1
|
Song W, Beigneux AP, Weston TA, Chen K, Yang Y, Nguyen LP, Guagliardo P, Jung H, Tran AP, Tu Y, Tran C, Birrane G, Miyashita K, Nakajima K, Murakami M, Tontonoz P, Jiang H, Ploug M, Fong LG, Young SG. The lipoprotein lipase that is shuttled into capillaries by GPIHBP1 enters the glycocalyx where it mediates lipoprotein processing. Proc Natl Acad Sci U S A 2023; 120:e2313825120. [PMID: 37871217 PMCID: PMC10623010 DOI: 10.1073/pnas.2313825120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Lipoprotein lipase (LPL), the enzyme that carries out the lipolytic processing of triglyceride-rich lipoproteins (TRLs), is synthesized by adipocytes and myocytes and secreted into the interstitial spaces. The LPL is then bound by GPIHBP1, a GPI-anchored protein of endothelial cells (ECs), and transported across ECs to the capillary lumen. The assumption has been that the LPL that is moved into capillaries remains attached to GPIHBP1 and that GPIHBP1 serves as a platform for TRL processing. In the current studies, we examined the validity of that assumption. We found that an LPL-specific monoclonal antibody (mAb), 88B8, which lacks the ability to detect GPIHBP1-bound LPL, binds avidly to LPL within capillaries. We further demonstrated, by confocal microscopy, immunogold electron microscopy, and nanoscale secondary ion mass spectrometry analyses, that the LPL detected by mAb 88B8 is located within the EC glycocalyx, distant from the GPIHBP1 on the EC plasma membrane. The LPL within the glycocalyx mediates the margination of TRLs along capillaries and is active in TRL processing, resulting in the delivery of lipoprotein-derived lipids to immediately adjacent parenchymal cells. Thus, the LPL that GPIHBP1 transports into capillaries can detach and move into the EC glycocalyx, where it functions in the intravascular processing of TRLs.
Collapse
Affiliation(s)
- Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Anne P. Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Thomas A. Weston
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Kai Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- School of Molecular Sciences, The University of Western Australia, Perth6009, Australia
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Le Phuong Nguyen
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Paul Guagliardo
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth6009, Australia
| | - Hyesoo Jung
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Anh P. Tran
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Yiping Tu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Caitlyn Tran
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA02215
| | - Kazuya Miyashita
- Department of Clinical Laboratory Medicine, Gunma University School of Medicine, Maebashi371-8511, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University School of Medicine, Maebashi371-8511, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University School of Medicine, Maebashi371-8511, Japan
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA90095
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, Copenhagen NDK–2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen NDK-2200, Denmark
| | - Loren G. Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Stephen G. Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| |
Collapse
|
2
|
Sagha A, Shiri H, Juybari KB, Mehrabani M, Nasri HR, Nematollahi MH. The Association Between Arsenic Levels and Oxidative Stress in Myocardial Infarction: A Case-Control Study. Cardiovasc Toxicol 2023; 23:61-73. [PMID: 36648739 DOI: 10.1007/s12012-022-09778-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
Cardiovascular diseases (CVDs) are known as the first causes of death throughout the world, and mainly myocardial infarction (MI), lead to 7.4 million deaths annually. Atherosclerosis is the major underlying cause of most CVDs. However, exposure to heavy metals, among other factors, deserves further attention as a risk factor for CVDs. This study was designed to evaluate the levels of arsenic (Ars) in myocardial infarction (MI) patients and healthy individuals as well as assess the association between the incidence of MI and Ars, total antioxidant capacity (TAC), and oxidative stress. This case-control study was conducted among patients with MI (n = 164) and normal individuals (n = 61) at Shafa Hospital in Kerman, Iran. Patients were classified into two groups, including coronary artery blocks above 50% (CAB > 50%, n = 83) and coronary artery blocks less than 50% (CAB < 50%, n = 83) based on their angiography findings. The demographic characteristics, clinical history, biochemical parameters, and serum Ars and TAC levels were evaluated. In the present study, both CAB groups had significantly reduced levels of TAC compared with the control. Furthermore, TAC was lower in the CAB > %50 group compared to the CAB < %50 group. Ars levels were significantly higher in both CAB groups compared with the control. There was a significant positive relationship between CAB and Ars, BG, HbA1c, urea, creatinine, TG, TC, and LDL-c, as well as a negative relationship between HDL-c and TAC. Moreover, TAC levels showed a significant inverse correlation with Ars, HbA1c, and creatinine, and a positive correlation with HDL-c. As risk factors, Ars, hs-CRP, TG, TC, and LDL-c enhance the severity of the disease, and HDL-c and TAC decrease the disease severity. Moreover, ROC curve analysis revealed that the highest AUC for the CAB > %50 (AUC = 78.29), and cytotoxic levels for both CAB groups (Ars ≥ 0.105 ppm), and no significant differences were found between the two groups. Our findings suggest that Ars at ≥ 0.105 ppm is able to increase the risk of MI through the increased OS and decreased TAC.
Collapse
Affiliation(s)
- Arian Sagha
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamidreza Shiri
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Reza Nasri
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, and Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Yeh KH, Wan HL, Teng MS, Chou HH, Hsu LA, Ko YL. Genetic Variants at the APOE Locus Predict Cardiometabolic Traits and Metabolic Syndrome: A Taiwan Biobank Study. Genes (Basel) 2022; 13:genes13081366. [PMID: 36011277 PMCID: PMC9407549 DOI: 10.3390/genes13081366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Several apolipoprotein genes are located at the APOE locus on chromosome 19q13.32. This study explored the genetic determinants of cardiometabolic traits and metabolic syndrome at the APOE locus in a Taiwanese population. A total of 81,387 Taiwan Biobank (TWB) participants were enrolled to undergo genotype−phenotype analysis using data from the Axiom Genome-Wide CHB arrays. Regional association analysis with conditional analysis revealed lead single-nucleotide variations (SNVs) at the APOE locus: APOE rs7412 and rs429358 for total, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) cholesterol levels; CLPTM1 rs3786505 and rs11672748 for LDL and HDL cholesterol levels; and APOC1 rs438811 and APOE-APOC1 rs439401 for serum triglyceride levels. Genotype−phenotype association analysis revealed a significant association of rs429358 and rs438811 with metabolic syndrome and of rs7412, rs438811, and rs439401 with serum albumin levels (p < 0.0015). Stepwise regression analysis indicated that CLPTM1 variants were independently associated with LDL and HDL cholesterol levels (p = 3.10 × 10−15 for rs3786505 and p = 1.48 × 10−15 for rs11672748, respectively). APOE rs429358 and APOC1 rs438811 were also independently associated with metabolic syndrome (p = 2.29 × 10−14) and serum albumin levels (p = 3.80 × 10−6), respectively. In conclusion, in addition to APOE variants, CLPTM1 is a novel candidate locus for LDL and HDL cholesterol levels at the APOE gene region in Taiwan. Our data also indicated that APOE and APOC1 variants were independently associated with metabolic syndrome and serum albumin levels, respectively. These results revealed the crucial role of genetic variants at the APOE locus in predicting cardiometabolic traits and metabolic syndrome.
Collapse
Affiliation(s)
- Kuan-Hung Yeh
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Hsiang-Lin Wan
- Division of Hematology/Oncology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
| | - Hsin-Hua Chou
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Yu-Lin Ko
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
- Correspondence: ; Tel.: +886-2-6628-9779 (ext. 5355); Fax: +886-2-6628-9009
| |
Collapse
|
4
|
Glise L, Rutberg M, Håversen L, Levin MC, Levin M, Jeppsson A, Borén J, Fogelstrand P. pH-Dependent Protonation of Histidine Residues Is Critical for Electrostatic LDL (Low-Density Lipoprotein) Binding to Human Coronary Arteries. Arterioscler Thromb Vasc Biol 2022; 42:1037-1047. [PMID: 35652335 DOI: 10.1161/atvbaha.122.317868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The initiating step in atherogenesis is the electrostatic binding of LDL (low-density lipoprotein) to proteoglycan glycosaminoglycans in the arterial intima. However, although proteoglycans are widespread throughout the intima of most coronary artery segments, LDL is not evenly distributed, indicating that LDL retention is not merely dependent on the presence of proteoglycans. We aim to identify factors that promote the interaction between LDL and the vessel wall of human coronary arteries. METHODS We developed an ex vivo model to investigate binding of human-labeled LDL to human coronary artery sections without the interference of cellular processes. RESULTS By staining consecutive sections of human coronary arteries, we found strong staining of sulfated glycosaminoglycans throughout the arterial intima, whereas endogenous LDL deposits were focally distributed. Ex vivo binding of LDL was uniform in all intimal areas with sulfated glycosaminoglycans. However, lowering the pH from 7.4 to 6.5 triggered a 35-fold increase in LDL binding. The pH-dependent binding was abolished by pretreating LDL with diethyl-pyrocarbonate, which blocks the protonation of histidine residues, or cyclohexanedione, which inhibits the positive charge of site B on LDL. Thus, both histidine protonation and site B are required for strong electrostatic LDL binding to the intima. CONCLUSIONS This study identifies histidine protonation as an important component for electrostatic LDL binding to human coronary arteries. Our findings show that the local pH will have a profound impact on LDL's affinity for sulfated glycosaminoglycans, which may influence the retention and accumulation pattern of LDL in the arterial vasculature.
Collapse
Affiliation(s)
- Lars Glise
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Mikael Rutberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Malin C Levin
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Max Levin
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.).,Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden (A.J.)
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.).,Sahlgrenska University Hospital/Wallenberg Laboratory, Gothenburg, Sweden (J.B.)
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| |
Collapse
|
5
|
Lorey MB, Öörni K, Kovanen PT. Modified Lipoproteins Induce Arterial Wall Inflammation During Atherogenesis. Front Cardiovasc Med 2022; 9:841545. [PMID: 35310965 PMCID: PMC8927694 DOI: 10.3389/fcvm.2022.841545] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Circulating apolipoprotein B-containing lipoproteins, notably the low-density lipoproteins, enter the inner layer of the arterial wall, the intima, where a fraction of them is retained and modified by proteases, lipases, and oxidizing agents and enzymes. The modified lipoproteins and various modification products, such as fatty acids, ceramides, lysophospholipids, and oxidized lipids induce inflammatory reactions in the macrophages and the covering endothelial cells, initiating an increased leukocyte diapedesis. Lipolysis of the lipoproteins also induces the formation of cholesterol crystals with strong proinflammatory properties. Modified and aggregated lipoproteins, cholesterol crystals, and lipoproteins isolated from human atherosclerotic lesions, all can activate macrophages and thereby induce the secretion of proinflammatory cytokines, chemokines, and enzymes. The extent of lipoprotein retention, modification, and aggregation have been shown to depend largely on differences in the composition of the circulating lipoprotein particles. These properties can be modified by pharmacological means, and thereby provide opportunities for clinical interventions regarding the prevention and treatment of atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Martina B. Lorey
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- *Correspondence: Katariina Öörni
| | - Petri T. Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
6
|
Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, Nordestgaard BG, Watts GF, Bruckert E, Fazio S, Ference BA, Graham I, Horton JD, Landmesser U, Laufs U, Masana L, Pasterkamp G, Raal FJ, Ray KK, Schunkert H, Taskinen MR, van de Sluis B, Wiklund O, Tokgozoglu L, Catapano AL, Ginsberg HN. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2021; 41:2313-2330. [PMID: 32052833 PMCID: PMC7308544 DOI: 10.1093/eurheartj/ehz962] [Citation(s) in RCA: 749] [Impact Index Per Article: 249.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/10/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M John Chapman
- Endocrinology-Metabolism Division, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.,National Institute for Health and Medical Research (INSERM), Paris, France
| | - Ronald M Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute and UCSF, Oakland, CA 94609, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jacob F Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark.,Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mat J Daemen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert A Hegele
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Denmark
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia.,Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Eric Bruckert
- INSERM UMRS1166, Department of Endocrinology-Metabolism, ICAN - Institute of CardioMetabolism and Nutrition, AP-HP, Hopital de la Pitie, Paris, France
| | - Sergio Fazio
- Departments of Medicine, Physiology and Pharmacology, Knight Cardiovascular Institute, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK.,Institute for Advanced Studies, University of Bristol, Bristol, UK.,MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, Leipzig, Germany
| | - Luis Masana
- Research Unit of Lipids and Atherosclerosis, IISPV, CIBERDEM, University Rovira i Virgili, C. Sant Llorenç 21, Reus 43201, Spain
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial Centre for Cardiovascular Disease Prevention, Imperial College London, London, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Faculty of Medicine, Technische Universität München, Lazarettstr, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, and IRCCS MultiMedica, Milan, Italy
| | - Henry N Ginsberg
- Department of Medicine, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Heffron SP, Weinstock A, Scolaro B, Chen S, Sansbury BE, Marecki G, Rolling CC, El Bannoudi H, Barrett T, Canary JW, Spite M, Berger JS, Fisher EA. Platelet-conditioned media induces an anti-inflammatory macrophage phenotype through EP4. J Thromb Haemost 2021; 19:562-573. [PMID: 33171016 PMCID: PMC7902474 DOI: 10.1111/jth.15172] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Platelets are increasingly recognized as immune cells. As such, they are commonly seen to induce and perpetuate inflammation; however, anti-inflammatory activities are increasingly attributed to them. Atherosclerosis is a chronic inflammatory condition. Similar to other inflammatory conditions, the resolution of atherosclerosis requires a shift in macrophages to an M2 phenotype, enhancing their efferocytosis and cholesterol efflux capabilities. OBJECTIVES To assess the effect of platelets on macrophage phenotype. METHODS In several in vitro models employing murine (RAW264.7 and bone marrow-derived macrophages) and human (THP-1 and monocyte-derived macrophages) cells, we exposed macrophages to media in which non-agonized human platelets were cultured for 60 minutes (platelet-conditioned media [PCM]) and assessed the impact on macrophage phenotype and function. RESULTS Across models, we demonstrated that PCM from healthy humans induced a pro-resolving phenotype in macrophages. This was independent of signal transducer and activator of transcription 6 (STAT6), the prototypical pathway for M2 macrophage polarization. Stimulation of the EP4 receptor on macrophages by prostaglandin E2 present in PCM, is at least partially responsible for altered gene expression and associated function of the macrophages-specifically reduced peroxynitrite production, increased efferocytosis and cholesterol efflux capacity, and increased production of pro-resolving lipid mediators (ie, 15R-LXA4 ). CONCLUSIONS Platelet-conditioned media induces an anti-inflammatory, pro-resolving phenotype in macrophages. Our findings suggest that therapies targeting hemostatic properties of platelets, while not influencing pro-resolving, immune-related activities, could be beneficial for the treatment of atherothrombotic disease.
Collapse
Affiliation(s)
- Sean P. Heffron
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
- NYU Langone Health, NYU Center for the Prevention of Cardiovascular Disease, New York, NY, USA
| | - Ada Weinstock
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | - Bianca Scolaro
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | - Shiyu Chen
- NYU Department of Chemistry, New York, NY, USA
| | - Brian E. Sansbury
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Greg Marecki
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | | | - Hanane El Bannoudi
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | - Tessa Barrett
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
| | | | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey S. Berger
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
- NYU Langone Health, NYU Center for the Prevention of Cardiovascular Disease, New York, NY, USA
- NYU Langone Health, Department of Surgery, New York University, New York, NY, USA
| | - Edward A. Fisher
- NYU Langone Health, Leon H. Charney Division of Cardiology, New York, NY, USA
- NYU Langone Health, NYU Center for the Prevention of Cardiovascular Disease, New York, NY, USA
| |
Collapse
|
8
|
Kluge S, Schubert M, Börmel L, Lorkowski S. The vitamin E long-chain metabolite α-13'-COOH affects macrophage foam cell formation via modulation of the lipoprotein lipase system. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158875. [PMID: 33421592 DOI: 10.1016/j.bbalip.2021.158875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/01/2020] [Accepted: 01/02/2021] [Indexed: 12/14/2022]
Abstract
The α-tocopherol-derived long-chain metabolite (α-LCM) α-13'-carboxychromanol (α-13'-COOH) is formed via enzymatic degradation of α-tocopherol (α-TOH) in the liver. In the last decade, α-13'-COOH has emerged as a new regulatory metabolite revealing more potent or even different effects compared with its vitamin precursor α-TOH. The detection of α-13'-COOH in human serum has further strengthened the concept of its physiological relevance as a potential regulatory molecule. Here, we present a new facet on the interaction of α-13'-COOH with macrophage foam cell formation. We found that α-13'-COOH (5 μM) increases angiopoietin-like 4 (ANGPTL4) mRNA expression in human THP-1 macrophages in a time- and dose-dependent manner, while α-TOH (100 μM) showed no effects. Interestingly, the mRNA level of lipoprotein lipase (LPL) was not influenced by α-13'-COOH, but α-TOH treatment led to a reduction of LPL mRNA expression. Both compounds also revealed different effects on protein level: while α-13'-COOH reduced the secreted amount of LPL protein via induction of ANGPTL4 cleavage, i.e. activation, the secreted amount of LPL in the α-TOH-treated samples was diminished due to the inhibition of mRNA expression. In line with this, both compounds reduced the catalytic activity of LPL. However, α-13'-COOH but not α-TOH attenuated VLDL-induced lipid accumulation by 35%. In conclusion, only α-13'-COOH revealed possible antiatherogenic effects due to the reduction of VLDL-induced foam cell formation in THP-1 macrophages. Our results provide further evidence for the role of α-13'-COOH as a functional metabolite of its vitamin E precursor.
Collapse
Affiliation(s)
- Stefan Kluge
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Martin Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Lisa Börmel
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.
| |
Collapse
|
9
|
Lu X. Structure and Function of Angiopoietin-like Protein 3 (ANGPTL3) in Atherosclerosis. Curr Med Chem 2020; 27:5159-5174. [PMID: 31223079 DOI: 10.2174/0929867326666190621120523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiopoietin-Like Proteins (ANGPTLs) are structurally related to the angiopoietins. A total of eight ANGPTLs (from ANGPTL1 to ANGPTL8) have been identified so far. Most ANGPTLs possess multibiological functions on lipid metabolism, atherosclerosis, and cancer. Among them, ANGPTL3 has been shown to regulate the levels of Very Low-Density Lipoprotein (VLDL) made by the liver and play a crucial role in human lipoprotein metabolism. METHOD A systematic appraisal of ANGPTLs was conducted, focusing on the main features of ANGPTL3 that has a significant role in atherosclerosis. RESULTS Angiopoietins including ANGPTL3 are vascular growth factors that are highly specific for endothelial cells, perform a variety of other regulatory activities to influence inflammation, and have been shown to possess both pro-atherosclerotic and atheroprotective effects. CONCLUSION ANGPTL3 has been demonstrated as a promising target in the pharmacological management of atherosclerosis. However, many questions remain about its biological functions.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London SW3 6LR, England, United Kingdom
| |
Collapse
|
10
|
Liu Y, Li H, Wang S, Yin W, Wang Z. Ibrolipim attenuates early-stage nephropathy in diet-induced diabetic minipigs: Focus on oxidative stress and fibrogenesis. Biomed Pharmacother 2020; 129:110321. [PMID: 32535382 DOI: 10.1016/j.biopha.2020.110321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022] Open
Abstract
It is well-recognized that hyperlipidemia and lipid peroxidation contribute to the progression of diabetic nephropathy (DN), which is associated with oxidative stress (OS) and fibrotic lesions. Ibrolipim, a specific lipoprotein lipase activator, has been proved to reduce hyperglycemia and hyperlipidemia, suppress renal lipid deposition, and also protect renal damage. However, the underlying mechanisms of its renoprotective effect are not clearly elaborated. Herein, the present study was to identify whether the putative mechanism of Ibrolipim was related to OS and fibrogenesis in diabetic minipigs fed by high-sucrose and high-fat diet (HSFD) with or without Ibrolipim for 5 months. Compared with the normal control diet, nutrient stress induced by HSFD caused moderate glomerulosclerosis and tubulointerstitial fibrosis, and promoted renal ultrastructural and functional abnormalities. These abnormalities were correlated with renal OS and fibrogenesis characterized by the increased levels of reactive oxygen species (ROS), malondialdehyde, hydroxyproline, collagen type Ⅳ alpha 1 and fibronectin, and decreased contents of reduced glutathione and total antioxidant capacity in kidneys. Ibrolipim significantly ameliorated these abnormalities in HSFD-fed minipigs. In addition, Ibrolipim diminished HSFD-induced nicotinamide-adenine dinucleotide phosphate oxidase-4 activation to reduce ROS production, and enhanced the expression and activity of antioxidant enzymes (i.e. superoxide dismutase 1, catalase and glutathione peroxidase 1) to increase ROS elimination, resulting in obvious suppression of renal OS. Meanwhile, Ibrolipim not only inhibited the upregulation of transforming growth factor-β1 but also partially reversed the downregulation of matrix metalloproteinase 2, and then prevented extracellular matrix (ECM) accumulation. Taken together, Ibrolipim exhibits anti-oxidative and anti-fibrotic effects via modulating the rebalance of renal ROS and ECM metabolism, and ultimately attenuates the progression of nephropathy in diet-induced diabetic minipigs.
Collapse
Affiliation(s)
- Yi Liu
- Department of Medical Technology, Medical College, Shaoguan University, Shaoguan 512026, Guangdong, China
| | - Hongguang Li
- Department of Medical Technology, Medical College, Shaoguan University, Shaoguan 512026, Guangdong, China
| | - Shuzhi Wang
- School of Pharmacy, University of South China, Hengyang 421001, Hunan, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Weidong Yin
- School of Pharmacy, University of South China, Hengyang 421001, Hunan, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China
| | - Zongbao Wang
- School of Pharmacy, University of South China, Hengyang 421001, Hunan, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
11
|
Öörni K, Lehti S, Sjövall P, Kovanen PT. Triglyceride-Rich Lipoproteins as a Source of Proinflammatory Lipids in the Arterial Wall. Curr Med Chem 2019; 26:1701-1710. [DOI: 10.2174/0929867325666180530094819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/27/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
Abstract
Apolipoprotein B –containing lipoproteins include triglyceride-rich lipoproteins
(chylomicrons and their remnants, and very low-density lipoproteins and their remnants) and
cholesterol-rich low-density lipoprotein particles. Of these, lipoproteins having sizes below
70-80 nm may enter the arterial wall, where they accumulate and induce the formation of
atherosclerotic lesions. The processes that lead to accumulation of lipoprotein-derived lipids
in the arterial wall have been largely studied with a focus on the low-density lipoprotein particles.
However, recent observational and genetic studies have discovered that the triglyceriderich
lipoproteins and their remnants are linked with cardiovascular disease risk. In this review,
we describe the potential mechanisms by which the triglyceride-rich remnant lipoproteins can
contribute to the development of atherosclerotic lesions, and highlight the differences in the
atherogenicity between low-density lipoproteins and the remnant lipoproteins.
Collapse
Affiliation(s)
| | - Satu Lehti
- Wihuri Research Institute, Helsinki, Finland
| | | | | |
Collapse
|
12
|
Nemati R, Dietz C, Anstadt EJ, Cervantes J, Liu Y, Dewhirst FE, Clark RB, Finegold S, Gallagher JJ, Smith MB, Yao X, Nichols FC. Deposition and hydrolysis of serine dipeptide lipids of Bacteroidetes bacteria in human arteries: relationship to atherosclerosis. J Lipid Res 2017; 58:1999-2007. [PMID: 28814639 DOI: 10.1194/jlr.m077792] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Indexed: 11/20/2022] Open
Abstract
Multiple reaction monitoring-MS analysis of lipid extracts from human carotid endarterectomy and carotid artery samples from young individuals consistently demonstrated the presence of bacterial serine dipeptide lipid classes, including Lipid 654, an agonist for human and mouse Toll-like receptor (TLR)2, and Lipid 430, the deacylated product of Lipid 654. The relative levels of Lipid 654 and Lipid 430 were also determined in common oral and intestinal bacteria from the phylum Bacteroidetes and human serum and brain samples from healthy adults. The median Lipid 430/Lipid 654 ratio observed in carotid endarterectomy samples was significantly higher than the median ratio in lipid extracts of common oral and intestinal Bacteroidetes bacteria, and serum and brain samples from healthy subjects. More importantly, the median Lipid 430/Lipid 654 ratio was significantly elevated in carotid endarterectomies when compared with control artery samples. Our results indicate that deacylation of Lipid 654 to Lipid 430 likely occurs in diseased artery walls due to phospholipase A2 enzyme activity. These results suggest that commensal Bacteriodetes bacteria of the gut and the oral cavity may contribute to the pathogenesis of TLR2-dependent atherosclerosis through serine dipeptide lipid deposition and metabolism in artery walls.
Collapse
Affiliation(s)
- Reza Nemati
- Department of Chemistry University of Connecticut, Storrs, CT 06269
| | | | - Emily J Anstadt
- Department of Immunology and Medicine, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Jorge Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Yaling Liu
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030
| | - Floyd E Dewhirst
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 and Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Robert B Clark
- Department of Immunology and Medicine, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Sydney Finegold
- Infectious Disease Division, Veterans Affairs Medical Center, Los Angeles, CA 90073 and Departments of Medicine and Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024
| | | | - Michael B Smith
- Department of Chemistry University of Connecticut, Storrs, CT 06269
| | - Xudong Yao
- Department of Chemistry University of Connecticut, Storrs, CT 06269.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Frank C Nichols
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030
| |
Collapse
|
13
|
Yokota T, Nomura K, Nagashima M, Kamimura N. Fucoidan alleviates high-fat diet-induced dyslipidemia and atherosclerosis in ApoE(shl) mice deficient in apolipoprotein E expression. J Nutr Biochem 2016; 32:46-54. [PMID: 27142736 DOI: 10.1016/j.jnutbio.2016.01.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/05/2016] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
Fucoidan, a sulfated polysaccharide extracted from brown seaweeds, possesses many biological activities including anti-inflammatory and antioxidant activities. We aimed to investigate the protective effects of fucoidan on dyslipidemia and atherosclerosis in apolipoprotein E-deficient mice (ApoE(shl) mice) and to elucidate its molecular targets in the liver by using a transcriptomic approach. For 12weeks, ApoE(shl) mice were fed a high-fat diet (HFD) supplemented with either 1% or 5% fucoidan. Fucoidan supplementation significantly reduced tissue weight (liver and white adipose tissue), blood lipid, total cholesterol (TC), triglyceride (TG), non-high-density lipoprotein cholesterol (non-HDL-C) and glucose levels in HFD-fed ApoE(shl) mice but increased plasma lipoprotein lipase (LPL) activity and HDL-C levels. Fucoidan also reduced hepatic steatosis levels (liver size, TC and TG levels, and lipid peroxidation) and increased white adipose tissue LPL activity. DNA microarray analysis and quantitative reverse transcription-polymerase chain reaction demonstrated differential expression of genes encoding proteins involved in lipid metabolism, energy homeostasis and insulin sensitivity, by activating Ppara and inactivating Srebf1. Fucoidan supplementation markedly reduced the thickness of the lipid-rich plaque, lipid peroxidation and foaming macrophage accumulation in the aorta in HFD-fed ApoE(shl) mice. Thus, fucoidan supplementation appears to have anti-dyslipidemic and anti-atherosclerotic effects by inducing LPL activity and inhibiting the effects of inflammation and oxidative stress in HFD-fed ApoE(shl) mice.
Collapse
Affiliation(s)
- Takashi Yokota
- Department of Molecular Biology, Institute for Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki 1-396, Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| | - Koichi Nomura
- Department of Neurology, Shioda Hospital, Idemizu 1221, Katsuura-Shi, Chiba, Japan
| | - Mikio Nagashima
- Division of Internal Medicine, Kaihin Park Clinic, 2-1-2-5 Utase, Mihama-ku, Chiba-city, Chiba, 261-0013, Japan
| | - Naomi Kamimura
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, Kawasaki 1-396, Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan
| |
Collapse
|
14
|
Martinez L, Gomez C, Vazquez-Padron RI. Age-related changes in monocytes exacerbate neointimal hyperplasia after vascular injury. Oncotarget 2016; 6:17054-64. [PMID: 25965835 PMCID: PMC4627291 DOI: 10.18632/oncotarget.3881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 03/31/2015] [Indexed: 01/09/2023] Open
Abstract
Neointimal hyperplasia is the leading cause of restenosis after endovascular interventions. It is characterized by the accumulation of myofibroblast-like cells and extracellular matrix in the innermost layer of the wall and is exacerbated by inflammation. Monocytes from either young or aged rats were applied perivascularly to injured vascular walls of young recipient animals. Monocytes from aged rats, but not young donors, increased neointima thickness. Accordingly, the gene expression profiles of CD11b+ monocytes from aged rats showed significant up-regulation of genes involved in cellular adhesion, lipid degradation, cytotoxicity, differentiation, and inflammation. These included cadherin 13 (Cdh13), colony stimulating factor 1 (Csf1), chemokine C-X-C motif ligand 1 (Cxcl1), endothelial cell-selective adhesion molecule (Esam), and interferon gamma (Ifng). In conclusion, our results suggest that the increased inflammatory and adhesive profile of monocytes contributes to pathological wall remodeling in aged-related vascular diseases.
Collapse
Affiliation(s)
- Laisel Martinez
- Department of Surgery and Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Camilo Gomez
- Department of Surgery and Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roberto I Vazquez-Padron
- Department of Surgery and Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
15
|
Affiliation(s)
- Sara N Vallerie
- From the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (S.N.V., K.E.B.), and Department of Pathology (K.E.B.), Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, WA
| | - Karin E Bornfeldt
- From the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (S.N.V., K.E.B.), and Department of Pathology (K.E.B.), Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
16
|
Abstract
Atherosclerosis is characterised by the accumulation of lipid-laden macrophages in atherosclerotic lesions and occurs preferentially at arterial branching points, which are prone to inflammation during hyperlipidaemic stress. The increased susceptibility at branching sites of arteries is attributable to poor adaptation of arterial endothelial cells to disturbed blood flow. In the past 5 years, several studies have provided mechanistic insights into the regulatory roles of microRNAs (miRNAs) in inflammatory activation, proliferation, and regeneration of endothelial cells during this maladaptive process. The intercellular transfer of vesicle-bound miRNAs contributes to arterial homeostasis, and the combinatorial effect of multiple miRNAs controls the unresolved inflammation orchestrated by macrophages in atherosclerotic lesions. In this Review, we highlight the miRNA-dependent regulation of the endothelial phenotype and the proliferative reserve that occurs in response to altered haemodynamic conditions as a prerequisite for atherogenic inflammation. In particular, we discuss the regulation of transcriptional modules by miRNAs and the protective role of complementary strand pairs, which encompasses remote miRNA signalling. In addition, we review the roles of miRNA tandems and describe the relevance of RNA target selection and competition to the behaviour of lesional macrophages. Elucidating miRNA-mediated regulatory mechanisms can aid the development of novel diagnostic and therapeutic strategies for atherosclerosis.
Collapse
|
17
|
|
18
|
Leonova EI, Galzitskaya OV. Role of Syndecans in Lipid Metabolism and Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:241-58. [PMID: 26149933 DOI: 10.1007/978-3-319-17344-3_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans involved in the regulation of cell growth, differentiation, adhesion, neuronal development, and lipid metabolism. Syndecans are expressed in a tissue-specific manner to facilitate diverse cellular processes. As receptors and co-receptors, syndecans provide promising therapeutic targets that bind to a variety of physiologically important ligands. Negatively charged glycosaminoglycan chains of syndecans, located in the extracellular compartment, are critical for such binding. Functions of syndecans are as diverse as their ligands. For example, hepatic syndecan-1 mediates clearance of triglyceride-rich lipoproteins. Syndecan-2 promotes localization of Alzheimer's amyloid Aβ peptide to the cell surface, which is proposed to contribute to amyloid plaque formation. Syndecan-3 helps co-localize the appetite-regulating melanocortin-4 receptor with its agonist, leading to an increased appetite. Finally, syndecan-4 initiates the capture of modified low-density lipoproteins by macrophages and thereby promotes the atheroma formation. We hypothesize that syndecan modifications such as desulfation of glycosaminoglycan chains may contribute to a wide range of diseases, from atherosclerosis to type 2 diabetes. At the same time, desulfated syndecans may have beneficial effects, as they can inhibit amyloid plaque formation or decrease the appetite. Despite considerable progress in understanding diverse functions of syndecans, the complex physiological roles of this intriguing family of proteoglycans are far from clear. Additional studies of syndecans may potentially help develop novel therapeutic approaches and diagnostic tools to alleviate complex human diseases such as cardiovascular and Alzheimer's diseases.
Collapse
Affiliation(s)
- Elena I Leonova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia,
| | | |
Collapse
|
19
|
Medbury HJ, Williams H, Fletcher JP. Clinical significance of macrophage phenotypes in cardiovascular disease. Clin Transl Med 2014; 3:63. [PMID: 25635207 PMCID: PMC4303745 DOI: 10.1186/s40169-014-0042-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/11/2014] [Indexed: 01/28/2023] Open
Abstract
The emerging understanding of macrophage subsets and their functions in the atherosclerotic plaque has led to the consensus that M1 macrophages are pro-atherogenic while M2 macrophages may promote plaque stability, primarily though their tissue repair and anti-inflammatory properties. As such, modulating macrophage function to promote plaque stability is an exciting therapeutic prospect. This review will outline the involvement of the different macrophage subsets throughout atherosclerosis progression and in models of regression. It is evident that much of our understanding of macrophage function comes from in vitro or small animal models and, while such knowledge is valuable, we have much to learn about the roles of the macrophage subsets in the clinical setting in order to identify the key pathways to target to possibly promote plaque stability.
Collapse
Affiliation(s)
- Heather J Medbury
- Vascular Biology Research Centre, Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW Australia
| | - Helen Williams
- Vascular Biology Research Centre, Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW Australia
| | - John P Fletcher
- Vascular Biology Research Centre, Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW Australia
| |
Collapse
|
20
|
Li Y, He PP, Zhang DW, Zheng XL, Cayabyab FS, Yin WD, Tang CK. Lipoprotein lipase: from gene to atherosclerosis. Atherosclerosis 2014; 237:597-608. [PMID: 25463094 DOI: 10.1016/j.atherosclerosis.2014.10.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/13/2014] [Accepted: 10/13/2014] [Indexed: 01/21/2023]
Abstract
Lipoprotein lipase (LPL) is a key enzyme in lipid metabolism and responsible for catalyzing lipolysis of triglycerides in lipoproteins. LPL is produced mainly in adipose tissue, skeletal and heart muscle, as well as in macrophage and other tissues. After synthesized, it is secreted and translocated to the vascular lumen. LPL expression and activity are regulated by a variety of factors, such as transcription factors, interactive proteins and nutritional state through complicated mechanisms. LPL with different distributions may exert distinct functions and have diverse roles in human health and disease with close association with atherosclerosis. It may pose a pro-atherogenic or an anti-atherogenic effect depending on its locations. In this review, we will discuss its gene, protein, synthesis, transportation and biological functions, and then focus on its regulation and relationship with atherosclerosis and potential underlying mechanisms. The goal of this review is to provide basic information and novel insight for further studies and therapeutic targets.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
| | - Ping-Ping He
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China; School of Nursing, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Fracisco S Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Wei-Dong Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Discovery, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
21
|
Makoveichuk E, Sukonina V, Kroupa O, Thulin P, Ehrenborg E, Olivecrona T, Olivecrona G. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed. Biochem Biophys Res Commun 2012; 425:138-43. [PMID: 22820186 DOI: 10.1016/j.bbrc.2012.07.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
Abstract
Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPARδ agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.
Collapse
Affiliation(s)
- Elena Makoveichuk
- Department of Medical Biosciences, Physiological Chemistry Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Advanced glycation endproduct changes to Bruch's membrane promotes lipoprotein retention by lipoprotein lipase. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:850-9. [PMID: 21801873 DOI: 10.1016/j.ajpath.2011.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/14/2011] [Accepted: 04/02/2011] [Indexed: 02/02/2023]
Abstract
Lipoprotein particles accumulate in Bruch's membrane before the development of basal deposits and drusen, two histopathologic lesions that define age-related macular degeneration (AMD). We therefore, sought to determine which molecules could participate in lipoprotein retention. Wild-type or lipoprotein lipase-deficient mice were injected with low-dose D-galactose or PBS subcutaneously for 8 weeks to induce advanced glycation endproduct (AGE) formation. Some mice were also injected with the AGE breaker phenacylphiazolium bromide and D-galactose. Rhodamine-labeled low-density lipoproteins were injected into mice, and the fluorescence was measured up to 72 hours later. AGEs, proteoglycans, and other lipid-retaining molecules were evaluated by IHC. Lipoprotein lipase distribution was assessed in AMD samples by IHC. D-galactose-treated mice retained lipoproteins in the retinal pigment epithelial and Bruch's membrane to a greater extent than either PBS- or phenacylphiazolium bromide/D-galactose-treated mice at 24 and 72 hours after injection (P ≤ 0.04). Immunolabeling for carboxymethyllysine, biglycan, and lipoprotein lipase was found in D-galactose-treated mice only. Mice deficient for lipoprotein lipase treated with D-galactose did not retain lipoproteins to any measureable extent. Human AMD samples had lipoprotein lipase labeling within drusen, basal deposits, and the choroid. Mice treated with D-galactose to induce AGE formation in Bruch's membrane retain intravenously injected lipoproteins. Our results suggest that lipoprotein retention in Bruch's membrane is mediated by lipoprotein lipase.
Collapse
|
23
|
Chen Q, Reis SE, Kammerer C, Craig W, McNamara DM, Holubkov R, Sharaf BL, Sopko G, Pauly DF, Merz CNB, Kamboh MI. Association of anti-oxidized LDL and candidate genes with severity of coronary stenosis in the Women's Ischemia Syndrome Evaluation study. J Lipid Res 2011; 52:801-7. [PMID: 21252261 PMCID: PMC3284169 DOI: 10.1194/jlr.m012963] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/10/2011] [Indexed: 11/20/2022] Open
Abstract
Atherosclerosis is the major cause of coronary artery disease (CAD), and oxidized LDL (oxLDL) is believed to play a key role in the initiation of the atherosclerotic process. Recent studies show that inflammation and autoimmune reactions are also relevant in atherosclerosis. In this study, we examined the association of antibodies against oxLDL (anti-oxLDL) with the severity of CAD in 558 Women's Ischemia Syndrome Evaluation (WISE) study samples (465 whites; 93 blacks) determined by coronary stenosis (< 20%, 20%-49%, > 50% stenosis). We also examined the relationship of anti-oxLDL with serum lipid levels and nine candidate genes including APOE, APOH, APOA5, LPL, LRP1, HL, CETP, PON1, and OLR1. IgM anti-oxLDL levels were significantly higher in the >20% stenosis group than in the ≥ 20% stenosis group in whites (0.69 ± 0.02 vs. 0.64 ± 0.01, respectively; P = 0.02). IgM anti-oxLDL levels correlated significantly with total cholesterol (r² = 0.01; P = 0.03) and LDL cholesterol (r² = 0.017; P = 0.004) in whites. Multiple regression analysis revealed a suggestive association of LPL/S447X single-nucleotide polymorphism (SNP) with both IgG anti-oxLDL (P = 0.02) and IgM anti-oxLDL (P = 0.07), as well as between IgM anti-oxLDL and the OLR1/3'UTR SNP (P = 0.020). Our data suggest that higher IgM anti-oxLDL levels may provide protection against coronary stenosis and that genetic variation in some candidate genes are determinants of anti-oxLDL levels.
Collapse
Affiliation(s)
- Qi Chen
- Department of Human Genetics, and Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA
| | - Steven E. Reis
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Candace Kammerer
- Department of Human Genetics, and Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA
| | - Wendy Craig
- ;Foundation for Blood Research, Scarborough, ME
| | - Dennis M. McNamara
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Richard Holubkov
- Intermountain Injury Control Research Center, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT
| | - Barry L. Sharaf
- Division of Cardiology, Rhode Island Hospital, Providence, RI
| | - George Sopko
- Division of Heart and Vascular Diseases National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Daniel F. Pauly
- Division of Cardiology University of Florida, Gainesville, FL
| | | | - M. Ilyas Kamboh
- Department of Human Genetics, and Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
24
|
Anggraeni VY, Emoto N, Yagi K, Mayasari DS, Nakayama K, Izumikawa T, Kitagawa H, Hirata KI. Correlation of C4ST-1 and ChGn-2 expression with chondroitin sulfate chain elongation in atherosclerosis. Biochem Biophys Res Commun 2011; 406:36-41. [DOI: 10.1016/j.bbrc.2011.01.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/26/2011] [Indexed: 10/18/2022]
|
25
|
Ken-Dror G, Talmud PJ, Humphries SE, Drenos F. APOE/C1/C4/C2 gene cluster genotypes, haplotypes and lipid levels in prospective coronary heart disease risk among UK healthy men. Mol Med 2010. [PMID: 20498921 DOI: 10.2119/molmed.2010-00044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of common APOE variants on plasma lipids, particularly low density lipoprotein (LDL) levels, and coronary heart disease (CHD) risk is well known; the influence of variation in the other nearby apolipoprotein genes APOC1, APOC4 and APOC2 is unclear. This study examines the association between APOE/C1/C4/C2 gene cluster variation using tagging SNPs and plasma lipid concentration along with risk of CHD in a prospective cohort. Genotypes for 11 common APOE/C1/C4/C2 SNPs were determined in 2,767 middle-aged (49 to 64 years) men from the Second Northwick Park Heart Study, with 275 CHD events over a 15-year follow-up period. Seven SNPs showed significant associations with one or more lipid trait in univariate analysis. Multivariate and haplotype analysis showed that the APOE genotypes are most strongly associated with effects on LDL-C and apoB concentration (explaining 3.4% of the LDL-C variance) while the other SNPs in this gene cluster explained an additional 1.2%. Haplotypes in APOC2 and APOC4 were associated with modest effects on HDL-C and apoAI (explaining respectively 1.4% and 1.2%). Carriers of the APOE ɛ2 SNP had a significantly lower risk of CHD hazard ratio (HR) of 0.63 (95% confidence interval [CI]: 0.42-0.95), as did carriers of the APOC2 SNP rs5127 (HR = 0.72, 95% CI: 0.56-0.93), while carriers of APOC1 SNP rs4803770 had higher risk of CHD (HR = 1.36, 95% CI: 1.04-1.78) compared with noncarriers. While the common APOE polymorphism explains the majority of the locus genetic determinants of plasma lipid levels, additional SNPs in the APOC1/C2 region may contribute to CHD risk, but these effects require confirmation.
Collapse
Affiliation(s)
- Gie Ken-Dror
- Centre for Cardiovascular Genetics, BHF Laboratories, The Rayne Building, Department of Medicine, Royal Free and University College Medical School, 5 University Street, London, United Kingdom
| | | | | | | |
Collapse
|
26
|
Ken-Dror G, Talmud PJ, Humphries SE, Drenos F. APOE/C1/C4/C2 gene cluster genotypes, haplotypes and lipid levels in prospective coronary heart disease risk among UK healthy men. Mol Med 2010; 16:389-99. [PMID: 20498921 DOI: 10.2119/molmed.2010.00044] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 05/18/2010] [Indexed: 11/06/2022] Open
Abstract
The role of common APOE variants on plasma lipids, particularly low density lipoprotein (LDL) levels, and coronary heart disease (CHD) risk is well known; the influence of variation in the other nearby apolipoprotein genes APOC1, APOC4 and APOC2 is unclear. This study examines the association between APOE/C1/C4/C2 gene cluster variation using tagging SNPs and plasma lipid concentration along with risk of CHD in a prospective cohort. Genotypes for 11 common APOE/C1/C4/C2 SNPs were determined in 2,767 middle-aged (49 to 64 years) men from the Second Northwick Park Heart Study, with 275 CHD events over a 15-year follow-up period. Seven SNPs showed significant associations with one or more lipid trait in univariate analysis. Multivariate and haplotype analysis showed that the APOE genotypes are most strongly associated with effects on LDL-C and apoB concentration (explaining 3.4% of the LDL-C variance) while the other SNPs in this gene cluster explained an additional 1.2%. Haplotypes in APOC2 and APOC4 were associated with modest effects on HDL-C and apoAI (explaining respectively 1.4% and 1.2%). Carriers of the APOE ɛ2 SNP had a significantly lower risk of CHD hazard ratio (HR) of 0.63 (95% confidence interval [CI]: 0.42-0.95), as did carriers of the APOC2 SNP rs5127 (HR = 0.72, 95% CI: 0.56-0.93), while carriers of APOC1 SNP rs4803770 had higher risk of CHD (HR = 1.36, 95% CI: 1.04-1.78) compared with noncarriers. While the common APOE polymorphism explains the majority of the locus genetic determinants of plasma lipid levels, additional SNPs in the APOC1/C2 region may contribute to CHD risk, but these effects require confirmation.
Collapse
Affiliation(s)
- Gie Ken-Dror
- Centre for Cardiovascular Genetics, BHF Laboratories, The Rayne Building, Department of Medicine, Royal Free and University College Medical School, 5 University Street, London, United Kingdom
| | | | | | | |
Collapse
|
27
|
|
28
|
Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 2009; 28:393-422. [PMID: 19698799 PMCID: PMC4319375 DOI: 10.1016/j.preteyeres.2009.08.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The largest risk factor for age-related macular degeneration (ARMD) is advanced age. A prominent age-related change in the human retina is the accumulation of histochemically detectable neutral lipid in normal Bruch's membrane (BrM) throughout adulthood. This change has the potential to have a major impact on physiology of the retinal pigment epithelium (RPE). It occurs in the same compartment as drusen and basal linear deposit, the pathognomonic extracellular, lipid-containing lesions of ARMD. Here we present evidence from light microscopic histochemistry, ultrastructure, lipid profiling of tissues and isolated lipoproteins, and gene expression analysis that this deposition can be accounted for by esterified cholesterol-rich, apolipoprotein B-containing lipoprotein particles constitutively produced by the RPE. This work collectively allows ARMD lesion formation and its aftermath to be conceptualized as a response to the retention of a sub-endothelial apolipoprotein B lipoprotein, similar to a widely accepted model of atherosclerotic coronary artery disease (CAD) (Tabas et al., 2007). This approach provides a wide knowledge base and sophisticated clinical armamentarium that can be readily exploited for the development of new model systems and the future benefit of ARMD patients.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, AL 35294-0009, USA.
| | | | | | | |
Collapse
|
29
|
Yang SNY, Osman N, Burch ML, Little PJ. Factors affecting proteoglycan synthesis and structure that modify the interaction with lipoproteins. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Enhanced atherothrombotic formation after oxidative injury by FeCl3 to the common carotid artery in severe combined hyperlipidemic mice. Biochem Biophys Res Commun 2009; 385:563-9. [DOI: 10.1016/j.bbrc.2009.05.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 05/22/2009] [Indexed: 11/22/2022]
|
31
|
Auclair S, Milenkovic D, Besson C, Chauvet S, Gueux E, Morand C, Mazur A, Scalbert A. Catechin reduces atherosclerotic lesion development in apo E-deficient mice: A transcriptomic study. Atherosclerosis 2009; 204:e21-7. [DOI: 10.1016/j.atherosclerosis.2008.12.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/28/2008] [Accepted: 12/05/2008] [Indexed: 11/29/2022]
|
32
|
Abstract
Lipases are acyl hydrolases that represent a diverse group of enzymes present in organisms ranging from prokaryotes to humans. This article focuses on an evolutionarily related family of extracellular lipases that include lipoprotein lipase, hepatic lipase and endothelial lipase. As newly synthesized proteins, these lipases undergo a series of co- and post-translational maturation steps occurring in the endoplasmic reticulum, including glycosylation and glycan processing, and protein folding and subunit assembly. This article identifies and discusses mechanisms that direct early and late events in lipase folding and assembly. Lipase maturation employs the two general chaperone systems operating in the endoplasmic reticulum, as well as a recently identified lipase-specific chaperone termed lipase maturation factor 1. We propose that the two general chaperone systems act in a coordinated manner early in lipase maturation in order to help create partially folded monomers; lipase maturation factor 1 then facilitates final monomer folding and subunit assembly into fully functional homodimers. Once maturation is complete, the lipases exit the endoplasmic reticulum and are secreted to extracellular sites, where they carry out a number of functions related to lipoprotein and lipid metabolism.
Collapse
Affiliation(s)
- Mark H Doolittle
- VA Greater Los Angeles, Healthcare System, 11301 Wilshire Blvd, Bldg 113, Rm 312, Los Angeles, CA 90073, USA, Tel.: +1 661 433 6349
| | | |
Collapse
|
33
|
Park YM, Febbraio M, Silverstein RL. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest 2008; 119:136-45. [PMID: 19065049 DOI: 10.1172/jci35535] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 10/29/2008] [Indexed: 01/27/2023] Open
Abstract
The trapping of lipid-laden macrophages in the arterial intima is a critical but reversible step in atherogenesis. However, the mechanism by which this occurs is not clearly defined. Here, we tested in mice the hypothesis that CD36, a class B scavenger receptor expressed on macrophages, has a role in this process. Using both in vivo and in vitro migration assays, we found that oxidized LDL (oxLDL), but not native LDL, inhibited migration of WT mouse macrophages but not CD36-deficient cells. We further observed a crucial role for CD36 in modulating the in vitro migratory response of human peripheral blood monocyte-derived macrophages to oxLDL. oxLDL also induced rapid spreading and actin polymerization in CD36-sufficient but not CD36-deficient mouse macrophages in vitro. The underlying mechanism was dependent on oxLDL-mediated CD36 signaling, which resulted in sustained activation of focal adhesion kinase (FAK) and inactivation of Src homology 2-containing phosphotyrosine phosphatase (SHP-2). The latter was due to NADPH oxidase-mediated ROS generation, resulting in oxidative inactivation of critical cysteine residues in the SHP-2-active site. Macrophage migration in the presence of oxLDL was restored by both antioxidants and NADPH oxidase inhibitors, which restored the dynamic activation of FAK. We conclude therefore that CD36 signaling in response to oxLDL alters cytoskeletal dynamics to enhance macrophage spreading, inhibiting migration. This may induce trapping of macrophages in the arterial intima and promote atherosclerosis.
Collapse
Affiliation(s)
- Young Mi Park
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
34
|
Tannock LR, King VL. Proteoglycan mediated lipoprotein retention: a mechanism of diabetic atherosclerosis. Rev Endocr Metab Disord 2008; 9:289-300. [PMID: 18584330 DOI: 10.1007/s11154-008-9078-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 05/29/2008] [Indexed: 12/25/2022]
Abstract
The response to retention hypothesis outlines the initial stages of atherosclerotic lesion formation. The central theme of the hypothesis is that proteoglycan mediated lipoprotein retention plays a critical step in the initiation of atherosclerosis development. Recent research using human arterial specimens, transgenic mouse models and molecular biology techniques have added to our understanding of atherosclerosis development, and provided experimental data in support of the response to retention hypothesis. In this review we summarize the recent data, in particular that which addresses mechanisms by which diabetes can accelerate atherosclerosis formation, with a focus on proteoglycan-mediated LDL retention.
Collapse
Affiliation(s)
- Lisa R Tannock
- Department of Veterans Affairs, Lexington, KY, 40511, USA.
| | | |
Collapse
|
35
|
Molecular structure of low density lipoprotein: current status and future challenges. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:145-58. [DOI: 10.1007/s00249-008-0368-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/28/2008] [Indexed: 01/01/2023]
|
36
|
Nakashima Y, Wight TN, Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res 2008; 79:14-23. [DOI: 10.1093/cvr/cvn099] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Williams KJ, Feig JE, Fisher EA. Rapid regression of atherosclerosis: insights from the clinical and experimental literature. ACTA ACUST UNITED AC 2008; 5:91-102. [PMID: 18223541 DOI: 10.1038/ncpcardio1086] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 10/17/2007] [Indexed: 01/09/2023]
Abstract
Looking back at animal and clinical studies published since the 1920s, the notion of rapid regression and stabilization of atherosclerosis in humans has evolved from a fanciful goal to one that might be achievable pharmacologically, even for advanced plaques. Our review of this literature indicates that successful regression of atherosclerosis generally requires robust measures to improve plasma lipoprotein profiles. Examples of such measures include extensive lowering of plasma concentrations of atherogenic apolipoprotein B (apoB)-lipoproteins and enhancement of 'reverse' lipid transport from atheromata into the liver, either alone or in combination. Possible mechanisms responsible for lesion shrinkage include decreased retention of apoB-lipoproteins within the arterial wall, efflux of cholesterol and other toxic lipids from plaques, emigration of foam cells out of the arterial wall, and influx of healthy phagocytes that remove necrotic debris and other components of the plaque. Unfortunately, the clinical agents currently available cause less dramatic changes in plasma lipoprotein levels, and, thereby, fail to stop most cardiovascular events. Hence, there is a clear need for testing of new agents expected to facilitate atherosclerosis regression. Additional mechanistic insights will allow further progress.
Collapse
Affiliation(s)
- Kevin Jon Williams
- Department of Medicine/Division of Endocrinology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
38
|
Williams KJ, Feig JE, Fisher EA. Cellular and molecular mechanisms for rapid regression of atherosclerosis: from bench top to potentially achievable clinical goal. Curr Opin Lipidol 2007; 18:443-50. [PMID: 17620862 DOI: 10.1097/mol.0b013e32823bcb15] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Decades of literature have unambiguously demonstrated regression and remodeling of atherosclerotic lesions, including advanced plaques. Recent insights into underlying mechanisms are reviewed. RECENT FINDINGS Factors promoting regression include decreased apolipoprotein B-lipoprotein retention within the arterial wall, efflux of cholesterol and other harmful lipids from plaques, and emigration of lesional foam cells followed by entry of healthy phagocytes that remove necrotic debris and other plaque components. Cellular lipid efflux and foam cell emigration can occur surprisingly rapidly once the plaque milieu is improved. Lipid efflux and foam cell emigration each involve specific molecular mediators, many of which have been identified. Necrotic debris removal can be surprisingly comprehensive, with essentially full disappearance documented in animal models. SUMMARY The essential prerequisite for regression is robust improvement in plaque milieu, meaning large plasma reductions in atherogenic apolipoprotein B-lipoproteins or brisk enhancements in 'reverse' lipid transport from plaque into liver. Importantly, the processes of regression are consistent with rapid correction of features characteristic of the rupture-prone, vulnerable plaques responsible for acute coronary syndromes. New interventions to lower apolipoprotein B-lipoprotein levels and enhance reverse lipid transport may allow regression to become a widespread clinical goal. Strategies based on recent mechanistic insights may facilitate further therapeutic progress.
Collapse
Affiliation(s)
- Kevin Jon Williams
- Department of Medicine/Division of Endocrinology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
39
|
Tracy RE. Low smooth muscle cell densities characterize sites with isolated interstitial lipid in coronary artery intima. Arch Pathol Lab Med 2007; 131:755-60. [PMID: 17488161 DOI: 10.5858/2007-131-755-lsmcdc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2006] [Indexed: 11/06/2022]
Abstract
CONTEXT The initial step in the development of atherosclerotic lesions is suggested to be the retention of low-density lipoprotein. This suggestion would seem to imply that some interval of time ought to intervene between the initial retention of interstitial lipid and subsequent influx of fatty streak cellular elements. Yet no evidence for such a waiting interval has been offered. OBJECTIVE To describe findings from application to coronary arteries from forensic autopsy specimens of a new method for staining lipids in paraffin sections. DESIGN Isolated interstitial lipid (IIL) (extracellular lipid pools accompanied by no perceptible intracellular lipid or other fatty streak elements at the affected sites) was identified in various intimal compartments, and smooth muscle cell (SMC) numbers were counted at these sites. RESULTS Isolated interstitial lipid was a surprisingly frequent finding after age 35 years, seen in 87 (84%) of 104 cases. The number of SMCs per unit area of sectioned intima was high in specimens lacking IIL (15.5 SMCs/[100 microm]2), lowest at sites displaying IIL (8.3 SMCs/[100 microm]2), and intermediate at sites lacking IIL in specimens that do contain IIL at some other location (12.6 SMCs/[100 microm]2). CONCLUSIONS These findings plus other evidence support the proposal that retention of lipid most often happens, in aging arteries, at sites where the architecture was previously altered by diluting of constant SMC numbers by expanding collagenous matrix, thereby lowering SMC densities.
Collapse
Affiliation(s)
- Richard E Tracy
- Department of Pathology, Louisiana State University Health Science Center, 1901 Perdido St 1P5, New Orleans, LA 70112, USA.
| |
Collapse
|
40
|
Zhuge X, Arai H, Xu Y, Murayama T, Kobayashi T, Narumiya S, Kita T, Yokode M. Protection of atherogenesis in thromboxane A2 receptor-deficient mice is not associated with thromboxane A2 receptor in bone marrow-derived cells. Biochem Biophys Res Commun 2006; 351:865-71. [PMID: 17097058 DOI: 10.1016/j.bbrc.2006.10.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 10/23/2006] [Indexed: 10/24/2022]
Abstract
In the previous study, we generated mice lacking thromboxane A2 receptor (TP) and apolipoprotein E, apoE(-/-)TP(-/-) mice, and reported that the double knockout mice developed markedly smaller atherosclerotic lesions than those in apoE(-/-) mice. To investigate the mechanism responsible for reduced atherosclerosis in apoE(-/-)TP(-/-) mice, we examined the role of TP in bone marrow (BM)-derived cells in the development of the atherosclerotic lesions. When we compared the function of macrophages in apoE(-/-) and in apoE(-/-)TP(-/-) mouse in vitro, there was no difference in the expression levels of cytokines and chemokines after stimulation with lipopolysaccharide. We then transplanted the BM from either apoE(-/-) or apoE(-/-)TP(-/-) mice to either apoE(-/-) or apoE(-/-)TP(-/-) mice after sublethal irradiation. After 12 weeks with high fat diet, we analyzed the atherosclerotic lesion of aortic sinus. When the BM from apoE(-/-) or apoE(-/-)TP(-/-) mice was transplanted to apoE(-/-) mice, the lesion size was almost the same as that of apoE(-/-) mice without BM transplantation. In contrast, when the BM from apoE(-/-) or apoE(-/-)TP(-/-) mice was transplanted to apoE(-/-)TP(-/-) mice, the lesion size was markedly reduced. These results indicate that the protection of atherogenesis in TP(-/-) mice is not associated with TP in BM-derived cells.
Collapse
Affiliation(s)
- Xin Zhuge
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ozsoy RC, van Leuven SI, Kastelein JJP, Arisz L, Koopman MG. The dyslipidemia of chronic renal disease: effects of statin therapy. Curr Opin Lipidol 2006; 17:659-66. [PMID: 17095911 DOI: 10.1097/mol.0b013e328010a87d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Dyslipidemia is a prevalent condition in patients with chronic renal disease, but is often left untreated. Statin treatment constitutes an effective way to improve lipid abnormalities. This review summarizes present studies on dyslipidemia and its treatment in patients with chronic renal disease. RECENT FINDINGS The specific dyslipidemia in renal disease is associated with the presence of proteinuria and decreased creatinine clearance, and may even adversely affect the progression of chronic renal disease. Statin therapy may have renoprotective effects due to a combination of lipid lowering and pleiotropic effects. Statins exert several anti-inflammatory properties and lead to a decrease of proteinuria. Post-hoc analyses of large-scale lipid lowering trials have shown that the reduction of cardiovascular risk was equivalent to the reduction achieved in patients without chronic renal failure. We feel, however, that if intervention with statins is postponed until patients reach end-stage renal disease, statins have limited benefit. SUMMARY Present studies suggest that patients with renal disease should be screened early for dyslipidemia and that statins have to be considered as the lipid lowering therapy of choice. These drugs reduce cardiovascular risk. Further studies are needed to firmly establish whether statins preserve renal function.
Collapse
Affiliation(s)
- Riza C Ozsoy
- Department of Nephrology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Binding of apolipoprotein B-100-containing lipoproteins (VLDL, IDL, and LDL) to proteoglycans and modifications of the lipoproteins, whether bound or unbound, are key processes in atherogenesis. The complex interplay between binding and modification has been studied at neutral pH conditions. It has been demonstrated that during atherogenesis the extracellular pH of the lesions decreases. We summarize findings suggesting that lipoprotein binding and modification are enhanced at acidic pH. RECENT FINDINGS Many enzymes found in the arterial intima, such as secretory sphingomyelinase and cathepsins, are able to hydrolyze lipoproteins in vitro. These enzymes function optimally at slightly acidic pH (pH 5.5-6.5), and are likely to act on lipoproteins optimally in the acidic plaque areas. Also, the ability of human aortic proteoglycans to bind native VLDL, IDL, and LDL is dramatically increased at acidic pH; this binding can be further increased if these apolipoprotein B-100-containing particles are hydrolytically modified. SUMMARY Recent in-vitro findings suggest that in areas of atherosclerotic arterial intima where the extracellular pH is decreased, binding of apolipoprotein B-100-containing lipoproteins to proteoglycans and modification of the lipoproteins by acidic enzymes are enhanced. The pH-induced amplification of these processes will lead to enhanced extracellular accumulation of lipoproteins and accelerated progression of the disease.
Collapse
Affiliation(s)
- Katariina Oörni
- Wihuri Research Institute, Kalliolinnantie 4, FIN-00140 Helsinki, Finland.
| | | |
Collapse
|
43
|
Socquard E, Durlach A, Clavel C, Nazeyrollas P, Durlach V. Association of HindIII and PvuII genetic polymorphisms of lipoprotein lipase with lipid metabolism and macrovascular events in type 2 diabetic patients. DIABETES & METABOLISM 2006; 32:262-9. [PMID: 16799404 DOI: 10.1016/s1262-3636(07)70278-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIM Lipoprotein lipase (LPL) is a key enzyme of lipid metabolism, and its genetic polymorphism may be a candidate for modulating lipid parameters in type 2 diabetic subjects (D2). METHODS In a group of 404 type 2 diabetic patients, aged 59.5+/-10.8y, BMI=28.9+/-5.3 kg/m2, HbA1c=8.2+/-1.9%, we studied the H and P polymorphisms at the LPL locus detectable with the restriction enzymes HindIII and PvuII. Patients were separated into 229 males (17H1H1, 84H1H2, 128H2H2 and 51P1P1, 110P1P2, 68P2P2) and 175 females (16H1H1, 69H1H2, 90H2H2 and 51P1P1, 85P1P2, 39P2P2), and compared on the basis of their lipid parameters and their macrovascular complications. RESULTS Triglyceride (TG) and HDL-cholesterol(c) concentrations differed between patients with and without coronary heart disease (CHD) (3.44+/-2.09 and 1.96+/-1.40 mmol/l for TGs and 1.05+/-0.24 and 1.34+/-0.40 mmol/l for HDL-c, P<0.001). HDL-c concentrations were lower in male H2H2 and P2P2 subjects (P<0.001), and TG levels were higher in male H2H2 and P2P2 subjects (P<0.0001 for Hind III and P<0.05 for PvuII). Allele frequency of the HindIII and PvuII restriction site was similar to those reported in other Caucasian populations and the presence of the H2/P2 variants was significantly higher in CHD patients. The prevalence of CHD in this population was 18% but was 29% in H2H2 and 38% in P2P2 subjects (P<0.02). CONCLUSION Thus, HindIII and PvuII polymorphisms seem to exert a modulating role on lipid profile particularly in male D2, contributing to increase the risk of macrovascular events.
Collapse
Affiliation(s)
- E Socquard
- Service d'Endocrinologie, Maladies Métaboliques et de Médecine Interne, Hôpital Robert Debré, Centre Hospitalo-Universitaire, 51092 Reims, France
| | | | | | | | | |
Collapse
|
44
|
North KE, Göring HHH, Cole SA, Diego VP, Almasy L, Laston S, Cantu T, Howard BV, Lee ET, Best LG, Fabsitz RR, MacCluer JW. Linkage analysis of LDL cholesterol in American Indian populations: the Strong Heart Family Study. J Lipid Res 2005; 47:59-66. [PMID: 16264198 DOI: 10.1194/jlr.m500395-jlr200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that low density lipoprotein cholesterol (LDL-C) concentration is influenced by both genes and environment. Although rare genetic variants associated with Mendelian causes of increased LDL-C are known, only one common genetic variant has been identified, the apolipoprotein E gene (APOE). In an attempt to localize quantitative trait loci (QTLs) influencing LDL-C, we conducted a genome-wide linkage scan of LDL-C in participants of the Strong Heart Family Study (SHFS). Nine hundred eighty men and women, age 18 years or older, in 32 extended families at three centers (in Arizona, Oklahoma, and North and South Dakota) were phenotyped for LDL-C concentration and other risk factors. Using a variance component approach and the program SOLAR, and after accounting for the effects of covariates, we detected a QTL influencing LDL-C on chromosome 19, nearest marker D19S888 at 19q13.41 [logarithm of odds (LOD) = 4.3] in the sample from the Dakotas. This region on chromosome 19 includes many possible candidate genes, including the APOE/C1/C4/C2 gene cluster. In follow-up association analyses, no significant evidence for an association was detected with the APOE*2 and APOE*4 alleles (P = 0.76 and P = 0.53, respectively). Suggestive evidence of linkage to LDL-C was detected on chromosomes 3q, 4q, 7p, 9q, 10p, 14q, and 17q. These linkage signals overlap positive findings for lipid-related traits and harbor plausible candidate genes for LDL-C.
Collapse
Affiliation(s)
- K E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Phillips C, Owens D, Collins P, Tomkin GH. Low density lipoprotein non-esterified fatty acids and lipoprotein lipase in diabetes. Atherosclerosis 2005; 181:109-14. [PMID: 15939061 DOI: 10.1016/j.atherosclerosis.2004.12.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 09/01/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Fatty acid metabolism is disturbed in poorly controlled diabetes. Low density lipoprotein (LDL) oxidation, thought to be an atherogenic modification, is partly dependent on LDL fatty acid content whether it be in the form of cholesteryl ester, phospholipids, triglyceride or non-esterified fatty acid (NEFA). Lipoprotein lipase (LPL) is deficient in diabetic patients. Lipoprotein lipase bound to LDL may facilitate cholesterol accumulation in the artery wall through the attachment of LDL to the proteoglycans expressed on endothelial cells and collagen. The purpose of this study was to examine the degree of binding of fatty acids and lipoprotein lipase to LDL in type 2 diabetic patients and to examine the relationship between non-esterified fatty acids attached to LDL and LDL oxidisability. SUBJECTS AND METHODS Eight type 2 diabetic patients and eight control subjects were examined fasting and at 4 and 6h following a high fat meal. Six control subjects were examined fasting and 30 min after intravenous heparin. LDL was isolated by sequential ultracentrifugation. Individual LDL non-esterified fatty acids were measured by gas-liquid chromatography following transmethylation. LPL and oxidised LDL were measured by ELISA. RESULTS The diabetic patients had HbA1c of 7.8 +/- 0.5% confirming moderate diabetic control. There was a large increase in the mean non-esterified fatty acids on LDL from diabetic subjects (0.66 +/- 0.40 mg/mg versus 0.06 +/- 0.02 mg/mg LDL protein, p < 0.01). Mean LDL cholesterol ester fatty acids were also significantly increased in the diabetic subjects (1.47 +/- 0.58 mg/mg versus 0.57 +/- 0.40 mg/mg LDL protein, p < 0.01). There was a significant increase in oxidised LDL (31.2 +/- 24 mg/mg versus 7.7 +/- 4.5 mg/mg LDL protein, p < 0.01) and a significant correlation between postprandial non-esterified fatty acid and LDL oxidation (r = 0.69, p < 0.05). LPL was significantly increased on the LDL but not in the plasma of diabetic subjects. Acute elevation in non-esterified fatty acids produced by heparin in control subjects did not increase LDL non-esterified fatty acids. CONCLUSIONS This study demonstrates that the disturbance in fatty acid metabolism found in type 2 diabetic subjects is associated with a significant increase in non-esterified fatty acids attached to LDL. This may account, at least in part, for the increased oxidation of the LDL and therefore its atherogenicity. The finding of an increase in the amount of LPL bound to LDL suggests an important mechanism to facilitate the uptake of diabetic LDL by endothelial proteoglycans and collagen in the atherosclerotic plaque.
Collapse
Affiliation(s)
- Catherine Phillips
- Department of Diabetes and Endocrinology, Trinity College Dublin, Ireland
| | | | | | | |
Collapse
|
46
|
Williams KJ, Fisher EA. Oxidation, lipoproteins, and atherosclerosis: which is wrong, the antioxidants or the theory? Curr Opin Clin Nutr Metab Care 2005; 8:139-46. [PMID: 15716791 DOI: 10.1097/00075197-200503000-00006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Paradoxically, many well-established components of the heart-healthy lifestyle are pro-oxidant, including polyunsaturated fat and moderate alcohol consumption. Moreover, antioxidant supplements have failed to decrease cardiovascular risk in extensive human clinical trials to date. Recent progress in understanding the roles of oxidants in regulating VLDL secretion and as essential signaling molecules supports the concept that oxidation may be beneficial in certain circumstances but damaging in others. We summarize recent data on the roles played by oxidative metabolism in different tissues and pathways, and address whether it is currently advisable to use antioxidant supplements to reduce cardiovascular risk. RECENT FINDINGS Our recent study reported that in liver cells, polyunsaturated fatty acids increased reactive oxygen species, which in turn lowered the secretion of the atherogenic lipoprotein, VLDL, in vitro and in vivo. Antioxidant treatments prevented VLDL-lowering effects of polyunsaturated fatty acids in vitro, suggesting that supplemental antioxidants could either raise apolipoprotein-B-lipoprotein plasma levels in vivo, or impair the response to lipid-lowering therapies. The failure of antioxidants to decrease cardiovascular disease risk in many trials is also discussed in the context of current models for atherosclerosis progression and regression. SUMMARY Oxidation includes distinct biochemical reactions, and it is overly simplistic to lump them into a unitary process that affects all cell types and metabolic pathways adversely. Guidelines for diet should adhere closely to what has been clinically proved, and by this standard there is no basis to recommend antioxidant use, beyond what is inherent to the 'heart healthy' diet in order to benefit cardiovascular health.
Collapse
Affiliation(s)
- Kevin Jon Williams
- Division of Endocrinology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
47
|
Twickler T, Dallinga-Thie GM, Chapman MJ, Cohn JS. Remnant lipoproteins and atherosclerosis. Curr Atheroscler Rep 2005; 7:140-7. [PMID: 15727730 DOI: 10.1007/s11883-005-0037-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A recently developed assay for quantification of remnant-like particle cholesterol has provided considerable evidence that reinforces the concept that elevated levels of plasma remnants are associated with increased cardiovascular disease in different populations and distinct patient groups. In this review, we provide a brief summary of the most recently published studies, emphasizing the clinical relevance of remnant analysis. We discuss recent evidence that sheds light on the mechanisms that may underlie the atherogenicity of remnant lipoproteins. Taken together, these data provide new insight into the significance of remnant lipoproteins in the onset and development of premature atherosclerosis.
Collapse
Affiliation(s)
- ThB Twickler
- Laboratory of Vascular Medicine, Bd277, ErasmusMC, PO Box 2040, 3000 CA Rotterdam, Netherlands.
| | | | | | | |
Collapse
|
48
|
Makoveichuk E, Castel S, Vilaró S, Olivecrona G. Lipoprotein lipase-dependent binding and uptake of low density lipoproteins by THP-1 monocytes and macrophages: possible involvement of lipid rafts. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1686:37-49. [PMID: 15522821 DOI: 10.1016/j.bbalip.2004.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 07/13/2004] [Accepted: 08/03/2004] [Indexed: 11/18/2022]
Abstract
Lipoprotein lipase (LPL) is produced by cells in the artery wall and can mediate binding of lipoproteins to cell surface heparan sulfate proteoglycans (HSPG), resulting in endocytosis (the bridging function). Active, dimeric LPL may dissociate to inactive monomers, the main form found in plasma. We have studied binding/internalization of human low density lipoprotein (LDL), mediated by bovine LPL, using THP-1 monocytes and macrophages. Uptake of (125)I-LDL was similar in monocytes and macrophages and was not affected by the LDL-receptor family antagonist receptor-associated protein (RAP) or by the phagocytosis inhibitor cytochalasin D. In contrast, uptake depended on HSPG and on membrane cholesterol. Incubation in the presence of dexamethasone increased the endogenous production of LPL by the cells and also increased LPL-mediated binding of LDL to the cell surfaces. Monomeric LPL was bound to the cells mostly in a heparin-resistant fashion. We conclude that the uptake of LDL mediated by LPL dimers is receptor-independent and involves cholesterol-enriched membrane areas (lipid rafts). Dimeric and monomeric LPL differ in their ability to mediate binding/uptake of LDL, probably due to different mechanisms for binding/internalization.
Collapse
Affiliation(s)
- Elena Makoveichuk
- Department of Medical Biosciences, Physiological Chemistry, Bldg 6M, 3rd floor, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
49
|
Asatryan L, Hamilton RT, Isas JM, Hwang J, Kayed R, Sevanian A. LDL phospholipid hydrolysis produces modified electronegative particles with an unfolded apoB-100 protein. J Lipid Res 2004; 46:115-22. [PMID: 15489541 PMCID: PMC3383313 DOI: 10.1194/jlr.m400306-jlr200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electronegative low density lipoprotein (LDL(-)) formation that structurally resembles LDL(-) isolated from plasma was evaluated after LDL treatment with snake venom phospholipase A(2) (PLA(2)). PLA(2) treatment of LDL increased its electrophoretic mobility in proportion to the amount of LDL(-) formed without evidence of lipid peroxidation. These changes dose-dependently correlated with the degree of phospholipid hydrolysis. Strong immunoreactivity of LDL(-) subfraction from plasma and PLA(2)-treated LDL (PLA(2)-LDL) to amyloid oligomer-specific antibody was observed. Higher beta-strand structural content and unfolding proportionate to the loss of alpha-helical structure of apolipoprotein B-100 (apoB-100) of LDL(-) isolated from both native and PLA(2)-LDLs was demonstrated by circular dichroism (CD) spectropolarimetry. These structural changes resembled the characteristics of some oxidatively modified LDLs and soluble oligomeric aggregates of amyloidogenic proteins. PLA(2)-LDL was also more susceptible to nitration by peroxynitrite, likely because of exposure of otherwise inaccessible hydrophilic and hydrophobic domains arising from apoB-100 unfolding. This was also demonstrated for plasma LDL(-). In contrast, PLA(2)-LDL was more resistant to copper-mediated oxidation that was reversed upon the addition of small amounts of unsaturated fatty acids. The observed similarities between PLA(2)-LDL(-)-derived LDL(-) and plasma LDL(-) implicate a role for secretory PLA(2) in producing modified LDL(-) that is facilitated by unfolding of apoB-100.
Collapse
Affiliation(s)
- Liana Asatryan
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Verseyden C, Meijssen S, Cabezas MC. Effects of atorvastatin on fasting plasma and marginated apolipoproteins B48 and B100 in large, triglyceride-rich lipoproteins in familial combined hyperlipidemia. J Clin Endocrinol Metab 2004; 89:5021-9. [PMID: 15472200 DOI: 10.1210/jc.2003-032171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large triglyceride (TG)-rich lipoproteins (TRLs) circulate in the blood, but they may also be present in a marginated pool, probably attached to the endothelium. It is unknown whether statins can influence this marginated pool in vivo in humans. Intravenous fat tests were performed in familial combined hyperlipidemia (FCHL) subjects before and after atorvastatin treatment and in controls to investigate whether acute increases in apoB in TRL fractions would occur, potentially reflecting the release of this TRL from a marginated pool. After a 12-h fast, a bolus injection of 10% Intralipid was given to 12 FCHL patients before and after 16-wk treatment with atorvastatin. Twelve carefully matched controls were included. For 60 min postinjection, apoB48, apoB100, and lipids were measured in TRLs. Fasting apoB100 in all TRL fractions were 2- to 3-fold higher in untreated FCHL compared with controls. ApoB48 concentrations in chylomicron fractions increased significantly within 10 min in FCHL before and after treatment, but not in controls. ApoB100 increased significantly in the chylomicron fractions in untreated FCHL and in controls, but not in FCHL after treatment. In very low density lipoprotein 1, apoB100 increased only in untreated FCHL. In very low density lipoprotein 2, apoB100 did not change in any group. These data show that increasing the number of circulating TRLs by chylomicron-like particles, results in increased plasma apoB-TRLs, probably by acute release from a marginated pool. This is a physiological process occurring in FCHL and in healthy normolipidemic subjects, but it is more pronounced in the former. Decreased marginated TRL particles in FCHL is a novel antiatherogenic property of atorvastatin.
Collapse
Affiliation(s)
- C Verseyden
- Department of Internal Medicine, University Medical Center Utrecht, The Netherlands
| | | | | |
Collapse
|