1
|
Ghanem R, Youf R, Haute T, Buin X, Riool M, Pourchez J, Montier T. The (re)emergence of aerosol delivery: Treatment of pulmonary diseases and its clinical challenges. J Control Release 2025; 379:421-439. [PMID: 39800241 DOI: 10.1016/j.jconrel.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Aerosol delivery represents a rapid and non-invasive way to directly reach the lungs while escaping the hepatic first-pass effect. The development of pulmonary drugs for respiratory diseases such as cystic fibrosis, lung infections, pulmonary fibrosis or lung cancer requires an enhanced understanding of the relationships between the natural physiology of the respiratory system and the pathophysiology of these conditions. This knowledge is crucial to better predict and thereby control drug deposition. Moreover, aerosol administration faces several challenges, including the pulmonary tract, immune system, mucociliary clearance, the presence of fluid on the airway surfaces, and, in some cases, bacterial colonisation. Each of them directly influences on the bioavailability of the active molecule. In addition to these challenges, particle size and the device used to administer the treatment are critical factors that can significantly impact the biodistribution of the drugs. Nanoparticles are very promising in the development of new formulations for aerosol drug delivery, as they can be fine-tuned to reach the entire pulmonary tract and overcome the difficulties encountered along the way. However, to properly assess drug delivery, preclinical studies need to be more thorough to efficiently enhance drug delivery.
Collapse
Affiliation(s)
- Rosy Ghanem
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France
| | - Raphaëlle Youf
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Tanguy Haute
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Xavier Buin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Tristan Montier
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France.
| |
Collapse
|
2
|
Weiss M, Punz B, Van Laer J, Jacobs A, Remy S, Kleon L, Auer V, Himly M, Verstraelen S, Frijns E. Application of the market-ready NAVETTA electrodeposition chamber for controlled in vitro exposure with nano-scaled aerosols. Comput Struct Biotechnol J 2024; 29:1-12. [PMID: 39872496 PMCID: PMC11764241 DOI: 10.1016/j.csbj.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025] Open
Abstract
Exposure of lung epithelia to aerosols is omnipresent. Chronic exposure to polluted air is a significant factor in the development of pulmonary diseases, which are among the top global causes of death, including COVID-19, chronic obstructive pulmonary disease, lung cancer, and tuberculosis. As efforts to prevent and treat lung diseases increase, the development of pulmonary drug delivery systems has become a major area of interest. In line with the '3 R' principles (Reduce, Refine, and Replace animal testing), we developed an in vitro aerosol exposure system, termed NAVETTA, which was designed to replicate lung conditions most realistically. This system exposes air-liquid interface-cultured lung epithelial cells to a low, laminar airflow, enabling efficient aerosol deposition within an electric field. The aim of this study was to test instrumental performance on different aerosols, with a focus on precision, reproducibility, and cellular response. Deposition of sodium fluorescein droplets, pristine, and fluorescently labeled silica nanoparticles was homogenous and reproducible across the different instrument positions and over several runs, hence, the coefficient of variance for run-to-run and position-to-position was below 15 % using reference aerosols. To showcase NAVETTA's versatile applicability, pristine silica nanoparticles and surface-functionalized fluorescently labeled silica nanoparticles were used. Various charging scenarios were studied, evidencing that deposition was enabled by and dependent on the applied electric field. Additional aerosol charging enhanced deposition compared to deposition achieved employing only the intrinsic charges of aerosol particles/droplets. In a second feasibility study two dry powder generators were tested for application with the NAVETTA system for testing deposition and cellular effects of nano-scale TiO2 aerosols. Cellular stress response was determined by interleukin-8 secretion, and viability post-exposure to TiO2 was monitored. Cells exhibited a trend to decreased viability and increased interleukin-8 secretion upon TiO2 deposition evidencing feasibility for application, however, more work is needed for optimizing reproducibility when using dry aerosol generators due to their discontinuous operation mode. Physiological conditions of 37°C and 98 % relative humidity within the NAVETTA resulted in 95 % viability over 24 h enabling longer-term exposure experiments. In summary, the market-ready NAVETTA presents a versatile exposure system for future in vitro pulmonary safety and efficacy studies by facilitating reliable and reproducible electrodeposition of various aerosols.
Collapse
Affiliation(s)
- Magdalena Weiss
- Dept. Biosciences & Medical Biology, Paris Lodron University Salzburg (PLUS), Hellbrunnerstrasse 34, Salzburg 5020, Austria
| | - Benjamin Punz
- Dept. Biosciences & Medical Biology, Paris Lodron University Salzburg (PLUS), Hellbrunnerstrasse 34, Salzburg 5020, Austria
| | - Jo Van Laer
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - An Jacobs
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Sylvie Remy
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Lisa Kleon
- Dept. Biosciences & Medical Biology, Paris Lodron University Salzburg (PLUS), Hellbrunnerstrasse 34, Salzburg 5020, Austria
| | - Vanessa Auer
- Dept. Biosciences & Medical Biology, Paris Lodron University Salzburg (PLUS), Hellbrunnerstrasse 34, Salzburg 5020, Austria
| | - Martin Himly
- Dept. Biosciences & Medical Biology, Paris Lodron University Salzburg (PLUS), Hellbrunnerstrasse 34, Salzburg 5020, Austria
| | - Sandra Verstraelen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Evelien Frijns
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| |
Collapse
|
3
|
Stoleriu MG, Ansari M, Strunz M, Schamberger A, Heydarian M, Ding Y, Voss C, Schneider JJ, Gerckens M, Burgstaller G, Castelblanco A, Kauke T, Fertmann J, Schneider C, Behr J, Lindner M, Stacher-Priehse E, Irmler M, Beckers J, Eickelberg O, Schubert B, Hauck SM, Schmid O, Hatz RA, Stoeger T, Schiller HB, Hilgendorff A. COPD basal cells are primed towards secretory to multiciliated cell imbalance driving increased resilience to environmental stressors. Thorax 2024; 79:524-537. [PMID: 38286613 PMCID: PMC11137452 DOI: 10.1136/thorax-2022-219958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
INTRODUCTION Environmental pollutants injure the mucociliary elevator, thereby provoking disease progression in chronic obstructive pulmonary disease (COPD). Epithelial resilience mechanisms to environmental nanoparticles in health and disease are poorly characterised. METHODS We delineated the impact of prevalent pollutants such as carbon and zinc oxide nanoparticles, on cellular function and progeny in primary human bronchial epithelial cells (pHBECs) from end-stage COPD (COPD-IV, n=4), early disease (COPD-II, n=3) and pulmonary healthy individuals (n=4). After nanoparticle exposure of pHBECs at air-liquid interface, cell cultures were characterised by functional assays, transcriptome and protein analysis, complemented by single-cell analysis in serial samples of pHBEC cultures focusing on basal cell differentiation. RESULTS COPD-IV was characterised by a prosecretory phenotype (twofold increase in MUC5AC+) at the expense of the multiciliated epithelium (threefold reduction in Ac-Tub+), resulting in an increased resilience towards particle-induced cell damage (fivefold reduction in transepithelial electrical resistance), as exemplified by environmentally abundant doses of zinc oxide nanoparticles. Exposure of COPD-II cultures to cigarette smoke extract provoked the COPD-IV characteristic, prosecretory phenotype. Time-resolved single-cell transcriptomics revealed an underlying COPD-IV unique basal cell state characterised by a twofold increase in KRT5+ (P=0.018) and LAMB3+ (P=0.050) expression, as well as a significant activation of Wnt-specific (P=0.014) and Notch-specific (P=0.021) genes, especially in precursors of suprabasal and secretory cells. CONCLUSION We identified COPD stage-specific gene alterations in basal cells that affect the cellular composition of the bronchial elevator and may control disease-specific epithelial resilience mechanisms in response to environmental nanoparticles. The identified phenomena likely inform treatment and prevention strategies.
Collapse
Affiliation(s)
- Mircea Gabriel Stoleriu
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center, Munich, Germany
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Meshal Ansari
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Maximilian Strunz
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Andrea Schamberger
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Motaharehsadat Heydarian
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Yaobo Ding
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Carola Voss
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Juliane Josephine Schneider
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Michael Gerckens
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
- Department of Medicine V, University Hospital, LMU Munich and Asklepios Medical Center, Munich, Germany
| | - Gerald Burgstaller
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Alejandra Castelblanco
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Teresa Kauke
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center, Munich, Germany
| | - Jan Fertmann
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center, Munich, Germany
| | - Christian Schneider
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center, Munich, Germany
| | - Juergen Behr
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
- Department of Medicine V, University Hospital, LMU Munich and Asklepios Medical Center, Munich, Germany
| | - Michael Lindner
- Department of Visceral and Thoracic Surgery Salzburg, Paracelsus Medical University, Salzburg, Austria
| | | | - Martin Irmler
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Neuherberg, Germany
| | - Johannes Beckers
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising, Germany
| | - Oliver Eickelberg
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
- Department of Medicine, Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin Schubert
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
- Department of Mathematics, Technische Universität München, Garching bei München, München, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Otmar Schmid
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Rudolf A Hatz
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center, Munich, Germany
| | - Tobias Stoeger
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Herbert B Schiller
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
| | - Anne Hilgendorff
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Munich, Member of the German Lung Research Center (DZL), Munich, Germany
- Center for Comprehensive Developmental Care at the iSPZ Hauner, Dr. von Haunersches Children's University Hospital, Ludwig-Maximilians-University of Munich (LMU); Member of the German Lung Research Center (DZL), Munich, Germany
| |
Collapse
|
4
|
Maaz A, Blagbrough IS, De Bank PA. A Cell-Based Nasal Model for Screening the Deposition, Biocompatibility, and Transport of Aerosolized PLGA Nanoparticles. Mol Pharm 2024; 21:1108-1124. [PMID: 38333983 PMCID: PMC10915796 DOI: 10.1021/acs.molpharmaceut.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The olfactory region of the nasal cavity directly links the brain to the external environment, presenting a potential direct route to the central nervous system (CNS). However, targeting drugs to the olfactory region is challenging and relies on a combination of drug formulation, delivery device, and administration technique to navigate human nasal anatomy. In addition, in vitro and in vivo models utilized to evaluate the performance of nasal formulations do not accurately reflect deposition and uptake in the human nasal cavity. The current study describes the development of a respirable poly(lactic-co-glycolic acid) nanoparticle (PLGA NP) formulation, delivered via a pressurized metered dose inhaler (pMDI), and a cell-containing three-dimensional (3D) human nasal cast model for deposition assessment of nasal formulations in the olfactory region. Fluorescent PLGA NPs (193 ± 3 nm by dynamic light scattering) were successfully formulated in an HFA134a-based pMDI and were collected intact following aerosolization. RPMI 2650 cells, widely employed as a nasal epithelial model, were grown at the air-liquid interface (ALI) for 14 days to develop a suitable barrier function prior to exposure to the aerosolized PLGA NPs in a glass deposition apparatus. Direct aerosol exposure was shown to have little effect on cell viability. Compared to an aqueous NP suspension, the transport rate of the aerosolized NPs across the RPMI 2650 barrier was higher at all time points indicating the potential advantages of delivery via aerosolization and the importance of employing ALI cellular models for testing respirable formulations. The PLGA NPs were then aerosolized into a 3D-printed human nasal cavity model with an insert of ALI RPMI 2650 cells positioned in the olfactory region. Cells remained highly viable, and there was significant deposition of the fluorescent NPs on the ALI cultures. This study is a proof of concept that pMDI delivery of NPs is a viable means of targeting the olfactory region for nose-to-brain drug delivery (NTBDD). The cell-based model allows not only maintenance under ALI culture conditions but also sampling from the basal chamber compartment; hence, this model could be adapted to assess drug deposition, uptake, and transport kinetics in parallel under real-life settings.
Collapse
Affiliation(s)
- Aida Maaz
- Department
of Life Sciences, Centre for Therapeutic Innovation, and Centre for Bioengineering
& Biomedical Technologies, University
of Bath, Bath BA2 7AY, U.K.
| | - Ian S. Blagbrough
- Department
of Life Sciences, Centre for Therapeutic Innovation, and Centre for Bioengineering
& Biomedical Technologies, University
of Bath, Bath BA2 7AY, U.K.
| | - Paul A. De Bank
- Department
of Life Sciences, Centre for Therapeutic Innovation, and Centre for Bioengineering
& Biomedical Technologies, University
of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
5
|
da Silva ACG, de Mendonça ICF, Valadares MC. Characterization and applicability of a novel physiologically relevant 3D-tetraculture bronchial model for in vitro assessment of respiratory sensitization. Toxicology 2024; 503:153756. [PMID: 38369009 DOI: 10.1016/j.tox.2024.153756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Chemical Respiratory Allergy (CRA) is triggered after exposure to Low Molecular Weight (LMW) sensitizers and manifests clinically as asthma and rhinitis. From a risk/toxicity assessment point of view, there are few methods, none of them validated, for evaluating the respiratory sensitization potential of chemicals once the in vivo-based models usually employed for inhalation toxicity addressment do not comprise allergenicity endpoints specifically. Based on that, we developed, characterized, and evaluated the applicability of a 3D-tetraculture airway model reconstructed with bronchial epithelial, fibroblasts, endothelial and monocytic cell lines. Moreover, we exposed the tissue to maleic anhydride (MA) aerosols to challenge the model and subsequently assessed inflammatory and functional aspects of the tissue. The reconstructed tissue presented phenotypic biomarkers compatible with human bronchial epithelium, and MA aerosol exposure triggered an increased IL-8 and IL-6 production, reactive oxygen species (ROS) formation, and apoptosis of epithelial cells. Besides, augmented IL-8 production by monocytic cells was also found, correlating with dendritic cell activation within the co-culture model after MA exposure. Our results demonstrated that the 3D-tetraculture bronchial model presents hallmarks related to human airways' structure and function. Additionally, exposure to a respiratory sensitizer induced inflammatory and functional alterations in the reconstructed tissue, rendering it a valuable tool for exploring the mechanistic framework of chemically induced respiratory sensitization.
Collapse
Affiliation(s)
- Artur Christian Garcia da Silva
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Marize Campos Valadares
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
6
|
Petpiroon N, Netkueakul W, Sukrak K, Wang C, Liang Y, Wang M, Liu Y, Li Q, Kamran R, Naruse K, Aueviriyavit S, Takahashi K. Development of lung tissue models and their applications. Life Sci 2023; 334:122208. [PMID: 37884207 DOI: 10.1016/j.lfs.2023.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The lungs are important organs that play a critical role in the development of specific diseases, as well as responding to the effects of drugs, chemicals, and environmental pollutants. Due to the ethical concerns around animal testing, alternative methods have been sought which are more time-effective, do not pose ethical issues for animals, do not involve species differences, and provide easy investigation of the pathobiology of lung diseases. Several national and international organizations are working to accelerate the development and implementation of structurally and functionally complex tissue models as alternatives to animal testing, particularly for the lung. Unfortunately, to date, there is no lung tissue model that has been accepted by regulatory agencies for use in inhalation toxicology. This review discusses the challenges involved in developing a relevant lung tissue model derived from human cells such as cell lines, primary cells, and pluripotent stem cells. It also introduces examples of two-dimensional (2D) air-liquid interface and monocultured and co-cultured three-dimensional (3D) culture techniques, particularly organoid culture and 3D bioprinting. Furthermore, it reviews development of the lung-on-a-chip model to mimic the microenvironment and physiological performance. The applications of lung tissue models in various studies, especially disease modeling, viral respiratory infection, and environmental toxicology will be also introduced. The development of a relevant lung tissue model is extremely important for standardizing and validation the in vitro models for inhalation toxicity and other studies in the future.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Woranan Netkueakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chen Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yin Liang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Mengxue Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yun Liu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Qiang Li
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Rumaisa Kamran
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Keiji Naruse
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Ken Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan.
| |
Collapse
|
7
|
Schichlein KD, Love CA, Conolly MP, Kurz JL, Hickman ED, Clapp PW, Jaspers I. Vaping product exposure system (VaPES): a novel in vitro aerosol deposition system. Inhal Toxicol 2023; 35:324-332. [PMID: 38054423 PMCID: PMC10788097 DOI: 10.1080/08958378.2023.2289021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE Due to recent increases in the use of vaping devices, there is a high demand for research addressing the respiratory health effects of vaping products. Given the constantly changing nature of the vaping market with new devices, flavors, metals, and other chemicals rapidly emerging, there is a need for inexpensive and highly adaptable vaping device exposure systems. Here, we describe the design and validation of a novel in vitro aerosol exposure system for toxicity testing of vaping devices. MATERIALS AND METHODS We developed an inexpensive, open-source in vitro vaping device exposure system that produces even deposition, can be adapted for different vaping devices, and allows for experiments to be performed under physiological conditions. The system was then validated with deposition testing and a representative exposure with human bronchial epithelial cells (hBECs). RESULTS The Vaping Product Exposure System (VaPES) produced sufficient and uniform deposition for dose-response studies and was precise enough to observe biological responses to vaping exposures. VaPES was adapted to work with both pod and cartridge-based vaping devices. CONCLUSION We have designed and validated a novel vaping device exposure system that will eliminate the need to use high-cost commercial exposure systems, lowering the barrier to entry of physiologically relevant vaping studies.
Collapse
Affiliation(s)
- Kevin D. Schichlein
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA
| | - Charlotte A. Love
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA
| | - Maxwell P. Conolly
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA
| | - John L. Kurz
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA
| | - Elise D. Hickman
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA
| | - Phillip W. Clapp
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7310, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
8
|
Braakhuis HM, Gremmer ER, Bannuscher A, Drasler B, Keshavan S, Rothen-Rutishauser B, Birk B, Verlohner A, Landsiedel R, Meldrum K, Doak SH, Clift MJD, Erdem JS, Foss OAH, Zienolddiny-Narui S, Serchi T, Moschini E, Weber P, Burla S, Kumar P, Schmid O, Zwart E, Vermeulen JP, Vandebriel RJ. Transferability and reproducibility of exposed air-liquid interface co-culture lung models. NANOIMPACT 2023; 31:100466. [PMID: 37209722 DOI: 10.1016/j.impact.2023.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND The establishment of reliable and robust in vitro models for hazard assessment, a prerequisite for moving away from animal testing, requires the evaluation of model transferability and reproducibility. Lung models that can be exposed via the air, by means of an air-liquid interface (ALI) are promising in vitro models for evaluating the safety of nanomaterials (NMs) after inhalation exposure. We performed an inter-laboratory comparison study to evaluate the transferability and reproducibility of a lung model consisting of the human bronchial cell line Calu-3 as a monoculture and, to increase the physiologic relevance of the model, also as a co-culture with macrophages (either derived from the THP-1 monocyte cell line or from human blood monocytes). The lung model was exposed to NMs using the VITROCELL® Cloud12 system at physiologically relevant dose levels. RESULTS Overall, the results of the 7 participating laboratories are quite similar. After exposing Calu-3 alone and Calu-3 co-cultures with macrophages, no effects of lipopolysaccharide (LPS), quartz (DQ12) or titanium dioxide (TiO2) NM-105 particles on the cell viability and barrier integrity were detected. LPS exposure induced moderate cytokine release in the Calu-3 monoculture, albeit not statistically significant in most labs. In the co-culture models, most laboratories showed that LPS can significantly induce cytokine release (IL-6, IL-8 and TNF-α). The exposure to quartz and TiO2 particles did not induce a statistically significant increase in cytokine release in both cell models probably due to our relatively low deposited doses, which were inspired by in vivo dose levels. The intra- and inter-laboratory comparison study indicated acceptable interlaboratory variation for cell viability/toxicity (WST-1, LDH) and transepithelial electrical resistance, and relatively high inter-laboratory variation for cytokine production. CONCLUSION The transferability and reproducibility of a lung co-culture model and its exposure to aerosolized particles at the ALI were evaluated and recommendations were provided for performing inter-laboratory comparison studies. Although the results are promising, optimizations of the lung model (including more sensitive read-outs) and/or selection of higher deposited doses are needed to enhance its predictive value before it may be taken further towards a possible OECD guideline.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- National Institute for Public Health & the Environment (RIVM), the Netherlands
| | - Eric R Gremmer
- National Institute for Public Health & the Environment (RIVM), the Netherlands
| | - Anne Bannuscher
- Adolphe Merkle Institute (AMI), University of Fribourg, Switzerland
| | - Barbara Drasler
- Adolphe Merkle Institute (AMI), University of Fribourg, Switzerland
| | - Sandeep Keshavan
- Adolphe Merkle Institute (AMI), University of Fribourg, Switzerland
| | | | | | | | - Robert Landsiedel
- BASF SE, Ludwigshafen, Germany; Free University of Berlin, Pharmacy - Pharmacology and Toxicology, Berlin, Germany
| | | | | | | | | | - Oda A H Foss
- National Institute of Occupational Health (STAMI), Norway
| | | | - Tommaso Serchi
- Luxembourg Institute of Science and Technology (LIST), Grand Duchy of Luxembourg, Luxembourg
| | - Elisa Moschini
- Luxembourg Institute of Science and Technology (LIST), Grand Duchy of Luxembourg, Luxembourg
| | - Pamina Weber
- Luxembourg Institute of Science and Technology (LIST), Grand Duchy of Luxembourg, Luxembourg
| | - Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), Grand Duchy of Luxembourg, Luxembourg
| | - Pramod Kumar
- Comprehensive Pneumology Center (CPC-M) with the CPC-M bioArchive, Helmholtz Center Munich - Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M) with the CPC-M bioArchive, Helmholtz Center Munich - Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Edwin Zwart
- National Institute for Public Health & the Environment (RIVM), the Netherlands
| | - Jolanda P Vermeulen
- National Institute for Public Health & the Environment (RIVM), the Netherlands
| | - Rob J Vandebriel
- National Institute for Public Health & the Environment (RIVM), the Netherlands.
| |
Collapse
|
9
|
Lee RE, Reidel B, Nelson MR, Macdonald JK, Kesimer M, Randell SH. Air-Liquid interface cultures to model drug delivery through the mucociliary epithelial barrier. Adv Drug Deliv Rev 2023; 198:114866. [PMID: 37196698 PMCID: PMC10336980 DOI: 10.1016/j.addr.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Epithelial cells from mucociliary portions of the airways can be readily grown and expanded in vitro. When grown on a porous membrane at an air-liquid interface (ALI) the cells form a confluent, electrically resistive barrier separating the apical and basolateral compartments. ALI cultures replicate key morphological, molecular and functional features of the in vivo epithelium, including mucus secretion and mucociliary transport. Apical secretions contain secreted gel-forming mucins, shed cell-associated tethered mucins, and hundreds of additional molecules involved in host defense and homeostasis. The respiratory epithelial cell ALI model is a time-proven workhorse that has been employed in various studies elucidating the structure and function of the mucociliary apparatus and disease pathogenesis. It serves as a critical milestone test for small molecule and genetic therapies targeting airway diseases. To fully exploit the potential of this important tool, numerous technical variables must be thoughtfully considered and carefully executed.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States
| | - Boris Reidel
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mark R Nelson
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Jade K Macdonald
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States.
| |
Collapse
|
10
|
Kohl Y, Müller M, Fink M, Mamier M, Fürtauer S, Drexel R, Herrmann C, Dähnhardt-Pfeiffer S, Hornberger R, Arz MI, Metzger C, Wagner S, Sängerlaub S, Briesen H, Meier F, Krebs T. Development and Characterization of a 96-Well Exposure System for Safety Assessment of Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207207. [PMID: 36922728 DOI: 10.1002/smll.202207207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/31/2023] [Indexed: 06/08/2023]
Abstract
In this study, a 96-well exposure system for safety assessment of nanomaterials is developed and characterized using an air-liquid interface lung epithelial model. This system is designed for sequential nebulization. Distribution studies verify the reproducible distribution over all 96 wells, with lower insert-to-insert variability compared to non-sequential application. With a first set of chemicals (TritonX), drugs (Bortezomib), and nanomaterials (silver nanoparticles and (non-)fluorescent crystalline nanocellulose), sequential exposure studies are performed with human lung epithelial cells followed by quantification of the deposited mass and of cell viability. The developed exposure system offers for the first time the possibility of exposing an air-liquid interface model in a 96-well format, resulting in high-throughput rates, combined with the feature for sequential dosing. This exposure system allows the possibility of creating dose-response curves resulting in the generation of more reliable cell-based assay data for many types of applications, such as safety analysis. In addition to chemicals and drugs, nanomaterials with spherical shapes, but also morphologically more complex nanostructures can be exposed sequentially with high efficiency. This allows new perspectives on in vivo-like and animal-free approaches for chemical and pharmaceutical safety assessment, in line with the 3R principle of replacing and reducing animal experiments.
Collapse
Affiliation(s)
- Yvonne Kohl
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Michelle Müller
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Marielle Fink
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| | - Marc Mamier
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| | - Siegfried Fürtauer
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Roland Drexel
- Postnova Analytics GmbH, 86899, Landsberg am Lech, Germany
| | - Christine Herrmann
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | | | - Ramona Hornberger
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Marius I Arz
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Christoph Metzger
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Sylvia Wagner
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Sven Sängerlaub
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Heiko Briesen
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Florian Meier
- Postnova Analytics GmbH, 86899, Landsberg am Lech, Germany
| | - Tobias Krebs
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| |
Collapse
|
11
|
Meyer TJ, Tekin N, Hense P, Ehret-Kasemo T, Lodes N, Stöth M, Ickrath P, Gehrke T, Hagen R, Dembski S, Peer M, Steinke MR, Scherzad A, Hackenberg S. Evaluation of the cytotoxic and genotoxic potential of printer toner particles in a 3D air-liquid interface, primary cell-based nasal tissue model. Toxicol Lett 2023; 379:1-10. [PMID: 36907250 DOI: 10.1016/j.toxlet.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Printer toner particles (TPs) are a common, potentially hazardous substance, with an unclear toxicological impact on the respiratory mucosa. Most of the airways surface is covered by a ciliated respiratory mucosa, therefore appropriate tissue models of the respiratory epithelium with a high in vivo correlation are necessary for in vitro evaluation of airborne pollutants toxicology and the impact on the functional integrity. The aim of this study is the evaluation of TPs toxicology in a human primary cell-based air-liquid-interface (ALI) model of respiratory mucosa. The TPs were analyzed and characterized by scanning electron microscopy, pyrolysis and X-ray fluorescence spectrometry. ALI models of 10 patients were created using the epithelial cells and fibroblasts derived from nasal mucosa samples. TPs were applied to the ALI models via a modified Vitrocell® cloud and submerged in the dosing 0.89 - 892.96 µg/ cm2. Particle exposure and intracellular distribution were evaluated by electron microscopy. The MTT assay and the comet assay were used to investigate cytotoxicity and genotoxicity, respectively. The used TPs showed an average particle size of 3 - 8 µm. Mainly carbon, hydrogen, silicon, nitrogen, tin, benzene and benzene derivates were detected as chemical ingredients. By histomorphology and electron microscopy we observed the development of a highly functional, pseudostratified epithelium with a continuous layer of cilia. Using electron microscopy, TPs could be detected on the cilia surface and also intracellularly. Cytotoxicity was detected from 9 µg/ cm2 and higher, but no genotoxicity after ALI and submerged exposure. The ALI with primary nasal cells represents a highly functional model of the respiratory epithelium in terms of histomorphology and mucociliary differentiation. The toxicological results indicate a weak TP-concentration-dependent cytotoxicity. AVAILABILITY OF DATA AND MATERIALS: The datasets used and analysed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Till Jasper Meyer
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| | - Nursen Tekin
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Peter Hense
- Bochum University of Applied Sciences, Department Civil and Environmental Engineering, Am Hochschulcampus 1, 44801 Bochum, Germany
| | - Totta Ehret-Kasemo
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Nina Lodes
- University Hospital Würzburg, Chair of Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97070 Würzburg, Germany
| | - Manuel Stöth
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Pascal Ickrath
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Thomas Gehrke
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Rudolf Hagen
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Sofia Dembski
- University Hospital Würzburg, Chair of Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Michael Peer
- Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Institute Branch Sulzbach-Rosenberg, An der Maxhütte 1, 92237 Sulzbach-Rosenberg, Germany
| | - Maria R Steinke
- University Hospital Würzburg, Chair of Tissue Engineering and Regenerative Medicine, Röntgenring 11, 97070 Würzburg, Germany; Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Agmal Scherzad
- University Hospital Würzburg, Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Stephan Hackenberg
- RWTH Aachen University Hospital, Department of Otorhinolaryngology - Head and Neck Surgery, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
12
|
Zimmermann EJ, Candeias J, Gawlitta N, Bisig C, Binder S, Pantzke J, Offer S, Rastak N, Bauer S, Huber A, Kuhn E, Buters J, Groeger T, Delaval MN, Oeder S, Di Bucchianico S, Zimmermann R. Biological impact of sequential exposures to allergens and ultrafine particle-rich combustion aerosol on human bronchial epithelial BEAS-2B cells at the air liquid interface. J Appl Toxicol 2023. [PMID: 36869434 DOI: 10.1002/jat.4458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
The prevalence of allergic diseases is constantly increasing since few decades. Anthropogenic ultrafine particles (UFPs) and allergenic aerosols is highly involved in this increase; however, the underlying cellular mechanisms are not yet understood. Studies observing these effects focused mainly on singular in vivo or in vitro exposures of single particle sources, while there is only limited evidence on their subsequent or combined effects. Our study aimed at evaluating the effect of subsequent exposures to allergy-related anthropogenic and biogenic aerosols on cellular mechanism exposed at air-liquid interface (ALI) conditions. Bronchial epithelial BEAS-2B cells were exposed to UFP-rich combustion aerosols for 2 h with or without allergen pre-exposure to birch pollen extract (BPE) or house dust mite extract (HDME). The physicochemical properties of the generated particles were characterized by state-of-the-art analytical instrumentation. We evaluated the cellular response in terms of cytotoxicity, oxidative stress, genotoxicity, and in-depth gene expression profiling. We observed that single exposures with UFP, BPE, and HDME cause genotoxicity. Exposure to UFP induced pro-inflammatory canonical pathways, shifting to a more xenobiotic-related response with longer preincubation time. With additional allergen exposure, the modulation of pro-inflammatory and xenobiotic signaling was more pronounced and appeared faster. Moreover, aryl hydrocarbon receptor (AhR) signaling activation showed to be an important feature of UFP toxicity, which was especially pronounced upon pre-exposure. In summary, we were able to demonstrate the importance of subsequent exposure studies to understand realistic exposure situations and to identify possible adjuvant allergic effects and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Elias Josef Zimmermann
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Joana Candeias
- Center for Allergy and Environment (ZAUM), Technical University Munich, Munich, 80802, Germany
| | - Nadine Gawlitta
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie Binder
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Svenja Offer
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Jeroen Buters
- Center for Allergy and Environment (ZAUM), Technical University Munich, Munich, 80802, Germany
| | - Thomas Groeger
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mathilde N Delaval
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
13
|
Zhou Y, Duan Q, Yang D. In vitro human cell-based models to study airway remodeling in asthma. Biomed Pharmacother 2023; 159:114218. [PMID: 36638596 DOI: 10.1016/j.biopha.2023.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Airway remodeling, as a predominant characteristic of asthma, refers to the structural changes that occurred both in the large and small airways. These pathological changes not only contribute to airway hyperresponsiveness and airway obstruction, but also predict poor outcomes of patients. In vitro models are the alternatives to animal models that facilitate airway remodeling research. Current approaches to mimic airway remodeling in vitro include mono cultures of cell lines and primary cells that are derived from the respiratory tract, and co-culture systems that consist of different cell subpopulations. Moreover, recent advances in microfluid chips and organoids show promise in simulating the complex architecture and functionality of native organs. According, they enable highly physiological-relevant investigations of human diseases in vitro. Here we aim to detail the current human cell-based models regarding their key pros and cons, and to discuss how they may be used to facilitate our understanding of airway remodeling in asthma.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Qirui Duan
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Dong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China.
| |
Collapse
|
14
|
Nakayama M, Marchi H, Dmitrieva AM, Chakraborty A, Merl-Pham J, Hennen E, Le Gleut R, Ruppert C, Guenther A, Kahnert K, Behr J, Hilgendorff A, Hauck SM, Adler H, Staab-Weijnitz CA. Quantitative proteomics of differentiated primary bronchial epithelial cells from chronic obstructive pulmonary disease and control identifies potential novel host factors post-influenza A virus infection. Front Microbiol 2023; 13:957830. [PMID: 36713229 PMCID: PMC9875134 DOI: 10.3389/fmicb.2022.957830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) collectively refers to chronic and progressive lung diseases that cause irreversible limitations in airflow. Patients with COPD are at high risk for severe respiratory symptoms upon influenza virus infection. Airway epithelial cells provide the first-line antiviral defense, but whether or not their susceptibility and response to influenza virus infection changes in COPD have not been elucidated. Therefore, this study aimed to compare the susceptibility of COPD- and control-derived airway epithelium to the influenza virus and assess protein changes during influenza virus infection by quantitative proteomics. Materials and methods The presence of human- and avian-type influenza A virus receptor was assessed in control and COPD lung sections as well as in fully differentiated primary human bronchial epithelial cells (phBECs) by lectin- or antibody-based histochemical staining. PhBECs were from COPD lungs, including cells from moderate- and severe-stage diseases, and from age-, sex-, smoking, and history-matched control lung specimens. Protein profiles pre- and post-influenza virus infection in vitro were directly compared using quantitative proteomics, and selected findings were validated by qRT-PCR and immunoblotting. Results The human-type influenza receptor was more abundant in human airways than the avian-type influenza receptor, a property that was retained in vitro when differentiating phBECs at the air-liquid interface. Proteomics of phBECs pre- and post-influenza A virus infection with A/Puerto Rico/8/34 (PR8) revealed no significant differences between COPD and control phBECs in terms of flu receptor expression, cell type composition, virus replication, or protein profile pre- and post-infection. Independent of health state, a robust antiviral response to influenza virus infection was observed, as well as upregulation of several novel influenza virus-regulated proteins, including PLSCR1, HLA-F, CMTR1, DTX3L, and SHFL. Conclusion COPD- and control-derived phBECs did not differ in cell type composition, susceptibility to influenza virus infection, and proteomes pre- and post-infection. Finally, we identified novel influenza A virus-regulated proteins in bronchial epithelial cells that might serve as potential targets to modulate the pathogenicity of infection and acute exacerbations.
Collapse
Affiliation(s)
- Misako Nakayama
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hannah Marchi
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany,Faculty of Business Administration and Economics, Bielefeld University, Bielefeld, Germany
| | - Anna M. Dmitrieva
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ashesh Chakraborty
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Hennen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ronan Le Gleut
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Kathrin Kahnert
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Adler
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,*Correspondence: Heiko Adler,
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Claudia A. Staab-Weijnitz, ; https://orcid.org/0000-0002-1211-7834
| |
Collapse
|
15
|
Al-Jipouri A, Almurisi SH, Al-Japairai K, Bakar LM, Doolaanea AA. Liposomes or Extracellular Vesicles: A Comprehensive Comparison of Both Lipid Bilayer Vesicles for Pulmonary Drug Delivery. Polymers (Basel) 2023; 15:318. [PMID: 36679199 PMCID: PMC9866119 DOI: 10.3390/polym15020318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The rapid and non-invasive pulmonary drug delivery (PDD) has attracted great attention compared to the other routes. However, nanoparticle platforms, like liposomes (LPs) and extracellular vesicles (EVs), require extensive reformulation to suit the requirements of PDD. LPs are artificial vesicles composed of lipid bilayers capable of encapsulating hydrophilic and hydrophobic substances, whereas EVs are natural vesicles secreted by cells. Additionally, novel LPs-EVs hybrid vesicles may confer the best of both. The preparation methods of EVs are distinguished from LPs since they rely mainly on extraction and purification, whereas the LPs are synthesized from their basic ingredients. Similarly, drug loading methods into/onto EVs are distinguished whereby they are cell- or non-cell-based, whereas LPs are loaded via passive or active approaches. This review discusses the progress in LPs and EVs as well as hybrid vesicles with a special focus on PDD. It also provides a perspective comparison between LPs and EVs from various aspects (composition, preparation/extraction, drug loading, and large-scale manufacturing) as well as the future prospects for inhaled therapeutics. In addition, it discusses the challenges that may be encountered in scaling up the production and presents our view regarding the clinical translation of the laboratory findings into commercial products.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia
| | - Latifah Munirah Bakar
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Selangor, Shah Alam 40450, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College MAIWP International (UCMI), Kuala Lumpur 68100, Malaysia
| |
Collapse
|
16
|
Farnoud A, Tofighian H, Baumann I, Ahookhosh K, Pourmehran O, Cui X, Heuveline V, Song C, Vreugde S, Wormald PJ, Menden MP, Schmid O. Numerical and Machine Learning Analysis of the Parameters Affecting the Regionally Delivered Nasal Dose of Nano- and Micro-Sized Aerosolized Drugs. Pharmaceuticals (Basel) 2023; 16:ph16010081. [PMID: 36678578 PMCID: PMC9863249 DOI: 10.3390/ph16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023] Open
Abstract
The nasal epithelium is an important target for drug delivery to the nose and secondary organs such as the brain via the olfactory bulb. For both topical and brain delivery, the targeting of specific nasal regions such as the olfactory epithelium (brain) is essential, yet challenging. In this study, a numerical model was developed to predict the regional dose as mass per surface area (for an inhaled mass of 2.5 mg), which is the biologically most relevant dose metric for drug delivery in the respiratory system. The role of aerosol diameter (particle diameter: 1 nm to 30 µm) and inhalation flow rate (4, 15 and 30 L/min) in optimal drug delivery to the vestibule, nasal valve, olfactory and nasopharynx is assessed. To obtain the highest doses in the olfactory region, we suggest aerosols with a diameter of 20 µm and a medium inlet air flow rate of 15 L/min. High deposition on the olfactory epithelium was also observed for nanoparticles below 1 nm, as was high residence time (slow flow rate of 4 L/min), but the very low mass of 1 nm nanoparticles is prohibitive for most therapeutic applications. Moreover, high flow rates (30 L/min) and larger micro-aerosols lead to highest doses in the vestibule and nasal valve regions. On the other hand, the highest drug doses in the nasopharynx are observed for nano-aerosol (1 nm) and fine microparticles (1-20 µm) with a relatively weak dependence on flow rate. Furthermore, using the 45 different inhalation scenarios generated by numerical models, different machine learning models with five-fold cross-validation are trained to predict the delivered dose and avoid partial differential equation solvers for future predictions. Random forest and gradient boosting models resulted in R2 scores of 0.89 and 0.96, respectively. The aerosol diameter and region of interest are the most important features affecting delivered dose, with an approximate importance of 42% and 47%, respectively.
Collapse
Affiliation(s)
- Ali Farnoud
- Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Institute of Lung Health and Immunity, Helmholtz Zentrum München–German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Correspondence:
| | - Hesam Tofighian
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Ingo Baumann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Center of Heidelberg University, 69120 Heidelberg, Germany
| | - Kaveh Ahookhosh
- Biomedical MRI and MoSAIC, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Oveis Pourmehran
- Department of Otolaryngology, Head and Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide 5011, Australia
- School of Mechanical Engineering, The University of Adelaide, Adelaide 5005, Australia
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Heidelberg University, 69120 Heidelberg, Germany
| | - Chen Song
- Engineering Mathematics and Computing Lab (EMCL), Heidelberg University, 69120 Heidelberg, Germany
| | - Sarah Vreugde
- Department of Otolaryngology, Head and Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide 5011, Australia
| | - Peter-John Wormald
- Department of Otolaryngology, Head and Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide 5011, Australia
| | - Michael P. Menden
- Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- Department of Biology, Ludwig-Maximilian University Munich, 82152 Planegg, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Institute of Lung Health and Immunity, Helmholtz Zentrum München–German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
17
|
Rothen-Rutishauser B, Gibb M, He R, Petri-Fink A, Sayes CM. Human lung cell models to study aerosol delivery - considerations for model design and development. Eur J Pharm Sci 2023; 180:106337. [PMID: 36410570 DOI: 10.1016/j.ejps.2022.106337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Human lung tissue models range from simple monolayer cultures to more advanced three-dimensional co-cultures. Each model system can address the interactions of different types of aerosols and the choice of the model and the mode of aerosol exposure depends on the relevant scenario, such as adverse outcomes and endpoints of interest. This review focuses on the functional, as well as structural, aspects of lung tissue from the upper airway to the distal alveolar compartments as this information is relevant for the design of a model as well as how the aerosol properties determine the interfacial properties with the respiratory wall. The most important aspects on how to design lung models are summarized with a focus on (i) choice of appropriate scaffold, (ii) selection of cell types for healthy and diseased lung models, (iii) use of culture condition and assembly, (iv) aerosol exposure methods, and (v) endpoints and verification process. Finally, remaining challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Barbara Rothen-Rutishauser
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland.
| | - Matthew Gibb
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Ruiwen He
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA.
| |
Collapse
|
18
|
Sengupta A, Dorn A, Jamshidi M, Schwob M, Hassan W, De Maddalena LL, Hugi A, Stucki AO, Dorn P, Marti TM, Wisser O, Stucki JD, Krebs T, Hobi N, Guenat OT. A multiplex inhalation platform to model in situ like aerosol delivery in a breathing lung-on-chip. Front Pharmacol 2023; 14:1114739. [PMID: 36959848 PMCID: PMC10029733 DOI: 10.3389/fphar.2023.1114739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Prolonged exposure to environmental respirable toxicants can lead to the development and worsening of severe respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and fibrosis. The limited number of FDA-approved inhaled drugs for these serious lung conditions has led to a shift from in vivo towards the use of alternative in vitro human-relevant models to better predict the toxicity of inhaled particles in preclinical research. While there are several inhalation exposure models for the upper airways, the fragile and dynamic nature of the alveolar microenvironment has limited the development of reproducible exposure models for the distal lung. Here, we present a mechanistic approach using a new generation of exposure systems, the Cloud α AX12. This novel in vitro inhalation tool consists of a cloud-based exposure chamber (VITROCELL) that integrates the breathing AXLung-on-chip system (AlveoliX). The ultrathin and porous membrane of the AX12 plate was used to create a complex multicellular model that enables key physiological culture conditions: the air-liquid interface (ALI) and the three-dimensional cyclic stretch (CS). Human-relevant cellular models were established for a) the distal alveolar-capillary interface using primary cell-derived immortalized alveolar epithelial cells (AXiAECs), macrophages (THP-1) and endothelial (HLMVEC) cells, and b) the upper-airways using Calu3 cells. Primary human alveolar epithelial cells (AXhAEpCs) were used to validate the toxicity results obtained from the immortalized cell lines. To mimic in vivo relevant aerosol exposures with the Cloud α AX12, three different models were established using: a) titanium dioxide (TiO2) and zinc oxide nanoparticles b) polyhexamethylene guanidine a toxic chemical and c) an anti-inflammatory inhaled corticosteroid, fluticasone propionate (FL). Our results suggest an important synergistic effect on the air-blood barrier sensitivity, cytotoxicity and inflammation, when air-liquid interface and cyclic stretch culture conditions are combined. To the best of our knowledge, this is the first time that an in vitro inhalation exposure system for the distal lung has been described with a breathing lung-on-chip technology. The Cloud α AX12 model thus represents a state-of-the-art pre-clinical tool to study inhalation toxicity risks, drug safety and efficacy.
Collapse
Affiliation(s)
- Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Aurélien Dorn
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Mohammad Jamshidi
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Magali Schwob
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Widad Hassan
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | | | - Andreas Hugi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Andreas O. Stucki
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- *Correspondence: Andreas O. Stucki,
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Thomas M. Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | | | - Nina Hobi
- AlveoliX AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Olivier T. Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
19
|
Moore MM, Abraham I, Ballantyne M, Behrsing H, Cao X, Clements J, Gaca M, Gillman G, Hashizume T, Heflich RH, Hurtado S, Jordan KG, Leverette R, McHugh D, Miller-Holt J, Phillips G, Recio L, Roy S, Scian M, Simms L, Smart DJ, Stankowski LF, Tarran R, Thorne D, Weber E, Wieczorek R, Yoshino K, Curren R. Key Challenges and Recommendations for In Vitro Testing of Tobacco Products for Regulatory Applications: Consideration of Test Materials and Exposure Parameters. Altern Lab Anim 2023; 51:55-79. [PMID: 36821083 DOI: 10.1177/02611929221146536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to identify, discuss and develop recommendations for optimal scientific and technical approaches for conducting in vitro assays, to assess potential toxicity within and across tobacco and various next generation nicotine and tobacco products (NGPs), including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDS). The third workshop (24-26 February 2020) summarised the key challenges and made recommendations concerning appropriate methods of test article generation and cell exposure from combustible cigarettes, HTPs and ENDS. Expert speakers provided their research, perspectives and recommendations for the three basic types of tobacco-related test articles: i) pad-collected material (PCM); ii) gas vapour phase (GVP); and iii) whole smoke/aerosol. These three types of samples can be tested individually, or the PCM and GVP can be combined. Whole smoke/aerosol can be bubbled through media or applied directly to cells at the air-liquid interface. Summaries of the speaker presentations and the recommendations developed by the workgroup are presented. Following discussion, the workshop concluded the following: that there needs to be greater standardisation in aerosol generation and collection processes; that methods for testing the NGPs need to be developed and/or optimised, since simply mirroring cigarette smoke testing approaches may be insufficient; that understanding and quantitating the applied dose is fundamental to the interpretation of data and conclusions from each study; and that whole smoke/aerosol approaches must be contextualised with regard to key information, including appropriate experimental controls, environmental conditioning, analytical monitoring, verification and performance criteria.
Collapse
Affiliation(s)
| | | | - Mark Ballantyne
- 63899Labcorp Early Development Laboratories Limited, Harrogate, North Yorkshire, UK
| | - Holger Behrsing
- 329003Institute for In Vitro Sciences, Gaithersburg, MD, USA
| | - Xuefei Cao
- 4136National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Julie Clements
- 63899Labcorp Early Development Laboratories Limited, Harrogate, North Yorkshire, UK
| | - Marianna Gaca
- 195179British American Tobacco, R&D, Southampton, Hampshire, UK
| | - Gene Gillman
- 520154Enthalpy Analytical, Inc., Durham, NC, USA
| | - Tsuneo Hashizume
- 74193Japan Tobacco Inc., Scientific Product Assessment Centre, Yokohama, Kanagawa, Japan
| | - Robert H Heflich
- 4136National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Sara Hurtado
- 66661Charles River Laboratories - Skokie, LLC., Skokie, IL, USA
| | - Kristen G Jordan
- RAI Services Company, Scientific & Regulatory Affairs, Winston-Salem, NC, USA
| | - Robert Leverette
- RAI Services Company, Scientific & Regulatory Affairs, Winston-Salem, NC, USA
| | - Damian McHugh
- 161931Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Gary Phillips
- Life Science Technologies Ltd, Eastleigh, Hampshire, UK
| | - Leslie Recio
- 298616ILS, PO Box 13501, Research Triangle Park, NC, USA
| | | | | | | | - Daniel J Smart
- 161931Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Robert Tarran
- Department of Cell Biology and Physiology, 2332University of North Carolina, Chapel Hill, NC, USA
| | - David Thorne
- 195179British American Tobacco, R&D, Southampton, Hampshire, UK
| | - Elisabeth Weber
- 588402Oekolab Ges. f. Umweltanalytik, A Member of the JT International Group of Companies, Vienna, Austria
| | | | - Kei Yoshino
- 74193Japan Tobacco Inc., Scientific Product Assessment Centre, Yokohama, Kanagawa, Japan
| | - Rodger Curren
- 329003Institute for In Vitro Sciences, Gaithersburg, MD, USA
| |
Collapse
|
20
|
Di Cristo L, Sabella S. Cell Cultures at the Air-Liquid Interface and Their Application in Cancer Research. Methods Mol Biol 2023; 2645:41-64. [PMID: 37202611 DOI: 10.1007/978-1-0716-3056-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Air-liquid interface (ALI) cell cultures are considered a valid tool for the replacement of animals in biomedical research. By mimicking crucial features of the human in vivo epithelial barriers (e.g., lung, intestine, and skin), ALI cell cultures enable proper structural architectures and differentiated functions of normal and diseased tissue barriers. Thereby, ALI models realistically resemble tissue conditions and provide in vivo-like responses. Since their implementation, they are routinely used in several applications, from toxicity testing to cancer research, receiving an appreciable level of acceptance (in some cases a regulatory acceptance) as attractive testing alternatives to animals. In this chapter, an overview of the ALI cell cultures will be presented together with their application in cancer cell culture, highlighting the potential advantages and disadvantages of the model.
Collapse
Affiliation(s)
- Luisana Di Cristo
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genoa, Italy.
| | - Stefania Sabella
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genoa, Italy
| |
Collapse
|
21
|
Development of a novel ex vivo model for chemical ocular toxicity assessment and its applicability for hair straightening products. Food Chem Toxicol 2022; 170:113457. [DOI: 10.1016/j.fct.2022.113457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
22
|
Bannuscher A, Schmid O, Drasler B, Rohrbasser A, Braakhuis HM, Meldrum K, Zwart EP, Gremmer ER, Birk B, Rissel M, Landsiedel R, Moschini E, Evans SJ, Kumar P, Orak S, Doryab A, Erdem JS, Serchi T, Vandebriel RJ, Cassee FR, Doak SH, Petri-Fink A, Zienolddiny S, Clift MJD, Rothen-Rutishauser B. An inter-laboratory effort to harmonize the cell-delivered in vitro dose of aerosolized materials. NANOIMPACT 2022; 28:100439. [PMID: 36402283 DOI: 10.1016/j.impact.2022.100439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Air-liquid interface (ALI) lung cell models cultured on permeable transwell inserts are increasingly used for respiratory hazard assessment requiring controlled aerosolization and deposition of any material on ALI cells. The approach presented herein aimed to assess the transwell insert-delivered dose of aerosolized materials using the VITROCELL® Cloud12 system, a commercially available aerosol-cell exposure system. An inter-laboratory comparison study was conducted with seven European partners having different levels of experience with the VITROCELL® Cloud12. A standard operating procedure (SOP) was developed and applied by all partners for aerosolized delivery of materials, i.e., a water-soluble molecular substance (fluorescence-spiked salt) and two poorly soluble particles, crystalline silica quartz (DQ12) and titanium dioxide nanoparticles (TiO2 NM-105). The material dose delivered to transwell inserts was quantified with spectrofluorometry (fluorescein) and with the quartz crystal microbalance (QCM) integrated in the VITROCELL® Cloud12 system. The shape and agglomeration state of the deposited particles were confirmed with transmission electron microscopy (TEM). Inter-laboratory comparison of the device-specific performance was conducted in two steps, first for molecular substances (fluorescein-spiked salt), and then for particles. Device- and/or handling-specific differences in aerosol deposition of VITROCELL® Cloud12 systems were characterized in terms of the so-called deposition factor (DF), which allows for prediction of the transwell insert-deposited particle dose from the particle concentration in the aerosolized suspension. Albeit DF varied between the different labs from 0.39 to 0.87 (mean (coefficient of variation (CV)): 0.64 (28%)), the QCM of each VITROCELL® Cloud 12 system accurately measured the respective transwell insert-deposited dose. Aerosolized delivery of DQ12 and TiO2 NM-105 particles showed good linearity (R2 > 0.95) between particle concentration of the aerosolized suspension and QCM-determined insert-delivered particle dose. The VITROCELL® Cloud 12 performance for DQ12 particles was identical to that for fluorescein-spiked salt, i.e., the ratio of measured and salt-predicted dose was 1.0 (29%). On the other hand, a ca. 2-fold reduced dose was observed for TiO2 NM-105 (0.54 (41%)), which was likely due to partial retention of TiO2 NM-105 agglomerates in the vibrating mesh nebulizer of the VITROCELL® Cloud12. This inter-laboratory comparison demonstrates that the QCM integrated in the VITROCELL® Cloud 12 is a reliable tool for dosimetry, which accounts for potential variations of the transwell insert-delivered dose due to device-, handling- and/or material-specific effects. With the detailed protocol presented herein, all seven partner laboratories were able to demonstrate dose-controlled aerosolization of material suspensions using the VITROCELL® Cloud12 exposure system at dose levels relevant for observing in vitro hazard responses. This is an important step towards regulatory approved implementation of ALI lung cell cultures for in vitro hazard assessment of aerosolized materials.
Collapse
Affiliation(s)
- Anne Bannuscher
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), Helmholtz Zentrum München - Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Alain Rohrbasser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Hedwig M Braakhuis
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Kirsty Meldrum
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Medical School, Institute of Life Sciences, Centre for NanoHealth, Swansea University, Singleton Campus, Wales SA2 8PP, UK
| | - Edwin P Zwart
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Eric R Gremmer
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Barbara Birk
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen am Rhein, Germany
| | - Manuel Rissel
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen am Rhein, Germany
| | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen am Rhein, Germany; Free University of Berlin, Pharmacy, Pharmacology and Toxicology, 14195 Berlin, Germany
| | - Elisa Moschini
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L4422 Belvaux, Grand-Duchy of Luxembourg, Luxembourg
| | - Stephen J Evans
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Medical School, Institute of Life Sciences, Centre for NanoHealth, Swansea University, Singleton Campus, Wales SA2 8PP, UK
| | - Pramod Kumar
- Comprehensive Pneumology Center (CPC-M), Helmholtz Zentrum München - Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Sezer Orak
- Comprehensive Pneumology Center (CPC-M), Helmholtz Zentrum München - Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ali Doryab
- Comprehensive Pneumology Center (CPC-M), Helmholtz Zentrum München - Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Tommaso Serchi
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L4422 Belvaux, Grand-Duchy of Luxembourg, Luxembourg
| | - Rob J Vandebriel
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Shareen H Doak
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Medical School, Institute of Life Sciences, Centre for NanoHealth, Swansea University, Singleton Campus, Wales SA2 8PP, UK
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Martin J D Clift
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Medical School, Institute of Life Sciences, Centre for NanoHealth, Swansea University, Singleton Campus, Wales SA2 8PP, UK
| | | |
Collapse
|
23
|
Karra N, Fernandes J, Swindle EJ, Morgan H. Integrating an aerosolized drug delivery device with conventional static cultures and a dynamic airway barrier microphysiological system. BIOMICROFLUIDICS 2022; 16:054102. [PMID: 36118260 PMCID: PMC9473724 DOI: 10.1063/5.0100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Organ on a chip or microphysiological systems (MPSs) aim to resolve current challenges surrounding drug discovery and development resulting from an unrepresentative static cell culture or animal models that are traditionally used by generating a more physiologically relevant environment. Many different airway MPSs have been developed that mimic alveolar or bronchial interfaces, but few methods for aerosol drug delivery at the air-liquid interface exist. This work demonstrates a compact Surface Acoustic Wave (SAW) drug delivery device that generates an aerosol of respirable size for delivery of compounds directly onto polarized or differentiated epithelial cell cultures within an airway barrier MPS and conventional static inserts. As proof of principle, the SAW drug delivery device was used to nebulize viral dsRNA analog poly I:C and steroids fluticasone and dexamethasone without disrupting their biological function.
Collapse
Affiliation(s)
- Nikita Karra
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, United Kingdom
| | - Joao Fernandes
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, United Kingdom
| | | | - Hywel Morgan
- Author to whom correspondence should be addressed:
| |
Collapse
|
24
|
Camassa LMA, Elje E, Mariussen E, Longhin EM, Dusinska M, Zienolddiny-Narui S, Rundén-Pran E. Advanced Respiratory Models for Hazard Assessment of Nanomaterials—Performance of Mono-, Co- and Tricultures. NANOMATERIALS 2022; 12:nano12152609. [PMID: 35957046 PMCID: PMC9370172 DOI: 10.3390/nano12152609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022]
Abstract
Advanced in vitro models are needed to support next-generation risk assessment (NGRA), moving from hazard assessment based mainly on animal studies to the application of new alternative methods (NAMs). Advanced models must be tested for hazard assessment of nanomaterials (NMs). The aim of this study was to perform an interlaboratory trial across two laboratories to test the robustness of and optimize a 3D lung model of human epithelial A549 cells cultivated at the air–liquid interface (ALI). Potential change in sensitivity in hazard identification when adding complexity, going from monocultures to co- and tricultures, was tested by including human endothelial cells EA.hy926 and differentiated monocytes dTHP-1. All models were exposed to NM-300K in an aerosol exposure system (VITROCELL® cloud-chamber). Cyto- and genotoxicity were measured by AlamarBlue and comet assay. Cellular uptake was investigated with transmission electron microscopy. The models were characterized by confocal microscopy and barrier function tested. We demonstrated that this advanced lung model is applicable for hazard assessment of NMs. The results point to a change in sensitivity of the model by adding complexity and to the importance of detailed protocols for robustness and reproducibility of advanced in vitro models.
Collapse
Affiliation(s)
| | - Elisabeth Elje
- NILU—Norwegian Institute for Air Research, 2027 Kjeller, Norway; (E.E.); (E.M.); (E.M.L.); (M.D.)
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0372 Oslo, Norway
| | - Espen Mariussen
- NILU—Norwegian Institute for Air Research, 2027 Kjeller, Norway; (E.E.); (E.M.); (E.M.L.); (M.D.)
- Norwegian Institute of Public Health, FHI, 0456 Oslo, Norway
| | - Eleonora Marta Longhin
- NILU—Norwegian Institute for Air Research, 2027 Kjeller, Norway; (E.E.); (E.M.); (E.M.L.); (M.D.)
| | - Maria Dusinska
- NILU—Norwegian Institute for Air Research, 2027 Kjeller, Norway; (E.E.); (E.M.); (E.M.L.); (M.D.)
| | - Shan Zienolddiny-Narui
- National Institute of Occupational Health in Norway, 0033 Oslo, Norway;
- Correspondence: (S.Z.-N.); (E.R.-P.); Tel.: +47-2319-5284 (S.Z.-N.); +47-6389-8237 (E.R.-P.)
| | - Elise Rundén-Pran
- NILU—Norwegian Institute for Air Research, 2027 Kjeller, Norway; (E.E.); (E.M.); (E.M.L.); (M.D.)
- Correspondence: (S.Z.-N.); (E.R.-P.); Tel.: +47-2319-5284 (S.Z.-N.); +47-6389-8237 (E.R.-P.)
| |
Collapse
|
25
|
Upadhyay S, Chakraborty A, Thimraj TA, Baldi M, Steneholm A, Ganguly K, Gerde P, Ernstgård L, Palmberg L. Establishment of Repeated In Vitro Exposure System for Evaluating Pulmonary Toxicity of Representative Criteria Air Pollutants Using Advanced Bronchial Mucosa Models. TOXICS 2022; 10:toxics10060277. [PMID: 35736886 PMCID: PMC9228979 DOI: 10.3390/toxics10060277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022]
Abstract
There is mounting evidence that shows the association between chronic exposure to air pollutants (particulate matter and gaseous) and onset of various respiratory impairments. However, the corresponding toxicological mechanisms of mixed exposure are poorly understood. Therefore, in this study, we aimed to establish a repeated exposure setting for evaluating the pulmonary toxicological effects of diesel exhaust particles (DEP), nitrogen dioxide (NO2), and sulfur dioxide (SO2) as representative criterial air pollutants. Single, combined (DEP with NO2 and SO2), and repeated exposures were performed using physiologically relevant human bronchial mucosa models developed at the air−liquid interface (bro-ALI). The bro-ALI models were generated using human primary bronchial epithelial cells (3−4 donors; 2 replicates per donor). The exposure regime included the following: 1. DEP (12.5 µg/cm2; 3 min/day, 3 days); 2. low gaseous (NO2: 0.1 ppm + SO2: 0.2 ppm); (30 min/day, 3 days); 3. high gaseous (NO2: 0.2 ppm + SO2: 0.4 ppm) (30 min/day, 3 days); and 4. single combined (DEP + low gaseous for 1 day). The markers for pro-inflammatory (IL8, IL6, NFKB, TNF), oxidative stress (HMOX1, GSTA1, SOD3,) and tissue injury/repair (MMP9, TIMP1) responses were assessed at transcriptional and/ or secreted protein levels following exposure. The corresponding sham-exposed samples under identical conditions served as the control. A non-parametric statistical analysis was performed and p < 0.05 was considered as significant. Repeated exposure to DEP and single combined (DEP + low gaseous) exposure showed significant alteration in the pro-inflammatory, oxidative stress and tissue injury responses compared to repeated exposures to gaseous air pollutants. The study demonstrates that it is feasible to predict the long-term effects of air pollutants using the above explained exposure system.
Collapse
Affiliation(s)
- Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.); (T.A.T.); (M.B.); (K.G.); (P.G.); (L.E.)
- Correspondence: (S.U.); (L.P.); Tel.:+46-85-2487930 (S.U.); +46-8-524-822-10 (L.P.)
| | - Ashesh Chakraborty
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.); (T.A.T.); (M.B.); (K.G.); (P.G.); (L.E.)
| | - Tania A. Thimraj
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.); (T.A.T.); (M.B.); (K.G.); (P.G.); (L.E.)
| | - Marialuisa Baldi
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.); (T.A.T.); (M.B.); (K.G.); (P.G.); (L.E.)
| | | | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.); (T.A.T.); (M.B.); (K.G.); (P.G.); (L.E.)
| | - Per Gerde
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.); (T.A.T.); (M.B.); (K.G.); (P.G.); (L.E.)
| | - Lena Ernstgård
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.); (T.A.T.); (M.B.); (K.G.); (P.G.); (L.E.)
| | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (A.C.); (T.A.T.); (M.B.); (K.G.); (P.G.); (L.E.)
- Correspondence: (S.U.); (L.P.); Tel.:+46-85-2487930 (S.U.); +46-8-524-822-10 (L.P.)
| |
Collapse
|
26
|
Farcas MT, McKinney W, Coyle J, Orandle M, Mandler WK, Stefaniak AB, Bowers L, Battelli L, Richardson D, Hammer MA, Friend SA, Service S, Kashon M, Qi C, Hammond DR, Thomas TA, Matheson J, Qian Y. Evaluation of Pulmonary Effects of 3-D Printer Emissions From Acrylonitrile Butadiene Styrene Using an Air-Liquid Interface Model of Primary Normal Human-Derived Bronchial Epithelial Cells. Int J Toxicol 2022; 41:312-328. [PMID: 35586871 DOI: 10.1177/10915818221093605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) in vitro model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively. The average particle deposition per surface area of the epithelium was 2.29 × 107 ± 1.47 × 107 particle/cm2, equivalent to an estimated average particle mass of 0.144 ± 0.042 μg/cm2. Results showed exposure of NHBEs to ABS emissions did not significantly affect epithelium integrity, ciliation, mucus production, nor induce cytotoxicity. At 24 hours after the exposure, significant increases in the pro-inflammatory markers IL-12p70, IL-13, IL-15, IFN-γ, TNF-α, IL-17A, VEGF, MCP-1, and MIP-1α were noted in the basolateral cell culture medium of ABS-exposed cells compared to non-exposed chamber control cells. Results obtained from this study correspond with those from our previous in vivo studies, indicating that the increase in inflammatory mediators occur without associated membrane damage. The combination of the exposure chamber and the ALI-based model is promising for assessing 3-D printer emission-induced toxicity.
Collapse
Affiliation(s)
- Mariana T Farcas
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Walter McKinney
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jayme Coyle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Marlene Orandle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - W Kyle Mandler
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aleksandr B Stefaniak
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lauren Bowers
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lori Battelli
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mary A Hammer
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Sherri A Friend
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Samantha Service
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael Kashon
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Chaolong Qi
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Duane R Hammond
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Treye A Thomas
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Joanna Matheson
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Yong Qian
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
27
|
Aerosol-Cell Exposure System Applied to Semi-Adherent Cells for Aerosolization of Lung Surfactant and Nanoparticles Followed by High Quality RNA Extraction. NANOMATERIALS 2022; 12:nano12081362. [PMID: 35458071 PMCID: PMC9028274 DOI: 10.3390/nano12081362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Nanoparticle toxicity assessments have moved closer to physiological conditions while trying to avoid the use of animal models. An example of new in vitro exposure techniques developed is the exposure of cultured cells at the air-liquid interface (ALI), particularly in the case of respiratory airways. While the commercially available VITROCELL® Cloud System has been applied for the delivery of aerosolized substances to adherent cells under ALI conditions, it has not yet been tested on lung surfactant and semi-adherent cells such as alveolar macrophages, which are playing a pivotal role in the nanoparticle-induced immune response. OBJECTIVES In this work, we developed a comprehensive methodology for coating semi-adherent lung cells cultured at the ALI with aerosolized surfactant and subsequent dose-controlled exposure to nanoparticles (NPs). This protocol is optimized for subsequent transcriptomic studies. METHODS Semi-adherent rat alveolar macrophages NR8383 were grown at the ALI and coated with lung surfactant through nebulization using the VITROCELL® Cloud 6 System before being exposed to TiO2 NM105 NPs. After NP exposures, RNA was extracted and its quantity and quality were measured. RESULTS The VITROCELL® Cloud system allowed for uniform and ultrathin coating of cells with aerosolized surfactant mimicking physiological conditions in the lung. While nebulization of 57 μL of 30 mg/mL TiO2 and 114 μL of 15 mg/mL TiO2 nanoparticles yielded identical cell delivered dose, the reproducibility of dose as well as the quality of RNA extracted were better for 114 μL.
Collapse
|
28
|
Aggregates Associated with Instability of Antibodies during Aerosolization Induce Adverse Immunological Effects. Pharmaceutics 2022; 14:pharmaceutics14030671. [PMID: 35336045 PMCID: PMC8949695 DOI: 10.3390/pharmaceutics14030671] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Immunogenicity refers to the inherent ability of a molecule to stimulate an immune response. Aggregates are one of the major risk factors for the undesired immunogenicity of therapeutic antibodies (Ab) and may ultimately result in immune-mediated adverse effects. For Ab delivered by inhalation, it is necessary to consider the interaction between aggregates resulting from the instability of the Ab during aerosolization and the lung mucosa. The aim of this study was to determine the impact of aggregates produced during aerosolization of therapeutic Ab on the immune system. Methods: Human and murine immunoglobulin G (IgG) were aerosolized using a clinically-relevant nebulizer and their immunogenic potency was assessed, both in vitro using a standard human monocyte-derived dendritic cell (MoDC) reporter assay and in vivo in immune cells in the airway compartment, lung parenchyma and spleen of healthy C57BL/6 mice after pulmonary administration. Results: IgG aggregates, produced during nebulization, induced a dose-dependent activation of MoDC characterized by the enhanced production of cytokines and expression of co-stimulatory markers. Interestingly, in vivo administration of high amounts of nebulization-mediated IgG aggregates resulted in a profound and sustained local and systemic depletion of immune cells, which was attributable to cell death. This cytotoxic effect was observed when nebulized IgG was administered locally in the airways as compared to a systemic administration but was mitigated by improving IgG stability during nebulization, through the addition of polysorbates to the formulation. Conclusion: Although inhalation delivery represents an attractive alternative route for delivering Ab to treat respiratory infections, our findings indicate that it is critical to prevent IgG aggregation during the nebulization process to avoid pro-inflammatory and cytotoxic effects. The optimization of Ab formulation can mitigate adverse effects induced by nebulization.
Collapse
|
29
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
30
|
Binder S, Cao X, Bauer S, Rastak N, Kuhn E, Dragan GC, Monsé C, Ferron G, Breuer D, Oeder S, Karg E, Sklorz M, Di Bucchianico S, Zimmermann R. In vitro genotoxicity of dibutyl phthalate on A549 lung cells at air-liquid interface in exposure concentrations relevant at workplaces. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:490-501. [PMID: 34636079 DOI: 10.1002/em.22464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous use of phthalates in various materials and the knowledge about their potential adverse effects is of great concern for human health. Several studies have uncovered their role in carcinogenic events and suggest various phthalate-associated adverse health effects that include pulmonary diseases. However, only limited information on pulmonary toxicity is available considering inhalation of phthalates as the route of exposure. While in vitro studies are often based on submerged exposures, this study aimed to expose A549 alveolar epithelial cells at the air-liquid interface (ALI) to unravel the genotoxic and oxidative stress-inducing potential of dibutyl phthalate (DBP) with concentrations relevant at occupational settings. Within this scope, a computer modeling approach calculating alveolar deposition of DBP particles in the human lung was used to define in vitro ALI exposure conditions comparable to potential occupational DBP exposures. The deposited mass of DBP ranged from 0.03 to 20 ng/cm2 , which was comparable to results of a human lung particle deposition model using an 8 h workplace threshold limit value of 580 μg/m3 proposed by the Scientific Committee on Occupational Exposure Limits for the European Union. Comet and Micronucleus assay revealed that DBP induced genotoxicity at DNA and chromosome level in sub-cytotoxic conditions. Since genomic instability was accompanied by increased generation of the lipid peroxidation marker malondialdehyde, oxidative stress might play an important role in phthalate-induced genotoxicity. The results highlight the importance of adapting in vitro studies to exposure scenarios relevant at occupational settings and reconsidering occupational exposure limits for DBP.
Collapse
Affiliation(s)
- Stephanie Binder
- Joint Mass Spectrometry Center at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Xin Cao
- Joint Mass Spectrometry Center at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - George C Dragan
- Federal Institute for Occupational Safety and Health (BAuA) - Measurement of Hazardous Substances, Dortmund, Germany
| | - Christian Monsé
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IFA), Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany
| | - George Ferron
- Joint Mass Spectrometry Center at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dietmar Breuer
- Institute of Occupational Safety of the German Social Accident Insurance (IFA), Sankt Augustin, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Erwin Karg
- Joint Mass Spectrometry Center at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center at Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
31
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
32
|
Iskandar AR, Kolli AR, Giralt A, Neau L, Fatarova M, Kondylis A, Torres LO, Majeed S, Merg C, Corciulo M, Trivedi K, Guedj E, Frentzel S, Calvino F, Guy PA, Ivanov NV, Peitsch MC, Hoeng J. Assessment of in vitro kinetics and biological impact of nebulized trehalose on human bronchial epithelium. Food Chem Toxicol 2021; 157:112577. [PMID: 34563633 DOI: 10.1016/j.fct.2021.112577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/16/2021] [Accepted: 09/18/2021] [Indexed: 11/26/2022]
Abstract
Trehalose is added in drug formulations to act as fillers or improve aerosolization performance. Its characteristics as a carrier molecule have been explored; however, the fate of trehalose in human airway tissues has not been thoroughly investigated. Here, we investigated the fate of nebulized trehalose using in vitro human air-liquid bronchial epithelial cultures. First, a tracing experiment was conducted using 13C12-trehalose; we measured trehalose distribution in different culture compartments (apical surface liquid, epithelial culture, and basal side medium) at various time points following acute exposure to 13C12-labeled trehalose. We found that 13C12-trehalose was metabolized into 13C6-glucose. The data was then used to model the kinetics of trehalose disappearance from the apical surface of bronchial cultures. Secondly, we evaluated the potential adverse effects of nebulized trehalose on the bronchial cultures after they were acutely exposed to nebulized trehalose up to a level just below its solubility limit (50 g/100 g water). We assessed the ciliary beating frequency and histological characteristics. We found that nebulized trehalose did not lead to marked alteration in ciliary beating frequency and morphology of the epithelial cultures. The in vitro testing approach used here may enable the early selection of excipients for future development of inhalation products.
Collapse
Affiliation(s)
- Anita R Iskandar
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Aditya Reddy Kolli
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Albert Giralt
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Laurent Neau
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Maria Fatarova
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Athanasios Kondylis
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Laura Ortega Torres
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Shoaib Majeed
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Celine Merg
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Maica Corciulo
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Keyur Trivedi
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Stefan Frentzel
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Florian Calvino
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Philippe Alexandre Guy
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
33
|
Artzy-Schnirman A, Arber Raviv S, Doppelt Flikshtain O, Shklover J, Korin N, Gross A, Mizrahi B, Schroeder A, Sznitman J. Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics. Adv Drug Deliv Rev 2021; 176:113901. [PMID: 34331989 PMCID: PMC7611797 DOI: 10.1016/j.addr.2021.113901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023]
Abstract
Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible "soft" membranes have focused on platforms that emphasize phenotypical endpoints recapitulating key physiological and cellular functions. We review some of the most recent in vitro studies underlining seminal therapeutic screens and translational applications and open our discussion to promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there still remains a recognized trade-off between the physiological and biological complexity of these in vitro lung models and their ability to deliver assays with throughput capabilities. The upcoming years are thus anticipated to see further developments in broadening the applicability of such in vitro systems and accelerating therapeutic exploration for drug discovery and translational medicine in treating respiratory disorders.
Collapse
Affiliation(s)
- Arbel Artzy-Schnirman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Sivan Arber Raviv
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | | | - Jeny Shklover
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Netanel Korin
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Adi Gross
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Boaz Mizrahi
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Avi Schroeder
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel.
| |
Collapse
|
34
|
Primavessy D, Metz J, Schnur S, Schneider M, Lehr CM, Hittinger M. Pulmonary in vitro instruments for the replacement of animal experiments. Eur J Pharm Biopharm 2021; 168:62-75. [PMID: 34438019 DOI: 10.1016/j.ejpb.2021.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Advanced in vitro systems often combine a mechanical-physical instrument with a biological component e.g. cell culture models. For testing of aerosols, it is of advantage to consider aerosol behavior, particle deposition and lung region specific cell lines. Although there are many good reviews on the selection of cell cultures, articles on instruments are rare. This article focuses on the development of in vitro instruments targeting the exposure of aerosols on cell cultures. In this context, guidelines for toxicity investigation are taken into account as the aim of new methods must be the prediction of human relevant data and the replacement of existing animal experiments. We provide an overview on development history of research-based instruments from a pharmaceutical point of view. The standardized commercial devices resulting from the research-based instruments are presented and the future perspectives on pulmonary in vitro devices are discussed.
Collapse
Affiliation(s)
- Daniel Primavessy
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany.
| | - Julia Metz
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany
| | - Sabrina Schnur
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Marius Hittinger
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; 3RProducts Marius Hittinger, Blieskastel, Germany
| |
Collapse
|
35
|
Baldassi D, Gabold B, Merkel O. Air-liquid interface cultures of the healthy and diseased human respiratory tract: promises, challenges and future directions. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000111. [PMID: 34345878 PMCID: PMC7611446 DOI: 10.1002/anbr.202000111] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Air-liquid interface (ALI) culture models currently represent a valid instrument to recreate the typical aspects of the respiratory tract in vitro in both healthy and diseased state. They can help reducing the number of animal experiments, therefore, supporting the 3R principle. This review discusses ALI cultures and co-cultures derived from immortalized as well as primary cells, which are used to study the most common disorders of the respiratory tract, in terms of both pathophysiology and drug screening. The article displays ALI models used to simulate inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, cystic fibrosis, lung cancer, and viral infections. It also includes a focus on ALI cultures described in literature studying respiratory viruses such as SARS-CoV-2 causing the global Covid-19 pandemic at the time of writing this review. Additionally, commercially available models of ALI cultures are presented. Ultimately, the aim of this review is to provide a detailed overview of ALI models currently available and to critically discuss them in the context of the most prevalent diseases of the respiratory tract.
Collapse
Affiliation(s)
- Domizia Baldassi
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Bettina Gabold
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Olivia Merkel
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
36
|
Nossa R, Costa J, Cacopardo L, Ahluwalia A. Breathing in vitro: Designs and applications of engineered lung models. J Tissue Eng 2021; 12:20417314211008696. [PMID: 33996022 PMCID: PMC8107677 DOI: 10.1177/20417314211008696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review is to provide a systematic design guideline to users, particularly engineers interested in developing and deploying lung models, and biologists seeking to identify a suitable platform for conducting in vitro experiments involving pulmonary cells or tissues. We first discuss the state of the art on lung in vitro models, describing the most simplistic and traditional ones. Then, we analyze in further detail the more complex dynamic engineered systems that either provide mechanical cues, or allow for more predictive exposure studies, or in some cases even both. This is followed by a dedicated section on microchips of the lung. Lastly, we present a critical discussion of the different characteristics of each type of system and the criteria which may help researchers select the most appropriate technology according to their specific requirements. Readers are encouraged to refer to the tables accompanying the different sections where comprehensive and quantitative information on the operating parameters and performance of the different systems reported in the literature is provided.
Collapse
|
37
|
Horstmann JC, Thorn CR, Carius P, Graef F, Murgia X, de Souza Carvalho-Wodarz C, Lehr CM. A Custom-Made Device for Reproducibly Depositing Pre-metered Doses of Nebulized Drugs on Pulmonary Cells in vitro. Front Bioeng Biotechnol 2021; 9:643491. [PMID: 33968912 PMCID: PMC8096921 DOI: 10.3389/fbioe.2021.643491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
The deposition of pre-metered doses (i.e., defined before and not after exposition) at the air-liquid interface of viable pulmonary epithelial cells remains an important but challenging task for developing aerosol medicines. While some devices allow quantification of the deposited dose after or during the experiment, e.g., gravimetrically, there is still no generally accepted way to deposit small pre-metered doses of aerosolized drugs or pharmaceutical formulations, e.g., nanomedicines. Here, we describe a straightforward custom-made device, allowing connection to commercially available nebulizers with standard cell culture plates. Designed to tightly fit into the approximately 12-mm opening of either a 12-well Transwell® insert or a single 24-well plate, a defined dose of an aerosolized liquid can be directly deposited precisely and reproducibly (4.8% deviation) at the air-liquid interface (ALI) of pulmonary cell cultures. The deposited dose can be controlled by the volume of the nebulized solution, which may vary in a range from 20 to 200 μl. The entire nebulization-deposition maneuver is completed after 30 s and is spatially homogenous. After phosphate-buffered saline (PBS) deposition, the viability and barrier properties transepithelial electrical resistance (TEER) of human bronchial epithelial Calu-3 cells were not negatively affected. Straightforward in manufacture and use, the device enables reproducible deposition of metered doses of aerosolized drugs to study the interactions with pulmonary cell cultures grown at ALI conditions.
Collapse
Affiliation(s)
- Justus C Horstmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Chelsea R Thorn
- Clinical and Health Science, University of South Australia, Adelaide, SA, Australia
| | - Patrick Carius
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Florian Graef
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | | | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
38
|
Doryab A, Taskin MB, Stahlhut P, Schröppel A, Orak S, Voss C, Ahluwalia A, Rehberg M, Hilgendorff A, Stöger T, Groll J, Schmid O. A Bioinspired in vitro Lung Model to Study Particokinetics of Nano-/Microparticles Under Cyclic Stretch and Air-Liquid Interface Conditions. Front Bioeng Biotechnol 2021; 9:616830. [PMID: 33634087 PMCID: PMC7902031 DOI: 10.3389/fbioe.2021.616830] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Evolution has endowed the lung with exceptional design providing a large surface area for gas exchange area (ca. 100 m2) in a relatively small tissue volume (ca. 6 L). This is possible due to a complex tissue architecture that has resulted in one of the most challenging organs to be recreated in the lab. The need for realistic and robust in vitro lung models becomes even more evident as causal therapies, especially for chronic respiratory diseases, are lacking. Here, we describe the Cyclic InVItroCell-stretch (CIVIC) “breathing” lung bioreactor for pulmonary epithelial cells at the air-liquid interface (ALI) experiencing cyclic stretch while monitoring stretch-related parameters (amplitude, frequency, and membrane elastic modulus) under real-time conditions. The previously described biomimetic copolymeric BETA membrane (5 μm thick, bioactive, porous, and elastic) was attempted to be improved for even more biomimetic permeability, elasticity (elastic modulus and stretchability), and bioactivity by changing its chemical composition. This biphasic membrane supports both the initial formation of a tight monolayer of pulmonary epithelial cells (A549 and 16HBE14o−) under submerged conditions and the subsequent cell-stretch experiments at the ALI without preconditioning of the membrane. The newly manufactured versions of the BETA membrane did not improve the characteristics of the previously determined optimum BETA membrane (9.35% PCL and 6.34% gelatin [w/v solvent]). Hence, the optimum BETA membrane was used to investigate quantitatively the role of physiologic cyclic mechanical stretch (10% linear stretch; 0.33 Hz: light exercise conditions) on size-dependent cellular uptake and transepithelial transport of nanoparticles (100 nm) and microparticles (1,000 nm) for alveolar epithelial cells (A549) under ALI conditions. Our results show that physiologic stretch enhances cellular uptake of 100 nm nanoparticles across the epithelial cell barrier, but the barrier becomes permeable for both nano- and micron-sized particles (100 and 1,000 nm). This suggests that currently used static in vitro assays may underestimate cellular uptake and transbarrier transport of nanoparticles in the lung.
Collapse
Affiliation(s)
- Ali Doryab
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| | - Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, Würzburg, Germany
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, Würzburg, Germany
| | - Andreas Schröppel
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| | - Sezer Orak
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| | - Carola Voss
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| | - Arti Ahluwalia
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Markus Rehberg
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| | - Anne Hilgendorff
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany.,Center for Comprehensive Developmental Care (CDeCLMU), Dr. von Haunersches Children's Hospital University, Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Tobias Stöger
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, Würzburg, Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center Munich, Member of the German Center for Lung Research, Munich, Germany.,Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Lung Biology and Disease, Munich, Germany
| |
Collapse
|
39
|
Sécher T, Bodier-Montagutelli E, Guillon A, Heuzé-Vourc'h N. Correlation and clinical relevance of animal models for inhaled pharmaceuticals and biopharmaceuticals. Adv Drug Deliv Rev 2020; 167:148-169. [PMID: 32645479 DOI: 10.1016/j.addr.2020.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/01/2022]
Abstract
Nonclinical studies are fundamental for the development of inhaled drugs, as for any drug product, and for successful translation to clinical practice. They include in silico, in vitro, ex vivo and in vivo studies and are intended to provide a comprehensive understanding of the inhaled drug beneficial and detrimental effects. To date, animal models cannot be circumvented during drug development programs, acting as surrogates of humans to predict inhaled drug response, fate and toxicity. Herein, we review the animal models used during the different development stages of inhaled pharmaceuticals and biopharmaceuticals, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- T Sécher
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France
| | - E Bodier-Montagutelli
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Pharmacy Department, Tours, France
| | - A Guillon
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France; CHRU de Tours, Critical Care Department, Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Research Center for Respiratory Diseases, U1100, Tours, France; University of Tours, Tours, France.
| |
Collapse
|
40
|
Cao X, Coyle JP, Xiong R, Wang Y, Heflich RH, Ren B, Gwinn WM, Hayden P, Rojanasakul L. Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives. In Vitro Cell Dev Biol Anim 2020; 57:104-132. [PMID: 33175307 PMCID: PMC7657088 DOI: 10.1007/s11626-020-00517-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
The lung is an organ that is directly exposed to the external environment. Given the large surface area and extensive ventilation of the lung, it is prone to exposure to airborne substances, such as pathogens, allergens, chemicals, and particulate matter. Highly elaborate and effective mechanisms have evolved to protect and maintain homeostasis in the lung. Despite these sophisticated defense mechanisms, the respiratory system remains highly susceptible to environmental challenges. Because of the impact of respiratory exposure on human health and disease, there has been considerable interest in developing reliable and predictive in vitro model systems for respiratory toxicology and basic research. Human air-liquid-interface (ALI) organotypic airway tissue models derived from primary tracheobronchial epithelial cells have in vivo–like structure and functions when they are fully differentiated. The presence of the air-facing surface allows conducting in vitro exposures that mimic human respiratory exposures. Exposures can be conducted using particulates, aerosols, gases, vapors generated from volatile and semi-volatile substances, and respiratory pathogens. Toxicity data have been generated using nanomaterials, cigarette smoke, e-cigarette vapors, environmental airborne chemicals, drugs given by inhalation, and respiratory viruses and bacteria. Although toxicity evaluations using human airway ALI models require further standardization and validation, this approach shows promise in supplementing or replacing in vivo animal models for conducting research on respiratory toxicants and pathogens.
Collapse
Affiliation(s)
- Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA.
| | - Jayme P Coyle
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Rui Xiong
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Baiping Ren
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - William M Gwinn
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | | - Liying Rojanasakul
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
41
|
Cei D, Doryab A, Lenz AG, Schröppel A, Mayer P, Burgstaller G, Nossa R, Ahluwalia A, Schmid O. Development of a dynamic in vitro stretch model of the alveolar interface with aerosol delivery. Biotechnol Bioeng 2020; 118:690-702. [PMID: 33058147 DOI: 10.1002/bit.27600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 01/07/2023]
Abstract
We describe the engineering design, computational modeling, and empirical performance of a moving air-liquid interface (MALI) bioreactor for the study of aerosol deposition on cells cultured on an elastic, porous membrane which mimics both air-liquid interface exposure conditions and mechanoelastic motion of lung tissue during breathing. The device consists of two chambers separated by a cell layer cultured on a porous, flexible membrane. The lower (basolateral) chamber is perfused with cell culture medium simulating blood circulation. The upper (apical) chamber representing the air compartment of the lung is interfaced to an aerosol generator and a pressure actuation system. By cycling the pressure in the apical chamber between 0 and 7 kPa, the membrane can mimic the periodic mechanical strain of the alveolar wall. Focusing on the engineering aspects of the system, we show that membrane strain can be monitored by measuring changes in pressure resulting from the movement of media in the basolateral chamber. Moreover, liquid aerosol deposition at a high dose delivery rate (>1 µl cm-2 min-1 ) is highly efficient (ca. 51.5%) and can be accurately modeled using finite element methods. Finally, we show that lung epithelial cells can be mechanically stimulated under air-liquid interface and stretch-conditions without loss of viability. The MALI bioreactor could be used to study the effects of aerosol on alveolar cells cultured at the air-liquid interface in a biodynamic environment or for toxicological or therapeutic applications.
Collapse
Affiliation(s)
- Daniele Cei
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy.,Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Doryab
- Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany.,Institute of Lung Biology and Disease, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Anke-Gabriele Lenz
- Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany.,Institute of Lung Biology and Disease, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Andreas Schröppel
- Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany.,Institute of Lung Biology and Disease, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Paula Mayer
- Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany.,Institute of Lung Biology and Disease, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany.,Institute of Lung Biology and Disease, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Roberta Nossa
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Arti Ahluwalia
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Otmar Schmid
- Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany.,Institute of Lung Biology and Disease, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| |
Collapse
|
42
|
Comparative toxicity of ultrafine particles around a major airport in human bronchial epithelial (Calu-3) cell model at the air–liquid interface. Toxicol In Vitro 2020; 68:104950. [DOI: 10.1016/j.tiv.2020.104950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022]
|
43
|
Ding Y, Weindl P, Lenz AG, Mayer P, Krebs T, Schmid O. Quartz crystal microbalances (QCM) are suitable for real-time dosimetry in nanotoxicological studies using VITROCELL®Cloud cell exposure systems. Part Fibre Toxicol 2020; 17:44. [PMID: 32938469 PMCID: PMC7493184 DOI: 10.1186/s12989-020-00376-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/26/2020] [Indexed: 02/04/2023] Open
Abstract
Background Accurate knowledge of cell−/tissue-delivered dose plays a pivotal role in inhalation toxicology studies, since it is the key parameter for hazard assessment and translation of in vitro to in vivo dose-response. Traditionally, (nano-)particle toxicological studies with in vivo and in vitro models of the lung rely on in silio computational or off-line analytical methods for dosimetry. In contrast to traditional in vitro testing under submerged cell culture conditions, the more physiologic air-liquid interface (ALI) conditions offer the possibility for real-time dosimetry using quartz crystal microbalances (QCMs). However, it is unclear, if QCMs are sensitive enough for nanotoxicological studies. We investigated this issue for two commercially available VITROCELL®Cloud ALI exposure systems. Results Quantitative fluorescence spectroscopy of fluorescein-spiked saline aerosol was used to determine detection limit, precision and accuracy of the QCMs implemented in a VITROCELL®Cloud 6 and Cloud 12 system for dose-controlled ALI aerosol-cell exposure experiments. Both QCMs performed linearly over the entire investigated dose range (200 to 12,000 ng/cm2) with an accuracy of 3.4% (Cloud 6) and 3.8% (Cloud 12). Their precision (repeatability) decreased from 2.5% for large doses (> 9500 ng/cm2) to values of 10% and even 25% for doses of 1000 ng/cm2 and 200 ng/cm2, respectively. Their lower detection limit was 170 ng/cm2 and 169 ng/cm2 for the Cloud 6 and Cloud 12, respectively. Dose-response measurements with (NM110) ZnO nanoparticles revealed an onset dose of 3.3 μg/cm2 (or 0.39 cm2/cm2) for both cell viability (WST-1) and cytotoxicity (LDH) of A549 lung epithelial cells. Conclusions The QCMs of the Cloud 6 and Cloud 12 systems show similar performance and are highly sensitive, accurate devices for (quasi-) real-time dosimetry of the cell-delivered particle dose in ALI cell exposure experiments, if operated according to manufacturer specifications. Comparison with in vitro onset doses from this and previously published ALI studies revealed that the detection limit of 170 ng/cm2 is sufficient for determination of toxicological onset doses for all particle types with low (e.g. polystyrene) or high mass-specific toxicity (e.g. ZnO and Ag) investigated here. Hence, in principle QCMs are suitable for in vitro nanotoxciological studies, but this should be investigated for each QCM and ALI exposure system under the specific exposure conditions as described in the present study.
Collapse
Affiliation(s)
- Yaobo Ding
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Comprehensive Pneumology Center, Munich (CPC-M) - Member of the German Center for Lung Research (DZL), 81377, Munich, Germany
| | - Patrick Weindl
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Comprehensive Pneumology Center, Munich (CPC-M) - Member of the German Center for Lung Research (DZL), 81377, Munich, Germany.,VITROCELL Systems GmbH, 79183, Waldkirch, Germany
| | - Anke-Gabriele Lenz
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Comprehensive Pneumology Center, Munich (CPC-M) - Member of the German Center for Lung Research (DZL), 81377, Munich, Germany
| | - Paula Mayer
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Comprehensive Pneumology Center, Munich (CPC-M) - Member of the German Center for Lung Research (DZL), 81377, Munich, Germany
| | - Tobias Krebs
- VITROCELL Systems GmbH, 79183, Waldkirch, Germany
| | - Otmar Schmid
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, 85764, Neuherberg, Germany. .,Comprehensive Pneumology Center, Munich (CPC-M) - Member of the German Center for Lung Research (DZL), 81377, Munich, Germany.
| |
Collapse
|
44
|
Hu Y, Sheng Y, Ji X, Liu P, Tang L, Chen G, Chen G. Comparative anti-inflammatory effect of curcumin at air-liquid interface and submerged conditions using lipopolysaccharide stimulated human lung epithelial A549 cells. Pulm Pharmacol Ther 2020; 63:101939. [DOI: 10.1016/j.pupt.2020.101939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
|
45
|
Leroux MM, Doumandji Z, Chézeau L, Gaté L, Nahle S, Hocquel R, Zhernovkov V, Migot S, Ghanbaja J, Bonnet C, Schneider R, Rihn BH, Ferrari L, Joubert O. Toxicity of TiO 2 Nanoparticles: Validation of Alternative Models. Int J Mol Sci 2020; 21:E4855. [PMID: 32659965 PMCID: PMC7402355 DOI: 10.3390/ijms21144855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022] Open
Abstract
There are many studies concerning titanium dioxide (TiO2) nanoparticles (NP) toxicity. Nevertheless, there are few publications comparing in vitro and in vivo exposure, and even less comparing air-liquid interface exposure (ALI) with other in vitro and in vivo exposures. The identification and validation of common markers under different exposure conditions are relevant for the development of smart and quick nanotoxicity tests. In this work, cell viability was assessed in vitro by WST-1 and LDH assays after the exposure of NR8383 cells to TiO2 NP sample. To evaluate in vitro gene expression profile, NR8383 cells were exposed to TiO2 NP during 4 h at 3 cm2 of TiO2 NP/cm2 of cells or 19 μg/mL, in two settings-submerged cultures and ALI. For the in vivo study, Fischer 344 rats were exposed by inhalation to a nanostructured aerosol at a concentration of 10 mg/m3, 6 h/day, 5 days/week for 4 weeks. This was followed immediately by gene expression analysis. The results showed a low cytotoxic potential of TiO2 NP on NR8383 cells. Despite the absence of toxicity at the doses studied, the different exposures to TiO2 NP induce 18 common differentially expressed genes (DEG) which are involved in mitosis regulation, cell proliferation and apoptosis and inflammation transport of membrane proteins. Among these genes, we noticed the upregulation of Ccl4, Osm, Ccl7 and Bcl3 genes which could be suggested as early response biomarkers after exposure to TiO2 NP. On the other hand, the comparison of the three models helped us to validate the alternative ones, namely submerged and ALI approaches.
Collapse
Affiliation(s)
- Mélanie M. Leroux
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Zahra Doumandji
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Laetitia Chézeau
- Institut National de Recherche et de Sécurité, rue du Morvan, 54519 Vandœuvre-les-Nancy, France; (L.C.); (L.G.)
| | - Laurent Gaté
- Institut National de Recherche et de Sécurité, rue du Morvan, 54519 Vandœuvre-les-Nancy, France; (L.C.); (L.G.)
| | - Sara Nahle
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Romain Hocquel
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Vadim Zhernovkov
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland;
| | - Sylvie Migot
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Jafar Ghanbaja
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Céline Bonnet
- Université de Lorraine, CHRU-Nancy, Genetic Department, F-54000 Nancy, France;
| | - Raphaël Schneider
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France;
| | - Bertrand H. Rihn
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Luc Ferrari
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| | - Olivier Joubert
- Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (M.M.L.); (Z.D.); (S.N.); (R.H.); (S.M.); (J.G.); (B.H.R.); (L.F.)
| |
Collapse
|
46
|
Barosova H, Maione AG, Septiadi D, Sharma M, Haeni L, Balog S, O'Connell O, Jackson GR, Brown D, Clippinger AJ, Hayden P, Petri-Fink A, Stone V, Rothen-Rutishauser B. Use of EpiAlveolar Lung Model to Predict Fibrotic Potential of Multiwalled Carbon Nanotubes. ACS NANO 2020; 14:3941-3956. [PMID: 32167743 DOI: 10.1021/acsnano.9b06860] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Expansion in production and commercial use of nanomaterials increases the potential human exposure during the lifecycle of these materials (production, use, and disposal). Inhalation is a primary route of exposure to nanomaterials; therefore it is critical to assess their potential respiratory hazard. Herein, we developed a three-dimensional alveolar model (EpiAlveolar) consisting of human primary alveolar epithelial cells, fibroblasts, and endothelial cells, with or without macrophages for predicting long-term responses to aerosols. Following thorough characterization of the model, proinflammatory and profibrotic responses based on the adverse outcome pathway concept for lung fibrosis were assessed upon repeated subchronic exposures (up to 21 days) to two types of multiwalled carbon nanotubes (MWCNTs) and silica quartz particles. We simulate occupational exposure doses for the MWCNTs (1-30 μg/cm2) using an air-liquid interface exposure device (VITROCELL Cloud) with repeated exposures over 3 weeks. Specific key events leading to lung fibrosis, such as barrier integrity and release of proinflammatory and profibrotic markers, show the responsiveness of the model. Nanocyl induced, in general, a less pronounced reaction than Mitsui-7, and the cultures with human monocyte-derived macrophages (MDMs) showed the proinflammatory response at later time points than those without MDMs. In conclusion, we present a robust alveolar model to predict inflammatory and fibrotic responses upon exposure to MWCNTs.
Collapse
Affiliation(s)
- Hana Barosova
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Anna G Maione
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts 01721, United States
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Monita Sharma
- PETA International Science Consortium Ltd., 8 All Saints Street, London N1 9RL, U.K
| | - Laetitia Haeni
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Olivia O'Connell
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts 01721, United States
| | - George R Jackson
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts 01721, United States
| | - David Brown
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Amy J Clippinger
- PETA International Science Consortium Ltd., 8 All Saints Street, London N1 9RL, U.K
| | - Patrick Hayden
- MatTek Corporation, 200 Homer Avenue, Ashland, Massachusetts 01721, United States
- BioSurfaces, Inc., 200 Homer Ave, Ashland, Massachusetts 01721, United States
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Vicki Stone
- Nano-Safety Research Group, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | | |
Collapse
|
47
|
Ehrmann S, Schmid O, Darquenne C, Rothen-Rutishauser B, Sznitman J, Yang L, Barosova H, Vecellio L, Mitchell J, Heuze-Vourc’h N. Innovative preclinical models for pulmonary drug delivery research. Expert Opin Drug Deliv 2020; 17:463-478. [PMID: 32057260 PMCID: PMC8083945 DOI: 10.1080/17425247.2020.1730807] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
Abstract
Introduction: Pulmonary drug delivery is a complex field of research combining physics which drive aerosol transport and deposition and biology which underpins efficacy and toxicity of inhaled drugs. A myriad of preclinical methods, ranging from in-silico to in-vitro, ex-vivo and in-vivo, can be implemented.Areas covered: The present review covers in-silico mathematical and computational fluid dynamics modelization of aerosol deposition, cascade impactor technology to estimated drug delivery and deposition, advanced in-vitro cell culture methods and associated aerosol exposure, lung-on-chip technology, ex-vivo modeling, in-vivo inhaled drug delivery, lung imaging, and longitudinal pharmacokinetic analysis.Expert opinion: No single preclinical model can be advocated; all methods are fundamentally complementary and should be implemented based on benefits and drawbacks to answer specific scientific questions. The overall best scientific strategy depends, among others, on the product under investigations, inhalation device design, disease of interest, clinical patient population, previous knowledge. Preclinical testing is not to be separated from clinical evaluation, as small proof-of-concept clinical studies or conversely large-scale clinical big data may inform preclinical testing. The extend of expertise required for such translational research is unlikely to be found in one single laboratory calling for the setup of multinational large-scale research consortiums.
Collapse
Affiliation(s)
- Stephan Ehrmann
- CHRU Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep network, Tours France
- INSERM, Centre d’étude des pathologies respiratoires, U1100, Tours, France
- Université de Tours, Tours, France
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Chantal Darquenne
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC0623A, La Jolla, CA 92093-0623, United States
| | | | - Josue Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Julius Silver building, Office 246, Haifa 32000, Israel
| | - Lin Yang
- Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Hana Barosova
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, Switzerland
| | - Laurent Vecellio
- INSERM, Centre d’étude des pathologies respiratoires, U1100, Tours, France
- Université de Tours, Tours, France
| | - Jolyon Mitchell
- Jolyon Mitchell Inhaler Consulting Services Inc., 1154 St. Anthony Road, London, Ontario, Canada, N6H 2R1
| | - Nathalie Heuze-Vourc’h
- INSERM, Centre d’étude des pathologies respiratoires, U1100, Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
48
|
Cappellini F, Di Bucchianico S, Karri V, Latvala S, Malmlöf M, Kippler M, Elihn K, Hedberg J, Odnevall Wallinder I, Gerde P, Karlsson HL. Dry Generation of CeO 2 Nanoparticles and Deposition onto a Co-Culture of A549 and THP-1 Cells in Air-Liquid Interface-Dosimetry Considerations and Comparison to Submerged Exposure. NANOMATERIALS 2020; 10:nano10040618. [PMID: 32230801 PMCID: PMC7221976 DOI: 10.3390/nano10040618] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 02/04/2023]
Abstract
Relevant in vitro assays that can simulate exposure to nanoparticles (NPs) via inhalation are urgently needed. Presently, the most common method employed is to expose lung cells under submerged conditions, but the cellular responses to NPs under such conditions might differ from those observed at the more physiological air-liquid interface (ALI). The aim of this study was to investigate the cytotoxic and inflammatory potential of CeO2 NPs (NM-212) in a co-culture of A549 lung epithelial cells and differentiated THP-1 cells in both ALI and submerged conditions. Cellular dose was examined quantitatively using inductively coupled plasma mass spectrometry (ICP-MS). The role of serum and LPS-priming for IL-1β release was further tested in THP-1 cells in submerged exposure. An aerosol of CeO2 NPs was generated by using the PreciseInhale® system, and NPs were deposited on the co-culture using XposeALI®. No or minor cytotoxicity and no increased release of inflammatory cytokines (IL-1β, IL-6, TNFα, MCP-1) were observed after exposure of the co-culture in ALI (max 5 µg/cm2) or submerged (max 22 µg/cm2) conditions. In contrast, CeO2 NPs cause clear IL-1β release in monocultures of macrophage-like THP-1, independent of the presence of serum and LPS-priming. This study demonstrates a useful approach for comparing effects at various in-vitro conditions.
Collapse
Affiliation(s)
- Francesca Cappellini
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177 Sweden
| | - Sebastiano Di Bucchianico
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177 Sweden
- Comprehensive Molecular Analytics, Helmholtz Zentrum München, 81379 München, Germany
| | - Venkatanaidu Karri
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177 Sweden
| | - Siiri Latvala
- Department of Environmental Science, Stockholm University, Stockholm11418, Sweden
| | - Maria Malmlöf
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177 Sweden
- Inhalation Sciences, Hälsovägen 7-9, 141 57 Huddinge, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177 Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, Stockholm11418, Sweden
| | - Jonas Hedberg
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 114 28 Stockholm, Sweden
| | - Inger Odnevall Wallinder
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 114 28 Stockholm, Sweden
| | - Per Gerde
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177 Sweden
- Inhalation Sciences, Hälsovägen 7-9, 141 57 Huddinge, Sweden
| | - Hanna L. Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177 Sweden
- Correspondence:
| |
Collapse
|
49
|
Leung C, Wadsworth SJ, Yang SJ, Dorscheid DR. Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1063-L1073. [PMID: 32208929 DOI: 10.1152/ajplung.00190.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The human bronchial epithelium is an important barrier tissue that is damaged or pathologically altered in various acute and chronic respiratory conditions. To represent the epithelial component of respiratory disease, it is essential to use a physiologically relevant model of this tissue. The human bronchial epithelium is a highly organized tissue consisting of a number of specialized cell types. Primary human bronchial epithelial cells (HBEC) can be differentiated into a mucociliated tissue in air-liquid interface (ALI) cultures using appropriately supplemented media under optimized growth conditions. We compared the histology, ciliary length, and function, diffusion, and barrier properties of HBEC from donors with no respiratory disease grown in two different media, PneumaCult-ALI or Bronchial Epithelial Differentiation Medium (BEDM). In the former group, HBEC have a more physiological pseudostratified morphology and mucociliary differentiation, including increased epithelial thickness, intracellular expression of airway-specific mucin protein MUC5AC, and total expression of cilia basal-body protein compared with cells from the same donor grown in the other medium. Baseline expression levels of inflammatory mediators, thymic stromal lymphopoietin (TSLP), soluble ST2, and eotaxin-3 were lower in PneumaCult-ALI. Additionally, the physiological cilia beat frequency and electrical barrier properties with transepithelial electrical resistance were significantly different between the two groups. Our study has shown that these primary cell cultures from the same donor grown in the two media possess variable structural and functional characteristics. Therefore, it is important to objectively validate primary epithelial cell cultures before experimentation to ensure they are appropriate to answer a specific scientific question.
Collapse
Affiliation(s)
- Clarus Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Samuel J Wadsworth
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - S Jasemine Yang
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Delbert R Dorscheid
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Ritter D, Knebel J, Niehof M, Loinaz I, Marradi M, Gracia R, te Welscher Y, van Nostrum CF, Falciani C, Pini A, Strandh M, Hansen T. In vitro inhalation cytotoxicity testing of therapeutic nanosystems for pulmonary infection. Toxicol In Vitro 2020; 63:104714. [DOI: 10.1016/j.tiv.2019.104714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
|