1
|
Ahmed Z, Yedavalli V, Gonzalez WS, Hillis AE. Relative improvement in language vs. motor functions with reperfusion therapies for large vessel occlusion. Sci Rep 2025; 15:6683. [PMID: 39994323 PMCID: PMC11850585 DOI: 10.1038/s41598-025-90871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
When weighing potential risks versus benefits of reperfusion therapy, the functions likely to recover if blood flow can be restored should be considered. Because deep and motor areas often infarct relatively early in acute stroke, we hypothesized that reperfusion therapies improve predominantly cortical functions more than motor function. In this retrospective review of a prospectively collected database of patients with acute stroke due to large vessel occlusion, we evaluated percent improvement (mean change in score/maximum score) for different items of the National Institutes of Health Score Scale with and without endovascular thrombectomy (EVT), and/or intravenous thrombolysis. In total, 290 patients met the inclusion criteria. For all outcome measures there were significant effects of treatment group (p < 0.0001 for all), with the greatest change in the EVT + thrombolysis group, then EVT only group, followed by thrombolysis only, followed by no intervention. Differences between EVT + thrombolysis and EVT only were not significant (p = 0.30 to 0.79 across outcomes). For patients with aphasia and/or right sided weakness before treatment, the percent change in language was significantly greater than the percent change in weakness (29.8% vs. 12.7%; t(93) = 5.3;p < 0.0001). Greater percent improvement in language was observed in all treatment groups (p = 0.0003 to 0.03 across treatment groups). After acute ischemic stroke due to LVO, improvements occur in all neurological functions with intervention. However, gains in language are even greater than gains in motor function in the same patients. Few patients had neglect before treatment, but of those who did, the majority improved, and most (92.8%) with EVT.
Collapse
Affiliation(s)
- Zaka Ahmed
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, USA
| | - Vivek Yedavalli
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Argye E Hillis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, USA.
- Departments of Physical Medicine & Rehabilitation, Johns Hopkins School of Medicine, Baltimore, USA.
- Department of Neurology, Cerebrovascular Division, Sheikh Khalifa Endowed Chair of Excellence in Stroke Detection and Treatment, Johns Hopkins University School of Medicine, Phipps 446, 600 N. Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
2
|
Scheschenja M, Müller-Stüler EM, Viniol S, Wessendorf J, Bastian MB, Jedelská J, König AM, Mahnken AH. Radiomics for Predicting the Development of Brain Edema from Normal-Appearing Early Brain-CT After Cardiac Arrest and Return of Spontaneous Circulation. Diagnostics (Basel) 2025; 15:119. [PMID: 39857003 PMCID: PMC11764222 DOI: 10.3390/diagnostics15020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Hypoxic-ischemic brain injury (HIBI) is a feared complication post-cardiac arrest (CA). The timing of brain imaging remains a topic of ongoing debate. Early computed tomography (CT) scans can reveal acute intracranial pathologies but may have limited predictive value due to delayed manifestation of HIBI-related changes. Radiomics analyses present a promising approach to identifying subtle imaging markers, potentially aiding early HIBI detection. Methods: This study retrospectively assessed post-CA patients between 2016 and 2023 who received immediate brain CTs. Patients without acute intracranial pathology on initial scans and who underwent follow-up brain CTs within 14 days post-return of spontaneous circulation (ROSC) were included. Image segmentation involved manual basalganglia segmentation and automated whole-brain segmentation. Radiomics features were calculated using Pyradiomics (v3.0.1) in 3DSlicer (v5.2.2). Feature selection involved reproducibility analysis via ICC and LASSO regression, retaining five features per segmentation method. A logistic regression model for each segmentation method underwent 5-fold cross-validation. Results were summarized with ROC analyses and average sensitivity and specificity. Results: A total of 83 patients (average age: 65 ± 13.3 years, 19 women) with CA and ROSC were included. Follow-up CT scans after 5.2 ± 2.9 days revealed brain edema in 47 patients. The model using manual segmentation achieved an average AUC of 0.76, sensitivity of 0.59, and specificity of 0.78. The automated segmentation model showed an average AUC of 0.66, sensitivity of 0.49, and specificity of 0.68. Conclusions: Radiomics, particularly focused on the basalganglia area in normal-appearing brain CTs after CA and ROSC, may enhance predictive insights for HIBI and the development of brain edema.
Collapse
Affiliation(s)
- Michael Scheschenja
- Clinic of Diagnostic and Interventional Radiology, Marburg University Hospital, Philipps-University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Ezra M, Franko E, Spronk DB, Lamb C, Okell TW, Pattinson KT. Trial of the cerebral perfusion response to sodium nitrite infusion in patients with acute subarachnoid haemorrhage using arterial spin labelling MRI. Nitric Oxide 2024; 153:50-60. [PMID: 39369814 DOI: 10.1016/j.niox.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Aneurysmal subarachnoid haemorrhage (SAH) is a devastating subset of stroke. One of the major determinants of outcome is an evolving multifactorial injury occurring in the first 72 hours, known as early brain injury. Reduced nitric oxide (NO) bioavailability and an associated disruption to cerebral perfusion is believed to play an important role in this process. We sought to explore this relationship, by examining the effect on cerebral perfusion of the in vivo manipulation of NO levels using an exogenous NO donor (sodium nitrite). We performed a double blind placebo controlled randomised experimental medicine study of the cerebral perfusion response to sodium nitrite infusion during the early brain injury period in 15 low grade (World Federation of Neurosurgeons grade 1-2) SAH patients. Patients were randomly assigned to receive sodium nitrite at 10 mcg/kg/min or saline placebo. Assessment occurred following endovascular aneurysm occlusion, mean time after ictus 66h (range 34-90h). Cerebral perfusion was quantified before infusion commencement and after 3 hours, using multi-post labelling delay (multi-PLD) vessel encoded pseudocontinuous arterial spin labelling (VEPCASL) magnetic resonance imaging (MRI). Administration of sodium nitrite was associated with a significant increase in average grey matter cerebral perfusion. Group level voxelwise analysis identified that increased perfusion occurred within regions of the brain known to exhibit enhanced vulnerability to injury. These findings highlight the role of impaired NO bioavailability in the pathophysiology of early brain injury.
Collapse
Affiliation(s)
- Martyn Ezra
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Edit Franko
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Desiree B Spronk
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Catherine Lamb
- Neuro Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kyle Ts Pattinson
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Mácha H, Luptáková D, Juránek I, Andrén PE, Havlíček V. Hypoxic-Ischemic Insult Alters Polyamine and Neurotransmitter Abundance in the Specific Neonatal Rat Brain Subregions. ACS Chem Neurosci 2024; 15:2811-2821. [PMID: 39058922 PMCID: PMC11311127 DOI: 10.1021/acschemneuro.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Neonatal hypoxic-ischemic (HI) brain insult is a major cause of neonatal mortality and morbidity. To assess the underlying pathological mechanisms, we mapped the spatiotemporal changes in polyamine, amino acid, and neurotransmitter levels, following HI insult (by the Rice-Vannucci method) in the brains of seven-day-old rat pups. Matrix-assisted laser desorption/ionization mass spectrometry imaging of chemically modified small-molecule metabolites by 4-(anthracen-9-yl)-2-fluoro-1-methylpyridin-1-ium iodide revealed critical HI-related metabolomic changes of 22 metabolites in 14 rat brain subregions, much earlier than light microscopy detected signs of neuronal damage. For the first time, we demonstrated excessive polyamine oxidation and accumulation of 3-aminopropanal in HI neonatal brains, which was later accompanied by neuronal apoptosis enhanced by increases in glycine and norepinephrine in critically affected brain regions. Specifically, putrescine, cadaverine, and 3-aminopropanal increased significantly as early as 12 h postinsult, mainly in motor and somatosensory cortex, hippocampus, and midbrain, followed by an increase in norepinephrine 24 h postinsult, which was predominant in the caudate putamen, the region most vulnerable to HI. The decrease of γ-aminobutyric acid (GABA) and the continuous dysregulation of the GABAergic system together with low taurine levels up to 36 h sustained progressive neurodegenerative cellular processes. The molecular alterations presented here at the subregional rat brain level provided unprecedented insight into early metabolomic changes in HI-insulted neonatal brains, which may further aid in the identification of novel therapeutic targets for the treatment of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Hynek Mácha
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| | - Dominika Luptáková
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, Husargatan 3, Uppsala 75124, Sweden
- Biomedical
Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovak Republic
| | - Ivo Juránek
- Centre
of Experimental Medicine, Slovak Academy
of Sciences, Dúbravská
Cesta 9, 841 04 Bratislava, Slovak Republic
| | - Per E. Andrén
- Department
of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science
for Life Laboratory, Uppsala University, Husargatan 3, Uppsala 75124, Sweden
| | - Vladimír Havlíček
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 142 00, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc 771 46, Czech Republic
| |
Collapse
|
5
|
Durazzo TC, Kraybill EP, Stephens LH, May AC, Meyerhoff DJ. Pro-atherogenic medical conditions are associated with widespread regional brain metabolite abnormalities in those with alcohol use disorder. Alcohol Alcohol 2024; 59:agae055. [PMID: 39127890 PMCID: PMC11316785 DOI: 10.1093/alcalc/agae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
AIMS Widespread brain metabolite abnormalities in those with alcohol use disorder (AUD) were reported in numerous studies, but the effects of the pro-atherogenic conditions of hypertension, type 2 diabetes mellitus, hepatitis C seropositivity, and hyperlipidemia on metabolite levels were not considered. These conditions were associated with brain metabolite abnormalities in those without AUD. We predicted treatment-seeking individuals with AUD and pro-atherogenic conditions (Atherogenic+) demonstrate lower regional metabolite markers of neuronal viability [N-acetylaspartate (NAA)] and cell membrane turnover/synthesis [choline-containing compounds (Cho)], compared with those with AUD without pro-atherogenic conditions (Atherogenic-) and healthy controls (CON). METHODS Atherogenic+ (n = 59) and Atherogenic- (n = 51) and CON (n = 49) completed a 1.5 T proton magnetic resonance spectroscopic imaging study. Groups were compared on NAA, Cho, total creatine, and myoinositol in cortical gray matter (GM), white matter (WM), and select subcortical regions. RESULTS Atherogenic+ had lower frontal GM and temporal WM NAA than CON. Atherogenic+ showed lower parietal GM, frontal, parietal and occipital WM and lenticular nuclei NAA level than Atherogenic- and CON. Atherogenic- showed lower frontal GM and WM NAA than CON. Atherogenic+ had lower Cho level than CON in the frontal GM, parietal WM, and thalamus. Atherogenic+ showed lower frontal WM and cerebellar vermis Cho than Atherogenic- and CON. CONCLUSIONS Findings suggest proatherogenic conditions in those with AUD were associated with increased compromise of neuronal integrity and cell membrane turnover/synthesis. The greater metabolite abnormalities observed in Atherogenic+ may relate to increased oxidative stress-related compromise of neuronal and glial cell structure and/or impaired arterial vasoreactivity/lumen viability.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Mental Illness Research and Education Clinical Centers, VA Palo Alto Health Care System, 3801 Miranda Ave. (151Y), Palo Alto, CA 94304, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, United States
| | - Eric P Kraybill
- Mental Illness Research and Education Clinical Centers, VA Palo Alto Health Care System, 3801 Miranda Ave. (151Y), Palo Alto, CA 94304, United States
| | - Lauren H Stephens
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, United States
| | - April C May
- Mental Illness Research and Education Clinical Centers, VA Palo Alto Health Care System, 3801 Miranda Ave. (151Y), Palo Alto, CA 94304, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, United States
| | - Dieter J Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, 4150 Clement St. (114M) San Francisco, CA 94121, United States
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus St., San Francisco, CA 94143, United States
| |
Collapse
|
6
|
Ahmad Z, Yedavalli V, Gonzalez WS, Hillis AE. Relative Improvement in Language vs Motor Functions with Reperfusion Therapies for Acute Stroke due to Large Vessel Occlusion. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.27.24309619. [PMID: 38978653 PMCID: PMC11230305 DOI: 10.1101/2024.06.27.24309619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background When weighing potential risks versus benefits of reperfusion therapy, the functions likely to recover if blood flow can be restored should be considered. Because deep and motor areas of the brain often infarct relatively early in acute stroke, we hypothesized that reperfusion therapies are more likely to improve language function and neglect (cortical functions) more than motor function. Methods In this retrospective review of a prospectively collected database, patients with acute stroke due to large vessel occlusion), we evaluated percent improvement (mean change in score/maximum score) for different items of the National Institutes of Health Score Scale with and without endovascular thrombectomy, and/or intravenous thrombolysis. Results In total, 290 patients (mean age 61.8; SD 14.0; 47.9% female) met the inclusion criteria. For all outcome measures (percent change in language, total language, motor, and neglect) there were significant effects of treatment group (p<0.0001 for all), with the greatest change in the EVT +tPA group, then EVT only group, followed by tPA only, followed by no intervention. Differences between EVT + tPA and EVT only were not significant (p=.30 to 0.79 across outcomes). For patients with aphasia and/or right sided weakness before treatment, the percent change in language was significantly greater than the percent change in weakness (29.8% vs. 12.7%; t(93)=5.3;p<0.0001). Greater percent improvement in language was observed in all treatment groups (p=0.0003 to 0.03 across treatment groups). Conclusions In patients with acute ischemic stroke due to LVO, improvements in all neurological functions occur with tPA, and even more with EVT (with and without IV tPA). However, gains in language are even greater than gains in motor function with both interventions. Few patients had neglect before treatment, but of those who did, the majority improved, and most (92.8%) improved with EVT.
Collapse
Affiliation(s)
- Zaka Ahmad
- Howard University Hospital, Department of Neurology
| | | | | | - Argye E Hillis
- Johns Hopkins University Krieger School of Arts and Sciences
- Departments of Neurology and Physical Medicine & Rehabilitation, Johns Hopkins School of Medicine
| |
Collapse
|
7
|
Das TK, Kar P, Panchali T, Khatun A, Dutta A, Ghosh S, Chakrabarti S, Pradhan S, Mondal KC, Ghosh K. Anti-obesity potentiality of Lactiplantibacillus plantarum E2_MCCKT isolated from a fermented beverage, haria: a high fat diet-induced obese mice model study. World J Microbiol Biotechnol 2024; 40:168. [PMID: 38630156 DOI: 10.1007/s11274-024-03983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Obesity is a growing epidemic worldwide. Several pharmacologic drugs are being used to treat obesity but these medicines exhibit side effects. To find out the alternatives of these drugs, we aimed to assess the probiotic properties and anti-obesity potentiality of a lactic acid bacterium E2_MCCKT, isolated from a traditional fermented rice beverage, haria. Based on the 16S rRNA sequencing, the bacterium was identified as Lactiplantibacillus plantarum E2_MCCKT. The bacterium exhibited in vitro probiotic activity in terms of high survivability in an acidic environment and 2% bile salt, moderate auto-aggregation, and hydrophobicity. Later, E2_MCCKT was applied to obese mice to prove its anti-obesity potentiality. Adult male mice (15.39 ± 0.19 g) were randomly divided into three groups (n = 5) according to the type of diet: normal diet (ND), high-fat diet (HFD), and HFD supplemented with E2_MCCKT (HFT). After four weeks of bacterial treatment on the obese mice, a significant reduction of body weight, triglyceride, and cholesterol levels, whereas, improvements in serum glucose levels were observed. The bacterial therapy led to mRNA up-regulation of lipolytic transcription factors such as peroxisome proliferator-activated receptor-α which may increase the expression of fatty acid oxidation-related genes such as acyl-CoA oxidase and carnitine palmitoyl-transferase-1. Concomitantly, both adipocytogenesis and fatty acid synthesis were arrested as reflected by the down-regulation of sterol-regulatory element-binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase genes. In protein expression study, E2_MCCKT significantly increased IL-10 expression while decreasing pro-inflammatory cytokine (IL-1Ra and TNF-α) expression. In conclusion, the probiotic Lp. plantarum E2_MCCKT might have significant anti-obesity effects on mice.
Collapse
Affiliation(s)
- Tridip Kumar Das
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Priyanka Kar
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Titli Panchali
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Amina Khatun
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Ananya Dutta
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Smita Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Sudipta Chakrabarti
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Shrabani Pradhan
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India.
| |
Collapse
|
8
|
Lin L, Huang P, Cheng Y, Jiang S, Zhang J, Li M, Zheng J, Pan X, Wang Y. Brain white matter changes and their associations with non-motor dysfunction in orthostatic hypotension in α-synucleinopathy: A NODDI study. CNS Neurosci Ther 2024; 30:e14712. [PMID: 38615364 PMCID: PMC11016347 DOI: 10.1111/cns.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND The specific non-motor symptoms associated with α-synucleinopathies, including orthostatic hypotension (OH), cognitive impairment, and emotional abnormalities, have been a subject of ongoing controversy over the mechanisms underlying the development of a vicious cycle among them. The distinct structural alterations in white matter (WM) in patients with α-synucleinopathies experiencing OH, alongside their association with other non-motor symptoms, remain unexplored. This study employs axial diffusivity and density imaging (NODDI) to investigate WM damage specific to α-synucleinopathies with concurrent OH, delivering fresh evidence to supplement our understanding of the pathogenic mechanisms and pathological rationales behind the occurrence of a spectrum of non-motor functional impairments in α-synucleinopathies. METHODS This study recruited 49 individuals diagnosed with α-synucleinopathies, stratified into an α-OH group (n = 24) and an α-NOH group (without OH, n = 25). Additionally, 17 healthy controls were included for supine and standing blood pressure data collection, as well as neuropsychological assessments. Magnetic resonance imaging (MRI) was utilized for the calculation of NODDI parameters, and tract-based spatial statistics (TBSS) were employed to explore differential clusters. The fibers covered by these clusters were defined as regions of interest (ROI) for the extraction of NODDI parameter values and the analysis of their correlation with neuropsychological scores. RESULTS The TBSS analysis unveiled specific cerebral regions exhibiting disparities within the α-OH group as compared to both the α-NOH group and the healthy controls. These differences were evident in clusters that indicated a decrease in the acquisition of the neurite density index (NDI), a reduction in the orientation dispersion index (ODI), and an increase in the isotropic volume fraction (FISO) (p < 0.05). The extracted values from these ROIs demonstrated significant correlations with clinically assessed differences in supine and standing blood pressure, overall cognitive scores, and anxiety-depression ratings (p < 0.05). CONCLUSION Patients with α-synucleinopathies experiencing OH exhibit distinctive patterns of microstructural damage in the WM as revealed by the NODDI model, and there is a correlation with the onset and progression of non-motor functional impairments.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Peilin Huang
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Yingzhe Cheng
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Shaofan Jiang
- Department of RadiologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for TumorsFujian Medical UniversityFuzhou CityChina
| | - Jiejun Zhang
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
- Center for GeriatricsHainan General HospitalHainanChina
| | - Man Li
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Jiahao Zheng
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Yanping Wang
- Department of EndocrinologyFujian Medical University Union HospitalFuzhou CityChina
| |
Collapse
|
9
|
Umoh IO, dos Reis HJ, de Oliveira ACP. Molecular Mechanisms Linking Osteoarthritis and Alzheimer's Disease: Shared Pathways, Mechanisms and Breakthrough Prospects. Int J Mol Sci 2024; 25:3044. [PMID: 38474288 PMCID: PMC10931612 DOI: 10.3390/ijms25053044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease mostly affecting the elderly population. It is characterized by cognitive decline that occurs due to impaired neurotransmission and neuronal death. Even though deposition of amyloid beta (Aβ) peptides and aggregation of hyperphosphorylated TAU have been established as major pathological hallmarks of the disease, other factors such as the interaction of genetic and environmental factors are believed to contribute to the development and progression of AD. In general, patients initially present mild forgetfulness and difficulty in forming new memories. As it progresses, there are significant impairments in problem solving, social interaction, speech and overall cognitive function of the affected individual. Osteoarthritis (OA) is the most recurrent form of arthritis and widely acknowledged as a whole-joint disease, distinguished by progressive degeneration and erosion of joint cartilage accompanying synovitis and subchondral bone changes that can prompt peripheral inflammatory responses. Also predominantly affecting the elderly, OA frequently embroils weight-bearing joints such as the knees, spine and hips leading to pains, stiffness and diminished joint mobility, which in turn significantly impacts the patient's standard of life. Both infirmities can co-occur in older adults as a result of independent factors, as multiple health conditions are common in old age. Additionally, risk factors such as genetics, lifestyle changes, age and chronic inflammation may contribute to both conditions in some individuals. Besides localized peripheral low-grade inflammation, it is notable that low-grade systemic inflammation prompted by OA can play a role in AD pathogenesis. Studies have explored relationships between systemic inflammatory-associated diseases like obesity, hypertension, dyslipidemia, diabetes mellitus and AD. Given that AD is the most common form of dementia and shares similar risk factors with OA-both being age-related and low-grade inflammatory-associated diseases, OA may indeed serve as a risk factor for AD. This work aims to review literature on molecular mechanisms linking OA and AD pathologies, and explore potential connections between these conditions alongside future prospects and innovative treatments.
Collapse
Affiliation(s)
| | - Helton Jose dos Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil;
| | - Antonio Carlos Pinheiro de Oliveira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
10
|
Kikuchi K, Togao O, Yamashita K, Isoda T, Nishimura A, Arimura K, Nakamizo A, Yoshimoto K, Ishigami K. Brain volume measured by synthetic magnetic resonance imaging in adult moyamoya disease correlates with cerebral blood flow and brain function. Sci Rep 2024; 14:5468. [PMID: 38443400 PMCID: PMC10914740 DOI: 10.1038/s41598-024-56210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
Moyamoya disease (MMD) is characterized by progressive arterial occlusion, causing chronic hemodynamic impairment, which can reduce brain volume. A novel quantitative technique, synthetic magnetic resonance imaging (SyMRI), can evaluate brain volume. This study aimed to investigate whether brain volume measured with SyMRI correlated with cerebral blood flow (CBF) and brain function in adult MMD. In this retrospective study, 18 adult patients with MMD were included. CBF was measured using iodine-123-N-isopropyl-p-iodoamphetamine single photon emission computed tomography. Cerebrovascular reactivity (CVR) to acetazolamide challenge was also evaluated. Brain function was measured using the Wechsler Adult Intelligence Scales (WAIS)-III/IV and the WAIS-R tests. Gray matter (GM), white matter, and myelin-correlated volumes were evaluated in six areas. Resting CBF was positively correlated with GM fractions in the right anterior cerebral arterial and right middle cerebral arterial (MCA) territories. CVR was positively correlated with GM fraction in the right posterior cerebral arterial (PCA) territory. Full-Scale Intelligence Quotient and Verbal Comprehension Index scores were marginally positively correlated with GM fractions in the left PCA territory. Processing Speed Index score was marginally positively correlated with GM fraction in the right MCA territory. The SyMRI-measured territorial GM fraction correlated with CBF and brain function in patients with MMD.
Collapse
Affiliation(s)
- Kazufumi Kikuchi
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takuro Isoda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ataru Nishimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichi Arimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
11
|
Zarrintan A, Ibrahim MK, Hamouda N, Jabal MS, Beizavi Z, Ghozy S, Kallmes DF. Region-specific interobserver agreement of the Alberta Stroke Program Early Computed Tomography Score: A meta-analysis. J Neuroimaging 2024; 34:195-204. [PMID: 38185754 DOI: 10.1111/jon.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND AND PURPOSE The Alberta Stroke Program Early CT Score (ASPECTS) is a widely used scoring system for evaluating ischemic stroke to determine therapeutic strategy. However, there is variation in the interobserver agreement of ASPECTS. This systematic review and meta-analysis aimed to investigate the interobserver agreement of total and regional ASPECTS. METHODS A comprehensive search was conducted in the Web of Sciences, PubMed, and Scopus databases to identify relevant studies. Inclusion criteria were studies of noncontrast CT performed within 24 hours of ischemic stroke in the middle cerebral artery territory. RESULTS A total of 20 studies, with 3482 patients, reporting interobserver agreement of total and regional ASPECTS were included in the meta-analysis. The interobserver agreement for total ASPECTS in studies using Kappa coefficient (κ) analysis was substantial (κ = .67, 95% confidence interval [CI]: .57-.78). In studies using intraclass correlation coefficient (ICC) analysis, agreement was excellent (ICC = .84, 95% CI: .77-.90). Interobserver agreement was higher in studies in which the observer was unblinded to clinical scenario in both groups (κ = .74, 95% CI: .59-.89, and ICC = .82, 95% CI: .79-.85). Per-region analysis showed that the caudate nucleus had the highest agreement (κ = .68, 95% CI: .60-.76, and ICC = .84, 95% CI: .74-.93), while M2 and internal capsule in Kappa studies (κ = .45, 95% CI: .34-.55 and κ = .47, 95% CI: .28-.66), and M4 and internal capsule in ICC studies (ICC = .54, 95% CI: .43-.64 and ICC = .55, 95% CI: .18-.91) had the lowest agreement. CONCLUSION This meta-analysis demonstrates substantial to excellent interobserver agreement for total ASPECTS, which supports using this method for stroke treatment. However, findings emphasize the need to consider interobserver agreement in specific regions of ASPECTS for treatment decisions.
Collapse
Affiliation(s)
- Armin Zarrintan
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Noha Hamouda
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Zahra Beizavi
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sherief Ghozy
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - David F Kallmes
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Cerri DH, Albaugh DL, Walton LR, Katz B, Wang TW, Chao THH, Zhang W, Nonneman RJ, Jiang J, Lee SH, Etkin A, Hall CN, Stuber GD, Shih YYI. Distinct neurochemical influences on fMRI response polarity in the striatum. Nat Commun 2024; 15:1916. [PMID: 38429266 PMCID: PMC10907631 DOI: 10.1038/s41467-024-46088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
The striatum, known as the input nucleus of the basal ganglia, is extensively studied for its diverse behavioral roles. However, the relationship between its neuronal and vascular activity, vital for interpreting functional magnetic resonance imaging (fMRI) signals, has not received comprehensive examination within the striatum. Here, we demonstrate that optogenetic stimulation of dorsal striatal neurons or their afferents from various cortical and subcortical regions induces negative striatal fMRI responses in rats, manifesting as vasoconstriction. These responses occur even with heightened striatal neuronal activity, confirmed by electrophysiology and fiber-photometry. In parallel, midbrain dopaminergic neuron optogenetic modulation, coupled with electrochemical measurements, establishes a link between striatal vasodilation and dopamine release. Intriguingly, in vivo intra-striatal pharmacological manipulations during optogenetic stimulation highlight a critical role of opioidergic signaling in generating striatal vasoconstriction. This observation is substantiated by detecting striatal vasoconstriction in brain slices after synthetic opioid application. In humans, manipulations aimed at increasing striatal neuronal activity likewise elicit negative striatal fMRI responses. Our results emphasize the necessity of considering vasoactive neurotransmission alongside neuronal activity when interpreting fMRI signal.
Collapse
Affiliation(s)
- Domenic H Cerri
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel L Albaugh
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lindsay R Walton
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brittany Katz
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen Wang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weiting Zhang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Randal J Nonneman
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sung-Ho Lee
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA, USA
| | - Catherine N Hall
- Sussex Neuroscience, University of Sussex, Falmer, United Kingdom
- School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Garret D Stuber
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Frenzel S, Bülow R, Dörr M, Felix SB, Friedrich N, Völzke H, Wittfeld K, Grabe HJ, Bahls M. Left ventricular hypertrophy as a risk factor for accelerated brain aging: Results from the Study of Health in Pomerania. Hum Brain Mapp 2024; 45:e26567. [PMID: 38391110 PMCID: PMC10885183 DOI: 10.1002/hbm.26567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
Previous studies provided evidence for the importance of cardiac structure abnormalities, in particular greater left ventricular (LV) mass, for brain aging, but longitudinal studies are lacking to date. We included 926 individuals (median age 48 years; 53% women) from the TREND cohort of the Study of Health in Pomerania (SHIP) without reduced ejection fraction or a history of myocardial infarction. LV mass index (LVMI) was determined by echocardiography at baseline. Brain morphometric measurements were derived from magnetic resonance images at baseline and 7-year follow-up. Direct effects of baseline LVMI on brain morphometry at follow-up were estimated using linear regression models with adjustment for baseline brain morphometry. At baseline, median LVMI was 40 g/m2.7 and 241 individuals (26%) met the criterion of LV hypertrophy. After correction for multiple testing, baseline LVMI was directly associated with reduced global cortical thickness and increased cortical brain age at follow-up independent from hypertension and blood pressure. Exposure-outcome relations were nonlinear and significantly stronger in the upper half of the exposure distribution. Specifically, an increase in baseline LVMI from the 50% quantile to the 95% quantile was associated additional 2.7 years (95% confidence interval = [1.5 years, 3.8 years]) of cortical brain age at follow-up. Additional regional analyses yielded bilateral effects on multiple frontal cortical regions. Our findings highlight the role of cardiac structure in brain aging. LVMI constitutes an easily measurable marker that might help to identify persons at risk for cognitive impairment and dementia.
Collapse
Affiliation(s)
- Stefan Frenzel
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
| | - Robin Bülow
- Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
| | - Marcus Dörr
- Department of Internal Medicine BUniversity Medicine GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
- German Centre for Cardiovascular Research (DZHK), Partner Site GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
| | - Stephan B. Felix
- Department of Internal Medicine BUniversity Medicine GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
- German Centre for Cardiovascular Research (DZHK), Partner Site GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
| | - Nele Friedrich
- German Centre for Cardiovascular Research (DZHK), Partner Site GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Medicine GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
- Institute for Community MedicineUniversity Medicine GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
| | - Katharina Wittfeld
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
- German Center for Neurodegenerative Disease (DZNE), Partner Site Rostock/GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
| | - Hans J. Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
- German Center for Neurodegenerative Disease (DZNE), Partner Site Rostock/GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
| | - Martin Bahls
- Department of Internal Medicine BUniversity Medicine GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
- German Centre for Cardiovascular Research (DZHK), Partner Site GreifswaldGreifswaldMecklenburg‐Western PomeraniaGermany
| |
Collapse
|
14
|
Thirugnanachandran T, Aitchison SG, Lim A, Ding C, Ma H, Phan T. Assessing the diagnostic accuracy of CT perfusion: a systematic review. Front Neurol 2023; 14:1255526. [PMID: 37885475 PMCID: PMC10598661 DOI: 10.3389/fneur.2023.1255526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023] Open
Abstract
Background and purpose Computed tomography perfusion (CTP) has successfully extended the time window for reperfusion therapies in ischemic stroke. However, the published perfusion parameters and thresholds vary between studies. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy Studies (PRISMA-DTA) guidelines, we conducted a systematic review to investigate the accuracy of parameters and thresholds for identifying core and penumbra in adult stroke patients. Methods We searched Medline, Embase, the Cochrane Library, and reference lists of manuscripts up to April 2022 using the following terms "computed tomography perfusion," "stroke," "infarct," and "penumbra." Studies were included if they reported perfusion thresholds and undertook co-registration of CTP to reference standards. The quality of studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool and Standards for Reporting of Diagnostic Accuracy (STARD) guidelines. Results A total of 24 studies were included. A meta-analysis could not be performed due to insufficient data and significant heterogeneity in the study design. When reported, the mean age was 70.2 years (SD+/-3.69), and the median NIHSS on admission was 15 (IQR 13-17). The perfusion parameter identified for the core was relative cerebral blood flow (rCBF), with a median threshold of <30% (IQR 30, 40%). However, later studies reported lower thresholds in the early time window with rapid reperfusion (median 25%, IQR 20, 30%). A total of 15 studies defined a single threshold for all brain regions irrespective of collaterals and the gray and white matter. Conclusion A single threshold and parameter may not always accurately differentiate penumbra from core and oligemia. Further refinement of parameters is needed in the current era of reperfusion therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Thanh Phan
- Stroke and Ageing Research (STAR), Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
15
|
Hou J, Huibregtse ME, Alexander IL, Klemsz LM, Fu T, Rosenberg M, Fortenberry JD, Herbenick D, Kawata K. Structural brain morphology in young adult women who have been choked/strangled during sex: A whole-brain surface morphometry study. Brain Behav 2023; 13:e3160. [PMID: 37459254 PMCID: PMC10454256 DOI: 10.1002/brb3.3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION Being choked/strangled during partnered sex is an emerging sexual behavior, particularly prevalent among young adult women. Using a multiparameter morphometric imaging approach, we aimed to characterize neuroanatomical differences between young adult women (18-30 years old) who were exposed to frequent sexual choking and their choking naïve controls. METHODS This cross-sectional study consisted of two groups (choking [≥4 times in the past 30 days] vs. choking-naïve group). Participants who reported being choked four or more times during sex in the past 30 days were enrolled in the choking group, whereas those without were assigned to the choking naïve group. High-resolution anatomical magnetic resonance imaging (MRI) data were analyzed using both volumetric features (cortical thickness) and geometric features (fractal dimensionality, gyrification, sulcal depth). RESULTS Forty-one participants (choking n = 20; choking-naïve n = 21) contributed to the final analysis. The choking group showed significantly increased cortical thickness across multiple regions (e.g., fusiform, lateral occipital, lingual gyri) compared to the choking-naïve group. Widespread reductions of the gyrification were observed in the choking group as opposed to the choking-naïve group. However, there was no group difference in sulcal depth. The fractal dimensionality showed bi-directional results, where the choking group exhibited increased dimensionality in areas including the postcentral gyrus, insula, and fusiform, whereas decreased dimensionality was observed in the bilateral superior frontal gyrus and pericalcarine cortex. CONCLUSION These data in cortical morphology suggest that sexual choking events may be associated with neuroanatomical alteration. A longitudinal study with multimodal assessment is needed to better understand the temporal ordering of sexual choking and neurological outcomes.
Collapse
Affiliation(s)
- Jiancheng Hou
- Research Center for Cross‐Straits Cultural DevelopmentFujian Normal UniversityFuzhouChina
- Department of KinesiologyIndiana University School of Public Health‐BloomingtonBloomingtonIndianaUSA
| | - Megan E. Huibregtse
- Department of KinesiologyIndiana University School of Public Health‐BloomingtonBloomingtonIndianaUSA
- Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaGeorgiaUSA
| | - Isabella L. Alexander
- Department of KinesiologyIndiana University School of Public Health‐BloomingtonBloomingtonIndianaUSA
| | - Lillian M. Klemsz
- Department of KinesiologyIndiana University School of Public Health‐BloomingtonBloomingtonIndianaUSA
| | - Tsung‐Chieh Fu
- Department of Applied Health Science, Indiana University School of Public HealthIndiana UniversityBloomingtonIndianaUSA
- The Center for Sexual Health Promotion, Indiana University School of Public HealthIndiana UniversityBloomingtonIndianaUSA
| | - Molly Rosenberg
- Department of Epidemiology and Biostatistics, Indiana University School of Public HealthIndiana UniversityBloomingtonIndianaUSA
| | - James Dennis Fortenberry
- Department of Pediatrics, Indiana University School of MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Debby Herbenick
- Department of Applied Health Science, Indiana University School of Public HealthIndiana UniversityBloomingtonIndianaUSA
- The Center for Sexual Health Promotion, Indiana University School of Public HealthIndiana UniversityBloomingtonIndianaUSA
| | - Keisuke Kawata
- Department of KinesiologyIndiana University School of Public Health‐BloomingtonBloomingtonIndianaUSA
- Program in NeuroscienceThe College of Arts and SciencesIndiana UniversityBloomingtonIndianaUSA
| |
Collapse
|
16
|
Regenhardt RW, Singhal AB, He J, Gonzalez RG, Lev MH. Percent Insular Ribbon Infarction for Predicting Infarct Growth Rate and 90-Day Outcomes in Large-Vessel Occlusive Stroke: Secondary Analysis of Prospective Clinical Trial Data. AJR Am J Roentgenol 2023; 221:103-113. [PMID: 36790114 DOI: 10.2214/ajr.22.28852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND. Insight into the natural history of infarct growth could help identify patients with slowly progressing stroke who may benefit from delayed endovascular thrombectomy (EVT). OBJECTIVE. The purpose of this article is to evaluate associations of percent insular ribbon infarction (PIRI) with infarct growth rate (IGR) and 90-day outcomes in patients with large-vessel occlusive stroke. METHODS. This retrospective study was a secondary analysis of a prior clinical trial that enrolled patients with acute stroke not treated with reperfusion therapies from January 2007 to June 2009. The present analysis evaluated 31 trial patients (median age, 71 years; 12 women, 19 men) with anterior-circulation large-vessel occlusion who underwent serial MRI examinations. Two neuroradiologists independently scored PIRI on presentation MRI examinations on the basis of the ratio of the length of the portion of the insula showing restricted diffusion to the insula's total length using a previously described 0-4 scale; scores were categorized (mild [0-1], moderate [2], or severe [3-4]), and discrepancies were resolved by consensus. The 90-day modified Rankin Scale (mRS) was obtained. As part of earlier clinical trial analyses, collateral pattern on CTA was classified as symmetric, malignant, or other, and infarct volumes were measured on DWI during the initial 48 hours after presentation and on FLAIR at 90 days. RESULTS. Interrater agreement for PIRI category was strong (κ = 0.89). PIRI was mild in 10, moderate in four, and severe in 17 patients. For mild, moderate, and severe PIRI, median IGR from onset to presentation was 1.6 cm3/h, 8.5 cm3/h, and 17.5 cm3/h (p < .001); median IGR from presentation to 48 hours was 0.3 cm3/h, 0.2 cm3/h, and 1.2 cm3/h (p = .005); median 90-day infarct volume was 9.4 cm3, 39.8 cm3, and 108.6 cm3 (p = .01); and 90-day mRS of 2 or less occurred in 78%, 67%, and 6% of patients (p = .001). In multivariable models controlling for age, internal carotid artery occlusion, and collateral pattern, PIRI category independently predicted onset-to-presentation IGR (β = 1.5), presentation-to-48-hour IGR (β = 1.3), and 90-day mRS of 2 or less (OR = 0.2). For predicting 90-day mRS of 2 or less, mild-to-moderate PIRI had sensitivity of 90.0% and specificity of 84.2%; symmetric collateral pattern had sensitivity of 70.0% and specificity of 73.7%. CONCLUSION. PIRI was independently associated with IGR and 90-day outcome. CLINICAL IMPACT. PIRI may help identify patients who could benefit from late-window EVT when requiring transfer to EVT-capable centers.
Collapse
Affiliation(s)
- Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, BLK-SB-0038, Boston, MA 02114
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Aneesh B Singhal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, BLK-SB-0038, Boston, MA 02114
| | - Julian He
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - R Gilberto Gonzalez
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Athinoula A Martinos Center for Biomedical Imaging, Charlestown, MA
- Mass General Brigham Center for Clinical Data Science, Boston, MA
| | - Michael H Lev
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Windham BG, Griswold ME, Ranadive R, Sullivan KJ, Mosley TH, Mielke MM, Jack CR, Knopman D, Petersen R, Vemuri P. Relationships of Cerebral Perfusion With Gait Speed Across Systolic Blood Pressure Levels and Age: A Cohort Study. J Gerontol A Biol Sci Med Sci 2023; 78:514-520. [PMID: 35640170 PMCID: PMC9977228 DOI: 10.1093/gerona/glac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND This study aimed to examine if the association of cerebral perfusion with gait speed differs across systolic blood pressure (SBP) and age. METHODS Cerebral perfusion was measured via arterial spin labeled (ASL)-MRI among community-dwelling adults aged 31-94 years in the population-based Mayo Clinic Study of Aging. Usual gait speed was assessed over 5.6 meters on an electronic mat. Sex- and body mass index (BMI)-adjusted linear regression models estimated cross-sectional gait speed associations with ASL and modifying effects of age and SBP using 3-way and 2-way interaction terms between continuous age, SBP, and ASL. Results report estimated differences in gait speed per standard deviation (SD) lower ASL for exemplar SBPs and ages. RESULTS Among 479 participants (mean age 67.6 years; 44% women; mean gait speed 1.17 m/s), ASL relations to gait speed varied by age (ASL-x-age interaction: p = .001) and SBP (ASL-x-SBP interaction: p = .009). At an SBP of 120 mmHg, each SD lower ASL was associated with a 0.04 m/s (95% confidence interval [CI]: 0.01, 0.07) slower gait speed at 65 years, 0.07 m/s (0.04, 0.10) at 75 years, and 0.09 m/s (0.05, 0.13) at 85 years. At an SBP of 140 mmHg, ASL associations with gait speed were attenuated to 0.01 (-0.01, 0.04), 0.04 (0.02, 0.06), and 0.06 (0.04, 0.09) m/s slower gait speed at ages 65, 75, and 85, respectively. CONCLUSION Poorer cerebral perfusion is associated with clinically meaningful slower gait speeds, particularly with older age, while higher perfusion markedly attenuates age differences in gait speed.
Collapse
Affiliation(s)
- B Gwen Windham
- Address correspondence to: B. Gwen Windham, MD, MHS, Department of Medicine/Geriatrics, The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA. E-mail:
| | - Michael E Griswold
- Department of Medicine/Geriatrics, The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Radhikesh Ranadive
- Department of Medicine/Geriatrics, The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Kevin J Sullivan
- Department of Medicine/Geriatrics, The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Thomas H Mosley
- Department of Medicine/Geriatrics, The Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michelle M Mielke
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dave Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ron Petersen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Prashanthi Vemuri
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Lee CT, Lin CP, Chan KC, Wu YL, Teng HC, Wu CY. Effects of Goal-Directed Hemodynamic Therapy Using a Noninvasive Finger-Cuff Monitoring Device on Intraoperative Cerebral Oxygenation and Early Delayed Neurocognitive Recovery in Patients Undergoing Beach Chair Position Shoulder Surgery: A Randomized Controlled Trial. Anesth Analg 2023; 136:355-364. [PMID: 36135341 DOI: 10.1213/ane.0000000000006200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Perioperative cerebral desaturation events (CDEs) and delayed neurocognitive recovery are common among patients undergoing beach chair position (BCP) shoulder surgery and may be caused by cerebral hypoperfusion. This study tested the hypothesis that the application of goal-directed hemodynamic therapy (GDHT) would attenuate these conditions. METHODS We randomly assigned 70 adult patients undergoing BCP shoulder surgery to GDHT group or control at a 1:1 ratio. Cerebral oxygenation was monitored using near-infrared spectroscopy, and GDHT was administered using the ClearSight pulse wave analysis system. The primary outcome was CDE duration, whereas the secondary outcomes were CDE occurrence, delayed neurocognitive recovery occurrence, and Taiwanese version of the Quick Mild Cognitive Impairment (Qmci-TW) test score on the first postoperative day (T 2 ) adjusted for the baseline score (on the day before surgery; T 1 ). RESULTS CDE duration was significantly shorter in the GDHT group (0 [0-0] vs 15 [0-75] min; median difference [95% confidence interval], -8 [-15 to 0] min; P = .007). Compared with the control group, fewer patients in the GDHT group experienced CDEs (23% vs 51%; relative risk [95% confidence interval], 0.44 [0.22-0.89]; P = .025) and mild delayed neurocognitive recovery (17% vs 40%; relative risk [95% confidence interval], 0.60 [0.39-0.93]; P = .034). The Qmci-TW scores at T 2 adjusted for the baseline scores at T 1 were significantly higher in the GDHT group (difference in means: 4 [0-8]; P = .033). CONCLUSIONS Implementing GDHT using a noninvasive finger-cuff monitoring device stabilizes intraoperative cerebral oxygenation and is associated with improved early postoperative cognitive scores in patients undergoing BCP shoulder surgery.
Collapse
Affiliation(s)
- Chen-Tse Lee
- From the Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Peng Lin
- From the Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuang-Cheng Chan
- From the Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Luen Wu
- Department of Medical Education, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Chun Teng
- From the Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Yu Wu
- From the Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
19
|
Mityaeva EV, Kamchatnov PR, Osmaeva ZK. [Cognitive impairment in patients with atrial fibrillation]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:12-20. [PMID: 37655405 DOI: 10.17116/jnevro202312308112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Atrial fibrillation (AF) is a serious medical and social problem, being a common cause of ischemic stroke (IS) and cognitive impairment (CI), often reaching the degree of dementia. The most common cause of CI in patients with AF is transferred IS or repeated IS. In a significant part of patients with AF who have undergone IS, CI is detected directly in the acute period of the disease and progresses subsequently. In addition, the risk of developing CI is increased even in patients with AF who have not experienced IS before. The review discusses the data on the relationship between CI and AF, provides information on the possible causes of the development of CI in the considered group of patients. The main difficulties of managing a patient with AF and CI are considered.
Collapse
Affiliation(s)
| | - P R Kamchatnov
- Pirogov Russian National Medical Research University, Moscow, Russia
- Buyanov City Clinical Hospital, Moscow, Russia
| | | |
Collapse
|
20
|
Morys F, Potvin O, Zeighami Y, Vogel J, Lamontagne-Caron R, Duchesne S, Dagher A. Obesity-Associated Neurodegeneration Pattern Mimics Alzheimer's Disease in an Observational Cohort Study. J Alzheimers Dis 2023; 91:1059-1071. [PMID: 36565111 PMCID: PMC9912737 DOI: 10.3233/jad-220535] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Excess weight in adulthood leads to health complications such as diabetes, hypertension, or dyslipidemia. Recently, excess weight has also been related to brain atrophy and cognitive decline. Reports show that obesity is linked with Alzheimer's disease (AD)-related changes, such as cerebrovascular damage or amyloid-β accumulation. However, to date no research has conducted a direct comparison between brain atrophy patterns in AD and obesity. OBJECTIVE Here, we compared patterns of brain atrophy and amyloid-β/tau protein accumulation in obesity and AD using a sample of over 1,300 individuals from four groups: AD patients, healthy controls, obese otherwise healthy individuals, and lean individuals. METHODS We age- and sex-matched all groups to the AD-patients group and created cortical thickness maps of AD and obesity. This was done by comparing AD patients with healthy controls, and obese individuals with lean individuals. We then compared the AD and obesity maps using correlation analyses and permutation-based tests that account for spatial autocorrelation. Similarly, we compared obesity brain maps with amyloid-β and tau protein maps from other studies. RESULTS Obesity maps were highly correlated with AD maps but were not correlated with amyloid-β/tau protein maps. This effect was not accounted for by the presence of obesity in the AD group. CONCLUSION Our research confirms that obesity-related grey matter atrophy resembles that of AD. Excess weight management could lead to improved health outcomes, slow down cognitive decline in aging, and lower the risk for AD.
Collapse
Affiliation(s)
- Filip Morys
- Montreal Neurological Institute, McGill University, Montréal, Canada
| | | | - Yashar Zeighami
- Montreal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, McGill University, Québec, Canada
| | - Jacob Vogel
- Montreal Neurological Institute, McGill University, Montréal, Canada
| | | | - Simon Duchesne
- CERVO Brain Research Centre, Québec, Canada
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Laval University, Québec, Canada
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montréal, Canada
| | | |
Collapse
|
21
|
Winder AJ, Wilms M, Amador K, Flottmann F, Fiehler J, Forkert ND. Predicting the tissue outcome of acute ischemic stroke from acute 4D computed tomography perfusion imaging using temporal features and deep learning. Front Neurosci 2022; 16:1009654. [PMID: 36408399 PMCID: PMC9672821 DOI: 10.3389/fnins.2022.1009654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 12/27/2023] Open
Abstract
Predicting follow-up lesions from baseline CT perfusion (CTP) datasets in acute ischemic stroke patients is important for clinical decision making. Deep convolutional networks (DCNs) are assumed to be the current state-of-the-art for this task. However, many DCN classifiers have not been validated against the methods currently used in research (random decision forests, RDF) and clinical routine (Tmax thresholding). Specialized DCNs have even been designed to extract complex temporal features directly from spatiotemporal CTP data instead of using standard perfusion parameter maps. However, the benefits of applying deep learning to source or deconvolved CTP data compared to perfusion parameter maps have not been formally investigated so far. In this work, a modular UNet-based DCN is proposed that separates temporal feature extraction from tissue outcome prediction, allowing for both model validation using perfusion parameter maps as well as end-to-end learning from spatiotemporal CTP data. 145 retrospective datasets comprising baseline CTP imaging, perfusion parameter maps, and follow-up non-contrast CT with manual lesion segmentations were assembled from acute ischemic stroke patients treated with intravenous thrombolysis alone (IV; n = 43) or intra-arterial mechanical thrombectomy (IA; n = 102) with or without combined IV. Using the perfusion parameter maps as input, the proposed DCN (mean Dice: 0.287) outperformed the RDF (0.262) and simple Tmax-thresholding (0.249). The performance of the proposed DCN was approximately equal using features optimized from the deconvolved residual curves (0.286) compared to perfusion parameter maps (0.287), while using features optimized from the source concentration-time curves (0.296) provided the best tissue outcome predictions.
Collapse
Affiliation(s)
- Anthony J. Winder
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Matthias Wilms
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Kimberly Amador
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Fabian Flottmann
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils D. Forkert
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Sharif MS, Goldberg EB, Walker A, Hillis AE, Meier EL. The contribution of white matter pathology, hypoperfusion, lesion load, and stroke recurrence to language deficits following acute subcortical left hemisphere stroke. PLoS One 2022; 17:e0275664. [PMID: 36288353 PMCID: PMC9604977 DOI: 10.1371/journal.pone.0275664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
Aphasia, the loss of language ability following damage to the brain, is among the most disabling and common consequences of stroke. Subcortical stroke, occurring in the basal ganglia, thalamus, and/or deep white matter can result in aphasia, often characterized by word fluency, motor speech output, or sentence generation impairments. The link between greater lesion volume and acute aphasia is well documented, but the independent contributions of lesion location, cortical hypoperfusion, prior stroke, and white matter degeneration (leukoaraiosis) remain unclear, particularly in subcortical aphasia. Thus, we aimed to disentangle the contributions of each factor on language impairments in left hemisphere acute subcortical stroke survivors. Eighty patients with acute ischemic left hemisphere subcortical stroke (less than 10 days post-onset) participated. We manually traced acute lesions on diffusion-weighted scans and prior lesions on T2-weighted scans. Leukoaraiosis was rated on T2-weighted scans using the Fazekas et al. (1987) scale. Fluid-attenuated inversion recovery (FLAIR) scans were evaluated for hyperintense vessels in each vascular territory, providing an indirect measure of hypoperfusion in lieu of perfusion-weighted imaging. We found that language performance was negatively correlated with acute/total lesion volumes and greater damage to substructures of the deep white matter and basal ganglia. We conducted a LASSO regression that included all variables for which we found significant univariate relationships to language performance, plus nuisance regressors. Only total lesion volume was a significant predictor of global language impairment severity. Further examination of three participants with severe language impairments suggests that their deficits result from impairment in domain-general, rather than linguistic, processes. Given the variability in language deficits and imaging markers associated with such deficits, it seems likely that subcortical aphasia is a heterogeneous clinical syndrome with distinct causes across individuals.
Collapse
Affiliation(s)
- Massoud S. Sharif
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Emily B. Goldberg
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alexandra Walker
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Erin L. Meier
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
Yaşgüçlükal MA, Eyüpoğlu S, Kaya B. Late hemorrhagic transformation of brain lesions in case with methanol intoxication. Neuroradiol J 2022; 35:658-661. [PMID: 35487801 PMCID: PMC9513911 DOI: 10.1177/19714009221096822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Methanol intoxication can be occurred as accidental or suicidal ingestion or intentional ingestion through abuse. Formic acid is the primary toxic metabolite which causes high anion gap metabolic acidosis and end-organ damage in the human body. Here we presented a 46-year-old man who loss of consciousness on the 23rd day of hospitalization and his cranial computed tomography revealed bilateral subcortical hemorrhages. This case indicates us an example of late appearance of hemorrhagic transformation in methanol intoxication.
Collapse
Affiliation(s)
- Miray A Yaşgüçlükal
- Giresun Training and Research
Hospital, Neurology Department, Giresun, Turkey
| | - Selin Eyüpoğlu
- Giresun Training and Research
Hospital, Department of Intensive Care, Turkey
| | - Bahar Kaya
- Giresun Training and Research
Hospital, Neurology Department, Giresun, Turkey
| |
Collapse
|
24
|
Rodríguez-Vázquez A, Laredo C, Renú A, Rudilosso S, Llull L, Amaro S, Obach V, Vera V, Páez A, Oleaga L, Urra X, Chamorro Á. Optimizing the Definition of Ischemic Core in CT Perfusion: Influence of Infarct Growth and Tissue-Specific Thresholds. AJNR Am J Neuroradiol 2022; 43:1265-1270. [PMID: 35981763 PMCID: PMC9451632 DOI: 10.3174/ajnr.a7601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE CTP allows estimating ischemic core in patients with acute stroke. However, these estimations have limited accuracy compared with MR imaging. We studied the effect of applying WM- and GM-specific thresholds and analyzed the infarct growth from baseline imaging to reperfusion. MATERIALS AND METHODS This was a single-center cohort of consecutive patients (n = 113) with witnessed strokes due to proximal carotid territory occlusions with baseline CT perfusion, complete reperfusion, and follow-up DWI. We segmented GM and WM, coregistered CTP with DWI, and compared the accuracy of the different predictions for each voxel on DWI through receiver operating characteristic analysis. We assessed the yield of different relative CBF thresholds to predict the final infarct volume and an estimated infarct growth-corrected volume (subtracting the infarct growth from baseline imaging to complete reperfusion) for a single relative CBF threshold and GM- and WM-specific thresholds. RESULTS The fixed threshold underestimated lesions in GM and overestimated them in WM. Double GM- and WM-specific thresholds of relative CBF were superior to fixed thresholds in predicting infarcted voxels. The closest estimations of the infarct on DWI were based on a relative CBF of 25% for a single threshold, 35% for GM, and 20% for WM, and they decreased when correcting for infarct growth: 20% for a single threshold, 25% for GM, and 15% for WM. The combination of 25% for GM and 15% for WM yielded the best prediction. CONCLUSIONS GM- and WM-specific thresholds result in different estimations of ischemic core in CTP and increase the global accuracy. More restrictive thresholds better estimate the actual extent of the infarcted tissue.
Collapse
Affiliation(s)
- A Rodríguez-Vázquez
- From the Comprehensive Stroke Center (A.R.-V., C.L., A.R., S.R., L.L., S.A., V.O., V.V., X.U., A.C.), Functional Unit of Cerebrovascular Diseases
| | - C Laredo
- From the Comprehensive Stroke Center (A.R.-V., C.L., A.R., S.R., L.L., S.A., V.O., V.V., X.U., A.C.), Functional Unit of Cerebrovascular Diseases
| | - A Renú
- From the Comprehensive Stroke Center (A.R.-V., C.L., A.R., S.R., L.L., S.A., V.O., V.V., X.U., A.C.), Functional Unit of Cerebrovascular Diseases
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (A.R., S.R., L.L., S.A., V.O., X.U., A.C.), Barcelona, Spain
- University of Barcelona (A.R., L.L., S.A., V.O., X.U., A.C.), Barcelona, Spain
| | - S Rudilosso
- From the Comprehensive Stroke Center (A.R.-V., C.L., A.R., S.R., L.L., S.A., V.O., V.V., X.U., A.C.), Functional Unit of Cerebrovascular Diseases
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (A.R., S.R., L.L., S.A., V.O., X.U., A.C.), Barcelona, Spain
| | - L Llull
- From the Comprehensive Stroke Center (A.R.-V., C.L., A.R., S.R., L.L., S.A., V.O., V.V., X.U., A.C.), Functional Unit of Cerebrovascular Diseases
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (A.R., S.R., L.L., S.A., V.O., X.U., A.C.), Barcelona, Spain
- University of Barcelona (A.R., L.L., S.A., V.O., X.U., A.C.), Barcelona, Spain
| | - S Amaro
- From the Comprehensive Stroke Center (A.R.-V., C.L., A.R., S.R., L.L., S.A., V.O., V.V., X.U., A.C.), Functional Unit of Cerebrovascular Diseases
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (A.R., S.R., L.L., S.A., V.O., X.U., A.C.), Barcelona, Spain
- University of Barcelona (A.R., L.L., S.A., V.O., X.U., A.C.), Barcelona, Spain
| | - V Obach
- From the Comprehensive Stroke Center (A.R.-V., C.L., A.R., S.R., L.L., S.A., V.O., V.V., X.U., A.C.), Functional Unit of Cerebrovascular Diseases
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (A.R., S.R., L.L., S.A., V.O., X.U., A.C.), Barcelona, Spain
- University of Barcelona (A.R., L.L., S.A., V.O., X.U., A.C.), Barcelona, Spain
| | - V Vera
- From the Comprehensive Stroke Center (A.R.-V., C.L., A.R., S.R., L.L., S.A., V.O., V.V., X.U., A.C.), Functional Unit of Cerebrovascular Diseases
| | - A Páez
- Radiology Department (A.P., L.O.), Hospital Clínic, Barcelona, Spain
| | - L Oleaga
- Radiology Department (A.P., L.O.), Hospital Clínic, Barcelona, Spain
| | - X Urra
- From the Comprehensive Stroke Center (A.R.-V., C.L., A.R., S.R., L.L., S.A., V.O., V.V., X.U., A.C.), Functional Unit of Cerebrovascular Diseases
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (A.R., S.R., L.L., S.A., V.O., X.U., A.C.), Barcelona, Spain
- University of Barcelona (A.R., L.L., S.A., V.O., X.U., A.C.), Barcelona, Spain
| | - Á Chamorro
- From the Comprehensive Stroke Center (A.R.-V., C.L., A.R., S.R., L.L., S.A., V.O., V.V., X.U., A.C.), Functional Unit of Cerebrovascular Diseases
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (A.R., S.R., L.L., S.A., V.O., X.U., A.C.), Barcelona, Spain
- University of Barcelona (A.R., L.L., S.A., V.O., X.U., A.C.), Barcelona, Spain
| |
Collapse
|
25
|
Stampacchia S, Hallam GP, Thompson HE, Nathaniel U, Lanzoni L, Smallwood J, Lambon Ralph MA, Jefferies E. Training flexible conceptual retrieval in post-stroke aphasia. Neuropsychol Rehabil 2022; 32:1429-1455. [PMID: 33715583 PMCID: PMC7614451 DOI: 10.1080/09602011.2021.1895847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Semantic therapy in post-stroke aphasia typically focusses on strengthening links between conceptual representations and their lexical-articulatory forms to aid word retrieval. However, research has shown that semantic deficits in this group can affect both verbal and non-verbal tasks, particularly in patients with deregulated retrieval as opposed to degraded knowledge. This study, therefore, aimed to facilitate semantic cognition in a sample of such patients with post-stroke semantic aphasia (SA) by training the identification of both strong and weak semantic associations and providing explicit pictorial feedback that demonstrated both common and more unusual ways of linking concepts together. We assessed the effects of this training on (i) trained and untrained items; and (ii) trained and untrained tasks in eleven individuals with SA. In the training task, the SA group showed improvement with practice, particularly for trained items. A similar untrained task using pictorial stimuli (Camel and Cactus Test) also improved. Together, these results suggest that semantic training can be beneficial in patients with SA and may show some degree of generalization to untrained situations. Future research should seek to understand which patients are most likely to benefit from this type of training.
Collapse
Affiliation(s)
- Sara Stampacchia
- Department of Psychology and York Neuroimaging Centre, University of York, York, UK.,Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocenter and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Glyn P Hallam
- Department of Psychology and York Neuroimaging Centre, University of York, York, UK.,Department of Psychology, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| | | | - Upasana Nathaniel
- Department of Psychology and York Neuroimaging Centre, University of York, York, UK.,Psychology Department, University of Haifa, Haifa, Israel
| | - Lucilla Lanzoni
- Department of Psychology and York Neuroimaging Centre, University of York, York, UK
| | - Jonathan Smallwood
- Department of Psychology and York Neuroimaging Centre, University of York, York, UK.,Queen's University, Kingston, Canada
| | | | - Elizabeth Jefferies
- Department of Psychology and York Neuroimaging Centre, University of York, York, UK
| |
Collapse
|
26
|
Inactivation of mouse transmembrane prolyl 4-hydroxylase increases blood brain barrier permeability and ischemia-induced cerebral neuroinflammation. J Biol Chem 2022; 298:101721. [PMID: 35151685 PMCID: PMC8914383 DOI: 10.1016/j.jbc.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the hypoxic induction of >300 genes required for survival and adaptation under oxygen deprivation. Inhibition of HIF-P4H-2 has been shown to be protective in focal cerebral ischemia rodent models, while that of HIF-P4H-1 has no effects and inactivation of HIF-P4H-3 has adverse effects. A transmembrane prolyl 4-hydroxylase (P4H-TM) is highly expressed in the brain and contributes to the regulation of HIF, but the outcome of its inhibition on stroke is yet unknown. To study this, we subjected WT and P4htm−/− mice to permanent middle cerebral artery occlusion (pMCAO). Lack of P4H-TM had no effect on lesion size following pMCAO, but increased inflammatory microgliosis and neutrophil infiltration was observed in the P4htm−/− cortex. Furthermore, both the permeability of blood brain barrier and ultrastructure of cerebral tight junctions were compromised in P4htm−/− mice. At the molecular level, P4H-TM deficiency led to increased expression of proinflammatory genes and robust activation of protein kinases in the cortex, while expression of tight junction proteins and the neuroprotective growth factors erythropoietin and vascular endothelial growth factor was reduced. Our data provide the first evidence that P4H-TM inactivation has no protective effect on infarct size and increases inflammatory microgliosis and neutrophil infiltration in the cortex at early stage after pMCAO. When considering HIF-P4H inhibitors as potential therapeutics in stroke, the current data support that isoenzyme-selective inhibitors that do not target P4H-TM or HIF-P4H-3 would be preferred.
Collapse
|
27
|
Wong A, Lam BYK, Mak MKY, Lam LCW, Au LWC, Yiu BKF, Wong C, Tong HY, Yeung SK, Chu WCW, Shi L, Leung TWH, Soo YOY, Lau AYL, Ip BYM, Kwok TCY, Ko H, Mok VCT. Aerobic exercise in older people with subclinical sporadic cerebral small vessel disease: A randomized clinical trial. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12224. [PMID: 35005205 PMCID: PMC8719349 DOI: 10.1002/trc2.12224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION The benefit and risk of aerobic exercise among older people harboring advanced cerebral small vessel disease (CSVD) upon cognition, mood, and motor functions are unknown. METHODS This rater-blind randomized trial examined effects of a 24-week aerobic exercise training (60 min/session, twice/week) upon clinical (cognition, mood, motor functions) and hemodynamic (pulse pressure [PP], blood pressure [BP], pulsatility index) measures in older people harboring moderate to severe CSVD, as evidenced by confluent white matter hyperintensity and/or ≥2 lacunes on magnetic resonance imaging. We further investigated interactions between treatment conditions and hemodynamics measures. RESULTS Fifty-three and 54 subjects were randomized into the active and control group, respectively. There was no between-group difference in any of the clinical outcomes. The active group had a greater between-group reduction in systolic BP and PP than the control group. Within-group comparison showed that global cognition of the active group remained similar at end of the study compared to baseline, whereas it declined significantly in the control group. We observed "diverging" interaction effects in that greater reduction in systolic BP/PP was associated with greater improvement in memory functions and global cognition but worsening in processing speed in the active group. Side effects were comparable between the two groups. DISCUSSION Future study should investigate the mechanisms of the diverging impacts of aerobic exercise upon different cognitive domains so that the benefit-risk ratio of aerobic exercise in older people harboring more advanced CSVD can be better defined.
Collapse
Affiliation(s)
- Adrian Wong
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Margaret K.L. Cheung Research Centre for Management of ParkinsonismTherese Pei Fong Chow Research Centre for Prevention of DementiaLui Che Woo Institute of Innovative MedicineGerald Choa Neuroscience CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Bonnie Yin Ka Lam
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Margaret K.L. Cheung Research Centre for Management of ParkinsonismTherese Pei Fong Chow Research Centre for Prevention of DementiaLui Che Woo Institute of Innovative MedicineGerald Choa Neuroscience CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Margaret Kit Yi Mak
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityHong Kong SARChina
| | - Linda Chiu Wa Lam
- Department of PsychiatryFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Lisa Wing Chi Au
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Margaret K.L. Cheung Research Centre for Management of ParkinsonismTherese Pei Fong Chow Research Centre for Prevention of DementiaLui Che Woo Institute of Innovative MedicineGerald Choa Neuroscience CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Brian Ka Fung Yiu
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Margaret K.L. Cheung Research Centre for Management of ParkinsonismTherese Pei Fong Chow Research Centre for Prevention of DementiaLui Che Woo Institute of Innovative MedicineGerald Choa Neuroscience CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Chun Wong
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Hor Yee Tong
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Sin Ki Yeung
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Winnie Chiu Wing Chu
- Department of Imaging and Interventional RadiologyFaculty of MedicineThe Chinese University of Hong KongShatin, New TerritoriesHong Kong SARChina
| | - Lin Shi
- Department of Imaging and Interventional RadiologyFaculty of MedicineThe Chinese University of Hong KongShatin, New TerritoriesHong Kong SARChina
- BrainNow Research InstituteShenzhenGuangdong ProvinceChina
| | - Thomas Wai Hong Leung
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Yannie Oi Yan Soo
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Alexander Yuk Lun Lau
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Margaret K.L. Cheung Research Centre for Management of ParkinsonismTherese Pei Fong Chow Research Centre for Prevention of DementiaLui Che Woo Institute of Innovative MedicineGerald Choa Neuroscience CentreThe Chinese University of Hong KongHong Kong SARChina
| | - Bonaventure Yiu Ming Ip
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Timothy Chi Yui Kwok
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Ho Ko
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Margaret K.L. Cheung Research Centre for Management of ParkinsonismTherese Pei Fong Chow Research Centre for Prevention of DementiaLui Che Woo Institute of Innovative MedicineGerald Choa Neuroscience CentreThe Chinese University of Hong KongHong Kong SARChina
- Li Ka Shing Institute of Health SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Vincent Chung Tong Mok
- Division of NeurologyDepartment of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Margaret K.L. Cheung Research Centre for Management of ParkinsonismTherese Pei Fong Chow Research Centre for Prevention of DementiaLui Che Woo Institute of Innovative MedicineGerald Choa Neuroscience CentreThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
28
|
Treatment Efficacy Analysis in Acute Ischemic Stroke Patients Using In Silico Modeling Based on Machine Learning: A Proof-of-Principle. Biomedicines 2021; 9:biomedicines9101357. [PMID: 34680474 PMCID: PMC8533087 DOI: 10.3390/biomedicines9101357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 01/08/2023] Open
Abstract
Interventional neuroradiology is characterized by engineering- and experience-driven device development with design improvements every few months. However, clinical validation of these new devices requires lengthy and expensive randomized controlled trials. This contribution proposes a machine learning-based in silico study design to evaluate new devices more quickly with a small sample size. Acute diffusion- and perfusion-weighted MRI, segmented one-week follow-up imaging, and clinical variables were available for 90 acute ischemic stroke patients. Three treatment option-specific random forest models were trained to predict the one-week follow-up lesion segmentation for (1) patients successfully recanalized using intra-arterial mechanical thrombectomy, (2) patients successfully recanalized using intravenous thrombolysis, and (3) non-recanalizing patients as an analogue for conservative treatment for each patient in the sample, independent of the true group membership. A repeated-measures analysis of the three predicted follow-up lesions for each patient revealed significantly larger lesions for the non-recanalizing group compared to the successful intravenous thrombolysis treatment group, which in turn showed significantly larger lesions compared to the successful mechanical thrombectomy treatment group (p < 0.001). A groupwise comparison of the true follow-up lesions for the three treatment options showed the same trend but did not reach statistical significance (p = 0.19). We conclude that the proposed machine learning-based in silico trial design leads to clinically feasible results and can support new efficacy studies by providing additional power and potential early intermediate results.
Collapse
|
29
|
Bisogno T, Lauritano A, Piscitelli F. The Endocannabinoid System: A Bridge between Alzheimer's Disease and Gut Microbiota. Life (Basel) 2021; 11:934. [PMID: 34575083 PMCID: PMC8470731 DOI: 10.3390/life11090934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that progresses from mild cognitive impairment to severe dementia over time. The main clinical hallmarks of the disease (e.g., beta-amyloid plaques and neurofibrillary tangles) begin during preclinical AD when cognitive deficits are not yet apparent. Hence, a more profound understanding of AD pathogenesis is needed to develop new therapeutic strategies. In this context, the endocannabinoid (eCB) system and the gut microbiome are increasingly emerging as important players in maintaining the general homeostasis and the health status of the host. However, their interaction has come to light just recently with gut microbiota regulating the eCB tone at both receptor and enzyme levels in intestinal and adipose tissues. Importantly, eCB system and gut microbiome, have been suggested to play a role in AD in both animal and human studies. Therefore, the microbiome gut-brain axis and the eCB system are potential common denominators in the AD physiopathology. Hence, the aim of this review is to provide a general overview on the role of both the eCB system and the microbiome gut-brain axis in AD and to suggest possible mechanisms that underlie the potential interplay of these two systems.
Collapse
Affiliation(s)
- Tiziana Bisogno
- Endocannabinoid Research Group, Istituto di Farmacologia Traslazionale, Consiglio Nazionale Delle Ricerche, Area Della Ricerca di Roma 2 Via Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Anna Lauritano
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| |
Collapse
|
30
|
Bracko O, Cruz Hernández JC, Park L, Nishimura N, Schaffer CB. Causes and consequences of baseline cerebral blood flow reductions in Alzheimer's disease. J Cereb Blood Flow Metab 2021; 41:1501-1516. [PMID: 33444096 PMCID: PMC8221770 DOI: 10.1177/0271678x20982383] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022]
Abstract
Reductions of baseline cerebral blood flow (CBF) of ∼10-20% are a common symptom of Alzheimer's disease (AD) that appear early in disease progression and correlate with the severity of cognitive impairment. These CBF deficits are replicated in mouse models of AD and recent work shows that increasing baseline CBF can rapidly improve the performance of AD mice on short term memory tasks. Despite the potential role these data suggest for CBF reductions in causing cognitive symptoms and contributing to brain pathology in AD, there remains a poor understanding of the molecular and cellular mechanisms causing them. This review compiles data on CBF reductions and on the correlation of AD-related CBF deficits with disease comorbidities (e.g. cardiovascular and genetic risk factors) and outcomes (e.g. cognitive performance and brain pathology) from studies in both patients and mouse models, and discusses several potential mechanisms proposed to contribute to CBF reductions, based primarily on work in AD mouse models. Future research aimed at improving our understanding of the importance of and interplay between different mechanisms for CBF reduction, as well as at determining the role these mechanisms play in AD patients could guide the development of future therapies that target CBF reductions in AD.
Collapse
Affiliation(s)
- Oliver Bracko
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jean C Cruz Hernández
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
31
|
Zimmerman B, Rypma B, Gratton G, Fabiani M. Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology 2021; 58:e13796. [PMID: 33728712 PMCID: PMC8244108 DOI: 10.1111/psyp.13796] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The process of aging includes changes in cellular biology that affect local interactions between cells and their environments and eventually propagate to systemic levels. In the brain, where neurons critically depend on an efficient and dynamic supply of oxygen and glucose, age-related changes in the complex interaction between the brain parenchyma and the cerebrovasculature have effects on health and functioning that negatively impact cognition and play a role in pathology. Thus, cerebrovascular health is considered one of the main mechanisms by which a healthy lifestyle, such as habitual cardiorespiratory exercise and a healthful diet, could lead to improved cognitive outcomes with aging. This review aims at detailing how the physiology of the cerebral vascular system changes with age and how these changes lead to differential trajectories of cognitive maintenance or decline. This provides a framework for generating specific mechanistic hypotheses about the efficacy of proposed interventions and lifestyle covariates that contribute to enhanced cognitive well-being. Finally, we discuss the methodological implications of age-related changes in the cerebral vasculature for human cognitive neuroscience research and propose directions for future experiments aimed at investigating age-related changes in the relationship between physiology and cognitive mechanisms.
Collapse
Affiliation(s)
- Benjamin Zimmerman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Monica Fabiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
32
|
Yan N, Xu Z, Qu C, Zhang J. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway. Int Immunopharmacol 2021; 98:107844. [PMID: 34153667 DOI: 10.1016/j.intimp.2021.107844] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Cerebrovascular disease and its risk factors cause persistent decrease of cerebral blood flow, chronic cerebral hypoperfusion (CCH) is the major foundation of vascular cognitive impairment (VCI). The hippocampus is extremely vulnerable to cerebral ischemia and hypoxia. Oxidative stress and neuroinflammation injury are important pathophysiological mechanisms of this process, which is closely related to hippocampal neurons damage and loss. Dimethyl fumarate (DMF), an FDA-approved therapeutic for multiple sclerosis (MS), plays a protective role in multiple neurological disorders. Studies have shown that DMF exerts anti-inflammatory and antioxidant effects via the NRF2/ARE/NF-κB signaling pathway. Thus, this study aimed to evaluate the neuroprotective effect of DMF in the CCH rat model. Ferroptosis, a novel defined iron-dependent cell death form, were found to be strongly associated with the pathophysiology of CCH. Emerging evidences have shown that inhibition of ferroptosis by targeting NRF2 exerted neuroprotective effect in neurodegeneration diseases. We also investigated whether DMF can alleviate cognitive deficits through inhibition of ferroptosis by the NRF2 signaling pathway in this study. DMF was intragastric for consecutive five weeks (100 mg/kg/day). Then behavior test and histological, molecular, and biochemical analysis were performed. We found that DMF treatment significantly improved cognitive deficits and partially reversed hippocampus neuronal damage and loss caused by CCH. And DMF treatment decreased hippocampus IL-1β, TNF-α, and IL-6 pro-inflammatory cytokines concentration, and mediated the NF-κB signaling pathway. And DMF also alleviated hippocampus oxidative stress through reducing MDA, and increasing GSH and SOD levels, which are also closely associated with ferroptosis. Besides, DMF treatment reduced the expression of PTGS2, and increased the expression of FTH1 and xCT, and the iron content is also reduced, which were the important features related to ferroptosis. Furthermore, DMF activated the NRF2/ARE signaling pathway and upregulated the expression of HO-1, NQO1 and GPX4. These outcomes indicated that DMF can improve cognitive impairment in rats with CCH, possibly through alleviating neuroinflammation, oxidative stress damage and inhibiting ferroptosis of hippocampal neurons. Overall, our results provide new evidence for the neuroprotective role of DMF.
Collapse
Affiliation(s)
- Nao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Zhipeng Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - Changhua Qu
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China; Hubei Clinical Research Center for Dementias and Cognitive Impairments, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
33
|
Debatisse J, Wateau O, Cho TH, Costes N, Mérida I, Léon C, Langlois JB, Taborik F, Verset M, Portier K, Aggour M, Troalen T, Villien M, Makris N, Tourvieille C, Bars DL, Lancelot S, Confais J, Oudotte A, Nighoghossian N, Ovize M, Vivien D, Contamin H, Agin V, Canet-Soulas E, Eker OF. A non-human primate model of stroke reproducing endovascular thrombectomy and allowing long-term imaging and neurological read-outs. J Cereb Blood Flow Metab 2021; 41:745-760. [PMID: 32428423 PMCID: PMC7983495 DOI: 10.1177/0271678x20921310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/19/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022]
Abstract
Stroke is a devastating disease. Endovascular mechanical thrombectomy is dramatically changing the management of acute ischemic stroke, raising new challenges regarding brain outcome and opening up new avenues for brain protection. In this context, relevant experiment models are required for testing new therapies and addressing important questions about infarct progression despite successful recanalization, reversibility of ischemic lesions, blood-brain barrier disruption and reperfusion damage. Here, we developed a minimally invasive non-human primate model of cerebral ischemia (Macaca fascicularis) based on an endovascular transient occlusion and recanalization of the middle cerebral artery (MCA). We evaluated per-occlusion and post-recanalization impairment on PET-MRI, in addition to acute and chronic neuro-functional assessment. Voxel-based analyses between per-occlusion PET-MRI and day-7 MRI showed two different patterns of lesion evolution: "symptomatic salvaged tissue" (SST) and "asymptomatic infarcted tissue" (AIT). Extended SST was present in all cases. AIT, remote from the area at risk, represented 45% of the final lesion. This model also expresses both worsening of fine motor skills and dysexecutive behavior over the chronic post-stroke period, a result in agreement with cortical-subcortical lesions. We thus fully characterized an original translational model of ischemia-reperfusion damage after stroke, with consistent ischemia time, and thrombus retrieval for effective recanalization.
Collapse
Affiliation(s)
- Justine Debatisse
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Siemens-Healthcare SAS., Saint-Denis, France
| | - Océane Wateau
- Cynbiose SAS, Marcy-L’Etoile, France
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S 1237, “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen Normandie, GIP Cyceron, Caen, France
| | - Tae-Hee Cho
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât. Blaise Pascal, Villeurbanne, France
- Hospices Civils of Lyon, Lyon, France
| | | | | | - Christelle Léon
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Karine Portier
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Mohamed Aggour
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | - Nikolaos Makris
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât. Blaise Pascal, Villeurbanne, France
| | | | - Didier Le Bars
- Hospices Civils of Lyon, Lyon, France
- CERMEP – Imagerie du Vivant, Lyon, France
| | - Sophie Lancelot
- Hospices Civils of Lyon, Lyon, France
- CERMEP – Imagerie du Vivant, Lyon, France
| | | | | | - Norbert Nighoghossian
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Hospices Civils of Lyon, Lyon, France
| | - Michel Ovize
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Hospices Civils of Lyon, Lyon, France
| | - Denis Vivien
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S 1237, “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen Normandie, GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandy Hospital, CHU Caen, Caen, France
| | | | - Véronique Agin
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S 1237, “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen Normandie, GIP Cyceron, Caen, France
| | - Emmanuelle Canet-Soulas
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Omer Faruk Eker
- CREATIS, CNRS UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon Bât. Blaise Pascal, Villeurbanne, France
- Hospices Civils of Lyon, Lyon, France
| |
Collapse
|
34
|
Hair glucocorticoids and resting-state frontal lobe oxygenation: Findings from The Irish Longitudinal Study on Ageing. Psychoneuroendocrinology 2021; 125:105107. [PMID: 33352472 DOI: 10.1016/j.psyneuen.2020.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/31/2020] [Accepted: 12/08/2020] [Indexed: 11/23/2022]
Abstract
Cerebral blood flow and oxygenation are crucial for maintaining healthy brain structure and function, with hypoperfusion and hypometabolism associated with neurodegenerative and neuropsychiatric conditions. Chronic stress and elevated cortisol have also been associated with cognitive decline, poor mental health and peripheral vascular and cerebrovascular changes. It is plausible that glucocorticoids could alter brain structure and function through increased vulnerability to hypoperfusion and reduced oxygenation. The aim of the current study was to investigate the association between hair glucocorticoids (GCs) and frontal lobe oxygenation using near-infra red spectroscopy (NIRS) in a population sample of 1078 older adults. Data from Wave 3 of The Irish Longitudinal Study of Ageing was analysed. Hair samples were taken for the analysis of glucocorticoids and NIRS was used to measure frontal lobe oxygenation. After both minimal and full adjustment for covariates, hair cortisol and the cortisol-to-cortisone ratio were associated with lower Tissue Saturation Index (TSI; cortisol: B = -0.37, CI -0.60 to -0.14, p = .002; ratio: B = -0.43, CI -0.70 to -0.16, p = .002). Cortisone was not significantly associated with TSI (B = -0.17, CI -0.55 to.21, p = .388). The finding of an inverse relationship between frontal lobe oxygenation and GCs as assessed over a period of months may indicate that reduced oxygenation is one pathway through which chronically elevated GCs affect brain health and function. However, no causality can be inferred from the current data and prospective studies are required to interrogate this.
Collapse
|
35
|
Scheulin KM, Jurgielewicz BJ, Spellicy SE, Waters ES, Baker EW, Kinder HA, Simchick GA, Sneed SE, Grimes JA, Zhao Q, Stice SL, West FD. Exploring the predictive value of lesion topology on motor function outcomes in a porcine ischemic stroke model. Sci Rep 2021; 11:3814. [PMID: 33589720 PMCID: PMC7884696 DOI: 10.1038/s41598-021-83432-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Harnessing the maximum diagnostic potential of magnetic resonance imaging (MRI) by including stroke lesion location in relation to specific structures that are associated with particular functions will likely increase the potential to predict functional deficit type, severity, and recovery in stroke patients. This exploratory study aims to identify key structures lesioned by a middle cerebral artery occlusion (MCAO) that impact stroke recovery and to strengthen the predictive capacity of neuroimaging techniques that characterize stroke outcomes in a translational porcine model. Clinically relevant MRI measures showed significant lesion volumes, midline shifts, and decreased white matter integrity post-MCAO. Using a pig brain atlas, damaged brain structures included the insular cortex, somatosensory cortices, temporal gyri, claustrum, and visual cortices, among others. MCAO resulted in severely impaired spatiotemporal gait parameters, decreased voluntary movement in open field testing, and higher modified Rankin Scale scores at acute timepoints. Pearson correlation analyses at acute timepoints between standard MRI metrics (e.g., lesion volume) and functional outcomes displayed moderate R values to functional gait outcomes. Moreover, Pearson correlation analyses showed higher R values between functional gait deficits and increased lesioning of structures associated with motor function, such as the putamen, globus pallidus, and primary somatosensory cortex. This correlation analysis approach helped identify neuroanatomical structures predictive of stroke outcomes and may lead to the translation of this topological analysis approach from preclinical stroke assessment to a clinical biomarker.
Collapse
Affiliation(s)
- Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Brian J Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Elizabeth S Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | | | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Gregory A Simchick
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Physics, University of Georgia, Athens, GA, USA
| | - Sydney E Sneed
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Qun Zhao
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Physics, University of Georgia, Athens, GA, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
- Aruna Bio Inc, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA.
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA.
| |
Collapse
|
36
|
van Horn N, Kniep H, Broocks G, Meyer L, Flottmann F, Bechstein M, Götz J, Thomalla G, Bendszus M, Bonekamp S, Pfaff JAR, Dellani PR, Fiehler J, Hanning U. ASPECTS Interobserver Agreement of 100 Investigators from the TENSION Study. Clin Neuroradiol 2021; 31:1093-1100. [PMID: 33502563 PMCID: PMC8648648 DOI: 10.1007/s00062-020-00988-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
Purpose Evaluating the extent of cerebral ischemic infarction is essential for treatment decisions and assessment of possible complications in patients with acute ischemic stroke. Patients are often triaged according to image-based early signs of infarction, defined by Alberta Stroke Program Early CT Score (ASPECTS). Our aim was to evaluate interrater reliability in a large group of readers. Methods We retrospectively analyzed 100 investigators who independently evaluated 20 non-contrast computed tomography (NCCT) scans as part of their qualification program for the TENSION study. Test cases were chosen by four neuroradiologists who had previously scored NCCT scans with ASPECTS between 0 and 8 and high interrater agreement. Percent and interrater agreements were calculated for total ASPECTS, as well as for each ASPECTS region. Results Percent agreements for ASPECTS ratings was 28%, with interrater agreement of 0.13 (95% confidence interval, CI 0.09–0.16), at zero tolerance allowance and 66%, with interrater agreement of 0.32 (95% CI: 0.21–0.44), at tolerance allowance set by TENSION inclusion criteria. ASPECTS region with highest level of agreement was the insular cortex (percent agreement = 96%, interrater agreement = 0.96 (95% CI: 0.94–0.97)) and with lowest level of agreement the M3 region (percent agreement = 68%, interrater agreement = 0.39 [95% CI: 0.17–0.61]). Conclusion Interrater agreement reliability for total ASPECTS and study enrollment was relatively low but seems sufficient for practical application. Individual region analysis suggests that some are particularly difficult to evaluate, with varying levels of reliability. Potential impairment of the supraganglionic region must be examined carefully, particularly with respect to the decision whether or not to perform mechanical thrombectomy.
Collapse
Affiliation(s)
- Noel van Horn
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Helge Kniep
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Lukas Meyer
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Fabian Flottmann
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Matthias Bechstein
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Julia Götz
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Susanne Bonekamp
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | | | | | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Uta Hanning
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
37
|
Associations between left ventricular function, vascular function and measures of cerebral small vessel disease: a cross-sectional magnetic resonance imaging study of the UK Biobank. Eur Radiol 2021; 31:5068-5076. [PMID: 33409793 DOI: 10.1007/s00330-020-07567-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Impaired cardiovascular function has been associated with cognitive deterioration; however, to what extent cardiovascular dysfunction plays a role in structural cerebral changes remains unclear. We studied whether vascular and left ventricular (LV) functions are associated with measures of cerebral small vessel disease (cSVD) in the middle-aged general population. METHODS In this cross-sectional analysis of the UK Biobank, 4366 participants (54% female, mean age 61 years) underwent magnetic resonance imaging to assess LV function (ejection fraction [EF] and cardiac index [CI]) and cSVD measures (total brain volume, grey and white matter volumes, hippocampal volume and white matter hyperintensities [WMH]). Augmentation index (AIx) was used as a measure of arterial stiffness. Linear and non-linear associations were evaluated using cardiovascular function measures as determinants and cSVD measures as outcomes. RESULTS EF was non-linearly associated with total brain volume and grey matter volume, with the largest brain volume for an EF between 55 and 60% (both p < 0.001). EF showed a negative linear association with WMH (- 0.23% [- 0.44; - 0.02], p = 0.03), yet no associations were found with white matter or hippocampal volume. CI showed a positive linear association with white matter (β 3194 mm3 [760; 5627], p = 0.01) and hippocampal volume (β 72.5 mm3 [23.0; 122.0], p = 0.004). No associations were found for CI with total brain volume, grey matter volume or WMH. No significant associations were found between AIx and cSVD measures. CONCLUSIONS This study provides novel insights into the complex associations between the heart and the brain, which could potentially guide early interventions aimed at improving cardiovascular function and the prevention of cSVD. KEY POINTS • Ejection fraction is non-linearly and cardiac index is linearly associated with MRI-derived measures of cerebral small vessel disease. • No associations were found for arterial stiffness with cSVD measures.
Collapse
|
38
|
Lim L, Nam K, Lee S, Cho YJ, Yeom CW, Jung S, Moon JY, Jeon Y. The relationship between intraoperative cerebral oximetry and postoperative delirium in patients undergoing off-pump coronary artery bypass graft surgery: a retrospective study. BMC Anesthesiol 2020; 20:285. [PMID: 33189145 PMCID: PMC7666484 DOI: 10.1186/s12871-020-01180-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
Background Cerebral oximetry has been widely used to measure regional oxygen saturation in brain tissue, especially during cardiac surgery. Despite its popularity, there have been inconsistent results on the use of cerebral oximetry during cardiac surgery, and few studies have evaluated cerebral oximetry during off pump coronary artery bypass graft surgery (OPCAB). Methods To evaluate the relationship between intraoperative cerebral oximetry and postoperative delirium in patients who underwent OPCAB, we included 1439 patients who underwent OPCAB between October 2004 and December 2016 and among them, 815 patients with sufficient data on regional cerebral oxygen saturation (rSO2) were enrolled in this study. We retrospectively analyzed perioperative variables and the reduction in rSO2 below cut-off values of 75, 70, 65, 60, 55, 50, 45, 40, and 35%. Furthermore, we evaluated the relationship between the reduction in rSO2 and postoperative delirium. Results Delirium occurred in 105 of 815 patients. In both univariable and multivariable analyses, the duration of rSO2 reduction was significantly longer in patients with delirium at cut-offs of < 50 and 45% (for every 5 min, adjusted odds ratio (OR) 1.007 [95% Confidence interval (CI) 1.001 to 1.014] and adjusted OR 1.012 [1.003 to 1.021]; p = 0.024 and 0.011, respectively). The proportion of patients with a rSO2 reduction < 45% was significantly higher among those with delirium (adjusted OR 1.737[1.064 to 2.836], p = 0.027). Conclusions In patients undergoing OPCAB, intraoperative rSO2 reduction was associated with postoperative delirium. Duration of rSO2 less than 50% was 40% longer in the patients with postoperative delirium. The cut-off value of intraoperative rSO2 that associated with postoperative delirium was 50% for the total patient population and 55% for the patients younger than 68 years. Supplementary information Supplementary information accompanies this paper at 10.1186/s12871-020-01180-x.
Collapse
Affiliation(s)
- Leerang Lim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Karam Nam
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Seohee Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Youn Joung Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Chan-Woo Yeom
- Department of Neuropsychiatry, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Sanghyup Jung
- Department of Neuropsychiatry, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Jung Yoon Moon
- Department of Neuropsychiatry, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Yunseok Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080.
| |
Collapse
|
39
|
Bown CW, Do R, Khan OA, Liu D, Cambronero FE, Moore EE, Osborn KE, Gupta DK, Pechman KR, Mendes LA, Hohman TJ, Gifford KA, Jefferson AL. Lower Cardiac Output Relates to Longitudinal Cognitive Decline in Aging Adults. Front Psychol 2020; 11:569355. [PMID: 33240156 PMCID: PMC7680861 DOI: 10.3389/fpsyg.2020.569355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Subclinical reductions in cardiac output correspond to lower cerebral blood flow (CBF), placing the brain at risk for functional changes. OBJECTIVES This study aims to establish the consequences of reduced cardiac output on longitudinal cognitive outcomes in aging adults. METHODS Vanderbilt Memory and Aging Project participants free of clinical dementia and heart failure (n = 306, 73 ± 7, 58% male) underwent baseline echocardiography to assess cardiac output (L/min) and longitudinal neuropsychological assessment at baseline, 18 months, 3 and 5 years. Linear mixed-effects regressions related cardiac output to trajectory for each longitudinal neuropsychological outcome, adjusting for age, sex, race/ethnicity, education, body surface area, Framingham Stroke Risk Profile score, apolipoprotein E (APOE) ε4 status and follow-up time. Models were repeated, testing interactions with cognitive diagnosis and APOE-ε4 status. RESULTS Lower baseline cardiac output related to faster declines in language (β = 0.11, p = 0.01), information processing speed (β = 0.31, p = 0.006), visuospatial skills (β = 0.09, p = 0.03), and episodic memory (β = 0.02, p = 0.001). No cardiac output x cognitive diagnosis interactions were observed (p > 0.26). APOE-ε4 status modified the association between cardiac output and longitudinal episodic memory (β = 0.03, p = 0.047) and information processing speed outcomes (β = 0.55, p = 0.02) with associations stronger in APOE-ε4 carriers. CONCLUSION The present study provides evidence that even subtle reductions in cardiac output may be associated with more adverse longitudinal cognitive health, including worse language, information processing speed, visuospatial skills, and episodic memory performances. Preservation of healthy cardiac functioning is important for maintaining optimal brain aging among older adults.
Collapse
Affiliation(s)
- Corey W. Bown
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Rachel Do
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United states
| | - Omair A. Khan
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dandan Liu
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Francis E. Cambronero
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Elizabeth E. Moore
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United states
| | - Katie E. Osborn
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Deepak K. Gupta
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Heart Imaging Core Lab, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kimberly R. Pechman
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lisa A. Mendes
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Timothy J. Hohman
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katherine A. Gifford
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Angela L. Jefferson
- Vanderbilt Memory & Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
40
|
Cox SR, Lyall DM, Ritchie SJ, Bastin ME, Harris MA, Buchanan CR, Fawns-Ritchie C, Barbu MC, de Nooij L, Reus LM, Alloza C, Shen X, Neilson E, Alderson HL, Hunter S, Liewald DC, Whalley HC, McIntosh AM, Lawrie SM, Pell JP, Tucker-Drob EM, Wardlaw JM, Gale CR, Deary IJ. Associations between vascular risk factors and brain MRI indices in UK Biobank. Eur Heart J 2020; 40:2290-2300. [PMID: 30854560 PMCID: PMC6642726 DOI: 10.1093/eurheartj/ehz100] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/23/2019] [Accepted: 02/19/2019] [Indexed: 12/30/2022] Open
Abstract
Aims Several factors are known to increase risk for cerebrovascular disease and dementia, but there is limited evidence on associations between multiple vascular risk factors (VRFs) and detailed aspects of brain macrostructure and microstructure in large community-dwelling populations across middle and older age. Methods and results Associations between VRFs (smoking, hypertension, pulse pressure, diabetes, hypercholesterolaemia, body mass index, and waist–hip ratio) and brain structural and diffusion MRI markers were examined in UK Biobank (N = 9722, age range 44–79 years). A larger number of VRFs was associated with greater brain atrophy, lower grey matter volume, and poorer white matter health. Effect sizes were small (brain structural R2 ≤1.8%). Higher aggregate vascular risk was related to multiple regional MRI hallmarks associated with dementia risk: lower frontal and temporal cortical volumes, lower subcortical volumes, higher white matter hyperintensity volumes, and poorer white matter microstructure in association and thalamic pathways. Smoking pack years, hypertension and diabetes showed the most consistent associations across all brain measures. Hypercholesterolaemia was not uniquely associated with any MRI marker. Conclusion Higher levels of VRFs were associated with poorer brain health across grey and white matter macrostructure and microstructure. Effects are mainly additive, converging upon frontal and temporal cortex, subcortical structures, and specific classes of white matter fibres. Though effect sizes were small, these results emphasize the vulnerability of brain health to vascular factors even in relatively healthy middle and older age, and the potential to partly ameliorate cognitive decline by addressing these malleable risk factors.
Collapse
Affiliation(s)
- Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, 300 Bath St, Glasgow, UK
| | - Donald M Lyall
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, 300 Bath St, Glasgow, UK.,Institute of Health and Wellbeing, University of Glasgow, 1 Lilybank Gardens, Glasgow, UK
| | - Stuart J Ritchie
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, 300 Bath St, Glasgow, UK.,Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | - Mathew A Harris
- Division of Psychiatry, The University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, UK
| | - Colin R Buchanan
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, 300 Bath St, Glasgow, UK
| | - Chloe Fawns-Ritchie
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh, UK
| | - Miruna C Barbu
- Division of Psychiatry, The University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, UK
| | - Laura de Nooij
- Division of Psychiatry, The University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, UK
| | - Lianne M Reus
- Alzheimer Centre Amsterdam, Department of Neurology, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam UMC, De Boelelaan 1117, HV Amsterdam, The Netherlands
| | - Clara Alloza
- Division of Psychiatry, The University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, The University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, UK
| | - Emma Neilson
- Division of Psychiatry, The University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, UK
| | | | - Stuart Hunter
- NHS Lothian, Waverley Gate, 2-4 Waterloo Place, Edinburgh, UK
| | - David C Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, The University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, UK
| | - Andrew M McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,Division of Psychiatry, The University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, UK
| | - Stephen M Lawrie
- Division of Psychiatry, The University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh, UK
| | - Jill P Pell
- Institute of Health and Wellbeing, University of Glasgow, 1 Lilybank Gardens, Glasgow, UK
| | - Elliot M Tucker-Drob
- Department of Psychology, University of Texas, 108 E Dean Keeton St, Austin, Texas, USA
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, 300 Bath St, Glasgow, UK.,Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK.,UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Catharine R Gale
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, 7 George Square, Edinburgh, UK.,Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh, UK
| |
Collapse
|
41
|
Stevenson W, Hase Y, Wilson E, Hollins A, Hase M, Ennaceur A, Craggs L, Ihara M, Horsburgh K, Kalaria RN. Long-term effects of experimental carotid stenosis on hippocampal infarct pathology, neurons and glia and amelioration by environmental enrichment. Brain Res Bull 2020; 163:72-83. [PMID: 32707262 DOI: 10.1016/j.brainresbull.2020.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/03/2020] [Accepted: 07/15/2020] [Indexed: 01/17/2023]
Abstract
Hippocampal atrophy and pathology are common in ageing-related disorders and associated with cognitive impairment and dementia. We explored whether environmental enrichment (EE) ameliorated the pathological sequelae in the hippocampus subsequent to chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). Seventy-four male C57BL/6 J mice underwent BCAS or sham surgery. One-week after surgery, mice were exposed to three different degrees of EE; either standard housing conditions (std), limited 3 -h exposure to EE per day (3 h) or full-time exposure to EE (full) for 3 months. Four months after surgery, the hippocampus was examined for the extent of vascular brain injury and neuronal and glial changes. Results showed that long-term BCAS induced strokes, most often in CA1 subfield, reduced 40-50 % CA1 neurons (P < 0.01) and increased microglia/macrophage in CA1-CA3 subfields (P < 0.02). Remarkably, both 3 h and full-time EE regimes attenuated hippocampal neuronal death and repressed recurrent strokes with complete prevention of larger infarcts in mice on full-time EE (P < 0.01). Full-time EE also reduced astrocytic clasmatodendrosis and microglial/macrophage activation in all CA subfields. Our results suggest that exposure to EE differentially reduces long-term hypoperfusive hippocampal damage. The implementation of even limited EE may be beneficial for patients diagnosed with vascular cognitive impairment.
Collapse
Affiliation(s)
- William Stevenson
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yoshiki Hase
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Elle Wilson
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Annabel Hollins
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mai Hase
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Abdel Ennaceur
- Department of Pharmacy, Sunderland Pharmacy School, The University of Sunderland, Sunderland, UK
| | - Lucy Craggs
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Centre, Osaka, Japan
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Raj N Kalaria
- Neurovascular Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
42
|
Early Post-Rewarming Fever Is Associated with Favorable 6-Month Neurologic Outcomes in Patients with Out-Of-Hospital Cardiac Arrest: A Multicenter Registry Study. J Clin Med 2020; 9:jcm9092927. [PMID: 32927857 PMCID: PMC7565524 DOI: 10.3390/jcm9092927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
We investigated the association between post-rewarming fever (PRF) and 6-month neurologic outcomes in cardiac arrest survivors. This was a multicenter study based on a registry of comatose adult (≥18 years) out-of-hospital cardiac arrest (OHCA) survivors who underwent targeted temperature management between October 2015 to December 2018. PRF was defined as peak temperature ≥ 38.0 °C within 72 h after completion of rewarming, and PRF timing was categorized as within 24, 24–48, and 48–72 h epochs. The primary outcome was neurologic outcomes at six months after cardiac arrest. Unfavorable neurologic outcome was defined as cerebral performance categories three to five. A total of 1031 patients were included, and 642 (62.3%) had unfavorable neurologic outcomes. PRF developed in 389 (37.7%) patients in 72 h after rewarming: within 24 h in 150 (38.6%), in 24–48 h in 155 (39.8%), and in 48–72 h in 84 (21.6%). PRF was associated with improved neurologic outcomes (odds ratio (OR), 0.633; 95% confidence interval (CI), 0.416–0.963). PRF within 24 h (OR, 0.355; 95% CI, 0.191–0.659), but not in 24–48 h or 48–72 h, was associated with unfavorable neurologic outcomes. Early PRF within 24 h after rewarming was associated with favorable neurologic outcomes.
Collapse
|
43
|
Rajashekar D, Wilms M, Hecker KG, Hill MD, Dukelow S, Fiehler J, Forkert ND. The Impact of Covariates in Voxel-Wise Lesion-Symptom Mapping. Front Neurol 2020; 11:854. [PMID: 32922356 PMCID: PMC7456820 DOI: 10.3389/fneur.2020.00854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/07/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Voxel-wise lesion-symptom mapping (VLSM) is a statistical technique to infer the structure-function relationship in patients with cerebral strokes. Previous VLSM research suggests that it is important to adjust for various confounders such as lesion size to minimize the inflation of true effects. The aim of this work is to investigate the regional impact of covariates on true effects in VLSM. Methods: A total of 222 follow-up datasets of acute ischemic stroke patients with known NIH Stroke Scale (NIHSS) score at 48-h post-stroke were available for this study. Patient age, lesion volume, and follow-up imaging time were tested for multicollinearity using variance inflation factor analysis and used as covariates in VLSM analyses. Covariate importance maps were computed from the VLSM results by standardizing the beta coefficients of general linear models. Results: Covariates were found to have distinct regional importance with respect to lesion eloquence in the brain. Age has a relatively higher importance in the superior temporal gyrus, inferior parietal lobule, and in the pre- and post-central gyri. Volume explains more variability in the opercular area of the insula, inferior frontal gyrus, and caudate. Follow-up imaging time accounts for most of the variance in the globus pallidus, ventromedial- and dorsolateral putamen, dorsal caudate, pre-motor thalamus, and the dorsal insula. Conclusions: This is the first study investigating and revealing distinctive regional patterns of importance for covariates typically used in VLSM. These covariate importance maps can improve our understanding of the lesion-deficit relationships in patients and could prove valuable for patient-specific treatment and rehabilitation planning.
Collapse
Affiliation(s)
- Deepthi Rajashekar
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Matthias Wilms
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kent G Hecker
- Departments of Community Health Sciences and Veterinary Clinical, and Diagnostic Sciences, University of Calgary, Calgary, AB, Canada
| | - Michael D Hill
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Sean Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
44
|
Al-Dasuqi K, Payabvash S, Torres-Flores GA, Strander SM, Nguyen CK, Peshwe KU, Kodali S, Silverman A, Malhotra A, Johnson MH, Matouk CC, Schindler JL, Sansing LH, Falcone GJ, Sheth KN, Petersen NH. Effects of Collateral Status on Infarct Distribution Following Endovascular Therapy in Large Vessel Occlusion Stroke. Stroke 2020; 51:e193-e202. [PMID: 32781941 DOI: 10.1161/strokeaha.120.029892] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE We aim to examine effects of collateral status and post-thrombectomy reperfusion on final infarct distribution and early functional outcome in patients with anterior circulation large vessel occlusion ischemic stroke. METHODS Patients with large vessel occlusion who underwent endovascular intervention were included in this study. All patients had baseline computed tomography angiography and follow-up magnetic resonance imaging. Collateral status was graded according to the criteria proposed by Miteff et al and reperfusion was assessed using the modified Thrombolysis in Cerebral Infarction (mTICI) system. We applied a multivariate voxel-wise general linear model to correlate the distribution of final infarction with collateral status and degree of reperfusion. Early favorable outcome was defined as a discharge modified Rankin Scale score ≤2. RESULTS Of the 283 patients included, 129 (46%) had good, 97 (34%) had moderate, and 57 (20%) had poor collateral status. Successful reperfusion (mTICI 2b/3) was achieved in 206 (73%) patients. Poor collateral status was associated with infarction of middle cerebral artery border zones, whereas worse reperfusion (mTICI scores 0-2a) was associated with infarction of middle cerebral artery territory deep white matter tracts and the posterior limb of the internal capsule. In multivariate regression models, both mTICI (P<0.001) and collateral status (P<0.001) were among independent predictors of final infarct volumes. However, mTICI (P<0.001), but not collateral status (P=0.058), predicted favorable outcome at discharge. CONCLUSIONS In this cohort of patients with large vessel occlusion stroke, both the collateral status and endovascular reperfusion were strongly associated with middle cerebral artery territory final infarct volumes. Our findings suggesting that baseline collateral status predominantly affected middle cerebral artery border zones infarction, whereas higher mTICI preserved deep white matter and internal capsule from infarction; may explain why reperfusion success-but not collateral status-was among the independent predictors of favorable outcome at discharge. Infarction of the lentiform nuclei was observed regardless of collateral status or reperfusion success.
Collapse
Affiliation(s)
- Khalid Al-Dasuqi
- Division of Neuroradiology (K.A.-D., S.P., G.A.T.-F., A.M., M.H.J.), Yale University School of Medicine, New Haven, CT
| | - Seyedmehdi Payabvash
- Division of Neuroradiology (K.A.-D., S.P., G.A.T.-F., A.M., M.H.J.), Yale University School of Medicine, New Haven, CT
| | - Gerardo A Torres-Flores
- Division of Neuroradiology (K.A.-D., S.P., G.A.T.-F., A.M., M.H.J.), Yale University School of Medicine, New Haven, CT
| | - Sumita M Strander
- Department of Radiology and Biomedical Imaging, Division of Neurocritical Care and Emergency Neurology, Department of Neurology (S.M.S., C.K.N., K.U.P., S.K., A.S., G.J.F., K.N.S., N.H.P.), Yale University School of Medicine, New Haven, CT
| | - Cindy Khanh Nguyen
- Department of Radiology and Biomedical Imaging, Division of Neurocritical Care and Emergency Neurology, Department of Neurology (S.M.S., C.K.N., K.U.P., S.K., A.S., G.J.F., K.N.S., N.H.P.), Yale University School of Medicine, New Haven, CT
| | - Krithika U Peshwe
- Department of Radiology and Biomedical Imaging, Division of Neurocritical Care and Emergency Neurology, Department of Neurology (S.M.S., C.K.N., K.U.P., S.K., A.S., G.J.F., K.N.S., N.H.P.), Yale University School of Medicine, New Haven, CT
| | - Sreeja Kodali
- Department of Radiology and Biomedical Imaging, Division of Neurocritical Care and Emergency Neurology, Department of Neurology (S.M.S., C.K.N., K.U.P., S.K., A.S., G.J.F., K.N.S., N.H.P.), Yale University School of Medicine, New Haven, CT
| | - Andrew Silverman
- Department of Radiology and Biomedical Imaging, Division of Neurocritical Care and Emergency Neurology, Department of Neurology (S.M.S., C.K.N., K.U.P., S.K., A.S., G.J.F., K.N.S., N.H.P.), Yale University School of Medicine, New Haven, CT
| | - Ajay Malhotra
- Division of Neuroradiology (K.A.-D., S.P., G.A.T.-F., A.M., M.H.J.), Yale University School of Medicine, New Haven, CT
| | - Michele H Johnson
- Division of Neuroradiology (K.A.-D., S.P., G.A.T.-F., A.M., M.H.J.), Yale University School of Medicine, New Haven, CT
| | - Charles C Matouk
- Division of Neurovascular Surgery, Department of Neurosurgery (C.C.M.), Yale University School of Medicine, New Haven, CT
| | - Joseph L Schindler
- Division of Vascular Neurology, Department of Neurology (J.L.S., L.H.S.), Yale University School of Medicine, New Haven, CT
| | - Lauren H Sansing
- Division of Vascular Neurology, Department of Neurology (J.L.S., L.H.S.), Yale University School of Medicine, New Haven, CT
| | - Guido J Falcone
- Department of Radiology and Biomedical Imaging, Division of Neurocritical Care and Emergency Neurology, Department of Neurology (S.M.S., C.K.N., K.U.P., S.K., A.S., G.J.F., K.N.S., N.H.P.), Yale University School of Medicine, New Haven, CT
| | - Kevin N Sheth
- Department of Radiology and Biomedical Imaging, Division of Neurocritical Care and Emergency Neurology, Department of Neurology (S.M.S., C.K.N., K.U.P., S.K., A.S., G.J.F., K.N.S., N.H.P.), Yale University School of Medicine, New Haven, CT
| | - Nils H Petersen
- Department of Radiology and Biomedical Imaging, Division of Neurocritical Care and Emergency Neurology, Department of Neurology (S.M.S., C.K.N., K.U.P., S.K., A.S., G.J.F., K.N.S., N.H.P.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
45
|
Durazzo TC, Nguyen LC, Meyerhoff DJ. Medical Conditions Linked to Atherosclerosis Are Associated With Magnified Cortical Thinning in Individuals With Alcohol Use Disorders. Alcohol Alcohol 2020; 55:382-390. [PMID: 32445335 PMCID: PMC7307314 DOI: 10.1093/alcalc/agaa034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 01/21/2023] Open
Abstract
AIMS Magnetic resonance imaging (MRI) studies report widespread cortical thinning in individuals with alcohol use disorder (AUD), but did not consider potential effects of pro-atherogenic conditions such as hypertension, type 2 diabetes mellitus, hepatitis C seropositivity and hyperlipidemia on cortical thickness. The conditions are associated with regional cortical thinning in those without AUD. We predicted that individuals with concurrent AUD and pro-atherogenic conditions demonstrate the greatest regional cortical thinning in areas most vulnerable to decreased perfusion. METHODS Treatment-seeking individuals with AUD (n = 126) and healthy controls (CON; n = 49) completed a 1.5 T MRI study. Regional cortical thickness was quantitated via FreeSurfer. Individuals with AUD and pro-atherogenic conditions (Atherogenic+), AUD without pro-atherogenic conditions (Atherogenic-) and CON were compared on regional cortical thickness. RESULTS Individuals with AUD showed significant bilateral cortical thinning compared to CON, but Atherogenic+ demonstrated the most widespread and greatest magnitude of regional thinning, while Atherogenic- had reduced thickness primarily in anterior frontal and posterior parietal lobes. Atherogenic+ also showed a thinner cortex than Atherogenic- in lateral orbitofrontal and dorso/dorsolateral frontal cortex, mesial and lateral temporal and inferior parietal regions. CONCLUSIONS Our results demonstrate significant bilateral cortical thinning in individuals with AUD relative to CON, but the distribution and magnitude were influenced by comorbid pro-atherogenic conditions. The magnitude of cortical thinning in Atherogenic+ strongly corresponded to cortical watershed areas susceptible to decreased perfusion, which may result in morphometric abnormalities. The findings indicate that pro-atherogenic conditions may contribute to cortical thinning in those seeking treatment for AUD.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Mental Illness Research and Education Clinical Centers, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Linh-Chi Nguyen
- Mental Illness Research and Education Clinical Centers, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Dieter J Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
46
|
Liu F, Chen C, Hong L, Shen H, Cao W, Dong Q, Yang X, Guo M, Li Y, Xiao Y, Cheng X, Li G. Lenticulostriate arteries appearance before thrombectomy predicts good outcome in acute middle cerebral artery occlusion. BMC Neurol 2020; 20:139. [PMID: 32299387 PMCID: PMC7161229 DOI: 10.1186/s12883-020-01716-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 04/02/2020] [Indexed: 12/27/2022] Open
Abstract
Background Endovascular therapy is widely used in acute large vessel occlusion. This study investigated whether imaging of lateral lenticulostriate arteries (LSAs) before thrombectomy would potentially be helpful for predicting prognosis of patients with acute M1 segment of middle cerebral artery occlusion (MCAO). Methods 59 consecutive patients with acute M1 segment of MCAO treated with mechanical thrombectomy at two comprehensive stroke centers were analyzed. Patients were categorized into LSA+ (appearing of lateral LSAs) and LSA- (sparing of lateral LSAs) group according to preprocedural digital substraction angiography (DSA). Baseline data and clinical outcomes were compared. A good clinical outcome was defined as a modified Rankin Scale score of 0 to 2 at 3 months. The association between clinical and imaging parameters and functional outcome was evaluated with logistic regression analysis. Results LSA+ was shown in 36 patients (61%). LSA+ group had a significantly higher proportion of good outcome (72.2% vs. 8.7%, OR 27.3,95% CI 5.38–138.4, P < 0.001), lower risk of symptomatic intracranial haemorrhages (sICH) (8.3% vs. 47.8%,OR 0.10,95% CI 0.02–0.42, P = 0.001) and lower mortality in hospital (5.6% vs. 34.8%, OR 0.11,95% CI 0.02–0.58, P < 0.004) compared with LSA- group. Patients in LSA+ group had lower baseline NIHSS score(P < 0.01) and NIHSS score at 14 days(P < 0.01) and smaller infarct core volume (P = 0.016) on computed tomography perfusion imaging (CTP) compared to the LSA- group. Multivariate logistic regression analysis showed that a small infarct core volume (OR 6.74,95% CI 1.148–39.569, P = 0.035) and LSA+(OR 22.114,95% CI 3.339–146.470, P = 0.001) were associated with a good clinical outcome. Conclusions Our data suggest that appearance of lateral LSAs before mechanical thrombectomy would be potentially helpful for predicting favorable prognosis of patients with acute M1 segment of MCAO.
Collapse
Affiliation(s)
- Feifeng Liu
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Chen Chen
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Lan Hong
- Department of Neurology, Shanghai huashan hospital, Fudan University, Shanghai, China
| | - Hao Shen
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Wenjie Cao
- Department of Neurology, Shanghai huashan hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Shanghai huashan hospital, Fudan University, Shanghai, China
| | - Xinyi Yang
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Mengruo Guo
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Ying Li
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yaping Xiao
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Xin Cheng
- Department of Neurology, Shanghai huashan hospital, Fudan University, Shanghai, China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
47
|
Pénzes M, Túrós D, Máthé D, Szigeti K, Hegedűs N, Rauscher AÁ, Tóth P, Ivic I, Padmanabhan P, Pál G, Dobolyi Á, Gyimesi M, Málnási-Csizmadia A. Direct myosin-2 inhibition enhances cerebral perfusion resulting in functional improvement after ischemic stroke. Theranostics 2020; 10:5341-5356. [PMID: 32373216 PMCID: PMC7196296 DOI: 10.7150/thno.42077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Acute ischemic stroke treatment faces an unresolved obstacle as capillary reperfusion remains insufficient after thrombolysis and thrombectomy causing neuronal damage and poor prognosis. Hypoxia-induced capillary constriction is mediated by actomyosin contraction in precapillary smooth muscle cells (SMCs) therefore smooth muscle myosin-2 could be an ideal target with potentially high impact on reperfusion of capillaries. Methods: The myosin-2 inhibitor para-aminoblebbistatin (AmBleb) was tested on isolated human and rat arterioles to assess the effect of AmBleb on vasodilatation. Transient middle cerebral artery occlusion (MCAO) was performed on 38 male Wistar rats followed by local administration of AmBleb into the ischemic brain area. Development of brain edema and changes in cerebrovascular blood flow were assessed using MRI and SPECT. We also tested the neurological deficit scores and locomotor asymmetry of the animals for 3 weeks after the MCAO operation. Results: Our results demonstrate that AmBleb could achieve full relaxation of isolated cerebral arterioles. In living animals AmBleb recovered cerebral blood flow in 32 out of the 65 affected functional brain areas in MCAO operated rats, whereas only 8 out of the 67 affected areas were recovered in the control animals. Animals treated with AmBleb also showed significantly improved general and focal deficit scores in neurological functional tests and showed significantly ameliorated locomotor asymmetry. Conclusion: Direct inhibition of smooth muscle myosin by AmBleb in pre-capillary SMCs significantly contribute to the improvement of cerebral blood reperfusion and brain functions suggesting that smooth muscle myosin inhibition may have promising potential in stroke therapies as a follow-up treatment of physical or chemical removal of the occluding thrombus.
Collapse
|
48
|
Siegler JE, Olsen A, Rosenberg J, Cristancho D, Pulst-Korenberg J, Raab L, Woo JH, Messé SR. Mismatch between automated CTP and ASPECTS score in patients with anterior large vessel occlusion. Clin Neurol Neurosurg 2020; 194:105797. [PMID: 32222652 DOI: 10.1016/j.clineuro.2020.105797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To evaluate the relationship between delay to computed tomography perfusion and estimated core infarct volumes in patients with large vessel occlusion (LVO). PATIENTS AND METHODS A retrospective registry of consecutive adults >18 years old who underwent CTP in clinical practice for suspected LVO within 24 h of LKN at 3 academic hospitals was queried (06/2017 - 12/2017). CT and CTP findings were compared over time as a continuous variable, and dichotomized by ≤6 h or 6-24 h from LKN. RESULTS Of 410 screened patients, 75 had LVO, of whom 60 (14.6 %) met inclusion criteria (median age 78y [IQR 64-84], 36 were female [60 %]), and 39 (65.0 %) underwent thrombectomy. Thirty (50 %) presented in the extended window (6-24 h) and had lower ASPECTS scores compared to patients in the early window (median 7 vs. 9, p < 0.01). Perfusion core (rCBF <30 %) volumes were similar (median 8 vs. 25, p = 0.10). After adjustment for age, NIHSS, and thrombolysis, there was a trend for lower ASPECTS for every hour after LKN (proportional OR 0.92, 95 %CI 0.84-1.00, p = 0.06), but no change in perfusion core (p = 0.37) or Tmax>6 s volumes (p = 0.29), or mismatch ratios (p = 0.48) after adjusting for age, NIHSS, ASPECTS, and thrombolysis. CONCLUSION As time progresses in anterior LVO, the unenhanced CT is more sensitive than CTP for detecting irreversibly damaged tissue. These results underscore the importance of carefully reviewing the unenhanced and perfusion CT when considering a patient for thrombectomy.
Collapse
Affiliation(s)
- James E Siegler
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA, 19104, United States.
| | - Andrew Olsen
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA, 19104, United States
| | - Jon Rosenberg
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA, 19104, United States
| | - Daniel Cristancho
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA, 19104, United States
| | - Johannes Pulst-Korenberg
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA, 19104, United States
| | - Lindsay Raab
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA, 19104, United States
| | - John H Woo
- Department of Radiology, Division of Neuroradiology, Hospital of the University of Pennsylvania, Philadelphia PA, 19104, United States
| | - Steven R Messé
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia PA, 19104, United States
| |
Collapse
|
49
|
Min SH, Kim JT, Kang KW, Choi MJ, Yoon H, Shinohara Y, Lev MH, Saver JL, Cho KH. Acute insular infarction: Early outcomes of minor stroke with proximal artery occlusion. PLoS One 2020; 15:e0229836. [PMID: 32160209 PMCID: PMC7065779 DOI: 10.1371/journal.pone.0229836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/14/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND PURPOSE We hypothesized that admission insular infarcts could be associated with early neurological deterioration (END) in acute minor stroke with large vessel occlusion. METHODS Using acute and follow-up diffusion-weighted imaging (DWI), we assessed insular involvement including the percent insular ribbon infarction (PIRI) scores and follow-up lesion patterns in acute minor stroke (NIHSS ≤5) with MCA/ICA occlusion. Follow-up lesion patterns were classified as swelling, new lesions, or infarct growth. END was defined as any increase in the NIHSS score. RESULTS Among 166 patients (age: 66±12 y, 60.8% male), 82 (49.4%) had insular lesions on baseline DWI, and 64 (38.6%) had PIRI scores ≥2. On follow-up DWI, infarct growths, new lesions, and swelling were observed in 34.9%, 69.9%, and 29.5% of patients. Infarct growths were significantly more frequent in patients with insular infarcts (43.9%), especially those with a PIRI score of 2 (54.8%), than in patients without insular infarcts (p = 0.02). While END was not significantly different in patients with and without insular lesions, insular lesions were independently associated with infarct growths (OR 2.18, 95% CI 1.12-4.26, p = 0.02) and END due to infarct growth (OR 2.54, 95% CI 1.12-5.76, p = 0.03), particularly in those with PIRI scores ≥2. CONCLUSION In acute minor stroke with MCA/ICA occlusion, insular lesions on admission DWI, especially in patients with PIRI scores ≥2, were more likely to exhibit infarct growth and END due to infarct growth. This finding may help identify patients with higher risks of clinical worsening following acute minor stroke with large vessel occlusion.
Collapse
Affiliation(s)
- Seung-Hyun Min
- Department of Neurology, Chonnam National University Hospital, Gwanju, Korea
| | - Joon-Tae Kim
- Department of Neurology, Chonnam National University Hospital, Gwanju, Korea
- * E-mail:
| | - Kyung-Wook Kang
- Department of Neurology, Chonnam National University Hospital, Gwanju, Korea
| | - Min-Ji Choi
- Department of Neurology, Chonnam National University Hospital, Gwanju, Korea
| | - Hana Yoon
- Department of Neurology, Chonnam National University Hospital, Gwanju, Korea
| | - Yuki Shinohara
- Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Michael H. Lev
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jeffrey L. Saver
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America
| | - Ki-Hyun Cho
- Department of Neurology, Chonnam National University Hospital, Gwanju, Korea
| |
Collapse
|
50
|
Nicholson P, Hilditch CA, Neuhaus A, Seyedsaadat SM, Benson JC, Mark I, Tsang COA, Schaafsma J, Kallmes DF, Krings T, Brinjikji W. Per-region interobserver agreement of Alberta Stroke Program Early CT Scores (ASPECTS). J Neurointerv Surg 2020; 12:1069-1071. [DOI: 10.1136/neurintsurg-2019-015473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 11/03/2022]
Abstract
Background and purposeThe Alberta Stroke Program Early CT Score (ASPECTS) is a commonly used scoring system to select patients with stroke for endovascular treatment (EVT). However, the inter- and intra-reader variability is high.ObjectiveTo determine whether the inter- and intra-reader variability is different for various regions of the ASPECTS scoring system by evaluating the interobserver variability of ASPECTS between different readers in a per-region analysis.Materials and methodsAll patients with acute ischemic stroke who proceeded to EVT in our institutions over a 4-year period were retrospectively identified from a prospectively maintained database. Images were reviewed by two experienced neuroradiologists, who recalculated the ASPECTS independently. We examined each region of the ASPECTS system to evaluate agreement between the raters in each area.Results375 patients were included. The median total ASPECTS was 9 (IQR 8–9). The most common region showing ischemic change was the insula, with the M6 region being least commonly affected. Overall interobserver agreement for ASPECTS using Cohen’s κ was 0.56 (95% CI 0.51 to 0.61). The region with the highest agreement was the insula (κ=0.56; 0.48 to 0.64). The region with the lowest agreement was M3 (κ=0.34; 0.12 to 0.56). Agreement was relatively good when ASPECTS were dichotomized into 0–5 versus 6–10 (κ=0.66; 0.49 to 0.84).ConclusionsSubstantial interobserver variability is found when calculating ASPECTS. This variability is region dependent, and practitioners should take this into account when using ASPECTS for treatment decisions in patients with acute stroke.
Collapse
|