that are not found in the mouse genome and have not previously been linked to valve development. Importantly, our data suggests that valve transcriptomes are under-represented when using commonly used databases to filter for genes important in cardiac development; this means that causative variants in valve-related genes may be excluded during filtering for genomic data analyses for, for example, BAV. Finally, we highlight "novel" pathways that likely play important roles in arterial valve development, showing that mouse knockouts of RBP1 have arterial valve defects. Thus, this study has confirmed the utility of ST for studies of the developing heart valves and broadens our knowledge of the genes and signalling pathways important in human valve development.
Collapse
Affiliation(s)
- Rachel Queen
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Moira Crosier
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Janet Kerwin
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Jasmin E. Turner
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Ahlam Alqahtani
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Tamilvendhan Dhanaseelan
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Lynne Overman
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Hannah Soetjoadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Richard Baldock
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh University, United Kingdom
| | - Jonathan Coxhead
- Genomics Core Facility, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Veronika Boczonadi
- Bioimaging Unit, Faculty of medical Sciences, Newcastle University, United Kingdom
| | - Alex Laude
- Bioimaging Unit, Faculty of medical Sciences, Newcastle University, United Kingdom
| | - Simon J. Cockell
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, United States of America
| | - Steven Lisgo
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Deborah J. Henderson
- Human Developmental Biology Resource, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, United Kingdom
| |
Collapse
|
19
|
Carlisle SG, Albasha H, Michelena H, Sabate-Rotes A, Bianco L, De Backer J, Mosquera LM, Yetman AT, Bissell MM, Andreassi MG, Foffa I, Hui DS, Caffarelli A, Kim YY, Guo DC, Citro R, De Marco M, Tretter JT, McBride KL, Milewicz DM, Body SC, Prakash SK. Rare Genomic Copy Number Variants Implicate New Candidate Genes for Bicuspid Aortic Valve. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.23.23297397. [PMID: 37961530 PMCID: PMC10635161 DOI: 10.1101/2023.10.23.23297397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bicuspid aortic valve (BAV), the most common congenital heart defect, is a major cause of aortic valve disease requiring valve interventions and thoracic aortic aneurysms predisposing to acute aortic dissections. The spectrum of BAV ranges from early onset valve and aortic complications (EBAV) to sporadic late onset disease. Rare genomic copy number variants (CNVs) have previously been implicated in the development of BAV and thoracic aortic aneurysms. We determined the frequency and gene content of rare CNVs in EBAV probands (n = 272) using genome-wide SNP microarray analysis and three complementary CNV detection algorithms (cnvPartition, PennCNV, and QuantiSNP). Unselected control genotypes from the Database of Genotypes and Phenotypes were analyzed using identical methods. We filtered the data to select large genic CNVs that were detected by multiple algorithms. Findings were replicated in cohorts with late onset sporadic disease (n = 5040). We identified 34 large and rare (< 1:1000 in controls) CNVs in EBAV probands. The burden of CNVs intersecting with genes known to cause BAV when mutated was increased in case-control analysis. CNVs intersecting with GATA4 and DSCAM were enriched in cases, recurrent in other datasets, and segregated with disease in families. In total, we identified potentially pathogenic CNVs in 8% of EBAV cases, implicating alterations of candidate genes at these loci in the pathogenesis of BAV.
Collapse
Affiliation(s)
- Steven G Carlisle
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Hasan Albasha
- UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hector Michelena
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anna Sabate-Rotes
- Department of Pediatric Cardiology, Hospital Vall d'Hebron, Facultad de Medicina, Universidad Autònoma Barcelona, Barcelona, Spain
| | - Lisa Bianco
- Department of Pediatric Cardiology, Hospital Vall d'Hebron, Facultad de Medicina, Universidad Autònoma Barcelona, Barcelona, Spain
| | - Julie De Backer
- Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium; VASCERN HTAD European Reference Centre, Belgium; Department of Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium; Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | | | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska, Omaha, Nebraska
| | - Malenka M Bissell
- Deparmentt of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center San Antonio, Texas
| | - Anthony Caffarelli
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Yuli Y Kim
- Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Philadelphia Adult Congenital Heart Center, The Children's Hospital of Philadelphia, Perelman Center for Advanced Medicine, Penn Medicine, Philadelphia, Pennsylvania
| | - Dong-Chuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Rodolfo Citro
- Cardio-Thoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kim L McBride
- Division of Human Genetics, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
20
|
Blue EE, White JJ, Dush MK, Gordon WW, Wyatt BH, White P, Marvin CT, Helle E, Ojala T, Priest JR, Jenkins MM, Almli LM, Reefhuis J, Pangilinan F, Brody LC, McBride KL, Garg V, Shaw GM, Romitti PA, Nembhard WN, Browne ML, Werler MM, Kay DM, Mital S, Chong JX, Nascone-Yoder NM, Bamshad MJ. Rare variants in CAPN2 increase risk for isolated hypoplastic left heart syndrome. HGG ADVANCES 2023; 4:100232. [PMID: 37663545 PMCID: PMC10474499 DOI: 10.1016/j.xhgg.2023.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect (CHD) characterized by hypoplasia of the left ventricle and aorta along with stenosis or atresia of the aortic and mitral valves. HLHS represents only ∼4%-8% of all CHDs but accounts for ∼25% of deaths. HLHS is an isolated defect (i.e., iHLHS) in 70% of families, the vast majority of which are simplex. Despite intense investigation, the genetic basis of iHLHS remains largely unknown. We performed exome sequencing on 331 families with iHLHS aggregated from four independent cohorts. A Mendelian-model-based analysis demonstrated that iHLHS was not due to single, large-effect alleles in genes previously reported to underlie iHLHS or CHD in >90% of families in this cohort. Gene-based association testing identified increased risk for iHLHS associated with variation in CAPN2 (p = 1.8 × 10-5), encoding a protein involved in functional adhesion. Functional validation studies in a vertebrate animal model (Xenopus laevis) confirmed CAPN2 is essential for cardiac ventricle morphogenesis and that in vivo loss of calpain function causes hypoplastic ventricle phenotypes and suggest that human CAPN2707C>T and CAPN21112C>T variants, each found in multiple individuals with iHLHS, are hypomorphic alleles. Collectively, our findings show that iHLHS is typically not a Mendelian condition, demonstrate that CAPN2 variants increase risk of iHLHS, and identify a novel pathway involved in HLHS pathogenesis.
Collapse
Affiliation(s)
- Elizabeth E. Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Michael K. Dush
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - William W. Gordon
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brent H. Wyatt
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Peter White
- Institute for Genomic Medicine, Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Colby T. Marvin
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Emmi Helle
- New Children’s Hospital and Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Ojala
- New Children’s Hospital and Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - James R. Priest
- Stanford University School of Medicine, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lynn M. Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Faith Pangilinan
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence C. Brody
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kim L. McBride
- Center for Cardiovascular Research, Nationwide Children’s Hospital, and Division of Genetic and Genomic Medicine, Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | | | - Marilyn L. Browne
- Birth Defects Registry, New York State Department of Health, Albany, NY, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Martha M. Werler
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - National Birth Defects Prevention Study
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Invitae, San Francisco, CA, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Institute for Genomic Medicine, Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- New Children’s Hospital and Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Stanford University School of Medicine, Lucile Packard Children’s Hospital, Stanford, CA, USA
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Cardiovascular Research, Nationwide Children’s Hospital, and Division of Genetic and Genomic Medicine, Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Birth Defects Registry, New York State Department of Health, Albany, NY, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - University of Washington Center for Mendelian Genomics
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Invitae, San Francisco, CA, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Institute for Genomic Medicine, Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- New Children’s Hospital and Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Stanford University School of Medicine, Lucile Packard Children’s Hospital, Stanford, CA, USA
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Cardiovascular Research, Nationwide Children’s Hospital, and Division of Genetic and Genomic Medicine, Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Birth Defects Registry, New York State Department of Health, Albany, NY, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Seema Mital
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jessica X. Chong
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Michael J. Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Harvey DC, Verma R, Sedaghat B, Hjelm BE, Morton SU, Seidman JG, Kumar SR. Mutations in genes related to myocyte contraction and ventricular septum development in non-syndromic tetralogy of Fallot. Front Cardiovasc Med 2023; 10:1249605. [PMID: 37840956 PMCID: PMC10569225 DOI: 10.3389/fcvm.2023.1249605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Objective Eighty percent of patients with a diagnosis of tetralogy of Fallot (TOF) do not have a known genetic etiology or syndrome. We sought to identify key molecular pathways and biological processes that are enriched in non-syndromic TOF, the most common form of cyanotic congenital heart disease, rather than single driver genes to elucidate the pathogenesis of this disease. Methods We undertook exome sequencing of 362 probands with non-syndromic TOF and their parents within the Pediatric Cardiac Genomics Consortium (PCGC). We identified rare (minor allele frequency <1 × 10-4), de novo variants to ascertain pathways and processes affected in this population to better understand TOF pathogenesis. Pathways and biological processes enriched in the PCGC TOF cohort were compared to 317 controls without heart defects (and their parents) from the Simons Foundation Autism Research Initiative (SFARI). Results A total of 120 variants in 117 genes were identified as most likely to be deleterious, with CHD7, CLUH, UNC13C, and WASHC5 identified in two probands each. Gene ontology analyses of these variants using multiple bioinformatic tools demonstrated significant enrichment in processes including cell cycle progression, chromatin remodeling, myocyte contraction and calcium transport, and development of the ventricular septum and ventricle. There was also a significant enrichment of target genes of SOX9, which is critical in second heart field development and whose loss results in membranous ventricular septal defects related to disruption of the proximal outlet septum. None of these processes was significantly enriched in the SFARI control cohort. Conclusion Innate molecular defects in cardiac progenitor cells and genes related to their viability and contractile function appear central to non-syndromic TOF pathogenesis. Future research utilizing our results is likely to have significant implications in stratification of TOF patients and delivery of personalized clinical care.
Collapse
Affiliation(s)
- Drayton C. Harvey
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Riya Verma
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brandon Sedaghat
- Department of Medicine, Rosalind Franklin University School of Medicine and Science, Chicago, IL, United States
| | - Brooke E. Hjelm
- Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah U. Morton
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Jon G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - S. Ram Kumar
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
22
|
Landis BJ, Helvaty LR, Geddes GC, Lin JI, Yatsenko SA, Lo CW, Border WL, Wechsler SB, Murali CN, Azamian MS, Lalani SR, Hinton RB, Garg V, McBride KL, Hodge JC, Ware SM. A Multicenter Analysis of Abnormal Chromosomal Microarray Findings in Congenital Heart Disease. J Am Heart Assoc 2023; 12:e029340. [PMID: 37681527 PMCID: PMC10547279 DOI: 10.1161/jaha.123.029340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/24/2023] [Indexed: 09/09/2023]
Abstract
Background Chromosomal microarray analysis (CMA) provides an opportunity to understand genetic causes of congenital heart disease (CHD). The methods for describing cardiac phenotypes in patients with CMA abnormalities have been inconsistent, which may complicate clinical interpretation of abnormal testing results and hinder a more complete understanding of genotype-phenotype relationships. Methods and Results Patients with CHD and abnormal clinical CMA were accrued from 9 pediatric cardiac centers. Highly detailed cardiac phenotypes were systematically classified and analyzed for their association with CMA abnormality. Hierarchical classification of each patient into 1 CHD category facilitated broad analyses. Inclusive classification allowing multiple CHD types per patient provided sensitive descriptions. In 1363 registry patients, 28% had genomic disorders with well-recognized CHD association, 67% had clinically reported copy number variants (CNVs) with rare or no prior CHD association, and 5% had regions of homozygosity without CNV. Hierarchical classification identified expected CHD categories in genomic disorders, as well as uncharacteristic CHDs. Inclusive phenotyping provided sensitive descriptions of patients with multiple CHD types, which occurred commonly. Among CNVs with rare or no prior CHD association, submicroscopic CNVs were enriched for more complex types of CHD compared with large CNVs. The submicroscopic CNVs that contained a curated CHD gene were enriched for left ventricular obstruction or septal defects, whereas CNVs containing a single gene were enriched for conotruncal defects. Neuronal-related pathways were over-represented in single-gene CNVs, including top candidate causative genes NRXN3, ADCY2, and HCN1. Conclusions Intensive cardiac phenotyping in multisite registry data identifies genotype-phenotype associations in CHD patients with abnormal CMA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chaya N. Murali
- Baylor College of MedicineHoustonTX
- Texas Children’s HospitalHoustonTX
| | | | - Seema R. Lalani
- Baylor College of MedicineHoustonTX
- Texas Children’s HospitalHoustonTX
| | | | - Vidu Garg
- Nationwide Children’s HospitalThe Ohio State UniversityColumbusOH
| | - Kim L. McBride
- Nationwide Children’s HospitalThe Ohio State UniversityColumbusOH
- University of CalgaryCalgaryCanada
| | | | | |
Collapse
|
23
|
Rosli AA, Azlan A, Rajasegaran Y, Mot YY, Heidenreich O, Yusoff NM, Moses EJ. Cytogenetics analysis as the central point of genetic testing in acute myeloid leukemia (AML): a laboratory perspective for clinical applications. Clin Exp Med 2023; 23:1137-1159. [PMID: 36229751 DOI: 10.1007/s10238-022-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
Chromosomal abnormalities in acute myeloid leukemia (AML) have significantly contributed to scientific understanding of its molecular pathogenesis, which has aided in the development of therapeutic strategies and enhanced management of AML patients. The diagnosis, prognosis and treatment of AML have also rapidly transformed in recent years, improving initial response to treatment, remission rates, risk stratification and overall survival. Hundreds of rare chromosomal abnormalities in AML have been discovered thus far using chromosomal analysis and next-generation sequencing. As a result, the World Health Organization (WHO) has categorized AML into subgroups based on genetic, genomic and molecular characteristics, to complement the existing French-American classification which is solely based on morphology. In this review, we aim to highlight the most clinically relevant chromosomal aberrations in AML together with the technologies employed to detect these aberrations in laboratory settings.
Collapse
Affiliation(s)
- Aliaa Arina Rosli
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Adam Azlan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Prinses Máxima Centrum Voor Kinderoncologie, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
24
|
Lin Q, Tam PKH, Tang CSM. Artificial intelligence-based approaches for the detection and prioritization of genomic mutations in congenital surgical diseases. Front Pediatr 2023; 11:1203289. [PMID: 37593442 PMCID: PMC10429173 DOI: 10.3389/fped.2023.1203289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Genetic mutations are critical factors leading to congenital surgical diseases and can be identified through genomic analysis. Early and accurate identification of genetic mutations underlying these conditions is vital for clinical diagnosis and effective treatment. In recent years, artificial intelligence (AI) has been widely applied for analyzing genomic data in various clinical settings, including congenital surgical diseases. This review paper summarizes current state-of-the-art AI-based approaches used in genomic analysis and highlighted some successful applications that deepen our understanding of the etiology of several congenital surgical diseases. We focus on the AI methods designed for the detection of different variant types and the prioritization of deleterious variants located in different genomic regions, aiming to uncover susceptibility genomic mutations contributed to congenital surgical disorders.
Collapse
Affiliation(s)
- Qiongfen Lin
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Clara Sze-Man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr Li Dak-Sum Research Centree, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
25
|
Lu Y, Zhou Y, Guo J, Qi M, Lin Y, Zhang X, Xiang Y, Fu Q, Wang B. Integrated analysis of copy number variation-associated lncRNAs identifies candidates contributing to the etiologies of congenital kidney anomalies. Commun Biol 2023; 6:735. [PMID: 37460814 DOI: 10.1038/s42003-023-05101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are disorders resulting from defects in the development of the kidneys and their outflow tract. Copy number variations (CNVs) have been identified as important genetic variations leading to CAKUT, whereas most CAKUT-associated CNVs cannot be attributed to a specific pathogenic gene. Here we construct coexpression networks involving long noncoding RNAs (lncRNAs) within these CNVs (CNV-lncRNAs) using human kidney developmental transcriptomic data. The results show that CNV-lncRNAs encompassed in recurrent CAKUT associated CNVs have highly correlated expression with CAKUT genes in the developing kidneys. The regulatory effects of two hub CNV-lncRNAs (HSALNG0134318 in 22q11.2 and HSALNG0115943 in 17q12) in the module most significantly enriched in known CAKUT genes (CAKUT_sig1, P = 1.150 × 10-6) are validated experimentally. Our results indicate that the reduction of CNV-lncRNAs can downregulate CAKUT genes as predicted by our computational analyses. Furthermore, knockdown of HSALNG0134318 would downregulate HSALNG0115943 and affect kidney development related pathways. The results also indicate that the CAKUT_sig1 module has function significance involving multi-organ development. Overall, our findings suggest that CNV-lncRNAs play roles in regulating CAKUT genes, and the etiologies of CAKUT-associated CNVs should take account of effects on the noncoding genome.
Collapse
Affiliation(s)
- Yibo Lu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yiyang Zhou
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jing Guo
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ming Qi
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuwan Lin
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xingyu Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Xiang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, China.
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, China.
| | - Bo Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, China.
| |
Collapse
|
26
|
Padua MB, Helm BM, Wells JR, Smith AM, Bellchambers HM, Sridhar A, Ware SM. Congenital heart defects caused by FOXJ1. Hum Mol Genet 2023; 32:2335-2346. [PMID: 37158461 PMCID: PMC10321388 DOI: 10.1093/hmg/ddad065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/25/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023] Open
Abstract
FOXJ1 is expressed in ciliated cells of the airways, testis, oviduct, central nervous system and the embryonic left-right organizer. Ablation or targeted mutation of Foxj1 in mice, zebrafish and frogs results in loss of ciliary motility and/or reduced length and number of motile cilia, affecting the establishment of the left-right axis. In humans, heterozygous pathogenic variants in FOXJ1 cause ciliopathy leading to situs inversus, obstructive hydrocephalus and chronic airway disease. Here, we report a novel truncating FOXJ1 variant (c.784_799dup; p.Glu267Glyfs*12) identified by clinical exome sequencing from a patient with isolated congenital heart defects (CHD) which included atrial and ventricular septal defects, double outlet right ventricle (DORV) and transposition of the great arteries. Functional experiments show that FOXJ1 c.784_799dup; p.Glu267Glyfs*12, unlike FOXJ1, fails to induce ectopic cilia in frog epidermis in vivo or to activate the ADGB promoter, a downstream target of FOXJ1 in cilia, in transactivation assays in vitro. Variant analysis of patients with heterotaxy or heterotaxy-related CHD indicates that pathogenic variants in FOXJ1 are an infrequent cause of heterotaxy. Finally, we characterize embryonic-stage CHD in Foxj1 loss-of-function mice, demonstrating randomized heart looping. Abnormal heart looping includes reversed looping (dextrocardia), ventral looping and no looping/single ventricle hearts. Complex CHDs revealed by histological analysis include atrioventricular septal defects, DORV, single ventricle defects as well as abnormal position of the great arteries. These results indicate that pathogenic variants in FOXJ1 can cause isolated CHD.
Collapse
Affiliation(s)
- Maria B Padua
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Benjamin M Helm
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Epidemiology, Indiana University Fairbanks School of Public Health, Indianapolis, IN 46202, USA
| | - John R Wells
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amanda M Smith
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Helen M Bellchambers
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arthi Sridhar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephanie M Ware
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Salim S, Hussain S, Banu A, Gowda SBM, Ahammad F, Alwa A, Pasha M, Mohammad F. The ortholog of human ssDNA-binding protein SSBP3 influences neurodevelopment and autism-like behaviors in Drosophila melanogaster. PLoS Biol 2023; 21:e3002210. [PMID: 37486945 PMCID: PMC10399856 DOI: 10.1371/journal.pbio.3002210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/03/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
1p32.3 microdeletion/duplication is implicated in many neurodevelopmental disorders-like phenotypes such as developmental delay, intellectual disability, autism, macro/microcephaly, and dysmorphic features. The 1p32.3 chromosomal region harbors several genes critical for development; however, their validation and characterization remain inadequate. One such gene is the single-stranded DNA-binding protein 3 (SSBP3) and its Drosophila melanogaster ortholog is called sequence-specific single-stranded DNA-binding protein (Ssdp). Here, we investigated consequences of Ssdp manipulations on neurodevelopment, gene expression, physiological function, and autism-associated behaviors using Drosophila models. We found that SSBP3 and Ssdp are expressed in excitatory neurons in the brain. Ssdp overexpression caused morphological alterations in Drosophila wing, mechanosensory bristles, and head. Ssdp manipulations also affected the neuropil brain volume and glial cell number in larvae and adult flies. Moreover, Ssdp overexpression led to differential changes in synaptic density in specific brain regions. We observed decreased levels of armadillo in the heads of Ssdp overexpressing flies, as well as a decrease in armadillo and wingless expression in the larval wing discs, implicating the involvement of the canonical Wnt signaling pathway in Ssdp functionality. RNA sequencing revealed perturbation of oxidative stress-related pathways in heads of Ssdp overexpressing flies. Furthermore, Ssdp overexpressing brains showed enhanced reactive oxygen species (ROS), altered neuronal mitochondrial morphology, and up-regulated fission and fusion genes. Flies with elevated levels of Ssdp exhibited heightened anxiety-like behavior, altered decisiveness, defective sensory perception and habituation, abnormal social interaction, and feeding defects, which were phenocopied in the pan-neuronal Ssdp knockdown flies, suggesting that Ssdp is dosage sensitive. Partial rescue of behavioral defects was observed upon normalization of Ssdp levels. Notably, Ssdp knockdown exclusively in adult flies did not produce behavioral and functional defects. Finally, we show that optogenetic manipulation of Ssdp-expressing neurons altered autism-associated behaviors. Collectively, our findings provide evidence that Ssdp, a dosage-sensitive gene in the 1p32.3 chromosomal region, is associated with various anatomical, physiological, and behavioral defects, which may be relevant to neurodevelopmental disorders like autism. Our study proposes SSBP3 as a critical gene in the 1p32.3 microdeletion/duplication genomic region and sheds light on the functional role of Ssdp in neurodevelopmental processes in Drosophila.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Sadam Hussain
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Swetha B. M. Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Foysal Ahammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Mujaheed Pasha
- HBKU Core Labs, Hamad Bin Khalifa University (HBKU): Doha, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
28
|
Carotenuto R, Pallotta MM, Tussellino M, Fogliano C. Xenopus laevis (Daudin, 1802) as a Model Organism for Bioscience: A Historic Review and Perspective. BIOLOGY 2023; 12:890. [PMID: 37372174 DOI: 10.3390/biology12060890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
In vitro systems have been mainly promoted by authorities to sustain research by following the 3Rs principle, but continuously increasing amounts of evidence point out that in vivo experimentation is also of extreme relevance. Xenopus laevis, an anuran amphibian, is a significant model organism in the study of evolutionary developmental biology, toxicology, ethology, neurobiology, endocrinology, immunology and tumor biology; thanks to the recent development of genome editing, it has also acquired a relevant position in the field of genetics. For these reasons, X. laevis appears to be a powerful and alternative model to the zebrafish for environmental and biomedical studies. Its life cycle, as well as the possibility to obtain gametes from adults during the whole year and embryos by in vitro fertilization, allows experimental studies of several biological endpoints, such as gametogenesis, embryogenesis, larval growth, metamorphosis and, of course, the young and adult stages. Moreover, with respect to alternative invertebrate and even vertebrate animal models, the X. laevis genome displays a higher degree of similarity with that of mammals. Here, we have reviewed the main available literature on the use of X. laevis in the biosciences and, inspired by Feymann's revised view, "Plenty of room for biology at the bottom", suggest that X. laevis is a very useful model for all possible studies.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | | | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
29
|
Yu M, Aguirre M, Jia M, Gjoni K, Cordova-Palomera A, Munger C, Amgalan D, Ma XR, Pereira A, Tcheandjieu C, Seidman C, Seidman J, Tristani-Firouzi M, Chung W, Goldmuntz E, Srivastava D, Loos RJ, Chami N, Cordell H, Dreßen M, Mueller-Myhsok B, Lahm H, Krane M, Pollard KS, Engreitz JM, Gagliano Taliun SA, Gelb BD, Priest JR. Oligogenic Architecture of Rare Noncoding Variants Distinguishes 4 Congenital Heart Disease Phenotypes. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:258-266. [PMID: 37026454 PMCID: PMC10330096 DOI: 10.1161/circgen.122.003968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/29/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Congenital heart disease (CHD) is highly heritable, but the power to identify inherited risk has been limited to analyses of common variants in small cohorts. METHODS We performed reimputation of 4 CHD cohorts (n=55 342) to the TOPMed reference panel (freeze 5), permitting meta-analysis of 14 784 017 variants including 6 035 962 rare variants of high imputation quality as validated by whole genome sequencing. RESULTS Meta-analysis identified 16 novel loci, including 12 rare variants, which displayed moderate or large effect sizes (median odds ratio, 3.02) for 4 separate CHD categories. Analyses of chromatin structure link 13 of the genome-wide significant loci to key genes in cardiac development; rs373447426 (minor allele frequency, 0.003 [odds ratio, 3.37 for Conotruncal heart disease]; P=1.49×10-8) is predicted to disrupt chromatin structure for 2 nearby genes BDH1 and DLG1 involved in Conotruncal development. A lead variant rs189203952 (minor allele frequency, 0.01 [odds ratio, 2.4 for left ventricular outflow tract obstruction]; P=1.46×10-8) is predicted to disrupt the binding sites of 4 transcription factors known to participate in cardiac development in the promoter of SPAG9. A tissue-specific model of chromatin conformation suggests that common variant rs78256848 (minor allele frequency, 0.11 [odds ratio, 1.4 for Conotruncal heart disease]; P=2.6×10-8) physically interacts with NCAM1 (PFDR=1.86×10-27), a neural adhesion molecule acting in cardiac development. Importantly, while each individual malformation displayed substantial heritability (observed h2 ranging from 0.26 for complex malformations to 0.37 for left ventricular outflow tract obstructive disease) the risk for different CHD malformations appeared to be separate, without genetic correlation measured by linkage disequilibrium score regression or regional colocalization. CONCLUSIONS We describe a set of rare noncoding variants conferring significant risk for individual heart malformations which are linked to genes governing cardiac development. These results illustrate that the oligogenic basis of CHD and significant heritability may be linked to rare variants outside protein-coding regions conferring substantial risk for individual categories of cardiac malformation.
Collapse
Affiliation(s)
- Mengyao Yu
- Dept of Pediatrics, Stanford Univ School of Medicine
| | - Matthew Aguirre
- Dept of Pediatrics, Stanford Univ School of Medicine
- Dept of Biomedical Data Science, Stanford Univ, Stanford CA
| | - Meiwen Jia
- Dept of Translational Research in Psychiatry, Max Planck Institute of Psychiatry Munich, Munich, Germany
| | - Ketrin Gjoni
- Gladstone Institutes; Univ of California San Francisco, San Francisco CA
| | | | - Chad Munger
- Dept of Genetics, Stanford Univ School of Medicine
| | | | - X Rosa Ma
- Dept of Genetics, Stanford Univ School of Medicine
| | | | - Catherine Tcheandjieu
- Dept of Pediatrics, Stanford Univ School of Medicine
- Gladstone Institutes; Univ of California San Francisco, San Francisco CA
| | | | | | | | - Wendy Chung
- Dept of Pediatrics, Columbia Univ, New York, NY
| | | | - Deepak Srivastava
- Gladstone Institutes; Univ of California San Francisco, San Francisco CA
| | | | | | - Heather Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle Univ, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Martina Dreßen
- Dept of Cardiovascular Surgery, Division of Experimental Surgery, Institute Insure (Institute for Translational Cardiac Surgery), German Heart Center Munich & Technical Univ of Munich, School of Medicine & Health, Munich, Germany
| | - Bertram Mueller-Myhsok
- Dept of Translational Research in Psychiatry, Max Planck Institute of Psychiatry Munich, Munich, Germany
| | - Harald Lahm
- Dept of Cardiovascular Surgery, Division of Experimental Surgery, Institute Insure (Institute for Translational Cardiac Surgery), German Heart Center Munich & Technical Univ of Munich, School of Medicine & Health, Munich, Germany
| | - Markus Krane
- Dept of Cardiovascular Surgery, Division of Experimental Surgery, Institute Insure (Institute for Translational Cardiac Surgery), German Heart Center Munich & Technical Univ of Munich, School of Medicine & Health, Munich, Germany
- Dept of Cardiac Surgery, Yale School of Medicine, New Haven, CT
| | - Katherine S. Pollard
- Gladstone Institutes; Univ of California San Francisco, San Francisco CA
- Chan Zuckerberg Biohub, San Francisco
| | - Jesse M. Engreitz
- Dept of Genetics, Stanford Univ School of Medicine
- Basic Sciences and Engineering (BASE) Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA
| | - Sarah A. Gagliano Taliun
- Dept of Medicine & Dept of Neurosciences, Faculty of Medicine, Université de Montréal
- Montreal Heart Institute, Montreal, Quebec, Canada
| | - Bruce D. Gelb
- The Mindich Child Health & Development Institute at the Hess Center for Science & Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
30
|
Lim TY, Verbitsky M, Sanna-Cherchi S. ParseCNV2: a versatile and integrated tool for copy number variation association studies. Eur J Hum Genet 2023; 31:275-277. [PMID: 36631543 PMCID: PMC9995335 DOI: 10.1038/s41431-022-01280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Affiliation(s)
- Tze Y Lim
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Miguel Verbitsky
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
31
|
Glessner JT, Li J, Liu Y, Khan M, Chang X, Sleiman PMA, Hakonarson H. ParseCNV2: efficient sequencing tool for copy number variation genome-wide association studies. Eur J Hum Genet 2023; 31:304-312. [PMID: 36316489 PMCID: PMC9995309 DOI: 10.1038/s41431-022-01222-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Improved copy number variation (CNV) detection remains an area of heavy emphasis for algorithm development; however, both CNV curation and disease association approaches remain in its infancy. The current practice of focusing on candidate CNVs, where researchers study specific CNVs they believe to be pathological while discarding others, refrains from considering the full spectrum of CNVs in a hypothesis-free GWAS. To address this, we present a next-generation approach to CNV association by natively supporting the popular VCF specification for sequencing-derived variants as well as SNP array calls using a PennCNV format. The code is fast and efficient, allowing for the analysis of large (>100,000 sample) cohorts without dividing up the data on a compute cluster. The scripts are condensed into a single tool to promote simplicity and best practices. CNV curation pre and post-association is rigorously supported and emphasized to yield reliable results of highest quality. We benchmarked two large datasets, including the UK Biobank (n > 450,000) and CAG Biobank (n > 350,000) both of which are genotyped at >0.5 M probes, for our input files. ParseCNV has been actively supported and developed since 2008. ParseCNV2 presents a critical addition to formalizing CNV association for inclusion with SNP associations in GWAS Catalog. Clinical CNV prioritization, interactive quality control (QC), and adjustment for covariates are revolutionary new features of ParseCNV2 vs. ParseCNV. The software is freely available at: https://github.com/CAG-CNV/ParseCNV2 .
Collapse
Affiliation(s)
- Joseph T Glessner
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Jin Li
- Department of Cell Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yichuan Liu
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Munir Khan
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Xiao Chang
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Patrick M A Sleiman
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
32
|
Copy number variation-associated lncRNAs may contribute to the etiologies of congenital heart disease. Commun Biol 2023; 6:189. [PMID: 36806749 PMCID: PMC9938258 DOI: 10.1038/s42003-023-04565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Copy number variations (CNVs) have long been recognized as pathogenic factors for congenital heart disease (CHD). Few CHD associated CNVs could be interpreted as dosage effect due to disruption of coding sequences. Emerging evidences have highlighted the regulatory roles of long noncoding RNAs (lncRNAs) in cardiac development. Whereas it remains unexplored whether lncRNAs within CNVs (CNV-lncRNAs) could contribute to the etiology of CHD associated CNVs. Here we constructed coexpression networks involving CNV-lncRNAs within CHD associated CNVs and protein coding genes using the human organ developmental transcriptomic data, and showed that CNV-lncRNAs within 10 of the non-syndromic CHD associated CNVs clustered in the most significant heart correlated module, and had highly correlated coexpression with multiple key CHD genes. HSALNG0104472 within 15q11.2 region was identified as a hub CNV-lncRNA with heart-biased expression and validated experimentally. Our results indicated that HSALNG0104472 should be a main effector responsible for cardiac defects of 15q11.2 deletion through regulating cardiomyocytes differentiation. Our findings suggested that CNV-lncRNAs could potentially contribute to the pathologies of a maximum proportion of 68.4% (13/19) of non-syndromic CHD associated CNVs. These results indicated that explaining the pathogenesis of CHD associated CNVs should take account of the noncoding regions.
Collapse
|
33
|
Patt E, Singhania A, Roberts AE, Morton SU. The Genetics of Neurodevelopment in Congenital Heart Disease. Can J Cardiol 2023; 39:97-114. [PMID: 36183910 DOI: 10.1016/j.cjca.2022.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 02/07/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth anomaly, affecting almost 1% of infants. Neurodevelopmental delay is the most common extracardiac feature in people with CHD. Many factors may contribute to neurodevelopmental risk, including genetic factors, CHD physiology, and the prenatal/postnatal environment. Damaging variants are most highly enriched among individuals with extracardiac anomalies or neurodevelopmental delay in addition to CHD, indicating that genetic factors have an impact beyond cardiac tissues in people with CHD. Potential sources of genetic risk include large deletions or duplications that affect multiple genes, such as 22q11 deletion syndrome, single genes that alter both heart and brain development, such as CHD7, and common variants that affect neurodevelopmental resiliency, such as APOE. Increased use of genome-sequencing technologies in studies of neurodevelopmental outcomes in people with CHD will improve our ability to detect relevant genes and variants. Ultimately, such knowledge can lead to improved and more timely intervention of learning support for affected children.
Collapse
Affiliation(s)
- Eli Patt
- Harvard Medical School, Boston, Massachusetts, USA
| | - Asmita Singhania
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
34
|
Nie S. Use of Frogs as a Model to Study the Etiology of HLHS. J Cardiovasc Dev Dis 2023; 10:51. [PMID: 36826547 PMCID: PMC9965361 DOI: 10.3390/jcdd10020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
A frog is a classical model organism used to uncover processes and regulations of early vertebrate development, including heart development. Recently, we showed that a frog also represents a useful model to study a rare human congenital heart disease, hypoplastic left heart syndrome. In this review, we first summarized the cellular events and molecular regulations of vertebrate heart development, and the benefit of using a frog model to study congenital heart diseases. Next, we described the challenges in elucidating the etiology of hypoplastic left heart syndrome and discussed how a frog model may contribute to our understanding of the molecular and cellular bases of the disease. We concluded that a frog model offers its unique advantage in uncovering the cellular mechanisms of hypoplastic left heart syndrome; however, combining multiple model organisms, including frogs, is needed to gain a comprehensive understanding of the disease.
Collapse
Affiliation(s)
- Shuyi Nie
- School of Biological Sciences, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
35
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
36
|
High throughput mutation screening of cardiac transcription factor GATA4 among Tanzania children with congenital heart diseases. THE NUCLEUS 2023. [DOI: 10.1007/s13237-022-00414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
37
|
Jia Y, Chen J, Zhong J, He X, Zeng L, Wang Y, Li J, Xia S, Ye E, Zhao J, Ke B, Li C. Novel rare mutation in a conserved site of PTPRB causes human hypoplastic left heart syndrome. Clin Genet 2023; 103:79-86. [PMID: 36148623 DOI: 10.1111/cge.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Hypoplastic left heart syndrome (HLHS) is a rare but fatal birth defect in which the left side of the heart is underdeveloped. HLHS accounts for 2% to 4% of congenital heart anomalies. Whole genome sequencing (WGS) was conducted for a family trio consisting of a proband and his parents. A homozygous rare variant was detected in the PTPRB (Protein Tyrosine Phosphatase Receptor Type B) gene of the proband by functional annotation and co-segregation analysis. Sanger sequencing was used to confirm genotypes of the variant. The in silico prediction tools, including Mutation Taster, SpliceAI, and CADD, were used to predict the impact of the mutation. The allele frequencies across populations were compared based on multiple databases, including "1000 genomes" and "gnomAD". We used two vectors (pcMINI and pcDNA3.1) to generate a minigene construct to validate the mutational effect at the transcriptional level. Family-based WGS analyses showed that only a homozygous splice acceptor variant (NC_000012.12: g.70636068T>G, NM_001109754.4: c.56-2A>C, NG_029940.2: g.6373A>C) at the exon-intron border of PTPRB gene associates with HLHS. This variant is also within the region with the enhancer activity based on UCSC genome annotation. Genotyping and Sanger sequencing revealed that the proband's parents are heterozygous for this variant. Evolutionary conservation analysis revealed that the site (NC_000012.12: g.70636068) is extremely conserved across species, supporting the evolutionary functional constraints of the ancestral wild type (T). In silico tools universally predicted a deleterious or disease-causing impact of the mutation from T to G. The mutation was not found in the 1000 genomes and gnomAD databases, which indicates that this mutation is very rare in most human populations. A splicing assay indicated that the mutated minigene caused aberrant splicing of mRNA, in which a 3 bp missing in the second exon resulted in the deletion of one amino acid (NP_001103224.1:p.Glu19del) compared to the normal protein of PRPTB (also the VE-PTP). Structure prediction revealed that the deletion occurred within the C-region of the signal peptide of VE-PTP, suggesting signal peptide-related defects as a potential mechanism for the HLHS cellular pathogeny. We report a rare homozygous variant with splicing error in PTPRB associated with HLHS. Previous model species studies revealed conserved functions of PTPRB in cardiovascular and heart development in mice and zebrafish. Our study is the first report to show the association between PTPRB and HLHS in humans.
Collapse
Affiliation(s)
- Yangying Jia
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zeng
- The Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmin Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Jiakun Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Erdengqieqieke Ye
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing Zhao
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bin Ke
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Fu Z, Yue J, Xue L, Xu Y, Ding Q, Xiao W. Using whole exome sequencing to identify susceptibility genes associated with nonsyndromic cleft lip with or without cleft palate. Mol Genet Genomics 2023; 298:107-118. [PMID: 36322204 DOI: 10.1007/s00438-022-01967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Cleft lip and palate is a common congenital birth defect in humans. Its incidence rate in China is as high as 1.82%, and is now a frequent deformity observed among the Chinese population; moreover, it varies across regions. Although the etiology of nonsyndromic cleft lip with or without cleft palate (NSCL/P) has been widely investigated, the results are inconsistent. The specific genes and mechanisms responsible for NSCL/P have not been fully understood. Whole exome sequencing (WES) is a new strategy for studying pathogenic genes. WES studies on NSCL/P have not been conducted in East China. Therefore, the aim of this study was to screen candidate genes of NSCL/P in East China using WES and analyze the temporal and spatial expressions of the candidate genes during embryonic palatal development. WES was performed in 30 children with NSCL/P from East China to screen candidate genes. A bioinformatics analysis was performed using commercially available software. Variants detected by WES were validated by immunohistochemistry and western blotting. After WES, 506,144 single-nucleotide variant sites were found. The results of database comparison, functional analysis, and mass spectrometry revealed that only the laminin alpha 5 (LAMA5) gene (site: rs145192286) was associated with NSCL/P. Immunohistochemistry results showed that LAMA5 expression in the medial edge epithelium changed with formation, lifting, and contact during palatogenesis. Almost no LAMA5 expression was detected in the palatal mesenchyme or after palatal fusion. Western blotting and immunohistochemistry results showed consistent trends. In conclusion, the WES results shows that the mutation at the site (rs145192286) of LAMA5 is associated with NSCL/P. The temporal and spatial expressions of LAMA5 during palatal development further demonstrate the involvement of this gene. Therefore, we speculate that LAMA5 is a new candidate pathogenic gene of NSCL/P. The identification of new pathogenic genes would help elucidate the pathogenesis of NSCL/P and provide a scientific basis for the prenatal diagnosis, prevention, and treatment of NSCL/P.
Collapse
Affiliation(s)
- Zhenzhen Fu
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Jin Yue
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Lingfa Xue
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yaoxiang Xu
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qian Ding
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China.,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China
| | - Wenlin Xiao
- Department of Stomatology, Affiliated Hospital of Qingdao University, Qingdao, 266555, Shandong, China. .,School of Stomatology, Qingdao University, Qingdao, 266071, Shandong, China. .,Department of Stomatology, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
39
|
Lin L, Pinto A, Wang L, Fukatsu K, Yin Y, Bamforth SD, Bronner ME, Evans SM, Nie S, Anderson RH, Terskikh AV, Grossfeld PD. ETS1 loss in mice impairs cardiac outflow tract septation via a cell migration defect autonomous to the neural crest. Hum Mol Genet 2022; 31:4217-4227. [PMID: 35899771 PMCID: PMC10148727 DOI: 10.1093/hmg/ddac174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023] Open
Abstract
Ets1 deletion in some mouse strains causes septal defects and has been implicated in human congenital heart defects in Jacobsen syndrome, in which one copy of the Ets1 gene is missing. Here, we demonstrate that loss of Ets1 in mice results in a decrease in neural crest (NC) cells migrating into the proximal outflow tract cushions during early heart development, with subsequent malalignment of the cushions relative to the muscular ventricular septum, resembling double outlet right ventricle (DORV) defects in humans. Consistent with this, we find that cultured cardiac NC cells from Ets1 mutant mice or derived from iPS cells from Jacobsen patients exhibit decreased migration speed and impaired cell-to-cell interactions. Together, our studies demonstrate a critical role for ETS1 for cell migration in cardiac NC cells that are required for proper formation of the proximal outflow tracts. These data provide further insights into the molecular and cellular basis for development of the outflow tracts, and how perturbation of NC cells can lead to DORV.
Collapse
Affiliation(s)
- Lizhu Lin
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Antonella Pinto
- Department of Biology, Sanford-Burnham-Prebys Institute of Medical Discovery, La Jolla, CA 92037, USA
| | - Lu Wang
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Kazumi Fukatsu
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Yan Yin
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Simon D Bamforth
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Marianne E Bronner
- Department of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sylvia M Evans
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA 92093, USA
| | - Shuyi Nie
- Department of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Robert H Anderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Alexey V Terskikh
- Department of Biology, Sanford-Burnham-Prebys Institute of Medical Discovery, La Jolla, CA 92037, USA
| | - Paul D Grossfeld
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
- Division of Cardiology, Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
40
|
Ehrlich L, Prakash SK. Copy-number variation in congenital heart disease. Curr Opin Genet Dev 2022; 77:101986. [PMID: 36202051 DOI: 10.1016/j.gde.2022.101986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/27/2023]
Abstract
Genomic copy-number variants (CNVs) contribute to as many congenital heart disease (CHD) cases (10-15%) as chromosomal aberrations or single-gene mutations and influence clinical outcomes. CNVs in a few genomic hotspots (1q21.1, 2q13, 8p23.1, 11q24, 15q11.2, 16p11.2, and 22q11.2) are recurrently enriched in CHD cohorts and affect dosage-sensitive transcriptional regulators that are required for cardiac development. Reduced penetrance and pleiotropic effects on brain and heart development are common features of these CNVs. Therefore, additional genetic 'hits,' such as a second CNV or gene mutation, are probably required to cause CHD in most cases. Integrative analysis of CNVs, genome sequence, epigenetic alterations, and gene function will be required to delineate the complete genetic landscape of CHD.
Collapse
Affiliation(s)
- Laurent Ehrlich
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Siddharth K Prakash
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Gelb BD. Prospects for precision genetic medicine in congenital heart disease. Curr Opin Genet Dev 2022; 77:101983. [PMID: 36115276 PMCID: PMC9729438 DOI: 10.1016/j.gde.2022.101983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/27/2023]
Abstract
Precision medicine, defined as tailoring medical care individually based upon relevant factors, is primarily implemented currently through the use of genetic variation. Over the past thirty years, the possibility of determining specific genetic variants underlying congenital heart disease has increased dramatically. This has created the potential for using precision genetic approaches to improve care and outcomes for patients and families with congenital heart disease. In this review, recent advances in understanding the roles of genetic variants in various outcomes, in developing novel therapeutic approaches, and in refining clinical trials for congenital heart disease are discussed.
Collapse
Affiliation(s)
- Bruce D Gelb
- Mindich Child Health and Development Institute and the Departments of Pediatrics and Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
42
|
Saacks NA, Eales J, Spracklen TF, Aldersley T, Human P, Verryn M, Lawrenson J, Cupido B, Comitis G, De Decker R, Fourie B, Swanson L, Joachim A, Brooks A, Ramesar R, Shaboodien G, Keavney BD, Zühlke LJ. Investigation of Copy Number Variation in South African Patients With Congenital Heart Defects. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003510. [PMID: 36205932 PMCID: PMC9770125 DOI: 10.1161/circgen.121.003510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/27/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) is a leading non-infectious cause of pediatric morbidity and mortality worldwide. Although the etiology of CHD is poorly understood, genetic factors including copy number variants (CNVs) contribute to the risk of CHD in individuals of European ancestry. The presence of rare CNVs in African CHD populations is unknown. This study aimed to identify pathogenic and likely pathogenic CNVs in South African patients with CHD. METHODS Genotyping was performed on 90 patients with nonsyndromic CHD using the Affymetrix CytoScan HD platform. These data were used to identify large, rare CNVs in known CHD-associated genes and candidate genes. RESULTS We identified eight CNVs overlapping known CHD-associated genes (GATA4, CRKL, TBX1, FLT4, B3GAT3, NSD1) in six patients. The analysis also revealed CNVs encompassing five candidate genes likely to play a role in the development of CHD (DGCR8, KDM2A, JARID2, FSTL1, CYFIP1) in five patients. One patient was found to have 47, XXY karyotype. We report a total discovery yield of 6.7%, with 5.6% of the cohort carrying pathogenic or likely pathogenic CNVs expected to cause the observed phenotypes. CONCLUSIONS In this study, we show that chromosomal microarray is an effective technique for identifying CNVs in African patients diagnosed with CHD and have demonstrated results similar to previous CHD genetic studies in Europeans. Novel potential CHD genes were also identified, indicating the value of genetic studies of CHD in ancestrally diverse populations.
Collapse
Affiliation(s)
- Nicole A. Saacks
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
| | - James Eales
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (J.E., B.D.K.)
| | - Timothy F. Spracklen
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
- Department of Medicine, Cape Heart Institute (T.F.S., G.S., L.J.Z.)
| | - Thomas Aldersley
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
| | - Paul Human
- Chris Barnard Division of Cardiothoracic Surgery, Department of Medicine, Faculty of Health Sciences (P.H., A.B.)
| | - Mark Verryn
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa (M.V., G.S.)
| | - John Lawrenson
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health, University of Stellenbosch, Cape Town, South Africa (J.L., B.F.)
| | - Blanche Cupido
- Division of Cardiology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences (B.C., L.J.Z.)
| | - George Comitis
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
| | - Rik De Decker
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
| | - Barend Fourie
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health, University of Stellenbosch, Cape Town, South Africa (J.L., B.F.)
| | - Lenise Swanson
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
| | - Alexia Joachim
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
| | - Andre Brooks
- Chris Barnard Division of Cardiothoracic Surgery, Department of Medicine, Faculty of Health Sciences (P.H., A.B.)
| | - Raj Ramesar
- MRC Genomic & Precision Medicine Research Unit, Division of Human Genetics, Dept of Pathology, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa (R.R.)
| | - Gasnat Shaboodien
- Department of Medicine, Cape Heart Institute (T.F.S., G.S., L.J.Z.)
- Cardiovascular Genetics Laboratory, Hatter Institute for Cardiovascular Research in Africa (M.V., G.S.)
| | - Bernard D. Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (J.E., B.D.K.)
| | - Liesl J. Zühlke
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health (N.A.S., T.F.S., T.A., J.L., G.C., R.D.D., L.S., A.J., L.J.Z.)
- Department of Medicine, Cape Heart Institute (T.F.S., G.S., L.J.Z.)
- Division of Cardiology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences (B.C., L.J.Z.)
- South African Medical Research Council, Cape Town (L.J.Z.)
| |
Collapse
|
43
|
Tan R, Shen Y. Accurate in silico confirmation of rare copy number variant calls from exome sequencing data using transfer learning. Nucleic Acids Res 2022; 50:e123. [PMID: 36124672 PMCID: PMC9756945 DOI: 10.1093/nar/gkac788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022] Open
Abstract
Exome sequencing is widely used in genetic studies of human diseases and clinical genetic diagnosis. Accurate detection of copy number variants (CNVs) is important to fully utilize exome sequencing data. However, exome data are noisy. None of the existing methods alone can achieve both high precision and recall rate. A common practice is to perform heuristic filtration followed by manual inspection of read depth of putative CNVs. This approach does not scale in large studies. To address this issue, we developed a transfer learning method, CNV-espresso, for in silico confirming rare CNVs from exome sequencing data. CNV-espresso encodes candidate CNVs from exome data as images and uses pretrained convolutional neural network models to classify copy number states. We trained CNV-espresso using an offspring-parents trio exome sequencing dataset, with inherited CNVs as positives and CNVs with Mendelian errors as negatives. We evaluated the performance using additional samples that have both exome and whole-genome sequencing (WGS) data. Assuming the CNVs detected from WGS data as a proxy of ground truth, CNV-espresso significantly improves precision while keeping recall almost intact, especially for CNVs that span a small number of exons. CNV-espresso can effectively replace manual inspection of CNVs in large-scale exome sequencing studies.
Collapse
Affiliation(s)
- Renjie Tan
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
- JP Sulzberger Columbia Genome Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
44
|
Wang YJ, Zhang X, Lam CK, Guo H, Wang C, Zhang S, Wu JC, Snyder M, Li J. Systems analysis of de novo mutations in congenital heart diseases identified a protein network in the hypoplastic left heart syndrome. Cell Syst 2022; 13:895-910.e4. [PMID: 36167075 PMCID: PMC9671831 DOI: 10.1016/j.cels.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/14/2022] [Accepted: 09/02/2022] [Indexed: 01/26/2023]
Abstract
Despite a strong genetic component, only a few genes have been identified in congenital heart diseases (CHDs). We introduced systems analyses to uncover the hidden organization on biological networks of mutations in CHDs and leveraged network analysis to integrate the protein interactome, patient exomes, and single-cell transcriptomes of the developing heart. We identified a CHD network regulating heart development and observed that a sub-network also regulates fetal brain development, thereby providing mechanistic insights into the clinical comorbidities between CHDs and neurodevelopmental conditions. At a small scale, we experimentally verified uncharacterized cardiac functions of several proteins. At a global scale, our study revealed developmental dynamics of the network and observed its association with the hypoplastic left heart syndrome (HLHS), which was further supported by the dysregulation of the network in HLHS endothelial cells. Overall, our work identified previously uncharacterized CHD factors and provided a generalizable framework applicable to studying many other complex diseases. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Yuejun Jessie Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Xicheng Zhang
- Department of Genetics and the Center for Genomics and Personalized Medicine, School of Medicine, Stanford University, 291 Campus Dr., Stanford, CA 94305, USA
| | - Chi Keung Lam
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Hongchao Guo
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA
| | - Cheng Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Sai Zhang
- Department of Genetics and the Center for Genomics and Personalized Medicine, School of Medicine, Stanford University, 291 Campus Dr., Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA; Department of Radiology, Stanford University School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA
| | - Michael Snyder
- Department of Genetics and the Center for Genomics and Personalized Medicine, School of Medicine, Stanford University, 291 Campus Dr., Stanford, CA 94305, USA; Stanford Cardiovascular Institute, School of Medicine, Stanford University, 265 Campus Dr., Stanford, CA 94305, USA.
| | - Jingjing Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA.
| |
Collapse
|
45
|
Delea M, Massara LS, Espeche LD, Bidondo MP, Barbero P, Oliveri J, Brun P, Fabro M, Galain M, Fernández CS, Taboas M, Bruque CD, Kolomenski JE, Izquierdo A, Berenstein A, Cosentino V, Martinoli C, Vilas M, Rittler M, Mendez R, Furforo L, Liascovich R, Groisman B, Rozental S, Dain L. Genetic Analysis Algorithm for the Study of Patients with Multiple Congenital Anomalies and Isolated Congenital Heart Disease. Genes (Basel) 2022; 13:1172. [PMID: 35885957 PMCID: PMC9317700 DOI: 10.3390/genes13071172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Congenital anomalies (CA) affect 3-5% of newborns, representing the second-leading cause of infant mortality in Argentina. Multiple congenital anomalies (MCA) have a prevalence of 2.26/1000 births in newborns, while congenital heart diseases (CHD) are the most frequent CA with a prevalence of 4.06/1000 births. The aim of this study was to identify the genetic causes in Argentinian patients with MCA and isolated CHD. We recruited 366 patients (172 with MCA and 194 with isolated CHD) born between June 2015 and August 2019 at public hospitals. DNA from peripheral blood was obtained from all patients, while karyotyping was performed in patients with MCA. Samples from patients presenting conotruncal CHD or DiGeorge phenotype (n = 137) were studied using MLPA. Ninety-three samples were studied by array-CGH and 18 by targeted or exome next-generation sequencing (NGS). A total of 240 patients were successfully studied using at least one technique. Cytogenetic abnormalities were observed in 13 patients, while 18 had clinically relevant imbalances detected by array-CGH. After MLPA, 26 patients presented 22q11 deletions or duplications and one presented a TBX1 gene deletion. Following NGS analysis, 12 patients presented pathogenic or likely pathogenic genetic variants, five of them, found in KAT6B, SHH, MYH11, MYH7 and EP300 genes, are novel. Using an algorithm that combines molecular techniques with clinical and genetic assessment, we determined the genetic contribution in 27.5% of the analyzed patients.
Collapse
Affiliation(s)
- Marisol Delea
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Lucia S. Massara
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Lucia D. Espeche
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - María Paz Bidondo
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
- Unidad Académica de Histologia, Embriologia, Biologia Celular y Genética, Facultad de Medicina UBA, Paraguay 2155, Buenos Aires 1121, Argentina
| | - Pablo Barbero
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Jaen Oliveri
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Paloma Brun
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Mónica Fabro
- Novagen, Viamonte 1430, Buenos Aires 1055, Argentina; (M.F.); (M.G.); (C.S.F.)
| | - Micaela Galain
- Novagen, Viamonte 1430, Buenos Aires 1055, Argentina; (M.F.); (M.G.); (C.S.F.)
| | | | - Melisa Taboas
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Carlos D. Bruque
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Jorge E. Kolomenski
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales-UBA, Intendente Güiraldes 2160, Buenos Aires 1428, Argentina;
| | - Agustín Izquierdo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá”. Gallo 1330, Buenos Aires 1425, Argentina;
| | - Ariel Berenstein
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Gallo 1330, Buenos Aires 1425, Argentina;
| | - Viviana Cosentino
- Hospital Interzonal General de Agudos Luisa Cravenna de Gandulfo, Balcarce 351, Lomas de Zamora 1832, Argentina;
| | - Celeste Martinoli
- Hospital Sor Maria Ludovica, Calle 14 1631, La Plata 1904, Argentina;
| | - Mariana Vilas
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Mónica Rittler
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Rodrigo Mendez
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Lilian Furforo
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Rosa Liascovich
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Boris Groisman
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Sandra Rozental
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Liliana Dain
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales-UBA, Intendente Güiraldes 2160, Buenos Aires 1428, Argentina;
| | | |
Collapse
|
46
|
Network assisted analysis of de novo variants using protein-protein interaction information identified 46 candidate genes for congenital heart disease. PLoS Genet 2022; 18:e1010252. [PMID: 35671298 PMCID: PMC9205499 DOI: 10.1371/journal.pgen.1010252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/17/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
De novo variants (DNVs) with deleterious effects have proved informative in identifying risk genes for early-onset diseases such as congenital heart disease (CHD). A number of statistical methods have been proposed for family-based studies or case/control studies to identify risk genes by screening genes with more DNVs than expected by chance in Whole Exome Sequencing (WES) studies. However, the statistical power is still limited for cohorts with thousands of subjects. Under the hypothesis that connected genes in protein-protein interaction (PPI) networks are more likely to share similar disease association status, we developed a Markov Random Field model that can leverage information from publicly available PPI databases to increase power in identifying risk genes. We identified 46 candidate genes with at least 1 DNV in the CHD study cohort, including 18 known human CHD genes and 35 highly expressed genes in mouse developing heart. Our results may shed new insight on the shared protein functionality among risk genes for CHD. The topologic information in a pathway may be informative to identify functionally interrelated genes and help improve statistical power in DNV studies. Under the hypothesis that connected genes in PPI networks are more likely to share similar disease association status, we developed a novel statistical model that can leverage information from publicly available PPI databases. Through simulation studies under multiple settings, we proved our method can increase statistical power in identifying additional risk genes compared to methods without using the PPI network information. We then applied our method to a real example for CHD DNV data, and then visualized the subnetwork of candidate genes to find potential functional gene clusters for CHD.
Collapse
|
47
|
Zemet R, Van den Veyver IB, Stankiewicz P. Parental mosaicism for apparent de novo genetic variants: Scope, detection, and counseling challenges. Prenat Diagn 2022; 42:811-821. [PMID: 35394072 PMCID: PMC9995893 DOI: 10.1002/pd.6144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/07/2022]
Abstract
The disease burden of de novo mutations (DNMs) has been evidenced only recently when the common application of next-generation sequencing technologies enabled their reliable and affordable detection through family-based clinical exome or genome sequencing. Implementation of exome sequencing into prenatal diagnostics revealed that up to 63% of pathogenic or likely pathogenic variants associated with fetal structural anomalies are apparently de novo, primarily for autosomal dominant disorders. Apparent DNMs have been considered to primarily occur as germline or zygotic events, with consequently negligible recurrence risks. However, there is now evidence that a considerable proportion of them are in fact inherited from a parent mosaic for the variant. Here, we review the burden of DNMs in prenatal diagnostics and the influence of parental mosaicism on the interpretation of apparent DNMs and discuss the challenges with detecting and quantifying parental mosaicism and its effect on recurrence risk. We also describe new bioinformatic and technological tools developed to assess mosaicism and discuss how they improve the accuracy of reproductive risk counseling when parental mosaicism is detected.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
48
|
Wang K, Cadzow M, Bixley M, Leask MP, Merriman ME, Yang Q, Li Z, Takei R, Phipps-Green A, Major TJ, Topless R, Dalbeth N, King F, Murphy R, Stamp LK, Zoysa J, Wang Z, Shi Y, Merriman TR. A Polynesian-specific copy number variant encompassing the MHC Class I Polypeptide-related Sequence A (MICA) gene associates with gout. Hum Mol Genet 2022; 31:3757-3768. [PMID: 35451026 PMCID: PMC9616569 DOI: 10.1093/hmg/ddac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Gout is of particularly high prevalence in the Māori and Pacific (Polynesian) populations of Aotearoa New Zealand (NZ). Here, we investigated the contribution of common population-specific copy number variation (CNV) to gout in the Aotearoa NZ Polynesian population. Microarray-generated genome-wide genotype data from Aotearoa NZ Polynesian individuals with (n = 1196) and without (n = 1249) gout were analyzed. Comparator population groups were 552 individuals of European ancestry and 1962 of Han Chinese ancestry. Levels of circulating major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) were measured by enzyme-linked immunosorbent assay. Fifty-four CNV regions (CNVRs) appearing in at least 10 individuals were detected, of which seven common (>2%) CNVRs were specific to or amplified in Polynesian people. A burden test of these seven revealed associations of insertion/deletion with gout (odds ratio (OR) 95% confidence interval [CI] = 1.80 [1.01; 3.22], P = 0.046). Individually testing of the seven CNVRs for association with gout revealed nominal association of CNVR1 with gout in Western Polynesian (Chr6: 31.36–31.45 Mb, OR = 1.72 [1.03; 2.92], P = 0.04), CNVR6 in the meta-analyzed Polynesian sample sets (Chr1: 196.75–196.92 Mb, OR = 1.86 [1.16; 3.00], P = 0.01) and CNVR9 in Western Polynesian (Chr1: 189.35–189.54 Mb, OR = 2.75 [1.15; 7.13], P = 0.03). Analysis of European gout genetic association data demonstrated a signal of association at the CNVR1 locus that was an expression quantitative trait locus for MICA. The most common CNVR (CNVR1) includes deletion of the MICA gene, encoding an immunomodulatory protein. Expression of MICA was reduced in the serum of individuals with the deletion. In summary, we provide evidence for the association of CNVR1 containing MICA with gout in Polynesian people, implicating class I MHC-mediated antigen presentation in gout.
Collapse
Affiliation(s)
- Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Murray Cadzow
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Matt Bixley
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Megan P Leask
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.,Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China
| | - Riku Takei
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - Tanya J Major
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Ruth Topless
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Frances King
- Ngati Porou Hauora Charitable Trust, Te Puia Springs, New Zealand
| | - Rinki Murphy
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Janak Zoysa
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.,Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
49
|
Verma SK, Deshmukh V, Thatcher K, Belanger KK, Rhyner A, Meng S, Holcomb R, Bressan M, Martin J, Cooke J, Wythe J, Widen S, Lincoln J, Kuyumcu-Martinez M. RBFOX2 is required for establishing RNA regulatory networks essential for heart development. Nucleic Acids Res 2022; 50:2270-2286. [PMID: 35137168 PMCID: PMC8881802 DOI: 10.1093/nar/gkac055] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Human genetic studies identified a strong association between loss of function mutations in RBFOX2 and hypoplastic left heart syndrome (HLHS). There are currently no Rbfox2 mouse models that recapitulate HLHS. Therefore, it is still unknown how RBFOX2 as an RNA binding protein contributes to heart development. To address this, we conditionally deleted Rbfox2 in embryonic mouse hearts and found profound defects in cardiac chamber and yolk sac vasculature formation. Importantly, our Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. To determine the molecular drivers of these cardiac defects, we performed RNA-sequencing in Rbfox2 mutant hearts and identified dysregulated alternative splicing (AS) networks that affect cell adhesion to extracellular matrix (ECM) mediated by Rho GTPases. We identified two Rho GTPase cycling genes as targets of RBFOX2. Modulating AS of these two genes using antisense oligos led to cell cycle and cell-ECM adhesion defects. Consistently, Rbfox2 mutant hearts displayed cell cycle defects and inability to undergo endocardial-mesenchymal transition, processes dependent on cell-ECM adhesion and that are seen in HLHS. Overall, our work not only revealed that loss of Rbfox2 leads to heart development defects resembling HLHS, but also identified RBFOX2-regulated AS networks that influence cell-ECM communication vital for heart development.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vaibhav Deshmukh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaitlyn Thatcher
- Department of Pediatrics, Medical College of Wisconsin, Division of Pediatric Cardiology, The Herma Heart Institute, Children's WI, Milwaukee, WI 53226, USA
| | - KarryAnne K Belanger
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander M Rhyner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shu Meng
- Houston Methodist Research Institute, Department of Cardiovascular Sciences, Houston, TX 77030, USA
| | - Richard Joshua Holcomb
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC27599, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiomyocyte Renewal Lab;Texas Heart Institute, Houston, TX77030, USA
| | - John P Cooke
- Houston Methodist Research Institute, Department of Cardiovascular Sciences, Houston, TX 77030, USA
| | - Joshua D Wythe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiomyocyte Renewal Lab;Texas Heart Institute, Houston, TX77030, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Division of Pediatric Cardiology, The Herma Heart Institute, Children's WI, Milwaukee, WI 53226, USA
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Neuroscience, Cell Biology and Anatomy, Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd. Galveston, TX 77555, USA
| |
Collapse
|
50
|
Moreira F, Arenas M, Videira A, Pereira F. Evolutionary History of TOPIIA Topoisomerases in Animals. J Mol Evol 2022; 90:149-165. [PMID: 35165762 DOI: 10.1007/s00239-022-10048-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 01/15/2023]
Abstract
TOPIIA topoisomerases are required for the regulation of DNA topology by DNA cleavage and re-ligation and are important targets of antibiotic and anticancer agents. Humans possess two TOPIIA paralogue genes (TOP2A and TOP2B) with high sequence and structural similarity but distinct cellular functions. Despite their functional and clinical relevance, the evolutionary history of TOPIIA is still poorly understood. Here we show that TOPIIA is highly conserved in Metazoa. We also found that TOPIIA paralogues from jawed and jawless vertebrates had different origins related with tetraploidization events. After duplication, TOP2B evolved under a stronger purifying selection than TOP2A, perhaps promoted by the more specialized role of TOP2B in postmitotic cells. We also detected genetic signatures of positive selection in the highly variable C-terminal domain (CTD), possibly associated with adaptation to cellular interactions. By comparing TOPIIA from modern and archaic humans, we found two amino acid substitutions in the TOP2A CTD, suggesting that TOP2A may have contributed to the evolution of present-day humans, as proposed for other cell cycle-related genes. Finally, we identified six residues conferring resistance to chemotherapy differing between TOP2A and TOP2B. These six residues could be targets for the development of TOP2A-specific inhibitors that would avoid the side effects caused by inhibiting TOP2B. Altogether, our findings clarify the origin, diversification and selection pressures governing the evolution of animal TOPIIA.
Collapse
Affiliation(s)
- Filipa Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Arnaldo Videira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe Pereira
- IDENTIFICA Genetic Testing, Rua Simão Bolívar 259 3º Dir Tras, 4470-214, Maia, Portugal.
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|