1
|
Wan X, Zhang H, Tian J, Hao P, Liu L, Zhou Y, Zhang J, Song X, Ge C. The Chains of Ferroptosis Interact in the Whole Progression of Atherosclerosis. J Inflamm Res 2023; 16:4575-4592. [PMID: 37868832 PMCID: PMC10588755 DOI: 10.2147/jir.s430885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Atherosclerosis (AS), a category of cardiovascular disease (CVD) that can cause other more severe disabilities, increasingly jeopardizes human health. Owing to its imperceptible and chronic symptoms, it is hard to determine the pathogenesis and precise therapeutics for AS. A novel type of programmed cell death called ferroptosis was discovered in recent years that is distinctively different from other traditional cell death pathways in morphological and biochemical aspects. Characterized by iron overload, redox disequilibrium, and accumulation of lipid hydroperoxides (L-OOH), ferroptosis influences endothelial cells, vascular smooth muscle cells (VSMCs), and macrophages, as well as inflammation, partaking in the pathology of many cardiovascular diseases such as atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure. The mechanisms behind ferroptosis are so sophisticated and interwoven that many molecules involved in this procedure are unknown. This review systematically depicts the initiation and modulation of ferroptosis and summarizes the contribution of ferroptosis to AS, which may open a feasible approach for target treatment in the alleviation of AS progression.
Collapse
Affiliation(s)
- Xueqi Wan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Huan Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Peng Hao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yuquan Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jing Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Changjiang Ge
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Ebert S, Zang L, Ismail N, Otabil M, Fröhlich A, Egea V, Ács S, Hoeberg M, Berres ML, Weber C, Moreira JMA, Ries C, Bernhagen J, El Bounkari O. Tissue Inhibitor of Metalloproteinases-1 Interacts with CD74 to Promote AKT Signaling, Monocyte Recruitment Responses, and Vascular Smooth Muscle Cell Proliferation. Cells 2023; 12:1899. [PMID: 37508563 PMCID: PMC10378328 DOI: 10.3390/cells12141899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1), an important regulator of matrix metalloproteinases (MMPs), has recently been shown to interact with CD74, a receptor for macrophage migration inhibitory factor (MIF). However, the biological effects mediated by TIMP-1 through CD74 remain largely unexplored. Using sequence alignment and in silico protein-protein docking analysis, we demonstrated that TIMP-1 shares residues with both MIF and MIF-2, crucial for CD74 binding, but not for CXCR4. Subcellular colocalization, immunoprecipitation, and internalization experiments supported these findings, demonstrating that TIMP-1 interacts with surface-expressed CD74, resulting in its internalization in a dose-dependent manner, as well as with a soluble CD74 ectodomain fragment (sCD74). This prompted us to study the effects of the TIMP-1-CD74 axis on monocytes and vascular smooth muscle cells (VSCMs) to assess its impact on vascular inflammation. A phospho-kinase array revealed the activation of serine/threonine kinases by TIMP-1 in THP-1 pre-monocytes, in particular AKT. Similarly, TIMP-1 dose-dependently triggered the phosphorylation of AKT and ERK1/2 in primary human monocytes. Importantly, Transwell migration, 3D-based Chemotaxis, and flow adhesion assays demonstrated that TIMP-1 engagement of CD74 strongly promotes the recruitment response of primary human monocytes, while live cell imaging studies revealed a profound activating effect on VSMC proliferation. Finally, re-analysis of scRNA-seq data highlighted the expression patterns of TIMP-1 and CD74 in human atherosclerotic lesions, thus, together with our experimental data, indicating a role for the TIMP-1-CD74 axis in vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Simon Ebert
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| | - Lan Zang
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
| | - Noor Ismail
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| | - Michael Otabil
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| | - Adrian Fröhlich
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| | - Virginia Egea
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
| | - Susann Ács
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
| | - Mikkel Hoeberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie-Luise Berres
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Munich Heart Alliance, 80802 Munich, Germany
| | - José M A Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christian Ries
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Munich Heart Alliance, 80802 Munich, Germany
| | - Omar El Bounkari
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| |
Collapse
|
3
|
Li QL, Tang J, Zhao L, Ruze A, Shan XF, Gao XM. The role of CD74 in cardiovascular disease. Front Cardiovasc Med 2023; 9:1049143. [PMID: 36712241 PMCID: PMC9877307 DOI: 10.3389/fcvm.2022.1049143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Leukocyte differentiation antigen 74 (CD74), also known as invariant chain, is a molecular chaperone of major histocompatibility complex class II (MHC II) molecules involved in antigen presentation. CD74 has recently been shown to be a receptor for the macrophage migration inhibitory factor family proteins (MIF/MIF2). Many studies have revealed that CD74 plays an important role in cardiovascular disease. In this review, we summarize the structure and main functions of CD74 and then focus on the recent research progress on the role of CD74 in cardiovascular diseases. In addition, we also discuss potential treatment strategies that target CD74. Our systematic review of the role of CD74 in cardiovascular disease will fill some knowledge gaps in the field.
Collapse
Affiliation(s)
- Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China,Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Xinjiang Key Laboratory of Medical Animal Model Research, Ürümqi, China,Clinical Medical Research Institute of Xinjiang Medical University, Ürümqi, China,*Correspondence: Xiao-Ming Gao,
| |
Collapse
|
4
|
Zhang Q, Guo Y, Zhang B, Liu H, Peng Y, Wang D, Zhang D. Identification of hub biomarkers of myocardial infarction by single-cell sequencing, bioinformatics, and machine learning. Front Cardiovasc Med 2022; 9:939972. [PMID: 35958412 PMCID: PMC9357907 DOI: 10.3389/fcvm.2022.939972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 12/11/2022] Open
Abstract
Background Myocardial infarction (MI) is one of the first cardiovascular diseases endangering human health. Inflammatory response plays a significant role in the pathophysiological process of MI. Messenger RNA (mRNA) has been proven to play a key role in cardiovascular diseases. Single-cell sequencing (SCS) technology is a new technology for high-throughput sequencing analysis of genome, transcriptome, and epigenome at the single-cell level, and it also plays an important role in the diagnosis and treatment of cardiovascular diseases. Machine learning algorithms have a wide scope of utilization in biomedicine and have demonstrated superior efficiency in clinical trials. However, few studies integrate these three methods to investigate the role of mRNA in MI. The aim of this study was to screen the expression of mRNA, investigate the function of mRNA, and provide an underlying scientific basis for the diagnosis of MI. Methods In total, four RNA microarray datasets of MI, namely, GSE66360, GSE97320, GSE60993, and GSE48060, were downloaded from the Gene Expression Omnibus database. The function analysis was carried out by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Disease Ontology (DO) enrichment analysis. At the same time, inflammation-related genes (IRGs) were acquired from the GeneCards database. Then, 52 co-DEGs were acquired from differentially expressed genes (DEGs) in differential analysis, IRGs, and genes from SCS, and they were used to construct a protein-protein interaction (PPI) network. Two machine learning algorithms, namely, (1) least absolute shrinkage and selection operator and (2) support vector machine recursive feature elimination, were used to filter the co-DEGs. Gene set enrichment analysis (GSEA) was performed to screen the hub-modulating signaling pathways associated with the hub genes. The results were validated in GSE97320, GSE60993, and GSE48060 datasets. The CIBERSORT algorithm was used to analyze 22 infiltrating immune cells in the MI and healthy control (CON) groups and to analyze the correlation between these immune cells. The Pymol software was used for molecular docking of hub DEGs and for potential treatment of MI drugs acquired from the COREMINE. Results A total of 126 DEGs were in the MI and CON groups. After screening two machine learning algorithms and key co-DEGs from a PPI network, two hub DEGs (i.e., IL1B and TLR2) were obtained. The diagnostic efficiency of IL1B, TLR2, and IL1B + TLR2 showed good discrimination in the four cohorts. GSEA showed that KEGG enriched by DEGs were mainly related to inflammation-mediated signaling pathways, and GO biological processes enriched by DEGs were linked to biological effects of various inflammatory cells. Immune analysis indicated that IL1B and TLR2 were correlated with various immune cells. Dan shen, san qi, feng mi, yuan can e, can sha, san qi ye, san qi hua, and cha shu gen were identified as the potential traditional Chinese medicine (TCM) for the treatment of MI. 7-hydroxyflavone (HF) had stable combinations with IL1B and TLR2, respectively. Conclusion This study identified two hub DEGs (IL1B and TLR2) and illustrated its potential role in the diagnosis of MI to enhance our knowledge of the underlying molecular mechanism. Infiltrating immune cells played an important role in MI. TCM, especially HF, was a potential drug for the treatment of MI.
Collapse
Affiliation(s)
- Qunhui Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.,College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Yang Guo
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.,College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Benyin Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Hairui Liu
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Yanfeng Peng
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Di Wang
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Dejun Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China.,College of Eco-Environmental Engineering, Qinghai University, Xining, China
| |
Collapse
|
5
|
Wang Y, Wang Q, Xu D. New insights into macrophage subsets in atherosclerosis. J Mol Med (Berl) 2022; 100:1239-1251. [PMID: 35930063 DOI: 10.1007/s00109-022-02224-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/11/2022]
Abstract
Macrophages in atherosclerotic patients are notably plastic and heterogeneous. Single-cell RNA sequencing (Sc RNA-seq) can provide information about all the RNAs in individual cells, and it is used to identify cell subpopulations in atherosclerosis (AS) and reveal the heterogeneity of these cells. Recently, some findings from Sc RNA-seq experiments have suggested the existence of multiple macrophage subsets in atherosclerotic plaque lesions, and these subsets exhibit significant differences in their gene expression levels and functions. These cells affect various aspects of plaque lesion development, stabilization, and regression, as well as plaque rupture. This article aims to review the content and results of current studies that used RNA-seq to explore the different types of macrophages in AS and the related molecular mechanisms as well as to identify the potential roles of these macrophage types in the pathogenesis of atherosclerotic plaques. Also, this review listed some new therapeutic targets for delaying atherosclerotic lesion progression and treatment based on the experimental results.
Collapse
Affiliation(s)
- Yurong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol 2022; 22:251-265. [PMID: 34389841 PMCID: PMC10111155 DOI: 10.1038/s41577-021-00584-1] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is the root cause of many cardiovascular diseases. Extensive research in preclinical models and emerging evidence in humans have established the crucial roles of the innate and adaptive immune systems in driving atherosclerosis-associated chronic inflammation in arterial blood vessels. New techniques have highlighted the enormous heterogeneity of leukocyte subsets in the arterial wall that have pro-inflammatory or regulatory roles in atherogenesis. Understanding the homing and activation pathways of these immune cells, their disease-associated dynamics and their regulation by microbial and metabolic factors will be crucial for the development of clinical interventions for atherosclerosis, including potentially vaccination-based therapeutic strategies. Here, we review key molecular mechanisms of immune cell activation implicated in modulating atherogenesis and provide an update on the contributions of innate and adaptive immune cell subsets in atherosclerosis.
Collapse
Affiliation(s)
- Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
7
|
CD74 in Apoptotic Macrophages Is Associated with Inflammation, Plaque Progression and Clinical Manifestations in Human Atherosclerotic Lesions. Metabolites 2022; 12:metabo12010054. [PMID: 35050177 PMCID: PMC8781814 DOI: 10.3390/metabo12010054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to investigate whether CD74 levels in atherosclerotic lesions are associated with inflammation, apoptosis, plaque severity, and clinical symptoms among patients with carotid atherosclerosis. We further studied whether CD74 expression is associated with apoptosis in macrophages induced by 7ketocholesterol (7keto). Sixty-one carotid samples (39 males and 22 females) were immunostained with macrophages, smooth muscle cells, CD74, ferritin, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling), and thrombin receptors. Double immunocytochemistry of CD74 and caspase 3 or CD74 and Annexin V was performed on THP-1 macrophages exposed to 7keto. In human carotid plaques, CD74 expression is lesion-dependently increased and is associated with necrotic core formation and plaque rupture, clinical symptoms, macrophage apoptosis, ferritin, and thrombin receptors. CD74 levels were inversely correlated to high-density lipoproteins and statin treatment, and positively correlated to triglycerides. In THP-1 macrophages, 7keto induced a significant increase in levels of CD74, ferritin, and apoptotic cell death. This study suggests that CD74 in apoptotic macrophages is linked to inflammation and thrombosis in progression of human atherosclerotic plaques, lipid metabolism, and clinical manifestation in atherosclerosis. Surface CD74 in apoptotic macrophages and ferritin production induced by oxidized lipids may contribute to inflammation and plaque vulnerability in atherosclerosis.
Collapse
|
8
|
Han H, Du R, Cheng P, Zhang J, Chen Y, Li G. Comprehensive Analysis of the Immune Infiltrates and Aberrant Pathways Activation in Atherosclerotic Plaque. Front Cardiovasc Med 2021; 7:602345. [PMID: 33614738 PMCID: PMC7892440 DOI: 10.3389/fcvm.2020.602345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/31/2020] [Indexed: 02/05/2023] Open
Abstract
Atherosclerosis is the pathological basis of many cardiovascular and cerebrovascular diseases. The development of gene chip and high-throughput sequencing technologies revealed that the immune microenvironment of coronary artery disease (CAD) in high-risk populations played an important role in the formation and development of atherosclerotic plaques. Three gene expression datasets related to CAD were assessed using high-throughput profiling. CIBERSORT analysis revealed significant differences in five types of immune cells: activated dendritic cells (DCs), T follicular helper cells (Tfhs), resting CD4+ T cells, regulatory T cells (Tregs), and γδ T cells. Immune transcriptome analysis indicated higher levels of inflammatory markers (cytolytic activity, antigen presentation, chemokines, and cytokines) in the cases than in the controls. The level of activated DCs and the lipid clearance signaling score were negatively correlated. We observed a positive correlation between the fraction of Tfhs and lipid biosynthesis. Resting CD4+ T cells and the activity of pathways related to ossification in bone remodeling and glutathione synthesis showed a negative correlation. Gamma delta T cells negatively correlated with IL-23 signaling activity. GSEA revealed a close association with the inflammatory immune microenvironment. The present study revealed that CAD patients may have an inflammatory immune microenvironment and provides a timely update on anti-inflammatory therapies under current investigation.
Collapse
Affiliation(s)
- Hukui Han
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Du
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Panke Cheng
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiancheng Zhang
- Emergency Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Chen
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Gang Li
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Papadopoulou AA, Fluhrer R. Signaling Functions of Intramembrane Aspartyl-Proteases. Front Cardiovasc Med 2020; 7:591787. [PMID: 33381526 PMCID: PMC7768045 DOI: 10.3389/fcvm.2020.591787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
Intramembrane proteolysis is more than a mechanism to "clean" the membranes from proteins no longer needed. By non-reversibly modifying transmembrane proteins, intramembrane cleaving proteases hold key roles in multiple signaling pathways and often distinguish physiological from pathological conditions. Signal peptide peptidase (SPP) and signal peptide peptidase-like proteases (SPPLs) recently have been associated with multiple functions in the field of signal transduction. SPP/SPPLs together with presenilins (PSs) are the only two families of intramembrane cleaving aspartyl proteases known in mammals. PS1 or PS2 comprise the catalytic center of the γ-secretase complex, which is well-studied in the context of Alzheimer's disease. The mammalian SPP/SPPL family of intramembrane cleaving proteases consists of five members: SPP and its homologous proteins SPPL2a, SPPL2b, SPPL2c, and SPPL3. Although these proteases were discovered due to their homology to PSs, it became evident in the past two decades that no physiological functions are shared between these two families. Based on studies in cell culture models various substrates of SPP/SPPL proteases have been identified in the past years and recently-developed mouse lines lacking individual members of this protease family, will help to further clarify the physiological functions of these proteases. In this review we concentrate on signaling roles of mammalian intramembrane cleaving aspartyl proteases. In particular, we will highlight the signaling roles of PS via its substrates NOTCH, VEGF, and others, mainly focusing on its involvement in vasculature. Delineating also signaling pathways that are affected and/or controlled by SPP/SPPL proteases. From SPP's participation in tumor progression and survival, to SPPL3's regulation of protein glycosylation and SPPL2c's control over cellular calcium stores, various crossovers between proteolytic activity of intramembrane proteases and cell signaling will be described.
Collapse
Affiliation(s)
- Alkmini A. Papadopoulou
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
10
|
Mohmmad‐Rezaei M, Arefnezhad R, Ahmadi R, Abdollahpour‐Alitappeh M, Mirzaei Y, Arjmand M, Ferns GA, Bashash D, Bagheri N. An overview of the innate and adaptive immune system in atherosclerosis. IUBMB Life 2020. [DOI: 10.1002/iub.2425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mina Mohmmad‐Rezaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | - Reza Arefnezhad
- Halal Research Center of IRI, FDA Tehran Iran
- Department of Anatomy, School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | | | - Yousef Mirzaei
- Department of Biogeosciences, Scientific Research Center Soran University Soran Iraq
| | - Mohammad‐Hassan Arjmand
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
- Cancer Research Center Shahrekord University of Medical Sciences Shahrekord Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education Sussex United Kingdom
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
11
|
Zhao E, Xie H, Zhang Y. Predicting Diagnostic Gene Biomarkers Associated With Immune Infiltration in Patients With Acute Myocardial Infarction. Front Cardiovasc Med 2020; 7:586871. [PMID: 33195475 PMCID: PMC7644926 DOI: 10.3389/fcvm.2020.586871] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Objective: The present study was designed to identify potential diagnostic markers for acute myocardial infarction (AMI) and determine the significance of immune cell infiltration in this pathology. Methods: Two publicly available gene expression profiles (GSE66360 and GSE48060 datasets) from human AMI and control samples were downloaded from the GEO database. Differentially expressed genes (DEGs) were screened between 80 AMI and 71 control samples. The LASSO regression model and support vector machine recursive feature elimination (SVM-RFE) analysis were performed to identify candidate biomarkers. The area under the receiver operating characteristic curve (AUC) value was obtained and used to evaluate discriminatory ability. The expression level and diagnostic value of the biomarkers in AMI were further validated in the GSE60993 dataset (17 AMI patients and 7 controls). The compositional patterns of the 22 types of immune cell fraction in AMI were estimated based on the merged cohorts using CIBERSORT. Results: A total of 27 genes were identified. The identified DEGs were mainly involved in carbohydrate binding, Kawasaki disease, atherosclerosis, and arteriosclerotic cardiovascular disease. Gene sets related to atherosclerosis signaling, primary immunodeficiency, IL-17, and TNF signaling pathways were differentially activated in AMI compared with the control. IL1R2, IRAK3, and THBD were identified as diagnostic markers of AMI (AUC = 0.877) and validated in the GSE60993 dataset (AUC = 0.941). Immune cell infiltration analysis revealed that IL1R2, IRAK3, and THBD were correlated with M2 macrophages, neutrophils, monocytes, CD4+ resting memory T cells, activated natural killer (NK) cells, and gamma delta T cells. Conclusion: IL1R2, IRAK3, and THBD can be used as diagnostic markers of AMI, and can provide new insights for future studies on the occurrence and the molecular mechanisms of AMI.
Collapse
Affiliation(s)
- Enfa Zhao
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hang Xie
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yushun Zhang
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Zhang X, Luo S, Wang M, Shi GP. Cysteinyl cathepsins in cardiovascular diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140360. [PMID: 31926332 DOI: 10.1016/j.bbapap.2020.140360] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
Cysteinyl cathepsins are lysosomal/endosomal proteases that mediate bulk protein degradation in these intracellular acidic compartments. Yet, studies indicate that these proteases also appear in the nucleus, nuclear membrane, cytosol, plasma membrane, and extracellular space. Patients with cardiovascular diseases (CVD) show increased levels of cathepsins in the heart, aorta, and plasma. Plasma cathepsins often serve as biomarkers or risk factors of CVD. In aortic diseases, such as atherosclerosis and abdominal aneurysms, cathepsins play pathogenic roles, but many of the same cathepsins are cardioprotective in hypertensive, hypertrophic, and infarcted hearts. During the development of CVD, cathepsins are regulated by inflammatory cytokines, growth factors, hypertensive stimuli, oxidative stress, and many others. Cathepsin activities in inflammatory molecule activation, immunity, cell migration, cholesterol metabolism, neovascularization, cell death, cell signaling, and tissue fibrosis all contribute to CVD and are reviewed in this article in memory of Dr. Nobuhiko Katunuma for his contribution to the field.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Songyuan Luo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Minjie Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
13
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
14
|
Abstract
Cardiovascular disease (CVD) is the number one cause of death in the United States and worldwide. The most common cause of cardiovascular disease is atherosclerosis, or formation of fatty plaques in the arteries. Low-density lipoprotein (LDL), termed "bad cholesterol", is a large molecule comprised of many proteins as well as lipids including cholesterol, phospholipids, and triglycerides. Circulating levels of LDL are directly associated with atherosclerosis disease severity. Once thought to simply be caused by passive retention of LDL in the vasculature, atherosclerosis studies over the past 40-50 years have uncovered a much more complex mechanism. It has now become well established that within the vasculature, LDL can undergo many different types of oxidative modifications such as esterification and lipid peroxidation. The resulting oxidized LDL (oxLDL) has been found to have antigenic potential and contribute heavily to atherosclerosis associated inflammation, activating both innate and adaptive immunity. This review discusses the many proposed mechanisms by which oxidized LDL modulates inflammatory responses and how this might modulate atherosclerosis.
Collapse
Affiliation(s)
- Jillian P Rhoads
- Department of Medicine, Division of Rheumatology, Vanderbilt Medical Center, Nashville, TN 37232
| | - Amy S Major
- Department of Medicine, Division of Rheumatology, Vanderbilt Medical Center, Nashville, TN 37232; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN 37212
| |
Collapse
|
15
|
Wigren M, Rattik S, Yao Mattisson I, Tomas L, Grönberg C, Söderberg I, Alm R, Sundius L, Ljungcrantz I, Björkbacka H, Fredrikson GN, Nilsson J. Lack of Ability to Present Antigens on Major Histocompatibility Complex Class II Molecules Aggravates Atherosclerosis in ApoE
−/−
Mice. Circulation 2019; 139:2554-2566. [DOI: 10.1161/circulationaha.118.039288] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maria Wigren
- Department of Clinical Sciences Malmö, Scania University Hospital, Lund University, Sweden
| | - Sara Rattik
- Department of Clinical Sciences Malmö, Scania University Hospital, Lund University, Sweden
| | - Ingrid Yao Mattisson
- Department of Clinical Sciences Malmö, Scania University Hospital, Lund University, Sweden
| | - Lukas Tomas
- Department of Clinical Sciences Malmö, Scania University Hospital, Lund University, Sweden
| | - Caitriona Grönberg
- Department of Clinical Sciences Malmö, Scania University Hospital, Lund University, Sweden
| | - Ingrid Söderberg
- Department of Clinical Sciences Malmö, Scania University Hospital, Lund University, Sweden
| | - Ragnar Alm
- Department of Clinical Sciences Malmö, Scania University Hospital, Lund University, Sweden
| | - Lena Sundius
- Department of Clinical Sciences Malmö, Scania University Hospital, Lund University, Sweden
| | - Irena Ljungcrantz
- Department of Clinical Sciences Malmö, Scania University Hospital, Lund University, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences Malmö, Scania University Hospital, Lund University, Sweden
| | | | - Jan Nilsson
- Department of Clinical Sciences Malmö, Scania University Hospital, Lund University, Sweden
| |
Collapse
|
16
|
Zhang X, Huang Q, Wang X, Deng Z, Li J, Yan X, Jauhiainen M, Metso J, Libby P, Liu J, Shi GP. Dietary cholesterol is essential to mast cell activation and associated obesity and diabetes in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1690-1700. [PMID: 30978390 DOI: 10.1016/j.bbadis.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Mast cell (MC) deficiency in KitW-sh/W-sh mice and inhibition with disodium chromoglycate (DSCG) or ketotifen reduced obesity and diabetes in mice on a high-cholesterol (1.25%) Western diet. Yet, Kit-independent MC-deficient mice and mice treated with DSCG disproved MC function in obesity and diabetes when mice are fed a high-fat diet (HFD) that contains no cholesterol. This study reproduced the obesity and diabetes inhibitory activities of DSCG and ketotifen from mice on a Western diet. Yet, such inhibitory effects were diminished in mice on the HFD. DSCG and ketotifen MC inhibitory activities were recovered from mice on the HFD supplemented with the same amount of cholesterol (1.25%) as that in the Western diet. DSCG and ketotifen effectively blunted the high-cholesterol diet-induced elevations of blood histamine and adipose tissue MC degranulation. Pearson's correlation test demonstrated significant and positive correlations between plasma histamine and total cholesterol or low-density lipoprotein-cholesterol (LDL). In cultured bone marrow-derived MCs, plasma from mice following a Western diet or a cholesterol-supplemented HFD, but not those from HFD-fed mice, induced MC degranulation and the release of β-hexosaminidase, histamine, and serotonin. IgE, LDL, very low-density lipoprotein, and high-density lipoprotein also induced MC activation, which can be inhibited by DSCG and ketotifen depending on the doses and types of MC inhibitors and cholesterol, and also the MC granule molecules of interest. DSCG or ketotifen lost their activities in inhibiting LDL-induced activation of MCs from LDL receptor-deficient mice. These results indicate that dietary cholesterol critically influences the function of mouse MCs.
Collapse
Affiliation(s)
- Xian Zhang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qin Huang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhiyong Deng
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiang Yan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jian Liu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Yetkin GI, Yucel AA, Tekin İÖ, Yılmaz M, Atalay H, Yetkin E. Dendritic cell activation is blunted in patients with coronary artery disease and diabetes mellitus. J Diabetes Complications 2019; 33:134-139. [PMID: 30522792 DOI: 10.1016/j.jdiacomp.2018.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/16/2018] [Accepted: 11/10/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND It has been shown that functional status of dendritic cells (DCs) in diabetic patients with unstable angina pectoris (UAP) are more mature and activated than diabetic patients without coronary artery disease (CAD) and none diabetic patients with UAP. Accordingly we aimed to assess the activation of DCs in patients with CAD with/and without Diabetes Mellitus (DM) and compare to those in subjects with normal coronary arteries (NCA). MATERIALS AND METHODS Twenty three patients with severe CAD who were scheduled to coronary artery by-pass grafting surgery and 6 patients with angiographycally NCAs were included in the study. Activation of peripheral blood DCs have been analyzed by flow cytometric measures of CD86 activation. RESULTS In patients with CAD and without DM, DC activation significantly increased after stimulation of oxidesized LDL (135 ± 121 vs 248 ± 197 p = 0.024). However this activation didn't significantly increased in patients with CAD and DM (100 ± 20 vs 120 ± 97, p = 0,54). Patients with NCAs and without DM showed marked activation of CD86 after stimulation with ox-LDL. CONCLUSION We have documented that DC activation, upon stimulation of ox-LDL has blunted in patients with CAD compared to patients with NCAs. Moreover this defective activation is more pronounced in those with diabetic patients with CAD.
Collapse
Affiliation(s)
| | - Aysegul Atak Yucel
- Gazi University Faculty of Medicine, Department of Immunology, Ankara, Turkey.
| | - İshak Özel Tekin
- Zonguldak Bulent Ecevit University School of Medicine, Department of Immonology, Zonguldak, Turkey
| | - Mustafa Yılmaz
- Cukurova University Faculty of Medicine, Department of Pediatric Allergy and Immunology, Adana, Turkey.
| | - Hakan Atalay
- Middle East Hospital Division of Cardiovascular Surgery, Mersin, Turkey.
| | - Ertan Yetkin
- Yenisehir Hospital Division of Cardiology, Mersin, Turkey.
| |
Collapse
|
18
|
Karampola M, Argiriou A, Hitoglou-Makedou A. Study on dietary constituents, hs-CRP serum levels and investigation of correlation between them in excess weight adolescents. Hippokratia 2019; 23:3-8. [PMID: 32256031 PMCID: PMC7124880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND The prevalence of childhood obesity has increased in Greece as well as worldwide. Mediterranean diet is considered the world's most popular healthy eating pattern. C-reactive protein (CRP) has been shown to play an important pathophysiological role between inflammation and cardiovascular diseases and has been linked to obesity. Our study aimed to investigate the adolescents' diet, their high-sensitivity CRP (hs-CRP) serum levels, and whether low-grade inflammation, present in obesity, is related to adolescents' diet. METHODS The sample of the study consisted of 142 adolescents age- and gender- matched 13.4 ± 1.46 years, divided into two groups: the study group and the controls. The study group of 71 excess body weight adolescents was further divided into two subgroups of 28 overweight and 43 obese respectively; 71 normal weight age- and gender-matched served as controls. Dietary constituents (food weight, energy intake, protein, carbohydrate and fat consumption, fiber, and sugars) were analyzed. Adherence to the Mediterranean diet was investigated, and hs-CRP serum levels were determined. The findings were compared between/among groups. Furthermore, the correlation of hs-CRP serum levels and food constituents between/among groups was investigated. RESULTS We documented differences in several parameters among the groups: waist to hip ratio (p =0.001), food weight (p =0.040), energy intake (p =0.024), protein intake (p =0.001), total fibre (p =0.017), sugars (p =0.001), and the Mediterranean Diet Quality Index for children and adolescents (KIDMED; p =0.008). No statistically significant difference was found for hs-CRP serum levels among the three groups. No correlation was found between hs-CRP serum levels and any of the dietary constituents. CONCLUSIONS Comparing the three groups (obese, overweight, and controls), we found statistically significant differences for food constituents but not for hs-CRP serum levels. In our study, inflammation was not found to be correlated with any of the dietary constituents. Further studies in a larger sample are required to consolidate these findings. HIPPOKRATIA 2019, 23(1): 3-8.
Collapse
Affiliation(s)
- M Karampola
- Laboratory of Lipids and Cardiovascular Disease prevention, 2 Pediatric Department, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Argiriou
- Laboratory of Lipids and Cardiovascular Disease prevention, 2 Pediatric Department, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - A Hitoglou-Makedou
- Laboratory of Lipids and Cardiovascular Disease prevention, 2 Pediatric Department, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
19
|
Liu CL, Guo J, Zhang X, Sukhova GK, Libby P, Shi GP. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol 2018; 15:351-370. [DOI: 10.1038/s41569-018-0002-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Schmitz C, Noels H, El Bounkari O, Straussfeld E, Megens RTA, Sternkopf M, Alampour-Rajabi S, Krammer C, Tilstam PV, Gerdes N, Bürger C, Kapurniotu A, Bucala R, Jankowski J, Weber C, Bernhagen J. Mif-deficiency favors an atheroprotective autoantibody phenotype in atherosclerosis. FASEB J 2018. [PMID: 29543531 DOI: 10.1096/fj.201800058r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inflammatory cytokine macrophage migration-inhibitory factor (MIF) promotes atherosclerosis via lesional monocyte and T-cell recruitment. B cells have emerged as important components in atherogenesis, but the interaction between MIF and B cells in atherogenesis is unknown. Here, we investigated the atherosclerotic phenotype of Mif-gene deletion in Apoe-/- mice. Apoe-/- Mif-/- mice fed a Western diet exhibited strongly reduced atherosclerotic lesions in brachiocephalic artery (BC) and abdominal aorta compared with controls. This phenotype was accompanied by reduced circulating B cells. Flow cytometry revealed a B-cell developmental defect with increased premature and immature B-cell counts in bone marrow (BM) of Apoe-/- Mif-/- mice and diminished B-cell numbers in spleen. This finding was linked with a decreased expression of Baff-R and differentiation-driving transcription factors at the immature B-cell stage, whereas peritoneal B cells exhibited unchanged CD80 and CD86 expression but vastly decreased CD9 and elevated CD23 levels, indicating that the developmental block favors the generation of immature, egressing, and reactive B cells. Mif deficiency did not affect absolute B-cell numbers in the vessel wall but favored a relative increase of B cells in the atheroprone BC region and the appearance of periadventitial B-cell-rich clusters. Of note, Mif-/- mice exhibited a significant increase in oxidized low-density lipoprotein (oxLDL)-specific antibodies after the injection of oxLDL, indicating that Mif deficiency is associated with higher sensitivity of B cells against natural-occurring antigens such as oxLDL. Importantly, Apoe-/- mice adoptively transplanted with Apoe-/-Mif-/- BM showed reduced peripheral B cells compared with Apoe-/- BM transplantation but no atheroprotection in the BC; also, whereas there was a selective increase in atheroprotective IgM-anti-oxLDL-antibodies in global Mif deficiency, BM-specific Mif deficiency also led to elevated proatherogenic anti-oxLDL-IgG. Together, these findings reveal a novel link between MIF and B cells in atherogenesis. Protection from atherosclerosis by Mif deficiency is associated with enhanced B-cell hypersensitivity, which in global but not BM-restricted Mif deficiency favors an atheroprotective autoantibody profile in atherosclerotic mice. Targeting MIF may induce protective B-cell responses in atherosclerosis.-Schmitz, C., Noels, H., El Bounkari, O., Straussfeld, E., Megens, R. T. A., Sternkopf, M., Alampour-Rajabi, S., Krammer, C., Tilstam, P. V., Gerdes, N., Bürger, C., Kapurniotu, A., Bucala, R., Jankowski, J., Weber, C., Bernhagen, J. Mif-deficiency favors an atheroprotective autoantibody phenotype in atherosclerosis.
Collapse
Affiliation(s)
- Corinna Schmitz
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Omar El Bounkari
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Eva Straussfeld
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Marieke Sternkopf
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Setareh Alampour-Rajabi
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Christine Krammer
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Pathricia V Tilstam
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany.,Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christina Bürger
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Richard Bucala
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rheinish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; and
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; and.,SyNergy Excellence Cluster, Munich, Germany
| |
Collapse
|
21
|
Gil-Pulido J, Zernecke A. Antigen-presenting dendritic cells in atherosclerosis. Eur J Pharmacol 2017; 816:25-31. [DOI: 10.1016/j.ejphar.2017.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/29/2022]
|
22
|
Manthey H, Zernecke A. Dendritic cells in atherosclerosis: Functions in immune regulation and beyond. Thromb Haemost 2017; 106:772-8. [DOI: 10.1160/th11-05-0296] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/02/2011] [Indexed: 12/15/2022]
Abstract
SummaryChronic inflammation drives the development of atherosclerosis. Dendritic cells (DCs) are known as central mediators of adaptive immune responses and the development of immunological memory and tolerance. DCs are present in non-diseased arteries, and accumulate within atherosclerotic lesions where they can be localised in close vicinity to T cells. Recent work has revealed important functions of DCs in regulating immune mechanisms in atherogenesis, and vaccination strategies using DCs have been explored for treatment of disease. However, in line with a phenotypical and functional overlap with plaque macrophages vascular DCs were also identified to engulf lipids, thus contributing to lipid burden in the vessel wall and initiation of lesion growth. Furthermore, a function of DCs in regulating cholesterol homeostasis has been revealed. Finally, phenotypically distinct plasmacytoid dendritic cells (pDCs) have been identified within atherosclerotic lesions. This review will dissect the multifaceted contribution of DCs and pDCs to the initiation and progression of atherosclerosis and the experimental approaches utilising DCs in therapeutic vaccination strategies.
Collapse
|
23
|
Yun TJ, Lee JS, Shim D, Choi JH, Cheong C. Isolation and Characterization of Aortic Dendritic Cells and Lymphocytes in Atherosclerosis. Methods Mol Biol 2017; 1559:419-437. [DOI: 10.1007/978-1-4939-6786-5_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Mishra A, Iyer S, Kesarwani A, Baligar P, Arya SP, Arindkar S, Kumar MJM, Upadhyay P, Majumdar SS, Nagarajan P. Role of antigen presenting cell invariant chain in the development of hepatic steatosis in mouse model. Exp Cell Res 2016; 346:188-97. [PMID: 27371158 DOI: 10.1016/j.yexcr.2016.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/11/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022]
Abstract
The role of Invariant chain (CD74 or Ii) in antigen presentation via Antigen Presenting Cells (APC), macrophage recruitment as well as survival, T cell activation and B cell differentiation has been well recognized. However, the aspect of CD74 which is involved in the development of hepatic steatosis and the pathways through which it acts remain to be studied. In this study, we investigated the role of CD74 in the inflammatory pathway and its contribution to development of hepatic steatosis. For this, wild type C57BL/6J and CD74 deficient mice (Ii(-/-) mice) were fed with high fat high fructose (HFHF) diet for 12 weeks. Chronic consumption of this feed did not develop hepatic steatosis, glucose intolerance or change in the level of immune cells in Ii(-/-) mice. Moreover, there was relatively delayed expression of genes involved in development of non alcoholic fatty liver disease (NAFLD) in HFHF fed Ii(-/-) mice as compared to that of C57BL/6J phenotype. Taken together, the data suggest that HFHF diet fed Ii(-/-) mice fail to develop hepatic steatosis, suggesting that Ii mediated pathways play a vital role in the initiation and propagation of liver inflammation.
Collapse
Affiliation(s)
| | - Srikanth Iyer
- National Institute of Immunology, New Delhi 110067, India
| | | | | | - Satya Pal Arya
- National Institute of Immunology, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
25
|
Probucol Protects Against Atherosclerosis Through Lipid-lowering and Suppressing Immune Maturation of CD11c+ Dendritic Cells in STZ-induced Diabetic LDLR-/- Mice. J Cardiovasc Pharmacol 2016; 65:620-7. [PMID: 25714599 PMCID: PMC4461394 DOI: 10.1097/fjc.0000000000000234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Probucol, an agent characterized by lipid-lowering and antioxidant property, retards atherosclerosis effectively. To test the hypothesis that probucol might act its antiatherosclerotic role by suppressing immune maturation of dendritic cells (DCs), 7-week-old LDLR−/− mice were rendered diabetic with streptozotocin (STZ) and then fed either a high-fat diet only or added with 0.5% (wt/wt) probucol for 4 months, and human monocyte-derived dendritic cells were preincubated with or without probucol and stimulated by oxidized low-density lipoprotein. In STZ-induced diabetic LDLR−/− mice, probucol treatment significantly lowered plasma total cholesterol and high-density lipoprotein-cholesterol levels; regressed aortic atherosclerotic lesions; reduced splenic CD40, CD80, CD86, MHC-II expression, and plasma IL-12p70 production; and decreased the expression of CD11c+ DCs within atherosclerotic lesions. In vitro, oxidized low-density lipoprotein promoted human monocyte–derived dendritic cells maturation; stimulated CD40, CD86, CD1a, HLA-DR expression; increased tumor necrosis factor-α production; and decreased IL-4 production. However, these effects were obviously inhibited by probucol pretreatment. In conclusion, our study indicated that probucol effectively retarded atherosclerosis at least partly through lipid-lowering and inhibiting immune maturation of CD11c+ DCs in STZ-induced diabetic LDLR−/− mice.
Collapse
|
26
|
Wick C. Tolerization against atherosclerosis using heat shock protein 60. Cell Stress Chaperones 2016; 21:201-11. [PMID: 26577462 PMCID: PMC4786533 DOI: 10.1007/s12192-015-0659-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the artery wall, and both innate and adaptive immunity play important roles in the pathogenesis of this disease. In several experimental and human experiments of early atherosclerotic lesions, it has been shown that the first pathogenic event in atherogenesis is intimal infiltration of T cells at predilection sites. These T cells react to heat shock protein 60 (HSP60), which is a ubiquitous self-antigen expressed on the surface of endothelial cells (ECs) together with adhesion molecules in response to classical risk factors for atherosclerosis. When HSP60 is expressed on the EC surface, it can act as a "danger-signal" for both cellular and humoral immune reactions. Acquired by infection or vaccination, beneficial protective immunity to microbial HSP60 and bona fide autoimmunity to biochemically altered autologous HSP60 is present in all humans. Thus, the development of atherosclerosis during aging is paid by the price for lifelong protective preexisting anti-HSP60 immunity by harmful (auto)immune cross-reactive attack on arterial ECs maltreated by atherosclerosis risk factors. This is supported by experiments, which shows that bacterial HSP60 immunization can lead and accelerate experimental atherosclerosis. This review article presents accumulating proof that supports the idea that tolerization with antigenic HSP60 protein or its peptides may arrest or even prevent atherosclerosis by increased production of regulatory T cells and/or anti-inflammatory cytokines. Recent data indicates that HSP60, or more likely some of its derivative peptides, has immunoregulatory functions. Therefore, these peptides may have important potential for being used as diagnostic agents or therapeutic targets.
Collapse
Affiliation(s)
- Cecilia Wick
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Center for Molecular Medicine (CMM) L8:04, Karolinska University Hospital Solna, S-17176, Stockholm, Sweden.
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Innsbruck Medical University, Innsbruck, A-6020, Austria.
| |
Collapse
|
27
|
Choi SH, Gonen A, Diehl CJ, Kim J, Almazan F, Witztum JL, Miller YI. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL. Autophagy 2016; 11:785-95. [PMID: 25946330 DOI: 10.1080/15548627.2015.1037061] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4(+) T cells. ldlr(-/-) syk(-/-) mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr(-/-) mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis.
Collapse
Key Words
- 3MA, 3-methyladenine
- APCs, antigen-presenting cells
- BCR, B cell receptor
- BMDM, bone marrow-derived macrophage
- Baf, bafilomycin A1
- DPI, diphenyleneiodonium
- FCGR, Fc fragment of IgG
- GFP, green fluorescent protein
- HFD, high-fat diet
- IL2, interleukin 2
- ITAM, immunoreceptor tyrosine-based activation motif
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LPS, lipopolysaccharide
- MAA-LDL, malondialdehyde-acetaldehyde modified low density lipoprotein
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MAPK, mitogen-activated protein kinase
- MDA-LDL, malondialdehyde modified low density lipoprotein
- MHC-II
- MHC-II, major histocompatibility complex class II
- NOX, NAPDH oxidase
- OSE, oxidation specific epitopes
- OxLDL
- OxLDL, oxidized low density lipoprotein
- PBS, phosphate-buffered saline
- PIC, piceatannol
- ROS
- ROS, reactive oxygen species
- SYK
- SYK, spleen tyrosine kinase
- TCR, T cell receptor
- TLR4, toll-like receptor 4
- TNF, tumor necrosis factor
- autophagy
- low affinity, receptor
- mmLDL, minimally modified low density lipoprotein
- oxidation-specific antibodies
Collapse
Affiliation(s)
- Soo-Ho Choi
- a Department of Medicine; University of California , San Diego; La Jolla , CA , USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.
Collapse
Affiliation(s)
- Myron I. Cybulsky
- From the Division of Advanced Diagnostics, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada (M.I.C., C.S.R.); Departments of Laboratory Medicine and Pathobiology (M.I.C., C.S.R.) and Immunology (C.S.R.), University of Toronto, Toronto, Ontario, Canada; and Laboratory of Cellular Physiology and Immunology, Institut de Researches Cliniques de Montréal, Montréal, Québec, Canada (C.C.)
| | - Cheolho Cheong
- From the Division of Advanced Diagnostics, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada (M.I.C., C.S.R.); Departments of Laboratory Medicine and Pathobiology (M.I.C., C.S.R.) and Immunology (C.S.R.), University of Toronto, Toronto, Ontario, Canada; and Laboratory of Cellular Physiology and Immunology, Institut de Researches Cliniques de Montréal, Montréal, Québec, Canada (C.C.)
| | - Clinton S. Robbins
- From the Division of Advanced Diagnostics, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada (M.I.C., C.S.R.); Departments of Laboratory Medicine and Pathobiology (M.I.C., C.S.R.) and Immunology (C.S.R.), University of Toronto, Toronto, Ontario, Canada; and Laboratory of Cellular Physiology and Immunology, Institut de Researches Cliniques de Montréal, Montréal, Québec, Canada (C.C.)
| |
Collapse
|
29
|
|
30
|
Valiño-Rivas L, Baeza-Bermejillo C, Gonzalez-Lafuente L, Sanz AB, Ortiz A, Sanchez-Niño MD. CD74 in Kidney Disease. Front Immunol 2015; 6:483. [PMID: 26441987 PMCID: PMC4585214 DOI: 10.3389/fimmu.2015.00483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/05/2015] [Indexed: 12/17/2022] Open
Abstract
CD74 (invariant MHC class II) regulates protein trafficking and is a receptor for macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT/MIF-2). CD74 expression is increased in tubular cells and/or glomerular podocytes and parietal cells in human metabolic nephropathies, polycystic kidney disease, graft rejection and kidney cancer and in experimental diabetic nephropathy and glomerulonephritis. Stressors like abnormal metabolite (glucose, lyso-Gb3) levels and inflammatory cytokines increase kidney cell CD74. MIF activates CD74 to increase inflammatory cytokines in podocytes and tubular cells and proliferation in glomerular parietal epithelial cells and cyst cells. MIF overexpression promotes while MIF targeting protects from experimental glomerular injury and kidney cysts, and interference with MIF/CD74 signaling or CD74 deficiency protected from crescentic glomerulonephritis. However, CD74 may protect from interstitial kidney fibrosis. Furthermore, CD74 expression by stressed kidney cells raises questions about the kidney safety of cancer therapy strategies delivering lethal immunoconjugates to CD74-expressing cells. Thus, understanding CD74 biology in kidney cells is relevant for kidney therapeutics.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain
| | - Ciro Baeza-Bermejillo
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| | - Laura Gonzalez-Lafuente
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain
| | - Ana Belen Sanz
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain ; School of Medicine, Universidad Autónoma de Madrid , Madrid , Spain ; Fundacion Renal Iñigo Alvarez de Toledo-IRSIN , Madrid , Spain
| | - Maria Dolores Sanchez-Niño
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain ; Red de Investigación Renal (REDINREN) , Madrid , Spain
| |
Collapse
|
31
|
Li HQ, Zhang Q, Chen L, Yin CS, Chen P, Tang J, Rong R, Li TT, Hu LQ. Captopril inhibits maturation of dendritic cells and maintains their tolerogenic property in atherosclerotic rats. Int Immunopharmacol 2015; 28:715-23. [DOI: 10.1016/j.intimp.2015.05.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/11/2015] [Accepted: 05/31/2015] [Indexed: 10/23/2022]
|
32
|
van der Vorst EPC, Döring Y, Weber C. Chemokines and their receptors in Atherosclerosis. J Mol Med (Berl) 2015; 93:963-71. [PMID: 26175090 PMCID: PMC4577534 DOI: 10.1007/s00109-015-1317-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/27/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022]
Abstract
Atherosclerosis, a chronic inflammatory disease of the medium- and large-sized arteries, is the main underlying cause of cardiovascular diseases (CVDs) most often leading to a myocardial infarction or stroke. However, atherosclerosis can also develop without this clinical manifestation. The pathophysiology of atherosclerosis is very complex and consists of many cells and molecules interacting with each other. Over the last years, chemokines (small 8-12 kDa cytokines with chemotactic properties) have been identified as key players in atherogenesis. However, this remains a very active and dynamic field of research. Here, we will give an overview of the current knowledge about the involvement of chemokines in all phases of atherosclerotic lesion development. Furthermore, we will focus on two chemokines that recently have been associated with atherogenesis, CXCL12, and macrophage migration inhibitory factor (MIF). Both chemokines play a crucial role in leukocyte recruitment and arrest, a critical step in atherosclerosis development. MIF has shown to be a more pro-inflammatory and thus pro-atherogenic chemokine, instead CXCL12 seems to have a more protective function. However, results about this protective role are still quite debatable. Future research will further elucidate the precise role of these chemokines in atherosclerosis and determine the potential of chemokine-based therapies.
Collapse
Affiliation(s)
- Emiel P C van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr 9, 80336, Munich, Germany.
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr 9, 80336, Munich, Germany.
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr 9, 80336, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
33
|
van der Vorst EPC, Döring Y, Weber C. MIF and CXCL12 in Cardiovascular Diseases: Functional Differences and Similarities. Front Immunol 2015; 6:373. [PMID: 26257740 PMCID: PMC4508925 DOI: 10.3389/fimmu.2015.00373] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease (CAD) as part of the cardiovascular diseases is a pathology caused by atherosclerosis, a chronic inflammatory disease of the vessel wall characterized by a massive invasion of lipids and inflammatory cells into the inner vessel layer (intima) leading to the formation of atherosclerotic lesions; their constant growth may cause complications such as flow-limiting stenosis and plaque rupture, the latter triggering vessel occlusion through thrombus formation. Pathophysiology of CAD is complex and over the last years many players have entered the picture. One of the latter being chemokines (small 8-12 kDa cytokines) and their receptors, known to orchestrate cell chemotaxis and arrest. Here, we will focus on the chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF-1) and the chemokine-like function chemokine, macrophage migration-inhibitory factor (MIF). Both are ubiquitously expressed and highly conserved proteins and play an important role in cell homeostasis, recruitment, and arrest through binding to their corresponding chemokine receptors CXCR4 (CXCL12 and MIF), ACKR3 (CXCL12), and CXCR2 (MIF). In addition, MIF also binds to the receptor CD44 and the co-receptor CD74. CXCL12 has mostly been studied for its crucial role in the homing of (hematopoietic) progenitor cells in the bone marrow and their mobilization into the periphery. In contrast to CXCL12, MIF is secreted in response to diverse inflammatory stimuli, and has been associated with a clear pro-inflammatory and pro-atherogenic role in multiple studies of patients and animal models. Ongoing research on CXCL12 points at a protective function of this chemokine in atherosclerotic lesion development. This review will focus on the role of CXCL12 and MIF and their differences and similarities in CAD of high risk patients.
Collapse
Affiliation(s)
- Emiel P C van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich , Munich , Germany ; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance , Munich , Germany ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , Netherlands
| |
Collapse
|
34
|
Barrera G, Pizzimenti S, Ciamporcero ES, Daga M, Ullio C, Arcaro A, Cetrangolo GP, Ferretti C, Dianzani C, Lepore A, Gentile F. Role of 4-hydroxynonenal-protein adducts in human diseases. Antioxid Redox Signal 2015; 22:1681-702. [PMID: 25365742 DOI: 10.1089/ars.2014.6166] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Oxidative stress provokes the peroxidation of polyunsaturated fatty acids in cellular membranes, leading to the formation of aldheydes that, due to their high chemical reactivity, are considered to act as second messengers of oxidative stress. Among the aldehydes formed during lipid peroxidation (LPO), 4-hydroxy-2-nonenal (HNE) is produced at a high level and easily reacts with both low-molecular-weight compounds and macromolecules, such as proteins and DNA. In particular, HNE-protein adducts have been extensively investigated in diseases characterized by the pathogenic contribution of oxidative stress, such as cancer, neurodegenerative, chronic inflammatory, and autoimmune diseases. RECENT ADVANCES In this review, we describe and discuss recent insights regarding the role played by covalent adducts of HNE with proteins in the development and evolution of those among the earlier mentioned disease conditions in which the functional consequences of their formation have been characterized. CRITICAL ISSUES Results obtained in recent years have shown that the generation of HNE-protein adducts can play important pathogenic roles in several diseases. However, in some cases, the generation of HNE-protein adducts can represent a contrast to the progression of disease or can promote adaptive cell responses, demonstrating that HNE is not only a toxic product of LPO but also a regulatory molecule that is involved in several biochemical pathways. FUTURE DIRECTIONS In the next few years, the refinement of proteomical techniques, allowing the individuation of novel cellular targets of HNE, will lead to a better understanding the role of HNE in human diseases.
Collapse
Affiliation(s)
- Giuseppina Barrera
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | - Stefania Pizzimenti
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | | | - Martina Daga
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | - Chiara Ullio
- 1Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
| | - Alessia Arcaro
- 2Dipartimento di Medicina e Scienze della Salute, Università del Molise, Campobasso, Italy
| | | | - Carlo Ferretti
- 4Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Chiara Dianzani
- 4Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Alessio Lepore
- 5Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Fabrizio Gentile
- 2Dipartimento di Medicina e Scienze della Salute, Università del Molise, Campobasso, Italy
| |
Collapse
|
35
|
Zernecke A. Dendritic cells in atherosclerosis: evidence in mice and humans. Arterioscler Thromb Vasc Biol 2015; 35:763-70. [PMID: 25675999 DOI: 10.1161/atvbaha.114.303566] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Atherosclerotic vascular disease is driven by chronic inflammation involving both innate and adaptive immune responses. Dendritic cells (DCs) are found in healthy arteries and accumulate in atherosclerotic lesions and engage in diverse pathogenic and protective mechanisms during atherogenesis. DCs contribute to early foam cell formation, regulate lipid metabolism, and control pro- and antiatherosclerotic T-cell responses by multifarious mechanisms. We, here, review the roles of DCs and plasmacytoid DCs in experimental models of atherosclerosis and the approaches to target DCs in therapeutic vaccination strategies. We, furthermore, discuss the evidence of the potential function of DCs in human atherosclerosis, and dissect the efforts to harness DC subsets as biomarkers of disease. Finally, we discuss necessary future steps that will help to understand the specific contribution of bona fide DCs in atherosclerosis to move toward novel therapeutic approaches.
Collapse
Affiliation(s)
- Alma Zernecke
- From the Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
36
|
Wang J, Lindholt JS, Sukhova GK, Shi MA, Xia M, Chen H, Xiang M, He A, Wang Y, Xiong N, Libby P, Wang JA, Shi GP. IgE actions on CD4+ T cells, mast cells, and macrophages participate in the pathogenesis of experimental abdominal aortic aneurysms. EMBO Mol Med 2015; 6:952-69. [PMID: 24963147 PMCID: PMC4119357 DOI: 10.15252/emmm.201303811] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Immunoglobulin E (IgE) activates mast cells (MCs). It remains unknown whether IgE also activates other inflammatory cells, and contributes to the pathogenesis of abdominal aortic aneurysms (AAAs). This study demonstrates that CD4+ T cells express IgE receptor FcεR1, at much higher levels than do CD8+ T cells. IgE induces CD4+ T-cell production of IL6 and IFN-γ, but reduces their production of IL10. FcεR1 deficiency (Fcer1a−/−) protects apolipoprotein E-deficient (Apoe−/−) mice from angiotensin-II infusion-induced AAAs and reduces plasma IL6 levels. Adoptive transfer of CD4+ T cells (but not CD8+ T cells), MCs, and macrophages from Apoe−/− mice, but not those from Apoe−/−Fcer1a−/− mice, increases AAA size and plasma IL6 in Apoe−/−Fcer1a−/− recipient mice. Biweekly intravenous administration of an anti-IgE monoclonal antibody ablated plasma IgE and reduced AAAs in Apoe−/− mice. Patients with AAAs had significantly higher plasma IgE levels than those without AAAs. This study establishes an important role of IgE in AAA pathogenesis by activating CD4+ T cells, MCs, and macrophages and supports consideration of neutralizing plasma IgE in the therapeutics of human AAAs.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jes S Lindholt
- Department of Cardiovascular and Thoracic Surgery, Elitary Research Centre of Individualized Medicine in Arterial Diseases, University Hospital of Odense, Odense, Denmark
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael A Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingcan Xia
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Han Chen
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, College of Medicine, The Second Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Meixiang Xiang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, College of Medicine, The Second Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Aina He
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yi Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Na Xiong
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jian-An Wang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, College of Medicine, The Second Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Sage AP, Murphy D, Maffia P, Masters LM, Sabir SR, Baker LL, Cambrook H, Finigan AJ, Ait-Oufella H, Grassia G, Harrison JE, Ludewig B, Reith W, Hansson GK, Reizis B, Hugues S, Mallat Z. MHC Class II-restricted antigen presentation by plasmacytoid dendritic cells drives proatherogenic T cell immunity. Circulation 2014; 130:1363-73. [PMID: 25223984 DOI: 10.1161/circulationaha.114.011090] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Plasmacytoid dendritic cells (pDCs) bridge innate and adaptive immune responses and are important regulators of immuno-inflammatory diseases. However, their role in atherosclerosis remains elusive. METHODS AND RESULTS Here, we used genetic approaches to investigate the role of pDCs in atherosclerosis. Selective pDC deficiency in vivo was achieved using CD11c-Cre × Tcf4(-/flox) bone marrow transplanted into Ldlr(-/-) mice. Compared with control Ldlr(-/-) chimeric mice, CD11c-Cre × Tcf4(-/flox) mice had reduced atherosclerosis levels. To begin to understand the mechanisms by which pDCs regulate atherosclerosis, we studied chimeric Ldlr(-/-) mice with selective MHCII deficiency on pDCs. Significantly, these mice also developed reduced atherosclerosis compared with controls without reductions in pDC numbers or changes in conventional DCs. MHCII-deficient pDCs showed defective stimulation of apolipoprotein B100-specific CD4(+) T cells in response to native low-density lipoprotein, whereas production of interferon-α was not affected. Finally, the atheroprotective effect of selective MHCII deficiency in pDCs was associated with significant reductions of proatherogenic T cell-derived interferon-γ and lesional T cell infiltration, and was abrogated in CD4(+) T cell-depleted animals. CONCLUSIONS This study supports a proatherogenic role for pDCs in murine atherosclerosis and identifies a critical role for MHCII-restricted antigen presentation by pDCs in driving proatherogenic T cell immunity.
Collapse
Affiliation(s)
- Andrew P Sage
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Deirdre Murphy
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Pasquale Maffia
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Leanne M Masters
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Suleman R Sabir
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Lauren L Baker
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Helen Cambrook
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Alison J Finigan
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Hafid Ait-Oufella
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Gianluca Grassia
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - James E Harrison
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Burkhard Ludewig
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Walter Reith
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Göran K Hansson
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Boris Reizis
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Stéphanie Hugues
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.)
| | - Ziad Mallat
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom (A.P.S., D.M., L.M.M., L.L.B., A.J.F., J.E.H., Z.M.); Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom (P.M., S.R.S., H.C., G.G.); Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France (H.A., Z.M.); the Department of Pharmacy, University of Naples Federico II, Naples, Italy (P.M., G.G.); Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland (B.L.); the Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (W.R.); Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden (G.K.H.); the Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY (B.R.); and the Department of Pathology, University of Geneva Medical School, CH-1211 Geneva, Switzerland (S.H.).
| |
Collapse
|
38
|
Atorvastatin represses the angiotensin 2-induced oxidative stress and inflammatory response in dendritic cells via the PI3K/Akt/Nrf 2 pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:148798. [PMID: 25110549 PMCID: PMC4106155 DOI: 10.1155/2014/148798] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/11/2014] [Accepted: 06/11/2014] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs), which are highly proficient antigen-presenting cells, play a complex role in both the initiation and progression of atherosclerosis. We tested the hypothesis that the anti-inflammatory and antioxidant effects of atorvastatin may be partly mediated by the phosphatidylinositol 3-kinase/protein kinase B/transcription factor nuclear factor-erythroid 2-related factor 2 (PI3K/Akt/Nrf 2) pathway via the attenuation of DC maturation, thus reducing the inflammatory and oxidative stress responses. This study showed that angiotensin 2 (Ang 2) induced the maturation of DCs, stimulated CD83, CD40, CD80, and CD86 expression, and increased the secretion of IL-12p70, IL-6, and TNF-α. These effects were suppressed by atorvastatin. Atorvastatin also lowered the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), counteracting their initial increases in response to Ang 2 stimulation. Atorvastatin activated Nrf 2 via the PI3K/Akt pathway and thereby promoted Nrf 2 translocation from the cytoplasm to the nucleus in bone marrow-derived dendritic cells (BMDCs), a process that was reversed by the PI3K inhibitor LY294002. Therefore, the regulation of Nrf 2 expression by the PI3K/Akt pathway plays an important role in the regulation of the statin-mediated antioxidant and anti-inflammatory responses in DCs.
Collapse
|
39
|
Ait-Oufella H, Sage AP, Mallat Z, Tedgui A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res 2014; 114:1640-60. [PMID: 24812352 DOI: 10.1161/circresaha.114.302761] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic inflammation in response to lipoprotein accumulation in the arterial wall is central in the development of atherosclerosis. Both innate and adaptive immunity are involved in this process. Adaptive immune responses develop against an array of potential antigens presented to effector T lymphocytes by antigen-presenting cells, especially dendritic cells. Functional analysis of the role of different T-cell subsets identified the Th1 responses as proatherogenic, whereas regulatory T-cell responses exert antiatherogenic activities. The effect of Th2 and Th17 responses is still debated. Atherosclerosis is also associated with B-cell activation. Recent evidence established that conventional B-2 cells promote atherosclerosis. In contrast, innate B-1 B cells offer protection through secretion of natural IgM antibodies. This review discusses the recent development in our understanding of the role of T- and B-cell subsets in atherosclerosis and addresses the role of dendritic cell subpopulations in the control of adaptive immunity.
Collapse
Affiliation(s)
- Hafid Ait-Oufella
- From INSERM UMR-S 970, Paris Cardiovascular Research Center (PARCC), Université Paris Descartes, Sorbonne Paris Cité, Paris, France (H.A.-O., Z.M., A.T.); Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Paris, France (H.A.-O.); and Department of Medicine, University of Cambridge, Cambridge, United Kingdom (A.P.S., Z.M.)
| | | | | | | |
Collapse
|
40
|
Zernecke A. Distinct functions of specialized dendritic cell subsets in atherosclerosis and the road ahead. SCIENTIFICA 2014; 2014:952625. [PMID: 24818041 PMCID: PMC4003768 DOI: 10.1155/2014/952625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Atherosclerotic vascular disease is modulated by immune mechanisms. Dendritic cells (DCs) and T cells are present within atherosclerotic lesions and function as central players in the initiation and modulation of adaptive immune responses. In previous years, we have studied the functional contribution of distinct DC subsets in disease development, namely, that of CCL17-expressing DCs as well as that of plasmacytoid DCs that play specialized roles in disease development. This review focuses on important findings gathered in these studies and dissects the multifaceted contribution of CCL17-expressing DCs and pDCs to the pathogenesis of atherosclerosis. Furthermore, an outlook on future challenges faced when studying DCs in this detrimental disease are provided, and hurdles that will need to be overcome in order to enable a better understanding of the contribution of DCs to atherogenesis are discussed, a prerequisite for their therapeutic targeting in atherosclerosis.
Collapse
Affiliation(s)
- Alma Zernecke
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
41
|
Dendritic cell subset distributions in the aorta in healthy and atherosclerotic mice. PLoS One 2014; 9:e88452. [PMID: 24551105 PMCID: PMC3925240 DOI: 10.1371/journal.pone.0088452] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 01/10/2014] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) can be sub-divided into various subsets that play specialized roles in priming of adaptive immune responses. Atherosclerosis is regarded as a chronic inflammatory disease of the vessel wall and DCs can be found in non-inflamed and diseased arteries. We here performed a systematic analyses of DCs subsets during atherogenesis. Our data indicate that distinct DC subsets can be localized in the vessel wall. In C57BL/6 and low density lipoprotein receptor-deficient (Ldlr−/−) mice, CD11c+ MHCII+ DCs could be discriminated into CD103− CD11b+F4/80+, CD11b+F4/80− and CD11b−F4/80− DCs and CD103+ CD11b−F4/80− DCs. Except for CD103− CD11b− F4/80− DCs, these subsets expanded in high fat diet-fed Ldlr−/− mice. Signal-regulatory protein (Sirp)-α was detected on aortic macrophages, CD11b+ DCs, and partially on CD103− CD11b− F4/80− but not on CD103+ DCs. Notably, in FMS-like tyrosine kinase 3-ligand-deficient (Flt3l−/−) mice, a specific loss of CD103+ DCs but also CD103− CD11b+ F4/80− DCs was evidenced. Aortic CD103+ and CD11b+ F4/80− CD103− DCs may thus belong to conventional rather than monocyte-derived DCs, given their dependence on Flt3L-signalling. CD64, postulated to distinguish macrophages from DCs, could not be detected on DC subsets under physiological conditions, but appeared in a fraction of CD103− CD11b+ F4/80− and CD11b+ F4/80+ cells in atherosclerotic Ldlr−/− mice. The emergence of CD64 expression in atherosclerosis may indicate that CD11b+ F4/80− DCs similar to CD11b+ F4/80+ DCs are at least in part derived from immigrated monocytes during atherosclerotic lesion formation. Our data advance our knowledge about the presence of distinct DC subsets and their accumulation characteristics in atherosclerosis, and may help to assist in future studies aiming at specific DC-based therapeutic strategies for the treatment of chronic vascular inflammation.
Collapse
|
42
|
McLeod O, Silveira A, Fredrikson GN, Gertow K, Baldassarre D, Veglia F, Sennblad B, Strawbridge RJ, Larsson M, Leander K, Gigante B, Kauhanen J, Rauramaa R, Smit AJ, Mannarino E, Giral P, Humphries SE, Tremoli E, de Faire U, Öhrvik J, Nilsson J, Hamsten A. Plasma autoantibodies against apolipoprotein B-100 peptide 210 in subclinical atherosclerosis. Atherosclerosis 2014; 232:242-8. [DOI: 10.1016/j.atherosclerosis.2013.11.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 01/17/2023]
|
43
|
Subramanian M, Tabas I. Dendritic cells in atherosclerosis. Semin Immunopathol 2013; 36:93-102. [PMID: 24196454 DOI: 10.1007/s00281-013-0400-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/13/2013] [Indexed: 01/05/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease with activation of both the innate and adaptive arms of the immune system. Dendritic cells (DCs) are potent activators of adaptive immunity and have been identified in the normal arterial wall and within atherosclerotic lesions. Recent evidence points to a functional role for DCs in all stages of atherosclerosis because of their myriad functions including lipid uptake, antigen presentation, efferocytosis, and inflammation resolution. Moreover, DC-based vaccination strategies are currently being developed for the treatment of atherosclerosis. This review will focus on the current evidence as well as the proposed roles for DCs in the pathogenesis of atherosclerosis and discuss future therapeutic strategies.
Collapse
Affiliation(s)
- Manikandan Subramanian
- Department of Medicine, Columbia University, 630 West 168th Street PH9-406, New York, NY, 10032, USA,
| | | |
Collapse
|
44
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
45
|
Koltsova EK, Hedrick CC, Ley K. Myeloid cells in atherosclerosis: a delicate balance of anti-inflammatory and proinflammatory mechanisms. Curr Opin Lipidol 2013; 24:371-80. [PMID: 24005215 PMCID: PMC4939820 DOI: 10.1097/mol.0b013e328363d298] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Atherosclerosis is chronic disease, whose progression is orchestrated by the balance between proinflammatory and anti-inflammatory mechanisms. Various myeloid cells, including monocytes, macrophages, dendritic cells and neutrophils can be found in normal and atherosclerotic aortas, in which they regulate inflammation and progression of atherosclerosis. The lineage relationship between blood monocyte subsets and the various phenotypes and functions of myeloid cells in diseased aortas is under active investigation. RECENT FINDINGS Various subsets of myeloid cells play diverse roles in atherosclerosis. This review discusses new findings in phenotypic and functional characterization of different subsets of macrophages, in part determined by the transcription factors IRF5 and Trib1, and dendritic cells, characterized by the transcription factor Zbtb46, in atherosclerosis. SUMMARY Improved understanding proinflammatory and anti-inflammatory mechanisms of macrophages and dendritic cell functions is needed for better preventive and therapeutic measures in atherosclerosis.
Collapse
Affiliation(s)
- Ekaterina K Koltsova
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.
| | | | | |
Collapse
|
46
|
Legein B, Temmerman L, Biessen EAL, Lutgens E. Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci 2013; 70:3847-69. [PMID: 23430000 PMCID: PMC11113412 DOI: 10.1007/s00018-013-1289-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide, accounting for 16.7 million deaths each year. The underlying cause of the majority of CVD is atherosclerosis. In the past, atherosclerosis was considered to be the result of passive lipid accumulation in the vessel wall. Today's picture is far more complex. Atherosclerosis is considered a chronic inflammatory disease that results in the formation of plaques in large and mid-sized arteries. Both cells of the innate and the adaptive immune system play a crucial role in its pathogenesis. By transforming immune cells into pro- and anti-inflammatory chemokine- and cytokine-producing units, and by guiding the interactions between the different immune cells, the immune system decisively influences the propensity of a given plaque to rupture and cause clinical symptoms like myocardial infarction and stroke. In this review, we give an overview on the newest insights in the role of different immune cells and subtypes in atherosclerosis.
Collapse
Affiliation(s)
- Bart Legein
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Lieve Temmerman
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Erik A. L. Biessen
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian’s University, Pettenkoferstrasse 8a/9, 80336 Munich, Germany
| |
Collapse
|
47
|
Abstract
Cardiovascular disease is the leading cause of death in several countries. The underlying process is atherosclerosis, a slowly progressing chronic disorder that can lead to intravascular thrombosis. There is overwhelming evidence for the underlying importance of our immune system in atherosclerosis. Monocytes, which comprise part of the innate immune system, can be recruited to inflamed endothelium and this recruitment has been shown to be proportional to the extent of atherosclerotic disease. Monocytes undergo migration into the vasculature, they differentiate into macrophage phenotypes, which are highly phagocytic and can scavenge modified lipids, leading to foam cell formation and development of the lipid-rich atheroma core. This increased influx leads to a highly inflammatory environment and along with other immune cells can increase the risk in the development of the unstable atherosclerotic plaque phenotype. The present review provides an overview and description of the immunological aspect of innate and adaptive immune cell subsets in atherosclerosis, by defining their interaction with the vascular environment, modified lipids and other cellular exchanges. There is a particular focus on monocytes and macrophages, but shorter descriptions of dendritic cells, lymphocyte populations, neutrophils, mast cells and platelets are also included.
Collapse
|
48
|
Tillmann S, Bernhagen J, Noels H. Arrest Functions of the MIF Ligand/Receptor Axes in Atherogenesis. Front Immunol 2013; 4:115. [PMID: 23720662 PMCID: PMC3655399 DOI: 10.3389/fimmu.2013.00115] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/29/2013] [Indexed: 12/17/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been defined as an important chemokine-like function (CLF) chemokine with an essential role in monocyte recruitment and arrest. Adhesion of monocytes to the vessel wall and their transendothelial migration are critical in atherogenesis and many other inflammatory diseases. Chemokines carefully control all steps of the monocyte recruitment process. Those chemokines specialized in controlling arrest are typically immobilized on the endothelial surface, mediating the arrest of rolling monocytes by chemokine receptor-triggered pathways. The chemokine receptor CXCR2 functions as an important arrest receptor on monocytes. An arrest function has been revealed for the bona fide CXCR2 ligands CXCL1 and CXCL8, but genetic studies also suggested that additional arrest chemokines are likely to be involved in atherogenic leukocyte recruitment. While CXCR2 is known to interact with numerous CXC chemokine ligands, the CLF chemokine MIF, which structurally does not belong to the CXC chemokine sub-family, was surprisingly identified as a non-cognate ligand of CXCR2, responsible for critical arrest functions during the atherogenic process. MIF was originally identified as macrophage migration inhibitory factor (this function being eponymous), but is now known as a potent inflammatory cytokine with CLFs including chemotaxis and leukocyte arrest. This review will cover the mechanisms underlying these functions, including MIF’s effects on LFA1 integrin activity and signal transduction, and will discuss the structural similarities between MIF and the bona fide CXCR2 ligand CXCL8 while emphasizing the structural differences. As MIF also interacts with CXCR4, a chemokine receptor implicated in CXCL12-elicited lymphocyte arrest, the arrest potential of the MIF/CXCR4 axis will also be scrutinized as well as the recently identified role of pericyte MIF in attracting leukocytes exiting through venules as part of the pericyte “motility instruction program.”
Collapse
Affiliation(s)
- Sabine Tillmann
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University Aachen, Germany
| | | | | |
Collapse
|
49
|
Macrophage autophagy in atherosclerosis. Mediators Inflamm 2013; 2013:584715. [PMID: 23401644 PMCID: PMC3563164 DOI: 10.1155/2013/584715] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022] Open
Abstract
Macrophages play crucial roles in atherosclerotic immune responses. Recent investigation into macrophage autophagy (AP) in atherosclerosis has demonstrated a novel pathway through which these cells contribute to vascular inflammation.
AP is a cellular catabolic process involving the delivery of cytoplasmic contents to the lysosomal machinery for ultimate degradation and recycling. Basal levels of macrophage AP play an essential role in atheroprotection during early atherosclerosis. However, AP becomes dysfunctional in the more advanced stages of the pathology and its deficiency promotes vascular inflammation, oxidative stress, and plaque necrosis. In this paper, we will discuss the role of macrophages and AP in atherosclerosis and the emerging evidence demonstrating the contribution of macrophage AP to vascular pathology. Finally, we will discuss how AP could be targeted for therapeutic utility.
Collapse
|
50
|
Lichtman AH, Binder CJ, Tsimikas S, Witztum JL. Adaptive immunity in atherogenesis: new insights and therapeutic approaches. J Clin Invest 2013; 123:27-36. [PMID: 23281407 DOI: 10.1172/jci63108] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many remarkable advances have improved our understanding of the cellular and molecular events in the pathogenesis of atherosclerosis. Chief among these is the accumulating knowledge of how the immune system contributes to all phases of atherogenesis, including well-known inflammatory reactions consequent to intimal trapping and oxidation of LDL. Advances in our understanding of the innate and adaptive responses to these events have helped to clarify the role of inflammation in atherogenesis and suggested new diagnostic modalities and novel therapeutic targets. Here we focus on recent advances in understanding how adaptive immunity affects atherogenesis.
Collapse
Affiliation(s)
- Andrew H Lichtman
- Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|