1
|
Narra F, Piragine E, Benedetti G, Ceccanti C, Florio M, Spezzini J, Troisi F, Giovannoni R, Martelli A, Guidi L. Impact of thermal processing on polyphenols, carotenoids, glucosinolates, and ascorbic acid in fruit and vegetables and their cardiovascular benefits. Compr Rev Food Sci Food Saf 2024:e13426. [PMID: 39169551 DOI: 10.1111/1541-4337.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Bioactive compounds in fruit and vegetables have a positive impact on human health by reducing oxidative stress, inflammation, and the risk of chronic diseases such as cancer, cardiovascular (CV) diseases, and metabolic disorders. However, some fruit and vegetables must be heated before consumption and thermal processes can modify the amount of nutraceuticals, that is, polyphenols, carotenoids, glucosinolates, and ascorbic acid, that can increase or decrease in relation to different factors such as type of processing, temperature, and time but also the plant part (e.g., flower, leaf, tuber, and root) utilized as food. Another important aspect is related to the bioaccessibility and bioavailability of nutraceuticals. Indeed, the key stage of nutraceutical bioefficiency is oral bioavailability, which involves the release of nutraceuticals from fruit and vegetables in gastrointestinal fluids, the solubilization of nutraceuticals and their interaction with other components of gastrointestinal fluids, the absorption of nutraceuticals by the epithelial layer, and the chemical and biochemical transformations into epithelial cells. Several studies have shown that thermal processing can enhance the absorption of nutraceuticals from fruit and vegetable. Once absorbed, they reach the blood vessels and promote multiple biological effects (e.g., antioxidant, anti-inflammatory, antihypertensive, vasoprotective, and cardioprotective). In this review, we described the impact of different thermal processes (such as boiling, steaming and superheated steaming, blanching, and microwaving) on the retention/degradation of bioactive compounds and their health-promoting effects after the intake. We then summarized the impact of heating on the absorption of nutraceuticals and the biological effects promoted by natural compounds in the CV system to provide a comprehensive overview of the potential impact of thermal processing on the CV benefits of fruit and vegetables.
Collapse
Affiliation(s)
- Federica Narra
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Eugenia Piragine
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Costanza Ceccanti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Marta Florio
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | | | - Roberto Giovannoni
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Alma Martelli
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Zhang HQ, Shi J, Yue T, Weng JH, Wang XL, Wang H, Su XY, Zheng XY, Luo SH, Ding Y, Wang CF. Association between composite dietary antioxidant index and stroke among individuals with diabetes. World J Diabetes 2024; 15:1742-1752. [PMID: 39192859 PMCID: PMC11346086 DOI: 10.4239/wjd.v15.i8.1742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Recent research has underscored the potentially protective role of dietary antioxidants against chronic conditions, such as cardiovascular diseases and stroke. The composite dietary antioxidant index (CDAI), which reflects the overall intake of key dietary antioxidants, has been identified as a crucial metric for exploring this relationship. Although previous research has shown a negative correlation between CDAI levels and stroke risk in prediabetic individuals, there remains a substantial gap in understanding this association among individuals with dia-betes, who are at an inherently greater risk for cerebrovascular events. AIM To investigate the association between CDAI and stroke risk in individuals with diabetes. METHODS Using a cross-sectional study design, this investigation analyzed data from the National Health and Nutrition Examination Survey spanning from 2003 to 2018 that included 6735 participants aged over 20 years with diabetes. The CDAI was calculated from 24-h dietary recalls to assess intake of key antioxidants: Vitamins A, C, and E; carotenoids; selenium; and zinc. Multivariate logistic regression and restricted cubic spline analysis were used to rigorously examine the relationship between CDAI and stroke risk. RESULTS The participant cohort, with an average age of 59.5 years and a slight male majority, reflected the broader demographic characteristics of individuals with diabetes. The analysis revealed a strong inverse relationship between CDAI levels and stroke risk. Remarkably, those in the highest quintile of CDAI demonstrated a 43% lower prevalence of stroke compared to those in the lowest quintile, even after adjustments for various confounders. This finding not only highlights the negative association between CDAI and stroke risk but also underscores the significant potential of antioxidant-rich diets in reducing stroke prevalence among patients with diabetes. CONCLUSION Our findings suggested that CDAI was inversely associated with stroke prevalence among patients with diabetes. These results suggest incorporating antioxidant-rich foods into dietary regimens as a potential strategy for stroke prevention.
Collapse
Affiliation(s)
- Hong-Qiang Zhang
- Department of Cardiology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Jie Shi
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Tong Yue
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Jia-Hao Weng
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Xu-Lin Wang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Hao Wang
- Graduate School, Bengbu Medical College, Bengbu 233030, Anhui Province, China
| | - Xiao-Yu Su
- Graduate School, Bengbu Medical College, Bengbu 233030, Anhui Province, China
| | - Xue-Ying Zheng
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Si-Hui Luo
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Yu Ding
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Chao-Fan Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
3
|
Prajapat SK, Maharana KC, Singh S. Mitochondrial dysfunction in the pathogenesis of endothelial dysfunction. Mol Cell Biochem 2024; 479:1999-2016. [PMID: 37642880 DOI: 10.1007/s11010-023-04835-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Cardiovascular diseases (CVDs) are a matter of concern worldwide, and mitochondrial dysfunction is one of the major contributing factors. Vascular endothelial dysfunction has a major role in the development of atherosclerosis because of the abnormal chemokine secretion, inflammatory mediators, enhancement of LDL oxidation, cytokine elevation, and smooth muscle cell proliferation. Endothelial cells transfer oxygen from the pulmonary circulatory system to the tissue surrounding the blood vessels, and a majority of oxygen is transferred to the myocardium by endothelial cells, which utilise a small amount of oxygen to generate ATP. Free radicals of oxide are produced by mitochondria, which are responsible for cellular oxygen uptake. Increased mitochondrial ROS generation and reduction in agonist-stimulated eNOS activation and nitric oxide bioavailability were directly linked to the observed change in mitochondrial dynamics, resulting in various CVDs and endothelial dysfunction. Presently, the manuscript mainly focuses on endothelial dysfunction, providing a deep understanding of the various features of mitochondrial mechanisms that are used to modulate endothelial dysfunction. We talk about recent findings and approaches that may make it possible to detect mitochondrial dysfunction as a potential biomarker for risk assessment and diagnosis of endothelial dysfunction. In the end, we cover several targets that may reduce mitochondrial dysfunction through both direct and indirect processes and assess the impact of several different classes of drugs in the context of endothelial dysfunction.
Collapse
Affiliation(s)
- Suresh Kumar Prajapat
- National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, Hajipur, Bihar, India
| | - Krushna Ch Maharana
- National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Dist: Vaishali, Hajipur, Bihar, 844102, India.
| |
Collapse
|
4
|
Camargo LL, Rios FJ, Montezano AC, Touyz RM. Reactive oxygen species in hypertension. Nat Rev Cardiol 2024:10.1038/s41569-024-01062-6. [PMID: 39048744 DOI: 10.1038/s41569-024-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Hypertension is a leading risk factor for stroke, heart disease and chronic kidney disease. Multiple interacting factors and organ systems increase blood pressure and cause target-organ damage. Among the many molecular elements involved in the development of hypertension are reactive oxygen species (ROS), which influence cellular processes in systems that contribute to blood pressure elevation (such as the cardiovascular, renal, immune and central nervous systems, or the renin-angiotensin-aldosterone system). Dysregulated ROS production (oxidative stress) is a hallmark of hypertension in humans and experimental models. Of the many ROS-generating enzymes, NADPH oxidases are the most important in the development of hypertension. At the cellular level, ROS influence signalling pathways that define cell fate and function. Oxidative stress promotes aberrant redox signalling and cell injury, causing endothelial dysfunction, vascular damage, cardiovascular remodelling, inflammation and renal injury, which are all important in both the causes and consequences of hypertension. ROS scavengers reduce blood pressure in almost all experimental models of hypertension; however, clinical trials of antioxidants have yielded mixed results. In this Review, we highlight the latest advances in the understanding of the role and the clinical implications of ROS in hypertension. We focus on cellular sources of ROS, molecular mechanisms of oxidative stress and alterations in redox signalling in organ systems, and their contributions to hypertension.
Collapse
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Chang J, Wang Y, Kong X, Dong B, Yue T. Golgi apparatus-targeting fluorescent probe for the imaging of superoxide anion (O 2•-) in living cells during ferroptosis. Anal Chim Acta 2024; 1298:342410. [PMID: 38462334 DOI: 10.1016/j.aca.2024.342410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Ferroptosis is an emerging iron-dependent oxidative cell death type, and recently has been demonstrated to show close relation with Golgi apparatus (GA). Exploring the fluctuation of superoxide anion (O2•-) level in GA during ferroptosis is of great significance to profoundly study the biological functions of GA in ferroptosis. Here, we present a GA-targeting probe (N-GA) to monitor cellular O2•- during ferroptosis. N-GA employed a triflate group and a tetradecanoic amide unit as the recognition site for O2•- and GA-targeting unit, respectively. After the response of N-GA to O2•-, the triflate unit of N-GA converted into hydroxyl group with strong electron-donating ability, generating bright green fluorescence under UV light. N-GA exhibited excellent sensitivity and selectivity towards O2•-. Fluorescence imaging results showed that N-GA could be applied as a GA-targeting probe to monitor cellular O2•-. The stimulation of cells with PMA and rotenone could result in the massive generation of endogenous O2•- in GA. Erastin-induced ferroptosis can markedly induce the increase of O2•- level in GA. Similar to Fer-1 and DFO, dihydrolipoic acid (DHLA) and rutin were demonstrated to inhibit the enormous production of O2•- in GA of the living cells during ferroptosis.
Collapse
Affiliation(s)
- Jia Chang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Yan Wang
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong, 250014, People's Republic of China
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Tao Yue
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
6
|
Zheng H, Xu Y, Liehn EA, Rusu M. Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction. Int J Mol Sci 2024; 25:3114. [PMID: 38542087 PMCID: PMC10970003 DOI: 10.3390/ijms25063114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 06/26/2024] Open
Abstract
Currently, coronary artery bypass and reperfusion therapies are considered the gold standard in long-term treatments to restore heart function after acute myocardial infarction. As a drawback of these restoring strategies, reperfusion after an ischemic insult and sudden oxygen exposure lead to the exacerbated synthesis of additional reactive oxidative species and the persistence of increased oxidation levels. Attempts based on antioxidant treatment have failed to achieve an effective therapy for cardiovascular disease patients. The controversial use of vitamin C as an antioxidant in clinical practice is comprehensively systematized and discussed in this review. The dose-dependent adsorption and release kinetics mechanism of vitamin C is complex; however, this review may provide a holistic perspective on its potential as a preventive supplement and/or for combined precise and targeted therapeutics in cardiovascular management therapy.
Collapse
Affiliation(s)
- Huabo Zheng
- Department of Cardiology, Angiology and Intensive Care, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany;
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
| | - Yichen Xu
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- Department of Histology and Embryology, Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Elisa A. Liehn
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- National Institute of Pathology “Victor Babes”, Splaiul Independentei Nr. 99-101, 050096 Bucharest, Romania
| | - Mihaela Rusu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| |
Collapse
|
7
|
Vats S, Sundquist K, Sundquist J, Zhang N, Wang X, Acosta S, Gottsäter A, Memon AA. Oxidative stress-related genetic variation and antioxidant vitamin intake in intact and ruptured abdominal aortic aneurysm: a Swedish population-based retrospective cohort study. Eur J Prev Cardiol 2024; 31:61-74. [PMID: 37665957 DOI: 10.1093/eurjpc/zwad271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023]
Abstract
AIMS The aim of this study is to investigate how genetic variations in genes related to oxidative stress, intake of antioxidant vitamins, and any potential interactions between these factors affect the incidence of intact abdominal aortic aneurysm (AAA) and its rupture (rAAA), accounting for sex differences where possible. METHODS AND RESULTS The present retrospective cohort study (n = 25 252) uses baseline single-nucleotide polymorphisms (SNPs) and total antioxidant vitamin intake data from the large population-based, Malmö Diet and Cancer Study. Cumulative incidence of intact AAA was 1.6% and of rAAA 0.3% after a median follow-up of 24.3 years. A variant in NOX3 (rs3749930) was associated with higher rAAA risk in males [adjusted hazard ratio (aHR): 2.49; 95% confidence interval (CI): 1.36-4.35] and the overall population (aHR: 1.88; 95% CI: 1.05-3.37). Higher intakes of antioxidant vitamins, riboflavin, and folate were associated with 20% and 19% reduced intact AAA incidence, respectively. Interestingly, the inverse associations between riboflavin and vitamin D intake with intact AAA incidence were stronger in the individuals carrying the NOX3 variant as compared with the wild-type recessive genotype, i.e. by 60% and 66%, respectively (P for interaction < 0.05). Higher riboflavin intake was associated with a 33% male-specific intact AAA risk reduction, while higher intake of vitamin B12 intake was associated with 55% female-specific intact AAA risk increase; both these associations were significantly modified by sex (P for interaction < 0.05). CONCLUSIONS Our findings highlight the role of oxidative stress genetic variations and antioxidant vitamin intake in AAA. Although a low AAA/rAAA sample size limited some analyses, especially in females, our findings highlight the need for future randomized controlled trials and mechanistic studies, to explore the potential benefits of antioxidant vitamins while accounting for genetic and sex differences.
Collapse
Affiliation(s)
- Sakshi Vats
- Center for Primary Health Care Research, Wallenberg Laboratory, 5th floor, Inga Marie Nilsson's gata 53, 214 28, Malmö, Sweden
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Jan Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Naiqi Zhang
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Xiao Wang
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| | - Stefan Acosta
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Vascular Centre, Department of Cardiothoracic and Vascular Surgery, Skåne University Hospital, Lund University, Malmö, S-205 02, Sweden
| | - Anders Gottsäter
- Vascular Centre, Department of Cardiothoracic and Vascular Surgery, Skåne University Hospital, Lund University, Malmö, S-205 02, Sweden
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University/Region Skåne, Malmö, Sweden
| |
Collapse
|
8
|
Vo HVT, Nguyen YT, Kim N, Lee HJ. Vitamin A, D, E, and K as Matrix Metalloproteinase-2/9 Regulators That Affect Expression and Enzymatic Activity. Int J Mol Sci 2023; 24:17038. [PMID: 38069361 PMCID: PMC10707015 DOI: 10.3390/ijms242317038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Fat-soluble vitamins (vitamin A, D, E, and K) assume a pivotal role in maintaining human homeostasis by virtue of their enzymatic functions. The daily inclusion of these vitamins is imperative to the upkeep of various physiological processes including vision, bone health, immunity, and protection against oxidative stress. Current research highlights fat-soluble vitamins as potential therapeutics for human diseases, especially cancer. Fat-soluble vitamins exert their therapeutic effects through multiple pathways, including regulation of matrix metalloproteinases' (MMPs) expression and enzymatic activity. As MMPs have been reported to be involved in the pathology of various diseases, such as cancers, cardiovascular diseases, and neurological disorders, regulating the expression and/or activity of MMPs could be considered as a potent therapeutic strategy. Here, we summarize the properties of fat-soluble vitamins and their potential as promising candidates capable of effectively modulating MMPs through multiple pathways to treat human diseases.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
| | - Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
- Kongju National University Institute of Science Education, Kongju National University, Gongju 32588, Republic of Korea
- Kongju National University’s Physical Fitness for Health Research Lab (KNUPFHR), Kongju National University, Gongju 32588, Republic of Korea
| |
Collapse
|
9
|
Lim EY, Lee SY, Shin HS, Kim GD. Reactive Oxygen Species and Strategies for Antioxidant Intervention in Acute Respiratory Distress Syndrome. Antioxidants (Basel) 2023; 12:2016. [PMID: 38001869 PMCID: PMC10669909 DOI: 10.3390/antiox12112016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening pulmonary condition characterized by the sudden onset of respiratory failure, pulmonary edema, dysfunction of endothelial and epithelial barriers, and the activation of inflammatory cascades. Despite the increasing number of deaths attributed to ARDS, a comprehensive therapeutic approach for managing patients with ARDS remains elusive. To elucidate the pathological mechanisms underlying ARDS, numerous studies have employed various preclinical models, often utilizing lipopolysaccharide as the ARDS inducer. Accumulating evidence emphasizes the pivotal role of reactive oxygen species (ROS) in the pathophysiology of ARDS. Both preclinical and clinical investigations have asserted the potential of antioxidants in ameliorating ARDS. This review focuses on various sources of ROS, including NADPH oxidase, uncoupled endothelial nitric oxide synthase, cytochrome P450, and xanthine oxidase, and provides a comprehensive overview of their roles in ARDS. Additionally, we discuss the potential of using antioxidants as a strategy for treating ARDS.
Collapse
Affiliation(s)
- Eun Yeong Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
| |
Collapse
|
10
|
Zare Z, Hosseinzadeh M, Sharuni F, Rohani FS, Hojjat H, Rahimpour S, Madadizadeh F, Zavar Reza J, Wong A, Nadjarzadeh A. The effect of the dietary approaches to stop hypertension diet on total antioxidant capacity, superoxide dismutase, catalase, and body composition in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Front Nutr 2023; 10:1163516. [PMID: 37927493 PMCID: PMC10624175 DOI: 10.3389/fnut.2023.1163516] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
Aim Non-alcoholic fatty liver disease (NAFLD) is a condition characterized by the accumulation of fat in the liver without excessive alcohol consumption. Lifestyle modifications, such as adopting a healthy diet, represent the standard treatment for NAFLD. However, the impact of the Dietary Approaches to Stop Hypertension (DASH) diet on oxidative stress biomarkers in patients with NAFLD remains unclear. Therefore, this study aimed to determine the effect of the DASH diet on total antioxidant capacity (TAC), catalase (CAT), superoxide dismutase (SOD) levels, and body composition in overweight and obese patients with NAFLD. Methods A total of 70 overweight and obese patients aged 1870 years were randomly assigned to either the intervention (DASH diet, n = 35) or the control group (control diet, n = 35) for 12 weeks, with both groups following a calorie-restricted diet. Results The mean age of participants was 43.1 ± 8.1 years in the DASH group and 45.1 ± 8.6 years in the control group. At the end of the study, a significant difference was observed in the mean TAC and SOD levels between the two groups (p = 0.02). After adjusting for potential confounding factors, such as age, sex, diabetes, smoking, physical activity, and baseline values, the DASH diet maintained its significant effects on TAC and SOD compared to the control diet (p = 0.03). However, there were no significant differences in CAT levels between the two groups. Moreover, a significant reduction in visceral fat (p = 0.01) and a marginally significant decrease in BMI (p = 0.06) were observed in the DASH group compared to the control group after adjusting for potential confounders. Conclusion In conclusion, our study showed that following the DASH diet for 12 weeks in overweight and obese patients with NAFLD has beneficial effects on TAC, SOD, and visceral fat. These findings support the use of the DASH diet as a potential therapeutic intervention for the improvement of oxidative biomarkers in patients with NAFLD. Clinical trial registration www.irct.ir/, identifier IRCT20170117032026N3.
Collapse
Affiliation(s)
- Zahra Zare
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Sharuni
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Sadat Rohani
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hashem Hojjat
- Department of Radiology, Faculty of Medicine, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shahab Rahimpour
- Department of Gastroentrology, Faculty of Medicine, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzan Madadizadeh
- Departments of Biostatistics and Epidemiology, Center for Healthcare Data Modeling, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Zavar Reza
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, United States
| | - Azadeh Nadjarzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
11
|
Phoswa WN, Mokgalaboni K. Comprehensive Overview of the Effects of Amaranthus and Abelmoschus esculentus on Markers of Oxidative Stress in Diabetes Mellitus. Life (Basel) 2023; 13:1830. [PMID: 37763234 PMCID: PMC10532493 DOI: 10.3390/life13091830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The use of medicinal plants in the management of diabetes mellitus (DM) is extensively reported. However, there is still very limited information on the role of these plants as markers of oxidative stress in DM. This current review evaluated the effect of Amaranthus spinosus, Amaranthus hybridus, and Abelmoschus esculentus on markers of oxidative stress in rodent models of DM. Current findings indicate that these plants have the potential to reduce prominent markers of oxidative stress, such as serum malondialdehyde and thiobarbituric acid-reactive substances, while increasing enzymes that act as antioxidants, such as superoxide dismutase, catalase, glutathione, and glutathione peroxidase. This may reduce reactive oxygen species and further ameliorate oxidative stress in DM. Although the potential benefits of these plants are acknowledged in rodent models, there is still a lack of evidence showing their efficacy against oxidative stress in diabetic patients. Therefore, we recommend future clinical studies in DM populations, particularly in Africa, to evaluate the potential effects of these plants. Such studies would contribute to enhancing our understanding of the significance of incorporating these plants into dietary practices for the prevention and management of DM.
Collapse
Affiliation(s)
- Wendy N. Phoswa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Science Campus, Private Bag X6, Florida, Roodepoort 1710, South Africa;
| | | |
Collapse
|
12
|
Nikrad N, Shakarami A, Tousi AZ, Farhangi MA, Ardekani AM, Jafarzadeh F. Dietary Antioxidant Quality Score (DAQS), serum lipids, markers of glucose homeostasis, blood pressure and anthropometric features among apparently metabolically healthy obese adults in two metropolises of Iran (Tabriz and Tehran): a cross-sectional study. BMC Endocr Disord 2023; 23:157. [PMID: 37479979 PMCID: PMC10360357 DOI: 10.1186/s12902-023-01392-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Oxidative stress (OS) is associated with a variety of non-communicable diseases, including MetS, diabetes mellitus, metabolic syndrome, and cardiovascular disease through increased production of reactive oxygen species (ROS) and impairment of antioxidant defense mechanisms. Antioxidants can protect cells against free radical damage, so it seems important to determine the relationship between the quality of dietary antioxidants intake and chronic diseases. The Dietary Antioxidant Quality Score (DAQS) is obtained by adding the daily intake of known dietary vitamins and minerals, including selenium, zinc, vitamin A, vitamin C, and vitamin E, compared to the recommended daily intake (RDI). Therefore, this study aims to determine the relationship between DAQS, serum lipids, markers of glucose homeostasis, blood pressure and anthropometric features among obese adults. METHODS In the present cross-sectional study, 338 individuals who were obese (BMI ≥ 30 kg/m2) aged 20-50 years were recruited from Tabriz and Tehran, Iran. A validated semi-quantitative Food Frequency Questionnaire (FFQ) with 168 food items was used to quantify dietary consumption; accordingly, DAQS was computed. Blood biomarkers were measured using enzyme-linked immunosorbent assay (ELISA) kits. A standard mercury sphygmomanometer was used to assess blood pressure, and bioelectrical impedance analysis (BIA) was performed to determine body composition. The association between the DAQS tertiles and biochemical variables was investigated using multinomial logistic regression. RESULTS Participants in the highest tertile of DAQS have a lower diastolic blood pressure (DBP) values in all of the adjusted models [odds ratio (OR) = 0.920; confidence interval (CI)= 0.852-0.993, P-value = 0.03] in the analysis of co-variance (ANCOVA) model. Similarly, subjects at the second tertile of DAQS had lower DBP compared with the first tertile in age and sex-adjusted model [OR= 0.937; CI= 0.882-0.997]. There was no statistically significant difference for other metabolic parameters in different DAQS tertiles. CONCLUSION According to our findings, higher DAQS was associated with lower DBP among obese adults with obesity in two major cities of Iran (Tehran and Tabriz). Other studies with interventional design are needed to better elucidate these associations and underlying mechanisms.
Collapse
Affiliation(s)
- Negin Nikrad
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Shakarami
- Department of Cardiovascular Medicine, Assistant Professor of Cardiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ayda Zahiri Tousi
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | - Mahdieh Abbasalizad Farhangi
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Nutrition in Community, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abnoos Mokhtari Ardekani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Science, & Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Faria Jafarzadeh
- Assistant Professor of Endocrinology & Metabolism, Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran.
| |
Collapse
|
13
|
Mastino P, Rosati D, de Soccio G, Romeo M, Pentangelo D, Venarubea S, Fiore M, Meliante PG, Petrella C, Barbato C, Minni A. Oxidative Stress in Obstructive Sleep Apnea Syndrome: Putative Pathways to Hearing System Impairment. Antioxidants (Basel) 2023; 12:1430. [PMID: 37507968 PMCID: PMC10376727 DOI: 10.3390/antiox12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION OSAS is a disease that affects 2% of men and 4% of women of middle age. It is a major health public problem because untreated OSAS could lead to cardiovascular, metabolic, and cerebrovascular complications. The more accepted theory relates to oxidative stress due to intermittent hypoxia, which leads, after an intense inflammatory response through multiple pathways, to endothelial damage. The objective of this study is to demonstrate a correlation between OSAS and hearing loss, the effect of the CPAP on hearing function, and if oxidative stress is also involved in the damaging of the hearing system. METHODS A review of the literature has been executed. Eight articles have been found, where seven were about the correlation between OSAS and the hearing system, and only one was about the CPAP effects. It is noted that two of the eight articles explored the theory of oxidative stress due to intermittent hypoxia. RESULTS All studies showed a significant correlation between OSAS and hearing function (p < 0.05). CONCLUSIONS Untreated OSAS affects the hearing system at multiple levels. Oxidative stress due to intermittent hypoxia is the main pathogenetic mechanism of damage. CPAP has no effects (positive or negative) on hearing function. More studies are needed, with the evaluation of extended high frequencies, the execution of vocal audiometry in noisy environments, and the evaluation of potential biomarkers due to oxidative stress.
Collapse
Affiliation(s)
- Pierluigi Mastino
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Davide Rosati
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Giulia de Soccio
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Martina Romeo
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Daniele Pentangelo
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Stefano Venarubea
- Division of Clinical Pathology, Director of analysis Laboratory of De Lellis Hospital, Viale Kennedy, 02100 Rieti, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Department of Sense Organs DOS, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Piero Giuseppe Meliante
- Department of Sense Organs DOS, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Department of Sense Organs DOS, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Department of Sense Organs DOS, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Antonio Minni
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
- Department of Sense Organs DOS, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
- Clinical Pathology Physician, Director of Analysis Laboratory of De Lellis Hospital, Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| |
Collapse
|
14
|
Amponsah-Offeh M, Diaba-Nuhoho P, Speier S, Morawietz H. Oxidative Stress, Antioxidants and Hypertension. Antioxidants (Basel) 2023; 12:281. [PMID: 36829839 PMCID: PMC9952760 DOI: 10.3390/antiox12020281] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
As a major cause of morbidity and mortality globally, hypertension remains a serious threat to global public health. Despite the availability of many antihypertensive medications, several hypertensive individuals are resistant to standard treatments, and are unable to control their blood pressure. Regulation of the renin-angiotensin-aldosterone system (RAAS) controlling blood pressure, activation of the immune system triggering inflammation and production of reactive oxygen species, leading to oxidative stress and redox-sensitive signaling, have been implicated in the pathogenesis of hypertension. Thus, besides standard antihypertensive medications, which lower arterial pressure, antioxidant medications were tested to improve antihypertensive treatment. We review and discuss the role of oxidative stress in the pathophysiology of hypertension and the potential use of antioxidants in the management of hypertension and its associated organ damage.
Collapse
Affiliation(s)
- Michael Amponsah-Offeh
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at University Clinic Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
15
|
Bahrami A, Nikoomanesh F, Khorasanchi Z, Mohamadian M, Ferns GA. The relationship between food quality score with inflammatory biomarkers, and antioxidant capacity in young women. Physiol Rep 2023; 11:e15590. [PMID: 36695752 PMCID: PMC9875818 DOI: 10.14814/phy2.15590] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Diet has the potential to decrease oxidative stress and inflammation and this may be beneficial in several diseases. This study investigated the association between food quality score (FQS) with antioxidant and inflammatory properties in 171 apparently healthy young women. This cross-sectional study was conducted using a validated food frequency questionnaire to determine the dietary intake of participants. FQS was calculated by summing all the scores obtained from healthy and unhealthy food groups. The total antioxidant capacity and free radical scavenging activity of serum and urine were quantified using the ferric reducing/antioxidant power (FRAP) and α, α-diphenyl-β-picrylhydrazyl (DPPH) methods, respectively. Malondialdehyde (MDA) was measured using the formation of thiobarbituric acid reactive substances (TBARS). White blood cell (WBC) and neutrophil counts, mean platelet volume (MPV) and red blood cell distribution width (RDW), were measured. Neutrophil: lymphocyte ratio (NLR), platelet: lymphocyte ratio (PLR), and RDW: platelet ratio (RPR) were also calculated. A high food quality (rich in fruit and vegetables, nuts, whole grain, and low intake of sweetened beverage, potato chips and fried food from outside the home) was related to lower hematological inflammatory biomarkers including WBC count, RDW, NLR, and PLR. Multivariable-adjusted odds ratios (95% CIs) demonstrated that higher FQS group (third tertile vs. first tertile) was associated with a significant lower levels of urinary FRAP (ORadj = 0.82; 95%CI: 0.70 to 0.97), and DPPH. High food quality was associated with reduced of markers of inflammation and oxidative stress in Iranian young girl.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Clinical Research Development Unit of Akbar HospitalMashhad University of Medical SciencesMashhadIran
| | - Fatemeh Nikoomanesh
- Infectious Diseases Research CenterBirjand University of Medical SciencesBirjandIran
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Zahra Khorasanchi
- Department of Nutrition, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Malihe Mohamadian
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Gordon A. Ferns
- Division of Medical EducationBrighton & Sussex Medical SchoolBrightonUK
| |
Collapse
|
16
|
Purification of Extracellular Protease from Staphylococcus simulans QB7and Its Ability in Generating Antioxidant and Anti-inflammatory Peptides from Meat Proteins. Nutrients 2022; 15:nu15010065. [PMID: 36615723 PMCID: PMC9824131 DOI: 10.3390/nu15010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Proteases, especially microbial proteases, are widely used in food processing. The purpose of this study was aimed to purify an extracellular protease produced by the strain Staphylococcus simulans QB7 and to evaluate its ability in hydrolyzing meat proteins and generating antioxidant and anti-inflammatory peptides. The optimal conditions for producing the enzyme were as follows: inoculum ratio, 10%; initial pH, 6.5; temperature, 32 °C; incubation time, 36 h; and rotation speed, 160 rpm. The protease had a molecular weight of approximately 47 kDa, possessing the optimal activity at 50 °C, pH 7.0, The protease was stable at pH 4.0-8.0 and 30-60 °C, and the activity was improved by Na+, Mg2+, Ca2+, and Zn2+ ions, whereas it was inhibited by Cu2+, Co2+, Fe3+, Ba2+, Fe2+, β-M, and ethylene diamine tetraacetic acid disodium salt (EDTA). The protease could effectively hydrolyze meat proteins, and the generated hydrolysate could significantly inhibit tumor necrosis factor-alpha (TNFα)-induced oxidative stress, including superoxide and malondialdehyde levels and inflammation (vascular adhesion molecule-1 [VCAM-1] and cyclooxygenase 2 [COX2)) in human vascular EA.hy926 cells. The present findings support the ability of S. simulans QB7 protease in generating antioxidant and anti-inflammatory peptides during the fermentation of meat products.
Collapse
|
17
|
The effect of the Dietary Approaches to Stop Hypertension (DASH) diet on body composition, complete blood count, prothrombin time, inflammation and liver function in haemophilic adolescents. Br J Nutr 2022; 128:1771-1779. [PMID: 34863320 DOI: 10.1017/s0007114521004839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is no dietary strategy that has yet been specifically advocated for haemophilia. Therefore, we sought to assess the effect of the Dietary Approaches to Stop Hypertension (DASH) diet in adolescents with haemophilia. In this parallel trial, forty male adolescents with haemophilia were dichotomised into the DASH group or control group for 10 weeks. The serum high sensitivity C-reactive protein, IL-6, complete blood count (CBC), serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, partial thromboplastin time (PTT), waist circumference (WC), percentage of body fat, fat-free mass and liver steatosis were measured at the beginning and end of the study. Serum vitamin C was measured as a biomarker of compliance with the DASH diet. The DASH diet was designed to include high amounts of whole grains, fruits, vegetables and low-fat dairy products, as well as low amounts of saturated fats, cholesterol, refined grains, sweets and red meat. Serum vitamin C in the DASH group was significantly increased compared with the control (P = 0·001). There was a significant reduction in WC (P = 0·005), fat mass (P = 0·006), hepatic fibrosis (P = 0·02) and PTT (P = 0·008) in the DASH group, compared with the control. However, there were no significant differences regarding other selected outcomes between groups. Patients in the DASH group had significantly greater increase in the levels of erythrocyte, Hb and haematocrit, as compared with the control. Adherence to the DASH diet in children with haemophilia yielded significant beneficial effects on body composition, CBC, inflammation and liver function.
Collapse
|
18
|
Soybean-Derived Tripeptide Leu-Ser-Trp (LSW) Protects Human Vascular Endothelial Cells from TNFα-Induced Oxidative Stress and Inflammation via Modulating TNFα Receptors and SIRT1. Foods 2022; 11:foods11213372. [PMID: 36359987 PMCID: PMC9654956 DOI: 10.3390/foods11213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Soybean is a rich source of high-quality proteins and an excellent food source of bioactive peptides. A tripeptide, Leu−Ser−Trp (LSW), was previously identified from soybean as an angiotensin-converting enzyme inhibitory peptide. In the present work, we further studied its antioxidant and anti-inflammatory activities in human vascular endothelial cells (EA.hy926) and elucidated the mechanisms underlying these biological activities. In tumor necrosis factor alpha (TNFα)-stimulated EA.hy926 cells, LSW significantly inhibited oxidative stress, both reduced superoxide and malondialdehyde levels (p < 0.001), owing to its free-radical-scavenging ability. LSW treatment also mitigated the elevated protein expression of vascular adhesion molecule-1 (p < 0.001) and cyclooxygenase 2 (p < 0.01) via inhibition of NF-κB and p38/JNK signaling, respectively. Additionally, LSW also inhibited the endogenous formation of TNFα and attenuated the expression of its two receptors in EA.hy926 cells. Furthermore, LSW upregulated sirtuin-1 level, which partially contributed to its anti-inflammatory activity. These results demonstrate the multiple roles of LSW in ameliorating vascular endothelial oxidative stress and inflammatory responses, which support its uses as a nutraceutical or functional food ingredient for combating endothelial dysfunction and cardiovascular diseases.
Collapse
|
19
|
Higashi Y. Roles of Oxidative Stress and Inflammation in Vascular Endothelial Dysfunction-Related Disease. Antioxidants (Basel) 2022; 11:antiox11101958. [PMID: 36290681 PMCID: PMC9598825 DOI: 10.3390/antiox11101958] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress and chronic inflammation play an important role in the pathogenesis of atherosclerosis. Atherosclerosis develops as the first step of vascular endothelial dysfunction induced by complex molecular mechanisms. Vascular endothelial dysfunction leads to oxidative stress and inflammation of vessel walls, which in turn enhances vascular endothelial dysfunction. Vascular endothelial dysfunction and vascular wall oxidative stress and chronic inflammation make a vicious cycle that leads to the development of atherosclerosis. Simultaneously capturing and accurately evaluating the association of vascular endothelial function with oxidative stress and inflammation would be useful for elucidating the pathophysiology of atherosclerosis, determining treatment efficacy, and predicting future cardiovascular complications. Intervention in both areas is expected to inhibit the progression of atherosclerosis and prevent cardiovascular complications.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 743-8551, Japan; ; Tel.: +81-82-257-5831
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8553, Japan
| |
Collapse
|
20
|
Kishimoto-Urata M, Urata S, Fujimoto C, Yamasoba T. Role of Oxidative Stress and Antioxidants in Acquired Inner Ear Disorders. Antioxidants (Basel) 2022; 11:1469. [PMID: 36009187 PMCID: PMC9405327 DOI: 10.3390/antiox11081469] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oxygen metabolism in the mitochondria is essential for biological activity, and reactive oxygen species (ROS) are produced simultaneously in the cell. Once an imbalance between ROS production and degradation (oxidative stress) occurs, cells are damaged. Sensory organs, especially those for hearing, are constantly exposed during daily life. Therefore, almost all mammalian species are liable to hearing loss depending on their environment. In the auditory pathway, hair cells, spiral ganglion cells, and the stria vascularis, where mitochondria are abundant, are the main targets of ROS. Excessive generation of ROS in auditory sensory organs is widely known to cause sensorineural hearing loss, and mitochondria-targeted antioxidants are candidates for treatment. This review focuses on the relationship between acquired hearing loss and antioxidant use to provide an overview of novel antioxidants, namely medicines, supplemental nutrients, and natural foods, based on clinical, animal, and cultured-cell studies.
Collapse
Affiliation(s)
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan; (M.K.-U.); (S.U.); (C.F.)
| |
Collapse
|
21
|
Vitamin C Lowers Blood Pressure in Spontaneously Hypertensive Rats by Targeting Angiotensin-Converting Enzyme I Production in a Frequency-Dependent Manner. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9095857. [PMID: 35845596 PMCID: PMC9286971 DOI: 10.1155/2022/9095857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022]
Abstract
The lowering blood pressure effect of vitamin C (VC) has been evaluated in various models. As VC has a fast degradation rate in the body after consumption, a study of the frequency-dependent manner of VC is essential for the sustained antihypertension effect of VC. In this study, we investigated the frequency and dose dependency of vitamin C (VC) on blood pressure reduction in spontaneously hypertensive rats (SHRs). Wistar–Kyoto rats (WKYs) and SHRs were orally administered tap water or VC (250, 500, 1000, and 2000 mg/60 kg/day). Blood pressures were measured using the tail-cuff method, and thoracic aortas, liver, and blood were harvested from sacrificed rats after 8 weeks to measure angiotensinogen, angiotensin-converting enzyme (ACE) I, endothelial nitric oxide synthase (eNOS), and total nitric oxide (NOx) concentration. VC decreased blood pressure from the fourth week with no significant differences between doses. The twice-a-day administration of VC decreased blood pressure from the second week, and the blood pressure in these groups was close to that of the WKY group in the eighth week. Treatment with once a day VC decreased ACE I production which was further significantly reduced in twice a day groups. Angiotensinogen and eNOS production were increased upon VC treatment but were not significant among groups. The NOx content was decreased by VC treatment. These results suggest that VC lowers blood pressure in SHRs by directly targeting ACE I production in a frequency-dependent manner and may improve endothelial function depending on the frequency of administration.
Collapse
|
22
|
Opioids and Vitamin C: Known Interactions and Potential for Redox-Signaling Crosstalk. Antioxidants (Basel) 2022; 11:antiox11071267. [PMID: 35883757 PMCID: PMC9312198 DOI: 10.3390/antiox11071267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Opioids are among the most widely used classes of pharmacologically active compounds both clinically and recreationally. Beyond their analgesic efficacy via μ opioid receptor (MOR) agonism, a prominent side effect is central respiratory depression, leading to systemic hypoxia and free radical generation. Vitamin C (ascorbic acid; AA) is an essential antioxidant vitamin and is involved in the recycling of redox cofactors associated with inflammation. While AA has been shown to reduce some of the negative side effects of opioids, the underlying mechanisms have not been explored. The present review seeks to provide a signaling framework under which MOR activation and AA may interact. AA can directly quench reactive oxygen and nitrogen species induced by opioids, yet this activity alone does not sufficiently describe observations. Downstream of MOR activation, confounding effects from AA with STAT3, HIF1α, and NF-κB have the potential to block production of antioxidant proteins such as nitric oxide synthase and superoxide dismutase. Further mechanistic research is necessary to understand the underlying signaling crosstalk of MOR activation and AA in the amelioration of the negative, potentially fatal side effects of opioids.
Collapse
|
23
|
Six I, Guillaume N, Jacob V, Mentaverri R, Kamel S, Boullier A, Slama M. The Endothelium and COVID-19: An Increasingly Clear Link Brief Title: Endotheliopathy in COVID-19. Int J Mol Sci 2022; 23:6196. [PMID: 35682871 PMCID: PMC9181280 DOI: 10.3390/ijms23116196] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
The endothelium has a fundamental role in the cardiovascular complications of coronavirus disease 2019 (COVID-19). Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) particularly affects endothelial cells. The virus binds to the angiotensin-converting enzyme 2 (ACE-2) receptor (present on type 2 alveolar cells, bronchial epithelial cells, and endothelial cells), and induces a cytokine storm. The cytokines tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 have particular effects on endothelial cells-leading to endothelial dysfunction, endothelial cell death, changes in tight junctions, and vascular hyperpermeability. Under normal conditions, apoptotic endothelial cells are removed into the bloodstream. During COVID-19, however, endothelial cells are detached more rapidly, and do not regenerate as effectively as usual. The loss of the endothelium on the luminal surface abolishes all of the vascular responses mediated by the endothelium and nitric oxide production in particular, which results in greater contractility. Moreover, circulating endothelial cells infected with SARS-CoV-2 act as vectors for viral dissemination by forming clusters that migrate into the circulation and reach distant organs. The cell clusters and the endothelial dysfunction might contribute to the various thromboembolic pathologies observed in COVID-19 by inducing the formation of intravascular microthrombi, as well as by triggering disseminated intravascular coagulation. Here, we review the contributions of endotheliopathy and endothelial-cell-derived extracellular vesicles to the pathogenesis of COVID-19, and discuss therapeutic strategies that target the endothelium in patients with COVID-19.
Collapse
Affiliation(s)
- Isabelle Six
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
| | - Nicolas Guillaume
- EA Hematim 4666, Picardie Jules Verne University, 80025 Amiens, France; (N.G.); (V.J.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Valentine Jacob
- EA Hematim 4666, Picardie Jules Verne University, 80025 Amiens, France; (N.G.); (V.J.)
| | - Romuald Mentaverri
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Said Kamel
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Agnès Boullier
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Michel Slama
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Medical Intensive Care Unit, 80054 Amiens, France
| |
Collapse
|
24
|
Abeyrathne EDNS, Nam K, Huang X, Ahn DU. Plant- and Animal-Based Antioxidants' Structure, Efficacy, Mechanisms, and Applications: A Review. Antioxidants (Basel) 2022; 11:antiox11051025. [PMID: 35624889 PMCID: PMC9137533 DOI: 10.3390/antiox11051025] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Antioxidants are compounds that normally prevent lipid and protein oxidation. They play a major role in preventing many adverse conditions in the human body, including inflammation and cancer. Synthetic antioxidants are widely used in the food industry to prevent the production of adverse compounds that harm humans. However, plant- and animal-based antioxidants are more appealing to consumers than synthetic antioxidants. Plant-based antioxidants are mainly phenolic compounds, carotenoids, and vitamins, while animal-based antioxidants are mainly whole protein or the peptides of meat, fish, egg, milk, and plant proteins. Plant-based antioxidants mainly consist of aromatic rings, while animal-based antioxidants mainly consist of amino acids. The phenolic compounds and peptides act differently in preventing oxidation and can be used in the food and pharmaceutical industries. Therefore, compared with animal-based antioxidants, plant-based compounds are more practical in the food industry. Even though plant-based antioxidant compounds are good sources of antioxidants, animal-based peptides (individual peptides) cannot be considered antioxidant compounds to add to food. However, they can be considered an ingredient that will enhance the antioxidant capacity. This review mainly compares plant- and animal-based antioxidants’ structure, efficacy, mechanisms, and applications.
Collapse
Affiliation(s)
- Edirisinghe Dewage Nalaka Sandun Abeyrathne
- Department of Animal Science, Uva Wellassa University, Badulla 90000, Sri Lanka;
- Department of Animal Science & Technology, Suncheon National University, Suncheon 57922, Korea;
| | - Kichang Nam
- Department of Animal Science & Technology, Suncheon National University, Suncheon 57922, Korea;
| | - Xi Huang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|
25
|
Fan WT, Zhao Y, Wu WT, Qin Y, Yan J, Liu YL, Huang WH. Redox Homeostasis Alteration in Endothelial Mechanotransduction Monitored by Dual Stretchable Electrochemical Sensors. Anal Chem 2022; 94:7425-7432. [PMID: 35543487 DOI: 10.1021/acs.analchem.2c01227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vivo, endothelial cells are permanently subjected to dynamic cyclic stretch and adapt to it through the release of vasoactive substances. Among them, reactive oxygen species (ROS) and nitric oxide (NO) are indispensable redox molecules, the contents of which and their ratio are closely implicated with endothelial redox homeostasis. However, simultaneous and quantitative monitoring of ROS and NO release in endothelial mechanotransduction remains a great challenge. Herein, a stretchable electrochemical device is developed with a dual electrode based on gold nanotubes decorated with uniform and tiny platinum nanoparticles. This hybrid nanostructure endows the sensor with high sensitivity toward both hydrogen peroxide (H2O2) (as the most stable ROS) and NO electrooxidation. Importantly, the two species can be well discriminated by applying different potentials, which allows simultaneous monitoring of H2O2 and NO release in stretch-induced endothelial mechanotransduction by the same device. The results of quantitative analysis suggest that endothelial redox homeostasis and its alteration are strongly related to vascular biomechanical and biochemical milieus. Further investigation reveals that the interplay of ROS and NO signaling has an important role in the regulation of endothelial redox state. This work will greatly facilitate the deep understanding of the molecular mechanism of endothelial dysfunction and vascular disorder.
Collapse
Affiliation(s)
- Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
26
|
Kawakami K, Matsuo H, Yamada T, Matsumoto KI, Sasaki D, Nomura M. Effects of hydrogen-rich water and ascorbic acid treatment on spontaneously hypertensive rats. Exp Anim 2022; 71:347-355. [PMID: 35264492 PMCID: PMC9388348 DOI: 10.1538/expanim.21-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Hydrogen-rich water (HW) has been suggested to possess antioxidant properties of value in treatments of lifestyle diseases and for prevention of latent pathologies. To date, the potential
benefits of HW against the deleterious effects of excessive salt intake and hypertension have not been investigated. Here, we first examined the effects of HW or HW supplemented with 0.1%
ascorbic acid (HWA) on spontaneously hypertensive rats (SHR) that had been fed a normal diet. In comparison to control rats given distilled water (DW), we found that HW did not significantly
influence systolic blood pressure (SBP) or diastolic blood pressure (DBP) in SHR; however, the increase in SBP and DBP were inhibited in the HWA group. Next, four groups of SHR were given
DW, 0.1% ascorbic acid-added DW (DWA), HW, or HWA in combination with a 4% NaCl-added diet. SHR fed the 4% NaCl-added diet showed increased hypertension; HWA treatment resulted in a
significant reduction in blood pressure. The HWA group tended to have lower plasma angiotensin II levels than the DW group. In addition, urinary volumes and urinary sodium levels were
significantly lower in the HWA group than the DW group. Urinary isoprostane, an oxidative stress marker, was also significantly lower in the HWA group, suggesting that the inhibitory effect
of HWA on blood pressure elevation was caused by a reduction in oxidative stress. These findings suggest a synergistic interaction between HW and ascorbic acid, and also suggest that HWA
ingestion has potential for prevention of hypertension.
Collapse
Affiliation(s)
- Kohei Kawakami
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University
| | - Hiroyuki Matsuo
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University
| | - Takaya Yamada
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University
| | | | | |
Collapse
|
27
|
Tain YL, Hsu CN. Oxidative Stress-Induced Hypertension of Developmental Origins: Preventive Aspects of Antioxidant Therapy. Antioxidants (Basel) 2022; 11:511. [PMID: 35326161 PMCID: PMC8944751 DOI: 10.3390/antiox11030511] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 12/14/2022] Open
Abstract
Hypertension remains the leading cause of disease burden worldwide. Hypertension can originate in the early stages of life. A growing body of evidence suggests that oxidative stress, which is characterized as a reactive oxygen species (ROS)/nitric oxide (NO) disequilibrium, has a pivotal role in the hypertension of developmental origins. Results from animal studies support the idea that early-life oxidative stress causes developmental programming in prime blood pressure (BP)-controlled organs such as the brain, kidneys, heart, and blood vessels, leading to hypertension in adult offspring. Conversely, perinatal use of antioxidants can counteract oxidative stress and therefore lower BP. This review discusses the interaction between oxidative stress and developmental programming in hypertension. It will also discuss evidence from animal models, how oxidative stress connects with other core mechanisms, and the potential of antioxidant therapy as a novel preventive strategy to prevent the hypertension of developmental origins.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
28
|
Kulandavelu S, Dulce RA, Murray CI, Bellio MA, Fritsch J, Kanashiro‐Takeuchi R, Arora H, Paulino E, Soetkamp D, Balkan W, Van Eyk JE, Hare JM. S-Nitrosoglutathione Reductase Deficiency Causes Aberrant Placental S-Nitrosylation and Preeclampsia. J Am Heart Assoc 2022; 11:e024008. [PMID: 35191317 PMCID: PMC9075059 DOI: 10.1161/jaha.121.024008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023]
Abstract
Background Preeclampsia, a leading cause of maternal and fetal mortality and morbidity, is characterized by an increase in S-nitrosylated proteins and reactive oxygen species, suggesting a pathophysiologic role for dysregulation in nitrosylation and nitrosative stress. Methods and Results Here, we show that mice lacking S-nitrosoglutathione reductase (GSNOR-⁄-), a denitrosylase regulating protein S-nitrosylation, exhibit a preeclampsia phenotype, including hypertension, proteinuria, renal pathology, cardiac concentric hypertrophy, decreased placental vascularization, and fetal growth retardation. Reactive oxygen species, NO, and peroxynitrite levels are elevated. Importantly, mass spectrometry reveals elevated placental S-nitrosylated amino acid residues in GSNOR-⁄- mice. Ascorbate reverses the phenotype except for fetal weight, reduces the difference in the S-nitrosoproteome, and identifies a unique set of S-nitrosylated proteins in GSNOR-⁄- mice. Importantly, human preeclamptic placentas exhibit decreased GSNOR activity and increased nitrosative stress. Conclusions Therefore, deficiency of GSNOR creates dysregulation of placental S-nitrosylation and preeclampsia in mice, which can be rescued by ascorbate. Coupled with similar findings in human placentas, these findings offer valuable insights and therapeutic implications for preeclampsia.
Collapse
Affiliation(s)
- Shathiyah Kulandavelu
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
- Department of PediatricsUniversity of Miami Miller School of MedicineMiamiFL
| | - Raul A. Dulce
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
| | | | - Michael A. Bellio
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
| | - Julia Fritsch
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
| | - Rosemeire Kanashiro‐Takeuchi
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFL
| | - Himanshu Arora
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
- Department of UrologyUniversity of Miami Miller School of MedicineMiamiFL
| | - Ellena Paulino
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
| | - Daniel Soetkamp
- Medicine and Heart InstituteCedars Sinai Medical CenterLos AngelesCA
| | - Wayne Balkan
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
- Division of CardiologyDepartment of MedicineUniversity of Miami Miller School of MedicineMiamiFL
| | - Jenny E. Van Eyk
- Medicine and Heart InstituteCedars Sinai Medical CenterLos AngelesCA
| | - Joshua M. Hare
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
- Division of CardiologyDepartment of MedicineUniversity of Miami Miller School of MedicineMiamiFL
| |
Collapse
|
29
|
Takemori K, Matsuo T, Watanabe T, Ebara S, Chikugo T, Kometani T. Effects of Inadequate Folate Intake on the Onset and Progression of Hypertensive Vascular Injury. J Nutr Sci Vitaminol (Tokyo) 2021; 67:310-316. [PMID: 34719616 DOI: 10.3177/jnsv.67.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the effects of inadequate folate intake on the onset and progression of hypertensive organ injury. In the present study, 5-wk-old male stroke-prone spontaneously hypertensive rats (SHRSP) were fed with a normal-folate (control; 160-170 μg of folate/100 g diet) or low-folate (8-10 μg of folate/100 g diet) diet until they reached 25 wk of age. After the animals reached 10 wk of age, the bodyweight of the rats in the low-folate group was lower than that of the rats in the control group. Regarding blood pressure, both groups had severe hypertension of ≥230 mmHg at 12 wk of age that was not significantly different between the groups. At 16 wk of age, the low-folate group had a low number of blood cell types. The folate levels in the serum, liver, and kidneys of these rats were significantly lower (p<0.01) and the serum homocysteine level in the low-folate group was significantly higher than in the controls. The low-folate group had a significantly lower testicular weight than the control group (p<0.05) and arterial hypertrophy, spermatogenesis arrest, and interstitial connective tissue hyperplasia were observed. However, there was no clear difference in lesions in other organs. These results indicated that under low folate status, SHRSP causes hematopoietic disorders and exacerbates hypertensive vascular injury at various degrees by organ type.
Collapse
Affiliation(s)
- Kumiko Takemori
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University
| | - Takuya Matsuo
- Department of Arts and Sciences, Faculty of Medicine, Kindai University
| | - Toshiaki Watanabe
- Department of Health and Nutrition, Faculty of Health Science, Osaka Aoyama University
| | - Shuhei Ebara
- Department of Health and Nutrition, Faculty of Health Science, Osaka Aoyama University
| | - Takaaki Chikugo
- Department of Pathology, Faculty of Medicine, Kindai University
| | - Takashi Kometani
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University
| |
Collapse
|
30
|
Sierra L, Fan H, Zapata J, Wu J. Antioxidant peptides derived from hydrolysates of red tilapia (Oreochromis sp.) scale. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Katz A, Brosnahan SB, Papadopoulos J, Parnia S, Lam JQ. Pharmacologic neuroprotection in ischemic brain injury after cardiac arrest. Ann N Y Acad Sci 2021; 1507:49-59. [PMID: 34060087 DOI: 10.1111/nyas.14613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
Cardiac arrest has many implications for morbidity and mortality. Few interventions have been shown to improve return of spontaneous circulation (ROSC) and long-term outcomes after cardiac arrest. Ischemic-reperfusion injury upon achieving ROSC creates an imbalance between oxygen supply and demand. Multiple events occur in the postcardiac arrest period, including excitotoxicity, mitochondrial dysfunction, and oxidative stress and inflammation, all of which contribute to ongoing brain injury and cellular death. Given that complex pathophysiology underlies global brain hypoxic ischemia, neuroprotective strategies targeting multiple stages of the neuropathologic cascade should be considered as a means of mitigating secondary neuronal injury and improving neurologic outcomes and survival in cardiac arrest victims. In this review article, we discuss a number of different pharmacologic agents that may have a potential role in targeting these injurious pathways following cardiac arrest. Pharmacologic therapies most relevant for discussion currently include memantine, perampanel, magnesium, propofol, thiamine, methylene blue, vitamin C, vitamin E, coenzyme Q10 , minocycline, steroids, and aspirin.
Collapse
Affiliation(s)
- Alyson Katz
- Department of Pharmacy, NYU Langone Health, New York, New York
| | - Shari B Brosnahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York
| | | | - Sam Parnia
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York
| | - Jason Q Lam
- Division of Pulmonary and Critical Care, Department of Medicine, Kaiser Permanente South Sacramento Medical Center, Sacramento, California
| |
Collapse
|
32
|
Kouhpayeh S, Shariati L, Boshtam M, Rahimmanesh I, Mirian M, Esmaeili Y, Najaflu M, Khanahmad N, Zeinalian M, Trovato M, Tay FR, Khanahmad H, Makvandi P. The Molecular Basis of COVID-19 Pathogenesis, Conventional and Nanomedicine Therapy. Int J Mol Sci 2021; 22:5438. [PMID: 34064039 PMCID: PMC8196740 DOI: 10.3390/ijms22115438] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
In late 2019, a new member of the Coronaviridae family, officially designated as "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), emerged and spread rapidly. The Coronavirus Disease-19 (COVID-19) outbreak was accompanied by a high rate of morbidity and mortality worldwide and was declared a pandemic by the World Health Organization in March 2020. Within the Coronaviridae family, SARS-CoV-2 is considered to be the third most highly pathogenic virus that infects humans, following the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV). Four major mechanisms are thought to be involved in COVID-19 pathogenesis, including the activation of the renin-angiotensin system (RAS) signaling pathway, oxidative stress and cell death, cytokine storm, and endothelial dysfunction. Following virus entry and RAS activation, acute respiratory distress syndrome develops with an oxidative/nitrosative burst. The DNA damage induced by oxidative stress activates poly ADP-ribose polymerase-1 (PARP-1), viral macrodomain of non-structural protein 3, poly (ADP-ribose) glycohydrolase (PARG), and transient receptor potential melastatin type 2 (TRPM2) channel in a sequential manner which results in cell apoptosis or necrosis. In this review, blockers of angiotensin II receptor and/or PARP, PARG, and TRPM2, including vitamin D3, trehalose, tannins, flufenamic and mefenamic acid, and losartan, have been investigated for inhibiting RAS activation and quenching oxidative burst. Moreover, the application of organic and inorganic nanoparticles, including liposomes, dendrimers, quantum dots, and iron oxides, as therapeutic agents for SARS-CoV-2 were fully reviewed. In the present review, the clinical manifestations of COVID-19 are explained by focusing on molecular mechanisms. Potential therapeutic targets, including the RAS signaling pathway, PARP, PARG, and TRPM2, are also discussed in depth.
Collapse
Affiliation(s)
- Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 8164776351, Iran;
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Malihe Najaflu
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.N.); (M.Z.)
| | - Negar Khanahmad
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 817467346, Iran;
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.N.); (M.Z.)
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131 Naples, Italy;
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, USA;
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.N.); (M.Z.)
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pisa, Italy
| |
Collapse
|
33
|
Santos DCD, Oliveira Filho JGD, Sousa TLD, Ribeiro CB, Egea MB. Ameliorating effects of metabolic syndrome with the consumption of rich-bioactive compounds fruits from Brazilian Cerrado: a narrative review. Crit Rev Food Sci Nutr 2021; 62:7632-7649. [PMID: 33977838 DOI: 10.1080/10408398.2021.1916430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Evidence suggests that bioactive compounds present in fruits and vegetables, including carotenoids, polyphenols, and phytosterols, may have beneficial effects against the development of obesity and other diseases. The fruits of the Brazilian Cerrado are rich in biologically active compounds but are underexplored by the population being used only locally dietary consumption. The objective of this review is to direct attention to the bioactive compounds already elucidated for the fruits of "Cerrado" cashew (Anacadium othanianum Rizz.), baru almond (Dipteryx alata Vogel), cagaita (Eugenia dysenterica DC.), "Cerrado" pear (Eugenia klotzschiana Berg), mangaba (Hancornia speciosa), and pequi (Caryocar brasiliense Camb), demonstrating possible metabolic effects of the consumption of these fruits on the metabolic syndrome and its risk factors. Studies have shown that Cerrado native fruits have a high content of bioactive compounds such as phenolic compounds, which also demonstrate high antioxidant capacity and may be related to the protective effect in metabolic syndrome-related diseases by act as inhibitors in various processes in lipid metabolism and glucose transport. Although more scientific evidence is still needed, the consumption of native fruits from the Cerrado seems to be a promising strategy which -along with other strategies such as nutritional therapy- can ameliorate the effects of the metabolic syndrome.
Collapse
Affiliation(s)
- Daiane Costa Dos Santos
- Institute of Tropical Pathology and Public Health, IPTSP - UFG, Goias Federal University (UFG), Goiânia, Goiás, Brazil.,School of Nutrition, Unibras College of Rio Verde, Rio Verde, Goiás, Brazil
| | | | | | | | - Mariana Buranelo Egea
- Department of Agronomy, Goiás Federal University (UFG), Goiânia, Goiás, Brazil.,Goiano Federal Institute of Education, Science, and Technology, Rio Verde, Goiás, Brazil
| |
Collapse
|
34
|
Abstract
A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension. We highlight how oxidative stress in different organ systems contributes to hypertension, describe new animal models that have clarified the importance of specific proteins, and discuss clinical studies that shed light on how these processes and pathways are altered in human hypertension. Finally, we focus on the promise of redox proteomics and systems biology to help us fully understand the relationship between ROS and hypertension and their potential for designing and evaluating novel antihypertensive therapies.
Collapse
Affiliation(s)
- Kathy K Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, USA
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| |
Collapse
|
35
|
Li Y, Salih Ibrahim RM, Chi HL, Xiao T, Xia WJ, Li HB, Kang YM. Altered Gut Microbiota is Involved in the Anti-Hypertensive Effects of Vitamin C in Spontaneously Hypertensive Rat. Mol Nutr Food Res 2021; 65:e2000885. [PMID: 33547879 DOI: 10.1002/mnfr.202000885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/07/2020] [Indexed: 01/25/2023]
Abstract
SCOPE Gut dysbiosis and dysregulation of the gut-brain-axis contributes to the pathogenesis of hypertension. Vitamin C (VC) is a common dietary supplement that shows the ability to lower the elevated blood pressure in hypertensive animals. Thus, the hypothesis that the gut microbiota is involved in the anti-hypertensive effect of VC is proposed. METHODS AND RESULTS The changes of the gut microbiota and pathology in a spontaneously hypertensive rat (SHR) model after daily oral intake of VC in dosage of 200 or 1000 mg kg-1 are examined. After 4 weeks, the elevated blood pressure of SHRs in both VC-treated groups is attenuated. Sequencing of the gut microbiota shows improvement in its diversity and abundance. Bioinformatic analysis suggests restored metabolism and biosynthesis-related functions of the gut, which are confirmed by the improvement of gut pathology and integrity. Analysis of the hypothalamus paraventricular nucleus (PVN), the central pivot of blood pressure regulation, also shows reduced inflammatory responses and oxidative stress. CONCLUSIONS The reduced blood pressure, enriched gut microbiota, improved gut pathology and integrity, and reduced inflammatory responses and oxidative stress in the PVN together suggest that the anti-hypertensive effects of VC involve reshaping of gut microbiota composition and function.
Collapse
Affiliation(s)
- Ying Li
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Rawya Mohamed Salih Ibrahim
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Hong-Li Chi
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Tong Xiao
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Wen-Jie Xia
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, China
| |
Collapse
|
36
|
Abstract
Apocynin is a naturally occurring acetophenone, found in the roots of Apocynum cannabinum and Picrorhiza kurroa. Various chemical and pharmaceutical modifications have been carried out to enhance the absorption and duration of action of apocynin, like, formulation of chitosan-based apocynin-loaded solid lipid nanoparticles, chitosan-oligosaccharide based nanoparticles, and biodegradable polyanhydride nanoparticles. Apocynin has been subjected to a wide range of experimental screening and has proved to be useful for amelioration of a variety of disorders, like diabetic complications, neurodegeneration, cardiovascular disorders, lung cancer, hepatocellular cancer, pancreatic cancer, and pheochromocytoma. Apocynin has been primarily reported as an NADPH oxidase (NOX) inhibitor and prevents translocation of its p47phox subunit to the plasma membrane, observed in neurodegeneration and hypertension. However, recent studies highlight its off-target effects that it is able to function as a scavenger of non-radical oxidant species, which is relevant for its activity against NOX 4 mediated production of hydrogen peroxide. Additionally, apocynin has shown inhibition of eNOS-dependent superoxide production in diabetic cardiomyopathy, reduction of NLRP3 activation and TGFβ/Smad signaling in diabetic nephropathy, diminished VEGF expression and decreased retinal NF-κB activation in diabetic retinopathy, inhibition of P38/MAPK/Caspase3 pathway in pheochromocytoma, inhibition of AKT-GSK3β and ERK1/2 pathways in pancreatic cancer, and decreased FAK/PI3K/Akt signaling in hepatocellular cancer. This review aims to discuss the pharmacokinetics and mechanisms of the pharmacological actions of apocynin.
Collapse
Affiliation(s)
- Shreya R Savla
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
37
|
Spent Hen Muscle Protein-Derived RAS Regulating Peptides Show Antioxidant Activity in Vascular Cells. Antioxidants (Basel) 2021; 10:antiox10020290. [PMID: 33671990 PMCID: PMC7919344 DOI: 10.3390/antiox10020290] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
Spent hens are egg-laying hens reaching the end of their egg-laying cycles, being a major byproduct of the egg industry. Recent studies have been focusing on finding new value-added uses for spent hens. We have previously identified four bioactive peptides from spent hen muscle proteins, including three angiotensin-converting enzyme (ACE) inhibitory (ACEi) peptides (VRP, LKY, and VRY), and one ACE2 upregulating (ACE2u) peptide (VVHPKESF (V-F)). In the current study, we further assessed their antioxidant and cytoprotective activities in two vascular cell lines-vascular smooth muscle A7r5 cells (VSMCs) and endothelial EA.hy926 cells (ECs)-upon stimulation by tumor necrosis factor alpha (TNFα) and angiotensin (Ang) II, respectively. The results from our study revealed that all four peptides attenuated oxidative stress in both cells. None of the investigated peptides altered the expression of TNFα receptors in ECs; however, VRY and V-F downregulated Ang II type 1 receptor (AT1R), while V-F upregulated the Mas receptor (MasR) in VSMCs. Further, we found that the antioxidant effects of VRP, LKY, and VRY were likely through acting as direct radical scavengers, while that of V-F was at least partially ascribed to increased endogenous antioxidant enzymes (GPx4 and SOD2) in both cells. Besides, as an ACE2u peptide, V-F exerted antioxidant effect in a MasR-dependent manner, indicating a possible involvement of the upregulated ACE2-MasR axis underlying its antioxidant action. The antioxidant activities of VRP, LKY, VRY, and V-F in vascular cells indicated their multifunctional properties, in addition to their ACEi or ACE2u activity, which supports their potential use as functional food ingredients against hypertension.
Collapse
|
38
|
Hidayatik N, Purnomo A, Fikri F, Purnama MTE. Amelioration on oxidative stress, testosterone, and cortisol levels after administration of Vitamins C and E in albino rats with chronic variable stress. Vet World 2021; 14:137-143. [PMID: 33642797 PMCID: PMC7896882 DOI: 10.14202/vetworld.2021.137-143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/01/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND AIM Stress can cause physiological and biological disorders in the body. On the other hand, antioxidants from vitamins and minerals are effective for stress treatment. Therefore, this study aimed to evaluate the effect of the administration of Vitamins C and E on serum superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), glutathione peroxidase (GPx), testosterone, and cortisol activity in albino rats with chronic variable stress (CVS). MATERIALS AND METHODS Twenty albino rats were randomly assigned into four treatment groups: C was administered normal saline; T1 was administered Vitamins C and E; T2 was only induced CVS; and T3 was induced CVS followed by Vitamins C and E administration. All treatments were applied for 4 weeks, respectively. Furthermore, 5 mL of blood samples were collected intracardially. Body weight data were collected for the initial and final weights. From serum samples, SOD, GPx, and CAT were measured using the enzymol method; MDA was measured using the high-performance liquid chromatography method; and testosterone and cortisol were measured using the enzyme-linked immunosorbent assay method. All variables were analyzed statistically using analysis of variance followed by the Duncan test (p<0.05). RESULTS Our findings showed that the T1 and T3 groups significantly decreased (p<0.001) compared to T2 in the following parameters: SOD, MDA, GPx, and cortisol. Meanwhile, CAT and testosterone levels in the T1 and T3 groups were significantly increased (p<0.001) compared to the T2 group. In addition, the weight gain in T1 and T3 groups was significantly increased (p<0.001) compared to T2 group. CONCLUSION It can be concluded that the administration of Vitamins C and E had a significant effect to alleviate SOD, MDA, GPx, and cortisol and to improve the testosterone level in albino rats with CVS.
Collapse
Affiliation(s)
- Nanik Hidayatik
- Department of Veterinary Clinical Pathology and Physiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Agus Purnomo
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Faisal Fikri
- Department of Veterinary Clinical Pathology and Physiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
39
|
ABCG1 Attenuates Oxidative Stress Induced by H 2O 2 through the Inhibition of NADPH Oxidase and the Upregulation of Nrf2-Mediated Antioxidant Defense in Endothelial Cells. ACTA ACUST UNITED AC 2020; 2020:2095645. [PMID: 33344146 PMCID: PMC7732382 DOI: 10.1155/2020/2095645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 11/18/2022]
Abstract
Summary. Oxidative stress is an important factor that is related to endothelial dysfunction. ATP-binding cassette transporter G1 (ABCG1), a regulator of intracellular cholesterol efflux, has been found to prevent endothelial activation in vessel walls. To explore the role of ABCG1 in oxidative stress production in endothelial cells, HUAECs were exposed to H2O2 and transfected with the specific ABCG1 siRNA or ABCG1 overexpression plasmid. The results showed that overexpression of ABCG1 by ABCG1 plasmid or liver X receptor (LXR) agonist T0901317 treatment inhibited ROS production and MDA content induced by H2O2 in HUAECs. Furthermore, ABCG1 upregulation blunted the activity of prooxidant NADPH oxidase and the expression of Nox4, one of the NADPH oxidase subunits. Moreover, the increased migration of Nrf2 from the cytoplasm to the nucleus and antioxidant HO-1 expression were detected in HUAECs with upregulation of ABCG1. Conversely, ABCG1 downregulation by ABCG1 siRNA increased NADPH oxidase activity and Nox4 expression and abrogated the increase at Nrf2 nuclear protein levels. In addition, intracellular cholesterol load interfered with the balance between NADPH oxidase activity and HO-1 expression. It was suggested that ABCG1 attenuated oxidative stress induced by H2O2 in endothelial cells, which might be involved in the balance between decreased NADPH oxidase activity and increased Nrf2/OH-1 antioxidant defense signaling via its regulation for intracellular cholesterol accumulation.
Collapse
|
40
|
Pirouzeh R, Heidarzadeh-Esfahani N, Morvaridzadeh M, Izadi A, Yosaee S, Potter E, Heshmati J, Pizarro AB, Omidi A, Heshmati S. Effect of DASH diet on oxidative stress parameters: A systematic review and meta-analysis of randomized clinical trials. Diabetes Metab Syndr 2020; 14:2131-2138. [PMID: 33395773 DOI: 10.1016/j.dsx.2020.10.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Oxidative stress (OS) is one of the main risk factors for several chronic diseases. The Dietary Approaches to Stop Hypertension (DASH) contain many antioxidants and may contribute to managing OS. OBJECTIVE To perform a systematic review and meta-analysis to examine the impacts of the DASH diet on OS parameters. METHODS A comprehensive electronic search in MEDLINE, Scopus, EMBASE, and the Cochrane Central Register of Controlled Trials was performed through September 2020 to find related studies evaluating the impact of the DASH diet on OS parameters. Standardized mean differences were pooled using random-effects meta-analysis. RESULTS Eight studies with a total of 317 subjects met our inclusion criteria. Four studies included in meta-analysis model with 200 participants (100 in treatment and 100 in control group). The DASH diet was associated with a statistically significant decrease in malondialdehyde (MDA) (SMD: -0.53; 95% CI: -0.89, -0.16; I2 = 42.1%), and a significant increase in glutathione (GSH) (SMD: 0.83; 95% CI: 0.36, 1.03; I2 = 42.1%). Meta-analysis found no statistically significant effect of DASH diet on nitric oxide (NO) (SMD: -1.40; 95% CI: -0.12, 1.93; I2 = 92.6%) or total antioxidant capacity (TAC) levels (SMD: 0.95; 95% CI: -0.10, 1.99; I2 = 87.6%). CONCLUSION Our results demonstrated that a DASH diet could significantly increase GSH and decrease MDA levels. Furthermore, there is a trend to improve TAC, NO, and f2-isoprostanes by the adherence to the DASH diet. However, long-term, large sample size and well-designed randomized clinical trials are still needed to draw concrete conclusions about DASH diet's effects on OS parameters.
Collapse
Affiliation(s)
- Razieh Pirouzeh
- Department of Education and Health Promotion, School of Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Neda Heidarzadeh-Esfahani
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Azimeh Izadi
- Department of Biochemistry and Diet therapy, Faculty of Nutrition and Food sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somaye Yosaee
- Department of Nutrition, School of Health, Larestan University of Medical Sciences, Larestan, Iran.
| | - Eric Potter
- Baylor Scott & White Research Institute, Dallas, TX, USA.
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Amirhosein Omidi
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shilan Heshmati
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Synthesis of Caffeic Acid Sulphonamide Derivatives and Preliminary Exploration of Their Biological Applications. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0014-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Zarbafian M, Dayan S, Fabi SG. Teachings from COVID-19 and aging-An oxidative process. J Cosmet Dermatol 2020; 19:3171-3176. [PMID: 32997887 PMCID: PMC7536979 DOI: 10.1111/jocd.13751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
As of June 2020, the COVID‐19 pandemic has totaled over 9 000 000 cases and 470 000 deaths globally (ref. 1). Emerging data from COVID‐19 patients have suggested a clear role for oxidative stress in the pathogenesis of SARS‐CoV‐2, the pathogenic agent of COVID‐19. Several comorbidities, including hypertension, diabetes, obesity, and aging, have been associated with an increase in baseline oxidative stress, likely explaining why such individuals at risk for poor outcomes with SARS‐CoV‐2 infection. Similarly, the concept of oxidative stress remains one of the best supported theories to explain the mechanism behind aging. Oxidative stress through both endogenous and exogenous sources has known deleterious effects in both aging and SARS‐CoV‐2 infection. Herein, we will review the role of oxidative stress as a key player in both aging and COVID‐19 and highlight why some individuals may have better or poorer outcomes because of this. Additionally, we will discuss potential therapeutic pathways for effectively anti‐aging as we take away from our learnings on COVID‐19.
Collapse
Affiliation(s)
- Misha Zarbafian
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Steven Dayan
- Clinical Assistant Professor, University of Illinois, Chicago, IL, USA
| | - Sabrina G Fabi
- Volunteer Assistant Clinical Professor, University of California, San Diego, CA, USA.,Goldman Butterwick Groff Fabi Wu & Boen Cosmetic Laser Dermatology, San Diego, CA, USA
| |
Collapse
|
43
|
Arishe OO, Ebeigbe AB, Webb RC. Use of a Combination of Insulin Sensitizers and Antioxidant Supplements in the Management of Pregnancy Hypertensive Disorders. Am J Hypertens 2020; 33:602-603. [PMID: 32337574 DOI: 10.1093/ajh/hpaa063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Olufunke O Arishe
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Anthony B Ebeigbe
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, Cardiovascular Translational Research Center, School of Medicine Columbia, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
44
|
Ayres JC, Porto HKP, de Andrade DML, Junior JB, Ribeiro MTL, Rocha ML. Paracetamol-induced metabolic and cardiovascular changes are prevented by exercise training. Basic Clin Pharmacol Toxicol 2020; 127:516-524. [PMID: 32573044 DOI: 10.1111/bcpt.13460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Paracetamol (PAR) is the most frequently consumed non-prescription drug, yet it is well known to induce toxicity. Here, we have evaluated the effects of exercise training on vascular dysfunction induced by PAR. Rats were distributed among four groups: (a) Sedentary; (b) Exercise; (c) Sedentary+PAR; and (d) Exercise+PAR. The exercise comprised swimming 50 min/d, 5 d/wk for 6 weeks (+PAR in the last 2 weeks, at 400 mg/kg/d/p.o.). After killing, the rats' blood and aortas were collected for biochemical analysis of hepatic transaminases, TBARs reaction, glutathione, glutathione reductase, SOD, and catalase. In vitro vascular relaxation was measured using acetylcholine and sodium nitroprusside in the presence or absence of tiron (an antioxidant). Vascular protein expression (eNOS and sGC) also were analysed. Increased transaminases after PAR treatment were found to be reduced by exercise. Vasodilation was impaired by PAR only in the sedentary group. Exercise prevented alterations in lipoperoxidation and glutathione levels after PAR exposure. Glutaathione reductase and SOD also were increased by PAR but were normalized in the exercised group. Catalase activity and protein expressions did not change in any group. PAR treatment caused impairment in both vasodilation and redox balance; however, exercise training prevented the vascular and redox system dysfunction induced by PAR treatment.
Collapse
Affiliation(s)
- Júlio Cesar Ayres
- Laboratory of Pharmacology, Faculty of Pharmacy, Federal University of Goias, Goiânia, Brazil
| | | | | | - José Britto Junior
- Laboratory of Pharmacology, Faculty of Pharmacy, Federal University of Goias, Goiânia, Brazil
| | | | - Matheus Lavorenti Rocha
- Laboratory of Pharmacology, Faculty of Pharmacy, Federal University of Goias, Goiânia, Brazil
| |
Collapse
|
45
|
El-Mahdy MA, Abdelghany TM, Hemann C, Ewees MG, Mahgoup EM, Eid MS, Shalaan MT, Alzarie YA, Zweier JL. Chronic cigarette smoke exposure triggers a vicious cycle of leukocyte and endothelial-mediated oxidant stress that results in vascular dysfunction. Am J Physiol Heart Circ Physiol 2020; 319:H51-H65. [PMID: 32412791 DOI: 10.1152/ajpheart.00657.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although there is a strong association between cigarette smoking exposure (CSE) and vascular endothelial dysfunction (VED), the underlying mechanisms by which CSE triggers VED remain unclear. Therefore, studies were performed to define these mechanisms using a chronic mouse model of cigarette smoking (CS)-induced cardiovascular disease mirroring that in humans. C57BL/6 male mice were subjected to CSE for up to 48 wk. CSE impaired acetylcholine (ACh)-induced relaxation of aortic and mesenteric segments and triggered hypertension, with mean arterial blood pressure at 32 and 48 wk of exposure of 122 ± 6 and 135 ± 5 mmHg compared with 99 ± 4 and 102 ± 6 mmHg, respectively, in air-exposed mice. CSE led to monocyte activation with superoxide generation in blood exiting the pulmonary circulation. Macrophage infiltration with concomitant increase in NADPH oxidase subunits p22phox and gp91phox was seen in aortas of CS-exposed mice at 16 wk, with further increase out to 48 wk. Associated with this, increased superoxide production was detected that decreased with Nox inhibition. Tetrahydrobiopterin was progressively depleted in CS-exposed mice but not in air-exposed controls, resulting in endothelial nitric oxide synthase (eNOS) uncoupling and secondary superoxide generation. CSE led to a time-dependent decrease in eNOS and Akt expression and phosphorylation. Overall, CSE induces vascular monocyte infiltration with increased NADPH oxidase-mediated reactive oxygen species generation and depletes the eNOS cofactor tetrahydrobiopterin, uncoupling eNOS and triggering a vicious cycle of oxidative stress with VED and hypertension. Our study provides important insights toward understanding the process by which smoking contributes to the genesis of cardiovascular disease and identifies biomarkers predictive of disease.NEW & NOTEWORTHY In a chronic model of smoking-induced cardiovascular disease, we define underlying mechanisms of smoking-induced vascular endothelial dysfunction (VED). Smoking exposure triggered VED and hypertension and led to vascular macrophage infiltration with concomitant increase in superoxide and NADPH oxidase levels as early as 16 wk of exposure. This oxidative stress was accompanied by tetrahydrobiopterin depletion, resulting in endothelial nitric oxide synthase uncoupling with further superoxide generation triggering a vicious cycle of oxidative stress and VED.
Collapse
Affiliation(s)
- Mohamed A El-Mahdy
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Tamer M Abdelghany
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Craig Hemann
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Mohamed G Ewees
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Elsayed M Mahgoup
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mahmoud S Eid
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mahmoud T Shalaan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Yasmin A Alzarie
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Helwan University, National Organization of Drug Control and Research, Cairo, Egypt
| | - Jay L Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
46
|
Zaric B, Obradovic M, Trpkovic A, Banach M, Mikhailidis DP, Isenovic ER. Endothelial Dysfunction in Dyslipidaemia: Molecular Mechanisms and Clinical Implications. Curr Med Chem 2020; 27:1021-1040. [DOI: 10.2174/0929867326666190903112146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
The endothelium consists of a monolayer of Endothelial Cells (ECs) which form
the inner cellular lining of veins, arteries, capillaries and lymphatic vessels. ECs interact with
the blood and lymph. The endothelium fulfils functions such as vasodilatation, regulation of
adhesion, infiltration of leukocytes, inhibition of platelet adhesion, vessel remodeling and
lipoprotein metabolism. ECs synthesize and release compounds such as Nitric Oxide (NO),
metabolites of arachidonic acid, Reactive Oxygen Species (ROS) and enzymes that degrade
the extracellular matrix. Endothelial dysfunction represents a phenotype prone to atherogenesis
and may be used as a marker of atherosclerotic risk. Such dysfunction includes impaired
synthesis and availability of NO and an imbalance in the relative contribution of endothelialderived
relaxing factors and contracting factors such as endothelin-1 and angiotensin. This
dysfunction appears before the earliest anatomic evidence of atherosclerosis and could be an
important initial step in further development of atherosclerosis. Endothelial dysfunction was
historically treated with vitamin C supplementation and L-arginine supplementation. Short
term improvement of the expression of adhesion molecule and endothelial function during
antioxidant therapy has been observed. Statins are used in the treatment of hyperlipidaemia, a
risk factor for cardiovascular disease. Future studies should focus on identifying the mechanisms
involved in the beneficial effects of statins on the endothelium. This may help develop
drugs specifically aimed at endothelial dysfunction.
Collapse
Affiliation(s)
- Bozidarka Zaric
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Milan Obradovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Andreja Trpkovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Esma R. Isenovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
47
|
(-)-Epigallocatechin-3-gallate (EGCG) attenuates salt-induced hypertension and renal injury in Dahl salt-sensitive rats. Sci Rep 2020; 10:4783. [PMID: 32179848 PMCID: PMC7075996 DOI: 10.1038/s41598-020-61794-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 03/03/2020] [Indexed: 12/23/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a main active catechin in green tea, was reported to attenuate renal injury and hypertension. However, its effects on salt-induced hypertension and renal injury remain unclear. In the present study, we explored its effects on hypertension and renal damage in Dahl rats with salt-sensitive hypertension. We found that EGCG could lower blood pressure after 6 weeks of oral administration, reduce 24 h urine protein levels and decrease creatinine clearance, and attenuate renal fibrosis, indicating that it could attenuate hypertension by protecting against renal damage. Furthermore, we studied the renal protective mechanisms of EGCG, revealing that it could lower malondialdehyde levels, reduce the numbers of infiltrated macrophages and T cells, and induce the apoptosis of NRK-49F cells. Considering that the 67 kD laminin receptor (67LR) binds to EGCG, its role in EGCG-induced fibroblast apoptosis was also investigated. The results showed that an anti-67LR antibody partially abrogated the apoptosis-inducing effects of EGCG on NRK-49F cells. In summary, EGCG may attenuate renal damage and salt-sensitive hypertension via exerting anti-oxidant, anti-inflammatory, and apoptosis-inducing effects on fibroblasts; the last effect is partially mediated by 67LR, suggesting that EGCG represents a potential strategy for treating salt-sensitive hypertension.
Collapse
|
48
|
Erol N, Saglam L, Saglam YS, Erol HS, Altun S, Aktas MS, Halici MB. The Protection Potential of Antioxidant Vitamins Against Acute Respiratory Distress Syndrome: a Rat Trial. Inflammation 2020; 42:1585-1594. [PMID: 31081527 DOI: 10.1007/s10753-019-01020-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a fatal disease that includes inflammation formed by septic and non-septic causes. Reactive oxygen radicals (ROS) play a key role in ARDS pathophysiology and constitute the base of damage process. Antioxidant vitamins are used for inhibiting hazardous effects of radicals. Therefore, effects of antioxidant vitamins such as α-lipoic acid (ALA), vitamin E (VITE), and C (VITC) were investigated on oleic acid (OA)-induced ARDS rat model. Furthermore, high and low dose of methylprednisolone (HDMP, LDMP) was used for comparing effects of the vitamins. In this study, 42 male rats were divided to seven groups named control, OA, ALA, VITE, VITC, LDMP, and HDMP. OA was intravenously administered to all groups except control group and other compounds were orally administered (ALA, VITE, and VITC: 100 mg/kg, LDMP: 5 mg/kg, HDMP: 50 mg/kg) after OA injections. OA increased MDA level in lung tissue and TNF-α and IL-1β cytokine levels in serum. ALA, VITE, VITC, and both dose of MP significantly decreased the cytokine levels. Although OA reduced SOD, CAT, and GSH levels in lung tissue, the vitamins and LDMP markedly enhanced the levels except for HDMP. Furthermore, OA showed thickening in bronchi and alveolar septum, hyperemia in vessels, and inflammatory cell infiltrations in lung tissue histopathological examinations. Antioxidant vitamins may be useful for premedication of ARDS and similar disorders. However, methylprednisolone was not found sufficient for being a therapeutic agent for ARDS.
Collapse
Affiliation(s)
- Nazli Erol
- Kastamonu State Hospital, Department of Chest Disease, 37200, Kastamonu, Turkey
| | - Leyla Saglam
- Faculty of Medicine, Department of Chest Disease, Ataturk University, 25100, Erzurum, Turkey
| | - Yavuz Selim Saglam
- Faculty of Veterinary Medicine, Department of Pathology, Ataturk University, 25100, Erzurum, Turkey
| | - Huseyin Serkan Erol
- Faculty of Veterinary Medicine, Department of Biochemistry, Kastamonu University, 37200, Kastamonu, Turkey.
| | - Serdar Altun
- Faculty of Veterinary Medicine, Department of Pathology, Ataturk University, 25100, Erzurum, Turkey
| | - Mustafa Sinan Aktas
- Faculty of Veterinary Medicine, Department of Internal Medicine, Ataturk University, 25100, Erzurum, Turkey
| | - Mesut Bunyami Halici
- Faculty of Veterinary Medicine, Department of Biochemistry, Ataturk University, 25100, Erzurum, Turkey
| |
Collapse
|
49
|
Abais-Battad JM, Lund H, Dasinger JH, Fehrenbach DJ, Cowley AW, Mattson DL. NOX2-derived reactive oxygen species in immune cells exacerbates salt-sensitive hypertension. Free Radic Biol Med 2020; 146:333-339. [PMID: 31730933 PMCID: PMC6942201 DOI: 10.1016/j.freeradbiomed.2019.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
Previous studies utilizing the SSp67phox-/- rat have demonstrated the importance of systemic NADPH oxidase NOX2-derived reactive oxygen species (ROS) production in the pathogenesis of Dahl Salt-Sensitive (SS) hypertension and renal damage. It is established that the immune system contributes to the development of SS hypertension and our laboratory has observed an enrichment of NOX2 subunits in infiltrating T cells. However, the contribution of immune cell-derived ROS in SS hypertension remains unknown. To assess the role of ROS in immune cells, SSp67phox-/- rats underwent total body irradiation and received bone marrow transfer from either SS (+SS) or SSp67phox-/- (+SSp67phox-/-) donor rats. Demonstrated in a respiratory burst assay, response to phorbol 12-myristate 13-acetate stimulus (135 μM) was 10.2-fold greater in peritoneal macrophages isolated from +SS rats compared to nonresponsive + SSp67phox-/- cells, validating that + SS rats were capable of producing NOX2-derived ROS in cells of hematopoietic origin. After 3 weeks of high salt challenge, there was an exacerbated increase in mean arterial pressure in +SS rats compared to + SSp67phox-/- control rats (176.1 ± 4.7 vs 147.9 ± 8.4 mmHg, respectively), which was accompanied by a significant increase in albuminuria (168.3 ± 23.7 vs 107.0 ± 20.4 mg/day) and renal medullary protein cast formation (33.2 ± 4.7 vs 8.1 ± 3.5%). Interestingly, upon analysis of renal immune cells, there was trending increase of CD11b/c + monocytes and macrophages in the kidney of +SS rats (4.7 ± 0.4 vs 3.5 ± 0.5 × 106 cells/kidney, +SS vs + SSp67phox-/-, p = 0.06). These data altogether demonstrate that immune cell production of NOX2-derived ROS is sufficient to exacerbate Dahl SS hypertension, renal damage, and renal inflammation.
Collapse
Affiliation(s)
- Justine M Abais-Battad
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - Hayley Lund
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - John Henry Dasinger
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Daniel J Fehrenbach
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - David L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
50
|
Effects of Vitamin C on the Prevention of Ischemia-Reperfusion Brain Injury: Experimental Study in Rats. Int J Vasc Med 2019; 2019:4090549. [PMID: 32089885 PMCID: PMC7012208 DOI: 10.1155/2019/4090549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Background Reperfusion syndrome after carotid endarterectomy is a complication associated with cerebrovascular self-regulation in a chronically hypoperfused cerebral hemisphere, leading to severe neurological damage. Vitamin C is an important antioxidant in brain metabolism that has shown some neuroprotective actions. Objective To investigate the potential effects of vitamin C on cerebral reperfusion in comparison with placebo (saline) in rats. Methods Male Wistar rats were divided into 3 groups: (i) Sham (n = 4), animals exposed to carotid arteries dissection without clamping; (ii) Control (n = 4), animals exposed to carotid arteries dissection without clamping; (ii) Control (n = 4), animals exposed to carotid arteries dissection without clamping; (ii) Control ( Results Rats treated with vitamin C presented with a similar behavior as compared to the Sham group in all the three tests (p > 0.05), but it was significantly different from controls (p > 0.05), but it was significantly different from controls (p > 0.05), but it was significantly different from controls ( Conclusion In the present study, vitamin C was associated with behavioral and motor preservation as well as decreased cerebral MDA levels after induced cerebral ischemia in rats.
Collapse
|