1
|
Xiao K, Cao Y, Han Z, Zhang Y, Luu LDW, Chen L, Yan P, Chen W, Wang J, Liang Y, Shi X, Wang X, Wang F, Hu Y, Wen Z, Chen Y, Yang Y, Yu H, Xie L, Wang Y. A pan-immune panorama of bacterial pneumonia revealed by a large-scale single-cell transcriptome atlas. Signal Transduct Target Ther 2025; 10:5. [PMID: 39757231 DOI: 10.1038/s41392-024-02093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Bacterial pneumonia is a significant public health burden, contributing to substantial morbidity, mortality, and healthcare costs. Current therapeutic strategies beyond antibiotics and adjuvant therapies are limited, highlighting the need for a deeper understanding of the disease pathogenesis. Here, we employed single-cell RNA sequencing of 444,146 bronchoalveolar lavage fluid cells (BALFs) from a large cohort of 74 individuals, including 58 patients with mild (n = 22) and severe (n = 36) diseases as well as 16 healthy donors. Enzyme-linked immunosorbent and histological assays were applied for validation within this cohort. The heterogeneity of immune responses in bacterial pneumonia was observed, with distinct immune cell profiles related to disease severity. Severe bacterial pneumonia was marked by an inflammatory cytokine storm resulting from systemic upregulation of S100A8/A9 and CXCL8, primarily due to specific macrophage and neutrophil subsets. In contrast, mild bacterial pneumonia exhibits an effective humoral immune response characterized by the expansion of T follicular helper and T helper 2 cells, facilitating B cell activation and antibody production. Although both disease groups display T cell exhaustion, mild cases maintained robust cytotoxic CD8+T cell function, potentially reflecting a compensatory mechanism. Dysregulated neutrophil and macrophage responses contributed significantly to the pathogenesis of severe disease. Immature neutrophils promote excessive inflammation and suppress T cell activation, while a specific macrophage subset (Macro_03_M1) displaying features akin to myeloid-derived suppressor cells (M-MDSCs) suppress T cells and promote inflammation. Together, these findings highlight potential therapeutic targets for modulating immune responses and improving clinical outcomes in bacterial pneumonia.
Collapse
Affiliation(s)
- Kun Xiao
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
| | - Yan Cao
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
| | - Zhihai Han
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
| | - Yuxiang Zhang
- Department of Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100037, P.R. China
| | - Laurence Don Wai Luu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Liang Chen
- Respiratory and Critical Care Medicine department, Beijing Jingmei Group, General Hospial, Beijing, 102308, P.R. China
| | - Peng Yan
- Department of Pulmonary and Critical Care Medicine, China Aerospace Science & Industry Corporation 731 hospital, Beijing, 100074, P.R. China
| | - Wei Chen
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
- Department of Respiratory Medicine, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100037, P.R. China
| | - Jiaxing Wang
- Department of Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100037, P.R. China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Xin Shi
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
- Medical School of Chinese PLA, Beijing, 100191, P.R. China
| | - Xiuli Wang
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
- Medical School of Chinese PLA, Beijing, 100191, P.R. China
| | - Fan Wang
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
| | - Ye Hu
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
| | - Zhengjun Wen
- Respiratory and Critical Care Medicine department, Beijing Jingmei Group, General Hospial, Beijing, 102308, P.R. China
| | - Yong Chen
- Department of Pulmonary and Critical Care Medicine, Anzhen hospital afflicted to Capital medical university, Beijing, 100029, P.R. China
| | - Yuwei Yang
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China
| | - Haotian Yu
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, P.R. China.
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P.R. China.
| |
Collapse
|
2
|
Hanford HE, Price CTD, Uriarte S, Abu Kwaik Y. Inhibition and evasion of neutrophil microbicidal responses by Legionella longbeachae. mBio 2024:e0327424. [PMID: 39679679 DOI: 10.1128/mbio.03274-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Legionella species evade degradation and proliferate within alveolar macrophages as an essential step for the manifestation of disease. However, most intracellular bacterial pathogens are restricted in neutrophils, which are the first line of innate immune defense against invading pathogens. Bacterial degradation within neutrophils is mediated by the fusion of microbicidal granules to pathogen-containing phagosomes and the generation of reactive oxygen species (ROS) by the phagocyte NADPH oxidase complex. Here, we show that human neutrophils fail to trigger microbicidal processes and, consequently, fail to restrict L. longbeachae. In addition, neutrophils infected with L. longbeachae fail to undergo a robust pro-inflammatory response, such as degranulation and IL-8 production. Here, we identify three strategies employed by L. longbeachae for evading restriction by neutrophils and inhibiting the neutrophil microbicidal response to other bacteria co-inhabiting in the same cell. First, L. longbeachae excludes the cytosolic and membrane-bound subunits of the phagocyte NADPH oxidase complex from its phagosomal membrane independent of the type 4 secretion system (T4SS). Consequently, infected neutrophils fail to generate robust ROS in response to L. longbeachae. Second, L. longbeachae impedes the fusion of azurophilic granules to its phagosome and the phagosomes of bacteria co-inhabiting the same cell through T4SS-independent mechanisms. Third, L. longbeachae protects phagosomes of co-inhabiting bacteria from degradation by ROS through a trans-acting T4SS-dependent mechanism. Collectively, we conclude that L. longbeachae evades restriction by human neutrophils via T4SS-independent mechanisms and utilizes trans-acting T4SS-dependent mechanisms for inhibition of neutrophil ROS generation throughout the cell cytosol. IMPORTANCE Legionella longbeachae is commonly found in soil environments where it interacts with a wide variety of protist hosts and microbial competitors. Upon transmission to humans, L. longbeachae invades and replicates within alveolar macrophages, leading to the manifestation of pneumonia. In addition to alveolar macrophages, neutrophils are abundant immune cells acting as the first line of defense against invading pathogens. While most intracellular bacterial species are killed and degraded by neutrophils, we show that L. longbeachae evades degradation. The pathogen impairs the major neutrophils' microbicidal processes, including the fusion of microbicidal granules to the pathogen-containing vacuole. By inhibiting of assembly of the phagocyte NADPH oxidase complex, the pathogen blocks neutrophils from generating microbicide reactive oxygen species. Overall, L. longbeachae employs unique virulence strategies to evade the major microbicidal processes of neutrophils.
Collapse
Affiliation(s)
- Hannah E Hanford
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Christopher T D Price
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Silvia Uriarte
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Woodrow JS, Hopster K, Palmisano M, Payette F, Kulp J, Stefanovski D, Nolen‐Walston R. Time to resolution of airway inflammation caused by bronchoalveolar lavage in healthy horses. J Vet Intern Med 2024; 38:2776-2782. [PMID: 39198933 PMCID: PMC11423487 DOI: 10.1111/jvim.17169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Bronchoalveolar lavage (BAL) is a common procedure for evaluation of the equine lower airways. Time to resolution of post-BAL inflammation has not been clearly defined. HYPOTHESIS Residual inflammation, evident by changes in immune cell populations and inflammatory cytokines, will resolve by 72 hours after BAL. ANIMALS Six adult, healthy, institution-owned horses. METHODS Randomized, complete cross-over design. Each horse underwent 3 paired BALs, including a baseline and then 48, 72, and 96 hours later, with a 7-day washout between paired BALs. Each sample underwent cytological evaluation and cytokine concentrations were determined by a commercially available multiplex bead immunoassay. Statistical analysis was performed by multilevel mixed-effects Poisson regression analysis. Data are reported as marginal means and 95% confidence interval (CI). RESULTS Neutrophil, eosinophil and mast cell percentages were not significantly different at any time points. Macrophage percentages were higher at 72 hours (45.0 [95% CI, 41.6-48.4]%) and 96 hours (45.3 [95% CI, 42.9-47.7]%) vs baseline (37.4 [95% CI, 33.5-41.4]%; P < .001 and P = .01, respectively), and at 72 hours and 96 hours vs 48 hours (31.9 [95% CI, 28.1-35.6]%; P < .001). Neutrophil percentage was not significantly increased at 48 hours (P = .11). Interleukin (IL)-6 concentration was increased at 72 hours (5.22 [95% CI, 3.44-6.99] pg/mL) vs 48 hours (4.38 [95% CI, 2.99-5.78] pg/mL; P < .001). CONCLUSIONS AND CLINICAL IMPORTANCE Significant lung inflammation was not detected at 72 and 96 hours, suggesting that repeating BAL at 72 hours or more can be done without concern of residual inflammation.
Collapse
Affiliation(s)
- Jane S. Woodrow
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Klaus Hopster
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Megan Palmisano
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Flavie Payette
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Jeaneen Kulp
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Darko Stefanovski
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Rose Nolen‐Walston
- Department of Clinical Sciences‐New Bolton Center, College of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| |
Collapse
|
4
|
Taenaka H, Fang X, Maishan M, Trivedi A, Wick KD, Gotts JE, Martin TR, Calfee CS, Matthay MA. Neutrophil reduction attenuates the severity of lung injury in the early phase of pneumococcal pneumonia in mice. Am J Physiol Lung Cell Mol Physiol 2024; 327:L141-L149. [PMID: 38772909 DOI: 10.1152/ajplung.00113.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Neutrophils are the first leukocytes to be recruited to sites of inflammation in response to chemotactic factors released by activated macrophages and pulmonary epithelial and endothelial cells in bacterial pneumonia, a common cause of acute respiratory distress syndrome (ARDS). Although neutrophilic inflammation facilitates the elimination of pathogens, neutrophils also may cause bystander tissue injury. Even though the presence of neutrophils in alveolar spaces is a key feature of acute lung injury and ARDS especially from pneumonia, their contribution to the pathogenesis of lung injury is uncertain. The goal of this study was to elucidate the role of neutrophils in a clinically relevant model of bacterial pneumonia. We investigated the effect of reducing neutrophils in a mouse model of pneumococcal pneumonia treated with antibiotics. Neutrophils were reduced with anti-lymphocyte antigen 6 complex locus G6D (Ly6G) monoclonal antibody 24 h before and immediately preceding infection. Mice were inoculated intranasally with Streptococcus pneumoniae and received ceftriaxone 12 h after bacterial inoculation. Neutrophil reduction in mice treated with ceftriaxone attenuated hypoxemia, alveolar permeability, epithelial injury, pulmonary edema, and inflammatory biomarker release induced by bacterial pneumonia, even though bacterial loads in the distal air spaces of the lung were modestly increased as compared with antibiotic treatment alone. Thus, when appropriate antibiotics are administered, lung injury in the early phase of bacterial pneumonia is mediated in part by neutrophils. In the early phase of bacterial pneumonia, neutrophils contribute to the severity of lung injury, although they also participate in host defense.NEW & NOTEWORTHY Neutrophil accumulation is a key feature of ARDS, but their contribution to the pathogenesis is still uncertain. We investigated the effect of reducing neutrophils in a clinically relevant mouse model of pneumococcal pneumonia treated with antibiotics. When appropriate antibiotics were administered, neutrophil reduction with Ly6G antibody markedly attenuated lung injury and improved oxygenation. In the early phase of bacterial pneumonia, neutrophils contribute to the severity of lung injury, although they also participate in host defense.
Collapse
Affiliation(s)
- Hiroki Taenaka
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Xiaohui Fang
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, United States
| | - Mazharul Maishan
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, United States
| | - Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, California, United States
| | - Katherine D Wick
- Division of Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Jeffrey E Gotts
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, United States
| | - Thomas R Martin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Carolyn S Calfee
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, United States
| | - Michael A Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California, United States
| |
Collapse
|
5
|
Gutierrez-Chavez C, Aperrigue-Lira S, Ortiz-Saavedra B, Paz I. Chemokine receptors in COVID-19 infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:53-94. [PMID: 39260938 DOI: 10.1016/bs.ircmb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokine receptors play diverse roles in the immune response against pathogens by recruiting innate and adaptive immune cells to sites of infection. However, their involvement could also be detrimental, causing tissue damage and exacerbating respiratory diseases by triggering histological alterations such as fibrosis and remodeling. This chapter reviews the role of chemokine receptors in the immune defense against SARS-CoV-2 infection. In COVID-19, CXCR3 is expressed mainly in T cells, and its upregulation is related to an increase in SARS-CoV-2-specific antibodies but also to COVID-19 severity. CCR5 is a key player in T-cell recruitment, and its suppression leads to reduced inflammation and viremia levels. Conversely, CXCR6 is implicated in the aberrant migration of memory T cells within airways. On the other hand, increased CCR4+ cells in the blood and decreased CCR4+ cells in lung cells are associated with severe COVID-19. Additionally, CCR2 is associated with an increase in macrophage recruitment to lung tissues. Elevated levels of CXCR1 and CXCR2, which are predominantly expressed in neutrophils, are associated with the severity of the disease, and finally, the expression of CX3CR1 in cytotoxic T lymphocytes affects the retention of these cells in lung tissues, thereby impacting the severity of COVID-19. Despite the efforts of many clinical trials to find effective therapies for COVID-19 using chemokine receptor inhibitors, no conclusive results have been found due to the small number of patients, redundancy, and co-expression of chemokine receptors by immune cells, which explains the difficulty in finding a single therapeutic target or effective treatment.
Collapse
Affiliation(s)
| | - Shalom Aperrigue-Lira
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Brando Ortiz-Saavedra
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Irmia Paz
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.
| |
Collapse
|
6
|
Mukhopadhyay A, Tsukasaki Y, Chan WC, Le JP, Kwok ML, Zhou J, Natarajan V, Mostafazadeh N, Maienschein-Cline M, Papautsky I, Tiruppathi C, Peng Z, Rehman J, Ganesh B, Komarova Y, Malik AB. trans-Endothelial neutrophil migration activates bactericidal function via Piezo1 mechanosensing. Immunity 2024; 57:52-67.e10. [PMID: 38091995 PMCID: PMC10872880 DOI: 10.1016/j.immuni.2023.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/02/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The regulation of polymorphonuclear leukocyte (PMN) function by mechanical forces encountered during their migration across restrictive endothelial cell junctions is not well understood. Using genetic, imaging, microfluidic, and in vivo approaches, we demonstrated that the mechanosensor Piezo1 in PMN plasmalemma induced spike-like Ca2+ signals during trans-endothelial migration. Mechanosensing increased the bactericidal function of PMN entering tissue. Mice in which Piezo1 in PMNs was genetically deleted were defective in clearing bacteria, and their lungs were predisposed to severe infection. Adoptive transfer of Piezo1-activated PMNs into the lungs of Pseudomonas aeruginosa-infected mice or exposing PMNs to defined mechanical forces in microfluidic systems improved bacterial clearance phenotype of PMNs. Piezo1 transduced the mechanical signals activated during transmigration to upregulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4, crucial for the increased PMN bactericidal activity. Thus, Piezo1 mechanosensing of increased PMN tension, while traversing the narrow endothelial adherens junctions, is a central mechanism activating the host-defense function of transmigrating PMNs.
Collapse
Affiliation(s)
- Amitabha Mukhopadhyay
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yoshikazu Tsukasaki
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Wan Ching Chan
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jonathan P Le
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Man Long Kwok
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jian Zhou
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA; Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Nima Mostafazadeh
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Ian Papautsky
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Zhangli Peng
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Balaji Ganesh
- Flow Cytometry Core, Research Resources Center, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yulia Komarova
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
7
|
Thind MK, Uhlig HH, Glogauer M, Palaniyar N, Bourdon C, Gwela A, Lancioni CL, Berkley JA, Bandsma RHJ, Farooqui A. A metabolic perspective of the neutrophil life cycle: new avenues in immunometabolism. Front Immunol 2024; 14:1334205. [PMID: 38259490 PMCID: PMC10800387 DOI: 10.3389/fimmu.2023.1334205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neutrophils are the most abundant innate immune cells. Multiple mechanisms allow them to engage a wide range of metabolic pathways for biosynthesis and bioenergetics for mediating biological processes such as development in the bone marrow and antimicrobial activity such as ROS production and NET formation, inflammation and tissue repair. We first discuss recent work on neutrophil development and functions and the metabolic processes to regulate granulopoiesis, neutrophil migration and trafficking as well as effector functions. We then discuss metabolic syndromes with impaired neutrophil functions that are influenced by genetic and environmental factors of nutrient availability and usage. Here, we particularly focus on the role of specific macronutrients, such as glucose, fatty acids, and protein, as well as micronutrients such as vitamin B3, in regulating neutrophil biology and how this regulation impacts host health. A special section of this review primarily discusses that the ways nutrient deficiencies could impact neutrophil biology and increase infection susceptibility. We emphasize biochemical approaches to explore neutrophil metabolism in relation to development and functions. Lastly, we discuss opportunities and challenges to neutrophil-centered therapeutic approaches in immune-driven diseases and highlight unanswered questions to guide future discoveries.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Agnes Gwela
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Christina L Lancioni
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - James A Berkley
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Omega Laboratories Inc, Mississauga, ON, Canada
| |
Collapse
|
8
|
Karahashi Y, Cueno ME, Kamio N, Takahashi Y, Takeshita I, Soda K, Maruoka S, Gon Y, Sato S, Imai K. Fusobacterium nucleatum putatively affects the alveoli by disrupting the alveolar epithelial cell tight junction, enlarging the alveolar space, and increasing paracellular permeability. Biochem Biophys Res Commun 2023; 682:216-222. [PMID: 37826945 DOI: 10.1016/j.bbrc.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Fusobacterium nucleatum (Fn) is abundant in the human oral cavity and has been associated with periodontal disease, which in-turn has been linked to respiratory disease development. Tight junctions (TJs) line the airway and alveoli surfaces serving as a first line of defense against multiple pathogens. Fn has already been linked to respiratory diseases, however, how Fn affects the alveolar TJ was not fully elucidated. Here, we designed and analyzed a TJ network, grew Fn cells and inoculated it in vitro (16HBE and primary cells) and in vivo (mice lung), measured transepithelial electrical resistance, performed RT-PCR, checked for in vitro cell and mice lung permeability, and determined air space size through morphometric measurements. We found that Fn can potentially affect TJs proteins that are directly exposed to the alveolar surface. Additionally, Fn could possibly cause neutrophil accumulation and an increase in alveolar space. Moreover, Fn putatively may cause an increase in paracellular permeability in the alveoli.
Collapse
Affiliation(s)
- Yukihiro Karahashi
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan; Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Marni E Cueno
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Noriaki Kamio
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Yuwa Takahashi
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Ikuko Takeshita
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Kaori Soda
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan.
| |
Collapse
|
9
|
Xu S, Mo D, Rizvi FZ, Rosa JP, Ruiz J, Tan S, Tweten RK, Leong JM, Adams W. Pore-forming activity of S. pneumoniae pneumolysin disrupts the paracellular localization of the epithelial adherens junction protein E-cadherin. Infect Immun 2023; 91:e0021323. [PMID: 37607057 PMCID: PMC10501216 DOI: 10.1128/iai.00213-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 08/24/2023] Open
Abstract
Streptococcus pneumoniae, a common cause of community-acquired bacterial pneumonia, can cross the respiratory epithelial barrier to cause lethal septicemia and meningitis. S. pneumoniae pore-forming toxin pneumolysin (PLY) triggers robust neutrophil (PMN) infiltration that promotes bacterial transepithelial migration in vitro and disseminated disease in mice. Apical infection of polarized respiratory epithelial monolayers by S. pneumoniae at a multiplicity of infection (MOI) of 20 resulted in recruitment of PMNs, loss of 50% of the monolayer, and PMN-dependent bacterial translocation. Reducing the MOI to 2 decreased PMN recruitment two-fold and preserved the monolayer, but apical-to-basolateral translocation of S. pneumoniae remained relatively efficient. At both MOI of 2 and 20, PLY was required for maximal PMN recruitment and bacterial translocation. Co-infection by wild-type S. pneumoniae restored translocation by a PLY-deficient mutant, indicating that PLY can act in trans. Investigating the contribution of S. pneumoniae infection on apical junction complexes in the absence of PMN transmigration, we found that S. pneumoniae infection triggered the cleavage and mislocalization of the adherens junction (AJ) protein E-cadherin. This disruption was PLY-dependent at MOI of 2 and was recapitulated by purified PLY, requiring its pore-forming activity. In contrast, at MOI of 20, E-cadherin disruption was independent of PLY, indicating that S. pneumoniae encodes multiple means to disrupt epithelial integrity. This disruption was insufficient to promote bacterial translocation in the absence of PMNs. Thus, S. pneumoniae triggers cleavage and mislocalization of E-cadherin through PLY-dependent and -independent mechanisms, but maximal bacterial translocation across epithelial monolayers requires PLY-dependent neutrophil transmigration.
Collapse
Affiliation(s)
- Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Devons Mo
- Department of Biological Sciences, San Jose State University, San Jose, California, USA
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Fatima Z. Rizvi
- Department of Biological Sciences, San Jose State University, San Jose, California, USA
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Juan P. Rosa
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- University of Puerto Rico, Cayey, USA
| | - Jorge Ruiz
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Francisco de Vitoria University, Madrid, Spain
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Rodney K. Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma, Oklahoma, USA
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance at Tufts (Levy CIMAR), Boston, Massachusetts, USA
| | - Walter Adams
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Department of Biological Sciences, San Jose State University, San Jose, California, USA
| |
Collapse
|
10
|
Wang X, Li Y, Liu S, Wang H, Chang X, Zhang J. Chestnut Shell Polyphenols Inhibit the Growth of Three Food-Spoilage Bacteria by Regulating Key Enzymes of Metabolism. Foods 2023; 12:3312. [PMID: 37685244 PMCID: PMC10486611 DOI: 10.3390/foods12173312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The microbial contamination of food poses a threat to human health. Chestnut shells, which are byproducts of chestnut processing, contain polyphenols that exert various physiological effects, and thus have the potential to be used in food preservation. This study investigates the bacteriostatic effect and mechanism(s) of the action of chestnut shell polyphenols (CSPs) on three food-spoilage bacteria, namely Bacillus subtilis, Pseudomonas fragi, and Escherichia coli. To this end, the effect of CSPs on the ultrastructure of each bacterium was determined using scanning electron microscopy and transmission electron microscopy. Moreover, gene expression was analyzed using RT-qPCR. Subsequent molecular docking analysis was employed to elucidate the mechanism of action employed by CSPs via the inhibition of key enzymes. Ultrastructure analysis showed that CSPs damaged the bacterial cell wall and increased permeability. At 0.313 mg/mL, CSPs significantly increased the activity of alkaline phosphatase and lactate dehydrogenase, as well as protein leakage (p < 0.05), whereas the activity of the tricarboxylic acid (TCA) cycle enzymes, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were inhibited (p < 0.05). The expression levels of the TCA-related genes gltA, icd, sucA, atpA, citA, odhA, IS178_RS16090, and IS178_RS16290 are also significantly downregulated by CSP treatment (p < 0.05). Moreover, CSPs inhibit respiration and energy metabolism, including ATPase activity and adenosine triphosphate (ATP) synthesis (p < 0.05). Molecular docking determined that proanthocyanidins B1 and C1, the main components of CSPs, are responsible for the antibacterial activity. Therefore, as natural antibacterial substances, CSPs have considerable potential for development and application as natural food preservatives.
Collapse
Affiliation(s)
- Xinfang Wang
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yue Li
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Suwen Liu
- College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin 300457, China
| | - Xuedong Chang
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology of Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| |
Collapse
|
11
|
Le J, Kulatheepan Y, Jeyaseelan S. Role of toll-like receptors and nod-like receptors in acute lung infection. Front Immunol 2023; 14:1249098. [PMID: 37662905 PMCID: PMC10469605 DOI: 10.3389/fimmu.2023.1249098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
The respiratory system exposed to microorganisms continuously, and the pathogenicity of these microbes not only contingent on their virulence factors, but also the host's immunity. A multifaceted innate immune mechanism exists in the respiratory tract to cope with microbial infections and to decrease tissue damage. The key cell types of the innate immune response are macrophages, neutrophils, dendritic cells, epithelial cells, and endothelial cells. Both the myeloid and structural cells of the respiratory system sense invading microorganisms through binding or activation of pathogen-associated molecular patterns (PAMPs) to pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and NOD-like receptors (NLRs). The recognition of microbes and subsequent activation of PRRs triggers a signaling cascade that leads to the activation of transcription factors, induction of cytokines/5chemokines, upregulation of cell adhesion molecules, recruitment of immune cells, and subsequent microbe clearance. Since numerous microbes resist antimicrobial agents and escape innate immune defenses, in the future, a comprehensive strategy consisting of newer vaccines and novel antimicrobials will be required to control microbial infections. This review summarizes key findings in the area of innate immune defense in response to acute microbial infections in the lung. Understanding the innate immune mechanisms is critical to design host-targeted immunotherapies to mitigate excessive inflammation while controlling microbial burden in tissues following lung infection.
Collapse
Affiliation(s)
- John Le
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural & Mechanical College, Baton Rouge, LA, United States
| | - Yathushigan Kulatheepan
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural & Mechanical College, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural & Mechanical College, Baton Rouge, LA, United States
- Section of Pulmonary and Critical Care Department of Medicine, LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
12
|
Tsai Z, Carver KA, Gong HH, Kosai K, Deng JC, Worley MJ. Detailed Mechanisms Underlying Neutrophil Bactericidal Activity against Streptococcus pneumoniae. Biomedicines 2023; 11:2252. [PMID: 37626748 PMCID: PMC10452576 DOI: 10.3390/biomedicines11082252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Neutrophils are an essential cellular component of innate immunity and control bacterial infections through a combination of intracellular and extracellular killing methods. Although the importance of neutrophils has been established, the exact methods used to handle particular bacterial challenges and the efficiency of bacterial killing remain not well understood. In this study, we addressed how neutrophils eliminate Streptococcus pneumoniae (Spn), a leading cause of community acquired and post-influenza bacterial pneumonia. We analyzed killing methods with variable bacterial:neutrophil concentrations and following priming with PAM3CSK4 (P3CSK), an agonist for Toll-like-receptor 2 (TLR2). Our results show that murine neutrophils display surprisingly weak bactericidal activity against Spn, employing a predominantly extracellular mode of killing at lower concentrations of bacteria, whereas challenges with higher bacterial numbers induce both extracellular and intracellular elimination modes but require TLR2 activation. TLR2 activation increased reactive oxygen species (ROS) and neutrophil extracellular trap (NET) formation in response to Spn. Despite this, supernatants from P3CSK-stimulated neutrophils failed to independently alter bacterial replication. Our study reveals that unstimulated neutrophils are capable of eliminating bacteria only at lower concentrations via extracellular killing methods, whereas TLR2 activation primes neutrophil-mediated killing using both intracellular and extracellular methods under higher bacterial burdens.
Collapse
Affiliation(s)
- Zachary Tsai
- Division of Pulmonary and Critical Care Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA (K.A.C.); (K.K.); (M.J.W.)
| | - Kyle A. Carver
- Division of Pulmonary and Critical Care Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA (K.A.C.); (K.K.); (M.J.W.)
- Research Service and Pulmonary Section, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA;
| | - Henry H. Gong
- Research Service and Pulmonary Section, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA;
| | - Kosuke Kosai
- Division of Pulmonary and Critical Care Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA (K.A.C.); (K.K.); (M.J.W.)
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Jane C. Deng
- Division of Pulmonary and Critical Care Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA (K.A.C.); (K.K.); (M.J.W.)
- Research Service and Pulmonary Section, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA;
| | - Matthew J. Worley
- Division of Pulmonary and Critical Care Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA (K.A.C.); (K.K.); (M.J.W.)
- Research Service and Pulmonary Section, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA;
| |
Collapse
|
13
|
Babkina AS, Yadgarov MY, Volkov AV, Kuzovlev AN, Grechko AV, Golubev AM. Spectrum of Thrombotic Complications in Fatal Cases of COVID-19: Focus on Pulmonary Artery Thrombosis In Situ. Viruses 2023; 15:1681. [PMID: 37632023 PMCID: PMC10458612 DOI: 10.3390/v15081681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
COVID-19-related thrombosis affects the venous and arterial systems. Data from 156 autopsies of COVID-19 patients were retrospectively analyzed to investigate the pattern of thrombotic complications and factors associated with pulmonary artery thrombosis and thromboembolism. Thrombotic complications were observed in a significant proportion (n = 68, 44%), with pulmonary artery thrombosis the most frequently identified thrombotic event (42, 27%). Multivariate analysis revealed that the length of hospital stay (OR 1.1, p = 0.004), neutrophil infiltration in the alveolar spaces (OR 3.6, p = 0.002), and the absence of hyaline membranes (OR 0.1, p = 0.01) were associated with thrombotic complications. Neutrophil infiltration in the alveolar spaces (OR 8, p < 0.001) and the absence of hyaline membranes (OR 0.1, p = 0.003) were also independent predictors of pulmonary artery thrombosis. The association of pulmonary artery thrombosis with an absence of hyaline membranes suggests it occurs later in the course of COVID-19 infection. As neutrophil infiltration in the alveolar spaces may indicate bacterial infection, our studies suggest the consideration of bacterial infections in these critically ill patients.
Collapse
Affiliation(s)
- Anastasiya S. Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| | - Mikhail Y. Yadgarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| | - Alexey V. Volkov
- Department of Pathological Anatomy, Institute of Medicine, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Moscow 117198, Russia;
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| | - Arkady M. Golubev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| |
Collapse
|
14
|
Chatterjee T, Lewis TL, Arora I, Gryshyna AE, Underwood L, Masjoan Juncos JX, Aggarwal S. Sex-Based Disparities in Leukocyte Migration and Activation in Response to Inhalation Lung Injury: Role of SDF-1/CXCR4 Signaling. Cells 2023; 12:1719. [PMID: 37443753 PMCID: PMC10340292 DOI: 10.3390/cells12131719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to determine whether sex-related differences exist in immune response to inhalation lung injury. C57BL/6 mice were exposed to Cl2 gas (500 ppm for 15, 20, or 30 min). Results showed that male mice have higher rates of mortality and lung injury than females. The binding of the chemokine ligand C-X-C motif chemokine 12 (CXCL12), also called stromal-derived-factor-1 (SDF-1), to the C-X-C chemokine receptor type 4 (CXCR4) on lung cells promotes the migration of leukocytes from circulation to lungs. Therefore, the hypothesis was that elevated SDF-1/CXCR4 signaling mediates exaggerated immune response in males. Plasma, blood leukocytes, and lung cells were collected from mice post-Cl2 exposure. Plasma levels of SDF-1 and peripheral levels of CXCR4 in lung cells were higher in male vs. female mice post-Cl2 exposure. Myeloperoxidase (MPO) and elastase activity was significantly increased in leukocytes of male mice exposed to Cl2. Lung cells were then ex vivo treated with SDF-1 (100 ng/mL) in the presence or absence of the CXCR4 inhibitor, AMD3100 (100 nM). SDF-1 significantly increased migration, MPO, and elastase activity in cells obtained from male vs. female mice post-Cl2 exposure. AMD3100 attenuated these effects, suggesting that differential SDF-1/CXCR4 signaling may be responsible for sex-based disparities in the immune response to inhalation lung injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Saurabh Aggarwal
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205-3703, USA; (T.C.); (T.L.L.); (I.A.); (A.E.G.); (L.U.); (J.X.M.J.)
| |
Collapse
|
15
|
Inhibition of SHP2 by the Small Molecule Drug SHP099 Prevents Lipopolysaccharide-Induced Acute Lung Injury in Mice. Inflammation 2023; 46:975-986. [PMID: 36732395 DOI: 10.1007/s10753-023-01784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Excessive pulmonary inflammation in acute lung injury (ALI) causes high patient mortality. Anti-inflammatory therapy, combined with infection resistance, can help to prevent ALI and save lives. The expression of Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP2) was found to be significantly higher in macrophages and lung tissues with ALI, and SHP2-associated MAPK pathways were activated by lipopolysaccharide (LPS). The knockdown of the SHP2 gene suppressed the LPS-induced release of inflammatory factors and the phosphorylation of regulators in the NF-κB pathways in macrophages. Our findings showed crosstalk between the LPS-induced inflammatory pathway and the SHP2-associated MAPK pathways. SHP2 inhibition could be a valuable therapeutic approach for inhibiting excessive inflammation in ALI. We discovered that giving SHP099, a specific allosteric inhibitor of SHP2, to mice with ALI and sepsis relieves ALI and significantly increases animal survival. Our study highlights the important role of SHP2 in ALI development and demonstrates the potential application of SHP099 for treating ALI.
Collapse
|
16
|
Wang Q, Peng Y, Chai L, Ding W. Antimicrobial effect of sorbic acid-loaded chitosan/tripolyphosphate nanoparticles on Pseudomonas aeruginosa. Int J Biol Macromol 2023; 226:1031-1040. [PMID: 36455825 DOI: 10.1016/j.ijbiomac.2022.11.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Sorbic acid-loaded chitosan/tripolyphosphate nanoparticles (SANs) have previously been shown to exert both antibacterial and antioxidant effects on Chinese sausage. In this study, the minimum inhibitory concentrations (MICs) of SANs against two Pseudomonas aeruginosa strains were determined. The blank control group (BC) served as the negative control, while the chitosan/tripolyphosphate nanoparticles (CTNs) group and free sorbic acid (SA) group served as the positive controls. Tests conducted under five different pH conditions (5/6/7/8/9) revealed that the SANs exhibited a good bacteriostatic effect against P. aeruginosa. Variations in the metabolism, cell membrane or cell wall integrity, and morphology of P. aeruginosa were measured to evaluate the effects of SANs on their intracellular and extracellular components. The MIC of SANs for the two P. aeruginosa strains was determined to be 150 μg/mL. SANs delayed the growth of P. aeruginosa and severely damaged both its inner and outer cell membranes. The heteromorphism of the bacteria as observed by field emission scanning electron microscopy (FESEM), verified the aforementioned results. The results showed SANs could effectively inhibit the growth of P. aeruginosa and exert antibacterial ability in a wider range of acid-base environments. This study broadens the application of SANs in food processing and provides experimental basis.
Collapse
Affiliation(s)
- Qian Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yue Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lina Chai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
17
|
Zhu Y, Han Q, Wang L, Wang B, Chen J, Cai B, Wu C, Zhu X, Liu F, Han D, Dong H, Jia Y, Liu Y. Jinhua Qinggan granules attenuates acute lung injury by promotion of neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115763. [PMID: 36183949 PMCID: PMC9523948 DOI: 10.1016/j.jep.2022.115763] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Accepted: 09/24/2022] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) is one of the fatal complications of respiratory virus infections such as influenza virus and coronavirus, which has high clinical morbidity and mortality. Jinhua Qinggan granules (JHQG) has been approved by China Food and Drug Administration in the treatment of H1N1 influenza and mild or moderate novel coronavirus disease 2019 (COVID-19), which is an herbal formula developed based on Maxingshigan decoction and Yinqiao powder that have been used to respiratory diseases in China for thousands of years. However, the underlying mechanism of JHQG in treating infectious diseases remains unclear. AIM OF THE STUDY This study investigated the effects of JHQG on neutrophil apoptosis and key signaling pathways in lipopolysaccharide (LPS) -induced ALI mice in order to explore its mechanism of anti-inflammation. MATERIALS AND METHODS The effect of JHQG on survival rate was observed in septic mouse model by intraperitoneal injection of LPS (20 mg/kg). To better pharmacological evaluation, the mice received an intratracheal injection of 5 mg/kg LPS. Lung histopathological changes, wet-to-dry ratio of the lungs, and MPO activity in the lungs and total protein concentration, total cells number, TNF-α, IL-1β, IL-6, and MIP-2 levels in BALF were assessed. Neutrophil apoptosis rate was detected by Ly6G-APC/Annexin V-FITC staining. Key proteins associated with apoptosis including caspase 3/7 activity, Bcl-xL and Mcl-1 were measured by flow cytometry and confocal microscope, respectively. TLR4 receptor and its downstream signaling were analyzed by Western blot assay and immunofluorescence, respectively. RESULTS JHQG treatment at either 6 or 12 g/kg/day resulted in 20% increase of survival in 20 mg/kg LPS-induced mice. In the model of 5 mg/kg LPS-induced mice, JHQG obviously decreased the total protein concentration in BALF, wet-to-dry ratio of the lungs, and lung histological damage. It also attenuated the MPO activity and the proportion of Ly6G staining positive neutrophils in the lungs, as well as the MIP-2 levels in BALF were reduced. JHQG inhibited the expression of Mcl-1 and Bcl-xL and enhanced caspase-3/7 activity, indicating that JHQG partially acted in promoting neutrophil apoptosis via intrinsic mitochondrial apoptotic pathway. The levels of TNF-α, IL-1β, and IL-6 were significantly declined in LPS-induced mice treated with JHQG. Furthermore, JHQG reduced the protein expression of TLR4, MyD88, p-p65 and the proportion of nuclei p65, suggesting that JHQG treatment inhibited TLR4/MyD88/NF-κB pathway. CONCLUSION JHQG reduced pulmonary inflammation and protected mice from LPS-induced ALI by promoting neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway, suggesting that JHQG may be a promising drug for treatment of ALI.
Collapse
Affiliation(s)
- Yanhui Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Qianqian Han
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Lei Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Baiyan Wang
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Jianshuang Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Bangrong Cai
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Can Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Xiali Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Fugang Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Deen Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Haoran Dong
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Yongyan Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| | - Yalin Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China.
| |
Collapse
|
18
|
Mizugaki A, Wada T, Tsuchida T, Oda Y, Kayano K, Yamakawa K, Tanaka S. Neutrophil phenotypes implicated in the pathophysiology of post-traumatic sepsis. Front Med (Lausanne) 2022; 9:982399. [PMID: 36530874 PMCID: PMC9757139 DOI: 10.3389/fmed.2022.982399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The disruption of immune homeostasis after trauma is a major cause of post-traumatic organ dysfunction and/or sepsis. Recently, a variety of neutrophil phenotypes with distinct functions have been identified and suggested as involved in various clinical conditions. The association between neutrophil phenotypes and post-traumatic immunodeficiency has also been reported, yet the specific neutrophil phenotypes and their functional significance in post-traumatic sepsis have not been fully clarified. Therefore, we sought to investigate neutrophil phenotypic changes in a murine model, as these may hold prognostic value in post-traumatic sepsis. MATERIALS AND METHODS Third-degree burns affecting 25% of the body surface area were used to establish trauma model, and sepsis was induced 24 h later through cecal ligation and puncture (CLP). The Burn/CLP post-traumatic sepsis model and the Sham/CLP control model were established to assess the immunological status after trauma. Histopathological evaluation was performed on the spleen, liver, kidneys, and lung tissues. Immunological evaluation included the assessment of neutrophil markers using mass cytometry as well as cytokine measurements in serum and ascitic fluid through multiplex analysis using LUMINEX®. RESULTS The Burn/CLP group had a lower survival rate than the Sham/CLP group. Histopathological examination revealed an impaired immune response and more advanced organ damage in the Burn/CLP group. Furthermore, the Burn/CLP group exhibited higher levels of transforming growth factor-beta 1 in the blood and generally lower levels of cytokines than the Sham/CLP group. CD11b, which is involved in neutrophil adhesion and migration, was highly expressed on neutrophils in the Burn/CLP group. The expression of CD172a, which is related to the inhibition of phagocytosis, was also upregulated on neutrophils in the Burn/CLP group. The expression of sialic acid-binding lg-like lectin F and CD68 also differed between the two groups. CONCLUSION Different neutrophil phenotypes were observed between Burn/CLP and Sham/CLP groups, suggesting that neutrophils are implicated in the immune imbalance following trauma. However, further studies are needed to prove the causal relationships between neutrophil phenotypes and outcomes, including survival rate and organ dysfunction.
Collapse
Affiliation(s)
- Asumi Mizugaki
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takumi Tsuchida
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Katsuhide Kayano
- Department of Emergency Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kazuma Yamakawa
- Department of Emergency Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Lan W, Chen X, Zhao Y, Xie J. Insight into the Antibacterial Mechanism of Ozone water Combined with Tea Polyphenols against
Shewanella putrefaciens
: Membrane Disruption and Oxidative Stress. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai 201306 China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai 201306 China
| | - Xuening Chen
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
| | - Yanan Zhao
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai 201306 China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai 201306 China
| |
Collapse
|
20
|
Lee CY, Chen SP, Huang-Liu R, Gau SY, Li YC, Chen CJ, Chen WY, Wu CN, Kuan YH. Fucoxanthin decreases lipopolysaccharide-induced acute lung injury through the inhibition of RhoA activation and the NF-κB pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2214-2222. [PMID: 35616142 DOI: 10.1002/tox.23587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/03/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Fucoxanthin is a natural pigment widely distributed in macroalgae and microalgae. An orange-colored xanthophyll, it has several bioactive effects, including anticancer, anti-obesity, oxidative stress reduction, and anti-inflammation. Acute lung injury (ALI) caused by acute infections or injurious stimuli to the lung tissues is a severe pulmonary inflammatory disease. To date, no evidence has shown ALI to be reduced by fucoxanthin through activation of Ras homolog family member A (RhoA) and the nuclear factor (NF)-κB pathway in lipopolysaccharide (LPS)-treated mice. Pretreatment with fucoxanthin inhibited histopathological changes in lung tissues and neutrophil infiltration into bronchoalveolar lavage fluid induced by LPS in ALI mice. Moreover, LPS-induced proinflammatory cytokine expression and neutrophil infiltration were inhibited by fucoxanthin in a concentration-dependent manner. Pretreatment of mice with fucoxanthin inhibited NF-κB phosphorylation and IκB degradation in the lungs of mice with LPS-induced ALI. We further found that phosphorylation of Akt and p38 mitogen-activated protein KINASE (MAPK) was inhibited by fucoxanthin. By contrast, the phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase was not inhibited by fucoxanthin. Furthermore, we found that the activation of RhoA was inhibited by fucoxanthin in LPS-induced ALI. On the basis of these results, we propose that fucoxanthin disrupts the RhoA activation-mediated phosphorylation of Akt and p38 MAPK, leading to NF-κB activation in mice with LPS-induced ALI.
Collapse
Affiliation(s)
- Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Pin Chen
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Rosa Huang-Liu
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Shuo-Yan Gau
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Ching Li
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Nan Wu
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
21
|
Ham J, Kim J, Ko YG, Kim HY. The Dynamic Contribution of Neutrophils in the Chronic Respiratory Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:361-378. [PMID: 35837821 PMCID: PMC9293600 DOI: 10.4168/aair.2022.14.4.361] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 01/13/2023]
Abstract
Asthma, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis are representative chronic respiratory diseases (CRDs). Although they differ in terms of disease presentation, they are all thought to arise from unresolved inflammation. Neutrophils are not only the first responders to acute inflammation, but they also help resolve the inflammation. Notably, emerging clinical studies show that CRDs are associated with systemic and local elevation of neutrophils. Moreover, murine studies suggest that airway-infiltrating neutrophils not only help initiate airway inflammation but also prolong the inflammation. Given this background, this review describes neutrophil-mediated immune responses in CRDs and summarizes the completed, ongoing, and potential clinical trials that test the therapeutic value of targeting neutrophils in CRDs. The review also clarifies the importance of understanding how neutrophils interact with other immune cells and how these interactions contribute to chronic inflammation in specific CRDs. This information may help identify future therapeutic strategies for CRDs.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Young Gyun Ko
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
22
|
Areecheewakul S, Adamcakova-Dodd A, Haque E, Jing X, Meyerholz DK, O'Shaughnessy PT, Thorne PS, Salem AK. Time course of pulmonary inflammation and trace element biodistribution during and after sub-acute inhalation exposure to copper oxide nanoparticles in a murine model. Part Fibre Toxicol 2022; 19:40. [PMID: 35698146 PMCID: PMC9195454 DOI: 10.1186/s12989-022-00480-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Background It has been shown that copper oxide nanoparticles (CuO NPs) induce pulmonary toxicity after acute or sub-acute inhalation exposures. However, little is known about the biodistribution and elimination kinetics of inhaled CuO NPs from the respiratory tract. The purposes of this study were to observe the kinetics of pulmonary inflammation during and after CuO NP sub-acute inhalation exposure and to investigate copper (Cu) biodistribution and clearance rate from the exposure site and homeostasis of selected trace elements in secondary organs of BALB/c mice. Results Sub-acute inhalation exposure to CuO NPs led to pulmonary inflammation represented by increases in lactate dehydrogenase, total cell counts, neutrophils, macrophages, inflammatory cytokines, iron levels in bronchoalveolar lavage (BAL) fluid, and lung weight changes. Dosimetry analysis in lung tissues and BAL fluid showed Cu concentration increased steadily during exposure and gradually declined after exposure. Cu elimination from the lung showed first-order kinetics with a half-life of 6.5 days. Total Cu levels were significantly increased in whole blood and heart indicating that inhaled Cu could be translocated into the bloodstream and heart tissue, and potentially have adverse effects on the kidneys and spleen as there were significant changes in the weights of these organs; increase in the kidneys and decrease in the spleen. Furthermore, concentrations of selenium in kidneys and iron in spleen were decreased, pointing to disruption of trace element homeostasis. Conclusions Sub-acute inhalation exposure of CuO NPs induced pulmonary inflammation, which was correlated to Cu concentrations in the lungs and started to resolve once exposure ended. Dosimetry analysis showed that Cu in the lungs was translocated into the bloodstream and heart tissue. Secondary organs affected by CuO NPs exposure were kidneys and spleen as they showed the disruption of trace element homeostasis and organ weight changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00480-z.
Collapse
Affiliation(s)
- Sudartip Areecheewakul
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, College of Pharmacy, Iowa City, IA, 52242, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, Iowa City, IA, 52242, USA.
| | - Ezazul Haque
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, 52246, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, Iowa City, IA, 52242, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA
| | - Patrick T O'Shaughnessy
- Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, Iowa City, IA, 52242, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, Iowa City, IA, 52242, USA. .,Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, 52246, USA.
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, College of Pharmacy, Iowa City, IA, 52242, USA.
| |
Collapse
|
23
|
Boff D, Russo RC, Crijns H, de Oliveira VLS, Mattos MS, Marques PE, Menezes GB, Vieira AT, Teixeira MM, Proost P, Amaral FA. The Therapeutic Treatment with the GAG-Binding Chemokine Fragment CXCL9(74-103) Attenuates Neutrophilic Inflammation and Lung Dysfunction during Klebsiella pneumoniae Infection in Mice. Int J Mol Sci 2022; 23:ijms23116246. [PMID: 35682923 PMCID: PMC9181286 DOI: 10.3390/ijms23116246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Klebsiella pneumoniae is an important pathogen associated with hospital-acquired pneumonia (HAP). Bacterial pneumonia is characterized by a harmful inflammatory response with a massive influx of neutrophils, production of cytokines and chemokines, and consequent tissue damage and dysfunction. Targeted therapies to block neutrophil migration to avoid tissue damage while keeping the antimicrobial properties of tissue remains a challenge in the field. Here we tested the effect of the anti-inflammatory properties of the chemokine fragment CXCL9(74–103) in pneumonia induced by Klebsiella pneumoniae in mice. Mice were infected by intratracheal injection of Klebsiella pneumoniae and 6 h after infection were treated systemically with CXCL9(74–103). The recruitment of leukocytes, levels of cytokines and chemokines, colony-forming units (CFU), and lung function were evaluated. The treatment with CXCL9(74–103) decreased neutrophil migration to the airways and the production of the cytokine interleukin-1β (IL-1β) without affecting bacterial control. In addition, the therapeutic treatment improved lung function in infected mice. Our results indicated that the treatment with CXCL9(74–103) reduced inflammation and improved lung function in Klebsiella pneumoniae-induced pneumonia.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Helena Crijns
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Vivian Louise Soares de Oliveira
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Matheus Silvério Mattos
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
| | - Gustavo Batista Menezes
- Center of Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Angélica Thomaz Vieira
- Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Mauro Martins Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (H.C.); (M.S.M.); (P.E.M.)
- Correspondence: (P.P.); (F.A.A.)
| | - Flávio Almeida Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.B.); (V.L.S.d.O.); (M.M.T.)
- Correspondence: (P.P.); (F.A.A.)
| |
Collapse
|
24
|
Immunomodulation via MyD88-NFκB Signaling Pathway from Human Umbilical Cord-Derived Mesenchymal Stem Cells in Acute Lung Injury. Int J Mol Sci 2022; 23:ijms23105295. [PMID: 35628107 PMCID: PMC9141460 DOI: 10.3390/ijms23105295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/08/2022] [Indexed: 01/01/2023] Open
Abstract
Excess inflammatory processes play a key detrimental role in the pathophysiology of acute lung injury (ALI). Mesenchymal stem cells (MSCs) were reported to be beneficial to ALI, but the underlying mechanisms have not been completely understood. The present study aimed to examine the involvement of MyD88−NFκB signaling in the immunomodulation of MSCs in mice with lipopolysaccharides (LPS)-induced ALI. We found that serum concentrations of IL-6, TNF-α, MCP-1, IL-1β, and IL-8 were significantly decreased at 6 h after LPS-induced ALI in the MSC group (p < 0.05). For each of the five cytokines, the serum concentration of each individual mouse in either group declined to a similar level at 48 h. The intensity of lung injury lessened in the MSC group, as shown by histopathology and lung injury scores (p < 0.001). The expressions of MyD88 and phospho-NFκB in the lung tissue were significantly decreased in mice receiving MSCs as measured by Western blotting and immunohistochemistry. Our data demonstrated that human umbilical cord-derived MSCs could effectively alleviate the cytokine storm in mice after LPS-induced ALI and attenuated lung injury. Firstly, we documented the correlation between the down-regulation of MyD88−NFκB signaling and immunomodulatory effects of MSCs in the situation of ALI.
Collapse
|
25
|
Wang B, Guo W, Qiu C, Sun Y, Zhao C, Wu C, Lai X, Feng X. Alveolar macrophage‐derived NRP2 curtails lung injury while boosting host defense in bacterial pneumonia. J Leukoc Biol 2022; 112:499-512. [PMID: 35435271 DOI: 10.1002/jlb.4a1221-770r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Bing Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Wei Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Chen Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Yunyan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Center Kunming China
| | - Chunxiao Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Caihong Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Center Kunming China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
- Central Laboratory Fujian Medical University Union Hospital Fuzhou China
| |
Collapse
|
26
|
Flores-Maldonado O, González GM, Montoya A, Andrade A, Treviño-Rangel R, Donis-Maturano L, Tavares-Carreón F, Becerril-García MA. Dissemination of Gram-positive bacteria to the lung of newborn mice increases local IL-6 and TNFα levels in lethal bacteremia. Microbes Infect 2022; 24:104984. [DOI: 10.1016/j.micinf.2022.104984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/01/2022]
|
27
|
Jung BG, Samten B, Dean K, Wallace RJ, Brown-Elliott BA, Tucker T, Idell S, Philley JV, Vankayalapati R. Early IL-17A production helps establish Mycobacterium intracellulare infection in mice. PLoS Pathog 2022; 18:e1010454. [PMID: 35363832 PMCID: PMC9007361 DOI: 10.1371/journal.ppat.1010454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/13/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) infection is common in patients with structural lung damage. To address how NTM infection is established and causes lung damage, we established an NTM mouse model by intranasal inoculation of clinical isolates of M. intracellulare. During the 39-week course of infection, the bacteria persistently grew in the lung and caused progressive granulomatous and fibrotic lung damage with mortality exceeding 50%. Lung neutrophils were significantly increased at 1 week postinfection, reduced at 2 weeks postinfection and increased again at 39 weeks postinfection. IL-17A was increased in the lungs at 1-2 weeks of infection and reduced at 3 weeks postinfection. Depletion of neutrophils during early (0-2 weeks) and late (32-34 weeks) infection had no effect on mortality or lung damage in chronically infected mice. However, neutralization of IL-17A during early infection significantly reduced bacterial burden, fibrotic lung damage, and mortality in chronically infected mice. Since it is known that IL-17A regulates matrix metalloproteinases (MMPs) and that MMPs contribute to the pathogenesis of pulmonary fibrosis, we determined the levels of MMPs in the lungs of M. intracellulare-infected mice. Interestingly, MMP-3 was significantly reduced by anti-IL-17A neutralizing antibody. Moreover, in vitro data showed that exogenous IL-17A exaggerated the production of MMP-3 by lung epithelial cells upon M. intracellulare infection. Collectively, our findings suggest that early IL-17A production precedes and promotes organized pulmonary M. intracellulare infection in mice, at least in part through MMP-3 production.
Collapse
Affiliation(s)
- Bock-Gie Jung
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Buka Samten
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Kristin Dean
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Richard J. Wallace
- Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Barbara A. Brown-Elliott
- Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Torry Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
- The Texas Lung Injury Institute, Tyler, Texas, United States of America
| | - Julie V. Philley
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| |
Collapse
|
28
|
Wang Z, Li Q, Li J, Shang L, Li J, Chou S, Lyu Y, Shan A. pH-Responsive Antimicrobial Peptide with Selective Killing Activity for Bacterial Abscess Therapy. J Med Chem 2022; 65:5355-5373. [PMID: 35294199 DOI: 10.1021/acs.jmedchem.1c01485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The unusual acidic pH of the abscess milieu is an adverse factor that decreases the therapeutic efficacy of traditional antibiotics. Moreover, avoiding both the undesired killing of commensal bacteria and the development of drug resistance remains difficult during abscess therapy. Hence, we synthesized a series of pH-responsive antimicrobial peptides equipped with efficient bacterial killing activity at pH 6.5 and inactivity at pH 7.4. Among the peptides, F5 exhibited outstanding pH-responsive antimicrobial activity and low toxicity. Fluorescence spectroscopy and electron microscopy illustrated that F5 killed bacteria via a membrane-disruptive mechanism at acidic pH values. Mouse cutaneous abscesses revealed that F5 was equipped with excellent therapeutic ability to reduce the bacterial load and cytokines without causing skin toxicity. In summary, this study reveals a strategy for selectively killing bacteria under the pathologic conditions of abscess sites while avoiding the elimination of commensal bacteria under normal physiological pH levels.
Collapse
Affiliation(s)
- Zhihua Wang
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Qiuke Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Jinze Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Lu Shang
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Jiawei Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Shuli Chou
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Yinfeng Lyu
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| |
Collapse
|
29
|
Schimke LF, Marques AHC, Baiocchi GC, de Souza Prado CA, Fonseca DLM, Freire PP, Rodrigues Plaça D, Salerno Filgueiras I, Coelho Salgado R, Jansen-Marques G, Rocha Oliveira AE, Peron JPS, Cabral-Miranda G, Barbuto JAM, Camara NOS, Calich VLG, Ochs HD, Condino-Neto A, Overmyer KA, Coon JJ, Balnis J, Jaitovich A, Schulte-Schrepping J, Ulas T, Schultze JL, Nakaya HI, Jurisica I, Cabral-Marques O. Severe COVID-19 Shares a Common Neutrophil Activation Signature with Other Acute Inflammatory States. Cells 2022; 11:cells11050847. [PMID: 35269470 PMCID: PMC8909161 DOI: 10.3390/cells11050847] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Severe COVID-19 patients present a clinical and laboratory overlap with other hyperinflammatory conditions such as hemophagocytic lymphohistiocytosis (HLH). However, the underlying mechanisms of these conditions remain to be explored. Here, we investigated the transcriptome of 1596 individuals, including patients with COVID-19 in comparison to healthy controls, other acute inflammatory states (HLH, multisystem inflammatory syndrome in children [MIS-C], Kawasaki disease [KD]), and different respiratory infections (seasonal coronavirus, influenza, bacterial pneumonia). We observed that COVID-19 and HLH share immunological pathways (cytokine/chemokine signaling and neutrophil-mediated immune responses), including gene signatures that stratify COVID-19 patients admitted to the intensive care unit (ICU) and COVID-19_nonICU patients. Of note, among the common differentially expressed genes (DEG), there is a cluster of neutrophil-associated genes that reflects a generalized hyperinflammatory state since it is also dysregulated in patients with KD and bacterial pneumonia. These genes are dysregulated at the protein level across several COVID-19 studies and form an interconnected network with differentially expressed plasma proteins that point to neutrophil hyperactivation in COVID-19 patients admitted to the intensive care unit. scRNAseq analysis indicated that these genes are specifically upregulated across different leukocyte populations, including lymphocyte subsets and immature neutrophils. Artificial intelligence modeling confirmed the strong association of these genes with COVID-19 severity. Thus, our work indicates putative therapeutic pathways for intervention.
Collapse
Affiliation(s)
- Lena F. Schimke
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
- Correspondence: (L.F.S.); (O.C.-M.); Tel.: +55-11-943661555 (L.F.S.); +55-11-974642022 (O.C.-M.)
| | - Alexandre H. C. Marques
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Gabriela Crispim Baiocchi
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Caroline Aliane de Souza Prado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Dennyson Leandro M. Fonseca
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Paula Paccielli Freire
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Igor Salerno Filgueiras
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Ranieri Coelho Salgado
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Gabriel Jansen-Marques
- Information Systems, School of Arts, Sciences and Humanities, University of Sao Paulo, São Paulo 03828-000, Brazil;
| | - Antonio Edson Rocha Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Jean Pierre Schatzmann Peron
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Gustavo Cabral-Miranda
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - José Alexandre Marzagão Barbuto
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
- Laboratory of Medical Investigation in Pathogenesis, Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Niels Olsen Saraiva Camara
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Vera Lúcia Garcia Calich
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Hans D. Ochs
- Department of Pediatrics, Seattle Children’s Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA;
| | - Antonio Condino-Neto
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Katherine A. Overmyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; (K.A.O.); (J.J.C.)
- Morgridge Institute for Research, Madison, WI 53562, USA
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; (K.A.O.); (J.J.C.)
- Morgridge Institute for Research, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA; (J.B.); (A.J.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA; (J.B.); (A.J.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Jonas Schulte-Schrepping
- Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; (J.S.-S.); (J.L.S.)
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, 53127 Bonn, Germany;
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, 53127 Bonn, Germany
| | - Joachim L. Schultze
- Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; (J.S.-S.); (J.L.S.)
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, 53127 Bonn, Germany
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
- Scientific Platform Pasteur, University of São Paulo, São Paulo 05508-020, Brazil
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Departments of Medical Biophysics and Computer Science, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1L7, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Otávio Cabral-Marques
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo 05508-000, Brazil
- Correspondence: (L.F.S.); (O.C.-M.); Tel.: +55-11-943661555 (L.F.S.); +55-11-974642022 (O.C.-M.)
| |
Collapse
|
30
|
Yau TO, Vadakekolathu J, Foulds GA, Du G, Dickins B, Polytarchou C, Rutella S. Hyperactive neutrophil chemotaxis contributes to anti-tumor necrosis factor-α treatment resistance in inflammatory bowel disease. J Gastroenterol Hepatol 2022; 37:531-541. [PMID: 34931384 PMCID: PMC9303672 DOI: 10.1111/jgh.15764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/16/2021] [Accepted: 12/07/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Anti-tumor necrosis factor-α (anti-TNF-α) agents have been used for inflammatory bowel disease; however, it has up to 30% nonresponse rate. Identifying molecular pathways and finding reliable diagnostic biomarkers for patient response to anti-TNF-α treatment are needed. METHODS Publicly available transcriptomic data from inflammatory bowel disease patients receiving anti-TNF-α therapy were systemically collected and integrated. In silico flow cytometry approaches and Metascape were applied to evaluate immune cell populations and to perform gene enrichment analysis, respectively. Genes identified within enrichment pathways validated in neutrophils were tracked in an anti-TNF-α-treated animal model (with lipopolysaccharide-induced inflammation). The receiver operating characteristic curve was applied to all genes to identify the best prediction biomarkers. RESULTS A total of 449 samples were retrieved from control, baseline, and after primary anti-TNF-α therapy or placebo. No statistically significant differences were observed between anti-TNF-α treatment responders and nonresponders at baseline in immune microenvironment scores. Neutrophil, endothelial cell, and B-cell populations were higher in baseline nonresponders, and chemotaxis pathways may contribute to the treatment resistance. Genes related to chemotaxis pathways were significantly upregulated in lipopolysaccharide-induced neutrophils, but no statistically significant changes were observed in neutrophils treated with anti-TNF-α. Interleukin 13 receptor subunit alpha 2 (IL13RA2) is the best predictor (receiver operating characteristic curve: 80.7%, 95% confidence interval: 73.8-87.5%), with a sensitivity of 68.13% and specificity of 84.93%, and significantly higher in nonresponders compared with responders (P < 0.0001). CONCLUSIONS Hyperactive neutrophil chemotaxis influences responses to anti-TNF-α treatment, and IL13RA2 is a potential biomarker to predict anti-TNF-α treatment response.
Collapse
Affiliation(s)
- Tung On Yau
- John van Geest Cancer Research Centre, School of Science and TechnologyNottingham Trent University, Clifton CampusNottinghamUnited Kingdom,Centre for Health, Ageing and Understanding DiseaseNottingham Trent University, Clifton CampusNottinghamUnited Kingdom
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, School of Science and TechnologyNottingham Trent University, Clifton CampusNottinghamUnited Kingdom,Centre for Health, Ageing and Understanding DiseaseNottingham Trent University, Clifton CampusNottinghamUnited Kingdom
| | - Gemma Ann Foulds
- John van Geest Cancer Research Centre, School of Science and TechnologyNottingham Trent University, Clifton CampusNottinghamUnited Kingdom,Centre for Health, Ageing and Understanding DiseaseNottingham Trent University, Clifton CampusNottinghamUnited Kingdom
| | - Guodong Du
- Department of Artificial IntelligenceXiamen UniversityXiamenChina
| | - Benjamin Dickins
- John van Geest Cancer Research Centre, School of Science and TechnologyNottingham Trent University, Clifton CampusNottinghamUnited Kingdom,Centre for Health, Ageing and Understanding DiseaseNottingham Trent University, Clifton CampusNottinghamUnited Kingdom
| | - Christos Polytarchou
- John van Geest Cancer Research Centre, School of Science and TechnologyNottingham Trent University, Clifton CampusNottinghamUnited Kingdom,Centre for Health, Ageing and Understanding DiseaseNottingham Trent University, Clifton CampusNottinghamUnited Kingdom
| | - Sergio Rutella
- John van Geest Cancer Research Centre, School of Science and TechnologyNottingham Trent University, Clifton CampusNottinghamUnited Kingdom,Centre for Health, Ageing and Understanding DiseaseNottingham Trent University, Clifton CampusNottinghamUnited Kingdom
| |
Collapse
|
31
|
Gao Y, Xu Y, Li Y, Chen K, Wu X, Liu Y, Feng X, Kong D, Ning X. The First FRET-Based RNA Aptamer NanoKit for Sensitively and Specifically Detecting c-di-GMP. NANO LETTERS 2022; 22:716-725. [PMID: 34994567 DOI: 10.1021/acs.nanolett.1c03970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An effective method to identify c-di-GMP may significantly facilitate the exploration of its signaling pathways and bacterial pathogenesis. Herein, we have developed the first conjugated polymer-amplified RNA aptamer NanoKit with a unique core-shell-shell architecture, which combines the advantages of high selectivity of RNA aptamers and high sensitivity of strong fluorescence resonance energy transfer (FRET) effect, for precisely detecting c-di-GMP. We identified that NanoKit could selectively detect c-di-GMP with a low detection limit of 50 pM. Importantly, NanoKit could identify bacterial species and physiological states, such as planktonic, biofilm, and even antibiotic-resistance, on the basis of their different c-di-GMP expression patterns. Particularly, NanoKit could distinguish bacterial infection and inflammation and identify Pseudomonas aeruginosa associated pneumonia and sepsis, thereby guiding treatment choice and monitoring antibiotic effects. Therefore, NanoKit provides a promising strategy to rapidly identify c-di-GMP and its associated diseases and may benefit for pathophoresis management.
Collapse
Affiliation(s)
- Ya Gao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yanyan Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xiaotong Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yuhang Liu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xuli Feng
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing 401331, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
32
|
Effah CY, Drokow EK, Agboyibor C, Ding L, He S, Liu S, Akorli SY, Nuamah E, Sun T, Zhou X, Liu H, Xu Z, Feng F, Wu Y, Zhang X. Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations. Front Immunol 2021; 12:689866. [PMID: 34737734 PMCID: PMC8560714 DOI: 10.3389/fimmu.2021.689866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.
Collapse
Affiliation(s)
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shaohua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senyo Yao Akorli
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Nuamah
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Tongwen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolei Zhou
- Department of Respiratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Xu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
33
|
Nijmeh J, Levy BD. Lipid-Derived Mediators are Pivotal to Leukocyte and Lung Cell Responses in Sepsis and ARDS. Cell Biochem Biophys 2021; 79:449-459. [PMID: 34176102 PMCID: PMC8236093 DOI: 10.1007/s12013-021-01012-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
Acute inflammation in the lung is essential for host defense against pathogens and other injuries but chronic or excessive inflammation can contribute to several common respiratory diseases. In health, the inflammatory response is controlled by several cellular and molecular mechanisms. In addition to anti-inflammatory processes, there are non-phlogistic pro-resolving mechanisms that are engaged to promote the resolution of inflammation and a return to homeostasis. Defects in the production or actions of specialized pro-resolving mediators are associated with diseases characterized by excess or chronic inflammation. In this article, we review cellular and biochemical mechanisms for specialized pro-resolving mediators in health and in sepsis and the acute respiratory distress syndrome as examples of unrestrained inflammatory responses that result in life-threatening pathology. We are honored to contribute to this special edition of the Journal to help celebrate Professor Viswanathan Natarajan's contributions to our understanding of lipid-derived mediators and metabolism in lung cell responses to inflammatory, infectious, or mechanical insults; his foundational discoveries in cell biochemistry and biophysics are continuing to catalyze further advances by the field to uncover the mechanistic underpinnings of important human diseases.
Collapse
Affiliation(s)
- Julie Nijmeh
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Rangasamy T, Ghimire L, Jin L, Le J, Periasamy S, Paudel S, Cai S, Jeyaseelan S. Host Defense against Klebsiella pneumoniae Pneumonia Is Augmented by Lung-Derived Mesenchymal Stem Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:1112-1127. [PMID: 34341173 DOI: 10.4049/jimmunol.2000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Klebsiella pneumoniae is a common cause of Gram-negative pneumonia. The spread of antibiotic-resistant and hypervirulent strains has made treatment more challenging. This study sought to determine the immunomodulatory, antibacterial, and therapeutic potential of purified murine stem cell Ag-1+ (Sca-1+) lung mesenchymal stem cells (LMSCs) using in vitro cell culture and an in vivo mouse model of pneumonia caused by K pneumoniae. Sca-1+ LMSCs are plastic adherent, possess colony-forming capacity, express mesenchymal stem cell markers, differentiate into osteogenic and adipogenic lineages in vitro, and exhibit a high proliferative capacity. Further, these Sca-1+ LMSCs are morphologically similar to fibroblasts but differ ultrastructurally. Moreover, Sca-1+ LMSCs have the capacity to inhibit LPS-induced secretion of inflammatory cytokines by bone marrow-derived macrophages and neutrophils in vitro. Sca-1+ LMSCs inhibit the growth of K pneumoniae more potently than do neutrophils. Sca-1+ LMSCs also possess the intrinsic ability to phagocytize and kill K. pneumoniae intracellularly. Whereas the induction of autophagy promotes bacterial replication, inhibition of autophagy enhances the intracellular clearance of K. pneumoniae in Sca-1+ LMSCs during the early time of infection. Adoptive transfer of Sca-1+ LMSCs in K. pneumoniae-infected mice improved survival, reduced inflammatory cells in bronchoalveolar lavage fluid, reduced inflammatory cytokine levels and pathological lesions in the lung, and enhanced bacterial clearance in the lung and in extrapulmonary organs. To our knowledge, these results together illustrate for the first time the protective role of LMSCs in bacterial pneumonia.
Collapse
Affiliation(s)
- Tirumalai Rangasamy
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Laxman Ghimire
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Liliang Jin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - John Le
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sivakumar Periasamy
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sagar Paudel
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Shanshan Cai
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and.,Division of Pulmonary and Critical Care, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
35
|
Initial purification of antimicrobial fermentation metabolites from Paecilomyces cicadae and its antimicrobial mechanism. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Yang C, Kwon DI, Kim M, Im SH, Lee YJ. Commensal Microbiome Expands Tγδ17 Cells in the Lung and Promotes Particulate Matter-Induced Acute Neutrophilia. Front Immunol 2021; 12:645741. [PMID: 33854510 PMCID: PMC8039457 DOI: 10.3389/fimmu.2021.645741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Particulate matter (PM) induces neutrophilic inflammation and deteriorates the prognosis of diseases such as cardiovascular diseases, cancers, and infections, including COVID-19. Here, we addressed the role of γδ T cells and intestinal microbiome in PM-induced acute neutrophilia. γδ T cells are a heterogeneous population composed of Tγδ1, Tγδ2, Tγδ17, and naïve γδ T cells (TγδN) and commensal bacteria promote local expansion of Tγδ17 cells, particularly in the lung and gut without affecting their Vγ repertoire. Tγδ17 cells are more tissue resident than Tγδ1 cells, while TγδN cells are circulating cells. IL-1R expression in Tγδ17 cells is highest in the lung and they outnumber all the other type 17 cells such as Th17, ILC3, NKT17, and MAIT17 cells. Upon PM exposure, IL-1β-secreting neutrophils and IL-17-producing Tγδ17 cells attract each other around the airways. Accordingly, PM-induced neutrophilia was significantly relieved in γδ T- or IL-17-deficient and germ-free mice. Collectively, these findings show that the commensal microbiome promotes PM-induced neutrophilia in the lung via Tγδ17 cells.
Collapse
Affiliation(s)
- Chorong Yang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Dong-Il Kwon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Mingyu Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.,ImmunoBiome Inc., Pohang-si, South Korea
| | - You Jeong Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
37
|
Lin WC, Fessler MB. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell Mol Life Sci 2021; 78:4095-4124. [PMID: 33544156 PMCID: PMC7863617 DOI: 10.1007/s00018-021-03768-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The neutrophil, a short-lived effector leukocyte of the innate immune system best known for its proteases and other degradative cargo, has unique, reciprocal physiological interactions with the lung. During health, large numbers of ‘marginated’ neutrophils reside within the pulmonary vasculature, where they patrol the endothelial surface for pathogens and complete their life cycle. Upon respiratory infection, rapid and sustained recruitment of neutrophils through the endothelial barrier, across the extravascular pulmonary interstitium, and again through the respiratory epithelium into the airspace lumen, is required for pathogen killing. Overexuberant neutrophil trafficking to the lung, however, causes bystander tissue injury and underlies several acute and chronic lung diseases. Due in part to the unique architecture of the lung’s capillary network, the neutrophil follows a microanatomic passage into the distal airspace unlike that observed in other end-organs that it infiltrates. Several of the regulatory mechanisms underlying the stepwise recruitment of circulating neutrophils to the infected lung have been defined over the past few decades; however, fundamental questions remain. In this article, we provide an updated review and perspective on emerging roles for the neutrophil in lung biology, on the molecular mechanisms that control the trafficking of neutrophils to the lung, and on past and ongoing efforts to design therapeutics to intervene upon pulmonary neutrophilia in lung disease.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
38
|
Rombauts A, Abelenda-Alonso G, Cuervo G, Gudiol C, Carratalà J. Role of the inflammatory response in community-acquired pneumonia: clinical implications. Expert Rev Anti Infect Ther 2021; 20:1261-1274. [PMID: 33034228 DOI: 10.1080/14787210.2021.1834848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Despite adequate antibiotic coverage, community-acquired pneumonia (CAP) remains a leading cause of hospitalization and mortality worldwide. It induces both a local pulmonary and a systemic inflammatory response, particularly significant in severe cases. The intensity of the dysregulated host response varies from patient to patient and has a negative impact on survival and other outcomes. AREAS COVERED This comprehensive review summarizes the pathophysiological aspects of the inflammatory response in CAP, briefly discusses the usefulness of biomarkers, and assesses the clinical evidence for modulating the inflammatory pathways. We searched PubMed for the most relevant studies, reviews, and meta-analysis until August 2020. EXPERT OPINION Notable efforts have been made to identify biomarkers that can accurately differentiate between viral and bacterial etiology, and indeed, to enhance risk stratification in CAP. However, none has proven ideal and no recommended biomarker-guided algorithms exist. Biomarker signatures from proteomic and metabolomic studies could be more useful for such assessments. To date, most studies have produced contradictory results concerning the role of immunomodulatory agents (e.g. corticosteroids, macrolides, and statins) in CAP. Adequately identifying the population who may benefit most from effective modulation of the inflammatory response remains a challenge.
Collapse
Affiliation(s)
- Alexander Rombauts
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Gabriela Abelenda-Alonso
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Guillermo Cuervo
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Carlota Gudiol
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Spanish Network for Research in Infectious Disease (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,University of Barcelona, Barcelona, Spain.,Institut Català d'Oncologia (ICO), Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Spanish Network for Research in Infectious Disease (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Liang Y, Li H, Li J, Yang ZN, Li JL, Zheng HW, Chen YL, Shi HJ, Guo L, Liu LD. Role of neutrophil chemoattractant CXCL5 in SARS-CoV-2 infection-induced lung inflammatory innate immune response in an in vivo hACE2 transfection mouse model. Zool Res 2020; 41:621-631. [PMID: 33045777 PMCID: PMC7671918 DOI: 10.24272/j.issn.2095-8137.2020.118] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and clarifying antiviral immunity in hosts are critical aspects for the development of vaccines and antivirals. Mice are frequently used to generate animal models of infectious diseases due to their convenience and ability to undergo genetic manipulation. However, normal adult mice are not susceptible to SARS-CoV-2. Here, we developed a viral receptor (human angiotensin-converting enzyme 2, hACE2) pulmonary transfection mouse model to establish SARS-CoV-2 infection rapidly in the mouse lung. Based on the model, the virus successfully infected the mouse lung 2 days after transfection. Viral RNA/protein, innate immune cell infiltration, inflammatory cytokine expression, and pathological changes in the infected lungs were observed after infection. Further studies indicated that neutrophils were the first and most abundant leukocytes to infiltrate the infected lungs after viral infection. In addition, using infected CXCL5-knockout mice, chemokine CXCL5 was responsible for neutrophil recruitment. CXCL5 knockout decreased lung inflammation without diminishing viral clearance, suggesting a potential target for controlling pneumonia.
Collapse
Affiliation(s)
- Yan Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan 650118, China
| | - Heng Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan 650118, China
| | - Jing Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan 650118, China
| | - Ze-Ning Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan 650118, China
| | - Jia-Li Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan 650118, China
| | - Hui-Wen Zheng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan 650118, China
| | - Yan-Li Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan 650118, China
| | - Hai-Jing Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan 650118, China
| | - Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan 650118, China. E-mail:
| | - Long-Ding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, Yunnan 650118, China. E-mail:
| |
Collapse
|
40
|
Impact of Ozone, Sex, and Gonadal Hormones on Bronchoalveolar Lavage Characteristics and Survival in SP-A KO Mice Infected with Klebsiella pneumoniae. Microorganisms 2020; 8:microorganisms8091354. [PMID: 32899781 PMCID: PMC7563396 DOI: 10.3390/microorganisms8091354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 02/03/2023] Open
Abstract
Surfactant protein A (SP-A) plays an important role in innate immunity. The sex-dependent survival of infected SP-A knockout (KO) mice has been observed. Our goal was to study the impact of ozone (O3) and sex, as well as gonadal hormones, on the bronchoalveolar lavage (BAL) readouts and survival, respectively, of Klebsiella pneumoniae-infected SP-A KO mice. Male and female SP-A KO mice were exposed to O3 or filtered air and infected with K. pneumoniae. We studied markers of inflammation and tissue damage at 4, 24, and 48 h, as well as the survival over 14 days, of gonadectomized (Gx) mice implanted with control pellets (CoP) or hormone (5α-dihydrotestosterone (DHT) in female gonadectomized mice (GxF) or 17β-estradiol (E2) in male gonadectomized mice (GxM)). We observed: (1) an increase in neutrophil and macrophage inflammatory protein-2 levels as time progressed post-infection, and O3 exposure appeared to increase this response; (2) an increase in lactate dehydrogenase, total protein, oxidized protein, and phospholipids in response to O3 with no consistent sex differences in studied parameters; and (3) a reduction in survival of the GxM and CoP mice, the GxM and E2 mice, and the GxF and DHT mice but not for the GxF and CoP mice after O3. Without SP-A, (a) sex was found to have a minimal impact on BAL cellular composition and tissue damage markers, and (b) the impact of gonadal hormones on survival was found to involve different mechanisms than in the presence of SP-A.
Collapse
|
41
|
Hsueh PC, Wu KA, Yang CY, Hsu CW, Wang CL, Hung CM, Chen YT, Yu JS, Wu CC. Metabolomic profiling of parapneumonic effusion reveals a regulatory role of dipeptides in interleukin-8 production in neutrophil-like cells. Anal Chim Acta 2020; 1128:238-250. [PMID: 32825908 DOI: 10.1016/j.aca.2020.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
Abstract
Bacterial pneumonia is a lethal condition, and approximately 40% of bacterial pneumonia patients experience parapneumonic effusion (PPE). Based on the severity of inflammation, PPEs can be categorized as early-stage uncomplicated PPE (UPPE), advanced-stage complicated PPE (CPPE) and, most seriously, thoracic empyema. Appropriate antibiotic treatment at the early stage of PPE can prevent PPE progression and reduce mortality, indicating that understanding PPE generation and components can help researchers develop corresponding treatment strategies for PPE. To this end, metabolomes of 73 PPE (38 UPPE and 35 CPPE samples) and 30 malignant pleural effusion (MPE) samples were profiled with differential 12C2-/13C2-isotope dansylation labeling-based mass spectrometry. We found that PPE is characterized by elevated levels of dipeptides, especially for PPEs at advanced stages. Furthermore, with integrated proteomic and transcriptomic analyses of PPEs, the levels of dipeptides were strongly associated with the production of interleukin-8 (IL-8), an inflammation-associated cytokine. The production of IL-8 indeed increased upon the treatment of HL-60-derived neutrophilic cells with dipeptides, Gly-Val and Gly-Tyr. Our findings help to elucidate the metabolic perturbations present in PPE and indicate for the first time that dipeptides may be involved in the immune regulation observed during PPE progression.
Collapse
Affiliation(s)
- Pei-Chun Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-An Wu
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Yu Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Wei Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Liang Wang
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chu-Mi Hung
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
42
|
Banerjee SK, Crane SD, Pechous RD. A Dual Role for the Plasminogen Activator Protease During the Preinflammatory Phase of Primary Pneumonic Plague. J Infect Dis 2020; 222:407-416. [PMID: 32128567 PMCID: PMC7336565 DOI: 10.1093/infdis/jiaa094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Early after inhalation, Yersinia pestis replicates to high numbers in the airways in the absence of disease symptoms or notable inflammatory responses to cause primary pneumonic plague. The plasminogen activator protease (Pla) is a critical Y. pestis virulence factor that is important for early bacterial growth in the lung via an unknown mechanism. In this article, we define a dual role for Pla in the initial stages of pulmonary infection. We show that Pla functions as an adhesin independent of its proteolytic function to suppress early neutrophil influx into the lungs, and that Pla enzymatic activity contributes to bacterial resistance to neutrophil-mediated bacterial killing. Our results suggest that the fate of Y. pestis infection of the lung is decided extremely early during infection and that Pla plays a dual role to tilt the balance in favor of the pathogen.
Collapse
Affiliation(s)
- Srijon K Banerjee
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, Arkansas, USA
| | - Samantha D Crane
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, Arkansas, USA
| | - Roger D Pechous
- University of Arkansas for Medical Sciences, Department of Microbiology and Immunology, Little Rock, Arkansas, USA,Correspondence: Roger D. Pechous, Department of Microbiology and Immunology, 4301 W. Markham St., Slot 511, Little Rock, AR 72205 ()
| |
Collapse
|
43
|
Li Q, Xu J, Zhang D, Zhong K, Sun T, Li X, Li J. Preparation of a bilayer edible film incorporated with lysozyme and its effect on fish spoilage bacteria. J Food Saf 2020. [DOI: 10.1111/jfs.12832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Qiuying Li
- College of Food Science and Engineering Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Jinxiu Xu
- College of Food Science and Engineering Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Dongdong Zhang
- College of Food Science and Engineering Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Keli Zhong
- College of Food Science and Engineering Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Tong Sun
- College of Food Science and Engineering Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Xuepeng Li
- College of Food Science and Engineering Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| | - Jianrong Li
- College of Food Science and Engineering Bohai University Jinzhou China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou China
| |
Collapse
|
44
|
Ge C, Monk IR, Monard SC, Bedford JG, Braverman J, Stinear TP, Wakim LM. Neutrophils play an ongoing role in preventing bacterial pneumonia by blocking the dissemination of
Staphylococcus aureus
from the upper to the lower airways. Immunol Cell Biol 2020; 98:577-594. [DOI: 10.1111/imcb.12343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chenghao Ge
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
- School of Medicine Tsinghua University Beijing China
| | - Ian R Monk
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - Sarah C Monard
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - James G Bedford
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - Jessica Braverman
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Melbourne VIC 3000 Australia
| |
Collapse
|
45
|
Rehman T, Thornell IM, Pezzulo AA, Thurman AL, Romano Ibarra GS, Karp PH, Tan P, Duffey ME, Welsh MJ. TNFα and IL-17 alkalinize airway surface liquid through CFTR and pendrin. Am J Physiol Cell Physiol 2020; 319:C331-C344. [PMID: 32432926 PMCID: PMC7500220 DOI: 10.1152/ajpcell.00112.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pH of airway surface liquid (ASL) is a key factor that determines respiratory host defense; ASL acidification impairs and alkalinization enhances key defense mechanisms. Under healthy conditions, airway epithelia secrete base ([Formula: see text]) and acid (H+) to control ASL pH (pHASL). Neutrophil-predominant inflammation is a hallmark of several airway diseases, and TNFα and IL-17 are key drivers. However, how these cytokines perturb pHASL regulation is uncertain. In primary cultures of differentiated human airway epithelia, TNFα decreased and IL-17 did not change pHASL. However, the combination (TNFα+IL-17) markedly increased pHASL by increasing [Formula: see text] secretion. TNFα+IL-17 increased expression and function of two apical [Formula: see text] transporters, CFTR anion channels and pendrin Cl-/[Formula: see text] exchangers. Both were required for maximal alkalinization. TNFα+IL-17 induced pendrin expression primarily in secretory cells where it was coexpressed with CFTR. Interestingly, significant pendrin expression was not detected in CFTR-rich ionocytes. These results indicate that TNFα+IL-17 stimulate [Formula: see text] secretion via CFTR and pendrin to alkalinize ASL, which may represent an important defense mechanism in inflamed airways.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ian M Thornell
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Alejandro A Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Andrew L Thurman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Guillermo S Romano Ibarra
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Philip H Karp
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ping Tan
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Michael E Duffey
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Michael J Welsh
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
46
|
Le HTT, Park J, Ha J, Kusumaningrum S, Paik JH, Cho S. Synedrella nodiflora (Linn.) Gaertn. inhibits inflammatory responses through the regulation of Syk in RAW 264.7 macrophages. Exp Ther Med 2020; 20:1153-1162. [PMID: 32765663 DOI: 10.3892/etm.2020.8750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Synedrella nodiflora (Linn.) Gaertn. (S. nodiflora) has long been used for the treatment of inflammatory diseases, including liver disease, asthma, rheumatism and earache, in tropical countries throughout America, Asia and Africa. However, the biological effects of S. nodiflora have not been extensively studied at the molecular level. Notably, it remains unclear how S. nodiflora exerts anti-inflammatory activity. In the present study, the anti-inflammatory mechanism of a methanol extract of S. nodiflora (MSN) in RAW 264.7 macrophages activated by lipopolysaccharide (LPS) was investigated. Non-cytotoxic concentrations of MSN (≤400 µg/ml) decreased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which resulted in a decrease in nitric oxide and prostaglandin E2 (PGE2) production. The mRNA expression of pro-inflammatory cytokines such as interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α was reduced upon MSN treatment. In addition, the activation of spleen tyrosine kinase (Syk) and Akt was suppressed by MSN. Taken together, these findings recommend the traditional medicinal application of S. nodiflora in the treatment of several inflammation-associated diseases and indicate the possibility of MSN as a novel therapeutic reagent of inflammation-related diseases.
Collapse
Affiliation(s)
- Hien Thi Thu Le
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jiyoung Park
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jain Ha
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Susi Kusumaningrum
- Center for Pharmaceutical and Medical Technology, Deputy for Agroindustrial Technology and Biotechnology, The Agency for the Assessment and Application of Technology (BPPT), Tangerang, Banten 15310, Indonesia
| | - Jin Hyub Paik
- International Biological Material Research Center, Korean Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
47
|
Wang Z, Zhu J, Li W, Li R, Wang X, Qiao H, Sun Q, Zhang H. Antibacterial mechanism of the polysaccharide produced by Chaetomium globosum CGMCC 6882 against Staphylococcus aureus. Int J Biol Macromol 2020; 159:231-235. [PMID: 32387362 DOI: 10.1016/j.ijbiomac.2020.04.269] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 01/16/2023]
Abstract
GCP, a polysaccharide produced by endophytic fungus Chaetomium globosum CGMCC 6882, was found to be antibacterial against Staphylococcus aureus via disrupting cell permeability. However, the antibacterial mechanism of GCP has not been studied before. In present work, results showed that GCP could retard the growth of S. aureus by inducing the depolarization of cell membrane, decreasing the activity of Ca2+-Mg2+-ATPase on cell membrane, and increasing the accumulation of calcium ions in cytoplasm. Moreover, we found that GCP could also inhibit the synthesis of whole cell proteins of S. aureus. Overall, this study proved that the antibacterial mechanism of GCP could be diversified and more studies are needed in the investigation of the antibacterial mechanisms of various polysaccharides.
Collapse
Affiliation(s)
- Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinfan Zhu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wentao Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueqin Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hanzhen Qiao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
48
|
Mirzadeh M, Arianejad MR, Khedmat L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydr Polym 2020; 229:115421. [DOI: 10.1016/j.carbpol.2019.115421] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
49
|
Liu Y, Liu W, Wang Y, Ma Y, Huang L, Zou C, Li D, Cao MJ, Liu GM. Inhibitory Effect of Depolymerized Sulfated Galactans from Marine Red Algae on the Growth and Adhesion of Diarrheagenic Escherichia coli. Mar Drugs 2019; 17:md17120694. [PMID: 31835446 PMCID: PMC6950454 DOI: 10.3390/md17120694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/17/2022] Open
Abstract
Active polysaccharides as safe and natural polymers against bacterial diarrhea have been reconsidered as an alternative to antibiotics. This work investigated the inhibiting effect of depolymerized sulfated galactans from Eucheuma serra and Gracilaria verrucosa on the growth and adhesion of diarrheagenic enterotoxigenic Escherichia coli (ETEC) K88. Results showed that the sulfated polysaccharides with molecular weight distribution ≤20.0 kDa exhibited antibacterial activity against ETEC K88. A structure-activity study revealed that the anti-ETEC K88 activity of sulfated polysaccharides is strictly determined by their molecular weight distribution, sulfate group content, and monosaccharide composition. In addition, the promoted nucleic acid release and the fluorescence quenching of membrane proteins were observed after the treatment with selected polysaccharides. Scanning electron microscopy further confirmed that the depolymerized sulfated galactans can effectively inhibit ETEC K88 adhesion. In conclusion, depolymerized sulfated galactans exhibited an inhibitory effect on the growth and adhesion of ETEC K88.
Collapse
Affiliation(s)
- Yixiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
- Correspondence: ; Tel.: +86-0592-6181915; Fax: +86-0592-6180470
| | - Wenqiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Yanbo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China;
| | - Yu Ma
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Ling Huang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Chao Zou
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Donghui Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Min-Jie Cao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China (M.-J.C.); (G.-M.L.)
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| |
Collapse
|
50
|
Sakuma M, Khan MAS, Yasuhara S, Martyn JA, Palaniyar N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation. FASEB J 2019; 33:13602-13616. [PMID: 31577450 PMCID: PMC6894048 DOI: 10.1096/fj.201901098r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Pulmonary immunosuppression often occurs after burn injury (BI). However, the reasons for BI-induced pulmonary immunosuppression are not clearly understood. Neutrophil recruitment and neutrophil extracellular trap (NET) formation (NETosis) are important components of a robust pulmonary immune response, and we hypothesized that pulmonary inflammation and NETosis are defective after BI. To test this hypothesis, we established a mouse model with intranasal LPS instillation in the presence or absence of BI (15% of body surface burn) and determined the degree of immune cell infiltration, NETosis, and the cytokine levels in the airways and blood on d 2. Presence of LPS recruited monocytes and large numbers of neutrophils to the airways and induced NETosis (citrullinated histone H3, DNA, myeloperoxidase). By contrast, BI significantly reduced LPS-mediated leukocyte recruitment and NETosis. This BI-induced immunosuppression is attributable to the reduction of chemokine (C-C motif) ligand (CCL) 2 (monocyte chemoattractant protein 1) and CCL3 (macrophage inflammatory protein 1α). BI also suppressed LPS-induced increase in IL-17A, IL-17C, and IL-17E/IL-25 levels in the airways. Therefore, BI-mediated reduction in leukocyte recruitment and NETosis in the lungs are attributable to these cytokines. Regulating the levels of some of these key cytokines represents a potential therapeutic option for mitigating BI-mediated pulmonary immunosuppression.-Sakuma, M., Khan, M. A. S., Yasuhara, S., Martyn, J. A., Palaniyar, N. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation.
Collapse
Affiliation(s)
- Miyuki Sakuma
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Mohammed A. S. Khan
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Shingo Yasuhara
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeevendra A. Martyn
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Nades Palaniyar
- Massachusetts General Hospital and Shriners Hospitals for Children–Boston, Harvard Medical School, Boston, Massachusetts, USA
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Institute of Medical Sciences, Faculty of Medicine, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|