1
|
Tran KC, Asfar P, Cheng M, Demiselle J, Singer J, Lee T, Sweet D, Boyd J, Walley K, Haljan G, Sharif O, Geri G, Auchabie J, Quenot JP, Lee TC, Tsang J, Meziani F, Lamontagne F, Dubee V, Lasocki S, Ovakim D, Wood G, Turgeon A, Cohen Y, Lebas E, Goudelin M, Forrest D, Teale A, Mira JP, Fowler R, Daneman N, Adhikari NKJ, Gousseff M, Leroy P, Plantefeve G, Rispal P, Courtois R, Winston B, Reynolds S, Birks P, Bienvenu B, Tadie JM, Talarmin JP, Ansart S, Russell JA. Effects of Losartan on Patients Hospitalized for Acute COVID-19: A Randomized Controlled Trial. Clin Infect Dis 2024; 79:615-625. [PMID: 39325643 PMCID: PMC11426262 DOI: 10.1093/cid/ciae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) down-regulates angiotensin-converting enzyme 2, potentially increasing angiotensin II. We hypothesized that losartan compared to usual care decreases mortality and is safe in patients hospitalized with coronavirus disease 2019 (COVID-19). We aimed to evaluate the effect of losartan versus usual care on 28-day mortality in patients hospitalized for acute COVID-19. METHODS Eligibility criteria included adults admitted for acute COVID-19. Exclusion criteria were hypotension, hyperkalemia, acute kidney injury, and use of angiotensin receptor blockers (ARBs) or angiotensin-converting enzyme inhibitors within 7 days. Participants were randomized to losartan 25-100 mg/day orally for the hospital duration or 3 months or the control arm (usual care) in 29 hospitals in Canada and France. The primary outcome was 28-day mortality. Secondary outcomes were hospital mortality, organ support, and serious adverse events (SAEs). RESULTS The trial was stopped early because of a serious safety concern with losartan. In 341 patients, any SAE and hypotension were significantly higher in the losartan versus usual care groups (any SAE: 39.8% vs 27.2%, respectively, P = .01; hypotension: 30.4% vs 15.3%, respectively, P < .001) in both ward and intensive care patients. The 28-day mortality did not differ between losartan (6.5%) versus usual care (5.9%) (odds ratio, 1.11 [95% confidence interval, .47-2.64]; P = .81), nor did organ dysfunction or secondary outcomes. CONCLUSIONS Caution is needed in deciding which patients to start or continue using ARBs in patients hospitalized with pneumonia to mitigate risk of hypotension, acute kidney injury, and other side effects. ARBs should not be added to care of patients hospitalized for acute COVID-19. CLINICAL TRIALS REGISTRATION NCT04606563.
Collapse
Affiliation(s)
- Karen C Tran
- Division of General Internal Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| | - Pierre Asfar
- Service de Médecine Intensive-Réanimation, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Matthew Cheng
- McGill's Interdisciplinary Initiative in Infection and Immunity, Divisions of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Julien Demiselle
- Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Joel Singer
- Centre for Health Evaluation and Outcome Science, St Paul's Hospital and University of British Columbia, Vancouver, Canada
| | - Terry Lee
- Centre for Health Evaluation and Outcome Science, St Paul's Hospital and University of British Columbia, Vancouver, Canada
| | - David Sweet
- Division of General Internal Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| | - John Boyd
- Division of Critical Care Medicine, and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| | - Keith Walley
- Division of Critical Care Medicine, and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| | - Greg Haljan
- Department of Medicine and Critical Care Medicine, Surrey Memorial Hospital, British Columbia, Canada
| | - Omar Sharif
- Department of Medicine and Critical Care Medicine, Surrey Memorial Hospital, British Columbia, Canada
| | - Guillaume Geri
- Service de Médecine Intensive-Réanimation, Assistance Publique-Hôpitaux de Paris Ambroise Paré, Boulogne, France
| | - Johann Auchabie
- Service de Réanimation Polyvalente, Centre Hospitalier de Cholet
| | - Jean-Pierre Quenot
- Service de Médecine Intensive-Réanimation, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Todd C Lee
- McGill's Interdisciplinary Initiative in Infection and Immunity, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jennifer Tsang
- Niagara Health, McMaster University, St Catherines, Ontario, Canada
| | - Ferhat Meziani
- Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil Strasbourg, Strasbourg, France
| | - Francois Lamontagne
- Centre Hospitalier Universitaire de Sherbrooke, University of Sherbrooke, Quebec, Canada
| | - Vincent Dubee
- Service de Maladies Infectieuses, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Sigismond Lasocki
- Service de Réanimation Chirurgicale, Centre Hospitalier Universitaire Angers, Angers, France
| | - Daniel Ovakim
- Royal Jubilee Hospital, Island Health, Victoria, British Columbia
| | - Gordon Wood
- Royal Jubilee Hospital, Island Health, Victoria, British Columbia
| | - Alexis Turgeon
- Department of Medicine, Centre Hospitalier Universitaire de Québec-Université Laval, Quebec, Canada
| | - Yves Cohen
- Service de Médecine Intensive-Réanimation, Assistance Publique-Hôpitaux de Paris Avicenne, Bobigny, France
| | - Eddy Lebas
- Service de Réanimation Polyvalente, Centre Hospitalier Bretagne-Atlantique, Vannes, France
| | - Marine Goudelin
- Service de Réanimation Polyvalente, Centre Hospitalier Universitaire Limoges, Limoges, France
| | - David Forrest
- Department of Medicine, Nanaimo Regional General Hospital, British Columbia, Canada
| | - Alastair Teale
- Department of Medicine, Nanaimo Regional General Hospital, British Columbia, Canada
| | - Jean-Paul Mira
- Service de Médecine Intensive-Réanimation, Assistance Publique-Hôpitaux de Paris, Cochin, France
| | - Robert Fowler
- Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Nick Daneman
- Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Neill K J Adhikari
- Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Marie Gousseff
- Service de Médecine Interne-Maladies Infectieuses-Hématologie, Centre Hospitalier Bretagne-Atlantique, Vannes, France
| | - Pierre Leroy
- Service de médecine polyvalente et maladies infectieuses, Centre Hospitalier Melun, Melun, France
| | - Gaetan Plantefeve
- Service de Réanimation Polyvalente, Centre Hospitalier Argenteuil, France
| | - Patrick Rispal
- Department of Medicine, Service de médecine interne, Centre Hospitalier Agen, Agen, France
| | - Roxane Courtois
- Service de Médecine post-urgences-Maladies infectieuses, Centre Hospitalier de Cholet, Cholet, France
| | - Brent Winston
- Departments of Critical Care Medicine, Medicine, and Biochemistry and Molecular Biology, Foothills Medical Centre, University of Calgary, Alberta, Canada
| | - Steve Reynolds
- Critical Care Medicine, Royal Columbian Hospital, New Westminster, British Columbia, Canada
- Department of Medicine, Simon Fraser University, Surrey, British Columbia, Canada
| | - Peter Birks
- Critical Care Medicine, Royal Columbian Hospital, New Westminster, British Columbia, Canada
- Department of Medicine, Simon Fraser University, Surrey, British Columbia, Canada
| | - Boris Bienvenu
- Service de médecine interne, Hôpital St Joseph, Marseille, France
| | - Jean-Marc Tadie
- Service de Médecine Intensive-Réanimation et de Maladies Infectieuses, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Jean-Philippe Talarmin
- Service de médecine interne, maladies du sang et infectiologie, Centre Hospitalier de Quimper, Quimper, France
| | - Severine Ansart
- Service de Maladies Infectieuses, Centre Hospitalier Régional Universitaire Brest, Brest, France
| | - James A Russell
- Division of Critical Care Medicine, and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| |
Collapse
|
2
|
Huang YQ, Peng K, Yan J, Chen HL, Jiang PY, Du YF, Ling X, Zhang SL, Wu J. The Participation of Ferroptosis in Fibrosis of the Heart and Kidney Tissues in Dahl Salt-Sensitive Hypertensive Rats. Am J Hypertens 2024; 37:784-791. [PMID: 38850192 DOI: 10.1093/ajh/hpae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Salt-sensitive hypertension is often more prone to induce damage to target organs such as the heart and kidneys. Abundant recent studies have demonstrated a close association between ferroptosis and cardiovascular diseases. Therefore, we hypothesize that ferroptosis may be closely associated with organ damage in salt-sensitive hypertension. This study aimed to investigate whether ferroptosis is involved in the occurrence and development of myocardial fibrosis and renal fibrosis in salt-sensitive hypertensive rats. METHODS Ten 7-week-old male Dahl salt-sensitive (Dahl-SS) rats were adaptively fed for 1 week, then randomly divided into two groups and fed either a normal diet (0.3% NaCl, normal diet group) or a high-salt diet (8% NaCl, high-salt diet group) for 8 weeks. Blood pressure of the rats was observed, and analysis of the hearts and kidneys of Dahl-SS rats was conducted via hematoxylin-eosin (HE) staining, Masson staining, Prussian blue staining, transmission electron microscopy, tissue iron content detection, malondialdehyde content detection, immunofluorescence, and Western blot. RESULTS Compared to the normal diet group, rats in the high-salt diet group had increases in systolic blood pressure and diastolic blood pressure (P < 0.05); collagen fiber accumulation was observed in the heart and kidney tissues (P < 0.01), accompanied by alterations in mitochondrial ultrastructure, reduced mitochondrial volume, and increased density of the mitochondrial double membrane. Additionally, there were significant increases in both iron content and malondialdehyde levels (P < 0.05). Immunofluorescence and Western blot results both indicated significant downregulation (P < 0.05) of xCT and GPX4 proteins associated with ferroptosis in the high-salt diet group. CONCLUSIONS Ferroptosis is involved in the damage and fibrosis of the heart and kidney tissues in salt-sensitive hypertensive rats.
Collapse
Affiliation(s)
- Ya-Qi Huang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Kuang Peng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Jun Yan
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui-Lin Chen
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Pei-Yong Jiang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Ya-Fang Du
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiang Ling
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Si-Liang Zhang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Jie Wu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| |
Collapse
|
3
|
Da Silva Filho J, Herder V, Gibbins MP, Dos Reis MF, Melo GC, Haley MJ, Judice CC, Val FFA, Borba M, Tavella TA, de Sousa Sampaio V, Attipa C, McMonagle F, Wright D, de Lacerda MVG, Costa FTM, Couper KN, Marcelo Monteiro W, de Lima Ferreira LC, Moxon CA, Palmarini M, Marti M. A spatially resolved single-cell lung atlas integrated with clinical and blood signatures distinguishes COVID-19 disease trajectories. Sci Transl Med 2024; 16:eadk9149. [PMID: 39259811 DOI: 10.1126/scitranslmed.adk9149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/15/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
COVID-19 is characterized by a broad range of symptoms and disease trajectories. Understanding the correlation between clinical biomarkers and lung pathology during acute COVID-19 is necessary to understand its diverse pathogenesis and inform more effective treatments. Here, we present an integrated analysis of longitudinal clinical parameters, peripheral blood markers, and lung pathology in 142 Brazilian patients hospitalized with COVID-19. We identified core clinical and peripheral blood signatures differentiating disease progression between patients who recovered from severe disease compared with those who succumbed to the disease. Signatures were heterogeneous among fatal cases yet clustered into two patient groups: "early death" (<15 days until death) and "late death" (>15 days). Progression to early death was characterized systemically and in lung histopathological samples by rapid endothelial and myeloid activation and the presence of thrombi associated with SARS-CoV-2+ macrophages. In contrast, progression to late death was associated with fibrosis, apoptosis, and SARS-CoV-2+ epithelial cells in postmortem lung tissue. In late death cases, cytotoxicity, interferon, and T helper 17 (TH17) signatures were only detectable in the peripheral blood after 2 weeks of hospitalization. Progression to recovery was associated with higher lymphocyte counts, TH2 responses, and anti-inflammatory-mediated responses. By integrating antemortem longitudinal blood signatures and spatial single-cell lung signatures from postmortem lung samples, we defined clinical parameters that could be used to help predict COVID-19 outcomes.
Collapse
Affiliation(s)
- João Da Silva Filho
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Institute of Parasitology Zurich (IPZ), VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Matthew P Gibbins
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Institute of Parasitology Zurich (IPZ), VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Monique Freire Dos Reis
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Brazil
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Federal University of Amazonas, Manaus, Brazil
- Amazonas Oncology Control Center Foundation, Manaus, Brazil
| | | | - Michael J Haley
- Department of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Carla Cristina Judice
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Fernando Fonseca Almeida Val
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Mayla Borba
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Delphina Rinaldi Abdel Aziz Emergency Hospital (HPSDRA), Manaus, Brazil
| | - Tatyana Almeida Tavella
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
- INSERM U1016, CNRS UMR8104, University of Paris Cité, Institut Cochin, Paris, France
| | | | - Charalampos Attipa
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Fiona McMonagle
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Glasgow Imaging Facility/School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Derek Wright
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Marcus Vinicius Guimaraes de Lacerda
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
- University of Texas Medical Branch, Galveston, TX, USA
| | | | - Kevin N Couper
- Department of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Wuelton Marcelo Monteiro
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Luiz Carlos de Lima Ferreira
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Christopher Alan Moxon
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- (C.A.M.)
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- (M.P.)
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Institute of Parasitology Zurich (IPZ), VetSuisse Faculty, University of Zurich, Zurich, Switzerland
- (M.M.)
| |
Collapse
|
4
|
Li X, Ding H, Feng G, Huang Y. Role of angiotensin converting enzyme in pathogenesis associated with immunity in cardiovascular diseases. Life Sci 2024; 352:122903. [PMID: 38986897 DOI: 10.1016/j.lfs.2024.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Angiotensin converting enzyme (ACE) is not only a critical component in the renin-angiotensin system (RAS), but also suggested as an important mediator for immune response and activity, such as immune cell mobilization, metabolism, biogenesis of immunoregulatory molecules, etc. The chronic duration of cardiovascular diseases (CVD) has been increasingly considered to be triggered by uncontrolled pathologic immune reactions from myeloid cells and lymphocytes. Considering the potential anti-inflammatory effect of the traditional antihypertensive ACE inhibitor (ACEi), we attempt to elucidate whether ACE and its catalytically relevant substances as well as signaling pathways play a role in the immunity-related pathogenesis of common CVD, such as arterial hypertension, atherosclerosis and arrythmias. ACEi was also reported to benefit the prognoses of COVID-19-positive patients with CVD, and COVID-19 disease with preexisting CVD or subsequent cardiovascular damage is featured by a significant influx of immune cells and proinflammatory molecules, suggesting that ACE may also participate in COVID-19 induced cardiovascular injury, because COVID-19 disease basically triggers an overactive pathologic immune response. Hopefully, the ACE inhibition and manipulation of those associated bioactive signals could supplement the current medicinal management of various CVD and bring greater benefit to patients' cardiovascular health.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Huasheng Ding
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Gaoke Feng
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Grosso D, Wagner JL, O’Connor A, Keck K, Huang Y, Wang ZX, Mehler H, Leiby B, Flomenberg P, Gergis U, Nikbakht N, Morris M, Karp J, Peedin A, Flomenberg N. Safety and feasibility of third-party cytotoxic T lymphocytes for high-risk patients with COVID-19. Blood Adv 2024; 8:4113-4124. [PMID: 38885482 PMCID: PMC11345373 DOI: 10.1182/bloodadvances.2024013344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
ABSTRACT Cytotoxic T lymphocytes (CTLs) destroy virally infected cells and are critical for the elimination of viral infections such as those caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Delayed and dysfunctional adaptive immune responses to SARS-CoV-2 are associated with poor outcomes. Treatment with allogeneic SARS-CoV-2-specific CTLs may enhance cellular immunity in high-risk patients providing a safe, direct mechanism of treatment. Thirty high-risk ambulatory patients with COVID-19 were enrolled in a phase 1 trial assessing the safety of third party, SARS-CoV-2-specific CTLs. Twelve interventional patients, 6 of whom were immunocompromised, matched the HLA-A∗02:01 restriction of the CTLs and received a single infusion of 1 of 4 escalating doses of a product containing 68.5% SARS-CoV-2-specific CD8+ CTLs/total cells. Symptom improvement and resolution in these patients was compared with an observational group of 18 patients lacking HLA-A∗02:01 who could receive standard of care. No dose-limiting toxicities were observed at any dosing level. Nasal swab polymerase chain reaction testing showed ≥88% and >99% viral elimination from baseline in all patients at 4 and 14 days after infusion, respectively. The CTLs did not interfere with the development of endogenous anti-SARS-CoV-2 humoral or cellular responses. T-cell receptor β analysis showed persistence of donor-derived SARS-CoV-2-specific CTLs through the end of the 6-month follow-up period. Interventional patients consistently reported symptomatic improvement 2 to 3 days after infusion, whereas improvement was more variable in observational patients. SARS-CoV-2-specific CTLs are a potentially feasible cellular therapy for COVID-19 illness. This trial was registered at www.clinicaltrials.gov as #NCT04765449.
Collapse
Affiliation(s)
- Dolores Grosso
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - John L. Wagner
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Allyson O’Connor
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Kaitlyn Keck
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Yanping Huang
- Department of Pathology and Genomic Medicine, Histocompatibility and Immunogenetics Laboratory, Thomas Jefferson University, Philadelphia, PA
| | - Zi-Xuan Wang
- Departments of Surgery and Pathology, Molecular and Genomic Pathology Laboratory, Thomas Jefferson University, Philadelphia, PA
| | - Hilary Mehler
- Department of Pathology and Genomic Medicine, Histocompatibility and Immunogenetics Laboratory, Thomas Jefferson University, Philadelphia, PA
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Phyllis Flomenberg
- Division of Infectious Diseases, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Usama Gergis
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Cutaneous Lymphoma Clinic, Thomas Jefferson University, Philadelphia, PA
| | - Michael Morris
- Department of Emergency Medicine, Thomas Jefferson University Washington Township Hospital, Sewell, NJ
| | - Julie Karp
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Alexis Peedin
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Neal Flomenberg
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
6
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
7
|
Wang Z, Fan H, Wu J. Food-Derived Up-Regulators and Activators of Angiotensin Converting Enzyme 2: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12896-12914. [PMID: 38810024 PMCID: PMC11181331 DOI: 10.1021/acs.jafc.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a key enzyme in the renin-angiotensin system (RAS), also serving as an amino acid transporter and a receptor for certain coronaviruses. Its primary role is to protect the cardiovascular system via the ACE2/Ang (1-7)/MasR cascade. Given the critical roles of ACE2 in regulating numerous physiological functions, molecules that can upregulate or activate ACE2 show vast therapeutic value. There are only a few ACE2 activators that have been reported, a wide range of molecules, including food-derived compounds, have been reported as ACE2 up-regulators. Effective doses of bioactive peptides range from 10 to 50 mg/kg body weight (BW)/day when orally administered for 1 to 7 weeks. Protein hydrolysates require higher doses at 1000 mg/kg BW/day for 20 days. Phytochemicals and vitamins are effective at doses typically ranging from 10 to 200 mg/kg BW/day for 3 days to 6 months, while Traditional Chinese Medicine requires doses of 1.25 to 12.96 g/kg BW/day for 4 to 8 weeks. ACE2 activation is linked to its hinge-bending region, while upregulation involves various signaling pathways, transcription factors, and epigenetic modulators. Future studies are expected to explore novel roles of ACE2 activators or up-regulators in disease treatments and translate the discovery to bedside applications.
Collapse
Affiliation(s)
- Zihan Wang
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Hongbing Fan
- Department
of Animal and Food Sciences, University
of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianping Wu
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
8
|
Khoramjoo M, Wang K, Srinivasan K, Gheblawi M, Mandal R, Rousseau S, Wishart D, Prasad V, Richer L, Cheung AM, Oudit GY. Plasma taurine level is linked to symptom burden and clinical outcomes in post-COVID condition. PLoS One 2024; 19:e0304522. [PMID: 38837993 DOI: 10.1371/journal.pone.0304522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND A subset of individuals (10-20%) experience post-COVID condition (PCC) subsequent to initial SARS-CoV-2 infection, which lacks effective treatment. PCC carries a substantial global burden associated with negative economic and health impacts. This study aims to evaluate the association between plasma taurine levels with self-reported symptoms and adverse clinical outcomes in patients with PCC. METHODS AND FINDINGS We analyzed the plasma proteome and metabolome of 117 individuals during their acute COVID-19 hospitalization and at the convalescence phase six-month post infection. Findings were compared with 28 age and sex-matched healthy controls. Plasma taurine levels were negatively associated with PCC symptoms and correlated with markers of inflammation, tryptophan metabolism, and gut dysbiosis. Stratifying patients based on the trajectories of plasma taurine levels during six-month follow-up revealed a significant association with adverse clinical events. Increase in taurine levels during the transition to convalescence were associated with a reduction in adverse events independent of comorbidities and acute COVID-19 severity. In a multivariate analysis, increased plasma taurine level between acute and convalescence phase was associated with marked protection from adverse clinical events with a hazard ratio of 0.13 (95% CI: 0.05-0.35; p<0.001). CONCLUSIONS Taurine emerges as a promising predictive biomarker and potential therapeutic target in PCC. Taurine supplementation has already demonstrated clinical benefits in various diseases and warrants exploration in large-scale clinical trials for alleviating PCC.
Collapse
Affiliation(s)
- Mobin Khoramjoo
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kaiming Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karthik Srinivasan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud Gheblawi
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupasri Mandal
- The Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | - Simon Rousseau
- Department of Medicine, McGill University & The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - David Wishart
- The Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | - Vinay Prasad
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Lawrence Richer
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Angela M Cheung
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Gavin Y Oudit
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Sun J, Edsfeldt A, Svensson J, Ruge T, Goncalves I, Swärd P. ADAM-17 Activity and Its Relation to ACE2: Implications for Severe COVID-19. Int J Mol Sci 2024; 25:5911. [PMID: 38892098 PMCID: PMC11172796 DOI: 10.3390/ijms25115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
There is a lack of studies aiming to assess cellular a disintegrin and metalloproteinase-17 (ADAM-17) activity in COVID-19 patients and the eventual associations with the shedding of membrane-bound angiotensin-converting enzyme 2 (mACE2). In addition, studies that investigate the relationship between ACE2 and ADAM-17 gene expressions in organs infected by SARS-CoV-2 are lacking. We used data from the Massachusetts general hospital COVID-19 study (306 COVID-19 patients and 78 symptomatic controls) to investigate the association between plasma levels of 33 different ADAM-17 substrates and COVID-19 severity and mortality. As a surrogate of cellular ADAM-17 activity, an ADAM-17 substrate score was calculated. The associations between soluble ACE2 (sACE2) and the ADAM-17 substrate score, renin, key inflammatory markers, and lung injury markers were investigated. Furthermore, we used data from the Genotype-Tissue Expression (GTEx) database to evaluate ADAM-17 and ACE2 gene expressions by age and sex in ages between 20-80 years. We found that increased ADAM-17 activity, as estimated by the ADAM-17 substrates score, was associated with COVID-19 severity (p = 0.001). ADAM-17 activity was also associated with increased mortality but did not reach statistical significance (p = 0.06). Soluble ACE2 showed the strongest positive correlation with the ADAM-17 substrate score, follow by renin, interleukin-6, and lung injury biomarkers. The ratio of ADAM-17 to ACE2 gene expression was highest in the lung. This study indicates that increased ADAM-17 activity is associated with severe COVID-19. Our findings also indicate that there may a bidirectional relationship between membrane-bound ACE2 shedding via increased ADAM-17 activity, dysregulated renin-angiotensin system (RAS) and immune signaling. Additionally, differences in ACE2 and ADAM-17 gene expressions between different tissues may be of importance in explaining why the lung is the organ most severely affected by COVID-19, but this requires further evaluation in prospective studies.
Collapse
Affiliation(s)
- Jiangming Sun
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences Malmö, Lund University, 205 02 Malmö, Sweden; (J.S.); (A.E.); (I.G.)
| | - Andreas Edsfeldt
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences Malmö, Lund University, 205 02 Malmö, Sweden; (J.S.); (A.E.); (I.G.)
- Department of Cardiology, Skåne University Hospital, 205 02 Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 221 00 Lund, Sweden
| | - Joel Svensson
- Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden;
| | - Toralph Ruge
- Department of Emergency and Internal Medicine, Skånes University Hospital, 214 28 Malmö, Sweden;
- Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Isabel Goncalves
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences Malmö, Lund University, 205 02 Malmö, Sweden; (J.S.); (A.E.); (I.G.)
- Department of Cardiology, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Per Swärd
- Clinical and Molecular Osteoporosis Research Unit, Departments of Orthopedics and Clinical Sciences, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden
| |
Collapse
|
10
|
Luo D, Bai M, Zhang W, Wang J. The possible mechanism and research progress of ACE2 involved in cardiovascular injury caused by COVID-19: a review. Front Cardiovasc Med 2024; 11:1409723. [PMID: 38863899 PMCID: PMC11165996 DOI: 10.3389/fcvm.2024.1409723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
ACE2 is the earliest receptor discovered to mediate the entry of SARS-CoV-2. In addition to the receptor, it also participates in complex pathological and physiological processes, including regulating the RAS system, apelin, KKS system, and immune system. In addition to affecting the respiratory system, viral infections also interact with cardiovascular diseases. SARS-CoV-2 can directly invade the cardiovascular system through ACE2; Similarly, cardiovascular diseases such as hypertension and coronary heart disease can affect ACE2 levels and exacerbate the disease, and ACE2 dysregulation may also be a potential mechanism for long-term acute sequelae of COVID-19. Since the SARS CoV-2 epidemic, many large population studies have tried to clarify the current focus of debate, that is, whether we should give COVID-19 patients ACEI and ARB drug treatment, but there is still no conclusive conclusion. We also discussed potential disease treatment options for ACE2 at present. Finally, we discussed the researchers' latest findings on ACE2 and their prospects for future research.
Collapse
Affiliation(s)
| | | | | | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Prato M, Tiberti N, Mazzi C, Gobbi F, Piubelli C, Longoni SS. The Renin-Angiotensin System (RAS) in COVID-19 Disease: Where We Are 3 Years after the Beginning of the Pandemic. Microorganisms 2024; 12:583. [PMID: 38543635 PMCID: PMC10975343 DOI: 10.3390/microorganisms12030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 11/12/2024] Open
Abstract
The RAS is a hormonal system playing a pivotal role in the control of blood pressure and electrolyte homeostasis, the alteration of which is associated with different pathologies, including acute respiratory distress syndrome (ARDS). As such, it is not surprising that a number of studies have attempted to elucidate the role and balance of the renin-angiotensin system (RAS) in COVID-19. In this review article, we will describe the evidence collected regarding the two main enzymes of the RAS (i.e., ACE and ACE2) and their principal molecular products (i.e., AngII and Ang1-7) in SARS-CoV-2 infection, with the overarching goal of drawing conclusions on their possible role as clinical markers in association with disease severity, progression, and outcome. Moreover, we will bring into the picture new experimental data regarding the systemic activity of ACE and ACE2 as well as the concentration of AngII and Ang1-7 in a cohort of 47 COVID-19 patients hospitalized at the IRCCS Sacro Cuore-Don Calabria Hospital (Negrar, Italy) between March and April 2020. Finally, we will discuss the possibility of considering this systemic pathway as a clinical marker for COVID-19.
Collapse
Affiliation(s)
- Marco Prato
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Cristina Mazzi
- Centre for Clinical Research, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Federico Gobbi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| |
Collapse
|
12
|
Zorad S, Skrabanova M, Zilkova M, Cente M, Turic Csokova N, Kovacech B, Cizkova D, Filipcik P. Angiotensin I and II Stimulate Cell Invasion of SARS-CoV-2: Potential Mechanism via Inhibition of ACE2 Arm of RAS. Physiol Res 2024; 73:27-35. [PMID: 38466002 PMCID: PMC11019619 DOI: 10.33549/physiolres.935198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/27/2023] [Indexed: 04/26/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), one of the key enzymes of the renin-angiotensin system (RAS), plays an important role in SARS-CoV-2 infection by functioning as a virus receptor. Angiotensin peptides Ang I and Ang II, the substrates of ACE2, can modulate the binding of SARS-CoV-2 Spike protein to the ACE2 receptor. In the present work, we found that co incubation of HEK-ACE2 and Vero E6 cells with the SARS-CoV-2 Spike pseudovirus (PVP) resulted in stimulation of the virus entry at low and high micromolar concentrations of Ang I and Ang II, respectively. The potency of Ang I and Ang II stimulation of virus entry corresponds to their binding affinity to ACE2 catalytic pocket with 10 times higher efficiency of Ang II. The Ang II induced mild increase of PVP infectivity at 20 microM; while at 100 microM the increase (129.74+/-3.99 %) was highly significant (p<0.001). Since the angiotensin peptides act in HEK ACE2 cells without the involvement of angiotensin type I receptors, we hypothesize that there is a steric interaction between the catalytic pocket of the ACE2 enzyme and the SARS-CoV-2 S1 binding domain. Oversaturation of the ACE2 with their angiotensin substrate might result in increased binding and entry of the SARS-CoV-2. In addition, the analysis of angiotensin peptides metabolism showed decreased ACE2 and increased ACE activity upon SARS-CoV-2 action. These effects should be taken into consideration in COVID-19 patients suffering from comorbidities such as the over-activated renin-angiotensin system as a mechanism potentially influencing the SARS-CoV-2 invasion into recipient cells.
Collapse
Affiliation(s)
- S Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic. and Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang X, Liu J, Deng X, Bo L. Understanding COVID-19-associated endothelial dysfunction: role of PIEZO1 as a potential therapeutic target. Front Immunol 2024; 15:1281263. [PMID: 38487535 PMCID: PMC10937424 DOI: 10.3389/fimmu.2024.1281263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Due to its high infectivity, the pandemic has rapidly spread and become a global health crisis. Emerging evidence indicates that endothelial dysfunction may play a central role in the multiorgan injuries associated with COVID-19. Therefore, there is an urgent need to discover and validate novel therapeutic strategies targeting endothelial cells. PIEZO1, a mechanosensitive (MS) ion channel highly expressed in the blood vessels of various tissues, has garnered increasing attention for its potential involvement in the regulation of inflammation, thrombosis, and endothelial integrity. This review aims to provide a novel perspective on the potential role of PIEZO1 as a promising target for mitigating COVID-19-associated endothelial dysfunction.
Collapse
Affiliation(s)
| | | | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
14
|
He Y, Gang B, Zhang M, Bai Y, Wan Z, Pan J, Liu J, Liu G, Gu W. ACE2 improves endothelial cell function and reduces acute lung injury by downregulating FAK expression. Int Immunopharmacol 2024; 128:111535. [PMID: 38246001 DOI: 10.1016/j.intimp.2024.111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Endothelial cell (EC) barrier dysfunction and increased adhesion of immune inflammatory cells to ECs crucially contribute to acute lung injury (ALI). Angiotensin-converting enzyme 2 (ACE2) is an essential regulator of the renin-angiotensin system (RAS) and exerts characteristic vasodilatory and anti-inflammatory effects. SARS-COV-2 infects the lungs by binding to ACE2, which can lead to dysregulation of ACE2 expression, further leading to ALI with predominantly vascular inflammation and eventually to more severe acute respiratory distress syndrome (ARDS). Therefore, restoration of ACE2 expression represents a valuable therapeutic approach for SARS-COV-2-related ALI/ARDS. In this study, we used polyinosinic-polycytidylic acid (Poly(I:C)), a double-stranded RNA analog, to construct a mouse ALI model that mimics virus infection. After Poly(I:C) exposure, ACE2 was downregulated in mouse lung tissues and in cultured ECs. Treatment with DIZE, an ACE2-activating compound, upregulated ACE2 expression and relieved ALI in mice. DIZE also improved barrier function and reduced the number of THP-1 monocytes adhering to cultured ECs. Focal adhesion kinase (FAK) and phosphorylated FAK (p-FAK) levels were increased in lung tissues of ALI mice as well as in Poly(I:C)-treated ECs in vitro. Both DIZE and the FAK inhibitor PF562271 decreased FAK/p-FAK expression in both ALI models, attenuating ALI severity in vivo and increasing barrier function and reducing monocyte adhesion in cultured ECs. Furthermore, in vivo experiments using ANG 1-7 and the MAS inhibitor A779 corroborated that DIZE-mediated ACE2 activation stimulated the activity of the ANG 1-7/MAS axis, which inhibited FAK/p-FAK expression in the mouse lung. These findings provide further evidence that activation of ACE2 in ECs may be a valuable therapeutic strategy for ALI.
Collapse
Affiliation(s)
- Yixuan He
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Baocai Gang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Yuting Bai
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Ziyu Wan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Jiesong Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Jie Liu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan Province, PR China
| | - Guoquan Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China.
| | - Wei Gu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China.
| |
Collapse
|
15
|
Li JX, Xiao X, Teng F, Li HH. Myeloid ACE2 protects against septic hypotension and vascular dysfunction through Ang-(1-7)-Mas-mediated macrophage polarization. Redox Biol 2024; 69:103004. [PMID: 38141575 PMCID: PMC10788636 DOI: 10.1016/j.redox.2023.103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a new identified member of the renin-angiotensin-aldosterone system (RAAS) that cleaves angiotensin II (Ang II) to Ang (1-7), which exerts anti-inflammatory and antioxidative activities via binding with Mas receptor (MasR). However, the functional role of ACE2 in sepsis-related hypotension remains unknown. Our results indicated that sepsis significantly reduced blood pressure and led to disruption between ACE-Ang II and ACE2-Ang (1-7) balance. ACE2 knock-in mice exhibited improved sepsis-induced mortality, hypotension and vascular dysfunction, while ACE2 knockout mice exhibited the opposite effects. Bone marrow transplantation and in vitro experiments confirmed that myeloid ACE2 exerted a protective role by suppressing oxidative stress, NO production and macrophage polarization via the Ang (1-7)-MasR-NF-κB and STAT1 pathways. Thus, ACE2 on myeloid cells could protect against sepsis-mediated hypotension and vascular dysfunction, and upregulating ACE2 may represent a promising therapeutic option for septic patients with hypotension.
Collapse
Affiliation(s)
- Jia-Xin Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Xue Xiao
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Fei Teng
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China.
| |
Collapse
|
16
|
Ahiadu BK, Grunbaum A, Rozza N, Kremer RB, Rusling JF. Levels of Angiotensin and Kinin Metabolite Peptides Related to COVID-19 Severity. ACS Pharmacol Transl Sci 2024; 7:186-194. [PMID: 38230277 PMCID: PMC10789123 DOI: 10.1021/acsptsci.3c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
In addition to crucial roles in normal human biology, peptide metabolites of the renin-angiotensin (RAS) and kallikrein-kinin systems (KKS) have been reported to be altered in COVID-19 patients. Here, we evaluate new data on RAS and KKS peptides in COVID-19 patient serum obtained from a recently developed, fully validated, and optimized stable isotope labeling LC-MS peptide assay. We found that the RAS peptides angiotensin (ANG) 1, 2, 1-5, and 1-7 were downregulated compared to COVID-free surrogate controls, while the KKS peptides Brad, Brad 1-8, and Brad 1-7 were upregulated. This paper focuses on uncovering the possible diagnostic value of these peptides using receiver operating characteristic (ROC) analyses of these data. ROC plots confirmed that all of the analyte peptides in 80 serum samples from COVID-19 patients were significantly altered from "normal" values of the control samples. The best diagnostic sensitivities and selectivities for COVID vs no COVID were found in ROC plots for Brad and Brad 1-7 (both 99% sensitivity, 100% selectivity). We then analyzed levels of all the peptides grouped according to preassigned values of the World Health Organization (WHO) COVID-19 Severity Index. ROC plots differentiated patients with a high WHO severity index from those with a low WHO severity index with moderate success, with BRAD (73% sensitivity, 79% selectivity) and Ang 1-7 (75% sensitivity, 65% selectivity) giving the best diagnostic performance. Results suggest the possible diagnostic value of these peptides as biomarkers to help identify moderate and serious COVID-19 cases at relatively early stages.
Collapse
Affiliation(s)
- Ben K. Ahiadu
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ami Grunbaum
- Department
of Medicine, McGill University Health Centre, 1001 Decarie Blvd., Montreal QC H4A, Canada
| | - Nicholas Rozza
- Department
of Medicine, McGill University Health Centre, 1001 Decarie Blvd., Montreal QC H4A, Canada
| | - Richard B. Kremer
- Department
of Medicine, McGill University Health Centre, 1001 Decarie Blvd., Montreal QC H4A, Canada
| | - James F. Rusling
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Department
of Surgery and Neag Cancer Center, UConn
Health, Farmington, Connecticut 06232, United States
- School
of Chemistry, National University of Ireland
Galway, Galway H91 TK33, Ireland
- Institute
of Materials Science, University of Connecticut, 97 N. Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
17
|
Mroueh A, Fakih W, Carmona A, Trimaille A, Matsushita K, Marchandot B, Qureshi AW, Gong DS, Auger C, Sattler L, Reydel A, Hess S, Oulehri W, Vollmer O, Lessinger JM, Meyer N, Pieper MP, Jesel L, Bäck M, Schini-Kerth V, Morel O. COVID-19 promotes endothelial dysfunction and thrombogenicity: role of proinflammatory cytokines/SGLT2 prooxidant pathway. J Thromb Haemost 2024; 22:286-299. [PMID: 37797691 DOI: 10.1016/j.jtha.2023.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND COVID-19 is associated with an increased risk of cardiovascular complications. Although cytokines have a predominant role in endothelium damage, the precise molecular mechanisms are far from being elucidated. OBJECTIVES The present study hypothesized that inflammation in patients with COVID-19 contributes to endothelial dysfunction through redox-sensitive SGLT2 overexpression and investigated the protective effect of SGLT2 inhibition by empagliflozin. METHODS Human plasma samples were collected from patients with acute, subacute, and long COVID-19 (n = 100), patients with non-COVID-19 and cardiovascular risk factors (n = 50), and healthy volunteers (n = 25). Porcine coronary artery endothelial cells (ECs) were incubated with plasma (10%). Protein expression levels were determined using Western blot analyses and immunofluorescence staining, mRNA expression by quantitative reverse transcription-polymerase chain reaction, and the level of oxidative stress by dihydroethidium staining. Platelet adhesion, aggregation, and thrombin generation were determined. RESULTS Increased plasma levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α, monocyte chemoattractant protein-1, and soluble intercellular adhesion molecule-1 were observed in patients with COVID-19. Exposure of ECs to COVID-19 plasma with high cytokines levels induced redox-sensitive upregulation of SGLT2 expression via proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor-α which, in turn, fueled endothelial dysfunction, senescence, NF-κB activation, inflammation, platelet adhesion and aggregation, von Willebrand factor secretion, and thrombin generation. The stimulatory effect of COVID-19 plasma was blunted by neutralizing antibodies against proinflammatory cytokines and empagliflozin. CONCLUSION In patients with COVID-19, proinflammatory cytokines induced a redox-sensitive upregulation of SGLT2 expression in ECs, which in turn promoted endothelial injury, senescence, platelet adhesion, aggregation, and thrombin generation. SGLT2 inhibition with empagliflozin appeared as an attractive strategy to restore vascular homeostasis in COVID-19.
Collapse
Affiliation(s)
- Ali Mroueh
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Walaa Fakih
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Adrien Carmona
- Division of Cardiovascular Medicine, Strasbourg University Hospital, Strasbourg, France
| | - Antonin Trimaille
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France; Division of Cardiovascular Medicine, Strasbourg University Hospital, Strasbourg, France. https://twitter.com/A_Trimaille
| | - Kensuke Matsushita
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France; Division of Cardiovascular Medicine, Strasbourg University Hospital, Strasbourg, France
| | - Benjamin Marchandot
- Division of Cardiovascular Medicine, Strasbourg University Hospital, Strasbourg, France
| | - Abdul Wahid Qureshi
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Dal-Seong Gong
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France
| | - Laurent Sattler
- Department Laboratory Haematology, Centre for Thrombosis and Haemostasis, Strasbourg University Hospital, Strasbourg, France
| | - Antje Reydel
- Division of Cardiovascular Medicine, Strasbourg University Hospital, Strasbourg, France
| | - Sébastien Hess
- Division of Cardiovascular Medicine, Strasbourg University Hospital, Strasbourg, France
| | - Walid Oulehri
- Department of Critical Care, Strasbourg University Hospital, Strasbourg, France
| | - Olivier Vollmer
- Department of Immunology and Internal Medicine, Strasbourg University Hospital, Strasbourg, France
| | - Jean-Marc Lessinger
- Biochemistry and Molecular Biology Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Nicolas Meyer
- Department of Biostatistics, Strasbourg University Hospital, Strasbourg, France
| | | | - Laurence Jesel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France; Division of Cardiovascular Medicine, Strasbourg University Hospital, Strasbourg, France
| | - Magnus Bäck
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden; Section of Translational Cardiology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden; Institut National de la Sante et de la Recherche Medicale U1116, Université de Lorraine, Nancy, France
| | - Valérie Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France.
| | - Olivier Morel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, FMTS, Strasbourg, France; Division of Cardiovascular Medicine, Strasbourg University Hospital, Strasbourg, France; Department Laboratory Haematology, Centre for Thrombosis and Haemostasis, Strasbourg University Hospital, Strasbourg, France; Vietnam National Heart Institute, Bach Mai Hospital, Hanoi, Vietnam.
| |
Collapse
|
18
|
He W, Xu K, Ni L, Wu J, Zhang Y, Miao K, Wang L, Wang DW. Myocardial injury and related mortality in hospitalized patients with COVID-19 during the Omicron pandemic: new perspectives and insights. Virol Sin 2023; 38:940-950. [PMID: 37839550 PMCID: PMC10786663 DOI: 10.1016/j.virs.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Myocardial injury is one of the most common comorbidity in SARS-CoV-2 infected patients, and has poor prognosis. However, the incidence of myocardial injury in patients with SARS-CoV-2 infection has not been sufficiently investigated during the Omicron wave. We conducted a retrospective study of 2690 patients with confirmed SARS-CoV-2 Omicron infection from Tongji Hospital. The results indicated that the myocardial injury accounted for 30.8% of the total patients with SARS-CoV-2 infection and was associated with higher in-hospital mortality than those without injury before and after propensity score matching (PSM) [adjusted hazard ratio (HR), 10.61; 95% confidence interval (CI), 7.76-14.51; P < 0.001; adjusted HR, 2.70; 95% CI, 1.86-3.93; P < 0.001; respectively]. Further, the levels of cytokines (IL-1β, IL-6, IL-10, and TNF-α) in patients with myocardial injury were higher than those without injury, and the higher levels of cytokines in the myocardial injury group were associated with increased mortality. Administration of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (ACEI/ARB) could significantly reduce the mortality in patients with myocardial injury (adjusted HR, 0.52; 95% CI, 0.38-0.71; P < 0.001). Additionally, the level of angiotensin II increased in patients with SARS-CoV-2 infection was even higher in myocardial injury group compared to those without injury. Collectively, the study summarized the clinical characteristic and outcome of SARS-CoV-2 infected patients with myocardial injury during the Omicron wave in China, and validated the protective role of ACEI/ARB in improving the survival of those with myocardial injury.
Collapse
Affiliation(s)
- Wu He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ke Xu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Li Ni
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Yuxuan Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Kun Miao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Luyun Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
19
|
Wang K, Khoramjoo M, Srinivasan K, Gordon PMK, Mandal R, Jackson D, Sligl W, Grant MB, Penninger JM, Borchers CH, Wishart DS, Prasad V, Oudit GY. Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long COVID. Cell Rep Med 2023; 4:101254. [PMID: 37890487 PMCID: PMC10694626 DOI: 10.1016/j.xcrm.2023.101254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
The post-acute sequelae of COVID-19 (PASC), also known as long COVID, is often associated with debilitating symptoms and adverse multisystem consequences. We obtain plasma samples from 117 individuals during and 6 months following their acute phase of infection to comprehensively profile and assess changes in cytokines, proteome, and metabolome. Network analysis reveals sustained inflammatory response, platelet degranulation, and cellular activation during convalescence accompanied by dysregulation in arginine biosynthesis, methionine metabolism, taurine metabolism, and tricarboxylic acid (TCA) cycle processes. Furthermore, we develop a prognostic model composed of 20 molecules involved in regulating T cell exhaustion and energy metabolism that can reliably predict adverse clinical outcomes following discharge from acute infection with 83% accuracy and an area under the curve (AUC) of 0.96. Our study reveals pertinent biological processes during convalescence that differ from acute infection, and it supports the development of specific therapies and biomarkers for patients suffering from long COVID.
Collapse
Affiliation(s)
- Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mobin Khoramjoo
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Karthik Srinivasan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Paul M K Gordon
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rupasri Mandal
- The Metabolomics Innovation Center, University of Alberta, Edmonton, AB, Canada
| | - Dana Jackson
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada; Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Josef M Penninger
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - David S Wishart
- The Metabolomics Innovation Center, University of Alberta, Edmonton, AB, Canada
| | - Vinay Prasad
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Physiology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
20
|
Pan M, Goncalves I, Edsfeldt A, Sun J, Swärd P. Genetic Predisposition to Elevated Levels of Circulating ADAM17 Is Associated with the Risk of Severe COVID-19. Int J Mol Sci 2023; 24:15879. [PMID: 37958866 PMCID: PMC10647461 DOI: 10.3390/ijms242115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
High levels of ADAM17 activity have emerged as an important mediator in severe COVID-19. This study aims to characterize eventual causal relationships between ADAM17 and COVID-19. Using Mendelian randomization analyses, we examined the causal effects of circulating ADAM17 on COVID-19 outcomes using summary statistics from large, genome-wide association studies of ADAM17 (up to 35,559 individuals) from the Icelandic Cancer Project and deCODE genetics, as well as critically ill COVID-19 patients (cases: 13,769; controls: 1,072,442), hospitalized COVID-19 patients (cases: 32,519; controls: 2,062,805) and reported SARS-CoV-2 infections (cases: 122,616; controls: 2,475,240) from the COVID-19 Host Genetics Initiative. The Mendelian randomization (MR) analyses demonstrated that a 1 standard deviation increase in genetically determined circulating ADAM17 (extracellular domain) was associated with an increased risk of developing critical ill COVID-19 (odds ratio [OR] = 1.26, 95% confidence interval [CI]:1.03-1.55). The multivariable MR analysis suggested a direct causal role of circulating ADAM17 (extracellular domain) in the risk of developing critical COVID-19 (OR = 1.09; 95% CI:1.01-1.17) when accounting for body mass index. No causal effect for the cytoplasmic domain of ADAM17 on COVID-19 was observed. Our results suggest that an increased genetic susceptibility to elevated levels of circulating ADAM17 (extracellular domain) is associated with a higher risk of suffering from severe COVID-19, strengthening the idea that the timely selective inhibition of ADAM17 could be a potential therapeutic target worthy of investigation.
Collapse
Affiliation(s)
- Mengyu Pan
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences, Lund University, Jan Waldenströms Gata 35, 205 02 Malmö, Sweden; (M.P.); (I.G.)
| | - Isabel Goncalves
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences, Lund University, Jan Waldenströms Gata 35, 205 02 Malmö, Sweden; (M.P.); (I.G.)
- Department of Cardiology, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Andreas Edsfeldt
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences, Lund University, Jan Waldenströms Gata 35, 205 02 Malmö, Sweden; (M.P.); (I.G.)
- Department of Cardiology, Skåne University Hospital, 205 02 Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 221 00 Lund, Sweden
| | - Jiangming Sun
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences, Lund University, Jan Waldenströms Gata 35, 205 02 Malmö, Sweden; (M.P.); (I.G.)
| | - Per Swärd
- Clinical and Molecular Osteoporosis Research Unit, Departments of Orthopaedics and Clinical Sciences, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden;
| |
Collapse
|
21
|
Jiang S, Yang H, Sun Z, Zhang Y, Li Y, Li J. The basis of complications in the context of SARS-CoV-2 infection: Pathological activation of ADAM17. Biochem Biophys Res Commun 2023; 679:37-46. [PMID: 37666046 DOI: 10.1016/j.bbrc.2023.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The virulence of SARS-CoV-2 decreases with increasing infectivity, the primary approaches for antiviral treatments will be preventing or minimizing the complications resulting from virus infection. ADAM metallopeptidase domain 17 (ADAM17) activation by SARS-CoV-2 infection has a dual effect on the development of the disease: increased release of inflammatory cytokines and dysregulation of Angiotensin converting enzyme II (ACE2) on cell surfaces, inflammatory cytokine infiltration and loss of ACE2 protective function lead to a significant increase in the incidence of related complications. Importantly, pathologically activated ADAM17 showed superior features than S protein in regulating ACE2 expression and participating in the intra cellular replication of SARS-CoV-2. In short, SARS-CoV-2 elicits only a limited immune response when it promotes its own replication and pathogenicity through ADAM17. Therefore, the pathological activation of ADAM17 may also represent a diminished innate antiviral defense and an altered strategy of SARS-CoV-2 infection. In this review, we summarized recent advances in our understanding of the pathophysiology of ADAM17, with a focus on the new findings that SARS-CoV-2 affects ADAM17 expression through Furin protein converting enzyme and Mitogen-activated protein kinase (MAPK) pathway, and raises the hypothesis that SARS-CoV-2 may mediates the pathological activation of ADAM17 by hijacking the actin regulatory pathway, and discussed the underlying biological principles.
Collapse
Affiliation(s)
| | - Hao Yang
- Zunyi Medical University Guizhou, China
| | | | - Yi Zhang
- Zunyi Medical University Guizhou, China
| | - Yan Li
- Zunyi Medical University Guizhou, China
| | - Jida Li
- Zunyi Medical University Guizhou, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, China.
| |
Collapse
|
22
|
Shi Y, Zheng Z, Wang P, Wu Y, Liu Y, Liu J. Development and validation of a predicted nomogram for mortality of COVID-19: a multicenter retrospective cohort study of 4,711 cases in multiethnic. Front Med (Lausanne) 2023; 10:1136129. [PMID: 37724179 PMCID: PMC10505438 DOI: 10.3389/fmed.2023.1136129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is an infectious disease spreading rapidly worldwide. As it quickly spreads and can cause severe disease, early detection and treatment may reduce mortality. Therefore, the study aims to construct a risk model and a nomogram for predicting the mortality of COVID-19. Methods The original data of this study were from the article "Neurologic Syndromes Predict Higher In-Hospital Mortality in COVID-19." The database contained 4,711 multiethnic patients. In this secondary analysis, a statistical difference test was conducted for clinical demographics, clinical characteristics, and laboratory indexes. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analysis were applied to determine the independent predictors for the mortality of COVID-19. A nomogram was conducted and validated according to the independent predictors. The area under the curve (AUC), the calibration curve, and the decision curve analysis (DCA) were carried out to evaluate the nomogram. Results The mortality of COVID-19 is 24.4%. LASSO and multivariate logistic regression analysis suggested that risk factors for age, PCT, glucose, D-dimer, CRP, troponin, BUN, LOS, MAP, AST, temperature, O2Sats, platelets, Asian, and stroke were independent predictors of CTO. Using these independent predictors, a nomogram was constructed with good discrimination (0.860 in the C index) and internal validation (0.8479 in the C index), respectively. The calibration curves and the DCA showed a high degree of reliability and precision for this clinical prediction model. Conclusion An early warning model based on accessible variates from routine clinical tests to predict the mortality of COVID-19 were conducted. This nomogram can be conveniently used to facilitate identifying patients who might develop severe disease at an early stage of COVID-19. Further studies are warranted to validate the prognostic ability of the nomogram.
Collapse
Affiliation(s)
- Yuchen Shi
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Ze Zheng
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Ping Wang
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yongxin Wu
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanci Liu
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jinghua Liu
- Center for Coronary Artery Disease (CCAD), Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
23
|
Wang Y, Guo H, Wang G, Zhai J, Du B. COVID-19 as a Trigger for Type 1 Diabetes. J Clin Endocrinol Metab 2023; 108:2176-2183. [PMID: 36950864 DOI: 10.1210/clinem/dgad165] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Type 1 diabetes (T1D) is usually caused by immune-mediated destruction of islet β cells, and genetic and environmental factors are thought to trigger autoimmunity. Convincing evidence indicates that viruses are associated with T1D development and progression. During the COVID-19 pandemic, cases of hyperglycemia, diabetic ketoacidosis, and new diabetes increased, suggesting that SARS-CoV-2 may be a trigger for or unmask T1D. Possible mechanisms of β-cell damage include virus-triggered cell death, immune-mediated loss of pancreatic β cells, and damage to β cells because of infection of surrounding cells. This article examines the potential pathways by which SARS-CoV-2 affects islet β cells in these 3 aspects. Specifically, we emphasize that T1D can be triggered by SARS-CoV-2 through several autoimmune mechanisms, including epitope spread, molecular mimicry, and bystander activation. Given that the development of T1D is often a chronic, long-term process, it is difficult to currently draw firm conclusions as to whether SARS-CoV-2 causes T1D. This area needs to be focused on in terms of the long-term outcomes. More in-depth and comprehensive studies with larger cohorts of patients and long-term clinical follow-ups are required.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Guo
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Gongquan Wang
- Department of Cardiology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiawei Zhai
- Department of Cardiology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bing Du
- Department of Cardiology, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
24
|
Sansoè G, Aragno M. New Viral Diseases and New Possible Remedies by Means of the Pharmacology of the Renin-Angiotensin System. J Renin Angiotensin Aldosterone Syst 2023; 2023:3362391. [PMID: 37476705 PMCID: PMC10356449 DOI: 10.1155/2023/3362391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
All strains of SARS-CoV-2, as well as previously described SARS-CoV and MERS-CoV, bind to ACE2, the cell membrane receptor of β-coronaviruses. Monocarboxypeptidase ACE2 activity stops upon viral entry into cells, leading to inadequate tissue production of angiotensin 1-7 (Ang1-7). Acute lung injury due to the human respiratory syncytial virus (hRSV) or avian influenza A H7N9 and H5N1 viruses is also characterized by significant downregulation of lung ACE2 and increased systemic levels of angiotensin II (Ang II). Restoration of Ang1-7 anti-inflammatory, antifibrotic, vasodilating, and natriuretic properties was attempted at least in some COVID-19 patients through i.v. infusion of recombinant human ACE2 or intranasal administration of the modified ACE2 protein, with inconsistent clinical results. Conversely, use of ACE inhibitors (ACEis), which increase ACE2 cell expression, seemed to improve the prognosis of hypertensive patients with COVID-19. To restore Ang1-7 tissue levels in all these viral diseases and avoid the untoward effects frequently seen with ACE2 systemic administration, a different strategy may be hypothesized. Experimentally, when metallopeptidase inhibitors block ACE2, neprilysin (NEP), highly expressed in higher and lower airways, starts cleaving angiotensin I (Ang I) into Ang1-7. We suggest a discerning use of ACEis in normohypertensive patients with β-coronavirus disease as well as in atypical pneumonia caused by avian influenza viruses or hRSV to block the main ACE-dependent effects: Ang II synthesis and Ang1-7 degradation into angiotensin 1-5. At the same time, i.v.-infused Ang I, which is not hypertensive provided ACE is inhibited, may become the primary substrate for local Ang1-7 synthesis via ubiquitous NEP; i.e., NEP could replace inadequate ACE2 function if Ang I was freely available. Moreover, inhibitors of chymase, a serine endopeptidase responsible for 80% of Ang II-forming activity in tissues and vessel walls, could protect patients with atypical pneumonia from Ang II-mediated microvascular damage without reducing arterial blood pressure.
Collapse
Affiliation(s)
- Giovanni Sansoè
- Gastroenterology Unit, Humanitas Institute, Gradenigo Hospital, Corso Regina Margherita 10, 10153 Torino, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
25
|
Abstract
The current epidemic of corona virus disease (COVID-19) has resulted in an immense health burden that became the third leading cause of death and potentially contributed to a decline in life expectancy in the United States. The severe acute respiratory syndrome-related coronavirus-2 binds to the surface-bound peptidase angiotensin-converting enzyme 2 (ACE2, EC 3.4.17.23) leading to tissue infection and viral replication. ACE2 is an important enzymatic component of the renin-angiotensin system (RAS) expressed in the lung and other organs. The peptidase regulates the levels of the peptide hormones Ang II and Ang-(1-7), which have distinct and opposing actions to one another, as well as other cardiovascular peptides. A potential consequence of severe acute respiratory syndrome-related coronavirus-2 infection is reduced ACE2 activity by internalization of the viral-ACE2 complex and subsequent activation of the RAS (higher ratio of Ang II:Ang-[1-7]) that may exacerbate the acute inflammatory events in COVID-19 patients and possibly contribute to the effects of long COVID-19. Moreover, COVID-19 patients present with an array of autoantibodies to various components of the RAS including the peptide Ang II, the enzyme ACE2, and the AT1 AT2 and Mas receptors. Greater disease severity is also evident in male COVID-19 patients, which may reflect underlying sex differences in the regulation of the 2 distinct functional arms of the RAS. The current review provides a critical evaluation of the evidence for an activated RAS in COVID-19 subjects and whether this system contributes to the greater severity of severe acute respiratory syndrome-related coronavirus-2 infection in males as compared with females.
Collapse
Affiliation(s)
- Mark C. Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
26
|
Chen Q, Li Y, Bie B, Zhao B, Zhang Y, Fang S, Li S, Zhang Y. P38 MAPK activated ADAM17 mediates ACE2 shedding and promotes cardiac remodeling and heart failure after myocardial infarction. Cell Commun Signal 2023; 21:73. [PMID: 37046278 PMCID: PMC10091339 DOI: 10.1186/s12964-023-01087-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/23/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Heart failure (HF) after myocardial infarction (MI) is a prevalent disease with a poor prognosis. Relieving pathological cardiac remodeling and preserving cardiac function is a critical link in the treatment of post-MI HF. Thus, more new therapeutic targets are urgently needed. The expression of ADAM17 is increased in patients with acute MI, but its functional role in post-MI HF remains unclear. METHODS To address this question, we examined the effects of ADAM17 on the severity and prognosis of HF within 1 year of MI in 152 MI patients with or without HF. In mechanistic studies, the effects of ADAM17 on ventricular remodeling and systolic function were extensively assessed at the tissue and cellular levels by establishing animal model of post-MI HF and in vitro hypoxic cell model. RESULTS High levels of ADAM17 predicted a higher incidence of post-MI HF, poorer cardiac function and higher mortality. Animal studies demonstrated that ADAM17 promoted the occurrence of post-MI HF, as indicated by increased infarct size, cardiomyocyte hypertrophy, myocardial interstitial collagen deposition and cardiac failure. ADAM17 knock down significantly improved pathological cardiac remodeling and cardiac function in mice with MI. Mechanistically, activated ADAM17 inhibited the cardioprotective effects of ACE2 by promoting hydrolytic shedding of the transmembrane protein ACE2 in cardiomyocytes, which subsequently mediated the occurrence of cardiac remodeling and the progression of heart failure. Moreover, the activation of ADAM17 in hypoxic cardiomyocytes was dependent on p38 MAPK phosphorylation at threonine 735. CONCLUSIONS These data highlight a novel and important mechanism for ADAM17 to cause post-MI HF, which will hopefully be a new potential target for early prediction or intervention of post-MI HF. Video abstract.
Collapse
Affiliation(s)
- Qi Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- Harbin Medical University, No. 157 JianBao Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yilan Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Bike Bie
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- Harbin Medical University, No. 157 JianBao Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Bin Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- Harbin Medical University, No. 157 JianBao Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yanxiu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- Harbin Medical University, No. 157 JianBao Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Shaohong Fang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Shuijie Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Yao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
27
|
Volchkova EV, Titova ON, Kuzubova NA, Lebedeva ES. Potential predictors of severe course and outcome of community-acquired pneumonia. PULMONOLOGIYA 2023; 33:225-232. [DOI: 10.18093/0869-0189-2023-33-2-225-232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Severe pneumonia is a condition with a high risk of death and mandatory hospitalization in the intensive care unit. The incidence of severe pneumonia has increased dramatically during the pandemic of new coronavirus infection. Timely diagnosis and early initiation of adequate treatment of severe pneumonia are crucial for improving survival of critically ill patients.The aim of this review was to analyze published scientific research on molecular markers that allow to objectively assess the severity of pneumonia and to determine treatment tactics based on the predicted outcome upon admission to the hospital. A systematic search was conducted in the electronic databases PubMed, Medline, Web of Science for the period 2019 - 2022.Conclusion. The review focuses on the prognostic role of a number of markers of immune response, vascular transformation, as well as angiotensin II and angiotensin converting enzyme-2. Further prospective studies of potential predictors of severe pneumonia will enable using marker molecules in a comprehensive clinical and laboratory diagnosis for early prediction of the hospitalized patient’s condition and expected outcome.
Collapse
Affiliation(s)
- E. V. Volchkova
- Pediatrics and Child Health Research Institute of the “Central Clinical Hospital of the Russian Academy of Sciences”, Ministry of Education and Science of Russia
| | - O. N. Titova
- Federal State Budgetary Educational Institution of Higher Education “Academician I.P.Pavlov First St. Petersburg State Medical University”, Ministry of Healthcare of Russian Federation
| | - N. A. Kuzubova
- Federal State Budgetary Educational Institution of Higher Education “Academician I.P.Pavlov First St. Petersburg State Medical University”, Ministry of Healthcare of Russian Federation
| | - E. S. Lebedeva
- Federal State Budgetary Educational Institution of Higher Education “Academician I.P.Pavlov First St. Petersburg State Medical University”, Ministry of Healthcare of Russian Federation
| |
Collapse
|
28
|
Nappi F, Avtaar Singh SS. SARS-CoV-2-Induced Myocarditis: A State-of-the-Art Review. Viruses 2023; 15:916. [PMID: 37112896 PMCID: PMC10145666 DOI: 10.3390/v15040916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
In this review, we investigated whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can directly cause myocarditis with severe myocardial damage induced by viral particles. A review of the major data published from 2020 to 2022 was performed by consulting the major databases alongside first-hand experiences that emerged from the cardiac biopsies and autopsy examinations of patients who died of SARS-CoV-2 infections. From this study, a significantly large amount of data suggests that the Dallas criteria were met in a residual percentage of patients, demonstrating that SARS-CoV-2 myocarditis was a rare clinical and pathological entity that occurred in a small percentage of subjects. All cases described here were highly selected and subjected to autopsies or endomyocardial biopsies (EMBs). The most important discovery, through the detection of the SARS-CoV-2 genome using the polymerase chain reaction, consisted in the presence of the viral genome in the lung tissue of most of the patients who died from COVID-19. However, the discovery of the SARS-CoV-2 viral genome was a rare event in cardiac tissue from autopsy findings of patients who died of myocarditis It is important to emphasize that myocardial inflammation alone, as promoted by macrophages and T cell infiltrations, can be observed in noninfectious deaths and COVID-19 cases, but the extent of each cause is varied, and in neither case have such findings been reported to support clinically relevant myocarditis. Therefore, in the different infected vs. non-infected samples examined, none of our findings provide a definitive histochemical assessment for the diagnosis of myocarditis in the majority of cases evaluated. We report evidence suggesting an extremely low frequency of viral myocarditis that has also been associated with unclear therapeutic implications. These two key factors strongly point towards the use of an endomyocardial biopsy to irrefutably reach a diagnosis of viral myocarditis in the context of COVID-19.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | |
Collapse
|
29
|
Yang X, Lin C, Liu J, Zhang Y, Deng T, Wei M, Pan S, Lu L, Li X, Tian G, Mi J, Xu F, Yang C. Identification of the regulatory mechanism of ACE2 in COVID-19-induced kidney damage with systems genetics approach. J Mol Med (Berl) 2023; 101:449-460. [PMID: 36951969 PMCID: PMC10034233 DOI: 10.1007/s00109-023-02304-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
Studies showed that SARS-CoV-2 can directly target the kidney and induce renal damage. As the cell surface receptor for SARS-CoV-2 infection, the angiotensin-converting enzyme 2 (ACE2) plays a pivotal role for renal physiology and function. Thus, it is important to understand ACE2 through which pathway influences the pathogenesis of renal damage induced by COVID-19. In this study, we first performed an eQTL mapping for Ace2 in kidney tissues in 53 BXD mice strains. Results demonstrated that Ace2 is highly expressed and strongly controlled by a genetic locus on chromosome 16 in the kidney, with six genes (Dnase1, Vasn, Usp7, Abat, Mgrn1, and Rbfox1) dominated as the upstream modulator, as they are highly correlated with Ace2 expression. Gene co-expression analysis showed that Ace2 co-variates are significantly involved in the renin-angiotensin system (RAS) pathway which acts as a reno-protector. Importantly, we also found that Ace2 is positively correlated with Pdgf family members, particularly Pdgfc, which showed the most association among the 76 investigated growth factors. Mammalian Phenotype Ontology enrichment indicated that the cognate transcripts for both Ace2 and Pdgfc were mainly involved in regulating renal physiology and morphology. Among which, Cd44, Egfr, Met, Smad3, and Stat3 were identified as hub genes through protein-protein interaction analysis. Finally, in aligning with our systems genetics findings, we found ACE2, pdgf family members, and RAS genes decreased significantly in the CAKI-1 kidney cancer cells treated with S protein and receptor binding domain structural protein. Collectively, our data suggested that ACE2 work with RAS, PDGFC, as well as their cognate hub genes to regulate renal function, which could guide for future clinical prevention and targeted treatment for COVID-19-induced renal damage outcomes. KEY MESSAGES: • Ace2 is highly expressed and strongly controlled by a genetic locus on chromosome 16 in the kidney. • Ace2 co-variates are enriched in the RAS pathway. • Ace2 is strongly correlated with the growth factor Pdgfc. • Ace2 and Pdgfc co-expressed genes involved in the regulation of renal physiology and morphology. • SARS-CoV-2 spike glycoprotein induces down-regulation of Ace2, RAS, and Pdgfc.
Collapse
Affiliation(s)
- Xueling Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264008, China
| | - Jian Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, China
| | - Ya Zhang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Tingzhi Deng
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Mengna Wei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Shuijing Pan
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China.
| | - Fuyi Xu
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China.
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Shandong, Yantai, 264003, China.
| |
Collapse
|
30
|
Oudit GY, Wang K, Viveiros A, Kellner MJ, Penninger JM. Angiotensin-converting enzyme 2-at the heart of the COVID-19 pandemic. Cell 2023; 186:906-922. [PMID: 36787743 PMCID: PMC9892333 DOI: 10.1016/j.cell.2023.01.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
ACE2 is the indispensable entry receptor for SARS-CoV and SARS-CoV-2. Because of the COVID-19 pandemic, it has become one of the most therapeutically targeted human molecules in biomedicine. ACE2 serves two fundamental physiological roles: as an enzyme, it alters peptide cascade balance; as a chaperone, it controls intestinal amino acid uptake. ACE2's tissue distribution, affected by co-morbidities and sex, explains the broad tropism of coronaviruses and the clinical manifestations of SARS and COVID-19. ACE2-based therapeutics provide a universal strategy to prevent and treat SARS-CoV-2 infections, applicable to all SARS-CoV-2 variants and other emerging zoonotic coronaviruses exploiting ACE2 as their cellular receptor.
Collapse
Affiliation(s)
- Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Max J Kellner
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
31
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
32
|
Wang Z, Xie X, Wang M, Ding M, Gu S, Xing X, Sun X. Analysis of common and characteristic actions of Panax ginseng and Panax notoginseng in wound healing based on network pharmacology and meta-analysis. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
33
|
Highly pathogenic coronaviruses and the kidney. Biomed Pharmacother 2022; 156:113807. [PMID: 36242850 PMCID: PMC9550661 DOI: 10.1016/j.biopha.2022.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Since the end of 2019, the outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has triggered a pneumonia epidemic, posing a significant public health challenge in 236 countries, territories, and regions worldwide. Clinically, in addition to the symptoms of pulmonary infection, many patients with SARS-CoV-2 infections, especially those with a critical illness, eventually develop multiple organ failure in which damage to the kidney function is common, ultimately leading to severe consequences such as increased mortality and morbidity. To date, three coronaviruses have set off major global public health security incidents: Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2. Among the diseases caused by the coronaviruses, the coronavirus disease 2019 (COVID-19) has been the most impactful and harmful. Similar to with SARS-CoV-2 infections, previous studies have shown that kidney injury is also common and prominent in patients with the two other highly pathogenic coronaviruses. Therefore, in this review, we aimed to comprehensively summarize the epidemiological and clinical characteristics of these three pandemic-level infections, provide a deep analysis of the potential mechanism of COVID-19 in various types of kidney diseases, and explore the causes of secondary kidney diseases of SARS-CoV-2, so as to provide a reference for further research and the clinical prevention of kidney damage caused by coronaviruses.
Collapse
|
34
|
Viveiros A, Noyce RS, Gheblawi M, Colombo D, Bilawchuk LM, Clemente-Casares X, Marchant DJ, Kassiri Z, Del Nonno F, Evans DH, Oudit GY. SARS-CoV-2 infection downregulates myocardial ACE2 and potentiates cardiac inflammation in humans and hamsters. Am J Physiol Heart Circ Physiol 2022; 323:H1262-H1269. [PMID: 36367689 PMCID: PMC9705018 DOI: 10.1152/ajpheart.00578.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myocardial pathologies resulting from SARS-CoV-2 infections are consistently rising with mounting case rates and reinfections; however, the precise global burden is largely unknown and will have an unprecedented impact. Understanding the mechanisms of COVID-19-mediated cardiac injury is essential toward the development of cardioprotective agents that are urgently needed. Assessing novel therapeutic strategies to tackle COVID-19 necessitates an animal model that recapitulates human disease. Here, we sought to compare SARS-CoV-2-infected animals with patients with COVID-19 to identify common mechanisms of cardiac injury. Two-month-old hamsters were infected with either the ancestral (D614) or Delta variant (B.1.617.2) of SARS-CoV-2 for 2 days, 7 days, and/or 14 days. We measured viral RNA and cytokine expression at the earlier time points to capture the initial stages of infection in the lung and heart. We assessed myocardial angiotensin-converting enzyme 2 (ACE2), the entry receptor for the SARS-CoV-2 virus, and cardioprotective enzyme, as well as markers for inflammatory cell infiltration in the hamster hearts at days 7 and 14. In parallel, human hearts were stained for ACE2, viral nucleocapsid, and inflammatory cells. Indeed, we identify myocardial ACE2 downregulation and myeloid cell burden as common events in both hamsters and humans infected with SARS-CoV-2, and we propose targeting downstream ACE2 downregulation as a therapeutic avenue that warrants clinical investigation.NEW & NOTEWORTHY Cardiac manifestations of COVID-19 in humans are mirrored in the SARS-CoV-2 hamster model, recapitulating myocardial damage, ACE2 downregulation, and a consistent pattern of immune cell infiltration independent of viral dose and variant. Therefore, the hamster model is a valid approach to study therapeutic strategies for COVID-19-related heart disease.
Collapse
Affiliation(s)
- Anissa Viveiros
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada,2Mazankowski Alberta Heart Institute, University of
Alberta, Edmonton, Alberta, Canada
| | - Ryan S. Noyce
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud Gheblawi
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniele Colombo
- 5Pathology Unit, IRCCS Istituto Nazionale per le Malattie
Infettive “Lazzaro Spallanzani”, Rome, Italy
| | - Leanne M. Bilawchuk
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Xavier Clemente-Casares
- 4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - David J. Marchant
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Franca Del Nonno
- 5Pathology Unit, IRCCS Istituto Nazionale per le Malattie
Infettive “Lazzaro Spallanzani”, Rome, Italy
| | - David H. Evans
- 3Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada,4Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y. Oudit
- 1Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada,2Mazankowski Alberta Heart Institute, University of
Alberta, Edmonton, Alberta, Canada,6Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Abstract
SARS-CoV-2 gains cell entry via angiotensin-converting enzyme (ACE) 2, a membrane-bound enzyme of the "alternative" (alt) renin-angiotensin system (RAS). ACE2 counteracts angiotensin II by converting it to potentially protective angiotensin 1-7. Using mass spectrometry, we assessed key metabolites of the classical RAS (angiotensins I-II) and alt-RAS (angiotensins 1-7 and 1-5) pathways as well as ACE and ACE2 concentrations in 159 patients hospitalized with COVID-19, stratified by disease severity (severe, n = 76; non-severe: n = 83). Plasma renin activity (PRA-S) was calculated as the sum of RAS metabolites. We estimated ACE activity using the angiotensin II:I ratio (ACE-S) and estimated systemic alt-RAS activation using the ratio of alt-RAS axis metabolites to PRA-S (ALT-S). We applied mixed linear models to assess how PRA-S and ACE/ACE2 concentrations affected ALT-S, ACE-S, and angiotensins II and 1-7. Median angiotensin I and II levels were higher with severe versus non-severe COVID-19 (angiotensin I: 86 versus 30 pmol/L, p < 0.01; angiotensin II: 114 versus 58 pmol/L, p < 0.05), demonstrating activation of classical RAS. The difference disappeared with analysis limited to patients not taking a RAS inhibitor (angiotensin I: 40 versus 31 pmol/L, p = 0.251; angiotensin II: 76 versus 99 pmol/L, p = 0.833). ALT-S in severe COVID-19 increased with time (days 1-6: 0.12; days 11-16: 0.22) and correlated with ACE2 concentration (r = 0.831). ACE-S was lower in severe versus non-severe COVID-19 (1.6 versus 2.6; p < 0.001), but ACE concentrations were similar between groups and correlated weakly with ACE-S (r = 0.232). ACE2 and ACE-S trajectories in severe COVID-19, however, did not differ between survivors and non-survivors. Overall RAS alteration in severe COVID-19 resembled severity of disease-matched patients with influenza. In mixed linear models, renin activity most strongly predicted angiotensin II and 1-7 levels. ACE2 also predicted angiotensin 1-7 levels and ALT-S. No single factor or the combined model, however, could fully explain ACE-S. ACE2 and ACE-S trajectories in severe COVID-19 did not differ between survivors and non-survivors. In conclusion, angiotensin II was elevated in severe COVID-19 but was markedly influenced by RAS inhibitors and driven by overall RAS activation. ACE-S was significantly lower with severe COVID-19 and did not correlate with ACE concentrations. A shift to the alt-RAS axis because of increased ACE2 could partially explain the relative reduction in angiotensin II levels.
Collapse
|
36
|
Rocheleau GLY, Lee T, Russell JA. The authors reply. Crit Care Med 2022; 50:e797-e798. [PMID: 36227049 PMCID: PMC9555596 DOI: 10.1097/ccm.0000000000005650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Genevieve L Y Rocheleau
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- University of Limerick School of Medicine, Limerick, Ireland
| | - Terry Lee
- Centre for Health Evaluation and Outcomes Science (CHEOS), University of British Columbia, Vancouver, BC, Canada
| | - James A Russell
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Lennol MP, García-Ayllón MS, Esteban M, García-Arriaza J, Sáez-Valero J. Serum angiotensin-converting enzyme 2 as a potential biomarker for SARS-CoV-2 infection and vaccine efficacy. Front Immunol 2022; 13:1001951. [PMID: 36311758 PMCID: PMC9597869 DOI: 10.3389/fimmu.2022.1001951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Various species of the SARS-CoV-2 host cell receptor, the angiotensin-converting enzyme 2 (ACE2), are present in serum, which may result from virus entry and subsequent proteolytic processing of the membrane receptor. We have recently demonstrated changes of particular ACE2 species in virus infected humans, either cleaved fragments or circulating full-length species. Here, we further explore the potential of serum ACE2 as a biomarker to test SARS-CoV-2 infection and vaccine efficacy in virus susceptible transgenic K18-hACE2 mice expressing human ACE2. First, in serum samples derived from K18-hACE2 mice challenged with a lethal dose of SARS-CoV-2, we observed an increase in the levels of cleaved ACE2 fragment at day 2 post-challenge, which may represent the subsequent proteolytic processing through virus entry. These elevated levels were maintained until the death of the animals at day 6 post-challenge. The circulating full-length ACE2 form displayed a sizable peak at day 4, which declined at day 6 post-challenge. Noticeably, immunization with two doses of the MVA-CoV2-S vaccine candidate prevented ACE2 cleaved changes in serum of animals challenged with a lethal dose of SARS-CoV-2. The efficacy of the MVA-CoV2-S was extended to vaccinated mice after virus re-challenge. These findings highlight that ACE2 could be a potential serum biomarker for disease progression and vaccination against SARS-CoV-2.
Collapse
Affiliation(s)
- Matthew P. Lennol
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), San Juan de Alicante, Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), San Juan de Alicante, Spain
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Hospital General Universitario de Elche, Elche, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- *Correspondence: Juan García-Arriaza, ; Javier Sáez-Valero,
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Miguel Hernández, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), San Juan de Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- *Correspondence: Juan García-Arriaza, ; Javier Sáez-Valero,
| |
Collapse
|
38
|
Murata N, Yamada A, Fujito H, Hashimoto N, Nagao T, Tanaka Y, Fukumoto K, Arai R, Wakamatsu Y, Ebuchi Y, Monden M, Kojima K, Hayashi K, Gon Y, Okumura Y. Cardiovascular manifestations identified by multi-modality imaging in patients with long COVID. Front Cardiovasc Med 2022; 9:968584. [PMID: 36211553 PMCID: PMC9537639 DOI: 10.3389/fcvm.2022.968584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe possibility of permanent cardiovascular damage causing cardiovascular long COVID has been suggested; however, data are insufficient. This study investigated the prevalence of cardiovascular disorders, particularly in patients with cardiovascular long COVID using multi-modality imaging.MethodsA total of 584 patients admitted to the hospital due to COVID-19 between January 2020 and September 2021 were initially considered. Upon outpatient follow-up, 52 (9%) were suspected to have cardiovascular long COVID, had complaints of chest pain, dyspnea, or palpitations, and were finally enrolled in this study. This study is registered with the Japanese University Hospital Medical Information Network (UMIN 000047978).ResultsOf 52 patients with long COVID who were followed up in the outpatient clinic for cardiovascular symptoms, cardiovascular disorders were present in 27% (14/52). Among them, 15% (8/52) had myocardial injury, 8% (4/52) pulmonary embolisms, and 4% (2/52) both. The incidence of a severe condition (36% [5/14] vs. 8% [3/38], p = 0.014) and in-hospital cardiac events (71% [10/14] vs. 24% [9/38], p = 0.002) was significantly higher in patients with cardiovascular disorders than in those without. A multivariate logistic regression analysis revealed that a severe condition (OR, 5.789; 95% CI 1.442–45.220; p = 0.017) and in-hospital cardiac events (OR, 8.079; 95% CI 1.306–25.657; p = 0.021) were independent risk factors of cardiovascular disorders in cardiovascular long COVID patients.ConclusionsSuspicion of cardiovascular involvement in patients with cardiovascular long COVID in this study was approximately 30%. A severe condition during hospitalization and in-hospital cardiac events were risk factors of a cardiovascular sequalae in CV long COVID patients.
Collapse
Affiliation(s)
- Nobuhiro Murata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Akimasa Yamada
- Division of Cardiovascular Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hidesato Fujito
- Division of Cardiovascular Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Naoki Hashimoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuro Nagao
- Division of Cardiovascular Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yudai Tanaka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Katsunori Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Riku Arai
- Division of Cardiovascular Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yuji Wakamatsu
- Division of Cardiovascular Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasunari Ebuchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Masaki Monden
- Division of Cardiovascular Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Keisuke Kojima
- Division of Cardiovascular Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kentaro Hayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuo Okumura
- Division of Cardiovascular Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
- *Correspondence: Yasuo Okumura,
| |
Collapse
|
39
|
Vergara A, Wang K, Colombo D, Gheblawi M, Rasmuson J, Mandal R, Del Nonno F, Chiu B, Scholey JW, Soler MJ, Wishart DS, Oudit GY. Urinary angiotensin-converting enzyme 2 and metabolomics in COVID-19-mediated kidney injury. Clin Kidney J 2022; 16:272-284. [PMID: 36751625 PMCID: PMC9494506 DOI: 10.1093/ckj/sfac215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Angiotensin-converting enzyme 2 (ACE2), the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is highly expressed in the kidneys. Beyond serving as a crucial endogenous regulator of the renin-angiotensin system, ACE2 also possess a unique function to facilitate amino acid absorption. Our observational study sought to explore the relationship between urine ACE2 (uACE2) and renal outcomes in coronavirus disease 2019 (COVID-19). Methods In a cohort of 104 patients with COVID-19 without acute kidney injury (AKI), 43 patients with COVID-19-mediated AKI and 36 non-COVID-19 controls, we measured uACE2, urine tumour necrosis factor receptors I and II (uTNF-RI and uTNF-RII) and neutrophil gelatinase-associated lipocalin (uNGAL). We also assessed ACE2 staining in autopsy kidney samples and generated a propensity score-matched subgroup of patients to perform a targeted urine metabolomic study to describe the characteristic signature of COVID-19. Results uACE2 is increased in patients with COVID-19 and further increased in those that developed AKI. After adjusting uACE2 levels for age, sex and previous comorbidities, increased uACE2 was independently associated with a >3-fold higher risk of developing AKI [odds ratio 3.05 (95% confidence interval 1.23‒7.58), P = .017]. Increased uACE2 corresponded to a tubular loss of ACE2 in kidney sections and strongly correlated with uTNF-RI and uTNF-RII. Urine quantitative metabolome analysis revealed an increased excretion of essential amino acids in patients with COVID-19, including leucine, isoleucine, tryptophan and phenylalanine. Additionally, a strong correlation was observed between urine amino acids and uACE2. Conclusions Elevated uACE2 is related to AKI in patients with COVID-19. The loss of tubular ACE2 during SARS-CoV-2 infection demonstrates a potential link between aminoaciduria and proximal tubular injury.
Collapse
Affiliation(s)
- Ander Vergara
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kaiming Wang
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Daniele Colombo
- Department of Pathology, National Institute for Infectious Diseases “Lazzaro Spallanzani,” IRCCS, Rome, Italy
| | - Mahmoud Gheblawi
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jaslyn Rasmuson
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupasri Mandal
- Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | - Franca Del Nonno
- Department of Pathology, National Institute for Infectious Diseases “Lazzaro Spallanzani,” IRCCS, Rome, Italy
| | - Brian Chiu
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - James W Scholey
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | - María José Soler
- Department of Nephrology, Vall d’Hebron University Hospital, Barcelona, Spain,Nephrology and Transplantation Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - David S Wishart
- Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
40
|
Méndez-García LA, Escobedo G, Minguer-Uribe AG, Viurcos-Sanabria R, Aguayo-Guerrero JA, Carrillo-Ruiz JD, Solleiro-Villavicencio H. Role of the renin-angiotensin system in the development of COVID-19-associated neurological manifestations. Front Cell Neurosci 2022; 16:977039. [PMID: 36187294 PMCID: PMC9523599 DOI: 10.3389/fncel.2022.977039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 causes COVID-19, which has claimed millions of lives. This virus can infect various cells and tissues, including the brain, for which numerous neurological symptoms have been reported, ranging from mild and non-life-threatening (e.g., headaches, anosmia, dysgeusia, and disorientation) to severe and life-threatening symptoms (e.g., meningitis, ischemic stroke, and cerebral thrombosis). The cellular receptor for SARS-CoV-2 is angiotensin-converting enzyme 2 (ACE2), an enzyme that belongs to the renin-angiotensin system (RAS). RAS is an endocrine system that has been classically associated with regulating blood pressure and fluid and electrolyte balance; however, it is also involved in promoting inflammation, proliferation, fibrogenesis, and lipogenesis. Two pathways constitute the RAS with counter-balancing effects, which is the key to its regulation. The first axis (classical) is composed of angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and angiotensin type 1 receptor (AT1R) as the main effector, which -when activated- increases the production of aldosterone and antidiuretic hormone, sympathetic nervous system tone, blood pressure, vasoconstriction, fibrosis, inflammation, and reactive oxygen species (ROS) production. Both systemic and local classical RAS' within the brain are associated with cognitive impairment, cell death, and inflammation. The second axis (non-classical or alternative) includes ACE2, which converts Ang II to Ang-(1-7), a peptide molecule that activates Mas receptor (MasR) in charge of opposing Ang II/AT1R actions. Thus, the alternative RAS axis enhances cognition, synaptic remodeling, cell survival, cell signal transmission, and antioxidant/anti-inflammatory mechanisms in the brain. In a physiological state, both RAS axes remain balanced. However, some factors can dysregulate systemic and local RAS arms. The binding of SARS-CoV-2 to ACE2 causes the internalization and degradation of this enzyme, reducing its activity, and disrupting the balance of systemic and local RAS, which partially explain the appearance of some of the neurological symptoms associated with COVID-19. Therefore, this review aims to analyze the role of RAS in the development of the neurological effects due to SARS-CoV-2 infection. Moreover, we will discuss the RAS-molecular targets that could be used for therapeutic purposes to treat the short and long-term neurological COVID-19-related sequelae.
Collapse
Affiliation(s)
- Lucía A. Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
| | - Alan Gerardo Minguer-Uribe
- Laboratory of Molecular Neuropathology, Cellular Physiology Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Rebeca Viurcos-Sanabria
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
- PECEM, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - José A. Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
| | - José Damián Carrillo-Ruiz
- Research Directorate, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
- Department of Neurology and Neurosurgery, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Huixquilucan, Mexico
| | | |
Collapse
|
41
|
Gheblawi M, de Oliveira AA, Williams VR, John R, Grant MB, Scholey JW, Oudit GY. An advanced endothelial murine HFpEF model: eNOS is critical for angiotensin 1-7 rescue of the diabetic phenotype. J Mol Cell Cardiol 2022; 169:10-12. [PMID: 35489389 DOI: 10.1016/j.yjmcc.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Mahmoud Gheblawi
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda A de Oliveira
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Vanessa R Williams
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Rohan John
- Department of Pathology, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James W Scholey
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Gavin Y Oudit
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
42
|
Silva MG, Corradi GR, Pérez Duhalde JI, Nuñez M, Cela EM, Gonzales Maglio DH, Brizzio A, Salazar MR, Espeche WG, Gironacci MM. Plasmatic renin-angiotensin system in normotensive and hypertensive patients hospitalized with COVID-19. Biomed Pharmacother 2022; 152:113201. [PMID: 35661534 PMCID: PMC9135678 DOI: 10.1016/j.biopha.2022.113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
Background Besides its counterbalancing role of the renin-angiotensin system (RAS), angiotensin-converting enzyme (ACE) 2 is the receptor for the type 2 coronavirus that causes severe acute respiratory syndrome, the etiological agent of COVID-19. COVID-19 is associated with increased plasmatic ACE2 levels, although conflicting results have been reported regarding angiotensin (Ang) II and Ang-(1−7) levels. We investigated plasmatic ACE2 protein levels and enzymatic activity and Ang II and Ang-(1−7) levels in normotensive and hypertensive patients hospitalized with COVID-19 compared to healthy subjects. Methods Ang II and Ang-(1−7), and ACE2 activity and protein levels were measured in 93 adults (58 % (n = 54) normotensive and 42 % (n = 39) hypertensive) hospitalized with COVID-19. Healthy, normotensive (n = 33) and hypertensive (n = 7) outpatient adults comprised the control group. Results COVID-19 patients displayed higher ACE2 enzymatic activity and protein levels than healthy subjects. Within the COVID-19 group, ACE2 activity and protein levels were not different between normotensive and hypertensive-treated patients, not even between COVID-19 hypertensive patients under RAS blockade treatment and those treated with other antihypertensive medications. Ang II and Ang-(1−7) levels significantly decreased in COVID-19 patients. When COVID-19 patients under RAS blockade treatment were excluded from the analysis, ACE2 activity and protein levels remained higher and Ang II and Ang-(1−7) levels lower in COVID-19 patients compared to healthy people. Conclusions Our results support the involvement of RAS in COVID-19, even when patients under RAS blockade treatment were excluded. The increased circulating ACE2 suggest higher ACE2 expression and shedding.
Collapse
Affiliation(s)
- Mauro G Silva
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Gerardo R Corradi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Juan I Pérez Duhalde
- Unidad de Enfermedades Cardiometabólicas, Hospital San Martín de La Plata, La Plata, Argentina
| | - Myriam Nuñez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Matemáticas, Buenos Aires, Argentina
| | - Eliana M Cela
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU, Buenos Aires, Argentina
| | - Daniel H Gonzales Maglio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología-IDEHU, Buenos Aires, Argentina
| | - Ana Brizzio
- Unidad de Enfermedades Cardiometabólicas, Hospital San Martín de La Plata, La Plata, Argentina
| | - Martin R Salazar
- Unidad de Enfermedades Cardiometabólicas, Hospital San Martín de La Plata, La Plata, Argentina
| | - Walter G Espeche
- Unidad de Enfermedades Cardiometabólicas, Hospital San Martín de La Plata, La Plata, Argentina
| | - Mariela M Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
43
|
Clerbaux LA, Albertini MC, Amigó N, Beronius A, Bezemer GFG, Coecke S, Daskalopoulos EP, del Giudice G, Greco D, Grenga L, Mantovani A, Muñoz A, Omeragic E, Parissis N, Petrillo M, Saarimäki LA, Soares H, Sullivan K, Landesmann B. Factors Modulating COVID-19: A Mechanistic Understanding Based on the Adverse Outcome Pathway Framework. J Clin Med 2022; 11:4464. [PMID: 35956081 PMCID: PMC9369763 DOI: 10.3390/jcm11154464] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Addressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology. This framework aims to model the sequence of events leading to an adverse health outcome. Several linear AOPs depicting pathways from the binding of the virus to ACE2 up to clinical outcomes observed in COVID-19 have been developed and integrated into a network offering a unique overview of the mechanisms underlying the disease. As SARS-CoV-2 infectibility and ACE2 activity are the major starting points and inflammatory response is central in the development of COVID-19, we evaluated how those eleven intrinsic and extrinsic factors modulate those processes impacting clinical outcomes. Applying this AOP-aligned approach enables the identification of current knowledge gaps orientating for further research and allows to propose biomarkers to identify of high-risk patients. This approach also facilitates expertise synergy from different disciplines to address public health issues.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | | | - Núria Amigó
- Biosfer Teslab SL., 43204 Reus, Spain;
- Department of Basic Medical Sciences, Universitat Rovira i Virgili (URV), 23204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Gillina F. G. Bezemer
- Impact Station, 1223 JR Hilversum, The Netherlands;
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Evangelos P. Daskalopoulos
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Giusy del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Ceze, France;
| | - Alberto Mantovani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium;
| | - Elma Omeragic
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Nikolaos Parissis
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Mauro Petrillo
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Laura A. Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Helena Soares
- Laboratory of Immunobiology and Pathogenesis, Chronic Diseases Research Centre, Faculdade de Ciências Médicas Medical School, University of Lisbon, 1649-004 Lisbon, Portugal;
| | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, DC 20016, USA;
| | - Brigitte Landesmann
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| |
Collapse
|
44
|
Norambuena-Soto I, Lopez-Crisosto C, Martinez-Bilbao J, Hernandez-Fuentes C, Parra V, Lavandero S, Chiong M. Angiotensin-(1-9) in hypertension. Biochem Pharmacol 2022; 203:115183. [PMID: 35870482 DOI: 10.1016/j.bcp.2022.115183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
Angiotensin-(1-9) [Ang-(1-9)] is a peptide of the non-canonical renin-angiotensin system (RAS) synthesized from angiotensin I by the monopeptidase angiotensin-converting enzyme type 2 (ACE2). Using osmotic minipumps, infusion of Ang-(1-9) consistently reduces blood pressure in several rat hypertension models. In these animals, hypertension-induced end-organ damage is also decreased. Several pieces of evidence suggest that Ang-(1-9) is the endogenous ligand that binds and activates the type-2 angiotensin II receptor (AT2R). Activation of AT2R triggers different tissue-specific signaling pathways. This phenomenon could be explained by the ability of AT2R to form different heterodimers with other G protein-coupled receptors. Because of the antihypertensive and protective effects of AT2R activation by Ang-(1-9), associated with a short half-life of RAS peptides, several synthetic AT2R agonists have been synthesized and assayed. Some of them, particularly CGP42112, C21 and novokinin, have demonstrated antihypertensive properties. Only two synthetic AT2R agonists, C21 and LP2-3, have been tested in clinical trials, but none of them like an antihypertensive. Therefore, Ang-(1-9) is a promising antihypertensive drug that reduces hypertension-induced end-organ damage. However, further research is required to translate this finding successfully to the clinic.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carolina Hernandez-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
45
|
Savedchuk S, Raslan R, Nystrom S, Sparks MA. Emerging Viral Infections and the Potential Impact on Hypertension, Cardiovascular Disease, and Kidney Disease. Circ Res 2022; 130:1618-1641. [PMID: 35549373 DOI: 10.1161/circresaha.122.320873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Viruses are ubiquitous in the environment and continue to have a profound impact on human health and disease. The COVID-19 pandemic has highlighted this with impressive morbidity and mortality affecting the world's population. Importantly, the link between viruses and hypertension, cardiovascular disease, and kidney disease has resulted in a renewed focus and attention on this potential relationship. The virus responsible for COVID-19, SARS-CoV-2, has a direct link to one of the major enzymatic regulatory systems connected to blood pressure control and hypertension pathogenesis, the renin-angiotensin system. This is because the entry point for SARS-CoV-2 is the ACE2 (angiotensin-converting enzyme 2) protein. ACE2 is one of the main enzymes responsible for dampening the primary effector peptide Ang II (angiotensin II), metabolizing it to Ang-(1-7). A myriad of clinical questions has since emerged and are covered in this review. Several other viruses have been linked to hypertension, cardiovascular disease, and kidney health. Importantly, patients with high-risk apolipoprotein L1 (APOL1) alleles are at risk for developing the kidney lesion of collapsing glomerulopathy after viral infection. This review will highlight several emerging viruses and their potential unique tropisms for the kidney and cardiovascular system. We focus on SARS-CoV-2 as this body of literature in regards to cardiovascular disease has advanced significantly since the COVID-19 pandemic.
Collapse
Affiliation(s)
- Solomiia Savedchuk
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
| | - Rasha Raslan
- Internal Medicine, Virginia Commonwealth University, Richmond (R.R.)
| | - Sarah Nystrom
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC (S.S., S.N., M.A.S.)
- Renal Section, Durham VA Health Care System, NC (M.A.S.)
| |
Collapse
|
46
|
Turner AJ, Nalivaeva NN. Angiotensin-converting enzyme 2 (ACE2): Two decades of revelations and re-evaluation. Peptides 2022; 151:170766. [PMID: 35151768 PMCID: PMC8830188 DOI: 10.1016/j.peptides.2022.170766] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
Angiotensin-converting enzyme-2, or ACE2, is primarily a zinc-dependent peptidase and ectoenzyme expressed in numerous cell types and functioning as a counterbalance to ACE in the renin-angiotensin system. It was discovered 21 years ago more than 40 years after the discovery of ACE itself. Its primary physiological activity is believed to be in the conversion of angiotensin II to the vasodilatory angiotensin-(1-7) acting through the Mas receptor. As such it has been implicated in numerous pathological conditions, largely in a protective mode which has led to the search for ACE2 activatory mechanisms. ACE2 has a diverse substrate specificity allowing its participation in multiple peptide pathways. It also regulates aspects of amino acid transport through its homology with a membrane protein, collectrin. It also serves as a viral receptor for the SARS virus, and subsequently SARS-CoV2, driving the current COVID-19 pandemic. ACE2 therefore provides a therapeutic target for the treatment of COVID and understanding the biological events following viral binding can provide insight into the multiple pathologies caused by the virus, particularly inflammatory and vascular. In part this may relate to the ability of ACE2, like ACE, to be shed from the cell membrane. The shed form of ACE2 (sACE2) may be a factor in determining susceptibility to certain COVID pathologies. Hence, for just over 20 years, ACE2 has provided numerous surprises in the field of vasoactive peptides with, no doubt, more to come but it is its central role in COVID pathology that is producing the current intense interest in its biology.
Collapse
Affiliation(s)
- Anthony J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Natalia N Nalivaeva
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia; Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
47
|
Krenn K, Tretter V, Kraft F, Ullrich R. The Renin-Angiotensin System as a Component of Biotrauma in Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:806062. [PMID: 35498160 PMCID: PMC9043684 DOI: 10.3389/fphys.2021.806062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major concern in critical care medicine with a high mortality of over 30%. Injury to the lungs is caused not only by underlying pathological conditions such as pneumonia, sepsis, or trauma, but also by ventilator-induced lung injury (VILI) resulting from high positive pressure levels and a high inspiratory oxygen fraction. Apart from mechanical factors that stress the lungs with a specific physical power and cause volutrauma and barotrauma, it is increasingly recognized that lung injury is further aggravated by biological mediators. The COVID-19 pandemic has led to increased interest in the role of the renin-angiotensin system (RAS) in the context of ARDS, as the RAS enzyme angiotensin-converting enzyme 2 serves as the primary cell entry receptor for severe acute respiratory syndrome (SARS) coronavirus (CoV)-2. Even before this pandemic, studies have documented the involvement of the RAS in VILI and its dysregulation in clinical ARDS. In recent years, analytical tools for RAS investigation have made major advances based on the optimized precision and detail of mass spectrometry. Given that many clinical trials with pharmacological interventions in ARDS were negative, RAS-modifying drugs may represent an interesting starting point for novel therapeutic approaches. Results from animal models have highlighted the potential of RAS-modifying drugs to prevent VILI or treat ARDS. While these drugs have beneficial pulmonary effects, the best targets and application forms for intervention still have to be determined to avoid negative effects on the circulation in clinical settings.
Collapse
|
48
|
Díaz-Troyano N, Gabriel-Medina P, Weber S, Klammer M, Barquín-DelPino R, Castillo-Ribelles L, Esteban A, Hernández-González M, Ferrer-Costa R, Pumarola T, Rodríguez-Frías F. Soluble Angiotensin-Converting Enzyme 2 as a Prognostic Biomarker for Disease Progression in Patients Infected with SARS-CoV-2. Diagnostics (Basel) 2022; 12:diagnostics12040886. [PMID: 35453934 PMCID: PMC9031748 DOI: 10.3390/diagnostics12040886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Predicting disease severity in patients infected with SARS-CoV-2 is difficult. Soluble angiotensin-converting enzyme 2 (sACE2) arises from the shedding of membrane ACE2 (mACE2), which is a receptor for SARS-CoV-2 spike protein. We evaluated the predictive value of sACE2 compared with known biomarkers of inflammation and tissue damage (CRP, GDF-15, IL-6, and sFlt-1) in 850 patients with and without SARS-CoV-2 with different clinical outcomes. For univariate analyses, median differences between biomarker levels were calculated for the following patient groups (classified by clinical outcome): RT-PCR-confirmed SARS-CoV-2 positive (Groups 1−4); RT-PCR-confirmed SARS-CoV-2 negative following previous SARS-CoV-2 infection (Groups 5 and 6); and ‘SARS-CoV-2 unexposed’ patients (Group 7). Median levels of CRP, GDF-15, IL-6, and sFlt-1 were significantly higher in hospitalized patients with SARS-CoV-2 compared with discharged patients (all p < 0.001), whereas levels of sACE2 were significantly lower (p < 0.001). ROC curve analysis of sACE2 provided cut-offs for predicting hospital admission (≤0.05 ng/mL (positive predictive value: 89.1%) and ≥0.42 ng/mL (negative predictive value: 84.0%)). These findings support further investigation of sACE2, as a single biomarker or as part of a panel, to predict hospitalization risk and disease severity in patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Noelia Díaz-Troyano
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
- Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Pablo Gabriel-Medina
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
- Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Stephen Weber
- Roche Diagnostics GmbH, 82377 Penzberg, Germany; (S.W.); (M.K.)
| | - Martin Klammer
- Roche Diagnostics GmbH, 82377 Penzberg, Germany; (S.W.); (M.K.)
| | - Raquel Barquín-DelPino
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
| | - Laura Castillo-Ribelles
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
- Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Angels Esteban
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
| | - Manuel Hernández-González
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
- Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Immunology Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Roser Ferrer-Costa
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
| | - Tomas Pumarola
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
- Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Microbiology Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Biochemistry Department (Clinical Laboratories), Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (N.D.-T.); (P.G.-M.); (R.B.-D.); (L.C.-R.); (A.E.); (R.F.-C.)
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (M.H.-G.); (T.P.)
- Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
49
|
Lavine N, Ohayon A, Mahroum N. Renal autoimmunity: The role of bacterial and viral infections, an extensive review. Autoimmun Rev 2022; 21:103073. [PMID: 35245692 DOI: 10.1016/j.autrev.2022.103073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 02/27/2022] [Indexed: 02/08/2023]
Abstract
Autoimmunity is a process by which the loss of self-tolerance results in an immune attack against the body own tissues and organs. For autoimmunity to occur, various elements serving as triggers were described by which infections are considered one of the leading factors. In turn, renal involvement in autoimmune diseases, whether by an organ-specific attack, or as part of a systemic disease process, is well known. As bacterial and viral infections are considered to be common triggers for autoimmunity in general, we aimed to study their association with renal autoimmunity in particular. We performed an extensive search of the recent and relevant medical literature regarding renal autoimmunity syndromes such as infection-associated glomerulonephritis and vasculitis, associated with bacterial and viral infections. By utilizing PubMed and Google Scholar search engines, over 200 articles and case reports were reviewed. Among other mechanisms, direct infection of the renal parenchyma, molecular mimicry, induction of B-cells or secretion of superantigens, bacterial and viral pathogens were found to correlate with the development of renal autoimmunity. Nevertheless, this was not true for all pathogens, as some mimic autoimmune diseases and others show a surprisingly protective effect. The exact immunopathogenesis is yet to be determined, however. For conclusion, bacterial and viral infections are linked to renal autoimmunity by both direct damage and as mediators of systemic diseases. Further research particularly on the immunopathogenetic mechanisms of renal autoimmunity associated with infections is required.
Collapse
Affiliation(s)
- Noy Lavine
- St. George School of Medicine, University of London, London, UK; Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel.
| | - Aviran Ohayon
- St. George School of Medicine, University of London, London, UK; Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel
| | - Naim Mahroum
- Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel; International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
50
|
Teixeira JP, Barone S, Zahedi K, Soleimani M. Kidney Injury in COVID-19: Epidemiology, Molecular Mechanisms and Potential Therapeutic Targets. Int J Mol Sci 2022; 23:2242. [PMID: 35216358 PMCID: PMC8877127 DOI: 10.3390/ijms23042242] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/08/2023] Open
Abstract
As of December 2021, SARS-CoV-2 had caused over 250 million infections and 5 million deaths worldwide. Furthermore, despite the development of highly effective vaccines, novel variants of SARS-CoV-2 continue to sustain the pandemic, and the search for effective therapies for COVID-19 remains as urgent as ever. Though the primary manifestation of COVID-19 is pneumonia, the disease can affect multiple organs, including the kidneys, with acute kidney injury (AKI) being among the most common extrapulmonary manifestations of severe COVID-19. In this article, we start by reflecting on the epidemiology of kidney disease in COVID-19, which overwhelmingly demonstrates that AKI is common in COVID-19 and is strongly associated with poor outcomes. We also present emerging data showing that COVID-19 may result in long-term renal impairment and delve into the ongoing debate about whether AKI in COVID-19 is mediated by direct viral injury. Next, we focus on the molecular pathogenesis of SARS-CoV-2 infection by both reviewing previously published data and presenting some novel data on the mechanisms of cellular viral entry. Finally, we relate these molecular mechanisms to a series of therapies currently under investigation and propose additional novel therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- J. Pedro Teixeira
- Department of Internal Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (S.B.); (K.Z.)
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Sharon Barone
- Department of Internal Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (S.B.); (K.Z.)
- Research/Medicine Services, New Mexico Veterans Healthcare Medical Center, Albuquerque, NM 87108, USA
| | - Kamyar Zahedi
- Department of Internal Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (S.B.); (K.Z.)
- Research/Medicine Services, New Mexico Veterans Healthcare Medical Center, Albuquerque, NM 87108, USA
| | - Manoocher Soleimani
- Department of Internal Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (S.B.); (K.Z.)
- Research/Medicine Services, New Mexico Veterans Healthcare Medical Center, Albuquerque, NM 87108, USA
| |
Collapse
|