1
|
He Z, Hong L, Ling Y, Li S, Liu X, Wang X, Dong Q, Cheng X. Baseline Blood Pressure Was Associated with Hemispheric Cerebral Blood Flow in Acute Small Subcortical Infarcts. Cerebrovasc Dis 2024:1-9. [PMID: 39362195 DOI: 10.1159/000541700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024] Open
Abstract
INTRODUCTION While increased baseline blood pressure (BP) is a prevalent comorbidity in the acute phase of ischemic stroke, the association between baseline BP and the state of hemispheric perfusion in patients with acute small subcortical infarcts (SSIs) has not been studied in detail. The aim of this study was to investigate the relationship between baseline BP and hemispheric cerebral blood flow (CBF) in acute SSIs. METHODS This retrospective study included 101 patients with acute SSIs. Baseline hemispheric CBF was assessed through co-registration of baseline CT perfusion imaging and follow-up diffusion-weighted imaging. The association between baseline BP, CBF, and different cerebral small vessel disease (CSVD) biomarkers was assessed. RESULTS Baseline systolic BP (SBP) and diastolic BP (DBP) were negatively associated with contralateral hemispheric CBF after multivariate-adjusted linear analysis (SBP: β = -0.001, 95% CI: -0.002 to 0.000, p = 0.030; DBP: β = -0.002, 95% CI: -0.003∼0.001, p = 0.006). Among other CSVD biomarkers, the presence of any cerebral microbleeds showed a significant association with lower CBF in the contralateral hemisphere of the infarct lesion (r = -0.270, p = 0.035). CONCLUSION In patients with acute SSIs, increased baseline BP was associated with reduced CBF in the contralateral hemisphere of the infarct lesion, which probably could be interpreted by the exacerbation of the CSVD burden, suggesting a potential mechanistic link between BP autoregulation dysfunction and the aggravation of neurovascular impairment in SSIs.
Collapse
Affiliation(s)
- Zhijiao He
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China,
| | - Lan Hong
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yifeng Ling
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Siyuan Li
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinyu Liu
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinru Wang
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Deery HA, Liang E, Di Paolo R, Voigt K, Murray G, Siddiqui MN, Egan GF, Moran C, Jamadar SD. The association of regional cerebral blood flow and glucose metabolism in normative ageing and insulin resistance. Sci Rep 2024; 14:14574. [PMID: 38914735 PMCID: PMC11196590 DOI: 10.1038/s41598-024-65396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Rising rates of insulin resistance and an ageing population are set to exact an increasing toll on individuals and society. Here we examine the contribution of age and insulin resistance to the association of cerebral blood flow and glucose metabolism; both critical process in the supply of energy for the brain. Thirty-four younger (20-42 years) and 41 older (66-86 years) healthy adults underwent a simultaneous resting state MR/PET scan, including arterial spin labelling. Rates of cerebral blood flow and glucose metabolism were derived using a functional atlas of 100 brain regions. Older adults had lower cerebral blood flow than younger adults in 95 regions, reducing to 36 regions after controlling for cortical atrophy and blood pressure. Lower cerebral blood flow was also associated with worse working memory and slower reaction time in tasks requiring cognitive flexibility and response inhibition. Younger and older insulin sensitive adults showed small, negative correlations between relatively high rates of regional cerebral blood flow and glucose metabolism. This pattern was inverted in insulin resistant older adults, who showed hypoperfusion and hypometabolism across the cortex, and a positive correlation. In insulin resistant younger adults, the association showed inversion to positive correlations, although not to the extent seen in older adults. Our findings suggest that the normal course of ageing and insulin resistance alter the rates of and associations between cerebral blood flow and glucose metabolism. They underscore the criticality of insulin sensitivity to brain health across the adult lifespan.
Collapse
Affiliation(s)
- Hamish A Deery
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia.
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia.
| | - Emma Liang
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Robert Di Paolo
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Katharina Voigt
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Gerard Murray
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - M Navyaan Siddiqui
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Chris Moran
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne, VIC, 3004, Australia
| | - Sharna D Jamadar
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia.
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia.
| |
Collapse
|
3
|
Faraci FM, Scheer FA. Hypertension: Causes and Consequences of Circadian Rhythms in Blood Pressure. Circ Res 2024; 134:810-832. [PMID: 38484034 PMCID: PMC10947115 DOI: 10.1161/circresaha.124.323515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
Hypertension is extremely common, affecting approximately 1 in every 2 adults globally. Chronic hypertension is the leading modifiable risk factor for cardiovascular disease and premature mortality worldwide. Despite considerable efforts to define mechanisms that underlie hypertension, a potentially major component of the disease, the role of circadian biology has been relatively overlooked in both preclinical models and humans. Although the presence of daily and circadian patterns has been observed from the level of the genome to the whole organism, the functional and structural impact of biological rhythms, including mechanisms such as circadian misalignment, remains relatively poorly defined. Here, we review the impact of daily rhythms and circadian systems in regulating blood pressure and the onset, progression, and consequences of hypertension. There is an emphasis on the impact of circadian biology in relation to vascular disease and end-organ effects that, individually or in combination, contribute to complex phenotypes such as cognitive decline and the loss of cardiac and brain health. Despite effective treatment options for some individuals, control of blood pressure remains inadequate in a substantial portion of the hypertensive population. Greater insight into circadian biology may form a foundation for novel and more widely effective molecular therapies or interventions to help in the prevention, treatment, and management of hypertension and its related pathophysiology.
Collapse
Affiliation(s)
- Frank M. Faraci
- Department of Internal Medicine, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1081
- Department of Neuroscience and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1081
| | - Frank A.J.L. Scheer
- Division of Sleep Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, 02115
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115
| |
Collapse
|
4
|
Norling AM, Gerstenecker A, Bolding MS, Hoef LV, Buford T, Walden R, An H, Ying C, Myers T, Jones BS, Del Bene V, Lazar RM. Effects of a brief HIIT intervention on cognitive performance in older women. GeroScience 2024; 46:1371-1384. [PMID: 37581755 PMCID: PMC10828265 DOI: 10.1007/s11357-023-00893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023] Open
Abstract
Cardiorespiratory fitness (CRF) mitigates age-related decline in cognition and brain volume. Little is known, however, about the effects of high-intensity interval training (HIIT) on cognitive aging and the relationship between HIIT, cognition, hippocampal subfield volumes, and cerebral oxygen extraction fraction (OEF). Older sedentary women participated in an 8-week HIIT intervention. We conducted cognitive assessments, fitness assessments (VO2max), MRI scans: asymmetric spin echo oxygen extraction fraction (ASE-OEF), high-resolution multiple image co-registration and averaging (HR-MICRA) imaging, and transcranial Doppler ultrasonography before and after the intervention. VO2max increased from baseline (M = 19.36, SD = 2.84) to follow-up (M = 23.25, SD = 3.61), Z = - 2.93, p < .001, r = 0.63. Composite cognitive (Z = - 2.05, p = 0.041), language (Z = - 2.19, p = 0.028), and visuospatial memory (Z = - 2.22, p = 0.026), z-scores increased significantly. Hippocampal subfield volumes CA1 and CA3 dentate gyrus and subiculum decreased non-significantly (all p > 0.05); whereas a significant decrease in CA2 (Z = - 2.045, p = 0.041, r = 0.436) from baseline (M = 29.51; SD = 24.50) to follow-up (M = 24.50; SD = 13.38) was observed. Right hemisphere gray matter was correlated with language z-scores (p = 0.025; r = 0.679). The subiculum was correlated with attention (p = 0.047; r = 0.618) and verbal memory (p = 0.020; r = 0.700). The OEF and CBF were unchanged at follow-up (all p > .05). Although we observed cognitive improvements following 8 weeks of our HIIT intervention, they were not explained by hippocampal, OEF, or CBF changes.
Collapse
Affiliation(s)
- Amani M Norling
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA.
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Adam Gerstenecker
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark S Bolding
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lawrence Ver Hoef
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
| | - Thomas Buford
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Randall Walden
- School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University of Medicine in St. Louis, St. Louis, MO, USA
| | - Chunwei Ying
- Mallinckrodt Institute of Radiology, Washington University of Medicine in St. Louis, St. Louis, MO, USA
| | - Terina Myers
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Benjamin S Jones
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
| | - Victor Del Bene
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ronald M Lazar
- Department of Neurology, University of Alabama at Birmingham, 650 Sparks Center, 1720 7Th Avenue South, Birmingham, AL, 35294, USA
- Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Edwards L, Thomas KR, Weigand AJ, Edmonds EC, Clark AL, Brenner EK, Banks SJ, Gilbert PE, Nation DA, Delano-Wood L, Bondi MW, Bangen KJ. Pulse pressure and APOE ε4 dose interact to affect cerebral blood flow in older adults without dementia. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100206. [PMID: 38328026 PMCID: PMC10847851 DOI: 10.1016/j.cccb.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
This study assessed whether the effect of vascular risk on cerebral blood flow (CBF) varies by gene dose of apolipoprotein (APOE) ε4 alleles. 144 older adults without dementia from the Alzheimer's Disease Neuroimaging Initiative underwent arterial spin labeling and T1-weighted MRI, APOE genotyping, fluorodeoxyglucose positron emission tomography (FDG-PET), lumbar puncture, and blood pressure (BP) assessment. Vascular risk was assessed using pulse pressure (systolic BP - diastolic BP). CBF was examined in six AD-vulnerable regions: entorhinal cortex, hippocampus, inferior temporal cortex, inferior parietal cortex, rostral middle frontal gyrus, and medial orbitofrontal cortex. Linear regressions tested the interaction between APOE ε4 dose and pulse pressure on CBF in each region, adjusting for age, sex, cognitive classification, antihypertensive medication use, FDG-PET, reference CBF region, and AD biomarker positivity. There was a significant interaction between pulse pressure and APOE ɛ4 dose on CBF in the entorhinal cortex, hippocampus, and inferior parietal cortex, such that higher pulse pressure was associated with lower CBF only among ε4 homozygous participants. These findings demonstrate that the association between pulse pressure and regional CBF differs by APOE ε4 dose, suggesting that targeting modifiable vascular risk factors may be particularly important for those genetically at risk for AD.
Collapse
Affiliation(s)
- Lauren Edwards
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Kelsey R. Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J. Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Emily C. Edmonds
- Banner Alzheimer's Institute, Tucson, AZ, USA
- Departments of Neurology and Psychology, University of Arizona, Tucson, AZ, USA
| | - Alexandra L. Clark
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Einat K. Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Sarah J. Banks
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Paul E. Gilbert
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Daniel A. Nation
- Department of Psychology, University of California Irvine, Irvine, CA, USA
| | - Lisa Delano-Wood
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mark W. Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Kalchev E, Georgiev R, Ivanova D. A novel 5-stage visual rating scale for global arterial spin labeling perfusion assessment in the brain: Simplifying evaluation for clinical implementation. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100200. [PMID: 38235314 PMCID: PMC10791566 DOI: 10.1016/j.cccb.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
Objectives The aim of this study was to develop and validate a visual rating scale for evaluating global arterial spin labeling (ASL) perfusion changes in the brain, with potential applications in a variety of conditions that impact general brain blood supply and perfusion. Methods We employed a five-stage scale (0 being normal and 4 indicating the most severe perfusion decline) to assess 156 patients using a 3D pulsed ASL technique. Three radiologists independently reviewed the images, and inter-rater reliability of the visual rating scale was evaluated. Results The ASL stages showed a consistent distribution among the patients. The inter-rater reliability among the three radiologists, as measured by the Intraclass Correlation Coefficient (ICC), was 0.982. Conclusion Our findings suggest that this visual rating scale can be effectively implemented in everyday practice to evaluate global perfusion changes in the context of cardiovascular diseases, cerebrovascular diseases, cerebral small vessel disease, and other conditions that alter brain vascularization and perfusion. Further research is needed to explore the full range of clinical applications and to refine the scale for optimal utility.
Collapse
Affiliation(s)
- Emilian Kalchev
- Department of Diagnostic Imaging, St Marina University Hospital, Varna, Bulgaria
- Department of Diagnostic Imaging, Interventional Radiology and Radiotherapy, Medical University of Varna, Bulgaria
| | - Radoslav Georgiev
- Department of Diagnostic Imaging, St Marina University Hospital, Varna, Bulgaria
- Department of Diagnostic Imaging, Interventional Radiology and Radiotherapy, Medical University of Varna, Bulgaria
| | - Darina Ivanova
- Department of Diagnostic Imaging, St Marina University Hospital, Varna, Bulgaria
- Department of Diagnostic Imaging, Interventional Radiology and Radiotherapy, Medical University of Varna, Bulgaria
| |
Collapse
|
7
|
Ji W, Nightingale TE, Zhao F, Fritz NE, Phillips AA, Sisto SA, Nash MS, Badr MS, Wecht JM, Mateika JH, Panza GS. The Clinical Relevance of Autonomic Dysfunction, Cerebral Hemodynamics, and Sleep Interactions in Individuals Living With SCI. Arch Phys Med Rehabil 2024; 105:166-176. [PMID: 37625532 DOI: 10.1016/j.apmr.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
A myriad of physiological impairments is seen in individuals after a spinal cord injury (SCI). These include altered autonomic function, cerebral hemodynamics, and sleep. These physiological systems are interconnected and likely insidiously interact leading to secondary complications. These impairments negatively influence quality of life. A comprehensive review of these systems, and their interplay, may improve clinical treatment and the rehabilitation plan of individuals living with SCI. Thus, these physiological measures should receive more clinical consideration. This special communication introduces the under investigated autonomic dysfunction, cerebral hemodynamics, and sleep disorders in people with SCI to stakeholders involved in SCI rehabilitation. We also discuss the linkage between autonomic dysfunction, cerebral hemodynamics, and sleep disorders and some secondary outcomes are discussed. Recent evidence is synthesized to make clinical recommendations on the assessment and potential management of important autonomic, cerebral hemodynamics, and sleep-related dysfunction in people with SCI. Finally, a few recommendations for clinicians and researchers are provided.
Collapse
Affiliation(s)
- Wenjie Ji
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; Centre for Trauma Science Research, University of Birmingham, Birmingham, UK; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Fei Zhao
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI; John D. Dingell VA Medical Center, Research and Development, Detroit, MI
| | - Nora E Fritz
- Department of Health Care Sciences, Program of Physical Therapy, Detroit, MI; Department of Neurology, Wayne State University, Detroit, MI
| | - Aaron A Phillips
- Department of Physiology and Pharmacology, Cardiac Sciences, Clinical Neurosciences, Biomedical Engineering, Libin Cardiovascular institute, Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, AB, Canada; RESTORE.network, University of Calgary, Calgary, AB, Canad
| | - Sue Ann Sisto
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - Mark S Nash
- Department of Neurological Surgery, Physical Medicine & Rehabilitation Physical Therapy, Miami, FL; Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL
| | - M Safwan Badr
- John D. Dingell VA Medical Center, Research and Development, Detroit, MI; Departments of Physiology and Internal Medicine, Wayne State University, Detroit, MI
| | - Jill M Wecht
- James J Peters VA Medical Center, Department of Spinal Cord Injury Research, Bronx, NY; Icahn School of Medicine Mount Sinai, Departments of Rehabilitation and Human Performance, and Medicine Performance, and Medicine, New York, NY
| | - Jason H Mateika
- John D. Dingell VA Medical Center, Research and Development, Detroit, MI; Departments of Physiology and Internal Medicine, Wayne State University, Detroit, MI
| | - Gino S Panza
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI; John D. Dingell VA Medical Center, Research and Development, Detroit, MI.
| |
Collapse
|
8
|
Yang J, Sun P, Xu X, Liu X, Lan L, Yi M, Xiao C, Ni R, Fan Y. TAK1 Improves Cognitive Function via Suppressing RIPK1-Driven Neuronal Apoptosis and Necroptosis in Rats with Chronic Hypertension. Aging Dis 2023; 14:1799-1817. [PMID: 37196118 PMCID: PMC10529759 DOI: 10.14336/ad.2023.0219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/19/2023] [Indexed: 05/19/2023] Open
Abstract
Chronic hypertension is a major risk factor for cognitive impairment, which can promote neuroinflammation and neuronal loss in the central nervous system. Transforming growth factor β-activated kinase 1 (TAK1) is a key molecular component in determining cell fate and can be activated by inflammatory cytokines. This study aimed to investigate the role of TAK1 in mediating neuronal survival in the cerebral cortex and hippocampus under chronic hypertensive conditions. To that end, we used stroke-prone renovascular hypertension rats (RHRSP) as chronic hypertension models. Adeno-associated virus (AAV) designed to overexpress or knock down TAK1 expression were injected into the lateral ventricles of rats and the subsequent effects on cognitive function and neuronal survival under chronic hypertensive conditions were assessed. We found that, TAK1 knockdown in RHRSP markedly increased neuronal apoptosis and necroptosis and induced cognitive impairment, which could be reversed by Nec-1s, an inhibitor of receptor interacting protein kinase 1 (RIPK1). In contrast, overexpression of TAK1 in RHRSP significantly suppressed neuronal apoptosis and necroptosis and improved cognitive function. Further knockdown of TAK1 in sham-operated rats received similar phenotype with RHRSP. The results have been verified in vitro. In this study, we provide in vivo and in vitro evidence that TAK1 improves cognitive function by suppressing RIPK1-driven neuronal apoptosis and necroptosis in rats with chronic hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yuhua Fan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
9
|
Carresi C, Cardamone A, Coppoletta AR, Mollace A, Musolino V, Gliozzi M, Mollace V. Imbalance of thalamic metabolites in an experimental model of hypertension: role of bergamot polyphenols. Front Integr Neurosci 2023; 17:1271005. [PMID: 37780094 PMCID: PMC10536961 DOI: 10.3389/fnint.2023.1271005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Cerebral metabolites are associated with different physiological and pathological processes in brain tissue. Among them, the concentrations of N-acetylaspartate (NAA) and choline-containing compounds (Cho) in the thalamic region are recognized and analyzed as important predictive markers of brain impairment. The relationship among hypertension, modulation of brain metabolite levels and cerebral diseases is of recent investigation, leaving many unanswered questions regarding the origin and consequences of the metabolic damage caused in grey and white matter during hypertension. Here we provide evidence for the influence of hypertension on NAA and Cho ratios in hypertensive rat thalamus and how the use of natural occurring compounds ameliorates the balance of thalamic metabolites.
Collapse
Affiliation(s)
- Cristina Carresi
- Veterinary Pharmacology Laboratory, Department of Health Sciences, Interregional Research Center for Food Safety and Health IRC-FSH, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Antonio Cardamone
- Pharmacology Laboratory, Department of Health Sciences, Interregional Research Center for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Department of Health Sciences, Interregional Research Center for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Annachiara Mollace
- Pharmacology Laboratory, Department of Health Sciences, Interregional Research Center for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Department of Health Sciences, Interregional Research Center for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Department of Health Sciences, Interregional Research Center for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Mollace
- Pharmacology Laboratory, Department of Health Sciences, Interregional Research Center for Food Safety and Health IRC-FSH, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
10
|
Baxter LC, Limback-Stokin M, Patten KJ, Arreola AC, Locke DE, Hu L, Zhou Y, Caselli RJ. Hippocampal connectivity and memory decline in cognitively intact APOE ε4 carriers. Alzheimers Dement 2023; 19:3806-3814. [PMID: 36906845 PMCID: PMC11105018 DOI: 10.1002/alz.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/13/2023]
Abstract
INTRODUCTION Resting-state functional magnetic resonance imaging (fMRI) graph theory may help detect subtle functional connectivity changes affecting memory prior to impairment. METHODS Cognitively normal apolipoprotein E (APOE) ε4 carriers/noncarriers underwent longitudinal cognitive assessment and one-time MRI. The relationship of left/right hippocampal connectivity and memory trajectory were compared between carriers/noncarriers. RESULTS Steepness of verbal memory decline correlated with decreased connectivity in the left hippocampus, only among APOE ε4 carriers. Right hippocampal metrics were not correlated with memory and there were no significant correlations in the noncarriers. Verbal memory decline correlated with left hippocampal volume loss for both carriers and noncarriers, with no other significant volumetric findings. DISCUSSION Findings support early hippocampal dysfunction in intact carriers, the AD disconnection hypothesis, and left hippocampal dysfunction earlier than the right. Combining lateralized graph theoretical metrics with a sensitive measure of memory trajectory allowed for detection of early-stage changes in APOE ε4 carriers before symptoms of mild cognitive impairment are present. HIGHLIGHTS Graph theory connectivity detects preclinical hippocampal changes in APOE ε4 carriers. The AD disconnection hypothesis was supported in unimpaired APOE ε4 carriers. Hippocampal dysfunction starts asymmetrically on the left.
Collapse
Affiliation(s)
- Leslie C. Baxter
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | | | - K. Jakob Patten
- Department of Speech and Hearing Sciences, Tempe, Arizona, 85281 USA
| | | | - Dona E.C. Locke
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Leland Hu
- Department of Radiology, Mayo Clinic Arizona, Phoenix, Arizona, 85054 USA
| | - Yuxiang Zhou
- Department of Medical Physics, Mayo Clinic Arizona, Phoenix, Arizona, 85054 USA
| | - Richard J. Caselli
- Department of Neurology, Mayo Clinic Arizona, Phoenix, Arizona, 85259 USA
| |
Collapse
|
11
|
Laporte JP, Faulkner ME, Gong Z, Akhonda MA, Ferrucci L, Egan JM, Bouhrara M. Hypertensive Adults Exhibit Lower Myelin Content: A Multicomponent Relaxometry and Diffusion Magnetic Resonance Imaging Study. Hypertension 2023; 80:1728-1738. [PMID: 37283066 PMCID: PMC10355798 DOI: 10.1161/hypertensionaha.123.21012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND It is unknown whether hypertension plays any role in cerebral myelination. To fill this knowledge gap, we studied 90 cognitively unimpaired adults, age range 40 to 94 years, who are participants in the Baltimore Longitudinal Study of Aging and the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing to look for potential associations between hypertension and cerebral myelin content across 14 white matter brain regions. METHODS Myelin content was probed using our advanced multicomponent magnetic resonance relaxometry method of myelin water fraction, a direct and specific magnetic resonance imaging measure of myelin content, and longitudinal and transverse relaxation rates (R1 and R2), 2 highly sensitive magnetic resonance imaging metrics of myelin content. We also applied diffusion tensor imaging magnetic resonance imaging to measure fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity values, which are metrics of cerebral microstructural tissue integrity, to provide context with previous magnetic resonance imaging findings. RESULTS After adjustment of age, sex, systolic blood pressure, smoking status, diabetes status, and cholesterol level, our results indicated that participants with hypertension exhibited lower myelin water fraction, fractional anisotropy, R1 and R2 values and higher mean diffusivity, radial diffusivity, and axial diffusivity values, indicating lower myelin content and higher impairment to the brain microstructure. These associations were significant across several white matter regions, particularly in the corpus callosum, fronto-occipital fasciculus, temporal lobes, internal capsules, and corona radiata. CONCLUSIONS These original findings suggest a direct association between myelin content and hypertension and form the basis for further investigations including longitudinal assessments of this relationship.
Collapse
Affiliation(s)
- John P. Laporte
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mary E. Faulkner
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mohammad A.B.S. Akhonda
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Luigi Ferrucci
- Translational Gerontology Branch (L.F.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Josephine M. Egan
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
12
|
Zhang Y, Tan J, Yang K, Fan W, Yu B, Shi W. Ambient RNAs removal of cortex-specific snRNA-seq reveals Apoe + microglia/macrophage after deeper cerebral hypoperfusion in mice. J Neuroinflammation 2023; 20:152. [PMID: 37365617 DOI: 10.1186/s12974-023-02831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Ambient RNAs contamination in single-nuclei RNA sequencing (snRNA-seq) is a challenging problem, but the consequences of ambient RNAs contamination of damaged and/or diseased tissues are poorly understood. Cognitive impairments and white/gray matter injuries are characteristic of deeper cerebral hypoperfusion mouse models induced by bilateral carotid artery stenosis (BCAS), but the molecular mechanisms still need to be further explored. More importantly, the BCAS mice can also offer an excellent model to examine the signatures of ambient RNAs contamination in damaged tissues when performing snRNA-seq. METHODS After the sham and BCAS mice were established, cortex-specific single-nuclei libraries were constructed. Single-nuclei transcriptomes were described informatically by the R package Seurat, and ambient RNA markers of were identified in each library. Then, after removing ambient RNAs in each sample using the in silico approaches, the combination of CellBender and subcluster cleaning, single-nuclei transcriptomes were reconstructed. Next, the comparison of ambient RNA contamination was performed using irGSEA analysis before and after the in silico approaches. Finally, further bioinformatic analyses were performed. RESULTS The ambient RNAs are more predominant in the BCAS group than the sham group. The contamination mainly originated from damaged neuronal nuclei, but could be reduced largely using the in silico approaches. The integrative analysis of cortex-specific snRNA-seq data and the published bulk transcriptome revealed that microglia and other immune cells were the primary effectors. In the sequential microglia/immune subgroups analysis, the subgroup of Apoe+ MG/Mac (microglia/macrophages) was identified. Interestingly, this subgroup mainly participated in the pathways of lipid metabolism, associated with the phagocytosis of cell debris. CONCLUSIONS Taken together, our current study unravels the features of ambient RNAs in snRNA-seq datasets under diseased conditions, and the in silico approaches can effectively eliminate the incorrected cell annotation and following misleading analysis. In the future, snRNA-seq data analysis should be carefully revisited, and ambient RNAs removal needs to be taken into consideration, especially for those diseased tissues. To our best knowledge, our study also offers the first cortex-specific snRNA-seq data of deeper cerebral hypoperfusion, which provides with novel therapeutic targets.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Jinyun Tan
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Kai Yang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| | - Weijian Fan
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China.
- Fudan Zhangjiang Institute, Shanghai, 201203, China.
| | - Weihao Shi
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Galle SA, Deijen JB, Milders MV, De Greef MHG, Scherder EJA, van Duijn CM, Drent ML. The effects of a moderate physical activity intervention on physical fitness and cognition in healthy elderly with low levels of physical activity: a randomized controlled trial. Alzheimers Res Ther 2023; 15:12. [PMID: 36631905 PMCID: PMC9832427 DOI: 10.1186/s13195-022-01123-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Increasing physical activity is one of the most promising and challenging interventions to delay or prevent cognitive decline and dementia. METHODS We conducted a randomized controlled trial to assess the effects of a physical activity intervention, aimed at increasing step count, in elderly with low levels of physical activity on measures of strength, balance, aerobic capacity, and cognition. Participants were assigned to 9 months of exercise counseling or active control. RESULTS The intention-to-treat analyses show that the intervention, compared to control, increases the level of physical activity, but has no significant effect on physical fitness and cognition. Those who increased their physical activity with 35% or more show significant improvements in aerobic capacity, gait speed, verbal memory, executive functioning, and global cognition, compared to those who did not achieve a 35% increase. LIMITATIONS The number of participants that achieved the intended improvement was lower than expected. CONCLUSION Responder analyses suggest an improvement of physical fitness and cognition in those who achieved an increase in physical activity of at least 35%. TRIAL REGISTRATION The trial protocol is registered at the Dutch Trial Register NL5675, August 1, 2016.
Collapse
Affiliation(s)
- Sara A Galle
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Jan Berend Deijen
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Hersencentrum Mental Health Institute, Marnixstraat 364, 1016 XW, Amsterdam, The Netherlands
| | - Maarten V Milders
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Mathieu H G De Greef
- Human Movement Sciences, University of Groningen, University Medical Center Groningen, PO Box 196, 9700 AD, Groningen, The Netherlands
| | - Erik J A Scherder
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, Oxford, OX3 7LF, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Madeleine L Drent
- Department of Clinical, Neuro- and Developmental Psychology, Vrije Universiteit Amsterdam, Van Der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Department of Internal Medicine, Endocrinology Section, Amsterdam University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Abstract
Hypertension affects a significant proportion of the adult and aging population and represents an important risk factor for vascular cognitive impairment and late-life dementia. Chronic high blood pressure continuously challenges the structural and functional integrity of the cerebral vasculature, leading to microvascular rarefaction and dysfunction, and neurovascular uncoupling that typically impairs cerebral blood supply. Hypertension disrupts blood-brain barrier integrity, promotes neuroinflammation, and may contribute to amyloid deposition and Alzheimer pathology. The mechanisms underlying these harmful effects are still a focus of investigation, but studies in animal models have provided significant molecular and cellular mechanistic insights. Remaining questions relate to whether adequate treatment of hypertension may prevent deterioration of cognitive function, the threshold for blood pressure treatment, and the most effective antihypertensive drugs. Recent advances in neurovascular biology, advanced brain imaging, and detection of subtle behavioral phenotypes have begun to provide insights into these critical issues. Importantly, a parallel analysis of these parameters in animal models and humans is feasible, making it possible to foster translational advancements. In this review, we provide a critical evaluation of the evidence available in experimental models and humans to examine the progress made and identify remaining gaps in knowledge.
Collapse
Affiliation(s)
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Daniela Carnevale
- Department of Molecular Medicine, “Sapienza” University of Rome, Italy
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
15
|
Perera C, Tolomeo D, Baker RR, Ohene Y, Korsak A, Lythgoe MF, Thomas DL, Wells JA. Investigating changes in blood-cerebrospinal fluid barrier function in a rat model of chronic hypertension using non-invasive magnetic resonance imaging. Front Mol Neurosci 2022; 15:964632. [PMID: 36117909 PMCID: PMC9478509 DOI: 10.3389/fnmol.2022.964632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic hypertension is a major risk factor for the development of neurodegenerative disease, yet the etiology of hypertension-driven neurodegeneration remains poorly understood. Forming a unique interface between the systemic circulation and the brain, the blood-cerebrospinal fluid barrier (BCSFB) at the choroid plexus (CP) has been proposed as a key site of vulnerability to hypertension that may initiate downstream neurodegenerative processes. However, our ability to understand BCSFB's role in pathological processes has, to date, been restricted by a lack of non-invasive functional measurement techniques. In this work, we apply a novel Blood-Cerebrospinal Fluid Barrier Arterial Spin Labeling (BCSFB-ASL) Magnetic resonance imaging (MRI) approach with the aim of detecting possible derangement of BCSFB function in the Spontaneous Hypertensive Rat (SHR) model using a non-invasive, translational technique. SHRs displayed a 36% reduction in BCSFB-mediated labeled arterial water delivery into ventricular cerebrospinal fluid (CSF), relative to normotensive controls, indicative of down-regulated choroid plexus function. This was concomitant with additional changes in brain fluid biomarkers, namely ventriculomegaly and changes in CSF composition, as measured by T1 lengthening. However, cortical cerebral blood flow (CBF) measurements, an imaging biomarker of cerebrovascular health, revealed no measurable change between the groups. Here, we provide the first demonstration of BCSFB-ASL in the rat brain, enabling non-invasive assessment of BCSFB function in healthy and hypertensive rats. Our data highlights the potential for BCSFB-ASL to serve as a sensitive early biomarker for hypertension-driven neurodegeneration, in addition to investigating the mechanisms relating hypertension to neurodegenerative outcomes.
Collapse
Affiliation(s)
- Charith Perera
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Daniele Tolomeo
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Rebecca R. Baker
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Yolanda Ohene
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, United Kingdom
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Mark F. Lythgoe
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - David L. Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jack A. Wells
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| |
Collapse
|
16
|
Luo L, Wang G, Zhou H, Zhang L, Ma CXN, Little JP, Yu Z, Teng H, Yin JY, Wan Z. Sex-specific longitudinal association between baseline physical activity level and cognitive decline in Chinese over 45 years old: Evidence from the China health and retirement longitudinal study. Aging Ment Health 2022; 26:1721-1729. [PMID: 34166602 DOI: 10.1080/13607863.2021.1935456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To examine whether sex-specific associations between baseline PA level and follow up cognitive performance in Chinese subjects exist from the China Health and Retirement Longitudinal study (CHARLS). METHOD A total of 3395 adults aged 45 or old from the CHARLS were used for analysis. The combined scores of measurements of mental status and verbal episodic memory were utilized for assessing cognitive function at baseline in 2011 and the follow-up survey in 2015. Baseline PA level was quantified as the total PA score. Multiple linear regression and logistic regression models were used to examine the association between baseline PA status and global cognitive function and cognitive domains. RESULTS In the female subjects (n = 1748), compared with individuals of PA level in the lower tertile, those grouped into the upper tertile had the lowest risk of global cognitive decline [odds ratio (OR) =0.273, 95% confidence interval (CI) =0.077-0.960; p = 0.043] and verbal episodic memory decline [OR)=0.257, 95% CI =0.066-1.003; p = 0.051] from 2011 to 2015. However, no significant associations were observed in the male subjects (n = 1647). CONCLUSION In the female subjects, higher PA level was associated with reduced risk of cognitive decline within 4 years, this might be associated with reduced decline of verbal episodic memory. Our findings confirmed that female sex would positively affect the association between PA levels and cognitive decline.
Collapse
Affiliation(s)
- Lan Luo
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Guiping Wang
- School of Physical Education, Soochow University, Suzhou, China.,Laboratory Animal Center, Medical college of Soochow University, Suzhou, China
| | - Huanhuan Zhou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Lin Zhang
- School of Physical Education, Soochow University, Suzhou, China
| | - Chen-Xi-Nan Ma
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haoyue Teng
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jie-Yun Yin
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Zhongxiao Wan
- School of Public Health, Medical College of Soochow University, Suzhou, China.,College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Association of 24-hour blood pressure parameters post-thrombectomy with functional outcomes according to collateral status. J Neurol Sci 2022; 441:120369. [DOI: 10.1016/j.jns.2022.120369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
|
18
|
Groenland EH, van Kleef MEAM, Hendrikse J, Spiering W, Siero JCW. The effect of endovascular baroreflex amplification on central sympathetic nerve circuits and cerebral blood flow in patients with resistant hypertension: A functional MRI study. FRONTIERS IN NEUROIMAGING 2022; 1:924724. [PMID: 37555165 PMCID: PMC10406262 DOI: 10.3389/fnimg.2022.924724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/28/2022] [Indexed: 08/10/2023]
Abstract
BACKGROUND Endovascular baroreflex amplification (EVBA) by implantation of the MobiusHD is hypothesized to lower blood pressure by decreasing sympathetic activity through the mechanism of the baroreflex. In the present exploratory study we investigated the impact of MobiusHD implantation on central sympathetic nerve circuits and cerebral blood flow (CBF) in patients with resistant hypertension. MATERIALS AND METHODS In thirteen patients, we performed blood oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) at rest and during Valsalva maneuvers, before and 3 months after EVBA. Data were analyzed using a whole-brain approach and a brainstem-specific analysis. CBF was assessed using arterial spin labeling MRI. RESULTS Resting-state fMRI analysis did not reveal significant differences in functional connectivity at 3 months after EVBA. For the Valsalva maneuver data, the whole-brain fMRI analysis revealed significantly increased activation in the posterior and anterior cingulate, the insular cortex, the precuneus, the left thalamus and the anterior cerebellum. The brainstem-specific fMRI analysis showed a significant increase in BOLD activity in the right midbrain 3 months after EVBA. Mean gray matter CBF (partial volume corrected) decreased significantly from 48.9 (9.9) ml/100 gr/min at baseline to 43.4 (13.0) ml/100 gr/min (p = 0.02) at 3 months. CONCLUSIONS This first fMRI pilot study in patients with resistant hypertension treated with EVBA showed a significant increase in BOLD activity during the Valsalva maneuver in brain regions related to sympathetic activity. No notable signal intensity changes were observed in brain areas involved in the baroreflex circuit. Future randomized controlled studies are needed to investigate whether the observed changes are directly caused by EVBA. CLINICAL TRIAL REGISTRATION www.clinicaltrials.gov, identifier: NCT02827032.
Collapse
Affiliation(s)
- Eline H. Groenland
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Monique E. A. M. van Kleef
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jeroen C. W. Siero
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Zhou Z, Ma Y, Xu T, Wu S, Yang GY, Ding J, Wang X. Deeper cerebral hypoperfusion leads to spatial cognitive impairment in mice. Stroke Vasc Neurol 2022; 7:527-533. [PMID: 35817499 PMCID: PMC9811541 DOI: 10.1136/svn-2022-001594] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Vascular cognitive impairment (VCI) is the second-leading cause of dementia worldwide, which is caused by cerebrovascular diseases or relevant risk factors. However, there are no appropriate animal models, which can be used to study changes of neuropathology in the human VCI. To better understand the development of VCI, we modified three mouse models of chronical vascular diseases, and further compared the advantage and disadvantage of these models. We hope to establish a more suitable mouse model mimicking VCI in human beings. METHODS Adult male C57/BL6 mice (n=98) were used and animals underwent transient bilateral common carotid arteries occlusion (tBCCAO), or bilateral common carotid artery stenosis (BCAS), or right unilateral common carotid artery occlusion, respectively. Haemodynamic changes of surface cerebral blood flow (CBF) were examined up to 4 weeks. Spatial cognitive impairment was evaluated to determine the consequence of chronic cerebral ischaemia. RESULTS These mouse models showed different extents of CBF reduction and spatial reference memory impairment from 1 week up to 4 weeks postoperation compared with the control group (p<0.05). We found that (1) bilaterally ligation of common carotid artery caused decrease of 90% CBF in C57/BL6 mice (p<0.05) and caused acute instead of prolonged impairment of spatial reference memory (p<0.05); (2) unilateral ligation of common carotid artery did not cause severe ipsilateral ischaemia as seen in the tBCCAO mice and caused minor but significant spatial reference memory disturbance (p<0.05); and (3) 20% decrease in the bilateral CBF did not cause spatial reference memory impairment 4 weeks postoperation (p>0.05), while 30% decrease in bilateral or unilateral CBF led to significant memory disturbance in mice (p<0.05). CONCLUSION We demonstrated that BCAS using 0.16/0.18 mm microcoils is an alternative VCI mouse model when studying the mechanism and developing therapy of VCI.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Tongtong Xu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China,Department of the State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Wang YL, Sun M, Wang FZ, Wang X, Jia Z, Zhang Y, Li R, Jiang J, Wang L, Li W, Sun Y, Chen J, Zhang C, Shi B, Liu J, Liu X, Xu J. Mediation of the APOE Associations With Cognition Through Cerebral Blood Flow: The CIBL Study. Front Aging Neurosci 2022; 14:928925. [PMID: 35847686 PMCID: PMC9279129 DOI: 10.3389/fnagi.2022.928925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Background The ε4 allele of the apolipoprotein E (APOE) gene is a strong genetic risk factor for aging-related cognitive decline. However, the causal connection between ε4 alleles and cognition is not well understood. The objective of this study was to identify the roles of cerebral blood flow (CBF) in cognitive-related brain areas in mediating the associations of APOE with cognition. Methods The multiple linear regression analyses were conducted on 369 subjects (mean age of 68.8 years; 62.9% of women; 29.3% of APOE ε4 allele carriers). Causal mediation analyses with 5,000 bootstrapped iterations were conducted to explore the mediation effects. Result APOE ε4 allele was negatively associated with cognition (P < 0.05) and CBF in the amygdala, hippocampus, middle temporal gyrus, posterior cingulate, and precuneus (all P < 0.05). The effect of the APOE genotype on cognition was partly mediated by the above CBF (all P < 0.05). Conclusion CBF partially mediates the potential links between APOE genotype and cognition. Overall, the APOE ε4 allele may lead to a dysregulation of the vascular structure and function with reduced cerebral perfusion, which in turn leads to cognitive impairment.
Collapse
Affiliation(s)
- Yan-Li Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fang-Ze Wang
- Department of Cardiology, Weifang People’s Hospital, Weifang Medical University, Weifang, China
| | - Xiaohong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Ziyan Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Runzhi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linlin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Peking University, Beijing, China
| | - Jinglong Chen
- Division of Neurology, Department of Geriatrics, National Clinical Key Specialty, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cuicui Zhang
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Baolin Shi
- Department of Neurology, Weifang People’s Hospital, Weifang Medical University, Weifang, China
| | - Jianjian Liu
- Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Xiangrong Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jun Xu,
| |
Collapse
|
21
|
Kennedy KG, Grigorian A, Mitchell RHB, McCrindle BW, MacIntosh BJ, Goldstein BI. Association of blood pressure with brain structure in youth with and without bipolar disorder. J Affect Disord 2022; 299:666-674. [PMID: 34920038 DOI: 10.1016/j.jad.2021.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/25/2021] [Accepted: 12/12/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND We previously found that blood pressure (BP) is elevated, and associated with poorer neurocognition, in youth with bipolar disorder (BD). While higher BP is associated with smaller brain structure in adults, studies have not examined this topic in BD or youth. METHODS Participants were 154 youth, ages 13-20 (n = 81 BD, n = 73 HC). Structural magnetic resonance imaging and diastolic (DBP), and systolic (SBP) pressure were obtained. Region of interest (ROI; anterior cingulate cortex [ACC], insular cortex, hippocampus) and vertex-wise analyses controlling for age, sex, body-mass-index, and intracranial volume investigated BP-neurostructural associations; a group-by-BP interaction was also assessed. RESULTS In ROI analyses, higher DBP in the overall sample was associated with smaller insular cortex area (β=-0.18 p = 0.007) and was associated with smaller ACC area to a significantly greater extent in HC vs. BD (β=-0.14 p = 0.015). In vertex-wise analyses, higher DBP and SBP were associated with smaller area and volume in the insular cortex, frontal, parietal, and temporal regions in the overall sample. Additionally, higher SBP was associated with greater thickness in temporal and parietal regions. Finally, higher SBP was associated with smaller area and volume in frontal, parietal, and temporal regions to a significantly greater extent in BD vs. HC. LIMITATIONS Cross-sectional design, single assessment of BP. CONCLUSION BP is associated with brain structure in youth, with variability related to structural phenotype (volume vs. thickness) and psychiatric diagnosis (BD vs. HC). Future studies evaluating temporality of these findings, and the association of BP changes on brain structure in youth, are warranted.
Collapse
Affiliation(s)
- Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Rm 4326, 100 stokes street Way, Toronto, ON M6J 1H4, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Rm 4326, 100 stokes street Way, Toronto, ON M6J 1H4, Canada
| | - Rachel H B Mitchell
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Brian W McCrindle
- Division of Pediatric Cardiology, Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Rm 4326, 100 stokes street Way, Toronto, ON M6J 1H4, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada.
| |
Collapse
|
22
|
Stringer MS, Heye AK, Armitage PA, Chappell F, Valdés Hernández MDC, Makin SDJ, Sakka E, Thrippleton MJ, Wardlaw JM. Tracer kinetic assessment of blood-brain barrier leakage and blood volume in cerebral small vessel disease: Associations with disease burden and vascular risk factors. Neuroimage Clin 2022; 32:102883. [PMID: 34911189 PMCID: PMC8607271 DOI: 10.1016/j.nicl.2021.102883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022]
Abstract
Permeability surface area (PS) was higher, even in normal appearing tissue. PS was higher in patients with more white matter hyperintensities. Tissue damage affecting vascular surface area may affect how we interpret tracer kinetic results.
Subtle blood–brain barrier (BBB) permeability increases have been shown in small vessel disease (SVD) using various analysis methods. Following recent consensus recommendations, we used Patlak tracer kinetic analysis, considered optimal in low permeability states, to quantify permeability-surface area product (PS), a BBB leakage estimate, and blood plasma volume (vP) in 201 patients with SVD who underwent dynamic contrast-enhanced MRI scans. We ran multivariable regression models with a quantitative or qualitative metric of white matter hyperintensity (WMH) severity, demographic and vascular risk factors. PS increased with WMH severity in grey (B = 0.15, Confidence Interval (CI): [0.001,0.299], p = 0.049) and normal-appearing white matter (B = 0.015, CI: [−0.008,0.308], p = 0.062). Patients with more severe WMH had lower vP in WMH (B = -0.088, CI: [−0.138,-0.039], p < 0.001), but higher vP in normal-appearing white matter (B = 0.031, CI: [−0.004,0.065], p = 0.082). PS and vP were lower at older ages in WMH, grey and white matter. We conclude higher PS in normal-appearing tissue with more severe WMH suggests impaired BBB integrity beyond visible lesions indicating that the microvasculature is compromised in normal-appearing white matter and WMH. BBB dysfunction is an important mechanism in SVD, but associations with clinical variables are complex and underlying damage affecting vascular surface area may alter interpretation of tracer kinetic results.
Collapse
Affiliation(s)
- Michael S Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Anna K Heye
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Paul A Armitage
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - Francesca Chappell
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Maria Del C Valdés Hernández
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | | | - Eleni Sakka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK.
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK DRI at the University of Edinburgh, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Capillary function progressively deteriorates in prodromal Alzheimer's disease: A longitudinal MRI perfusion study. AGING BRAIN 2022; 2:100035. [PMID: 36908896 PMCID: PMC9997144 DOI: 10.1016/j.nbas.2022.100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Cardiovascular risk factors are associated with the development of Alzheimer's disease (AD), and increasing evidence suggests that cerebral microvascular dysfunction plays a vital role in the disease progression. Using magnetic resonance imaging, we investigated the two-year changes of the cerebral microvascular blood flow in 11 mild cognitively impaired (MCI) patients with prodromal AD compared to 12 MCI patients without evidence of AD and 10 cognitively intact age-matched controls. The pAD-MCI patients displayed widespread deterioration in microvascular cerebral perfusion associated with capillary dysfunction. No such changes were observed in the other two groups, suggesting that the dysfunction in capillary perfusion is linked to the AD pathophysiology. The observed capillary dysfunction may limit local oxygenation in AD leading to downstream β-amyloid aggregation, tau hyperphosphorylation, neuroinflammation and neuronal dysfunction. The findings are in agreement with the capillary dysfunction hypothesis of AD, suggesting that increasing heterogeneity of capillary blood flow is a primary pathological event in AD.
Collapse
|
24
|
Miller ML, Ghisletta P, Jacobs BS, Dahle CL, Raz N. Changes in cerebral arterial pulsatility and hippocampal volume: a transcranial doppler ultrasonography study. Neurobiol Aging 2021; 108:110-121. [PMID: 34555677 DOI: 10.1016/j.neurobiolaging.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
The physiological mechanisms of age-related cognitive decline remain unclear, in no small part due to the lack of longitudinal studies. Extant longitudinal studies focused on gross neuroanatomy and diffusion properties of the brain. We present herein a longitudinal analysis of changes in arterial pulsatility - a proxy for arterial stiffness - in two major cerebral arteries, middle cerebral and vertebral. We found that pulsatility increased in some participants over a relatively short period and these increases were associated with hippocampal shrinkage. Higher baseline pulsatility was associated with lower scores on a test of fluid intelligence at follow-up. This is the first longitudinal evidence of an association between increase in cerebral arterial stiffness over time and regional shrinkage.
Collapse
Affiliation(s)
| | - Paolo Ghisletta
- Université de Genève, FPSE, Genève GE, Switzerland; UniMail, Swiss National Centre of Competence in Research LIVES, Genève GE, Switzerland; UniDistance Suisse, Brig VS, Switzerland
| | - Bradley S Jacobs
- Wright State University, Department of Internal Medicine and Neurology, Dayton, Ohio
| | - Cheryl L Dahle
- Wayne State University, Institute of Gerontology, Detroit, Michigan
| | - Naftali Raz
- Wayne State University, Institute of Gerontology, Detroit, Michigan; Wayne State University, Department of Psychology, Detroit, Michigan; Max Planck Institute for Human Development, Berlin-Dahlem, Germany
| |
Collapse
|
25
|
Wang R, Oh JM, Motovylyak A, Ma Y, Sager MA, Rowley HA, Johnson KM, Gallagher CL, Carlsson CM, Bendlin BB, Johnson SC, Asthana S, Eisenmenger L, Okonkwo OC. Impact of sex and APOE ε4 on age-related cerebral perfusion trajectories in cognitively asymptomatic middle-aged and older adults: A longitudinal study. J Cereb Blood Flow Metab 2021; 41:3016-3027. [PMID: 34102919 PMCID: PMC8545048 DOI: 10.1177/0271678x211021313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 01/03/2023]
Abstract
Cerebral hypoperfusion is thought to contribute to cognitive decline in Alzheimer's disease, but the natural trajectory of cerebral perfusion in cognitively healthy adults has not been well-studied. This longitudinal study is consisted of 950 participants (40-89 years), who were cognitively unimpaired at their first visit. We investigated the age-related changes in cerebral perfusion, and their associations with APOE-genotype, biological sex, and cardiometabolic measurements. During the follow-up period (range 0.13-8.24 years), increasing age was significantly associated with decreasing cerebral perfusion, in total gray-matter (β=-1.43), hippocampus (-1.25), superior frontal gyrus (-1.70), middle frontal gyrus (-1.99), posterior cingulate (-2.46), and precuneus (-2.14), with all P-values < 0.01. Compared with male-ɛ4 carriers, female-ɛ4 carriers showed a faster decline in global and regional cerebral perfusion with increasing age, whereas the age-related decline in cerebral perfusion was similar between male- and female-ɛ4 non-carriers. Worse cardiometabolic profile (i.e., increased blood pressure, body mass index, total cholesterol, and blood glucose) was associated with lower cerebral perfusion at all the visits. When time-varying cardiometabolic measurements were adjusted in the model, the synergistic effect of sex and APOE-ɛ4 on age-related cerebral perfusion-trajectories became largely attenuated. Our findings demonstrate that APOE-genotype and sex interactively impact cerebral perfusion-trajectories in mid- to late-life. This effect may be partially explained by cardiometabolic alterations.
Collapse
Affiliation(s)
- Rui Wang
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- The Swedish School of Sport and Health Science, GIH, Stockholm, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jennifer M Oh
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Alice Motovylyak
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yue Ma
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark A Sager
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Howard A Rowley
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Catherine L Gallagher
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Laura Eisenmenger
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
26
|
Maasakkers CM, Thijssen DH, Knight SP, Newman L, O'Connor JD, Scarlett S, Carey D, Buckley A, McMorrow JP, Leidhin CN, Feeney J, Melis RJ, Kenny RA, Claassen JA, Looze CD. Hemodynamic and structural brain measures in high and low sedentary older adults. J Cereb Blood Flow Metab 2021; 41:2607-2616. [PMID: 33866848 PMCID: PMC8504407 DOI: 10.1177/0271678x211009382] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to its cardiovascular effects sedentary behaviour might impact cerebrovascular function in the long term, affecting cerebrovascular regulatory mechanisms and perfusion levels. Consequently this could underly potential structural brain abnormalities associated with cognitive decline. We therefore assessed the association between sedentary behaviour and brain measures of cerebrovascular perfusion and structural abnormalities in community-dwelling older adults. Using accelerometery (GENEActiv) data from The Irish Longitudinal Study on Ageing (TILDA) we categorised individuals by low- and high-sedentary behaviour (≤8 vs >8 hours/day). We examined prefrontal haemoglobin oxygenation levels using Near-Infrared Spectroscopy during rest and after an orthostatic challenge in 718 individuals (66 ± 8 years, 52% female). Global grey matter cerebral blood flow, total grey and white matter volume, total and subfield hippocampal volumes, cortical thickness, and white matter hyperintensities were measured using arterial spin labelling, T1, and FLAIR MRI in 86 individuals (72 ± 6 years, 55% female). While no differences in prefrontal or global cerebral hemodynamics were found between groups, high-sedentary individuals showed lower hippocampal volumes and increased white matter hyperintensities compared to their low-sedentary counterparts. Since these structural cerebral abnormalities are associated with cognitive decline and Alzheimer's disease, future work exploring the causal pathways underlying these differences is needed.
Collapse
Affiliation(s)
- Carlijn M Maasakkers
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Dick Hj Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Silvin P Knight
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Louise Newman
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - John D O'Connor
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Siobhan Scarlett
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Daniel Carey
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Anne Buckley
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Jason P McMorrow
- The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Caoilfhionn Ní Leidhin
- The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Joanne Feeney
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - René Jf Melis
- Department of Geriatrics/Radboud Alzheimer Center, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland.,Department of Medical Gerontology, Mercer's Institute for Successful Ageing, St James's Hospital, Dublin, Ireland
| | - Jurgen Ahr Claassen
- Department of Geriatrics/Radboud Alzheimer Center, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Céline De Looze
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Mazzucco S, Li L, McGurgan IJ, Tuna MA, Brunelli N, Binney LE, Rothwell PM. Age-specific cerebral haemodynamic effects of early blood pressure lowering after transient ischaemic attack and non-disabling stroke. Eur Stroke J 2021; 6:245-253. [PMID: 34746420 PMCID: PMC8564162 DOI: 10.1177/23969873211039716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION There is limited knowledge of the effects of blood pressure (BP) lowering on cerebral haemodynamics after transient ischaemic attack (TIA) and non-disabling stroke, particularly at older ages. We aimed to evaluate changes in transcranial Doppler (TCD) haemodynamic indices in patients undergoing early blood pressure lowering after TIA/non-disabling stroke, irrespective of age. PATIENTS AND METHODS Among consecutive eligible patients attending a rapid-access clinic with suspected TIA/non-disabling stroke and no evidence of extra/intracranial stenosis, hypertensive ones underwent intensive BP-lowering guided by daily home telemetric blood pressure monitoring (HBPM). Clinic-based BP, HBPM, End-tidal CO2 and bilateral middle cerebral artery (MCA) velocity on TCD were compared in the acute setting versus one-month follow-up; changes were stratified by baseline hypertension (clinic-BP≥140/90) and by age (<65, 65-79 and ≥80). RESULTS In 697 patients with repeated TCD measures, mean/SD baseline systolic-BP (145.0/21.3 mmHg) was reduced by an average of 11.3/19.9 mmHg (p < 0.0001) at one-month (133.7/17.4 mmHg), driven by patients hypertensive at baseline (systolic-BP change = -19.0/19.2 mmHg, p < 0.001; vs -0.5/15.4, p = 0.62 in normotensives). Compared with baseline, a significant change was observed at one-month only in mean/SD MCA end diastolic velocity (EDV) (0.77/7.26 cm/s, p = 0.005) and in resistance index (RI) (-0.005/0.051, p = 0.016), driven by hypertensive patients (mean/SD EDV change: 1.145/6.96 cm/s p = 0.001, RI change -0.007/0.06, p = 0.014). Findings were similar at all ages (EDV change - ptrend=0.357; RI change - ptrend=0.225), including 117 patients aged ≥80. EDV and RI changes were largest in 100 patients with clinic systolic-BP decrease ≥30 mmHg (mean/SD EDV change = 2.49/7.47 cm/s, p = 0.001; RI change -0.024/0.063, p < 0.0001). CONCLUSION There was no evidence of worsening of TCD haemodynamic indices associated with BP-lowering soon after TIA/non-disabling stroke, irrespective of age and degree of BP reduction. In fact, EDV increase and RI decrease observed after treatment of hypertensive patients suggest a decrease in distal vascular resistance.
Collapse
Affiliation(s)
- Sara Mazzucco
- Nuffield Department of Clinical
Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford
| | - Linxin Li
- Nuffield Department of Clinical
Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford
| | - Iain J McGurgan
- Nuffield Department of Clinical
Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford
| | - Maria A Tuna
- Nuffield Department of Clinical
Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford
| | - Nicoletta Brunelli
- institution-id-type="Ringgold" />Campus Bio-Medico University of
Rome, Rome, Italy
| | - Lucy E Binney
- Nuffield Department of Clinical
Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford
| | - Peter M Rothwell
- Nuffield Department of Clinical
Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford
| | | |
Collapse
|
28
|
Beason-Held LL, Fournier D, Shafer AT, Fabbri E, An Y, Huang CW, Bilgel M, Wong DF, Ferrucci L, Resnick SM. Disease Burden Affects Aging Brain Function. J Gerontol A Biol Sci Med Sci 2021; 77:1810-1818. [PMID: 34329447 PMCID: PMC9757056 DOI: 10.1093/gerona/glab218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Most older adults live with multiple chronic disease conditions, yet the effect of multiple diseases on brain function remains unclear. METHODS We examine the relationship between disease multimorbidity and brain activity using regional cerebral blood flow (rCBF) 15O-water PET scans from 97 cognitively normal participants (mean baseline age 76.5) in the Baltimore Longitudinal Study of Aging (BLSA). Multimorbidity index scores, generated from the presence of 13 health conditions, were correlated with PET data at baseline and in longitudinal change (n=74) over 5.05 (2.74 SD) years. RESULTS At baseline, voxel-based analysis showed that higher multimorbidity scores were associated with lower relative activity in orbitofrontal, superior frontal, temporal pole and parahippocampal regions, and greater activity in lateral temporal, occipital and cerebellar regions. Examination of the individual health conditions comprising the index score showed hypertension and chronic kidney disease individually contributed to the overall multimorbidity pattern of altered activity. Longitudinally, both increases and decreases in activity were seen in relation to increasing multimorbidity over time. These associations were identified in orbitofrontal, lateral temporal, brainstem, and cerebellar areas. CONCLUSION Together, these results show that greater multimorbidity is associated with widespread areas of altered brain activity, supporting a link between health and changes in aging brain function.
Collapse
Affiliation(s)
| | | | - Andrea T Shafer
- Intramural Research Program, National Institute on Aging, NIH
| | - Elisa Fabbri
- Intramural Research Program, National Institute on Aging, NIH
| | - Yang An
- Intramural Research Program, National Institute on Aging, NIH
| | | | - Murat Bilgel
- Intramural Research Program, National Institute on Aging, NIH
| | - Dean F Wong
- Department of Radiology, Washington University School of Medicine
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, NIH
| | - Susan M Resnick
- Intramural Research Program, National Institute on Aging, NIH
| |
Collapse
|
29
|
Development of a protocol to assess within-subject, regional white matter hyperintensity changes in aging and dementia. J Neurosci Methods 2021; 360:109270. [PMID: 34171312 DOI: 10.1016/j.jneumeth.2021.109270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND White matter hyperintensities (WMH), associated with both dementia risk and progression, can individually progress, remain stable, or even regress influencing cognitive decline related to specific cerebrovascular-risks. This study details the development and validation of a registration protocol to assess regional, within-subject, longitudinal WMH changes (ΔWMH) that is currently lacking in the field. NEW METHOD 3D-FLAIR images (baseline and one-year-visit) were used for protocol development and validation. The method was validated by assessing the correlation between forward and reverse longitudinal registration, and between summated regional progression-regression volumes and Global ΔWMH. The clinical relevance of growth-regression ΔWMH were explored in relation to an executive function test. RESULTS MRI scans for 79 participants (73.5 ± 8.8 years) were used in this study. Global ΔWMH vs. summated regional progression-regression volumes were highly associated (r2 = 0.90; p-value < 0.001). Bi-directional registration validated the registration method (r2 = 0.999; p-value < 0.001). Growth and regression, but not overall ΔWMH, were associated with one-year declines in performance on Trial-Making-Test-B. COMPARISON WITH EXISTING METHOD(S) This method presents a unique registration protocol for maximum tissue alignment, demonstrating three distinct patterns of longitudinal within-subject ΔWMH (stable, growth and regression). CONCLUSIONS These data detail the development and validation of a registration protocol for use in assessing within-subject, voxel-level alterations in WMH volume. The methods developed for registration and intensity correction of longitudinal within-subject FLAIR images allow regional and within-lesion characterization of longitudinal ΔWMH. Assessing the impact of associated cerebrovascular-risks and longitudinal clinical changes in relation to dynamic regional ΔWMH is needed in future studies.
Collapse
|
30
|
Liu W, Huang X, Liu X, Wang L, Chen Z, Ortega D, Chen L, Sun J, Hatsukami TS, Yuan C, Li H, Yang J. Urinary sodium and potassium excretion and cerebrovascular health: a multimodal imaging study. Eur J Nutr 2021; 60:4555-4563. [PMID: 34146142 DOI: 10.1007/s00394-021-02612-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Dietary sodium and potassium intake are associated with stroke, but the potential mechanisms are unclear. We aimed to study the association between sodium and potassium intake and subclinical cerebrovascular health in hypertensive older males using multimodal magnetic resonance imaging. METHODS A total of 189 hypertensive male subjects without previous cardiovascular or cerebrovascular disease were included. Daily urinary sodium and potassium excretion were estimated from a fasting spot urine sample using a formula approach. A dedicated cerebrovascular health imaging protocol including vessel wall imaging, angiography, arterial spin labeling imaging and T2-weighted fluid-attenuated inversion recovery imaging was performed to study intracranial atherosclerosis, vascular rarefaction (defined as fewer discernible vessels on angiography), brain perfusion and small vessel disease, respectively. RESULTS The mean age was 64.9 (± 7.2) years. The average daily urinary and potassium excretion was 4.7 (± 1.4) g/L and 2.1 (± 0.5) g/L, respectively. Increased urinary sodium excretion was associated with decreased cerebral blood flow and elevated urinary potassium excretion was associated with reduced prevalence of intracranial plaque. The associations remained significant after adjusting for covariates, even including blood pressure control. Quadratic regression analysis indicated a marginally significant U-shaped association between urinary sodium intake and white matter hyperintensity, which lost significance in fully adjusted models. No significant association of urinary sodium and potassium excretion with other cerebrovascular health measures was noted. CONCLUSION We concluded that in hypertensive older males without overt cardiovascular disease, increased sodium intake and reduced potassium intake are associated with impaired subclinical cerebrovascular health.
Collapse
Affiliation(s)
- Wenjin Liu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Xiaoqin Huang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# Zhongshan North Road, Nanjing, Jiangsu, China
| | - Xuebing Liu
- Department of Radiology, Second Affiliated Hospital of Nanjing Medical University, 121# Jiangjiayuan, Nanjing, Jiangsu, China
| | - Lulu Wang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# Zhongshan North Road, Nanjing, Jiangsu, China
| | - Zhensen Chen
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Dakota Ortega
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Li Chen
- Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Jie Sun
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Thomas S Hatsukami
- Department of Surgery, Division of Vascular Surgery, University of Washington, Seattle, WA, USA
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Haige Li
- Department of Radiology, Second Affiliated Hospital of Nanjing Medical University, 121# Jiangjiayuan, Nanjing, Jiangsu, China.
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# Zhongshan North Road, Nanjing, Jiangsu, China.
| |
Collapse
|
31
|
Clark LR, Zuelsdorff M, Norton D, Johnson SC, Wyman MF, Hancock LM, Carlsson CM, Asthana S, Flowers-Benton S, Gleason CE, Johnson HM. Association of Cardiovascular Risk Factors with Cerebral Perfusion in Whites and African Americans. J Alzheimers Dis 2021; 75:649-660. [PMID: 32310160 DOI: 10.3233/jad-190360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Midlife cardiovascular risk factors increase risk for Alzheimer's disease (AD). Despite disproportionately high cardiovascular disease and dementia rates, African Americans are under-represented in studies of AD risk and research-based guidance on targeting vascular risk factors is lacking. OBJECTIVE This study investigated relationships between specific cardiovascular risk factors and cerebral perfusion in White and African American adults enriched for AD risk. METHODS Participants included 397 cognitively unimpaired White (n = 330) and African American (n = 67) adults enrolled in the Wisconsin Alzheimer's Disease Research Center who underwent pseudo-continuous arterial spin labeling MRI. Multiple linear regression models examined independent relationships between cardiovascular risk factors and mean cerebral perfusion. Subsequent interaction and stratified models assessed the role for APOE genotype and race. RESULTS When risk factor p-values were FDR-adjusted, diastolic blood pressure was significantly associated with mean perfusion. Tobacco use, triglycerides, waist-to-hip ratio, and a composite risk score were not associated with perfusion. Without FDR adjustment, a relationship was also observed between perfusion and obesity, cholesterol, and fasting glucose. Neither APOE genotype nor race moderated relationships between risk factors and perfusion. CONCLUSION Higher diastolic blood pressure predicted lower perfusion more strongly than other cardiovascular risk factors. This relationship did not vary by racial group or genetic risk for AD, although the African American sample had greater vascular risk burden and lower perfusion rates. Our findings highlight the need to prioritize inclusion of underrepresented groups in neuroimaging studies and to continue exploring the link between modifiable risk factors, cerebrovascular health, and AD risk in underrepresented populations.
Collapse
Affiliation(s)
- Lindsay R Clark
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Megan Zuelsdorff
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin School of Nursing, Madison, WI, USA
| | - Derek Norton
- Department of Biostatistics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Mary F Wyman
- Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA.,Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura M Hancock
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Cynthia M Carlsson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Susan Flowers-Benton
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carey E Gleason
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research Education and Clinical Center, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Heather M Johnson
- Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
32
|
Effect of anesthesia induction on cerebral tissue oxygen saturation in hypertensive patients: an observational study. Braz J Anesthesiol 2021; 71:241-246. [PMID: 33958185 PMCID: PMC9373433 DOI: 10.1016/j.bjane.2021.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/25/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE In hypertensive patients, the autoregulation curve shifts rightward, making these patients more sensitive than normotensive individuals to hypotension. Hypotension following the induction of anesthesia has been studied in normotensive patients to determine its effects on brain tissue oxygenation, but not enough studies have examined the effect of hypotension on brain oxygenation in hypertensive patients. The current study aimed to use near-infrared spectroscopy to evaluate brain tissue oxygen saturation after the induction of anesthesia in hypertensive patients, who may have impaired brain tissue oxygen saturation. METHODS The study included a total of 200 patients aged > 18 years old with ASA I-III. Measurements were taken while the patient was breathing room air, after the induction of anesthesia, when the lash reflex had disappeared following the induction of anesthesia, after intubation, and in the 5th, 10th, and 15th minutes of surgery. The patients were divided into nonhypertensive and hypertensive groups. RESULTS There was a significant difference in age between the groups (p = 0.000). No correlation was found between cerebral tissue oxygen saturation and age (r = 0.015, p = 0.596). Anesthesia induction was observed to decrease mean arterial blood pressure in both groups (p = 0.000). Given these changes, there was no significant difference in brain tissue oxygen saturation between the nonhypertensive and hypertensive groups (p > 0.05). CONCLUSION There was no difference between hypertensive and normotensive groups in terms of the change rates in cSO2 values. However, there was a difference between the groups in terms of cSO2 values.
Collapse
|
33
|
Leidhin CN, McMorrow J, Carey D, Newman L, Williamson W, Fagan AJ, Chappell MA, Kenny RA, Meaney JF, Knight SP. Age-related normative changes in cerebral perfusion: Data from The Irish Longitudinal Study on Ageing (TILDA). Neuroimage 2021; 229:117741. [PMID: 33454406 DOI: 10.1016/j.neuroimage.2021.117741] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To establish normative reference values for total grey matter cerebral blood flow (CBFGM) measured using pseudo-continuous arterial spin labelling (pCASL) MRI in a large cohort of community-dwelling adults aged 54 years and older. BACKGROUND Quantitative assessment of CBFGM may provide an imaging biomarker for the early detection of those at risk of neurodegenerative diseases, such as Alzheimer's and dementia. However, the use of this method to differentiate normal age-related decline in CBFGM from pathological reduction has been hampered by the lack of reference values for cerebral perfusion. METHODS The study cohort comprised a subset of wave 3 (2014-2015) participants from The Irish Longitudinal Study on Ageing (TILDA), a large-scale prospective cohort study of individuals aged 50 and over. Of 4309 participants attending for health centre assessment, 578 individuals returned for 3T multi-parametric MRI brain examinations. In total, CBFGM data acquired from 468 subjects using pCASL-MRI were included in this analysis. Normative values were estimated using Generalised Additive Models for Location Shape and Scale (GAMLSS) and are presented as percentiles, means and standard deviations. RESULTS The mean age of the cohort was 68.2 ± 6.9 years and 51.7% were female. Mean CBFGM for the cohort was 36.5 ± 8.2 ml/100 g/min. CBFGM decreased by 0.2 ml/100 g/min for each year increase in age (95% CI = -0.3, -0.1; p ≤ 0.001) and was 3.1 ml/100 g/min higher in females (95% CI = 1.6, 4.5; p ≤ 0.001). CONCLUSIONS This study is by far the largest single-site study focused on an elderly community-dwelling cohort to present normative reference values for CBFGM measured at 3T using pCASL-MRI. Significant age- and sex-related differences exist in CBFGM.
Collapse
Affiliation(s)
- Caoilfhionn Ní Leidhin
- School of Medicine, Trinity College Dublin, Ireland; The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Jason McMorrow
- School of Medicine, Trinity College Dublin, Ireland; The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Daniel Carey
- School of Medicine, Trinity College Dublin, Ireland; The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Ireland
| | - Louise Newman
- School of Medicine, Trinity College Dublin, Ireland; The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Ireland
| | - Wilby Williamson
- School of Medicine, Trinity College Dublin, Ireland; The Global Brain Health Institute (GBHI), Trinity College Dublin, Ireland
| | - Andrew J Fagan
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael A Chappell
- Radiological Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Center, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham Biomedical Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom; Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rose Anne Kenny
- School of Medicine, Trinity College Dublin, Ireland; The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Ireland; The Global Brain Health Institute (GBHI), Trinity College Dublin, Ireland; Mercer's Institute for Successful Ageing, St. James's Hospital, Dublin, Ireland
| | - James F Meaney
- School of Medicine, Trinity College Dublin, Ireland; The National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital, Dublin, Ireland
| | - Silvin P Knight
- School of Medicine, Trinity College Dublin, Ireland; The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Ireland.
| |
Collapse
|
34
|
Liu W, Huang X, Liu X, Ortega D, Chen L, Chen Z, Sun J, Wang L, Hatsukami TS, Yuan C, Li H, Yang J. Uncontrolled hypertension associates with subclinical cerebrovascular health globally: a multimodal imaging study. Eur Radiol 2020; 31:2233-2241. [PMID: 32929643 DOI: 10.1007/s00330-020-07218-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/16/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The study aimed to analyze the association between hypertension control and subclinical cerebrovascular health using a comprehensive multimodal imaging approach. METHODS The study included 200 hypertensive older males without previous cardiovascular diseases. Clinic blood pressure (BP) was measured using a standard approach. Cerebrovascular health was evaluated using magnetic resonance imaging in the following four aspects: Intracranial atherosclerosis as determined by vessel wall imaging; Vascular rarefaction (defined as less discernible vessels on angiography) was evaluated using a custom-developed technique. Cerebral blood flow (CBF) and white matter hyperintensity (WMH) were assessed using arterial spin-labeling imaging and fluid-attenuated inversion recovery imaging, respectively. RESULTS A total of 189 subjects had MRI scans. The mean age was 64.9 (± 7.2) years. For intracranial atherosclerosis, there was a significant association between uncontrolled hypertension and presence of intracranial plaque. When systolic and diastolic BP were analyzed separately, the association remained significant for both. For vascular rarefaction, uncontrolled hypertension was associated with less discernible vessel branches or shorter vessel length on angiography. Further analysis revealed that this is due to uncontrolled diastolic BP, but not uncontrolled systolic BP. There was an association between uncontrolled hypertension and reduced CBF, which was also mainly driven by uncontrolled diastolic BP. We also found that uncontrolled diastolic BP, but not uncontrolled systolic BP, was associated with increased WMH volume. CONCLUSIONS Uncontrolled hypertension was associated with subclinical cerebrovascular injury globally, with both small and medium-to-large arteries being affected. KEY POINTS • In this study, we leveraged the advantage of a series of cutting-edge MR imaging and analysis techniques and found uncontrolled hypertension is associated with subclinical globally compromised cerebrovascular health. • The detrimental consequences of uncontrolled BP affect not only the small vessels but also the medium-to-large arteries, and uncontrolled systolic and diastolic BP are both independently associated with certain types of cerebrovascular injury. • Our data suggest that cerebrovascular health is impaired globally in uncontrolled hypertension before the onset of stroke.
Collapse
Affiliation(s)
- Wenjin Liu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Xiaoqin Huang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# Zhongshan North Road, Nanjing, Jiangsu, China
| | - Xuebing Liu
- Department of Radiology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dakota Ortega
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Li Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Zhensen Chen
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Jie Sun
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Lulu Wang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# Zhongshan North Road, Nanjing, Jiangsu, China
| | - Thomas S Hatsukami
- Department of Surgery, Division of Vascular Surgery, University of Washington, Seattle, WA, USA
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Haige Li
- Department of Radiology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# Zhongshan North Road, Nanjing, Jiangsu, China.
| |
Collapse
|
35
|
Jennings JR, Muldoon MF, Allen B, Ginty AT, Gianaros PJ. Cerebrovascular function in hypertension: Does high blood pressure make you old? Psychophysiology 2020; 58:e13654. [PMID: 32830869 DOI: 10.1111/psyp.13654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022]
Abstract
The majority of individuals over an age of 60 have hypertension. Elevated blood pressure and older age are associated with very similar changes in brain structure and function. We review the parallel brain changes associated with increasing age and blood pressure. This review focuses on joint associations of aging and elevated blood pressure with neuropsychological function, regional cerebral blood flow responses to cognitive and metabolic challenges, white matter disruptions, grey matter volume, cortical thinning, and neurovascular coupling. Treatment of hypertension ameliorates many of these changes but fails to reverse them. Treatment of hypertension itself appears more successful with better initial brain function. We show evidence that sympathetic and renal influences known to increase blood pressure also impact brain integrity. Possible central mechanisms contributing to the course of hypertension and aging are then suggested. An emphasis is placed on psychologically relevant factors: stress, cardiovascular reactions to stress, and diet/obesity. The contribution of some of these factors to biological aging remains unclear and may provide a starting point for defining the independent and interacting effects of aging and increasing blood pressure on the brain.
Collapse
Affiliation(s)
- J Richard Jennings
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew F Muldoon
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ben Allen
- Department of Psychology, University of Tennessee, Knoxville, TN, USA
| | - Annie T Ginty
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Norling AM, Gerstenecker AT, Buford TW, Khan B, Oparil S, Lazar RM. The role of exercise in the reversal of IGF-1 deficiencies in microvascular rarefaction and hypertension. GeroScience 2019; 42:141-158. [PMID: 31808026 DOI: 10.1007/s11357-019-00139-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Hypertension has been linked with peripheral and central reductions in vascular density, and with devastating effects on brain function. However, the underlying mechanisms in the relationship between blood pressure and cognitive impairment have yet to be fully elucidated. Here, we review compelling evidence from two lines of inquiry: one that links microvascular rarefaction with insulin-like growth factor 1 (IGF-1) deficiencies, and another which posits that vascular dysfunction precedes hypertension. Based on the findings from experimental and clinical studies, we propose that these lines of evidence converge, and suggest that age-related declines in IGF-1 concentrations precede microvascular rarefaction, initiate an increase in vascular resistance, and therefore are causally linked to onset of hypertension. Physical exercise provides a relevant model for supporting our premise, given the well-established effects of exercise in attenuating vascular dysfunction, hypertension, IGF-1 deficiency, and cognitive decline. We highlight here the role of exercise-induced increases in blood flow in improving vascular integrity and enhancing angiogenesis via the actions of IGF-1, resulting in reversal of rarefaction and hypertension, and enhancement of cerebral blood flow and cognition.
Collapse
Affiliation(s)
- Amani M Norling
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,The UAB Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama, AL, 35294, USA
| | - Adam T Gerstenecker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,The UAB Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama, AL, 35294, USA
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bilal Khan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Suzanne Oparil
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ronald M Lazar
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,The UAB Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama, AL, 35294, USA.
| |
Collapse
|
37
|
Thamm T, Guo J, Rosenberg J, Liang T, Marks MP, Christensen S, Do HM, Kemp SM, Adair E, Eyngorn I, Mlynash M, Jovin TG, Keogh BP, Chen HJ, Lansberg MG, Albers GW, Zaharchuk G. Contralateral Hemispheric Cerebral Blood Flow Measured With Arterial Spin Labeling Can Predict Outcome in Acute Stroke. Stroke 2019; 50:3408-3415. [PMID: 31619150 DOI: 10.1161/strokeaha.119.026499] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background and Purpose- Imaging is frequently used to select acute stroke patients for intra-arterial therapy. Quantitative cerebral blood flow can be measured noninvasively with arterial spin labeling magnetic resonance imaging. Cerebral blood flow levels in the contralateral (unaffected) hemisphere may affect capacity for collateral flow and patient outcome. The goal of this study was to determine whether higher contralateral cerebral blood flow (cCBF) in acute stroke identifies patients with better 90-day functional outcome. Methods- Patients were part of the prospective, multicenter iCAS study (Imaging Collaterals in Acute Stroke) between 2013 and 2017. Consecutive patients were enrolled after being diagnosed with anterior circulation acute ischemic stroke. Inclusion criteria were ischemic anterior circulation stroke, baseline National Institutes of Health Stroke Scale score ≥1, prestroke modified Rankin Scale score ≤2, onset-to-imaging time <24 hours, with imaging including diffusion-weighted imaging and arterial spin labeling. Patients were dichotomized into high and low cCBF groups based on median cCBF. Outcomes were assessed by day-1 and day-5 National Institutes of Health Stroke Scale; and day-30 and day-90 modified Rankin Scale. Multivariable logistic regression was used to test whether cCBF predicted good neurological outcome (modified Rankin Scale score, 0-2) at 90 days. Results- Seventy-seven patients (41 women) met the inclusion criteria with median (interquartile range) age of 66 (55-76) yrs, onset-to-imaging time of 4.8 (3.6-7.7) hours, and baseline National Institutes of Health Stroke Scale score of 13 (9-20). Median cCBF was 38.9 (31.2-44.5) mL per 100 g/min. Higher cCBF predicted good outcome at day 90 (odds ratio, 4.6 [95% CI, 1.4-14.7]; P=0.01), after controlling for baseline National Institutes of Health Stroke Scale, diffusion-weighted imaging lesion volume, and intra-arterial therapy. Conclusions- Higher quantitative cCBF at baseline is a significant predictor of good neurological outcome at day 90. cCBF levels may inform decisions regarding stroke triage, treatment of acute stroke, and general outcome prognosis. Clinical Trial Registration- URL: https://www.clinicaltrials.gov. Unique identifier: NCT02225730.
Collapse
Affiliation(s)
- Thoralf Thamm
- From the Department of Radiology, Stanford University, CA (T.T., J.G., J.R., T.L., M.P.M., H.M.D., G.Z.)
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Germany (T.T.)
| | - Jia Guo
- From the Department of Radiology, Stanford University, CA (T.T., J.G., J.R., T.L., M.P.M., H.M.D., G.Z.)
- Department of Bioengineering, University of California Riverside, Riverside (J.G.)
| | - Jarrett Rosenberg
- From the Department of Radiology, Stanford University, CA (T.T., J.G., J.R., T.L., M.P.M., H.M.D., G.Z.)
| | - Tie Liang
- From the Department of Radiology, Stanford University, CA (T.T., J.G., J.R., T.L., M.P.M., H.M.D., G.Z.)
| | - Michael P Marks
- From the Department of Radiology, Stanford University, CA (T.T., J.G., J.R., T.L., M.P.M., H.M.D., G.Z.)
| | - Soren Christensen
- Department of Neurology and Neurological Sciences, Stanford Stroke Center, Stanford University, CA (S.C., S.M.K., E.A., I.E., M.M., M.G.L., G.W.A.)
| | - Huy M Do
- From the Department of Radiology, Stanford University, CA (T.T., J.G., J.R., T.L., M.P.M., H.M.D., G.Z.)
| | - Stephanie M Kemp
- Department of Neurology and Neurological Sciences, Stanford Stroke Center, Stanford University, CA (S.C., S.M.K., E.A., I.E., M.M., M.G.L., G.W.A.)
| | - Emma Adair
- Department of Neurology and Neurological Sciences, Stanford Stroke Center, Stanford University, CA (S.C., S.M.K., E.A., I.E., M.M., M.G.L., G.W.A.)
| | - Irina Eyngorn
- Department of Neurology and Neurological Sciences, Stanford Stroke Center, Stanford University, CA (S.C., S.M.K., E.A., I.E., M.M., M.G.L., G.W.A.)
| | - Michael Mlynash
- Department of Neurology and Neurological Sciences, Stanford Stroke Center, Stanford University, CA (S.C., S.M.K., E.A., I.E., M.M., M.G.L., G.W.A.)
| | - Tudor G Jovin
- Department of Neurology, Cooper Neurological Institute, Cooper University Hospital, Camden, NJ (T.G.J.)
| | - Bart P Keogh
- Department of Radiology, Swedish Neuroscience Institute, Swedish Medical Center, Seattle, WA (B.P.K.)
| | - Hui J Chen
- Department of Radiology, Eden Medical Center, Castro Valley, CA (H.J.C.)
| | - Maarten G Lansberg
- Department of Neurology and Neurological Sciences, Stanford Stroke Center, Stanford University, CA (S.C., S.M.K., E.A., I.E., M.M., M.G.L., G.W.A.)
| | - Gregory W Albers
- Department of Neurology and Neurological Sciences, Stanford Stroke Center, Stanford University, CA (S.C., S.M.K., E.A., I.E., M.M., M.G.L., G.W.A.)
| | - Greg Zaharchuk
- From the Department of Radiology, Stanford University, CA (T.T., J.G., J.R., T.L., M.P.M., H.M.D., G.Z.)
| |
Collapse
|
38
|
Borshchev YY, Uspensky YP, Galagudza MM. Pathogenetic pathways of cognitive dysfunction and dementia in metabolic syndrome. Life Sci 2019; 237:116932. [PMID: 31606384 DOI: 10.1016/j.lfs.2019.116932] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022]
Abstract
The prevalence of dementia worldwide is growing at an alarming rate. A number of studies and meta-analyses have provided evidence for increased risk of dementia in patients with metabolic syndrome (MS) as compared to persons without MS. However, there are some reports demonstrating a lack of association between MS and increased dementia risk. In this review, taking into account the potential role of individual MS components in the pathogenesis of MS-related cognitive dysfunction, we considered the underlying mechanisms in arterial hypertension, diabetes mellitus, dyslipidemia, and obesity. The pathogenesis of dementia in MS is multifactorial, involving both vascular injury and non-ischemic neuronal death due to neurodegeneration. Neurodegenerative and ischemic lesions do not simply coexist in the brain due to independent evolution, but rather exacerbate each other, leading to more severe consequences for cognition than would either pathology alone. In addition to universal mechanisms of cognitive dysfunction shared by all MS components, other pathogenetic pathways leading to cognitive deficits and dementia, which are specific for each component, also play a role. Examples of such component-specific pathogenetic pathways include central insulin resistance and hypoglycemia in diabetes, neuroinflammation and adipokine imbalance in obesity, as well as arteriolosclerosis and lipohyalinosis in arterial hypertension. A more detailed understanding of cognitive disorders based on the recognition of underlying molecular mechanisms will aid in the development of new methods for prevention and treatment of devastating cognitive problems in MS.
Collapse
Affiliation(s)
- Yury Yu Borshchev
- Institute of Experimental Medicine, Almazov National Medical Research Center, Saint Petersburg, Russian Federation
| | - Yury P Uspensky
- Department of Faculty Therapy, Saint Petersburg State Pediatric Medical University, Saint Petersburg, Russian Federation
| | - Michael M Galagudza
- Laboratory of Digital and Display Holography, ITMO University, Russian Federation, Saint Petersburg, Russian Federation.
| |
Collapse
|
39
|
Mistry EA, Sucharew H, Mistry AM, Mehta T, Arora N, Starosciak AK, De Los Rios La Rosa F, Siegler JE, Barnhill NR, Patel K, Assad S, Tarboosh A, Dakay K, Salwi S, Cruz AS, Wagner J, Fortuny E, Bennett A, James RF, Jagadeesan B, Streib C, O'Phelan K, Kasner SE, Weber SA, Chitale R, Volpi JJ, Mayer S, Yaghi S, Jayaraman MV, Khatri P. Blood Pressure after Endovascular Therapy for Ischemic Stroke (BEST): A Multicenter Prospective Cohort Study. Stroke 2019; 50:3449-3455. [PMID: 31587660 DOI: 10.1161/strokeaha.119.026889] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Purpose- To identify the specific post-endovascular stroke therapy (EVT) peak systolic blood pressure (SBP) threshold that best discriminates good from bad functional outcomes (a priori hypothesized to be 160 mm Hg), we conducted a prospective, multicenter, cohort study with a prespecified analysis plan. Methods- Consecutive adult patients treated with EVT for an anterior ischemic stroke were enrolled from November 2017 to July 2018 at 12 comprehensive stroke centers accross the United States. All SBP values within 24 hours post-EVT were recorded. Using Youden index, the threshold of peak SBP that best discriminated primary outcome of dichotomized 90-day modified Rankin Scale score (0-2 versus 3-6) was identified. Association of this SBP threshold with the outcomes was quantified using multiple logistic regression. Results- Among 485 enrolled patients (median age, 69 [interquartile range, 57-79] years; 51% females), a peak SBP of 158 mm Hg was associated with the largest difference in the dichotomous modified Rankin Scale score (absolute risk reduction of 19%). Having a peak SBP >158 mm Hg resulted in an increased likelihood of modified Rankin Scale score 3 to 6 (odds ratio, 2.24 [1.52-3.29], P<0.01; adjusted odds ratio, 1.29 [0.81-2.06], P=0.28, after adjustment for prespecified variables). Conclusions- A peak post-EVT SBP of 158 mm Hg was prospectively identified to best discriminate good from bad functional outcome. Those with a peak SBP >158 had an increased likelihood of having a bad outcome in unadjusted, but not in adjusted analysis. The observed effect size was similar to prior studies. This finding should undergo further testing in a future randomized trial of goal-targeted post-EVT antihypertensive treatment.
Collapse
Affiliation(s)
- Eva A Mistry
- From the Department of Neurology, Vanderbilt University Medical Center, Nashville, TN (E.A.M.)
| | - Heidi Sucharew
- Cincinnati Children's Hospital Medical Center, OH (H.S.)
| | - Akshitkumar M Mistry
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN (A.M.M., R.C.)
| | - Tapan Mehta
- Department of Neurology and Neurosurgery, University of Minnesota, Minneapolis (T.M., B.J., C.S.)
| | - Niraj Arora
- Department of Neurology, Jackson Memorial Hospital, Miami, FL (N.A., K.O.P.)
| | | | | | - James Ernest Siegler
- Department of Neurology, University of Pennsylvania, Philadelphia (J.E.S., S.E.K.)
| | - Natasha R Barnhill
- Department of Neurology, Oregon Health and Science University, Portland (N.R.B., S.A.W.)
| | - Kishan Patel
- Department of Neurology, Houston Methodist Hospital, TX (K.P., J.J.V.)
| | - Salman Assad
- Department of Neurology, Henry Ford Hospital, Detroit, MI (S.A., A.T., S.M.)
| | - Amjad Tarboosh
- Department of Neurology, Henry Ford Hospital, Detroit, MI (S.A., A.T., S.M.)
| | - Katarina Dakay
- Department of Neurology, Rhode Island Hospital, Providence (K.D., M.V.J.)
| | - Sanjana Salwi
- School of Medicine, Vanderbilt University, Nashville, TN (S.S.)
| | - Aurora S Cruz
- Department of Neurosurgery, University of Louisville School of Medicine, KY (A.S.C., E.F., R.F.J.)
| | | | - Enzo Fortuny
- Department of Neurosurgery, University of Louisville School of Medicine, KY (A.S.C., E.F., R.F.J.)
| | | | - Robert F James
- Department of Neurosurgery, University of Louisville School of Medicine, KY (A.S.C., E.F., R.F.J.)
| | - Bharathi Jagadeesan
- Department of Neurology and Neurosurgery, University of Minnesota, Minneapolis (T.M., B.J., C.S.)
| | - Christopher Streib
- Department of Neurology and Neurosurgery, University of Minnesota, Minneapolis (T.M., B.J., C.S.)
| | - Kristine O'Phelan
- Department of Neurology, Jackson Memorial Hospital, Miami, FL (N.A., K.O.P.)
| | - Scott E Kasner
- Department of Neurology, University of Pennsylvania, Philadelphia (J.E.S., S.E.K.)
| | - Stewart A Weber
- Department of Neurology, Oregon Health and Science University, Portland (N.R.B., S.A.W.)
| | - Rohan Chitale
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN (A.M.M., R.C.)
| | - John J Volpi
- Department of Neurology, Houston Methodist Hospital, TX (K.P., J.J.V.)
| | - Stephan Mayer
- Department of Neurology, Henry Ford Hospital, Detroit, MI (S.A., A.T., S.M.)
| | - Shadi Yaghi
- Department of Neurology, New York University Langone Health, Brooklyn (S.Y.)
| | - Mahesh V Jayaraman
- Department of Neurology, Rhode Island Hospital, Providence (K.D., M.V.J.)
| | - Pooja Khatri
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, OH (P.K.)
| |
Collapse
|
40
|
Gomez G, Beason-Held LL, Bilgel M, An Y, Wong DF, Studenski S, Ferrucci L, Resnick SM. Metabolic Syndrome and Amyloid Accumulation in the Aging Brain. J Alzheimers Dis 2019; 65:629-639. [PMID: 30103324 DOI: 10.3233/jad-180297] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent studies show links between metabolic syndrome and Alzheimer's disease (AD) neuropathology. Understanding the link between vascular-related health conditions and dementia will help target at risk populations and inform clinical strategies for early detection and prevention of AD. OBJECTIVE To determine whether metabolic syndrome is associated with global cerebral amyloid-β (Aβ) positivity and longitudinal Aβ accumulation. METHODS Prospective study of 165 participants who underwent (11)C-Pittsburgh compound B (PiB) PET neuroimaging to measure Aβ, from June 2005 to May 2016. Metabolic syndrome was defined using the revised Third Adults Treatment Panel of the National Cholesterol Education Program criteria. Participants were classified as PiB+/-. Linear mixed effects models assessed the relationships between baseline metabolic syndrome and PiB status and regional Aβ change over time. RESULTS A total of 165 cognitively normal participants of the Baltimore Longitudinal Study of Aging (BLSA) Neuroimaging substudy, aged 55-92 years (mean baseline age = 76.4 years, 85 participants were male), received an average of 2.5 PET-PiB scans over an average interval of 2.6 (3.08 SD) years between first and last visits. Metabolic syndrome was not associated with baseline PiB positivity or concurrent regional Aβ. Metabolic syndrome was associated with increased rates of Aβ accumulation in superior parietal and precuneus regions over time in the PiB+ group. Elevated fasting glucose and blood pressure showed individual associations with accelerated Aβ accumulation. CONCLUSION Metabolic syndrome was associated with accelerated Aβ accumulation in PiB+ individuals and may be an important factor in the progression of AD pathology.
Collapse
Affiliation(s)
- Gabriela Gomez
- Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Lori L Beason-Held
- Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Murat Bilgel
- Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Yang An
- Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Dean F Wong
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Stephanie Studenski
- Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Susan M Resnick
- Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
41
|
Moraes NC, Aprahamian I, Yassuda MS. Executive function in systemic arterial hypertension: A systematic review. Dement Neuropsychol 2019; 13:284-292. [PMID: 31555400 PMCID: PMC6753903 DOI: 10.1590/1980-57642018dn13-030004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Systemic arterial hypertension (SAH) may be associated with worse cognitive performance, especially in tasks that evaluate the executive functions (EF). OBJECTIVE we aimed to review the evidence regarding which components of executive functions are most affected in adults with SAH. METHODS this systematic review used the PRISMA statement for searching Pubmed, Scielo and Lilacs databases with the keywords "executive function OR executive functioning AND hypertension". RESULTS EF tasks were divided into shifting, inhibitory control and updating. A total of 9 cross-sectional and 3 longitudinal studies were selected. Only 3 studies did not report worse performance among SAH patients on EF tasks when compared to normotensive controls. The measures of shifting and inhibitory control were the most frequently investigated and reported as altered among SAH individuals, assessed mainly by the Stroop Test and Trail-Making Test part B, respectively. CONCLUSION inhibitory control and shifting are the EF components most influenced by SAH. The results of this review may contribute to the devising of hypotheses about mechanisms underlying these cognitive impairments.
Collapse
Affiliation(s)
- Natália Cristina Moraes
- University of São PauloDepartment of NeurologySPBrazilDepartment of Neurology, University of São Paulo, SP, Brazil.
| | - Ivan Aprahamian
- Faculty of Medicine of JundiaíDepartment of Internal MedicineDivision of Geriatrics and GerontologySPBrazilDivision of Geriatrics and Gerontology, Department of Internal Medicine, Faculty of Medicine of Jundiaí, SP, Brazil.
| | - Mônica Sanches Yassuda
- University of São PauloDepartment of NeurologySPBrazilDepartment of Neurology, University of São Paulo, SP, Brazil.
| |
Collapse
|
42
|
Suri S, Topiwala A, Chappell MA, Okell TW, Zsoldos E, Singh-Manoux A, Kivimäki M, Mackay CE, Ebmeier KP. Association of Midlife Cardiovascular Risk Profiles With Cerebral Perfusion at Older Ages. JAMA Netw Open 2019; 2:e195776. [PMID: 31225888 PMCID: PMC6593638 DOI: 10.1001/jamanetworkopen.2019.5776] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Importance Poor cardiovascular health is an established risk factor for dementia, but little is known about its association with brain physiology in older adults. Objective To examine the association of cardiovascular risk factors, measured repeatedly during a 20-year period, with cerebral perfusion at older ages. Design, Setting, and Participants In this longitudinal cohort study, individuals were selected from the Whitehall II Imaging Substudy. Participants were included if they had no clinical diagnosis of dementia, had no gross brain structural abnormalities on magnetic resonance imaging scans, and had received pseudocontinuous arterial spin labeling magnetic resonance imaging. Cardiovascular risk was measured at 5-year intervals across 5 phases from September 1991 to October 2013. Arterial spin labeling scans were acquired between April 2014 and December 2014. Data analysis was performed from June 2016 to September 2018. Exposures Framingham Risk Score (FRS) for cardiovascular disease, comprising age, sex, high-density lipoprotein cholesterol level, total cholesterol level, systolic blood pressure, use of antihypertensive medications, cigarette smoking, and diabetes, was assessed at 5 visits. Main Outcomes and Measures Cerebral blood flow (CBF; in milliliters per 100 g of tissue per minute) was quantified with pseudocontinuous arterial spin labeling magnetic resonance imaging. Results Of 116 adult participants, 99 (85.3%) were men. At the first examination, mean (SD) age was 47.1 (5.0) years; at the last examination, mean (SD) age was 67.4 (4.9) years. Mean (SD) age at MRI scan was 69.3 (5.0) years. Log-FRS increased with time (B = 0.058; 95% CI, 0.044 to 0.072; P < .001). Higher cumulative FRS over the 20-year period (measured as the integral of the rate of change of log-FRS) was associated with lower gray matter CBF (B = -0.513; 95% CI -0.802 to -0.224; P < .001) after adjustment for age, sex, education, socioeconomic status, cognitive status, arterial transit time, use of statins, and weekly alcohol consumption. Voxelwise analyses revealed that this association was significant in 39.6% of gray matter regions, including the posterior cingulate, precuneus, lateral parietal cortex, occipital cortex, hippocampi, and parahippocampal gyrus. The strength of the association of higher log-FRS with lower CBF decreased progressively from the first examination (R2 = 0.253; B = -10.816; 99% CI -18.375 to -3.257; P < .001) to the last (R2 = 0.188; B = -7.139; 99% CI -14.861 to 0.582; P = .02), such that the most recent FRS measurement at mean (SD) age 67.4 (4.9) years was not significantly associated with CBF with a Bonferroni-corrected P < .01 . Conclusions and Relevance Cardiovascular risk in midlife was significantly associated with lower gray matter perfusion at older ages, but this association was not significant for cardiovascular risk in later life. This finding could inform the timing of cardiovascular interventions so as to be optimally effective.
Collapse
Affiliation(s)
- Sana Suri
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Anya Topiwala
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Michael A. Chappell
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Enikő Zsoldos
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Archana Singh-Manoux
- Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Université Paris Descartes, Paris, France
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Clare E. Mackay
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Klaus P. Ebmeier
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Sachdeva R, Nightingale TE, Krassioukov AV. The Blood Pressure Pendulum following Spinal Cord Injury: Implications for Vascular Cognitive Impairment. Int J Mol Sci 2019; 20:ijms20102464. [PMID: 31109053 PMCID: PMC6567094 DOI: 10.3390/ijms20102464] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Cognitive impairment following spinal cord injury (SCI) has received considerable attention in recent years. Among the various systemic effects of SCI that contribute towards cognitive decline in this population, cardiovascular dysfunction is arguably one of the most significant. The majority of individuals with a cervical or upper-thoracic SCI commonly experience conditions called orthostatic hypotension and autonomic dysreflexia, which are characterized by dangerous fluctuations in systemic blood pressure (BP). Herein, we review the potential impact of extreme BP lability on vascular cognitive impairment (VCI) in individuals with SCI. Albeit preliminary in the SCI population, there is convincing evidence that chronic hypotension and hypertension in able-bodied individuals results in devastating impairments in cerebrovascular health, leading to VCI. We discuss the pertinent literature, and while drawing mechanistic comparisons between able-bodied cohorts and individuals with SCI, we emphasize the need for additional research to elucidate the mechanisms of cognitive impairment specific to the SCI population. Lastly, we highlight the current and potential future therapies to manage and treat BP instability, thereby possibly mitigating VCI in the SCI population.
Collapse
Affiliation(s)
- Rahul Sachdeva
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| | - Tom E Nightingale
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
- GF Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, BC V5Z 2G9, Canada.
| |
Collapse
|
44
|
Abstract
Hypertension has emerged as a leading cause of age-related cognitive impairment. Long known to be associated with dementia caused by vascular factors, hypertension has more recently been linked also to Alzheimer disease-the major cause of dementia in older people. Thus, although midlife hypertension is a risk factor for late-life dementia, hypertension may also promote the neurodegenerative pathology underlying Alzheimer disease. The mechanistic bases of these harmful effects remain to be established. Hypertension is well known to alter in the structure and function of cerebral blood vessels, but how these cerebrovascular effects lead to cognitive impairment and promote Alzheimer disease pathology is not well understood. Furthermore, critical questions also concern whether treatment of hypertension prevents cognitive impairment, the blood pressure threshold for treatment, and the antihypertensive agents to be used. Recent advances in neurovascular biology, epidemiology, brain imaging, and biomarker development have started to provide new insights into these critical issues. In this review, we will examine the progress made to date, and, after a critical evaluation of the evidence, we will highlight questions still outstanding and seek to provide a path forward for future studies.
Collapse
Affiliation(s)
- Costantino Iadecola
- From the Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (C.I.)
| | - Rebecca F Gottesman
- Departments of Neurology (R.F.G.), Johns Hopkins University, Baltimore, MD
- Epidemiology (R.F.G.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
45
|
Farhat NS, Theiss R, Santini T, Ibrahim TS, Aizenstein HJ. Neuroimaging of Small Vessel Disease in Late-Life Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:95-115. [PMID: 31705491 PMCID: PMC6939470 DOI: 10.1007/978-981-32-9721-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cerebral small vessel disease is associated with late-life depression, cognitive impairment, executive dysfunction, distress, and loss of life for older adults. Late-life depression is becoming a substantial public health burden, and a considerable number of older adults presenting to primary care have significant clinical depression. Even though white matter hyperintensities are linked with small vessel disease, white matter hyperintensities are nonspecific to small vessel disease and can co-occur with other brain diseases. Advanced neuroimaging techniques at the ultrahigh field magnetic resonance imaging are enabling improved characterization, identification of cerebral small vessel disease and are elucidating some of the mechanisms that associate small vessel disease with late-life depression.
Collapse
Affiliation(s)
- Nadim S Farhat
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Theiss
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tales Santini
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Howard J Aizenstein
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
46
|
Glodzik L, Rusinek H, Tsui W, Pirraglia E, Kim HJ, Deshpande A, Li Y, Storey P, Randall C, Chen J, Osorio RS, Butler T, Tanzi E, McQuillan M, Harvey P, Williams SK, Ogedegbe OG, Babb JS, de Leon MJ. Different Relationship Between Systolic Blood Pressure and Cerebral Perfusion in Subjects With and Without Hypertension. Hypertension 2019; 73:197-205. [PMID: 30571554 PMCID: PMC7986962 DOI: 10.1161/hypertensionaha.118.11233] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although there is an increasing agreement that hypertension is associated with cerebrovascular compromise, relationships between blood pressure (BP) and cerebral blood flow are not fully understood. It is not known what BP level, and consequently what therapeutic goal, is optimal for brain perfusion. Moreover, there is limited data on how BP affects hippocampal perfusion, a structure critically involved in memory. We conducted a cross-sectional (n=445) and longitudinal (n=185) study of adults and elderly without dementia or clinically apparent stroke, who underwent clinical examination and brain perfusion assessment (age 69.2±7.5 years, 62% women, 45% hypertensive). Linear models were used to test baseline BP-blood flow relationship and to examine how changes in BP influence changes in perfusion. In the entire group, systolic BP (SBP) was negatively related to cortical (β=-0.13, P=0.005) and hippocampal blood flow (β=-0.12, P=0.01). Notably, this negative relationship was apparent already in subjects without hypertension. Hypertensive subjects showed a quadratic relationship between SBP and hippocampal blood flow (β=-1.55, P=0.03): Perfusion was the highest in subjects with mid-range SBP around 125 mm Hg. Longitudinally, in hypertensive subjects perfusion increased with increased SBP at low baseline SBP but increased with decreased SBP at high baseline SBP. Cortical and hippocampal perfusion decrease with increasing SBP across the entire BP spectrum. However, in hypertension, there seems to be a window of mid-range SBP which maximizes perfusion.
Collapse
Affiliation(s)
- Lidia Glodzik
- Center for Brain Health, Department of Psychiatry, New York University (NYU) School of Medicine, New York,Department of Radiology, NYU School of Medicine, New York,Corresponding author: Lidia Glodzik, Center for Brain Health, Department of Psychiatry, NYU School of Medicine, 145 East 32 Street, New York, NY, 10016. Tel: 212-263-5698, Fax: 212-263-3270;
| | - Henry Rusinek
- Department of Radiology, NYU School of Medicine, New York
| | - Wai Tsui
- Center for Brain Health, Department of Psychiatry, New York University (NYU) School of Medicine, New York
| | - Elizabeth Pirraglia
- Center for Brain Health, Department of Psychiatry, New York University (NYU) School of Medicine, New York
| | - Hee-Jin Kim
- Department of Neurology, Konkuk University College of Medicine, Seoul, South Korea
| | - Anup Deshpande
- Center for Brain Health, Department of Psychiatry, New York University (NYU) School of Medicine, New York
| | - Yi Li
- Center for Brain Health, Department of Psychiatry, New York University (NYU) School of Medicine, New York
| | - Pippa Storey
- Department of Radiology, NYU School of Medicine, New York
| | - Catherine Randall
- Center for Brain Health, Department of Psychiatry, New York University (NYU) School of Medicine, New York
| | - Jingyun Chen
- Center for Brain Health, Department of Psychiatry, New York University (NYU) School of Medicine, New York
| | - Ricardo S. Osorio
- Center for Brain Health, Department of Psychiatry, New York University (NYU) School of Medicine, New York
| | - Tracy Butler
- Center for Brain Health, Department of Psychiatry, New York University (NYU) School of Medicine, New York
| | - Emily Tanzi
- Center for Brain Health, Department of Psychiatry, New York University (NYU) School of Medicine, New York
| | - Molly McQuillan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Patrick Harvey
- Center for Brain Health, Department of Psychiatry, New York University (NYU) School of Medicine, New York
| | | | | | - James S. Babb
- Department of Radiology, NYU School of Medicine, New York
| | - Mony J. de Leon
- Center for Brain Health, Department of Psychiatry, New York University (NYU) School of Medicine, New York
| |
Collapse
|
47
|
Xu M, Wang MM, Gao Y, Keep RF, Shi Y. The effect of age-related risk factors and comorbidities on white matter injury and repair after ischemic stroke. Neurobiol Dis 2018; 126:13-22. [PMID: 30017454 DOI: 10.1016/j.nbd.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/17/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
White matter injury is a crucial component of human stroke, but it has often been neglected in preclinical studies. Most human stroke is associated with one or more comorbidities, including aging, hypertension, diabetes and metabolic syndrome including hyperlipidemia. The purpose of this review is to examine how age and hypertension impact stroke-induced white matter injury as well as white matter repair in both human stroke and preclinical models. It is essential that comorbidities be examined in preclinical trials as they may impact translatability to the clinic. In addition, understanding how comorbidities impact white matter injury and repair may provide new therapeutic opportunities for patients with those conditions.
Collapse
Affiliation(s)
- Mingyue Xu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Michael M Wang
- Departments of Neurology and Physiology, University of Michigan, Ann Arbor, MI 48109, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
48
|
Protective Role of Recent and Past Long-Term Physical Activity on Age-Related Cognitive Decline: The Moderating Effect of Sex. J Aging Phys Act 2018; 26:353-362. [DOI: 10.1123/japa.2016-0362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aimed to investigate if the impact of both recent and long-term physical activity on age-related cognitive decline would be modified by sex. One-hundred thirty-five men (N = 67) and women (N = 68) aged 18 to 80 years completed the Modifiable Activity Questionnaire and the Historical Leisure Activity Questionnaire. A composite score of cognitive functions was computed from five experimental tasks. Hierarchical regression analyses performed to test the moderating effect of recent physical activity on age-cognition relationship had not revealed significant result regardless of sex. Conversely, past long-term physical activity was found to slow down the age-related cognitive decline among women (β = 0.22,p = .03), but not men. The findings support a lifecourse approach in identifying determinants of cognitive aging and the importance of taking into account the moderating role of sex. This article presented potential explanations for these moderators and future avenues to explore.
Collapse
|
49
|
Qiulei G, Qingguo L, Dongmei S, Binbin N. Twirling reinforcing-reducing manipulation — central mechanism underlying antihypertensive effect on spontaneous hypertension in rats. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30629-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Gao Y, Li W, Liu Y, Wang Y, Zhang J, Li M, Bu M. Effect of Telmisartan on Preventing Learning and Memory Deficits Via Peroxisome Proliferator-Activated Receptor-γ in Vascular Dementia Spontaneously Hypertensive Rats. J Stroke Cerebrovasc Dis 2018; 27:277-285. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/29/2016] [Accepted: 01/25/2017] [Indexed: 10/18/2022] Open
|