1
|
Syed RU, Banu H, Alshammrani A, Alshammari MD, G SK, Kadimpati KK, Khalifa AAS, Aboshouk NAM, Almarir AM, Hussain A, Alahmed FK. MicroRNA-21 (miR-21) in breast cancer: From apoptosis dysregulation to therapeutic opportunities. Pathol Res Pract 2024; 262:155572. [PMID: 39226804 DOI: 10.1016/j.prp.2024.155572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Breast cancer, a pervasive and complex disease, continues to pose significant challenges in the field of oncology. Its heterogeneous nature and diverse molecular profiles necessitate a nuanced understanding of the underlying mechanisms driving tumorigenesis and progression. MicroRNA-21 (miR-21) has emerged as a crucial player in breast cancer development and progression by modulating apoptosis, a programmed cell death mechanism that eliminates aberrant cells. MiR-21 overexpression is a hallmark of breast cancer, and it is associated with poor prognosis and resistance to conventional therapies. This miRNA exerts its oncogenic effects by targeting various pro-apoptotic genes, including Fas ligand (FasL), programmed cell death protein 4 (PDCD4), and phosphatase and tensin homolog (PTEN). By suppressing these genes, miR-21 promotes breast cancer cell survival, proliferation, invasion, and metastasis. The identification of miR-21 as a critical regulator of apoptosis in breast cancer has opened new avenues for therapeutic intervention. This review investigates the intricate mechanisms through which miR-21 influences apoptosis, offering insights into the molecular pathways and signaling cascades involved. The dysregulation of apoptosis is a hallmark of cancer, and understanding the role of miR-21 in this context holds immense therapeutic potential. Additionally, the review highlights the clinical significance of miR-21 as a diagnostic and prognostic biomarker in breast cancer, underscoring its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.
| | - Alia Alshammrani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Satheesh Kumar G
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Kishore Kumar Kadimpati
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Poland
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | - Arshad Hussain
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Farah Khaled Alahmed
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| |
Collapse
|
2
|
Birsen MB, Erturk D, Onder D, Eryilmaz AI, Kaba M, Ellidag HY, Inal HA. Practicability of Serum Kallistatin Levels as a Biomarker in the Diagnosis of Tubo-Ovarian Abscess. Surg Infect (Larchmt) 2024. [PMID: 39137094 DOI: 10.1089/sur.2024.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Objective: This study investigates the practicability of serum kallistatin as a biomarker in the diagnosis of tubo-ovarian abscess (TOA) because C-reactive protein (CRP) is insufficiently specific for diagnosis. Methods: Thirty patients (control group) who presented for elective gynecological surgeries and 30 who were hospitalized due to TOA (study group) at the Antalya Training and Research Hospital Gynecology Clinic, Türkiye, between January 1 and December 31, 2022, were included in the study. Blood samples were collected for the calculation of complete blood count, biochemistry, CRP, and serum kallistatin values, and the results were recorded in a database. Results: Although no significant differences were observed between the control and study groups in terms of age or body mass index, significant differences were observed in terms of marital status, number of pregnancies, parity number, intrauterine device history, and previous surgical history (p > 0.05). Serum hemoglobin levels (12.61 ± 1.30 vs. 11.47 ± 1.77; p = 0.008), white blood cell (7.9 [6.15 ± 9.7] vs. 17.0 [11.6-19.6]; p < 0.001), neutrophil (4.6 [3.6-6.12] vs. 13.6 [9.25-16.1]; p < 0.001), lymphocyte (2.51 ± 0.71 vs. 2.33 ± 0.69; p = 0.307), and platelet counts (285.63 ± 78.0 vs. 407.03 ± 131.96; p < 0.001), neutrophil-lymphocyte ratio (2.11 ± 0.93 vs. 6.18 ± 2.20; p < 0.001), neutrophil-lymphocyte ratio (123.16 ± 52.63 vs. 184.39 ± 63.90; p < 0.001), hs-CRP (1.20 [5.55-1.92] vs. 240 [138.25-291.0]; p < 0.001), kallistatin (7.18 ± 3.15 vs. 3.83 ± 3.69; p = 0.006), and urine leukocyte values (1 [0.75-3] vs. 3 [1-6.5]; p = 0.038) also differed significantly between the control and study groups. Conclusion: The study findings show that serum kallistatin levels can be used as a biomarker in the diagnosis of TOA. Further studies involving more participants are now needed to test the accuracy of our results.
Collapse
Affiliation(s)
- Meryem Busra Birsen
- Department of Obstetrics and Gynecology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Derya Erturk
- Department of Obstetrics and Gynecology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Durmuş Onder
- Department of Obstetrics and Gynecology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Ahmet Ilker Eryilmaz
- Department of Obstetrics and Gynecology, Aksaray Training and Research Hospital, Antalya, Turkey
| | - Metin Kaba
- Department of Obstetrics and Gynecology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Hamit Yasar Ellidag
- Department of Biochemistry, Antalya Training and Research Hospital, Antalya, Turkey
| | - Hasan Ali Inal
- Department of Obstetrics and Gynecology, Antalya Training and Research Hospital, Antalya, Turkey
| |
Collapse
|
3
|
Yurtkal A, Canday M. Kallistatin as a Potential Biomarker in Polycystic Ovary Syndrome: A Prospective Cohort Study. Diagnostics (Basel) 2024; 14:1553. [PMID: 39061689 PMCID: PMC11276556 DOI: 10.3390/diagnostics14141553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder with significant metabolic implications, including an increased risk of cardiovascular diseases and diabetes. Kallistatin, a serine proteinase inhibitor with anti-inflammatory and antioxidative properties, has been identified as a potential biomarker for PCOS due to its role in modulating inflammation and oxidative stress. METHODS This prospective cohort study was conducted at a university hospital's gynecology clinic. It included 220 women diagnosed with PCOS and 220 healthy controls matched for age and body mass index. Kallistatin levels were quantitatively assessed using enzyme-linked immunosorbent assay (ELISA) techniques. Associations between kallistatin levels and clinical manifestations of PCOS, including hyperandrogenism and metabolic profiles, were examined. RESULTS Kallistatin levels were significantly lower in patients with PCOS (2.65 ± 1.84 ng/mL) compared to controls (6.12 ± 4.17 ng/mL; p < 0.001). A strong negative correlation existed between kallistatin levels and androgen concentrations (r = -0.782, p = 0.035). No significant associations were found between kallistatin levels and insulin resistance or lipid profiles. CONCLUSIONS The findings indicate that reduced kallistatin levels are closely associated with PCOS and could serve as a promising biomarker for its diagnosis. The specific correlation with hyperandrogenism suggests that kallistatin could be particularly effective for identifying PCOS subtypes characterized by elevated androgen levels. This study supports the potential of kallistatin in improving diagnostic protocols for PCOS, facilitating earlier and more accurate detection, which is crucial for effective management and treatment.
Collapse
Affiliation(s)
- Aslihan Yurtkal
- Faculty of Medicine, Department of Gynecology and Obstetrics, Kafkas University, Kars 36000, Turkey
| | | |
Collapse
|
4
|
Park KH, Lee KN, Cho I, Lee MJ, Choi BY, Jeong DE. Plasma Kallistatin and Progranulin as Predictive Biomarkers of Intraamniotic Inflammation, Microbial Invasion of the Amniotic Cavity, and Composite Neonatal Morbidity/Mortality in Women With Preterm Premature Rupture of Membranes. Am J Reprod Immunol 2024; 92:e13909. [PMID: 39072836 DOI: 10.1111/aji.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
PROBLEM To explore the clinical utility of nine inflammatory immune-, adhesion-, and extracellular matrix-related mediators in the plasma for predicting intraamniotic inflammation and/or microbial invasion of the amniotic cavity (IAI/MIAC) and composite neonatal morbidity and/or mortality (CNMM) in women with preterm premature rupture of membranes (PPROM) when used alone or in combination with conventional blood-, ultrasound-, and clinical-based factors. METHODS OF STUDY This retrospective cohort comprised 173 singleton pregnant women with PPROM (24 + 0 - 33 + 6 weeks), who underwent amniocentesis. Amniotic fluid was cultured for microorganisms and assayed for IL-6 levels. Plasma levels of AFP, CXCL14, E-selectin, Gal-3BP, kallistatin, progranulin, P-selectin, TGFBI, and VDBP were determined by ELISA. Ultrasonographic cervical length (CL) and neutrophil-to-lymphocyte ratio (NLR) were measured. RESULTS Multivariate logistic regression analyses revealed significant associations between (i) decreased plasma kallistatin levels and IAI/MIAC and (ii) decreased plasma progranulin levels and increased CNMM risk after adjusting for baseline variables (e.g., gestational age at sampling [or delivery] and parity). Using stepwise regression analysis, noninvasive prediction models for IAI/MIAC and CNMM risks were developed, which included plasma progranulin levels, NLR, CL, and gestational age at sampling, and provided a good prediction of the corresponding endpoints (area under the curve: 0.79 and 0.87, respectively). CONCLUSIONS Kallistatin and progranulin are potentially valuable plasma biomarkers for predicting IAI/MIAC and CNMM in women with PPROM. Particularly, the combination of these plasma biomarkers with conventional blood-, ultrasound-, and clinical-based factors can significantly support the diagnosis of IAI/MIAC and CNMM.
Collapse
Affiliation(s)
- Kyo Hoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyong-No Lee
- Department of Obstetrics and Gynecology, Chungnam National University Hospital, Daejeon, South Korea
| | - Iseop Cho
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Min Jung Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Bo Young Choi
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Da Eun Jeong
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
5
|
Cho HY, Lee JE, Park KH, Choi BY, Lee MJ, Jeong DE, Shin S. Identification and characterization of plasma proteins associated with intra-amniotic inflammation and/or infection in women with preterm labor. Sci Rep 2024; 14:14654. [PMID: 38918423 PMCID: PMC11199617 DOI: 10.1038/s41598-024-65616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
This study aimed to identify plasma proteins that could serve as potential biomarkers for microbial invasion of the amniotic cavity (MIAC) or intra-amniotic inflammation (IAI) in women with preterm labor (PTL). A retrospective cohort comprised singleton pregnant women with PTL (24-34 weeks) who underwent amniocentesis. Pooled plasma samples were analyzed by label-free liquid chromatography-tandem mass spectrometry for proteome profiling in a nested case-control study (concomitant MIAC/IAI cases vs. non-MIAC/IAI controls [n = 10 per group]). Eight target proteins associated with MIAC/IAI were further verified by immunoassays in a large cohort (n = 230). Shotgun proteomic analysis revealed 133 differentially expressed proteins (fold change > 1.5, P < 0.05) in the plasma of MIAC/IAI cases. Further quantification confirmed that the levels of AFP were higher and those of kallistatin and TGFBI were lower in the plasma of women with MIAC and that the levels of kallistatin and TGFBI were lower in the plasma of women with IAI than in those without these conditions. The area under the curves of plasma AFP, kallistatin, and TGFBI ranged within 0.67-0.81 with respect to each endpoint. In summary, plasma AFP, kallistatin, and TGFBI may represent valuable non-invasive biomarkers for predicting MIAC or IAI in women with PTL.
Collapse
Affiliation(s)
- Hee Young Cho
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Ji Eun Lee
- Chemical & Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Kyo Hoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, 463-707, Korea.
| | - Bo Young Choi
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, 463-707, Korea
| | - Min Jung Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, 463-707, Korea
| | - Da Eun Jeong
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, 463-707, Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul National University Boramae Hospital, Seoul, Korea
| |
Collapse
|
6
|
Janciauskiene S, Lechowicz U, Pelc M, Olejnicka B, Chorostowska-Wynimko J. Diagnostic and therapeutic value of human serpin family proteins. Biomed Pharmacother 2024; 175:116618. [PMID: 38678961 DOI: 10.1016/j.biopha.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SERPIN (serine proteinase inhibitors) is an acronym for the superfamily of structurally similar proteins found in animals, plants, bacteria, viruses, and archaea. Over 1500 SERPINs are known in nature, while only 37 SERPINs are found in humans, which participate in inflammation, coagulation, angiogenesis, cell viability, and other pathophysiological processes. Both qualitative or quantitative deficiencies or overexpression and/or abnormal accumulation of SERPIN can lead to diseases commonly referred to as "serpinopathies". Hence, strategies involving SERPIN supplementation, elimination, or correction are utilized and/or under consideration. In this review, we discuss relationships between certain SERPINs and diseases as well as putative strategies for the clinical explorations of SERPINs.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Magdalena Pelc
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland.
| |
Collapse
|
7
|
Patel MA, Daley M, Van Nynatten LR, Slessarev M, Cepinskas G, Fraser DD. A reduced proteomic signature in critically ill Covid-19 patients determined with plasma antibody micro-array and machine learning. Clin Proteomics 2024; 21:33. [PMID: 38760690 PMCID: PMC11100131 DOI: 10.1186/s12014-024-09488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND COVID-19 is a complex, multi-system disease with varying severity and symptoms. Identifying changes in critically ill COVID-19 patients' proteomes enables a better understanding of markers associated with susceptibility, symptoms, and treatment. We performed plasma antibody microarray and machine learning analyses to identify novel proteins of COVID-19. METHODS A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-matched COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects. Machine learning was used to identify a unique proteome signature in COVID-19 patients. Protein expression was correlated with clinically relevant variables and analyzed for temporal changes over hospitalization days 1, 3, 7, and 10. Expert-curated protein expression information was analyzed with Natural language processing (NLP) to determine organ- and cell-specific expression. RESULTS Machine learning identified a 28-protein model that accurately differentiated COVID-19 patients from ICU non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, F1 = 0.89) and healthy controls (accuracy = 0.89, AUC = 1.00, F1 = 0.88). An optimal nine-protein model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) maintained high classification ability. Specific proteins correlated with hemoglobin, coagulation factors, hypertension, and high-flow nasal cannula intervention (P < 0.01). Time-course analysis of the 28 leading proteins demonstrated no significant temporal changes within the COVID-19 cohort. NLP analysis identified multi-system expression of the key proteins, with the digestive and nervous systems being the leading systems. CONCLUSIONS The plasma proteome of critically ill COVID-19 patients was distinguishable from that of non-COVID-19 sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9 proteins yielded accurate classification models and are expressed in multiple organ systems. The identified COVID-19 proteomic signature helps elucidate COVID-19 pathophysiology and may guide future COVID-19 treatment development.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | | | - Marat Slessarev
- Medicine, Western University, London, ON, N6A 3K7, Canada
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada.
- Children's Health Research Institute, London, ON, N6C 4V3, Canada.
- Pediatrics, Western University, London, ON, N6A 3K7, Canada.
- Clinical Neurological Sciences, Western University, London, ON, N6A 3K7, Canada.
- Physiology & Pharmacology, Western University, London, ON, N6A 3K7, Canada.
- London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
8
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
9
|
Sandforth L, Brachs S, Reinke J, Willmes D, Sancar G, Seigner J, Juarez-Lopez D, Sandforth A, McBride JD, Ma JX, Haufe S, Jordan J, Birkenfeld AL. Role of human Kallistatin in glucose and energy homeostasis in mice. Mol Metab 2024; 82:101905. [PMID: 38431218 PMCID: PMC10937158 DOI: 10.1016/j.molmet.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE Kallistatin (KST), also known as SERPIN A4, is a circulating, broadly acting human plasma protein with pleiotropic properties. Clinical studies in humans revealed reduced KST levels in obesity. The exact role of KST in glucose and energy homeostasis in the setting of insulin resistance and type 2 diabetes is currently unknown. METHODS Kallistatin mRNA expression in human subcutaneous white adipose tissue (sWAT) of 47 people with overweight to obesity of the clinical trial "Comparison of Low Fat and Low Carbohydrate Diets With Respect to Weight Loss and Metabolic Effects (B-SMART)" was measured. Moreover, we studied transgenic mice systemically overexpressing human KST (hKST-TG) and wild type littermate control mice (WT) under normal chow (NCD) and high-fat diet (HFD) conditions. RESULTS In sWAT of people with overweight to obesity, KST mRNA increased after diet-induced weight loss. On NCD, we did not observe differences between hKST-TG and WT mice. Under HFD conditions, body weight, body fat and liver fat content did not differ between genotypes. Yet, during intraperitoneal glucose tolerance tests (ipGTT) insulin excursions and HOMA-IR were lower in hKST-TG (4.42 ± 0.87 AU, WT vs. 2.20 ± 0.27 AU, hKST-TG, p < 0.05). Hyperinsulinemic euglycemic clamp studies with tracer-labeled glucose infusion confirmed improved insulin sensitivity by higher glucose infusion rates in hKST-TG mice (31.5 ± 1.78 mg/kg/min, hKST-TG vs. 18.1 ± 1.67 mg/kg/min, WT, p < 0.05). Improved insulin sensitivity was driven by reduced hepatic insulin resistance (clamp hepatic glucose output: 7.7 ± 1.9 mg/kg/min, hKST-TG vs 12.2 ± 0.8 mg/kg/min, WT, p < 0.05), providing evidence for direct insulin sensitizing effects of KST for the first time. Insulin sensitivity was differentially affected in skeletal muscle and adipose tissue. Mechanistically, we observed reduced Wnt signaling in the liver but not in skeletal muscle, which may explain the effect. CONCLUSIONS KST expression increases after weight loss in sWAT from people with obesity. Furthermore, human KST ameliorates diet-induced hepatic insulin resistance in mice, while differentially affecting skeletal muscle and adipose tissue insulin sensitivity. Thus, KST may be an interesting, yet challenging, therapeutic target for patients with obesity and insulin resistance.
Collapse
Affiliation(s)
- Leontine Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Julia Reinke
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Diana Willmes
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Gencer Sancar
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Judith Seigner
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - David Juarez-Lopez
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Arvid Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeffrey D McBride
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sven Haufe
- Department of Rehabilitation and Sports Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas L Birkenfeld
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany; Department of Diabetes, Life Sciences & Medicine, Cardiovascular Medicine & Life Sciences, King's College London, UK.
| |
Collapse
|
10
|
Fang Z, Shen G, Wang Y, Hong F, Tang X, Zeng Y, Zhang T, Liu H, Li Y, Wang J, Zhang J, Gao A, Qi W, Yang X, Zhou T, Gao G. Elevated Kallistatin promotes the occurrence and progression of non-alcoholic fatty liver disease. Signal Transduct Target Ther 2024; 9:66. [PMID: 38472195 PMCID: PMC10933339 DOI: 10.1038/s41392-024-01781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and the development of non-alcoholic steatohepatitis (NASH) might cause irreversible hepatic damage. Hyperlipidemia (HLP) is the leading risk factor for NAFLD. This study aims to illuminate the causative contributor and potential mechanism of Kallistatin (KAL) mediating HLP to NAFLD. 221 healthy control and 253 HLP subjects, 62 healthy control and 44 NAFLD subjects were enrolled. The plasma KAL was significantly elevated in HLP subjects, especially in hypertriglyceridemia (HTG) subjects, and positively correlated with liver injury. Further, KAL levels of NAFLD patients were significantly up-regulated. KAL transgenic mice induced hepatic steatosis, inflammation, and fibrosis with time and accelerated inflammation development in high-fat diet (HFD) mice. In contrast, KAL knockout ameliorated steatosis and inflammation in high-fructose diet (HFruD) and methionine and choline-deficient (MCD) diet-induced NAFLD rats. Mechanistically, KAL induced hepatic steatosis and NASH by down-regulating adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) by LRP6/Gɑs/PKA/GSK3β pathway through down-regulating peroxisome proliferator-activated receptor γ (PPARγ) and up-regulating kruppel-like factor four (KLF4), respectively. CGI-58 is bound to NF-κB p65 in the cytoplasm, and diminishing CGI-58 facilitated p65 nuclear translocation and TNFα induction. Meanwhile, hepatic CGI-58-overexpress reverses NASH in KAL transgenic mice. Further, free fatty acids up-regulated KAL against thyroid hormone in hepatocytes. Moreover, Fenofibrate, one triglyceride-lowering drug, could reverse hepatic steatosis by down-regulating KAL. These results demonstrate that elevated KAL plays a crucial role in the development of HLP to NAFLD and may be served as a potential preventive and therapeutic target.
Collapse
Affiliation(s)
- Zhenzhen Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gang Shen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yina Wang
- Department of VIP Medical Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fuyan Hong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiumei Tang
- Physical Examination Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yongcheng Zeng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ting Zhang
- Department of Clinical Laboratory, Guangzhou First People's Hospital, Guangzhou, 510080, China
| | - Huanyi Liu
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yanmei Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jinhong Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jing Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Anton Gao
- Department of Health Sciences, College of Health Solutions, Arizona State University, Tempe, USA
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Diabetology, Guangzhou, 510080, China.
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Um YW, Kwon WY, Seong SY, Suh GJ. Protective role of kallistatin in oxygen-glucose deprivation and reoxygenation in human umbilical vein endothelial cells. Clin Exp Emerg Med 2024; 11:43-50. [PMID: 38204159 PMCID: PMC11009709 DOI: 10.15441/ceem.23.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/16/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVE Ischemia-reperfusion (IR) injury is implicated in various clinical diseases. Kallistatin attenuates oxidative stress, and its deficiency has been associated with poor neurological outcomes after cardiac arrest. The present study investigated the antioxidant mechanism through which kallistatin prevents IR injury. METHODS Human umbilical vein endothelial cells (HUVECs) were transfected with small interfering RNA (siRNA) targeting the human kallistatin gene (SERPINA4). Following SERPINA4 knockdown, the level of kallistatin expression was measured. To induce IR injury, HUVECs were exposed to 24 h of oxygen-glucose deprivation and reoxygenation (OGD/R). To evaluate the effect of SERPINA4 knockdown on OGD/R, cell viability and the concentration of kallistatin, endothelial nitric oxide synthase (eNOS) and total NO were measured. RESULTS SERPINA4 siRNA transfection suppressed the expression of kallistatin in HUVECs. Exposure to OGD/R reduced cell viability, and this effect was more pronounced in SERPINA4 knockdown cells compared with controls. SERPINA4 knockdown significantly reduced kallistatin concentration regardless of OGD/R, with a more pronounced effect observed without OGD/R. Furthermore, SERPINA4 knockdown significantly decreased eNOS concentrations induced by OGD/R (P<0.01) but did not significantly affect the change in total NO concentration (P=0.728). CONCLUSION The knockdown of SERPINA4 resulted in increased vulnerability of HUVECs to OGD/R and significantly affected the change in eNOS level induced by OGD/R. These findings suggest that the protective effect of kallistatin against IR injury may contribute to its eNOS-promoting effect.
Collapse
Affiliation(s)
- Young Woo Um
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Disaster Medicine Research Center, Seoul National University Medical Research Center, Seoul, Korea
| | - Seung-Yong Seong
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Disaster Medicine Research Center, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
12
|
Shahbazi B, Mafakher L, Arab SS, Teimoori-Toolabi L. Kallistatin as an inhibitory protein against colorectal cancer cells through binding to LRP6. J Biomol Struct Dyn 2024; 42:918-934. [PMID: 37114408 DOI: 10.1080/07391102.2023.2196704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023]
Abstract
Kallistatin (KL) is a member of the serine proteinase inhibitor (serpin) family regulating oxidative stress, vascular relaxation, inflammation, angiogenesis, cell proliferation, and invasion. The heparin-binding site of Kallistatin has an important role in the interaction with LRP6 leading to the blockade of the Wnt signaling pathway. In this study, we aimed to explore the structural basis of the Kallistatin-LRP6E1E4 complex using in silico approaches and evaluating the anti-proliferative, apoptotic, and cell cycle arrest activities of Kallistatin in colon cancer lines. The molecular docking showed Kallistatin could bind to the LRP6E3E4 much stronger than LRP6E1E2. The Kallistatin-LRP6E1E2 and Kallistatin-LRP6E3E4 complexes were stable during Molecular Dynamics (MD) simulation. The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) showed that the Kallistatin-LRP6E3E4 has a higher binding affinity compared to Kallistatin-LRP6E1E2. Kallistatin induced higher cytotoxicity and apoptosis in HCT116 compared to the SW480 cell line. This protein-induced cell-cycle arrest in both cell lines at the G1 phase. The B-catenin, cyclin D1, and c-Myc expression levels were decreased in response to treatment with Kallistatin in both cell lines while the LRP6 expression level was decreased in the HCT116 cell line. Kallistatin has a greater effect on the HCT116 cell line compared to the SW480 cell line. Kallistatin can be used as a cytotoxic and apoptotic-inducing agent in colorectal cancer cell lines.
Collapse
Affiliation(s)
- Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Mafakher
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Zeng N, Jian Z, Xu J, Zheng S, Fan Y, Xiao F. DLK1 overexpression improves sepsis-induced cardiac dysfunction and fibrosis in mice through the TGF-β1/Smad3 signaling pathway and MMPs. J Mol Histol 2023; 54:655-664. [PMID: 37759133 DOI: 10.1007/s10735-023-10161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Sepsis is a serious inflammatory disease caused by bacterial infection. Cardiovascular dysfunction and remodeling are serious complications of sepsis, which can significantly affect sepsis patients' mortality. Delta-like homologue 1 (DLK1) has been reported could inhibit cardiac myofibroblast differentiation. However, the function of DLK1 in sepsis is unknown. In the present study, the DLK1 expression was first identified based on the online dataset GSE79962 analysis and cecal ligation and puncture (CLP)-induced sepsis mouse model. DLK1 expression was significantly reduced in septic heart tissues. In septic mouse heart, CLP operation decreased the fractional shortening (EF) (%) and ejection fraction (FS) (%) and caused significant edema, disordered myofilament arrangement, and degradation and necrosis in myocardial cells; CLP operation also increased collagen deposition and elevated the protein levels of fibrotic markers (α-SMA and F-actin). DLK1 overexpression in septic mice could effectively increase EF (%) and FS (%), attenuate CLP-caused ECM degradation and deposition and partially inhibit the CLP-induced TGF-β1/Smad signaling activation. In conclusion, DLK1 expression was poorly expressed in the CLP-induced septic mouse heart. DLK1 overexpression partially alleviated sepsis-induced cardiac dysfunction and fibrosis, with the involvement of the TGF-β1/Smad3 signaling pathway and MMPs.
Collapse
Affiliation(s)
- Ni Zeng
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zaijin Jian
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junmei Xu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Sijia Zheng
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yongmei Fan
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Feng Xiao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
14
|
Farrugia BL, Melrose J. The Glycosaminoglycan Side Chains and Modular Core Proteins of Heparan Sulphate Proteoglycans and the Varied Ways They Provide Tissue Protection by Regulating Physiological Processes and Cellular Behaviour. Int J Mol Sci 2023; 24:14101. [PMID: 37762403 PMCID: PMC10531531 DOI: 10.3390/ijms241814101] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review examines the roles of HS-proteoglycans (HS-PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS-PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS-PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo-Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin-neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS-PGs also promote or inhibit tumor development. Thus, HS-PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS-PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes-Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS-PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan.
Collapse
Affiliation(s)
- Brooke L. Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School (Northern), University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
15
|
Park KH, Lee KN, Oh E, Im EM. Inflammatory biomarkers in the cervicovaginal fluid to identify histologic chorioamnionitis and funisitis in women with preterm labor. Cytokine 2023; 169:156308. [PMID: 37536223 DOI: 10.1016/j.cyto.2023.156308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE We investigated the association between altered levels of inflammatory proteins in the cervicovaginal fluid (CVF) and acute histologic chorioamnionitis (HCA) and funisitis in women with preterm labor (PTL). METHODS In this study, a total of 134 consecutive singleton pregnant women with PTL (at 23+0-34+0 weeks) who delivered preterm (at < 37 weeks) and from whom CVF samples were collected at admission were retrospectively enrolled. The CVF levels of haptoglobin, interleukin-6/8, kallistatin, lipocalin-2, matrix metalloproteinase (MMP)-8, resistin, S100 calcium-binding protein A8, and serpin A1 were determined using enzyme-linked immunosorbent assay. The placentas were histologically analyzed after delivery. RESULTS Multiple logistic regression analyses showed significant associations between elevated CVF interleukin-8 and resistin levels and acute HCA after adjusting for baseline covariates (e.g., gestational age at sampling). CVF haptoglobin, interleukin-6/8, kallistatin, MMP-8, and resistin levels were significantly higher in women with funisitis than in those without, whereas the baseline covariates were similar between the two groups (P > 0.1). The area under the receiver operating characteristic curves of the aforementioned biomarkers ranged from 0.61 to 0.77 regarding each outcome. Notably, HCA risk significantly increased with increasing CVF levels of interleukin-8 and resistin (P for trend < 0.05). CONCLUSIONS Haptoglobin, interleukin-6/8, kallistatin, MMP-8, and resistin were identified as potential inflammatory CVF biomarkers predictive of acute HCA and funisitis in women with PTL. Moreover, the risk severity of acute HCA may be associated with the degree of the inflammatory response in the CVF (particularly based on interleukin-8 levels).
Collapse
Affiliation(s)
- Kyo Hoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Kyong-No Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eunji Oh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Mi Im
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
16
|
Shen G, Li Y, Zeng Y, Hong F, Zhang J, Wang Y, Zhang C, Xiang W, Wang J, Fang Z, Qi W, Yang X, Gao G, Zhou T. Kallistatin Deficiency Induces the Oxidative Stress-Related Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells: A Novel Protagonist in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2023; 64:15. [PMID: 37682567 PMCID: PMC10500364 DOI: 10.1167/iovs.64.12.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Purpose Retinal pigment epithelium (RPE) dysfunction induced by oxidative stress-related epithelial-mesenchymal transition (EMT) of RPE is the primary underlying mechanism of age-related macular degeneration (AMD). Kallistatin (KAL) is a secreted protein with an antioxidative stress effect. However, the relationship between KAL and EMT in RPE has not been determined. Therefore we aimed to explore the impact and mechanism of KAL in oxidative stress-induced EMT of RPE. Methods Sodium iodate (SI) was injected intraperitoneally to construct the AMD rat model and investigate the changes in RPE morphology and KAL expression. KAL knockout rats and KAL transgenic mice were used to explain the effects of KAL on EMT and oxidative stress. In addition, Snail overexpressed adenovirus and si-RNA transfected ARPE19 cells to verify the involvement of Snail in mediating KAL-suppressed EMT of RPE. Results AMD rats induced by SI expressed less KAL in the retina, and KAL knockout rats showed RPE dysfunction spontaneously where EMT and reactive oxygen species (ROS) production increased in RPE. In contrast, KAL overexpression attenuated EMT and ROS levels in RPE, even in TGF-β treatment. Mechanistically, Snail reversed the beneficial effect of KAL on EMT and ROS reduction. Moreover, KAL ameliorated SI-induced AMD-like pathological changes. Conclusions Our findings demonstrated that KAL inhibits oxidative stress-induced EMT by downregulating the transcription factor Snail. Herein, KAL knockout rats may be an appropriate animal model for observing spontaneous RPE dysfunction for AMD-like retinopathy, and KAL may represent a novel therapeutic target for treating dry AMD.
Collapse
Affiliation(s)
- Gang Shen
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanmei Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yongcheng Zeng
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Fuyan Hong
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yan Wang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chengwei Zhang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wei Xiang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jinhong Wang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhenzhen Fang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weiwei Qi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-Sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- China Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
17
|
Park KH, Lee KN, Im EM, Cho I, Oh E, Choi BY. Degree of expression of inflammatory proteins in the amniotic cavity, but not prior obstetric history, is associated with the risk severity for spontaneous preterm birth after rescue cerclage for cervical insufficiency. Am J Reprod Immunol 2023; 90:e13756. [PMID: 37641380 DOI: 10.1111/aji.13756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/21/2023] [Accepted: 07/15/2023] [Indexed: 08/31/2023] Open
Abstract
PROBLEM To examine whether the severity of spontaneous preterm birth (SPTB) risk after rescue cerclage for acute cervical insufficiency (CI) is linked to the degree of inflammatory response in the amniotic fluid (AF) based on the concentrations of various inflammatory proteins and prior obstetric history. METHOD OF STUDY We conducted a retrospective cohort study of 65 singleton pregnant women (17-25 weeks) who underwent rescue cerclage following the diagnosis of acute CI and were subjected to amniocentesis. EN-RAGE, IL-6, IL-8, and IP-10 as inflammatory mediators and kallistatin, MMP-2/8, and uPA as extracellular matrix remodeling-related molecules were assayed in the AF using ELISA. The level of each inflammatory mediator was divided into quartiles. RESULTS Intra-amniotic inflammation (IAI; AF IL-6 level ≥2.6 ng/mL) was independently associated with SPTB after cerclage placement. The odds of SPTB at < 32 weeks, even after adjusting for confounders, increased significantly with each increasing quartile of baseline AF levels for each inflammatory mediator (p for trend < .05). Kaplan-Meier survival curves showed that the cerclage-to-delivery intervals were significantly shorter as the quartiles of AF EN-RAGE and MMP-8 increased (log-rank test, p < .01 each). Neither previous term birth nor prior PTB was associated with SPTB risk or cerclage-to-delivery interval after rescue cerclage. Multiparous women who experience CI after term birth showed significantly elevated levels of MMP-8 and reduced kallistatin levels in the AF. CONCLUSION In patients with CI, SPTB risk (especially risk severity) after rescue cerclage is associated with the degree of the inflammatory response in AF as well as the presence of IAI but not with prior obstetric history.
Collapse
Affiliation(s)
- Kyo Hoon Park
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyong-No Lee
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Eun Mi Im
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Iseop Cho
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Eunji Oh
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Bo Young Choi
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
18
|
Ngo D, Pratte KA, Flexeder C, Petersen H, Dang H, Ma Y, Keyes MJ, Gao Y, Deng S, Peterson BD, Farrell LA, Bhambhani VM, Palacios C, Quadir J, Gillenwater L, Xu H, Emson C, Gieger C, Suhre K, Graumann J, Jain D, Conomos MP, Tracy RP, Guo X, Liu Y, Johnson WC, Cornell E, Durda P, Taylor KD, Papanicolaou GJ, Rich SS, Rotter JI, Rennard SI, Curtis JL, Woodruff PG, Comellas AP, Silverman EK, Crapo JD, Larson MG, Vasan RS, Wang TJ, Correa A, Sims M, Wilson JG, Gerszten RE, O’Connor GT, Barr RG, Couper D, Dupuis J, Manichaikul A, O’Neal WK, Tesfaigzi Y, Schulz H, Bowler RP. Systemic Markers of Lung Function and Forced Expiratory Volume in 1 Second Decline across Diverse Cohorts. Ann Am Thorac Soc 2023; 20:1124-1135. [PMID: 37351609 PMCID: PMC10405603 DOI: 10.1513/annalsats.202210-857oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by airway obstruction and accelerated lung function decline. Our understanding of systemic protein biomarkers associated with COPD remains incomplete. Objectives: To determine what proteins and pathways are associated with impaired pulmonary function in a diverse population. Methods: We studied 6,722 participants across six cohort studies with both aptamer-based proteomic and spirometry data (4,566 predominantly White participants in a discovery analysis and 2,156 African American cohort participants in a validation). In linear regression models, we examined protein associations with baseline forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC). In linear mixed effects models, we investigated the associations of baseline protein levels with rate of FEV1 decline (ml/yr) in 2,777 participants with up to 7 years of follow-up spirometry. Results: We identified 254 proteins associated with FEV1 in our discovery analyses, with 80 proteins validated in the Jackson Heart Study. Novel validated protein associations include kallistatin serine protease inhibitor, growth differentiation factor 2, and tumor necrosis factor-like weak inducer of apoptosis (discovery β = 0.0561, Q = 4.05 × 10-10; β = 0.0421, Q = 1.12 × 10-3; and β = 0.0358, Q = 1.67 × 10-3, respectively). In longitudinal analyses within cohorts with follow-up spirometry, we identified 15 proteins associated with FEV1 decline (Q < 0.05), including elafin leukocyte elastase inhibitor and mucin-associated TFF2 (trefoil factor 2; β = -4.3 ml/yr, Q = 0.049; β = -6.1 ml/yr, Q = 0.032, respectively). Pathways and processes highlighted by our study include aberrant extracellular matrix remodeling, enhanced innate immune response, dysregulation of angiogenesis, and coagulation. Conclusions: In this study, we identify and validate novel biomarkers and pathways associated with lung function traits in a racially diverse population. In addition, we identify novel protein markers associated with FEV1 decline. Several protein findings are supported by previously reported genetic signals, highlighting the plausibility of certain biologic pathways. These novel proteins might represent markers for risk stratification, as well as novel molecular targets for treatment of COPD.
Collapse
Affiliation(s)
- Debby Ngo
- Cardiovascular Research Institute
- Division of Pulmonary, Critical Care, and Sleep Medicine, and
| | | | - Claudia Flexeder
- Institute of Epidemiology and
- Comprehensive Pneumology Center Munich (CPC-M) as member of the German Center for Lung Research (DZL), Munich, Germany
- Institute and Clinic for Occupational, Social, and Environmental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hans Petersen
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Hong Dang
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yanlin Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | - Yan Gao
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
- Institute and Clinic for Occupational, Social, and Environmental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Claire Emson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Christian Gieger
- Institute of Epidemiology and
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Doha, Qatar
| | | | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Matthew P. Conomos
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - Yongmei Liu
- Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Elaine Cornell
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - George J. Papanicolaou
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA (University of California, Los Angeles) Medical Center, Torrance, California
| | - Steven I. Rennard
- Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Prescott G. Woodruff
- Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | | | | | - Martin G. Larson
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
| | - Ramachandran S. Vasan
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Division of Preventive Medicine and
- Division of Cardiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Thomas J. Wang
- Department of Medicine, UT (University of Texas) Southwestern Medical Center, Dallas, Texas
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, and
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, and
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - James G. Wilson
- Cardiovascular Research Institute
- Jackson Heart Study, Department of Medicine, and
| | - Robert E. Gerszten
- Cardiovascular Research Institute
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - George T. O’Connor
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts
- Pulmonary Center, Department of Medicine, Boston University, Boston, Massachusetts
| | - R. Graham Barr
- Department of Medicine and
- Department of Epidemiology, Columbia University, New York, New York
| | - David Couper
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Wanda K. O’Neal
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Holger Schulz
- Institute of Epidemiology and
- Comprehensive Pneumology Center Munich (CPC-M) as member of the German Center for Lung Research (DZL), Munich, Germany
| | | |
Collapse
|
19
|
Lee KN, Park KH, Ahn K, Im EM, Oh E, Cho I. Extracellular matrix-related and serine protease proteins in the amniotic fluid of women with early preterm labor: Association with spontaneous preterm birth, intra-amniotic inflammation, and microbial invasion of the amniotic cavity. Am J Reprod Immunol 2023; 90:e13736. [PMID: 37382175 DOI: 10.1111/aji.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/03/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
PROBLEM We aimed to determine whether altered levels of various extracellular matrix (ECM)-related and serine protease proteins in the amniotic fluid (AF) are associated with imminent spontaneous preterm birth (SPTB; ≤7 days) and intra-amniotic inflammation and/or microbial invasion of the amniotic cavity (IAI/MIAC) in women with early preterm labor (PTL). METHOD OF STUDY This retrospective cohort study included 252 women with singleton pregnancies undergoing transabdominal amniocentesis who demonstrated PTL (24-31 weeks). The AF was cultured for microorganism detection to characterize MIAC. IL-6 concentrations were determined in the AF samples to identify IAI (≥2.6 ng/mL). The following mediators were measured in the AF samples using ELISA: kallistatin, lumican, MMP-2, SPARC, TGFBI, and uPA. RESULTS Kallistatin, MMP-2, TGFBI, and uPA levels were significantly higher and SPARC and lumican levels were significantly lower in the AF of women who spontaneously delivered within 7 days than in the AF of those who delivered after 7 days; the levels of the first five mediators were independent of baseline clinical variables. In the multivariate analysis, elevated levels of kallistatin, MMP-2, TGFBI, and uPA and low levels of lumican and SPARC in the AF were significantly associated with IAI/MIAC and MIAC, even after adjusting for the gestational age at sampling. The areas under the curves of the aforementioned biomarkers ranged from 0.58 to 0.87 for the diagnoses of each of the corresponding endpoints. CONCLUSION ECM-related (SPARC, TGFBI, lumican, and MMP-2) and serine protease (kallistatin and uPA) proteins in the AF are involved in preterm parturition and regulation of intra-amniotic inflammatory/infectious responses in PTL.
Collapse
Affiliation(s)
- Kyong-No Lee
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyo Hoon Park
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kwanghee Ahn
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Eun Mi Im
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Eunji Oh
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Iseop Cho
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
20
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
21
|
Li Z, Meng X, Chen Y, Xu X, Guo J. N 6-methyladenosine (m 6A) writer METTL3 accelerates the apoptosis of vascular endothelial cells in high glucose. Heliyon 2023; 9:e13721. [PMID: 36873555 PMCID: PMC9976308 DOI: 10.1016/j.heliyon.2023.e13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Recent studies have shown that N6-methyladenosine (m6A) methylation, one of the most prevalent epigenetic modifications, is involved in diabetes mellitus. However, whether m6A regulates diabetic vascular endothelium injury is still elusive. Present research aimed to investigate the regulation and mechanism of m6A on vascular endothelium injury. Upregulation of METTL3 was observed in the high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs), following with the upregulation of m6A methylation level. Functionally, METTL3 silencing repressed the apoptosis and recovered the proliferation of HUVECs disposed by HG. Moreover, HG exposure upregulated the expression of suppressor of cytokine signaling3 (SOCS3). Mechanistically, METTL3 targeted the m6A site on SOCS3 mRNA, which positively regulated the mRNA stability of SOCS3. In conclusion, METTL3 silencing attenuated the HG-induced vascular endothelium cells injury via promoting SOCS3 stability. In conclusion, this research expands the understanding of m6A on vasculopathy in diabetes mellitus and provides a potential strategy for the protection of vascular endothelial injury.
Collapse
Affiliation(s)
- Zhenjin Li
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xuying Meng
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yu Chen
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiaona Xu
- Department of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianchao Guo
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|
22
|
Lee KN, Cho I, Im EM, Oh E, Park KH. Plasma IGFBP-1, Fas, kallistatin, and P-selectin as predictive biomarkers of histologic chorioamnionitis and associated intra-amniotic infection in women with preterm labor. Am J Reprod Immunol 2023; 89:e13645. [PMID: 36318832 DOI: 10.1111/aji.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022] Open
Abstract
PROBLEM To determine whether altered levels of 13 plasma biomarkers, alone or in combination, could be independently associated with histologic chorioamnionitis (HCA) and microbial-associated HCA (defined as the presence of HCA along with microbial invasion) in women with preterm labor (PTL). METHODS OF STUDY This was a retrospective cohort study involving 77 singleton pregnant women with PTL (23-34 gestational weeks) who delivered within 96 h of plasma and amniotic fluid (AF) sampling. DKK-3, E-selectin, Fas, haptoglobin, IGFBP-1, kallistatin, MMP-2, MMP-8, pentraxin 3, progranulin, P-selectin, SAA4, and TGFBI levels were assayed in plasma samples by ELISA. AF obtained via amniocentesis was used for microorganism identification. RESULTS Multiple logistic regression analyses revealed significant associations between low plasma IGFBP-1 levels and acute HCA, and between low plasma Fas and kallistatin levels, and elevated plasma P-selectin levels and microbial-associated HCA (all p < .05), after adjusting for gestational age. Using a stepwise regression procedure, a multi-biomarker panel for microbial-associated HCA was developed, which included plasma MMP-2, kallistatin, and P-selectin levels (area under the curve [AUC], .867). The AUC for this three-marker panel was significantly or borderline significantly greater than that of any single variable included in the panel. However, a predictive model for acute HCA could not be developed because only one variable (MMP-2) was selected. CONCLUSIONS These findings demonstrate that IGFBP-1, Fas, kallistatin, and P-selectin are associated with acute HCA and microbial-associated HCA in women with PTL. Their combined use can significantly improve the diagnostic ability for the detection of microbial-associated HCA.
Collapse
Affiliation(s)
- Kyong-No Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Iseop Cho
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Mi Im
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eunji Oh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyo Hoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
23
|
Nogueira VC, de Oliveira VDN, Guedes MIF, Smith BJ, da C Freire JE, Gonçalves NGG, de O M Moreira AC, de A Moreira R. UPLC-HDMS E to discover serum biomarkers in adults with type 1 diabetes. Int J Biol Macromol 2022; 221:1161-1170. [PMID: 36115450 DOI: 10.1016/j.ijbiomac.2022.09.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
Abstract
Type 1 diabetes (T1D) is a complex disease with metabolic and functional changes that can alter an individual's proteome. An LC-MS/MS analytical method, in an HDMSE system, was used to identify differentially expressed proteins in the high abundance protein-depleted serum of T1D patients and healthy controls. Samples were processed in Progenesis QI for Proteomics software. A functional enrichment of the proteins was performed with Gene Ontology and ToppGene, and the interactions were visualized by STRING 11.5. As a result, 139 proteins were identified, 14 of which were downregulated in the serum of patients with T1D compared to controls. Most of the differentially expressed proteins were shown to be involved with the immune system, inflammation, and growth hormone stimulus response, and were associated with the progression of T1D. Differential protein expression data showed for the first-time changes in CPN2 expression levels in the serum of patients with T1D. Our findings indicate that these proteins are targets of interest for future investigations and for validation of protein biomarkers in T1D.
Collapse
Affiliation(s)
- Valeria C Nogueira
- Department of Education, Federal Institute of Ceará (IFCE), Ubajara, Ceará, Brazil.
| | - Valzimeire do N de Oliveira
- Laboratory of Biotechnology and Molecular Biology, State University of Ceará (UECE), Fortaleza, Ceara, Brazil
| | - Maria I F Guedes
- Laboratory of Biotechnology and Molecular Biology, State University of Ceará (UECE), Fortaleza, Ceara, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José E da C Freire
- Department of Clinical Medicine, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | | | - Ana C de O M Moreira
- Experimental Biology Center, University of Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| | - Renato de A Moreira
- Experimental Biology Center, University of Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| |
Collapse
|
24
|
Serum Metabolomics and Proteomics to Study the Antihypertensive Effect of Protein Extracts from Tenebrio molitor. Nutrients 2022; 14:nu14163288. [PMID: 36014793 PMCID: PMC9413627 DOI: 10.3390/nu14163288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is the leading risk factor for premature death worldwide and significantly contributes to the development of all major cardiovascular disease events. The management of high blood pressure includes lifestyle changes and treatment with antihypertensive drugs. Recently, it was demonstrated that a diet supplemented with Tenebrio molitor (TM) extracts is useful in the management of numerous pathologies, including hypertension. This study is aimed at unveiling the underlying mechanism and the molecular targets of intervention of TM dietary supplementation in hypertension treatment by means of proteomics and metabolomics techniques based on liquid chromatography coupled with high-resolution mass spectrometry. We demonstrate that serum proteome and metabolome of spontaneously hypertensive rats are severely altered with respect to their normotensive counterparts. Additionally, our results reveal that a diet enriched with TM extracts restores the expression of 15 metabolites and 17 proteins mainly involved in biological pathways associated with blood pressure maintenance, such as the renin–angiotensin and kallikrein–kinin systems, serin protease inhibitors, reactive oxygen scavenging, and lipid peroxidation. This study provides novel insights into the molecular pathways that may underlie the beneficial effects of TM, thus corroborating that TM could be proposed as a helpful functional food supplement in the treatment of hypertension.
Collapse
|
25
|
Cho I, Lee KN, Joo E, Kim YM, Kim TE, Park KH. Plasma E-selectin and kallistatin as predictive markers of histologic chorioamnionitis in women with preterm premature rupture of membranes. Am J Reprod Immunol 2022; 88:e13584. [PMID: 35772987 DOI: 10.1111/aji.13584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022] Open
Abstract
PROBLEM We aimed to assess the predictive potential of 12 plasma biomarkers to predict acute histologic chorioamnionitis (HCA) in women with preterm premature rupture of membranes (PPROM) and to develop multi-biomarker panels based on these biomarkers in combination with widely used conventional laboratory markers. METHOD OF STUDY This was a retrospective cohort study involving 81 singleton pregnant women (24-34 weeks of gestation) who delivered within 96 h of blood sampling. White blood cell (WBC) count, differential counts, and C-reactive protein (CRP) levels were measured at admission. The levels of DKK-3, Fas, haptoglobin, IGFBP-2, kallistatin, MIP-1α, MMP-2, MMP-8, pentraxin 3, progranulin, E-selectin, and P-selectin were evaluated by ELISA using stored plasma samples. The primary outcome measure was acute HCA. RESULTS Multivariate analyses showed that low plasma E-selectin and kallistatin levels were independently associated with HCA occurrence after adjusting for gestational age. Using a stepwise regression analysis, a multi-biomarker panel comprising plasma E-selectin, serum CRP, and WBC was developed, which provided a good prediction of acute HCA in women with PPROM (area under the curve [AUC], 0.899), with a significantly higher AUC than that of any single variable included in the panel (P<0.05). The plasma levels of DKK-3, Fas, haptoglobin, IGFBP-2, MIP-1α, MMP-2, MMP-8, pentraxin 3, and P-selectin were not significantly associated with HCA occurrence. CONCLUSIONS This study identified E-selectin and kallistatin as potential plasma biomarkers associated with acute HCA in women with PPROM. Their combined analysis with serum CRP and WBC counts significantly improved acute HCA diagnosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Iseop Cho
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyong-No Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eunwook Joo
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yu Mi Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Tae Eun Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyo Hoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
26
|
El-Hefnawy SM, Kasemy ZA, Eid HA, Elmadbouh I, Mostafa RG, Omar TA, Kasem HE, Ghonaim EM, Ghonaim MM, Saleh AA. Potential impact of serpin peptidase inhibitor clade (A) member 4 SERPINA4 (rs2093266) and SERPINA5 (rs1955656) genetic variants on COVID-19 induced acute kidney injury. Meta Gene 2022:101023. [PMID: 35291551 PMCID: PMC8915573 DOI: 10.1016/j.mgene.2022.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background SARS-CoV-2 has a number of targets, including the kidneys. Acute Kidney Injury (AKI) might develop in up to a quarter of SARS-CoV-2 patients. In the clinical environment, AKI is linked to a high rate of death and leads to the progression of AKI to chronic renal disease. Aim We aimed to investigate rs2093266 and rs1955656 polymorphisms in SERPINA4 and SERPINA5 genes, respectively, as risk factors for COVID-19 induced AKI. Subjects and methods A case-control study included 227 participants who were divided into three groups: 81 healthy volunteers who served as controls, 76 COVID-19 patients without AKI and 70 COVID -19 patients with AKI. The TaqMan assay was used for genotyping the SERPINA4 (rs2093266) and SERPINA5 (rs1955656) polymorphisms by real-time PCR technique. Results Lymphocytes and eGFR showed a significantly decreasing trend across the three studied groups, while CRP, d-Dimer, ferritin, creatinine, KIM-1and NGAL showed a significantly increasing trend across the three studied groups (P < 0.001). Rs2093266 (AG and AA) genotypes were significant risk factors among non-AKI and AKI groups in comparison to controls. Rs1955656 (AG and AA) were significant risk factors among the AKI group, while AA was the only significant risk factor among the non-AKI group. Recessive, dominant, co-dominant, and over-dominant models for genotype combinations were demonstrated. The GG v AA, GG + AG v AA, and GG v AG + AA models of the rs2093266 were all significant predictors of AKI, whilst only the GG v AA model of the rs1955656 SNP was a significant predictor. The logistic regression model was statistically significant, χ2 = 56.48, p < 0.001. AKI was associated with progressed age (OR = 0.95, 95% CI: 0.91–0.98, p = 0.006), suffering from chronic diseases (OR = 3.25, 95% CI: 1.31–8.01, p = 0.010), increased BMI (OR = 0.89, 95% CI: 0.81–0.98, p = 0.018), immunosuppressive (OR = 4.61, 95% CI: 1.24–17.16, p = 0.022) and rs2093266 (AG + AA) (OR = 3.0, 95% CI: 1.11–8.10, p = 0.030). Conclusion Single nucleotide polymorphisms (rs2093266) at SERPINA4 gene and (rs1955656) at SERPINA5 gene were strongly linked to the development of AKI in COVID-19 patients.
Collapse
|
27
|
Hu L, Ding M, He W. Emerging Therapeutic Strategies for Attenuating Tubular EMT and Kidney Fibrosis by Targeting Wnt/β-Catenin Signaling. Front Pharmacol 2022; 12:830340. [PMID: 35082683 PMCID: PMC8784548 DOI: 10.3389/fphar.2021.830340] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a process in which differentiated epithelial cells undergo phenotypic transformation into myofibroblasts capable of producing extracellular matrix, and is generally regarded as an integral part of fibrogenesis after tissue injury. Although there is evidence that the complete EMT of tubular epithelial cells (TECs) is not a major contributor to interstitial myofibroblasts in kidney fibrosis, the partial EMT, a status that damaged TECs remain inside tubules, and co-express both epithelial and mesenchymal markers, has been demonstrated to be a crucial stage for intensifying fibrogenesis in the interstitium. The process of tubular EMT is governed by multiple intracellular pathways, among which Wnt/β-catenin signaling is considered to be essential mainly because it controls the transcriptome associated with EMT, making it a potential therapeutic target against kidney fibrosis. A growing body of data suggest that reducing the hyperactivity of Wnt/β-catenin by natural compounds, specific inhibitors, or manipulation of genes expression attenuates tubular EMT, and interstitial fibrogenesis in the TECs cultured under profibrotic environments and in animal models of kidney fibrosis. These emerging therapeutic strategies in basic researches may provide beneficial ideas for clinical prevention and treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lichao Hu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mengyuan Ding
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Relationship between Serum Kallistatin and Afamin and Anthropometric Factors Associated with Obesity and of Being Overweight in Patients after Myocardial Infarction and without Myocardial Infarction. J Clin Med 2021; 10:jcm10245792. [PMID: 34945088 PMCID: PMC8708718 DOI: 10.3390/jcm10245792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Extensive clinical and epidemiological evidence has linked obesity to a broad spectrum of cardiovascular disease (CVD), including coronary disease, heart failure, hypertension, cerebrovascular disease, atrial fibrillation, ventricular arrhythmias, and sudden death. In addition, increasing knowledge of regulatory peptides has allowed an assessment of their role in various non-communicable diseases, including CVD. The study assessed the concentration of kallistatin and afamin in the blood serum of patients after a myocardial infarction and without a cardiovascular event, and determined the relationship between the concentration of kallistatin and afamin and the anthropometric indicators of being overweight and of obesity in these groups. Serum kallistatin and afamin were quantified by ELISA tests in a cross-sectional study of 160 patients who were divided into two groups: study group (SG) (n = 80) and another with no cardiovascular event (CG) (n = 80). Serum kallistatin concentration was significantly higher in the SG (p < 0.001), while the level of afamin was significantly lower in this group (p < 0.001). In addition, a positive correlation was observed in the SG between the afamin concentration and the waist to hip ratio (WHR), lipid accumulation product (LAP) and the triglyceride glucose index (TyG index). In the CG, the concentration of kallistatin positively correlated with the LAP and TyG index, while the concentration of afamin positively correlated with all the examined parameters: body mass index (BMI), waist circumference (WC), hip circumference (HC), waist to hip ratio (WHtR), visceral adiposity index (VAI), LAP and TyG index. Serum kallistatin and afamin concentrations are associated with the anthropometric parameters related to being overweight and to obesity, especially to those describing the visceral distribution of adipose tissue and metabolic disorders related to excessive fatness.
Collapse
|
29
|
Sullivan KD, Galbraith MD, Kinning KT, Bartsch KW, Levinsky NC, Araya P, Smith KP, Granrath RE, Shaw JR, Baxter RM, Jordan KR, Russell SA, Dzieciatkowska ME, Reisz JA, Gamboni F, Cendali FI, Ghosh T, Monte AA, Bennett TD, Miller MG, Hsieh EWY, D'Alessandro A, Hansen KC, Espinosa JM. The COVIDome Explorer researcher portal. Cell Rep 2021; 36:109527. [PMID: 34348131 PMCID: PMC8316015 DOI: 10.1016/j.celrep.2021.109527] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 pathology involves dysregulation of diverse molecular, cellular, and physiological processes. To expedite integrated and collaborative COVID-19 research, we completed multi-omics analysis of hospitalized COVID-19 patients, including matched analysis of the whole-blood transcriptome, plasma proteomics with two complementary platforms, cytokine profiling, plasma and red blood cell metabolomics, deep immune cell phenotyping by mass cytometry, and clinical data annotation. We refer to this multidimensional dataset as the COVIDome. We then created the COVIDome Explorer, an online researcher portal where the data can be analyzed and visualized in real time. We illustrate herein the use of the COVIDome dataset through a multi-omics analysis of biosignatures associated with C-reactive protein (CRP), an established marker of poor prognosis in COVID-19, revealing associations between CRP levels and damage-associated molecular patterns, depletion of protective serpins, and mitochondrial metabolism dysregulation. We expect that the COVIDome Explorer will rapidly accelerate data sharing, hypothesis testing, and discoveries worldwide.
Collapse
Affiliation(s)
- Kelly Daniel Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew Dominic Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kohl Thomas Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kyle William Bartsch
- Information Services, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nik Caldwell Levinsky
- Information Services, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Keith Patrick Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ross Erich Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jessica Rose Shaw
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ryan Michael Baxter
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kimberly Rae Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Seth Aaron Russell
- Data Science to Patient Value, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Monika Ewa Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie Ann Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Francesca Isabelle Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tusharkanti Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Andrew Albert Monte
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tellen Demeke Bennett
- Department of Pediatrics, Sections of Informatics and Data Science and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael George Miller
- Information Services, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elena Wen-Yuan Hsieh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, Division of Allergy/Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kirk Charles Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin Maximiliano Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
30
|
Suvarna K, Biswas D, Pai MGJ, Acharjee A, Bankar R, Palanivel V, Salkar A, Verma A, Mukherjee A, Choudhury M, Ghantasala S, Ghosh S, Singh A, Banerjee A, Badaya A, Bihani S, Loya G, Mantri K, Burli A, Roy J, Srivastava A, Agrawal S, Shrivastav O, Shastri J, Srivastava S. Proteomics and Machine Learning Approaches Reveal a Set of Prognostic Markers for COVID-19 Severity With Drug Repurposing Potential. Front Physiol 2021; 12:652799. [PMID: 33995121 PMCID: PMC8120435 DOI: 10.3389/fphys.2021.652799] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
The pestilential pathogen SARS-CoV-2 has led to a seemingly ceaseless pandemic of COVID-19. The healthcare sector is under a tremendous burden, thus necessitating the prognosis of COVID-19 severity. This in-depth study of plasma proteome alteration provides insights into the host physiological response towards the infection and also reveals the potential prognostic markers of the disease. Using label-free quantitative proteomics, we performed deep plasma proteome analysis in a cohort of 71 patients (20 COVID-19 negative, 18 COVID-19 non-severe, and 33 severe) to understand the disease dynamics. Of the 1200 proteins detected in the patient plasma, 38 proteins were identified to be differentially expressed between non-severe and severe groups. The altered plasma proteome revealed significant dysregulation in the pathways related to peptidase activity, regulated exocytosis, blood coagulation, complement activation, leukocyte activation involved in immune response, and response to glucocorticoid biological processes in severe cases of SARS-CoV-2 infection. Furthermore, we employed supervised machine learning (ML) approaches using a linear support vector machine model to identify the classifiers of patients with non-severe and severe COVID-19. The model used a selected panel of 20 proteins and classified the samples based on the severity with a classification accuracy of 0.84. Putative biomarkers such as angiotensinogen and SERPING1 and ML-derived classifiers including the apolipoprotein B, SERPINA3, and fibrinogen gamma chain were validated by targeted mass spectrometry-based multiple reaction monitoring (MRM) assays. We also employed an in silico screening approach against the identified target proteins for the therapeutic management of COVID-19. We shortlisted two FDA-approved drugs, namely, selinexor and ponatinib, which showed the potential of being repurposed for COVID-19 therapeutics. Overall, this is the first most comprehensive plasma proteome investigation of COVID-19 patients from the Indian population, and provides a set of potential biomarkers for the disease severity progression and targets for therapeutic interventions.
Collapse
Affiliation(s)
- Kruthi Suvarna
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Medha Gayathri J. Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Arup Acharjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Renuka Bankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Viswanthram Palanivel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Akanksha Salkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ayushi Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Amrita Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Manisha Choudhury
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Saicharan Ghantasala
- Centre for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai, India
| | - Susmita Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Avinash Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Apoorva Badaya
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Surbhi Bihani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Gaurish Loya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Krishi Mantri
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ananya Burli
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Jyotirmoy Roy
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Alisha Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Genetics, University of Delhi, New Delhi, India
| | - Sachee Agrawal
- Kasturba Hospital for Infectious Diseases, Mumbai, India
| | - Om Shrivastav
- Kasturba Hospital for Infectious Diseases, Mumbai, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
31
|
Frohlich J, Chaldakov GN, Vinciguerra M. Cardio- and Neurometabolic Adipobiology: Consequences and Implications for Therapy. Int J Mol Sci 2021; 22:ijms22084137. [PMID: 33923652 PMCID: PMC8072708 DOI: 10.3390/ijms22084137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Studies over the past 30 years have revealed that adipose tissue is the major endocrine and paracrine organ of the human body. Arguably, adiopobiology has taken its reasonable place in studying obesity and related cardiometabolic diseases (CMDs), including Alzheimer's disease (AD), which is viewed herein as a neurometabolic disorder. The pathogenesis and therapy of these diseases are multiplex at basic, clinical and translational levels. Our present goal is to describe new developments in cardiometabolic and neurometabolic adipobiology. Accordingly, we focus on adipose- and/or skeletal muscle-derived signaling proteins (adipsin, adiponectin, nerve growth factor, brain-derived neuroptrophic factor, neurotrophin-3, irisin, sirtuins, Klotho, neprilysin, follistatin-like protein-1, meteorin-like (metrnl), as well as growth differentiation factor 11) as examples of metabotrophic factors (MTFs) implicated in the pathogenesis and therapy of obesity and related CMDs. We argue that these pathologies are MTF-deficient diseases. In 1993 the "vascular hypothesis of AD" was published and in the present review we propose the "vasculometabolic hypothesis of AD." We discuss how MTFs could bridge CMDs and neurodegenerative diseases, such as AD. Greater insights on how to manage the MTF network would provide benefits to the quality of human life.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic;
| | - George N. Chaldakov
- Department of Anatomy and Cell Biology and Research Institute of the Medical University, 9002 Varna, Bulgaria;
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, 9002 Varna, Bulgaria
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic;
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, 9002 Varna, Bulgaria
- Correspondence: or
| |
Collapse
|
32
|
Sullivan KD, Galbraith MD, Kinning KT, Bartsch K, Levinsky N, Araya P, Smith KP, Granrath RE, Shaw JR, Baxter R, Jordan KR, Russell S, Dzieciatkowska M, Reisz JA, Gamboni F, Cendali F, Ghosh T, Monte AA, Bennett TD, Miller MG, Hsieh EW, D’Alessandro A, Hansen KC, Espinosa JM. The COVIDome Explorer Researcher Portal. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.04.21252945. [PMID: 33758879 PMCID: PMC7987038 DOI: 10.1101/2021.03.04.21252945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
COVID-19 pathology involves dysregulation of diverse molecular, cellular, and physiological processes. In order to expedite integrated and collaborative COVID-19 research, we completed multi-omics analysis of hospitalized COVID-19 patients including matched analysis of the whole blood transcriptome, plasma proteomics with two complementary platforms, cytokine profiling, plasma and red blood cell metabolomics, deep immune cell phenotyping by mass cytometry, and clinical data annotation. We refer to this multidimensional dataset as the COVIDome. We then created the COVIDome Explorer, an online researcher portal where the data can be analyzed and visualized in real time. We illustrate here the use of the COVIDome dataset through a multi-omics analysis of biosignatures associated with C-reactive protein (CRP), an established marker of poor prognosis in COVID-19, revealing associations between CRP levels and damage-associated molecular patterns, depletion of protective serpins, and mitochondrial metabolism dysregulation. We expect that the COVIDome Explorer will rapidly accelerate data sharing, hypothesis testing, and discoveries worldwide.
Collapse
Affiliation(s)
- Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kohl T. Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kyle Bartsch
- Information Services, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nik Levinsky
- Information Services, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Keith P. Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ross E. Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica R. Shaw
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan Baxter
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kimberly R. Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Seth Russell
- Data Science to Patient Value, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tusharkanti Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Andrew A. Monte
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tellen D. Bennett
- Department of Pediatrics, Sections of Informatics and Data Science and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael G. Miller
- Information Services, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Division of Allergy/Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Correspondence to:
| |
Collapse
|
33
|
Abdo GG, Gupta I, Kheraldine H, Rizeq B, Zagho MM, Khalil A, Elzatahry A, Al Moustafa AE. Mesoporous silica coated carbon nanofibers reduce embryotoxicity via ERK and JNK pathways. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111910. [PMID: 33641906 DOI: 10.1016/j.msec.2021.111910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/19/2022]
Abstract
Carbon nanofibers (CNFs) have been implicated in biomedical applications, yet, they are still considered as a potential hazard. Conversely, mesoporous silica is a biocompatible compound that has been used in various biomedical applications. In this regard, we recently reported that CNFs induce significant toxicity on the early stage of embryogenesis in addition to the inhibition of its angiogenesis. Thus, we herein use mesoporous silica coating of CNFs (MCNFs) in order to explore their outcome on normal development and angiogenesis using avian embryos at 3 days and its chorioallantoic membrane (CAM) at 6 days of incubation. Our data show that mesoporous silica coating of CNFs significantly reduces embryotoxicity provoked by CNFs. However, MCNFs exhibit slight increase in angiogenesis inhibition in comparison with CNFs. Further investigation revealed that MCNFs slightly deregulate the expression patterns of key controller genes involved in cell proliferation, survival, angiogenesis, and apoptosis as compared to CNFs. We confirmed these data using avian primary normal embryonic fibroblast cells established in our lab. Regarding the molecular pathways, we found that MCNFs downregulate the expression of ERK1/ERK2, p-ERK1/ERK2 and JNK1/JNK2/JNK3, thus indicating a protective role of MCNFs via ERK and JNK pathways. Our data suggest that coating CNFs with a layer of mesoporous silica can overcome their toxicity making them suitable for use in biomedical applications. Nevertheless, further investigations are required to evaluate the effects of MCNFs and their mechanisms using different in vitro and in vivo models.
Collapse
Affiliation(s)
- Ghada G Abdo
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar; Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar.
| | - Ishita Gupta
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Hadeel Kheraldine
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Balsam Rizeq
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Moustafa M Zagho
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406, United States of America.
| | - Ashraf Khalil
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Ahmed Elzatahry
- Department of Materials Science and Technology Program, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar.
| | - Ala-Eddin Al Moustafa
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
34
|
Yiu WH, Li Y, Lok SWY, Chan KW, Chan LYY, Leung JCK, Lai KN, Tsu JHL, Chao J, Huang XR, Lan HY, Tang SCW. Protective role of kallistatin in renal fibrosis via modulation of Wnt/β-catenin signaling. Clin Sci (Lond) 2021; 135:429-446. [PMID: 33458750 DOI: 10.1042/cs20201161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/31/2022]
Abstract
Kallistatin is a multiple functional serine protease inhibitor that protects against vascular injury, organ damage and tumor progression. Kallistatin treatment reduces inflammation and fibrosis in the progression of chronic kidney disease (CKD), but the molecular mechanisms underlying this protective process and whether kallistatin plays an endogenous role are incompletely understood. In the present study, we observed that renal kallistatin levels were significantly lower in patients with CKD. It was also positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with serum creatinine level. Unilateral ureteral obstruction (UUO) in animals also led to down-regulation of kallistatin protein in the kidney, and depletion of endogenous kallistatin by antibody injection resulted in aggravated renal fibrosis, which was accompanied by enhanced Wnt/β-catenin activation. Conversely, overexpression of kallistatin attenuated renal inflammation, interstitial fibroblast activation and tubular injury in UUO mice. The protective effect of kallistatin was due to the suppression of TGF-β and β-catenin signaling pathways and subsequent inhibition of epithelial-to-mesenchymal transition (EMT) in cultured tubular cells. In addition, kallistatin could inhibit TGF-β-mediated fibroblast activation via modulation of Wnt4/β-catenin signaling pathway. Therefore, endogenous kallistatin protects against renal fibrosis by modulating Wnt/β-catenin-mediated EMT and fibroblast activation. Down-regulation of kallistatin in the progression of renal fibrosis underlies its potential as a valuable clinical biomarker and therapeutic target in CKD.
Collapse
Affiliation(s)
- Wai Han Yiu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ye Li
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Sarah W Y Lok
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kam Wa Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Loretta Y Y Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Joseph C K Leung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kar Neng Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - James H L Tsu
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Sydney C W Tang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| |
Collapse
|
35
|
Che D, Fang Z, Pi L, Xu Y, Fu L, Zhou H, Gu X. The SERPINA4 rs2070777 AA Genotype is Associated with an Increased Risk of Recurrent Miscarriage in a Southern Chinese Population. Int J Womens Health 2021; 13:111-117. [PMID: 33500667 PMCID: PMC7822073 DOI: 10.2147/ijwh.s290009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background Many inflammation-related gene polymorphisms are associated with susceptibility to recurrent miscarriage. SERPINA4 is involved in inflammation and is associated with susceptibility to a variety of diseases, but its relevance in recurrent miscarriage is unclear. Therefore, this study aimed to investigate the relationship between SERPINA4 gene polymorphisms and susceptibility to recurrent spontaneous abortion. Methods Two SERPINA4 polymorphisms were genotyped in 631 patients with recurrent miscarriage and 771 controls by TaqMan real-time polymerase chain reaction, and the strength of each association was evaluated through 95% confidence intervals (CIs) and odds ratios (ORs). Results The results showed that SERPINA4 rs2070777 AA genotypes were associated with an increased risk of recurrent miscarriage (AA vs AT/TT adjusted OR=1.409, 95% CI=1.032–1.924, P=0.0309), and we also found a significant association between the rs910352 T allele in the SERPINA4 gene and susceptibility to recurrent miscarriage (CT vs CC adjusted OR=1.579, 95% CI=1.252–1.992, P=0.0001; TT vs CC adjusted OR=1.524, 95% CI=1.134–2.049, P=0.0052). The combined analysis of two SNPs of the SERPINA4 gene revealed that carriers with one to two unfavorable genotypes were associated with a higher risk for recurrent miscarriage compared with individuals with no unfavorable genotypes (adjusted OR=1.257, 95% CI=1.019-1.550). Moreover, our study indicates that having one to two unfavorable genotypes is associated with an increased risk of recurrent miscarriage in women 35–40 years of age. Conclusion Our study suggests that SERPINA4 rs2070777AA genotypes might contribute to an increased risk of recurrent miscarriage in a southern Chinese population.
Collapse
Affiliation(s)
- Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhenzhen Fang
- Program of Molecular Medicine, Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - LanYan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China.,Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China.,Department of Blood Transfusion, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
36
|
Zhang R, Ji Z, Cai J, Li Y, Ma G. Clinical Significance of Serum Kallistatin and ENOX1 Levels in Patients with Coronary Heart Disease. Med Princ Pract 2021; 30:339-346. [PMID: 32712615 PMCID: PMC8436622 DOI: 10.1159/000510427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/20/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Kallistatin and ENOX1 are regulators of inflammation and oxidative stress which are typical pathological reactions in atherosclerosis. However, there is limited information of kallistatin and ENOX1 in coronary heart disease (CHD). METHODS Fifty healthy controls, 56 stable angina pectoris (SAP) patients, and 47 acute coronary syndrome (ACS) patients were included in this study. Levels of kallistatin and ENOX1 in serum were measured by ELISA. χ2 test was performed to analyze categorical data. ANOVA, Pearson correlation analysis, and multiple linear regression were performed to analyze the numerical data. Finally, receiver operating characteristic (ROC) curve was applied to assess the diagnostic value of kallistatin in CHD. RESULTS Among the 153 participants, 59.5% were male and the average age was 63.8 ± 11.39 years. Compared with the control group, kallistatin expression was decreased in the SAP and ACS groups while expression of ENOX1 was increased in the ACS group (p < 0.05). Pearson correlation analysis showed that the kallistatin level was negatively correlated with the Gensini score (r = -0.210, p < 0.01), white blood cell (WBC) count (r = -0.283, p < 0.001), and triglyceride levels (r = -0.242, p < 0.01) and positively correlated with age (r = 0.353, p < 0.001) and high-density lipoprotein cholesterol (r = 0.310, p < 0.001). ENOX1 expression was positively correlated with WBC count (r = 0.244, p < 0.01), international normalized ratio (r = 0.177, p < 0.05), and Gensini score (r = 0.201, p < 0.05). Multiple linear regression showed that Cr, alanine transaminase, glucose, and kallistatin are independent predictors for Gensini score. The ROC curve showed that kallistatin had the highest diagnostic significance (p = 0.007) when the area under curve was 0.636, with a sensitivity of 0.735 and a specificity of 0.495. CONCLUSION Expression of kallistatin was decreased in CHD patients and that of ENOX1 was increased in ACS patients. Kallistatin and ENOX1 were closely connected with the severity of CHD, and kallistatin may be helpful in the diagnosis of CHD.
Collapse
|
37
|
Al-Asmakh M, Bawadi H, Hamdan M, Gupta I, Kheraldine H, Jabeen A, Rizeq B, Al Moustafa AE. Dasatinib and PD-L1 inhibitors provoke toxicity and inhibit angiogenesis in the embryo. Biomed Pharmacother 2020; 134:111134. [PMID: 33341672 DOI: 10.1016/j.biopha.2020.111134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Dasatinib is a targeted cancer therapy, while programmed death ligand 1 (PD-L1) inhibitors are a form of immune checkpoint therapy used to treat various types of cancers. Several studies showed the potential efficacy of these drugs in the management of triple-negative breast cancer- an aggressive subtype of breast cancer, which can develop during pregnancy. Nevertheless, side effects of Dasatinib (DA) and PD-L1 drugs during pregnancy, especially in the early stages of embryogenesis are not explored yet. The aim of this study is to assess the individual and combined toxicity of DA and PD-L1 inhibitors during the early stages of embryogenesis and to evaluate their effect(s) on angiogenesis using the chorioallantoic membrane (CAM) model of the embryo. Our results show that embryos die at greater rates after exposure to DA and PD-L1 inhibitors as compared to their matched controls. Moreover, treatment with these drugs significantly inhibits angiogenesis of the CAM. To further elucidate key regulator genes of embryotoxicity induced by the actions of PD-L1 and DA, an RT-PCR analysis was performed for seven target genes that regulate cell proliferation, angiogenesis, and survival (ATF3, FOXA2, MAPRE2, RIPK1, INHBA, SERPINA4, and VEGFC). Our data revealed that these genes are significantly deregulated in the brain, heart, and liver tissues of exposed embryos, compared to matched control tissues. Nevertheless, further studies are necessary to evaluate the effects of these anti breast cancer drugs and elucidate their role during pregnancy.
Collapse
Affiliation(s)
- Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Centre, Qatar University, Doha, P.O. Box 2713, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Hiba Bawadi
- Department of Nutrition, College of Health Sciences, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Munia Hamdan
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Ishita Gupta
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Hadeel Kheraldine
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Ayesha Jabeen
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Balsam Rizeq
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Ala-Eddin Al Moustafa
- Biomedical Research Centre, Qatar University, Doha, P.O. Box 2713, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Oncology Department, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
38
|
Güralp O, Tüten N, Gök K, Hamzaoglu K, Bulut H, Schild-Suhren M, Malik E, Tüten A. Serum kallistatin level is decreased in women with preeclampsia. J Perinat Med 2020; 49:60-66. [PMID: 32866127 DOI: 10.1515/jpm-2020-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To evaluate the serum levels of the serine proteinase inhibitor kallistatin in women with preeclampsia (PE). METHODS The clinical and laboratory parameters of 55 consecutive women with early-onset PE (EOPE) and 55 consecutive women with late-onset PE (LOPE) were compared with 110 consecutive gestational age (GA)-matched (±1 week) pregnant women with an uncomplicated pregnancy and an appropriate for gestational age fetus. RESULTS Mean serum kallistatin was significantly lower in women with PE compared to the GA-matched-controls (27.74±8.29 ng/mL vs. 37.86±20.64 ng/mL, p<0.001); in women with EOPE compared to that of women in the control group GA-matched for EOPE (24.85±6.65 ng/mL vs. 33.37±17.46 ng/mL, p=0.002); and in women with LOPE compared to that of women in the control group GA-matched for LOPE (30.87±8.81 ng/mL vs. 42.25±22.67 ng/mL, p=0.002). Mean serum kallistatin was significantly lower in women with EOPE compared to LOPE (24.85±6.65 ng/mL vs. 30.87±8.81 ng/mL, p<0.001). Serum kallistatin had negative correlations with systolic and diastolic blood pressure, creatinine, and positive correlation with GA at sampling and GA at birth. CONCLUSIONS Serum kallistatin levels are decreased in preeclamptic pregnancies compared to the GA-matched-controls. This decrease was also significant in women with EOPE compared to LOPE. Serum kallistatin had negative correlation with systolic and diastolic blood pressure, creatinine and positive correlation with GA at sampling and GA at birth.
Collapse
Affiliation(s)
- Onur Güralp
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Nevin Tüten
- Obstetrics and Gynecology, Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Koray Gök
- Obstetrics and Gynecology, Sakarya University, Education and Research Hospital, Sakarya, Turkey
| | - Kübra Hamzaoglu
- Department of Obstetrics and Gynecology, Istanbul Cerrahpasa University, Istanbul, Turkey
| | - Huri Bulut
- Medical Biochemistry Department, Istinye University, Faculty of Medicine, Istanbul, Turkey
| | - Meike Schild-Suhren
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Eduard Malik
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Abdullah Tüten
- Department of Obstetrics and Gynecology, Istanbul Cerrahpasa University, Istanbul, Turkey
| |
Collapse
|
39
|
Nebbioso M, Lambiase A, Armentano M, Tucciarone G, Bonfiglio V, Plateroti R, Alisi L. The Complex Relationship between Diabetic Retinopathy and High-Mobility Group Box: A Review of Molecular Pathways and Therapeutic Strategies. Antioxidants (Basel) 2020; 9:antiox9080666. [PMID: 32722545 PMCID: PMC7464385 DOI: 10.3390/antiox9080666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a protein that is part of a larger family of non-histone nuclear proteins. HMGB1 is a ubiquitary protein with different isoforms, linked to numerous physiological and pathological pathways. HMGB1 is involved in cytokine and chemokine release, leukocyte activation and migration, tumorigenesis, neoangiogenesis, and the activation of several inflammatory pathways. HMGB1 is, in fact, responsible for the trigger, among others, of nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), toll-like receptor-4 (TLR-4), and vascular endothelial growth factor (VEGF) pathways. Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM) that is rapidly growing in number. DR is an inflammatory disease caused by hyperglycemia, which determines the accumulation of oxidative stress and cell damage, which ultimately leads to hypoxia and neovascularization. Recent evidence has shown that hyperglycemia is responsible for the hyperexpression of HMGB1. This protein activates numerous pathways that cause the development of DR, and HMGB1 levels are constantly increased in diabetic retinas in both proliferative and non-proliferative stages of the disease. Several molecules, such as glycyrrhizin (GA), have proven effective in reducing diabetic damage to the retina through the inhibition of HMGB1. The main focus of this review is the growing amount of evidence linking HMGB1 and DR as well as the new therapeutic strategies involving this protein.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy; (M.N.); (M.A.); (G.T.); (R.P.); (L.A.)
| | - Alessandro Lambiase
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy; (M.N.); (M.A.); (G.T.); (R.P.); (L.A.)
- Correspondence: ; Tel.: +39-06-4997-5357; Fax: +39-06-4997-5425
| | - Marta Armentano
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy; (M.N.); (M.A.); (G.T.); (R.P.); (L.A.)
| | - Giosuè Tucciarone
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy; (M.N.); (M.A.); (G.T.); (R.P.); (L.A.)
| | - Vincenza Bonfiglio
- Department of Ophthalmology, University of Catania, Via S. Sofia 76, 95100 Catania, Italy;
| | - Rocco Plateroti
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy; (M.N.); (M.A.); (G.T.); (R.P.); (L.A.)
| | - Ludovico Alisi
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I, Sapienza University of Rome, p. le A. Moro 5, 00185 Rome, Italy; (M.N.); (M.A.); (G.T.); (R.P.); (L.A.)
| |
Collapse
|
40
|
Wang G, Zou J, Yu X, Yin S, Tang C. The antiatherogenic function of kallistatin and its potential mechanism. Acta Biochim Biophys Sin (Shanghai) 2020; 52:583-589. [PMID: 32393963 DOI: 10.1093/abbs/gmaa035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is the pathological basis of most cardiovascular diseases, the leading cause of morbidity and mortality worldwide. Kallistatin, originally discovered in human serum, is a tissue-kallikrein-binding protein and a unique serine proteinase inhibitor. Upon binding to its receptor integrin β3, lipoprotein receptor-related protein 6, nucleolin, or Krüppel-like factor 4, kallistatin can modulate various signaling pathways and affect multiple biological processes, including angiogenesis, inflammatory response, oxidative stress, and tumor growth. Circulating kallistatin levels are significantly decreased in patients with coronary artery disease and show an inverse correlation with its severity. Importantly, both in vitro and in vivo experiments have demonstrated that kallistatin reduces atherosclerosis by inhibiting vascular inflammation, antagonizing endothelial dysfunction, and improving lipid metabolism. Thus, kallistatin may be a novel biomarker and a promising therapeutic target for atherosclerosis-related diseases. In this review, we focus on the antiatherogenic function of kallistatin and its potential mechanism.
Collapse
Affiliation(s)
- Gang Wang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Jin Zou
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Xiaohua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Shanhui Yin
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Chaoke Tang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| |
Collapse
|
41
|
He Y, Han Y, Xing J, Zhai X, Wang S, Xin S, Zhang J. Kallistatin correlates with inflammation in abdominal aortic aneurysm and suppresses its formation in mice. Cardiovasc Diagn Ther 2020; 10:107-123. [PMID: 32420091 DOI: 10.21037/cdt.2019.12.08] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Kallistatin (KS), encoded by SERPINA4, was suggested to play a protective role in many cardiovascular diseases. However, its role in the pathogenesis of abdominal aortic aneurysm (AAA) remains unclear. The aim of this study was to examine the potential association of KS with AAA pathogenesis. Methods We examined KS (SERPINA4) expression in human AAA by PCR, immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay (ELISA) and analyzed correlations between kallistain and clinical data. We then analyzed the effect of recombinant KS on AAA formation and the Wingless (Wnt) signaling pathway in a mouse AAA model developed by angiotensin II (AngII) infusion to apolipoprotein E-deficient (ApoE-/-) mice. Results In AAA tissue samples, KS was significantly increased compared with samples from the control group (P<0.001, P<0.001, respectively). Clinically, decreased SERPINA4 expression in AAA tissue samples represented an increased rate of iliac artery aneurysm [odds ratio (OR): 0.017; P=0.040]. And decreased plasma KS level represented a high risk for rupture (OR: 0.837; P=0.034). KS inhibited AAA formation and blocked the Wnt signaling pathway in AngII-infused ApoE-/- mice. Conclusions The present study demonstrates that aberrant changes in KS expression occur in AAA. KS plays an important anti-inflammatory role and showed important clinical correlations in AAA. Decreased KS (SERPINA4) level is a risk factor of AAA rupture. Our pre-clinical animal experiments indicate that treatment with recombination KS suppresses AngII-induced aortic aneurysm formation and might be a new target for the drug therapy of AAA.
Collapse
Affiliation(s)
- Yuchen He
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yanshuo Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jia Xing
- Department of Histology and Embryology, China Medical University, Shenyang 110122, China
| | - Xiaoyue Zhai
- Department of Histology and Embryology, China Medical University, Shenyang 110122, China
| | - Shiyue Wang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
42
|
Sobhey OM, Jouda AA, Metwally A, Shawky NM, Elkhashab MN. Evaluation of serum kallistatin level as a predictor of esophageal varices in cirrhotic patients. ALEXANDRIA JOURNAL OF MEDICINE 2020. [DOI: 10.1080/20905068.2020.1714191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Osama M. Sobhey
- Tropical Medicine Department, Faculty of Medicine, Zagazig University and Zagazig University Hospitals, Zagazig, Sharqueya, Egypt
| | - Amal A. Jouda
- Tropical Medicine Department, Faculty of Medicine, Zagazig University and Zagazig University Hospitals, Zagazig, Sharqueya, Egypt
| | - Ashraf Metwally
- Tropical Medicine Department, Faculty of Medicine, Zagazig University and Zagazig University Hospitals, Zagazig, Sharqueya, Egypt
| | - Nagwa M. Shawky
- Clinical Pathology Department, Faculty of Medicine, Zagazig University and Zagazig University Hospitals, Zagazig, Sharqueya, Egypt
| | - Mohammad N. Elkhashab
- Tropical Medicine Department, Faculty of Medicine, Zagazig University and Zagazig University Hospitals, Zagazig, Sharqueya, Egypt
| |
Collapse
|
43
|
Early-Stage Staphylococcus aureus Bloodstream Infection Causes Changes in the Concentrations of Lipoproteins and Acute-Phase Proteins and Is Associated with Low Antibody Titers against Bacterial Virulence Factors. mSystems 2020; 5:5/1/e00632-19. [PMID: 31964768 PMCID: PMC6977072 DOI: 10.1128/msystems.00632-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
S. aureus sepsis has a high complication and mortality rate. Given the limited therapeutic possibilities, effective prevention strategies, e.g., a vaccine, or the early identification of high-risk patients would be important but are not available. Our study showed an acute-phase response in patients with S. aureus bloodstream infection and evidence that lipoproteins are downregulated in plasma. Using immunoproteomics, stratification of patients appears to be achievable, since at the early stages of systemic S. aureus infection patients had low preexisting anti-S. aureus antibody levels. This strengthens the notion that a robust immune memory for S. aureus protects against infections with the pathogen. Systemic and quantitative investigations of human plasma proteins (proteomics) and Staphylococcus aureus-specific antibodies (immunoproteomics) provide complementary information and hold promise for the discovery of biomarkers in Staphylococcus aureus bloodstream infection (SABSI). Usually, data-dependent acquisition (DDA) is used for proteome analysis of serum or plasma, but data-independent acquisition (DIA) is more comprehensive and reproducible. In this prospective cohort study, we aimed to identify biomarkers associated with the early stages of SABSI using a serum DIA proteomic and immunoproteomic approach. Sera from 49 SABSI patients and 43 noninfected controls were analyzed. In total, 608 human serum proteins were identified with DIA. A total of 386 proteins could be quantified, of which 9 proteins, mainly belonging to acute-phase proteins, were significantly increased, while 7 high-density lipoproteins were lower in SABSI. In SABSI, total anti-S. aureus serum IgG was reduced compared with controls as shown by immunoproteomic quantification of IgG binding to 143 S. aureus antigens. IgG binding to 48 of these anti-S. aureus proteins was significantly lower in SABSI, while anti-Ecb IgG was the only one increased in SABSI. Serum IgG binding to autoinducing peptide MsrB, FadB, EsxA, Pbp2, FadB, SspB, or SodA was very low in SABSI. This marker panel discriminated early SABSI from controls with 95% sensitivity and 100% specificity according to random forest prediction. This holds promise for patient stratification according to their risk of S. aureus infection, underlines the protective function of the adaptive immune system, and encourages further efforts in the development of a vaccine against S. aureus. IMPORTANCES. aureus sepsis has a high complication and mortality rate. Given the limited therapeutic possibilities, effective prevention strategies, e.g., a vaccine, or the early identification of high-risk patients would be important but are not available. Our study showed an acute-phase response in patients with S. aureus bloodstream infection and evidence that lipoproteins are downregulated in plasma. Using immunoproteomics, stratification of patients appears to be achievable, since at the early stages of systemic S. aureus infection patients had low preexisting anti-S. aureus antibody levels. This strengthens the notion that a robust immune memory for S. aureus protects against infections with the pathogen.
Collapse
|
44
|
Thromboinflammatory changes in plasma proteome of pregnant women with PCOS detected by quantitative label-free proteomics. Sci Rep 2019; 9:17578. [PMID: 31772271 PMCID: PMC6879536 DOI: 10.1038/s41598-019-54067-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinological disorder of fertile-aged women. Several adverse pregnancy outcomes and abnormalities of the placenta have been associated with PCOS. By using quantitative label-free proteomics we investigated whether changes in the plasma proteome of pregnant women with PCOS could elucidate the mechanisms behind the pathologies observed in PCOS pregnancies. A total of 169 proteins with ≥2 unique peptides were detected to be differentially expressed between women with PCOS (n = 7) and matched controls (n = 20) at term of pregnancy, out of which 35 were significant (p-value < 0.05). A pathway analysis revealed that networks related to humoral immune responses, inflammatory responses, cardiovascular disease and cellular growth and proliferation were affected by PCOS. Classification of cases and controls was carried out using principal component analysis, orthogonal projections on latent structure-discriminant analysis (OPLS-DA), hierarchical clustering, self-organising maps and ROC-curve analysis. The most significantly enriched proteins in PCOS were properdin and insulin-like growth factor II. In the dataset, properdin had the best predictive accuracy for PCOS (AUC = 1). Additionally, properdin abundances correlated with AMH levels in pregnant women.
Collapse
|
45
|
Vadgama N, Lamont D, Hardy J, Nasir J, Lovering RC. Distinct proteomic profiles in monozygotic twins discordant for ischaemic stroke. Mol Cell Biochem 2019; 456:157-165. [PMID: 30694515 DOI: 10.1007/s11010-019-03501-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/19/2019] [Indexed: 01/13/2023]
Abstract
Stroke is a common disorder with significant morbidity and mortality, and complex aetiology involving both environmental and genetic risk factors. Although some of the major risk factors for stoke, such as smoking and hypertension, are well-documented, the underlying genetic and detailed molecular mechanisms remain elusive. Exploring the relevant biochemical pathways may contribute to the clinical diagnosis of stroke and shed light on its aetiology. A comparative proteomic analysis of blood serum of a pair of monozygotic (MZ) twins discordant for ischaemic stroke (IS) was performed using a label-free quantitative proteomics approach. To overcome the limit of reproducibility in the serum preparation, two separate runs were performed, each consisting of three technical replicates per sample. Biological processes associated with proteins differentially expressed between the twins were explored with gene ontology (GO) classification using the functional analysis tool g:Profiler. ANOVA test performed in Progenesis LC-MS identified 179 (run 1) and 209 (run 2) proteins as differentially expressed between the affected and unaffected twin (p < 0.05). Furthermore, the level of serum fibulin 1, an extracellular matrix protein associated with arterial stiffness, was on average 13.37-fold higher in the affected twin. Each dataset was then analysed independently, and the proteins were classified according to GO terms. The categories overrepresented in the affected twin predominantly corresponded to stroke-relevant processes, including wound healing, blood coagulation and haemostasis, with a high proportion of the proteins overexpressed in the affected twin associated with these terms. By contrast, in the unaffected twin diagnosed with atopic dermatitis, there were increased levels of keratin proteins and GO terms associated with skin development. The identification of cellular pathways enriched in IS as well as the upregulation of fibulin 1 sheds new light on the underlying disease-causing mechanisms at the molecular level. Our findings of distinct proteomic signatures associated with IS and atopic dermatitis suggest proteomic profiling could be used as a general approach for improved diagnostic, prognostic and therapeutic strategies.
Collapse
Affiliation(s)
- Nirmal Vadgama
- Institute of Neurology, University College London, London, UK
- Cell Biology and Genetics Research Centre, St. George's University of London, London, UK
| | - Douglas Lamont
- College of Life Sciences, University of Dundee, Dundee, UK
| | - John Hardy
- Institute of Neurology, University College London, London, UK
| | - Jamal Nasir
- Cell Biology and Genetics Research Centre, St. George's University of London, London, UK.
- Molecular Biosciences Research Group, Faculty of Health & Society, University of Northampton, Northampton, UK.
| | - Ruth C Lovering
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
46
|
Differential epithelial and stromal protein profiles in cone and non-cone regions of keratoconus corneas. Sci Rep 2019; 9:2965. [PMID: 30814630 PMCID: PMC6393548 DOI: 10.1038/s41598-019-39182-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Keratoconus (KC) is an ectatic corneal disease characterized by progressive thinning and irregular astigmatism, and a leading indication for corneal transplantation. KC-associated changes have been demonstrated for the entire cornea, but the pathological thinning and mechanical weakening is usually localized. We performed quantitative proteomics using Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectrometry (SWATH-MS) to analyze epithelial and stromal changes between the topographically-abnormal cone and topographically-normal non-cone regions of advanced KC corneas, compared to age-matched normal corneas. Expression of 20 epithelial and 14 stromal proteins was significantly altered (≥2 or ≤0.5-fold) between cone and non-cone in all 4 KC samples. Ingenuity pathway analysis illustrated developmental and metabolic disorders for the altered epithelial proteome with mitochondrion as the significant gene ontology (GO) term. The differential stromal proteome was related to cellular assembly, tissue organization and connective tissue disorders with endoplasmic reticulum protein folding as the significant GO term. Validation of selected protein expression was performed on archived KC, non-KC and normal corneal specimens by immunohistochemistry. This is the first time to show that KC-associated proteome changes were not limited to the topographically-thinner and mechanically-weakened cone but also non-cone region with normal topography, indicating a peripheral involvement in KC development.
Collapse
|
47
|
Protective Role of Endogenous Kallistatin in Vascular Injury and Senescence by Inhibiting Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4138560. [PMID: 30622668 PMCID: PMC6304815 DOI: 10.1155/2018/4138560] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Kallistatin was identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin exerts pleiotropic effects on angiogenesis, oxidative stress, inflammation, apoptosis, fibrosis, and tumor growth. Kallistatin levels are markedly reduced in patients with coronary artery disease, sepsis, diabetic retinopathy, inflammatory bowel disease, pneumonia, and cancer. Moreover, plasma kallistatin levels are positively associated with leukocyte telomere length in young African Americans, indicating the involvement of kallistatin in aging. In addition, kallistatin treatment promotes vascular repair by increasing the migration and function of endothelial progenitor cells (EPCs). Kallistatin via its heparin-binding site antagonizes TNF-α-induced senescence and superoxide formation, while kallistatin's active site is essential for inhibiting miR-34a synthesis, thus elevating sirtuin 1 (SIRT1)/eNOS synthesis in EPCs. Kallistatin inhibits oxidative stress-induced cellular senescence by upregulating Let-7g synthesis, leading to modulate Let-7g-mediated miR-34a-SIRT1-eNOS signaling pathway in human endothelial cells. Exogenous kallistatin administration attenuates vascular injury and senescence in association with increased SIRT1 and eNOS levels and reduced miR-34a synthesis and NADPH oxidase activity, as well as TNF-α and ICAM-1 expression in the aortas of streptozotocin- (STZ-) induced diabetic mice. Conversely, endothelial-specific depletion of kallistatin aggravates vascular senescence, oxidative stress, and inflammation, with further reduction of Let-7g, SIRT1, and eNOS and elevation of miR-34a in mouse lung endothelial cells. Furthermore, systemic depletion of kallistatin exacerbates aortic injury, senescence, NADPH oxidase activity, and inflammatory gene expression in STZ-induced diabetic mice. These findings indicate that endogenous kallistatin displays a novel role in protection against vascular injury and senescence by inhibiting oxidative stress and inflammation.
Collapse
|
48
|
Yao Y, Li B, Liu C, Fu C, Li P, Guo Y, Ma G, Liu N, Chao L, Chao J. Reduced Plasma Kallistatin Is Associated With the Severity of Coronary Artery Disease, and Kallistatin Treatment Attenuates Atherosclerotic Plaque Formation in Mice. J Am Heart Assoc 2018; 7:e009562. [PMID: 30554563 PMCID: PMC6404169 DOI: 10.1161/jaha.118.009562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Kallistatin exerts beneficial effects on organ injury by inhibiting oxidative stress and inflammation. However, the role of kallistatin in atherosclerosis is largely unknown. Here, we investigated the role and mechanisms of kallistatin in patients with coronary artery disease ( CAD ), atherosclerotic plaques of apoE-/- mice, and endothelial activation. Methods and Results Plasma kallistatin levels were analyzed in 453 patients at different stages of CAD . Kallistatin levels were significantly lower in patients with CAD and negatively associated with CAD severity and oxidative stress. Human kallistatin cDNA in an adenoviral vector was injected intravenously into apoE-/- mice after partial carotid ligation, with or without nitric oxide synthase inhibitor (Nω-nitro-L-arginine methyl ester) or sirtuin 1 inhibitor (nicotinamide). Kallistatin gene delivery significantly reduced macrophage deposition, oxidative stress, and plaque volume in the carotid artery, compared with control adenoviral injection. Kallistatin administration increased endothelial nitrous oxide synthase, sirtuin 1, interleukin-10, superoxide dismutase 2, and catalase expression in carotid plaques. The beneficial effects of kallistatin in mice were mitigated by Nω-nitro-L-arginine methyl ester or nicotinamide. Furthermore, human kallistatin protein suppressed tumor necrosis factor-α-induced NADPH oxidase activity and increased endothelial nitrous oxide synthase and sirtuin 1 expression in cultured human endothelial cells. These effects were also abolished by Nω-nitro-L-arginine methyl ester or nicotinamide. Conclusions This was the first study to demonstrate that reduced plasma kallistatin levels in patients are associated with CAD severity and oxidative stress. Kallistatin treatment prevents carotid atherosclerotic plaque formation in mice by stimulating the sirtuin 1/endothelial nitrous oxide synthase pathway. These findings indicate the potential protective effects of kallistatin on atherosclerosis in human subjects and mouse models.
Collapse
Affiliation(s)
- Yuyu Yao
- 1 Department of Cardiology Zhongda Hospital Medical School of Southeast University Nanjing China
| | - Bing Li
- 1 Department of Cardiology Zhongda Hospital Medical School of Southeast University Nanjing China
| | - Chang Liu
- 1 Department of Cardiology Zhongda Hospital Medical School of Southeast University Nanjing China
| | - Cong Fu
- 1 Department of Cardiology Zhongda Hospital Medical School of Southeast University Nanjing China
| | - Pengfei Li
- 2 Department of Biochemistry and Molecular Biology Medical University of South Carolina Charleston SC
| | - Youming Guo
- 2 Department of Biochemistry and Molecular Biology Medical University of South Carolina Charleston SC
| | - Genshan Ma
- 1 Department of Cardiology Zhongda Hospital Medical School of Southeast University Nanjing China
| | - Naifeng Liu
- 1 Department of Cardiology Zhongda Hospital Medical School of Southeast University Nanjing China
| | - Lee Chao
- 2 Department of Biochemistry and Molecular Biology Medical University of South Carolina Charleston SC
| | - Julie Chao
- 2 Department of Biochemistry and Molecular Biology Medical University of South Carolina Charleston SC
| |
Collapse
|
49
|
Villa F, Carrizzo A, Ferrario A, Maciag A, Cattaneo M, Spinelli CC, Montella F, Damato A, Ciaglia E, Puca AA. A Model of Evolutionary Selection: The Cardiovascular Protective Function of the Longevity Associated Variant of BPIFB4. Int J Mol Sci 2018; 19:ijms19103229. [PMID: 30347645 PMCID: PMC6214030 DOI: 10.3390/ijms19103229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Evolutionary forces select genetic variants that allow adaptation to environmental stresses. The genomes of centenarian populations could recapitulate the evolutionary adaptation model and reveal the secrets of disease resistance shown by these individuals. Indeed, longevity phenotype is supposed to have a genetic background able to survive or escape to age-related diseases. Among these, cardiovascular diseases (CVDs) are the most lethal and their major risk factor is aging and the associated frailty status. One example of genetic evolution revealed by the study of centenarians genome is the four missense Single Nucleotide Polymorphisms (SNPs) haplotype in bactericidal/permeability-increasing fold-containing family B, member 4 (BPIFB4) locus that is enriched in long living individuals: the longevity associated variant (LAV). Indeed, LAV-BPIFB4 is able to improve endothelial function and revascularization through the increase of endothelial nitric oxide synthase (eNOS) dependent nitric oxide production. This review recapitulates the beneficial effects of LAV-BPIFB4 and its therapeutic potential for the treatment of CVDs.
Collapse
Affiliation(s)
- Francesco Villa
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy.
| | | | - Anna Ferrario
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy.
| | - Anna Maciag
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy.
| | - Monica Cattaneo
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy.
| | | | - Francesco Montella
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy.
| | | | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy.
| | - Annibale Alessandro Puca
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy.
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via Salvatore Allende, 84081 Baronissi, Italy.
| |
Collapse
|
50
|
Frühbeck G, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Valentí V, Moncada R, Becerril S, Unamuno X, Silva C, Salvador J, Catalán V. Novel protective role of kallistatin in obesity by limiting adipose tissue low grade inflammation and oxidative stress. Metabolism 2018; 87:123-135. [PMID: 29679615 DOI: 10.1016/j.metabol.2018.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Kallistatin plays an important role in the inhibition of inflammation, oxidative stress, fibrosis and angiogenesis. We aimed to determine the impact of kallistatin on obesity and its associated metabolic alterations as well as its role in adipocyte inflammation and oxidative stress. METHODS Samples obtained from 95 subjects were used in a case-control study. Circulating concentrations and expression levels of kallistatin as well as key inflammation, oxidative stress and extracellular matrix remodelling-related genes were analyzed. Circulating kallistatin concentrations were measured before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB). The impact of kallistatin on lipopolysaccharide (LPS)- and tumour necrosis factor (TNF)-α-mediated inflammatory as well as oxidative stress signalling pathways was evaluated. RESULTS We show that the reduced (P < 0.00001) circulating levels of kallistatin in obese patients increased (P < 0.00001) after RYGB. Moreover, gene expression levels of SERPINA4, the gene coding for kallistatin, were downregulated (P < 0.01) in the liver from obese subjects with non-alcoholic fatty liver disease. Additionally, we revealed that kallistatin reduced (P < 0.05) the expression of inflammation-related genes (CCL2, IL1B, IL6, IL8, TNFA, TGFB) and, conversely, upregulated (P < 0.05) mRNA levels of ADIPOQ and KLF4 in human adipocytes in culture. Kallistatin inhibited (P < 0.05) LPS- and TNF-α-induced inflammation in human adipocytes via downregulating the expression and secretion of key inflammatory markers. Furthermore, kallistatin also blocked (P < 0.05) TNF-α-mediated lipid peroxidation as well as NOX2 and HIF1A expression while stimulating (P < 0.05) the expression of SIRT1 and FOXO1. CONCLUSIONS These findings provide, for the first time, evidence of a novel role of kallistatin in obesity and its associated comorbidities by limiting adipose tissue inflammation and oxidative stress.
Collapse
Affiliation(s)
- Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Salvador
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|