1
|
Bailey JI, Puritz CH, Senkow KJ, Markov NS, Diaz E, Jonasson E, Yu Z, Swaminathan S, Lu Z, Fenske S, Grant RA, Abdala-Valencia H, Mylvaganam RJ, Ludwig A, Miller J, Cumming RI, Tighe RM, Gowdy KM, Kalhan R, Jain M, Bharat A, Kurihara C, San Jose Estepar R, San Jose Estepar R, Washko GR, Shilatifard A, Sznajder JI, Ridge KM, Budinger GRS, Braun R, Misharin AV, Sala MA. Profibrotic monocyte-derived alveolar macrophages are expanded in patients with persistent respiratory symptoms and radiographic abnormalities after COVID-19. Nat Immunol 2024; 25:2097-2109. [PMID: 39367123 PMCID: PMC11519004 DOI: 10.1038/s41590-024-01975-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Monocyte-derived alveolar macrophages drive lung injury and fibrosis in murine models and are associated with pulmonary fibrosis in humans. Monocyte-derived alveolar macrophages have been suggested to develop a phenotype that promotes lung repair as injury resolves. We compared single-cell and cytokine profiling of the alveolar space in a cohort of 35 patients with post-acute sequelae of COVID-19 who had persistent respiratory symptoms and abnormalities on a computed tomography scan of the chest that subsequently improved or progressed. The abundance of monocyte-derived alveolar macrophages, their gene expression programs, and the level of the monocyte chemokine CCL2 in bronchoalveolar lavage fluid positively associated with the severity of radiographic fibrosis. Monocyte-derived alveolar macrophages from patients with resolving or progressive fibrosis expressed the same set of profibrotic genes. Our findings argue against a distinct reparative phenotype in monocyte-derived alveolar macrophages, highlighting their utility as a biomarker of failed lung repair and a potential target for therapy.
Collapse
Affiliation(s)
- Joseph I Bailey
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Connor H Puritz
- Engineering Sciences and Applied Mathematics, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA
| | - Karolina J Senkow
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nikolay S Markov
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Estefani Diaz
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Emmy Jonasson
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhan Yu
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Suchitra Swaminathan
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ziyan Lu
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Samuel Fenske
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rogan A Grant
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ruben J Mylvaganam
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amy Ludwig
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Janet Miller
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - R Ian Cumming
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Robert M Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, The Ohio State University, Ohio, IL, USA
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Manu Jain
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ankit Bharat
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University, Chicago, IL, USA
| | - Chitaru Kurihara
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ruben San Jose Estepar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University, Chicago, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University, Chicago, IL, USA
| | - Rosemary Braun
- Engineering Sciences and Applied Mathematics, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA
- Department of Molecular Biosciences, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Lung Institute for Translational Science, Northwestern University, Chicago, IL, USA.
| | - Marc A Sala
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Lung Institute for Translational Science, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Okabe Y, Toda E, Urushiyama H, Terashima Y, Kunugi S, Kajimoto Y, Terasaki M, Matsushima K, Saito A, Yamauchi Y, Nagase T, Shimizu A, Terasaki Y. Antifibrotic effect of disulfiram on bleomycin-induced lung fibrosis in mice and its impact on macrophage infiltration. Sci Rep 2024; 14:23653. [PMID: 39384840 PMCID: PMC11464646 DOI: 10.1038/s41598-024-71770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2024] [Indexed: 10/11/2024] Open
Abstract
The accumulation of monocyte-derived macrophages in the lung tissue during inflammation is important for the pathogenesis of fibrotic lung disease. Deficiencies in chemokine receptors CCR2 and CCR5 and their ligands, which mediate monocyte/macrophage migration, ameliorate bleomycin (BLM)-induced lung fibrosis. Disulfiram (DSF), which is used to treat alcoholism because of its aldehyde dehydrogenase (ALDH)-inhibiting effect, inhibits monocyte/macrophage migration by inhibiting FROUNT, an intracellular regulator of CCR2/CCR5 signalling. Here, we investigated the antifibrotic effect of oral DSF administration in a mouse model of BLM-induced lung fibrosis, focusing on macrophage response and fibrosis progression. The direct inhibitory activity of DSF on monocyte migration was measured using the Boyden chamber assay and compared with that of DSF-related inhibitors with different FROUNT-inhibition activities. Quantitative PCR was used to determine the expression of fibrosis-promoting genes in the lung tissue. DSF significantly suppressed macrophage infiltration into lung tissues and attenuated BLM-induced lung fibrosis. DSF and its metabolites, diethyldithiocarbamate (DDC) and copper diethyldithiocarbamate (Cu(DDC)2), inhibited monocyte migration toward the culture supernatant of primary mouse lung cells mainly comprising CCL2, whereas cyanamide, another ALDH inhibitor, did not. DSF, with higher inhibitory activity against FROUNT than DDC and Cu(DDC)2, inhibited monocyte migration most strongly. In BLM-induced fibrotic lung tissues, profibrotic factors were highly expressed but were reduced by DSF treatment. These results suggest DSF inhibits macrophage infiltration, which might be attributed to its inhibitory effect on FROUNT, and attenuates BLM-induced lung fibrosis. In addition, multiplex immunofluorescence imaging revealed reduced infiltration of S100A4+ macrophages into the lungs in DSF-treated mice and high expression of FROUNT in S100A4+ macrophages in idiopathic pulmonary fibrosis (IPF). These findings underscore the potential of macrophage-targeted therapy with DSF as a promising drug repositioning approach for treating fibrotic lung diseases, including IPF.
Collapse
Affiliation(s)
- Yugo Okabe
- Department of Analytic Human Pathology, Nippon Medical School, 1-25-16 Nezu, Bunkyo-ku, Tokyo, 113-0031, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Etsuko Toda
- Department of Analytic Human Pathology, Nippon Medical School, 1-25-16 Nezu, Bunkyo-ku, Tokyo, 113-0031, Japan
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan
- Laboratory for Morphological and Biomolecular Imaging, Nippon Medical School, Tokyo, 113‑0031, Japan
| | - Hirokazu Urushiyama
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yuya Terashima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Nippon Medical School, 1-25-16 Nezu, Bunkyo-ku, Tokyo, 113-0031, Japan
| | - Yusuke Kajimoto
- Department of Analytic Human Pathology, Nippon Medical School, 1-25-16 Nezu, Bunkyo-ku, Tokyo, 113-0031, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, 1-25-16 Nezu, Bunkyo-ku, Tokyo, 113-0031, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yasuhiro Yamauchi
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Health Care Center, Tokyo University of Foreign Studies, Tokyo, 183‑8534, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, 1-25-16 Nezu, Bunkyo-ku, Tokyo, 113-0031, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, 1-25-16 Nezu, Bunkyo-ku, Tokyo, 113-0031, Japan.
- Division of Pathology, Nippon Medical School Hospital, Tokyo, 113‑8603, Japan.
| |
Collapse
|
3
|
Li X, Liu Y, Tang Y, Xia Z. Transformation of macrophages into myofibroblasts in fibrosis-related diseases: emerging biological concepts and potential mechanism. Front Immunol 2024; 15:1474688. [PMID: 39386212 PMCID: PMC11461261 DOI: 10.3389/fimmu.2024.1474688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) transforms macrophages into myofibroblasts in a specific inflammation or injury microenvironment. MMT is an essential biological process in fibrosis-related diseases involving the lung, heart, kidney, liver, skeletal muscle, and other organs and tissues. This process consists of interacting with various cells and molecules and activating different signal transduction pathways. This review deeply discussed the molecular mechanism of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors, and formed a complex regulatory network. Significantly, the critical role of transforming growth factor-β (TGF-β) and its downstream signaling pathways in this process were clarified. Furthermore, we discussed the significance of MMT in physiological and pathological conditions, such as pulmonary fibrosis and cardiac fibrosis. This review provides a new perspective for understanding the interaction between macrophages and myofibroblasts and new strategies and targets for the prevention and treatment of MMT in fibrotic diseases.
Collapse
Affiliation(s)
- Xiujun Li
- Health Science Center, Chifeng University, Chifeng, China
| | - Yuyan Liu
- Rehabilitation Medicine College, Shandong Second Medical University, Jinan, China
| | - Yongjun Tang
- Department of Emergency, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Zhaoyi Xia
- Department of Library, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Library, Jinan Children’s Hospital, Jinan, China
| |
Collapse
|
4
|
Jankowski K, Lemay SE, Lozano-Ojalvo D, Perez Rodriguez L, Sauvaget M, Breuils-Bonnet S, Formoso K, Jagana V, Zhang S, Milara J, Cortijo J, Turnbull IC, Provencher S, Bonnet S, Orchando J, Lezoualc'h F, Bisserier M, Hadri L. Pharmacological Inhibition of Epac1 Protects against Pulmonary Fibrosis by Blocking FoxO3a Neddylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612935. [PMID: 39345579 PMCID: PMC11429716 DOI: 10.1101/2024.09.13.612935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Idiopathic Pulmonary fibrosis (IPF) is characterized by progressive scarring and fibrosis within the lungs. There is currently no cure for IPF; therefore, there is an urgent need to identify novel therapeutic targets that can prevent the progression of IPF. Compelling evidence indicates that the second messenger, cyclic adenosine monophosphate (cAMP), inhibits lung fibroblast proliferation and differentiation through the classical PKA pathway. However, the contribution of the e xchange p rotein directly a ctivated by c AMP 1 (Epac1) to IPF pathophysiological processes is yet to be investigated. Objective To determine the role of the cAMP-binding protein Epac1 in the progression of IPF. Methods We used lung samples from IPF patients or healthy controls, mouse lung samples, or lung fibroblast isolated from a preclinical mouse model of PF induced by bleomycin intratracheal injection. The effect of bleomycin (BLM) treatment was determined in Epac1 knock-out mice or wild-type littermates. Epac1 expression was modulated in vitro by using lentiviral vectors or adenoviruses. The therapeutic potential of the Epac1-selective pharmacological inhibitor, AM-001, was tested in vivo and in vitro, using a bleomycin mouse model of PF and an ex vivo precision-cut lung slices (PCLs) model of human lung fibrosis. Results Epac1 expression was increased in the lung tissue of IPF patients, in IPF-diseased fibroblasts and in BLM-challenged mice. Furthermore, Epac1 genetic or pharmacological inhibition with AM-001 decreased normal and IPF fibroblast proliferation and the expression of profibrotic markers, αSMA, TGF-β/SMAD2/3, and interleukin-6 (IL-6)/STAT3 signaling pathways. Consistently, blocking Epac1 protected against BLM-induced lung injury and fibrosis, suggesting a therapeutic effect of Epac1 inhibition on PF pathogenesis and progression. Global gene expression profiling revealed a decrease in the key components of the profibrotic gene signature and neddylation pathway in Epac1-deficient lung fibroblasts and IPF human-derived PLCs. Mechanistically, the protective effect of Epac1 inhibition against PF development involves the inhibition of FoxO3a neddylation and its subsequent degradation by NEDD8, and in part, by limiting the proliferative capacity of lung-infiltrating monocytes. Conclusions We demonstrated that Epac1 is an important regulator of the pathological state of fibroblasts in PF and that small molecules targeting Epac1 can serve as novel therapeutic drugs against PF.
Collapse
|
5
|
Li Z, Ma J, Wang X, Zhu L, Gan Y, Dai B. The role of immune cells in the pathogenesis of connective tissue diseases-associated pulmonary arterial hypertension. Front Immunol 2024; 15:1464762. [PMID: 39355239 PMCID: PMC11442293 DOI: 10.3389/fimmu.2024.1464762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Connective tissue diseases-related pulmonary arterial hypertension (CTD-PAH) is a disease characterized by an elevated pulmonary artery pressure that arises as a complication of connective tissue diseases. The number of patients with CTD-PAH accounts for 25.3% of all PAH patients. The main pathological features of CTD-PAH are thickening of intima, media and adventitia of pulmonary arterioles, increased pulmonary vascular resistance, autoimmune activation and inflammatory reaction. It is worth noting that abnormal immune activation will produce autoantibodies and release cytokines, and abnormal immune cell recruitment will promote inflammatory environment and vascular remodeling. Therefore, almost all forms of connective tissue diseases are related to PAH. In addition to general therapy and targeted drug therapy for PAH, high-dose glucocorticoid combined with immunosuppressant can quickly alleviate and stabilize the basic CTD-PAH disease. Given this, the development of therapeutic approaches targeting immune dysregulation and heightened inflammation is recognized as a promising strategy to prevent or reverse the progression of CTD-PAH. This review explores the potential mechanisms by which immune cells contribute to the development of CTD-PAH and examines the clinical application of immunosuppressive therapies in managing CTD-PAH.
Collapse
Affiliation(s)
- Zhe Li
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Juan Ma
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Xuejing Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, China
| | - Liquan Zhu
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Yu Gan
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Baoquan Dai
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| |
Collapse
|
6
|
Auld SC, Sheshadri A, Alexander-Brett J, Aschner Y, Barczak AK, Basil MC, Cohen KA, Dela Cruz C, McGroder C, Restrepo MI, Ridge KM, Schnapp LM, Traber K, Wunderink RG, Zhang D, Ziady A, Attia EF, Carter J, Chalmers JD, Crothers K, Feldman C, Jones BE, Kaminski N, Keane J, Lewinsohn D, Metersky M, Mizgerd JP, Morris A, Ramirez J, Samarasinghe AE, Staitieh BS, Stek C, Sun J, Evans SE. Postinfectious Pulmonary Complications: Establishing Research Priorities to Advance the Field: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2024; 21:1219-1237. [PMID: 39051991 DOI: 10.1513/annalsats.202406-651st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Continued improvements in the treatment of pulmonary infections have paradoxically resulted in a growing challenge of individuals with postinfectious pulmonary complications (PIPCs). PIPCs have been long recognized after tuberculosis, but recent experiences such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the importance of PIPCs following other lower respiratory tract infections. Independent of the causative pathogen, most available studies of pulmonary infections focus on short-term outcomes rather than long-term morbidity among survivors. In this document, we establish a conceptual scope for PIPCs with discussion of globally significant pulmonary pathogens and an examination of how these pathogens can damage different components of the lung, resulting in a spectrum of PIPCs. We also review potential mechanisms for the transition from acute infection to PIPC, including the interplay between pathogen-mediated injury and aberrant host responses, which together result in PIPCs. Finally, we identify cross-cutting research priorities for the field to facilitate future studies to establish the incidence of PIPCs, define common mechanisms, identify therapeutic strategies, and ultimately reduce the burden of morbidity in survivors of pulmonary infections.
Collapse
|
7
|
King EM, McClendon J, Trinh T, Matsuda JL, Lyn-Kew KH, McCubbrey AL, Mould KJ, Henson PM, Janssen WJ. Slamf7 is dispensable in mouse models of acute lung injury. ERJ Open Res 2024; 10:00345-2024. [PMID: 39377087 PMCID: PMC11456964 DOI: 10.1183/23120541.00345-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/14/2024] [Indexed: 10/09/2024] Open
Abstract
Slamf7 is expressed by monocyte-derived macrophages recruited to the lungs during injury. Whole-body and macrophage-specific knockouts of Slamf7 had no effect on the degree of inflammation in three mouse models of acute lung injury. https://bit.ly/3KgTJg1.
Collapse
Affiliation(s)
- Emily M. King
- University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA
| | | | | | | | | | - Alexandra L. McCubbrey
- University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA
- National Jewish Health, Department of Medicine, Denver, CO, USA
| | - Kara J. Mould
- University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA
- National Jewish Health, Department of Medicine, Denver, CO, USA
| | - Peter M. Henson
- University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA
- National Jewish Health, Department of Pediatrics, Denver, CO, USA
| | - William J. Janssen
- University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA
- National Jewish Health, Department of Medicine, Denver, CO, USA
| |
Collapse
|
8
|
McCubbrey AL, Janssen WJ. Using a Single-Cell Atlas of Peripheral Blood Mononuclear Cells to Understand Disease Trajectories in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2024; 210:385-387. [PMID: 39012242 PMCID: PMC11351807 DOI: 10.1164/rccm.202406-1164ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024] Open
Affiliation(s)
- Alexandra L McCubbrey
- Department of Medicine National Jewish Health Denver, Colorado
- Department of Medicine University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - William J Janssen
- Department of Medicine National Jewish Health Denver, Colorado
- Department of Medicine University of Colorado Anschutz Medical Campus Aurora, Colorado
| |
Collapse
|
9
|
Deng L, Ouyang B, Tang W, Wang N, Yang F, Shi H, Zhang Z, Yu H, Chen M, Wei Y, Dong J. Icariside II modulates pulmonary fibrosis via PI3K/Akt/β-catenin pathway inhibition of M2 macrophage program. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155687. [PMID: 38759312 DOI: 10.1016/j.phymed.2024.155687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a debilitating interstitial lung disorder characterized by its limited therapeutic interventions. Macrophages, particularly the alternatively activated macrophages (M2 subtype), have been acknowledged for their substantial involvement in the development of pulmonary fibrosis. Hence, targeting macrophages emerges as a plausible therapeutic avenue for IPF. Icariside II (ISE II) is a natural flavonoid glycoside molecule known for its excellent anti-tumor and anti-fibrotic activities. Nevertheless, the impact of ISE II on pulmonary fibrosis and the intricate mechanisms through which it operates have yet to be elucidated. OBJECTIVE To scrutinize the impact of ISE II on the regulation of M2 macrophage polarization and its inhibitory effect on pulmonary fibrosis, as well as to delve deeper into the underlying mechanisms of its actions. METHODS The effect of ISE II on proliferation and apoptosis in RAW264.7 cells was assessed through the use of EdU-488 labeling and the Annexin V/PI assay. Flow cytometry, western blot, and qPCR were employed to detect markers associated with the M2 polarization phenotype. The anti-fibrotic effects of ISE II in NIH-3T3 cells were investigated in a co-culture with M2 macrophages. Si-Ctnnb1 and pcDNA3.1(+)-Ctnnb1 plasmid were used to investigate the mechanism of targeted intervention. The murine model of pulmonary fibrosis was induced by intratracheal administration of bleomycin (BLM). Pulmonary function, histopathological manifestations, lung M2 macrophage infiltration, and markers associated with pulmonary fibrosis were evaluated. Furthermore, in vivo transcriptomics analysis was employed to elucidate differentially regulated genes in lung tissues. Immunofluorescence, western blot, and immunohistochemistry were conducted for corresponding validation. RESULTS Our investigation demonstrated that ISE II effectively inhibited the proliferation of RAW264.7 cells and mitigated the pro-fibrotic characteristics of M2 macrophages, exemplified by the downregulation of CD206, Arg-1, and YM-1, Fizz1, through the inhibition of the PI3K/Akt/β-catenin signaling pathway. This impact led to the amelioration of myofibroblast activation and the suppression of nuclear translocation of β-catenin of NIH-3T3 cells in a co-culture. Consequently, it resulted in decreased collagen deposition, reduced infiltration of profibrotic macrophages, and a concurrent restoration of pulmonary function in mice IPF models. Furthermore, our RNA sequencing results showed that ISE II could suppress the expression of genes related to M2 polarization, primarily by inhibiting the PI3K/Akt and β-catenin signaling pathway. In essence, our findings suggest that ISE II holds potential as an anti-fibrotic agent by orchestrating macrophage polarization. This may have significant implications in clinical practice. CONCLUSION This study has provided evidence that ISE II exerts a significant anti-fibrotic effect by inhibiting macrophage M2 polarization through the suppression of the PI3K/Akt/β-catenin signaling pathway. These findings underscore the potential of ISE II as a promising candidate for the development of anti-fibrotic pharmaceuticals in the future.
Collapse
Affiliation(s)
- Lingling Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Boshu Ouyang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Na Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangyong Yang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Hanlin Shi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhenhua Zhang
- Shanghai Fifth People's Hospital, Fudan University, China
| | - Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institute of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Kamiya M, Carter H, Espindola MS, Doyle TJ, Lee JS, Merriam LT, Zhang F, Kawano-Dourado L, Sparks JA, Hogaboam CM, Moore BB, Oldham WM, Kim EY. Immune mechanisms in fibrotic interstitial lung disease. Cell 2024; 187:3506-3530. [PMID: 38996486 PMCID: PMC11246539 DOI: 10.1016/j.cell.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 07/14/2024]
Abstract
Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice. We first examine innate immunity, which is broadly involved across fILD subtypes. We illustrate how innate immunity in fILD involves a complex interplay of multiple cell subpopulations and molecular pathways. We then review the growing evidence for adaptive immunity in lung fibrosis to provoke a re-examination of its role in clinical fILD. We close with future directions to address key knowledge gaps in fILD pathobiology: (1) longitudinal studies emphasizing early-stage clinical disease, (2) immune mechanisms of acute exacerbations, and (3) next-generation immunophenotyping integrating spatial, genetic, and single-cell approaches. Advances in these areas are essential for the future of precision medicine and immunotherapy in fILD.
Collapse
Affiliation(s)
- Mari Kamiya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Carter
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milena S Espindola
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tracy J Doyle
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Joyce S Lee
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Louis T Merriam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fan Zhang
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Leticia Kawano-Dourado
- Hcor Research Institute, Hcor Hospital, Sao Paulo - SP 04004-030, Brazil; Pulmonary Division, Heart Institute (InCor), University of Sao Paulo, São Paulo - SP 05403-900, Brazil
| | - Jeffrey A Sparks
- Harvard Medical School, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Wei Y, Guo H, Chen S, Tang XX. Regulation of macrophage activation by lactylation in lung disease. Front Immunol 2024; 15:1427739. [PMID: 39026681 PMCID: PMC11254698 DOI: 10.3389/fimmu.2024.1427739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Lactylation is a process where lactate, a cellular metabolism byproduct, is added to proteins, altering their functions. In the realm of macrophage activation, lactylation impacts inflammatory response and immune regulation. Understanding the effects of lactylation on macrophage activation is vital in lung diseases, as abnormal activation and function are pivotal in conditions like pneumonia, pulmonary fibrosis, COPD, and lung cancer. This review explores the concept of lactylation, its regulation of macrophage activation, and recent research progress in lung diseases. It offers new insights into lung disease pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Yungeng Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hua Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shixing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-island, Guangzhou, China
| |
Collapse
|
12
|
Song L, Li K, Chen H, Xie L. Cell Cross-Talk in Alveolar Microenvironment: From Lung Injury to Fibrosis. Am J Respir Cell Mol Biol 2024; 71:30-42. [PMID: 38579159 PMCID: PMC11225874 DOI: 10.1165/rcmb.2023-0426tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/05/2024] [Indexed: 04/07/2024] Open
Abstract
Alveoli are complex microenvironments composed of various cell types, including epithelial, fibroblast, endothelial, and immune cells, which work together to maintain a delicate balance in the lung environment, ensuring proper growth, development, and an effective response to lung injuries. However, prolonged inflammation or aging can disrupt normal interactions among these cells, leading to impaired repair processes and a substantial decline in lung function. Therefore, it is essential to understand the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. We explored the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. These interactions occur through the secretion of signaling factors and play crucial roles in the response to injury, repair mechanisms, and the development of fibrosis in the lungs. Specifically, we focused on the regulation of alveolar type 2 cells by fibroblasts, endothelial cells, and macrophages. In addition, we explored the diverse phenotypes of fibroblasts at different stages of life and in response to lung injury, highlighting their impact on matrix production and immune functions. Furthermore, we summarize the various phenotypes of macrophages in lung injury and fibrosis as well as their intricate interplay with other cell types. This interplay can either contribute to the restoration of immune homeostasis in the alveoli or impede the repair process. Through a comprehensive exploration of these cell interactions, we aim to reveal new insights into the molecular mechanisms that drive lung injury toward fibrosis and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Licheng Song
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China; and
| | - Kuan Li
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Huaiyong Chen
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China; and
| |
Collapse
|
13
|
Tylek T, Wong J, Vaughan AE, Spiller KL. Biomaterial-mediated intracellular control of macrophages for cell therapy in pro-inflammatory and pro-fibrotic conditions. Biomaterials 2024; 308:122545. [PMID: 38547831 PMCID: PMC11264195 DOI: 10.1016/j.biomaterials.2024.122545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 05/03/2024]
Abstract
Macrophages are key modulators of all inflammatory diseases and essential for their resolution, making macrophage cell therapy a promising strategy for regenerative medicine. However, since macrophages change rapidly in response to microenvironmental cues, their phenotype must be controlled post-administration. We present a tunable biomaterial-based strategy to control macrophages intracellularly via small molecule-releasing microparticles. Poly(lactic-co-glycolic acid) microparticles encapsulating the anti-inflammatory and anti-fibrotic drug dexamethasone were administered to macrophages in vitro, with uptake rates controlled by different loading regimes. Microparticle dose and dexamethasone content directly affected macrophage phenotype and phagocytic capacity, independent of particle content per cell, leading to an overall pro-reparative, anti-inflammatory, anti-fibrotic phenotype with increased phagocytic and ECM degrading functionality. Intracellularly controlled macrophages partially maintained this phenotype in vivo in a murine pulmonary fibrosis model, with more prominent effects in a pro-fibrotic environment compared to pro-inflammatory. These results suggest that intracellular control using biomaterials has the potential to control macrophage phenotype post-administration, which is essential for successful macrophage cell therapy.
Collapse
Affiliation(s)
- Tina Tylek
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA 19104, USA
| | - Joanna Wong
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Kara L Spiller
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Mannes PZ, Adams TS, Farsijani S, Barnes CE, Latoche JD, Day KE, Nedrow JR, Ahangari F, Kaminski N, Lee JS, Tavakoli S. Noninvasive assessment of the lung inflammation-fibrosis axis by targeted imaging of CMKLR1. SCIENCE ADVANCES 2024; 10:eadm9817. [PMID: 38896611 PMCID: PMC11186491 DOI: 10.1126/sciadv.adm9817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Precision management of fibrotic lung diseases is challenging due to their diverse clinical trajectories and lack of reliable biomarkers for risk stratification and therapeutic monitoring. Here, we validated the accuracy of CMKLR1 as an imaging biomarker of the lung inflammation-fibrosis axis. By analyzing single-cell RNA sequencing datasets, we demonstrated CMKLR1 expression as a transient signature of monocyte-derived macrophages (MDMφ) enriched in patients with idiopathic pulmonary fibrosis (IPF). Consistently, we identified MDMφ as the major driver of the uptake of CMKLR1-targeting peptides in a murine model of bleomycin-induced lung fibrosis. Furthermore, CMKLR1-targeted positron emission tomography in the murine model enabled quantification and spatial mapping of inflamed lung regions infiltrated by CMKLR1-expressing macrophages and emerged as a robust predictor of subsequent lung fibrosis. Last, high CMKLR1 expression by bronchoalveolar lavage cells identified an inflammatory endotype of IPF with poor survival. Our investigation supports the potential of CMKLR1 as an imaging biomarker for endotyping and risk stratification of fibrotic lung diseases.
Collapse
Affiliation(s)
- Philip Z. Mannes
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Taylor S. Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Samaneh Farsijani
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Clayton E. Barnes
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph D. Latoche
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn E. Day
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessie R. Nedrow
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Farida Ahangari
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Janet S. Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Sina Tavakoli
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Anton ML, Cardoneanu A, Burlui AM, Mihai IR, Richter P, Bratoiu I, Macovei LA, Rezus E. The Lung in Rheumatoid Arthritis-Friend or Enemy? Int J Mol Sci 2024; 25:6460. [PMID: 38928165 PMCID: PMC11203675 DOI: 10.3390/ijms25126460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune condition frequently found in rheumatological patients that sometimes raises diagnosis and management problems. The pathogenesis of the disease is complex and involves the activation of many cells and intracellular signaling pathways, ultimately leading to the activation of the innate and acquired immune system and producing extensive tissue damage. Along with joint involvement, RA can have numerous extra-articular manifestations (EAMs), among which lung damage, especially interstitial lung disease (ILD), negatively influences the evolution and survival of these patients. Although there are more and more RA-ILD cases, the pathogenesis is incompletely understood. In terms of genetic predisposition, external environmental factors act and subsequently determine the activation of immune system cells such as macrophages, neutrophils, B and T lymphocytes, fibroblasts, and dendritic cells. These, in turn, show the ability to secrete molecules with a proinflammatory role (cytokines, chemokines, growth factors) that will produce important visceral injuries, including pulmonary changes. Currently, there is new evidence that supports the initiation of the systemic immune response at the level of pulmonary mucosa where the citrullination process occurs, whereby the autoantibodies subsequently migrate from the lung to the synovial membrane. The aim of this paper is to provide current data regarding the pathogenesis of RA-associated ILD, starting from environmental triggers and reaching the cellular, humoral, and molecular changes involved in the onset of the disease.
Collapse
Affiliation(s)
- Maria-Luciana Anton
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Anca Cardoneanu
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alexandra Maria Burlui
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Ruxandra Mihai
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Patricia Richter
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Bratoiu
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Luana Andreea Macovei
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Elena Rezus
- Discipline of Rheumatology, Medical Department II, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (M.-L.A.); (A.M.B.); (I.R.M.); (P.R.); (I.B.); (L.A.M.); (E.R.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
16
|
Theobald H, Bejarano DA, Katzmarski N, Haub J, Schulte-Schrepping J, Yu J, Bassler K, Ament AL, Osei-Sarpong C, Piattini F, Vornholz L, T'Jonck W, Györfi AH, Hayer H, Yu X, Sheoran S, Al Jawazneh A, Chakarov S, Haendler K, Brown GD, Williams DL, Bosurgi L, Distler JHW, Ginhoux F, Ruland J, Beyer MD, Greter M, Bain CC, Vazquez-Armendariz AI, Kopf M, Schultze JL, Schlitzer A. Apolipoprotein E controls Dectin-1-dependent development of monocyte-derived alveolar macrophages upon pulmonary β-glucan-induced inflammatory adaptation. Nat Immunol 2024; 25:994-1006. [PMID: 38671323 PMCID: PMC11147775 DOI: 10.1038/s41590-024-01830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
The lung is constantly exposed to the outside world and optimal adaptation of immune responses is crucial for efficient pathogen clearance. However, mechanisms that lead to lung-associated macrophages' functional and developmental adaptation remain elusive. To reveal such mechanisms, we developed a reductionist model of environmental intranasal β-glucan exposure, allowing for the detailed interrogation of molecular mechanisms of pulmonary macrophage adaptation. Employing single-cell transcriptomics, high-dimensional imaging and flow cytometric characterization paired with in vivo and ex vivo challenge models, we reveal that pulmonary low-grade inflammation results in the development of apolipoprotein E (ApoE)-dependent monocyte-derived alveolar macrophages (ApoE+CD11b+ AMs). ApoE+CD11b+ AMs expressed high levels of CD11b, ApoE, Gpnmb and Ccl6, were glycolytic, highly phagocytic and produced large amounts of interleukin-6 upon restimulation. Functional differences were cell intrinsic, and myeloid cell-specific ApoE ablation inhibited Ly6c+ monocyte to ApoE+CD11b+ AM differentiation dependent on macrophage colony-stimulating factor secretion, promoting ApoE+CD11b+ AM cell death and thus impeding ApoE+CD11b+ AM maintenance. In vivo, β-glucan-elicited ApoE+CD11b+ AMs limited the bacterial burden of Legionella pneumophilia after infection and improved the disease outcome in vivo and ex vivo in a murine lung fibrosis model. Collectively these data identify ApoE+CD11b+ AMs generated upon environmental cues, under the control of ApoE signaling, as an essential determinant for lung adaptation enhancing tissue resilience.
Collapse
Affiliation(s)
- H Theobald
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - D A Bejarano
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - N Katzmarski
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - J Haub
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - J Schulte-Schrepping
- Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerativen Erkrankungen (DZNE), Bonn, Germany
| | - J Yu
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - K Bassler
- Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - A L Ament
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
| | - C Osei-Sarpong
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - F Piattini
- Institute of Molecular Health Science, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - L Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - W T'Jonck
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - A H Györfi
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
| | - H Hayer
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - X Yu
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - S Sheoran
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - A Al Jawazneh
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - S Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong School of Medicine, Shanghai, China
| | - K Haendler
- PRECISE Platform for Single Cell Genomics and Epigenomics at DZNE & University of Bonn and West German Genome Center, Bonn, Germany
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Luebeck & Kiel University, Luebeck, Germany
| | - G D Brown
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - D L Williams
- Department of Surgery and Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - L Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - J H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich-Heine University, Düsseldorf, Germany
| | - F Ginhoux
- Shanghai Institute of Immunology, Shanghai JiaoTong School of Medicine, Shanghai, China
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - J Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - M D Beyer
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics at DZNE & University of Bonn and West German Genome Center, Bonn, Germany
| | - M Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - C C Bain
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - A I Vazquez-Armendariz
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, Bonn, Germany
| | - M Kopf
- Institute of Molecular Health Science, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - J L Schultze
- Genomics & Immunoregulation, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerativen Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics at DZNE & University of Bonn and West German Genome Center, Bonn, Germany
| | - A Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
17
|
Shiohama Y, Nakamura J, Nakamura M. Cellular Distribution and Intracellular Localization of Different Sizes of Fluorescent Thiol-Organosilica Particles in Mouse Lungs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18627-18642. [PMID: 38590224 DOI: 10.1021/acsami.4c02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We investigated the distribution of intratracheally administered thiol-organosilica (thiol-OS) particles in mouse lungs. Toward this end, single doses of thiol-OS particles containing fluorescein (140 nm in diameter) (F140) and rhodamine B (Rh) (Rh160, Rh280, Rh420, Rh640, and Rh1630 with diameters of 160, 280, 420, 640, and 1630 nm, respectively) were administered. After 24 h, fluorescence imaging revealed homogeneous fluorescence with a patchier pattern on the lung surface and no difference among the six particle sizes. Simultaneous dual administration of Rh and F140 particles did not reveal any size-dependent differences in the lung surface fluorescence. Fluorescence microscopy of the lung sections revealed a similar tissue distribution in the fluorescent areas of Rhs and F140. Some fluorescent areas showed one type of particle fluorescence or only one fluorescence. Cellular distribution of particles was observed in bronchoalveolar lavage cells and lung sections under a high magnification, and correlative light and electron microscopy revealed large cells with fluorescence corresponding to both particle types and small cells with fluorescence of individual particle types, indicating a cell-subset-dependent particle size effect. Rh280, Rh420, and Rh640 exhibited significant size effects and were taken up by alveolar macrophages. Extracellular particles were observed, indicating that saturation exceeded the particle dose threshold in the alveoli. F140 taken up by small and large macrophages colocalized with CD68, CD11c, and CD11b and correlated with CD11c. The size effect, intracellular localization, and extracellular distribution of particles provide insights into lung and systemic drug delivery.
Collapse
Affiliation(s)
- Yasuo Shiohama
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, 1-1-1 minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
18
|
Bergwik J, Bhongir RKV, Padra M, Adler A, Olm F, Lång P, Lindstedt S, Andersson G, Egesten A, Tanner L. Macrophage expressed tartrate-resistant acid phosphatase 5 promotes pulmonary fibrosis progression. Immunology 2024; 171:583-594. [PMID: 38178705 DOI: 10.1111/imm.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder involving scarring of pulmonary tissue and a subsequent decrease in respiratory capacity, ultimately resulting in death. Tartrate resistant acid phosphatase 5 (ACP5) plays a role in IPF but the exact mechanisms are yet to be elucidated. In this study, we have utilized various perturbations of the bleomycin mouse model of IPF including genetic knockout, RANKL inhibition, and macrophage adoptive transfer to further understand ACP5's role in pulmonary fibrosis. Genetic ablation of Acp5 decreased immune cell recruitment to the lungs and reduced the levels of hydroxyproline (reflecting extracellular matrix-production) as well as histological damage. Additionally, gene expression profiling of murine lung tissue revealed downregulation of genes including Ccl13, Mmp13, and Il-1α that encodes proteins specifically related to immune cell recruitment and macrophage/fibroblast interactions. Furthermore, antibody-based neutralization of RANKL, an important inducer of Acp5 expression, reduced immune cell recruitment but did not decrease fibrotic lung development. Adoptive transfer of Acp5-/- bone marrow-derived monocyte (BMDM) macrophages 7 or 14 days after bleomycin administration resulted in reductions of cytokine production and decreased levels of lung damage, compared to adoptive transfer of WT control macrophages. Taken together, the data presented in this study suggest that macrophage derived ACP5 plays an important role in development of pulmonary fibrosis and could present a tractable target for therapeutic intervention in IPF.
Collapse
Affiliation(s)
- Jesper Bergwik
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi Kiran Varma Bhongir
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Médea Padra
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Anna Adler
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Cardiothoracic Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Lindstedt
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Cardiothoracic Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arne Egesten
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Lloyd Tanner
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
19
|
Janho dit Hreich S, Juhel T, Leroy S, Ghinet A, Brau F, Hofman V, Hofman P, Vouret-Craviari V. Activation of the P2RX7/IL-18 pathway in immune cells attenuates lung fibrosis. eLife 2024; 12:RP88138. [PMID: 38300690 PMCID: PMC10945561 DOI: 10.7554/elife.88138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease associated with progressive and irreversible deterioration of respiratory functions that lacks curative therapies. Despite IPF being associated with a dysregulated immune response, current antifibrotics aim only at limiting fibroproliferation. Transcriptomic analyses show that the P2RX7/IL18/IFNG axis is downregulated in IPF patients and that P2RX7 has immunoregulatory functions. Using our positive modulator of P2RX7, we show that activation of the P2RX7/IL-18 axis in immune cells limits lung fibrosis progression in a mouse model by favoring an antifibrotic immune environment, with notably an enhanced IL-18-dependent IFN-γ production by lung T cells leading to a decreased production of IL-17 and TGFβ. Overall, we show the ability of the immune system to limit lung fibrosis progression by targeting the immunomodulator P2RX7. Hence, treatment with a small activator of P2RX7 may represent a promising strategy to help patients with lung fibrosis.
Collapse
Affiliation(s)
| | - Thierry Juhel
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Sylvie Leroy
- FHU OncoAgeNiceFrance
- Université Côte d'Azur, CNRS, Institut Pharmacologie Moléculaire et CellulaireSophia-AntipolisFrance
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Pneumology DepartmentNiceFrance
| | - Alina Ghinet
- Inserm U995, LIRIC, Université de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place VerdunLilleFrance
- Hautes Etudes d’Ingénieur (HEI), JUNIA Hauts-de-France, UCLille, Laboratoire de chimie durable et santéLilleFrance
- ‘Al. I. Cuza’ University of Iasi, Faculty of ChemistryIasiRomania
| | - Frederic Brau
- Université Côte d'Azur, CNRS, Institut Pharmacologie Moléculaire et CellulaireSophia-AntipolisFrance
| | - Veronique Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
- FHU OncoAgeNiceFrance
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur HospitalNiceFrance
- Hospital-Related Biobank (BB-0033-00025), Pasteur HospitalNiceFrance
| | - Paul Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
- FHU OncoAgeNiceFrance
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur HospitalNiceFrance
- Hospital-Related Biobank (BB-0033-00025), Pasteur HospitalNiceFrance
| | | |
Collapse
|
20
|
Mackintosh JA, Keir G, Troy LK, Holland AE, Grainge C, Chambers DC, Sandford D, Jo HE, Glaspole I, Wilsher M, Goh NSL, Reynolds PN, Chapman S, Mutsaers SE, de Boer S, Webster S, Moodley Y, Corte TJ. Treatment of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis: A position statement from the Thoracic Society of Australia and New Zealand 2023 revision. Respirology 2024; 29:105-135. [PMID: 38211978 PMCID: PMC10952210 DOI: 10.1111/resp.14656] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease leading to significant morbidity and mortality. In 2017 the Thoracic Society of Australia and New Zealand (TSANZ) and Lung Foundation Australia (LFA) published a position statement on the treatment of IPF. Since that time, subsidized anti-fibrotic therapy in the form of pirfenidone and nintedanib is now available in both Australia and New Zealand. More recently, evidence has been published in support of nintedanib for non-IPF progressive pulmonary fibrosis (PPF). Additionally, there have been numerous publications relating to the non-pharmacologic management of IPF and PPF. This 2023 update to the position statement for treatment of IPF summarizes developments since 2017 and reaffirms the importance of a multi-faceted approach to the management of IPF and progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- John A. Mackintosh
- Department of Respiratory MedicineThe Prince Charles HospitalBrisbaneQueenslandAustralia
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
| | - Gregory Keir
- Department of Respiratory MedicinePrincess Alexandra HospitalBrisbaneQueenslandAustralia
| | - Lauren K. Troy
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
- University of SydneySydneyNew South WalesAustralia
| | - Anne E. Holland
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of PhysiotherapyThe Alfred HospitalMelbourneVictoriaAustralia
- Department of Respiratory Research@AlfredCentral Clinical School, Monash UniversityMelbourneVictoriaAustralia
| | - Christopher Grainge
- Department of Respiratory MedicineJohn Hunter HospitalNewcastleNew South WalesAustralia
| | - Daniel C. Chambers
- Department of Respiratory MedicineThe Prince Charles HospitalBrisbaneQueenslandAustralia
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
| | - Debra Sandford
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of Thoracic MedicineCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
- University of AdelaideAdelaideSouth AustraliaAustralia
| | - Helen E. Jo
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
- University of SydneySydneyNew South WalesAustralia
| | - Ian Glaspole
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of Respiratory MedicineThe Alfred HospitalMelbourneVictoriaAustralia
| | - Margaret Wilsher
- Department of Respiratory MedicineTe Toka Tumai AucklandAucklandNew Zealand
| | - Nicole S. L. Goh
- Department of Respiratory MedicineAustin HospitalMelbourneVictoriaAustralia
- Institute for Breathing and SleepMelbourneVictoriaAustralia
- University of MelbourneMelbourneVictoriaAustralia
| | - Paul N. Reynolds
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of Thoracic MedicineCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
- University of AdelaideAdelaideSouth AustraliaAustralia
| | - Sally Chapman
- Institute for Respiratory Health, University of Western AustraliaNedlandsWestern AustraliaAustralia
| | - Steven E. Mutsaers
- Department of Respiratory MedicineFiona Stanley HospitalMurdochWestern AustraliaAustralia
| | - Sally de Boer
- Department of Respiratory MedicineTe Toka Tumai AucklandAucklandNew Zealand
| | - Susanne Webster
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
| | - Yuben Moodley
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Institute for Respiratory Health, University of Western AustraliaNedlandsWestern AustraliaAustralia
- Department of Respiratory MedicineFiona Stanley HospitalMurdochWestern AustraliaAustralia
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary FibrosisCamperdownNew South WalesAustralia
- Department of Respiratory and Sleep MedicineRoyal Prince Alfred HospitalCamperdownNew South WalesAustralia
- University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
21
|
de Cevins C, Delage L, Batignes M, Riller Q, Luka M, Remaury A, Sorin B, Fali T, Masson C, Hoareau B, Meunier C, Parisot M, Zarhrate M, Pérot BP, García-Paredes V, Carbone F, Galliot L, Nal B, Pierre P, Canard L, Boussard C, Crickx E, Guillemot JC, Bader-Meunier B, Bélot A, Quartier P, Frémond ML, Neven B, Boldina G, Augé F, Alain F, Didier M, Rieux-Laucat F, Ménager MM. Single-cell RNA-sequencing of PBMCs from SAVI patients reveals disease-associated monocytes with elevated integrated stress response. Cell Rep Med 2023; 4:101333. [PMID: 38118407 PMCID: PMC10772457 DOI: 10.1016/j.xcrm.2023.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
Gain-of-function mutations in stimulator of interferon gene 1 (STING1) result in STING-associated vasculopathy with onset in infancy (SAVI), a severe autoinflammatory disease. Although elevated type I interferon (IFN) production is thought to be the leading cause of the symptoms observed in patients, STING can induce a set of pathways, which have roles in the onset and severity of SAVI and remain to be elucidated. To this end, we performed a multi-omics comparative analysis of peripheral blood mononuclear cells (PBMCs) and plasma from SAVI patients and healthy controls, combined with a dataset of healthy PBMCs treated with IFN-β. Our data reveal a subset of disease-associated monocyte, expressing elevated CCL3, CCL4, and IL-6, as well as a strong integrated stress response, which we suggest is the result of direct PERK activation by STING. Cell-to-cell communication inference indicates that these monocytes lead to T cell early activation, resulting in their senescence and apoptosis. Last, we propose a transcriptomic signature of STING activation, independent of type I IFN response.
Collapse
Affiliation(s)
- Camille de Cevins
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France; Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Laure Delage
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France; Checkpoint Immunology, Immunology and Inflammation Therapeutic Area, Sanofi, 94400 Vitry-sur-Seine, France
| | - Maxime Batignes
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Quentin Riller
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Marine Luka
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Anne Remaury
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Boris Sorin
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Tinhinane Fali
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Cécile Masson
- Bioinformatics Platform, Structure Fédérative de Recherche Necker, INSERM UMR1163, Université de Paris, Imagine Institute, Paris, France
| | - Bénédicte Hoareau
- Sorbonne Université, INSERM UMS037 PASS, Plateforme de Cytométrie (CyPS), Paris, France
| | - Catherine Meunier
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Brieuc P Pérot
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Víctor García-Paredes
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Francesco Carbone
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Lou Galliot
- Aix Marseille Université, CNRS, INSERM, CIML, 13288 Marseille Cedex 9, France
| | - Béatrice Nal
- Aix Marseille Université, CNRS, INSERM, CIML, 13288 Marseille Cedex 9, France
| | - Philippe Pierre
- Aix Marseille Université, CNRS, INSERM, CIML, 13288 Marseille Cedex 9, France; Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Luc Canard
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Charlotte Boussard
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Etienne Crickx
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France; Service de Médecine Interne, Centre national de référence des cytopénies auto-immunes de l'adulte, Hôpital Henri Mondor, Fédération Hospitalo-Universitaire TRUE InnovaTive theRapy for immUne disordErs, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris Est Créteil, Créteil, France
| | - Jean-Claude Guillemot
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Brigitte Bader-Meunier
- Pediatric Immuno-hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP. Centre Université Paris Cité, 75015 Paris, France
| | - Alexandre Bélot
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France; National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
| | - Pierre Quartier
- Pediatric Immuno-hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP. Centre Université Paris Cité, 75015 Paris, France
| | - Marie-Louise Frémond
- Pediatric Immuno-hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP. Centre Université Paris Cité, 75015 Paris, France; Université Paris Cité, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR 1163, 75015 Paris, France
| | - Bénédicte Neven
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France; Pediatric Immuno-hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, AP-HP. Centre Université Paris Cité, 75015 Paris, France
| | - Galina Boldina
- Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Franck Augé
- Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Fischer Alain
- Université de Paris, Imagine Institute, INSERM UMR 1163, 75015 Paris, France; Collège de France, Paris, France; Department of Paediatric Immuno-Haematology and Rheumatology, Reference Center for Rheumatic, AutoImmune and Systemic Diseases in Children (RAISE), Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP) 75015 Paris, France
| | - Michel Didier
- Genomics and Proteomics Groups, Translational Sciences, Sanofi R&D, 1 Av Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Frédéric Rieux-Laucat
- Université de Paris Cité, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Mickaël M Ménager
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France.
| |
Collapse
|
22
|
Kwak D, Bradley PB, Subbotina N, Ling S, Teitz-Tennenbaum S, Osterholzer JJ, Sisson TH, Kim KK. CD36/Lyn kinase interactions within macrophages promotes pulmonary fibrosis in response to oxidized phospholipid. Respir Res 2023; 24:314. [PMID: 38098035 PMCID: PMC10722854 DOI: 10.1186/s12931-023-02629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Recent data from human studies and animal models have established roles for type II alveolar epithelial cell (AEC2) injury/apoptosis and monocyte/macrophage accumulation and activation in progressive lung fibrosis. Although the link between these processes is not well defined, we have previously shown that CD36-mediated uptake of apoptotic AEC2s by lung macrophages is sufficient to drive fibrosis. Importantly, apoptotic AEC2s are rich in oxidized phospholipids (oxPL), and amongst its multiple functions, CD36 serves as a scavenger receptor for oxPL. Recent studies have established a role for oxPLs in alveolar scarring, and we hypothesized that uptake and accrual of oxPL by CD36 would cause a macrophage phenotypic change that promotes fibrosis. To test this hypothesis, we treated wild-type and CD36-null mice with the oxPL derivative oxidized phosphocholine (POVPC) and found that CD36-null mice were protected from oxPL-induced scarring. Compared to WT mice, fewer macrophages accumulated in the lungs of CD36-null animals, and the macrophages exhibited a decreased accumulation of intracellular oxidized lipid. Importantly, the attenuated accrual of oxPL in CD36-null macrophages was associated with diminished expression of the profibrotic mediator, TGFβ. Finally, the pathway linking oxPL uptake and TGFβ expression was found to require CD36-mediated activation of Lyn kinase. Together, these observations elucidate a causal pathway that connects AEC2 injury with lung macrophage activation via CD36-mediated uptake of oxPL and suggest several potential therapeutic targets.
Collapse
Affiliation(s)
- Doyun Kwak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Patrick B Bradley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Natalia Subbotina
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Song Ling
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Seagal Teitz-Tennenbaum
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
- Pulmonary Section, Department of Medicine, VA Ann Arbor Health System, Ann Arbor, MI, 48105, USA
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
- Pulmonary Section, Department of Medicine, VA Ann Arbor Health System, Ann Arbor, MI, 48105, USA
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Yang G, Yang Y, Liu Y, Liu X. Regulation of alveolar macrophage death in pulmonary fibrosis: a review. Apoptosis 2023; 28:1505-1519. [PMID: 37707713 PMCID: PMC10618387 DOI: 10.1007/s10495-023-01888-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
Pulmonary fibrosis (PF) is a disease in which excessive extracellular matrix (ECM) accumulation occurs in pulmonary mesenchyme, which induces the destruction of alveolar structures and poor prognosis. Macrophage death is responsible for ECM accumulation after alveolar epithelial injury in PF. Depending on the local micro-environments, macrophages can be polarized to either classically activated (M1) or alternatively activated (M2) macrophage phenotypes. In general, M1 macrophages can promote inflammation and sterilization, stop the continuous damage process and prevent excessive repair, while M2 macrophages are anti-inflammatory and promote tissue repair, and excessive M2 macrophage activity may inhibit the absorption and degradation of ECM. Emerging evidence has revealed that death forms such as pyroptosis mediated by inflammasome affect polarization direction and ultimately lead to the development of PF. Pharmacological manipulation of macrophages death signals may serve as a logical therapeutic strategy for PF. This review will focus on the current state of knowledge regarding the regulation and underlying mechanisms of macrophages and their mediators in the influence of macrophage death on the development of PF. We expect to provide help in developing effective therapeutic strategies in clinical settings.
Collapse
Affiliation(s)
- Ganghao Yang
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Yiping Liu
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Xiaoshu Liu
- Department of Respiratory and Critical Medicine, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China.
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
24
|
Larson-Casey JL, Saleem K, Surolia R, Pandey J, Mack M, Antony VB, Bodduluri S, Bhatt SP, Duncan SR, Carter AB. Myeloid Heterogeneity Mediates Acute Exacerbations of Pulmonary Fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1714-1724. [PMID: 37782053 PMCID: PMC10843506 DOI: 10.4049/jimmunol.2300053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Epidemiological evidence indicates that exposure to particulate matter is linked to the development of idiopathic pulmonary fibrosis (IPF) and increases the incidence of acute exacerbations of IPF. In addition to accelerating the rate of lung function decline, exposure to fine particulate matter (particulate matter smaller than 2.5 μm [PM2.5]) is a risk factor for increased mortality in subjects with IPF. In this article, we show that exposure to PM2.5 mediates monocyte recruitment and fibrotic progression in mice with established fibrosis. In mice with established fibrosis, bronchoalveolar lavage cells showed monocyte/macrophage heterogeneity after exposure to PM2.5. These cells had a significant inflammatory and anti-inflammatory signature. The mixed heterogeneity of cells contributed to the proinflammatory and anti-inflammatory response. Although monocyte-derived macrophages were recruited to the lung in bleomycin-injured mice treated with PM2.5, recruitment of monocytes expressing Ly6Chi to the lung promoted progression of fibrosis, reduced lung aeration on computed tomography, and impacted lung compliance. Ly6Chi monocytes isolated from PM2.5-exposed fibrotic mice showed enhanced expression of proinflammatory markers compared with fibrotic mice exposed to vehicle. Moreover, IPF bronchoalveolar lavage cells treated ex vivo with PM2.5 showed an exaggerated inflammatory response. Targeting Ly6Chi monocyte recruitment inhibited fibrotic progression in mice. Moreover, the adoptive transfer of Ly6Chi monocytes exacerbated established fibrosis. These observations suggest that enhanced recruitment of Ly6Chi monocytes with a proinflammatory phenotype mediates acute exacerbations of pulmonary fibrosis, and targeting these cells may provide a potential novel therapeutic target to protect against acute exacerbations of IPF.
Collapse
Affiliation(s)
- Jennifer L. Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Komal Saleem
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ranu Surolia
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jyotsana Pandey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthias Mack
- Department of Nephrology, University of Regensburg, Regensburg, Germany
| | - Veena B. Antony
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sandeep Bodduluri
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- UAB Lung Imaging Lab, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Surya P. Bhatt
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- UAB Lung Imaging Lab, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven R. Duncan
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - A. Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham Veterans Administration Medical Center, Birmingham. AL, USA
| |
Collapse
|
25
|
Sun Y, Xu H, Lu T, Li T, Wang Y, Fan X, Jiang Y, Cai M, He P, Liu J. Progress in Understanding the Role and Therapeutic Targets of Polarized Subtypes of Macrophages in Pulmonary Fibrosis. Cell Biochem Biophys 2023; 81:673-682. [PMID: 37749443 DOI: 10.1007/s12013-023-01182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Pulmonary fibrosis represents the advanced phase of diverse pulmonary ailments, and at present, a definitive cure for these ailments is lacking. Furthermore, underlying mechanisms causative of these ailments remain elusive. Macrophages are immune cells that resist external stimuli in the early stages after birth. These cells can polarize into the classically (M1) and alternatively (M2) activated macrophages. When stimulated owing to the presence of toxic factors, M1 macrophages produce several pro-inflammatory factors, which mediate the inflammatory injury response of the alveolar tissue. The secretion of diverse growth factors by M2 macrophages contributes to the pathogenesis of aberrant alveolar structural fibrosis and remodeling. The abnormal activity of M2 macrophages is considered a critical factor in the formation of pulmonary fibrosis. In this mini-review, to highlight the clinical implications of research studies, we summarize the role and therapeutic targets of polarized subtypes of macrophages in pulmonary fibrosis and the role of targeting macrophages for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yan Sun
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hao Xu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tang Lu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tong Li
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yaqi Wang
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinting Fan
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyuan Jiang
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meihan Cai
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peishuang He
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jun Liu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- The Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
26
|
Morozan A, Joy S, Fujii U, Fraser R, Watters K, Martin JG, Colmegna I. Superiority of systemic bleomycin to intradermal HOCl for the study of interstitial lung disease. Sci Rep 2023; 13:20577. [PMID: 37996447 PMCID: PMC10667597 DOI: 10.1038/s41598-023-47083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, immune dysregulation, and multi-organ fibrosis. Interstitial lung disease (ILD) is a complication of SSc and a leading cause of SSc-death. The administration of hypochlorous acid (HOCl) intradermally in the mouse (HOCl-SSc) purportedly shows several features typical of SSc. We studied the model by injecting BALB/c mice daily intradermally with HOCl for 6-weeks, an exposure reported to induce lung fibrosis. On day 42, the skinfold thickness and the dermal thickness were two and three times larger respectively in the HOCl group compared to controls. HOCl treatment did not result in histological features of pulmonary fibrosis nor significant changes in lung compliance. Automated image analysis of HOCl mice lungs stained with picrosirius red did not show increased collagen deposition. HOCl injections did not increase pulmonary mRNA expression of pro-fibrotic genes nor induced the production of serum advanced oxidation protein products and anti-topoisomerase 1 antibodies. Immune cells in bronchoalveolar lavage fluid (BALF) and whole lung digests were not increased in HOCl-treated animals. Since lung fibrosis is proposed to be triggered by oxidative stress, we injected HOCl to Nrf2-/- mice, a mouse deficient in many antioxidant proteins. Lung compliance, histology, and BALF leukocyte numbers were comparable between Nrf2-/- mice and wild-type controls. We conclude that the HOCl-SSc model does not manifest SSc-lung disease.
Collapse
Affiliation(s)
- Arina Morozan
- Meakins Christie Laboratories, McGill University Health Centre and McGill University, Montreal, QC, H4A 3J1, Canada
- The Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Sydney Joy
- Meakins Christie Laboratories, McGill University Health Centre and McGill University, Montreal, QC, H4A 3J1, Canada
- The Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Utako Fujii
- Meakins Christie Laboratories, McGill University Health Centre and McGill University, Montreal, QC, H4A 3J1, Canada
| | - Richard Fraser
- Division of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Kevin Watters
- Division of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - James G Martin
- Meakins Christie Laboratories, McGill University Health Centre and McGill University, Montreal, QC, H4A 3J1, Canada
- The Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Inés Colmegna
- The Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada.
- Division of Rheumatology, McGill University Health Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
27
|
Morrell ED, Holton SE, Lawrance M, Orlov M, Franklin Z, Mitchem MA, DeBerg H, Gersuk VH, Garay A, Barnes E, Liu T, Peltan ID, Rogers A, Ziegler S, Wurfel MM, Mikacenic C. The transcriptional and phenotypic characteristics that define alveolar macrophage subsets in acute hypoxemic respiratory failure. Nat Commun 2023; 14:7443. [PMID: 37978185 PMCID: PMC10656558 DOI: 10.1038/s41467-023-43223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
The transcriptional and phenotypic characteristics that define alveolar monocyte and macrophage subsets in acute hypoxemic respiratory failure (AHRF) are poorly understood. Here, we apply CITE-seq (single-cell RNA-sequencing and cell-surface protein quantification) to bronchoalveolar lavage and blood specimens longitudinally collected from participants with AHRF to identify alveolar myeloid subsets, and then validate their identity in an external cohort using flow cytometry. We identify alveolar myeloid subsets with transcriptional profiles that differ from other lung diseases as well as several subsets with similar transcriptional profiles as reported in healthy participants (Metallothionein) or patients with COVID-19 (CD163/LGMN). We use information from CITE-seq to determine cell-surface proteins that distinguish transcriptional subsets (CD14, CD163, CD123, CD71, CD48, CD86 and CD44). In the external cohort, we find a higher proportion of CD163/LGMN alveolar macrophages are associated with mortality in AHRF. We report a parsimonious set of cell-surface proteins that distinguish alveolar myeloid subsets using scalable approaches that can be applied to clinical cohorts.
Collapse
Affiliation(s)
- Eric D Morrell
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA.
| | - Sarah E Holton
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Matthew Lawrance
- Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Marika Orlov
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA
| | - Zoie Franklin
- Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | | | - Hannah DeBerg
- Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Vivian H Gersuk
- Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Ashley Garay
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth Barnes
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Ted Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Ithan D Peltan
- Division of Pulmonary and Critical Care Medicine, Intermountain Health, Murray, UT, USA
| | - Angela Rogers
- Division of Pulmonary and Critical Care, Stanford University, Stanford, CA, USA
| | - Steven Ziegler
- Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Carmen Mikacenic
- Translational Immunology, Benaroya Research Institute, Seattle, WA, USA.
| |
Collapse
|
28
|
Wang F, Ting C, Riemondy KA, Douglas M, Foster K, Patel N, Kaku N, Linsalata A, Nemzek J, Varisco BM, Cohen E, Wilson JA, Riches DW, Redente EF, Toivola DM, Zhou X, Moore BB, Coulombe PA, Omary MB, Zemans RL. Regulation of epithelial transitional states in murine and human pulmonary fibrosis. J Clin Invest 2023; 133:e165612. [PMID: 37768734 PMCID: PMC10645382 DOI: 10.1172/jci165612] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease arising from impaired regeneration of the alveolar epithelium after injury. During regeneration, type 2 alveolar epithelial cells (AEC2s) assume a transitional state that upregulates multiple keratins and ultimately differentiate into AEC1s. In IPF, transitional AECs accumulate with ineffectual AEC1 differentiation. However, whether and how transitional cells cause fibrosis, whether keratins regulate transitional cell accumulation and fibrosis, and why transitional AECs and fibrosis resolve in mouse models but accumulate in IPF are unclear. Here, we show that human keratin 8 (KRT8) genetic variants were associated with IPF. Krt8-/- mice were protected from fibrosis and accumulation of the transitional state. Keratin 8 (K8) regulated the expression of macrophage chemokines and macrophage recruitment. Profibrotic macrophages and myofibroblasts promoted the accumulation of transitional AECs, establishing a K8-dependent positive feedback loop driving fibrogenesis. Finally, rare murine transitional AECs were highly senescent and basaloid and may not differentiate into AEC1s, recapitulating the aberrant basaloid state in human IPF. We conclude that transitional AECs induced and were maintained by fibrosis in a K8-dependent manner; in mice, most transitional cells and fibrosis resolved, whereas in human IPF, transitional AECs evolved into an aberrant basaloid state that persisted with progressive fibrosis.
Collapse
Affiliation(s)
- Fa Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher Ting
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kent A. Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Douglas
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nisha Patel
- College of Literature, Science, and the Arts
| | - Norihito Kaku
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Jean Nemzek
- Unit for Laboratory Animal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Brian M. Varisco
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Erez Cohen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jasmine A. Wilson
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, Denver Colorado, USA
| | - Elizabeth F. Redente
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Diana M. Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Xiaofeng Zhou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bethany B. Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Pierre A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - M. Bishr Omary
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Rachel L. Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Program in Cellular and Molecular Biology, School of Medicine, and
| |
Collapse
|
29
|
Chang MY, Brune JE, Black M, Altemeier WA, Frevert CW. Multicompartmental analysis of the murine pulmonary immune response by spectral flow cytometry. Am J Physiol Lung Cell Mol Physiol 2023; 325:L518-L535. [PMID: 37581225 PMCID: PMC10639014 DOI: 10.1152/ajplung.00317.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023] Open
Abstract
Studies of pulmonary inflammation require unique considerations due to the complex structure and composition of the lungs. The lungs have multiple compartments and diverse immune cell populations, with inherently high autofluorescence, and are involved in the host response to pulmonary pathogens. We describe a protocol that accounts for these factors through a novel combination of methodologies-in vivo compartmental analysis and spectral flow cytometry with a broad panel of antibodies. In vivo compartmental analysis enables the precise localization of immune cells within the marginated vasculature, lung interstitium, nonlavageable airways, and lavageable airways of the lungs, as well as the pulmonary lymph nodes. Spectral flow cytometry with a broad panel of antibodies supports an unbiased exploratory approach to investigating diverse immune cell populations during pulmonary inflammation. Most importantly, spectral flow uses cellular autofluorescence to aid in the resolution and identification of immune cell populations. This methodology enables the acquisition of high-quality data compatible with informed gating and dimensionality reduction algorithms. In addition, our protocol emphasizes considerations for compartmentalization of the inflammatory response, spectral flow panel design, and autofluorescence spectra analysis. These methodologies are critical for increasing the rigor of pulmonary research. We apply this protocol for the precise characterization and localization of leukocytes in the pulmonary host response to influenza A virus in C57BL/6J mice. In particular, we demonstrate that this protocol improves the quantification and localization of alveolar macrophages within the airways. The methodology is modifiable and expandable to allow for further characterization of leukocyte populations of special interest.NEW & NOTEWORTHY We describe a novel combination of methodologies that incorporates dual in vivo compartmental analysis using intravascular and intratracheal CD45 labeling, a broad panel of antibodies for identifying lymphoid and nonlymphoid cells, and spectral flow cytometry that uses cellular autofluorescence to aid in resolving and identifying immune cell populations. This methodology allows precise localization of immune cells in the lavageable airways, nonlavageable airways, interstitial lung tissue, and marginated in the lung vasculature.
Collapse
Affiliation(s)
- Mary Y Chang
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Jourdan E Brune
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
| | - Michele Black
- Department of Immunology, University of Washington, Seattle, Washington, United States
| | - William A Altemeier
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
30
|
Macklin M, Thompson C, Kawano-Dourado L, Bauer Ventura I, Weschenfelder C, Trostchansky A, Marcadenti A, Tighe RM. Linking Adiposity to Interstitial Lung Disease: The Role of the Dysfunctional Adipocyte and Inflammation. Cells 2023; 12:2206. [PMID: 37759429 PMCID: PMC10526202 DOI: 10.3390/cells12182206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Adipose tissue has functions beyond its principal functions in energy storage, including endocrine and immune functions. When faced with a surplus of energy, the functions of adipose tissue expand by mechanisms that can be both adaptive and detrimental. These detrimental adipose tissue functions can alter normal hormonal signaling and promote local and systemic inflammation with wide-ranging consequences. Although the mechanisms by which adipose tissue triggers metabolic dysfunction and local inflammation have been well described, little is known about the relationship between adiposity and the pathogenesis of chronic lung conditions, such as interstitial lung disease (ILD). In this review, we detail the conditions and mechanisms by which adipose tissue becomes dysfunctional and relate this dysfunction to inflammatory changes observed in various forms of ILD. Finally, we review the existing basic and clinical science literature linking adiposity to ILD, highlighting the need for additional research on the mechanisms of adipocyte-mediated inflammation in ILD and its clinical implications.
Collapse
Affiliation(s)
- Michael Macklin
- Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA;
| | - Chelsea Thompson
- Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA;
| | - Leticia Kawano-Dourado
- Hcor Research Institute (IP-Hcor), Hcor, São Paulo 04004-050, Brazil; (L.K.-D.); (A.M.)
- Pulmonary Division, Heart Institute (InCor), University of Sao Paulo Medical School, São Paulo 05403-903, Brazil
| | | | - Camila Weschenfelder
- Graduate Program in Health Sciences (Cardiology), Cardiology Institute, University Foundation of Cardiology (IC/FUC), Porto Alegre 90050-170, Brazil;
| | - Andrés Trostchansky
- Department of Biochemistry and Biomedical Research Center, School of Medicine, University of the Republic, Montevideo 11800, Uruguay;
| | - Aline Marcadenti
- Hcor Research Institute (IP-Hcor), Hcor, São Paulo 04004-050, Brazil; (L.K.-D.); (A.M.)
- Graduate Program in Health Sciences (Cardiology), Cardiology Institute, University Foundation of Cardiology (IC/FUC), Porto Alegre 90050-170, Brazil;
- Graduate Program in Epidemiology, School of Public Health, University of São Paulo (FSP-USP), São Paulo 01246-904, Brazil
| | - Robert M. Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710, USA;
| |
Collapse
|
31
|
Ghebremedhin A, Salam AB, Adu-Addai B, Noonan S, Stratton R, Ahmed MSU, Khantwal C, Martin GR, Lin H, Andrews C, Karanam B, Rudloff U, Lopez H, Jaynes J, Yates C. A Novel CD206 Targeting Peptide Inhibits Bleomycin-Induced Pulmonary Fibrosis in Mice. Cells 2023; 12:cells12091254. [PMID: 37174654 PMCID: PMC10177262 DOI: 10.3390/cells12091254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Activated M2-polarized macrophages are drivers of pulmonary fibrosis in several clinical scenarios, including Idiopathic Pulmonary Fibrosis (IPF). In this study, we investigated the effects of targeting the CD206 receptor in M2-like macrophages with a novel synthetic analogue of a naturally occurring Host Defense Peptide (HDP), RP-832c, to decrease profibrotic cytokines. RP-832c selectively binds to CD206 on M2-polarized bone marrow-derived macrophages (BMDM) in vitro, resulting in a time-dependent decrease in CD206 expression and a transient increase in M1-macrophage marker TNF-α. To elucidate the antifibrotic effects of RP-832c, we used a murine model of bleomycin (BLM)-induced early-stage pulmonary fibrosis. RP-832c significantly reduced fibrosis in a dose-dependent manner, and decreased CD206, TGF-β1, and α-SMA expression in mouse lungs. Similarly, in an established model of lung fibrosis, RP-832c significantly decreased lung fibrosis and significantly decreased inflammatory cytokines TNF-α, IL-6, IL-10, IFN-γ, CXCL1/2, and fibrosis markers TGF-β1 and MMP-13. In comparison with the FDA-approved drugs Nintedanib and Pirfenidone, RP-832c exhibited a similar reduction in fibrosis compared to Pirfenidone, and to a greater extent than Nintedanib, with no apparent toxicities observed. In summary, our findings showed that inhibiting the profibrotic alternatively activated M2-like macrophages using a novel peptide, RP-832c, could reduce BLM-induced pulmonary fibrosis in mice, warranting the therapeutic potential of this peptide for patients with pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Carver Research Foundation, Tuskegee, AL 36088, USA
| | - Benjamin Adu-Addai
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - Steve Noonan
- Murigenics Inc., 941 Railroad Ave., Vallejo, CA 94592, USA
| | - Richard Stratton
- Royal Free Hospital, UCL Division of Medicine, University College London, London WC1E 6JF, UK
| | - Md Shakir Uddin Ahmed
- Department of Biology and Center for Cancer Research, Tuskegee University, Carver Research Foundation, Tuskegee, AL 36088, USA
- Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | | | - George R Martin
- Riptide Bioscience, 941 Railroad Ave., Vallejo, CA 94592, USA
| | - Huixian Lin
- Department of Biology and Center for Cancer Research, Tuskegee University, Carver Research Foundation, Tuskegee, AL 36088, USA
| | - Chris Andrews
- Department of Biology and Center for Cancer Research, Tuskegee University, Carver Research Foundation, Tuskegee, AL 36088, USA
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Carver Research Foundation, Tuskegee, AL 36088, USA
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Lopez
- Murigenics Inc., 941 Railroad Ave., Vallejo, CA 94592, USA
| | - Jesse Jaynes
- College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, AL 36088, USA
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Carver Research Foundation, Tuskegee, AL 36088, USA
| |
Collapse
|
32
|
Moore PK, Anderson KC, McManus SA, Tu TH, King EM, Mould KJ, Redente EF, Henson PM, Janssen WJ, McCubbrey AL. Single-cell RNA sequencing reveals unique monocyte-derived interstitial macrophage subsets during lipopolysaccharide-induced acute lung inflammation. Am J Physiol Lung Cell Mol Physiol 2023; 324:L536-L549. [PMID: 36852927 PMCID: PMC10069979 DOI: 10.1152/ajplung.00223.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023] Open
Abstract
Interstitial macrophages (IMs) reside in the lung tissue surrounding key structures including airways, vessels, and alveoli. Recent work has described IM heterogeneity during homeostasis, however, there are limited data on IMs during inflammation. We sought to characterize IM origin, subsets, and transcriptomic profiles during homeostasis and lipopolysaccharide (LPS) induced acute lung inflammation. During homeostasis, we used three complementary methods, spectral flow cytometry, single-cell RNA-sequencing, and gene regulatory network enrichment, to demonstrate that IMs can be divided into two core subsets distinguished by surface and transcriptional expression of folate receptor β (Folr2/FRβ). These subsets inhabited distinct niches within the lung interstitium. Within FRβ+ IMs we identified a subpopulation marked by coexpression of LYVE1. During acute LPS-induced inflammation, lung IM numbers expand. Lineage tracing revealed IM expansion was due to recruitment of monocyte-derived IMs. At the peak of inflammation, recruited IMs were comprised two unique subsets defined by expression of genes associated with interferon signaling and glycolytic pathways. As recruited IMs matured, they adopted the overall transcriptional state of FRβ- resident IMs but retained expression in several origin-specific genes, such as IL-1β. FRβ+ IMs were of near-pure resident origin. Taken together our data show that during LPS-induced inflammation, there are distinct populations of IMs that likely have unique functions. FRΒ+ IMs comprise a stable, resident population, whereas FRβ- ΙΜs represent a mixed population of resident and recruited IMs.
Collapse
Affiliation(s)
- Peter K Moore
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Kelsey C Anderson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, United States
| | - Shannon A McManus
- Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Ting-Hui Tu
- Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Emily M King
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kara J Mould
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Elizabeth F Redente
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States
| | - Peter M Henson
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States
| | - William J Janssen
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Alexandra L McCubbrey
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Medicine, National Jewish Health, Denver, Colorado, United States
| |
Collapse
|
33
|
Therapeutic strategies targeting pro-fibrotic macrophages in interstitial lung disease. Biochem Pharmacol 2023; 211:115501. [PMID: 36921632 DOI: 10.1016/j.bcp.2023.115501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the representative phenotype of interstitial lung disease where severe scarring develops in the lung interstitium. Although antifibrotic treatments are available and have been shown to slow the progression of IPF, improved therapeutic options are still needed. Recent data indicate that macrophages play essential pro-fibrotic roles in the pathogenesis of pulmonary fibrosis. Historically, macrophages have been classified into two functional subtypes, "M1" and "M2," and it is well described that "M2" or "alternatively activated" macrophages contribute to fibrosis via the production of fibrotic mediators, such as TGF-β, CTGF, and CCL18. However, highly plastic macrophages may possess distinct functions and phenotypes in the fibrotic lung environment. Thus, M2-like macrophages in vitro and pro-fibrotic macrophages in vivo are not completely identical cell populations. Recent developments in transcriptome analysis, including single-cell RNA sequencing, have attempted to depict more detailed phenotypic characteristics of pro-fibrotic macrophages. This review will outline the role and characterization of pro-fibrotic macrophages in fibrotic lung diseases and discuss the possibility of treating lung fibrosis by preventing or reprogramming the polarity of macrophages. We also utilized a systematic approach to review the literature and identify novel and promising therapeutic agents that follow this treatment strategy.
Collapse
|
34
|
Classical monocyte-derived macrophages as therapeutic targets of umbilical cord mesenchymal stem cells: comparison of intratracheal and intravenous administration in a mouse model of pulmonary fibrosis. Respir Res 2023; 24:68. [PMID: 36870972 PMCID: PMC9985859 DOI: 10.1186/s12931-023-02357-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that has no cure. Although mesenchymal stem cells (MSCs) have been reported to ameliorate lung inflammation and fibrosis in mouse models, their mechanisms of action remain unknown. Therefore, we aimed to determine the changes in various immune cells, especially macrophages and monocytes, involved in the effects of MSC treatment on pulmonary fibrosis. METHODS We collected and analyzed explanted lung tissues and blood from patients with IPF who underwent lung transplantation. After establishing a pulmonary fibrosis model via the intratracheal administration of bleomycin (BLM) to 8-week-old mice, MSCs derived from human umbilical cords were administered intravenously or intratracheally on day 10 and the lungs were immunologically analyzed on days 14 and 21. Flow cytometry was performed to analyze the immune cell characteristics, and gene expression levels were examined using quantitative reverse transcription-polymerase chain reaction. RESULTS In the histological analysis of explanted human lung tissues, the terminally fibrotic areas contained a larger number of macrophages and monocytes than the early fibrotic areas of the lungs. When human monocyte-derived macrophages (MoMs) were stimulated with interleukin-13 in vitro, the expression of type 2 macrophage (M2) markers was more prominent in MoMs from the classical monocyte subset than in those from intermediate or non-classical monocyte subsets, and MSCs suppressed M2 marker expression independent of MoM subsets. In the mouse model, the increased number of inflammatory cells in the bronchoalveolar lavage fluid and the degree of lung fibrosis observed in BLM-treated mice were significantly reduced by MSC treatment, which tended to be more prominent with intravenous administration than intratracheal administration. Both M1 and M2 MoMs were upregulated in BLM-treated mice. The M2c subset of M2 MoMs was significantly reduced by MSC treatment. Among M2 MoMs, M2 MoMs derived from Ly6C+ monocytes were most effectively regulated by the intravenous administration, not intratracheal administration, of MSCs. CONCLUSIONS Inflammatory classical monocytes may play a role in lung fibrosis in human IPF and BLM-induced pulmonary fibrosis. Intravenous rather than intratracheal administration of MSCs may ameliorate pulmonary fibrosis by inhibiting monocyte differentiation into M2 macrophages.
Collapse
|
35
|
Cooley JC, Javkhlan N, Wilson JA, Foster DG, Edelman BL, Ortiz LA, Schwartz DA, Riches DW, Redente EF. Inhibition of antiapoptotic BCL-2 proteins with ABT-263 induces fibroblast apoptosis, reversing persistent pulmonary fibrosis. JCI Insight 2023; 8:e163762. [PMID: 36752201 PMCID: PMC9977433 DOI: 10.1172/jci.insight.163762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/27/2022] [Indexed: 02/09/2023] Open
Abstract
Patients with progressive fibrosing interstitial lung diseases (PF-ILDs) carry a poor prognosis and have limited therapeutic options. A hallmark feature is fibroblast resistance to apoptosis, leading to their persistence, accumulation, and excessive deposition of extracellular matrix. A complex balance of the B cell lymphoma 2 (BCL-2) protein family controlling the intrinsic pathway of apoptosis and fibroblast reliance on antiapoptotic proteins has been hypothesized to contribute to this resistant phenotype. Examination of lung tissue from patients with PF-ILD (idiopathic pulmonary fibrosis and silicosis) and mice with PF-ILD (repetitive bleomycin and silicosis) showed increased expression of antiapoptotic BCL-2 family members in α-smooth muscle actin-positive fibroblasts, suggesting that fibroblasts from fibrotic lungs may exhibit increased susceptibility to inhibition of antiapoptotic BCL-2 family members BCL-2, BCL-XL, and BCL-W with the BH3 mimetic ABT-263. We used 2 murine models of PF-ILD to test the efficacy of ABT-263 in reversing established persistent pulmonary fibrosis. Treatment with ABT-263 induced fibroblast apoptosis, decreased fibroblast numbers, and reduced lung collagen levels, radiographic disease, and histologically evident fibrosis. Our studies provide insight into how fibroblasts gain resistance to apoptosis and become sensitive to the therapeutic inhibition of antiapoptotic proteins. By targeting profibrotic fibroblasts, ABT-263 offers a promising therapeutic option for PF-ILDs.
Collapse
Affiliation(s)
- Joseph C. Cooley
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nomin Javkhlan
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Jasmine A. Wilson
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Daniel G. Foster
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Benjamin L. Edelman
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Luis A. Ortiz
- Department of Environmental and Occupational Health, Graduate School of Public Health at the University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A. Schwartz
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David W.H. Riches
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
36
|
Cerro Chiang G, Parimon T. Understanding Interstitial Lung Diseases Associated with Connective Tissue Disease (CTD-ILD): Genetics, Cellular Pathophysiology, and Biologic Drivers. Int J Mol Sci 2023; 24:ijms24032405. [PMID: 36768729 PMCID: PMC9917355 DOI: 10.3390/ijms24032405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Connective tissue disease-associated interstitial lung disease (CTD-ILD) is a collection of systemic autoimmune disorders resulting in lung interstitial abnormalities or lung fibrosis. CTD-ILD pathogenesis is not well characterized because of disease heterogeneity and lack of pre-clinical models. Some common risk factors are inter-related with idiopathic pulmonary fibrosis, an extensively studied fibrotic lung disease, which includes genetic abnormalities and environmental risk factors. The primary pathogenic mechanism is that these risk factors promote alveolar type II cell dysfunction triggering many downstream profibrotic pathways, including inflammatory cascades, leading to lung fibroblast proliferation and activation, causing abnormal lung remodeling and repairs that result in interstitial pathology and lung fibrosis. In CTD-ILD, dysregulation of regulator pathways in inflammation is a primary culprit. However, confirmatory studies are required. Understanding these pathogenetic mechanisms is necessary for developing and tailoring more targeted therapy and provides newly discovered disease biomarkers for early diagnosis, clinical monitoring, and disease prognostication. This review highlights the central CTD-ILD pathogenesis and biological drivers that facilitate the discovery of disease biomarkers.
Collapse
Affiliation(s)
- Giuliana Cerro Chiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| | - Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
37
|
Wan X, Xiao Y, Tian X, Lu Y, Chu H. Selective depletion of CD11b-positive monocytes/macrophages potently suppresses bleomycin-induced pulmonary fibrosis. Int Immunopharmacol 2023; 114:109570. [PMID: 36700767 DOI: 10.1016/j.intimp.2022.109570] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
The understanding of pathogenesis underlying idiopathic pulmonary fibrosis (IPF) is still limited presently. Monocytes or macrophages are involved in progression of the pulmonary injury and repair. The aim of this study is to investigate the roles of CD11b+ monocytes/macrophages in the progression of pulmonary fibrosis. In this study, the expression levels of CD11B gene and inflammatory genes in the IPF patients are evaluated using the available datasets. CD11b cells are conditionally depleted in a CD11b-diptheria toxin receptor (CD11b-DTR) mouse by administration of diptheria toxin (DT). Pulmonary fibrosis in mice is induced using intranasalbleomycin. The mRNAs and proteins expression in lung tissues are determined by quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF) staining and Western-blot assays. It shows that the expression of CD11B mRNA is up-regulated in fibrotic lungs and alveolar macrophages of IPF patients and bleomycin-treated rodents. Selective depletion of CD11b+ monocytes/macrophages in CD11b-DTR mice potently halts bleomycin-induced pulmonary fibrosis progression. CD11b depletion inhibits the polarization of macrophages in the fibrotic lungs. Mechanically, CD11b deficiency represses the activation of sphingosine 1-phosphate receptor 2 (S1PR2)/sphingosine kinase 2 (SphK2) signaling during pulmonary fibrosis. In conclusion, our data suggest that CD11b+ monocytes/macrophages contribute to pulmonary fibrosis and represent a potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Xiaoyu Wan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongtao Xiao
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinbei Tian
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Lu
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
38
|
El Fakihi S, El Allam A, Tahoune H, Najimi N, Kadi C, Ibrahimi A, Bourkadi JE, Seghrouchni F. Functional characterization of small and large alveolar macrophages in sarcoidosis and idiopathic pulmonary fibrosis compared with non-fibrosis interstitial lung diseases. Hum Antibodies 2023; 31:59-69. [PMID: 37574726 DOI: 10.3233/hab-230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Sarcoidosis is a granulomatous disease that mostly affects the lungs. Advanced tissue injury caused by this disease can progress to pulmonary fibrosis with similar characteristics shared with idiopathic pulmonary fibrosis (IPF). The initial presentations of both sarcoidosis and IPF may be shared with other interstitial lung diseases (ILDs). Two populations of macrophages have been described in the alveolar space: small alveolar macrophages (AMs) and large alveolar macrophages. Despite their protective function, these cells may also play a role in the initiation and maintenance of inflammation leading to fibrosis. OBJECTIVE The aim of this study was the functional characterization of small and large AM subpopulations in sarcoidosis and IPF as a pathology with respectively mild and advanced tissue injury causing fibrosis, in comparison with non-fibrosis ILDs. METHODS Activation and adhesion surface markers as well as functions of small and large AMs isolated from bronchoalveolar lavage (BAL) were assessed by Flow Cytometry within patients with confirmed sarcoidosis (n= 14), IPF (n= 6), and non-fibrosis ILDs (n= 9). RESULTS Our results showed that small AMs are immunologically more active, which may be important for airway inflammation. They are also proportionally more abundant in IPF, and therefore they may be more involved in a fibrosis process associated with the down-regulation of HLA-DR, LeuCAM, and CD62L expression. In Sarcoidosis, the inflammatory process appears to be associated with up-regulation of CD38 expression and oxidative burst activity. CONCLUSION A relevant potential of the activation and adhesion markers as well as oxidative burst activity expressed on small and large AMs, in the perspective of differential diagnosis of sarcoidosis and IPF.
Collapse
Affiliation(s)
- Sara El Fakihi
- , Rabat, Morocco
- Medical Biotechnology Laboratory, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Aicha El Allam
- , Rabat, Morocco
- Department of Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Hicham Tahoune
- , Rabat, Morocco
- Department of Microbiology, CHU Mohammed VI, Tangier, Morocco
| | - Nouhaila Najimi
- , Rabat, Morocco
- Laboratory of Human Pathologies, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Chaimae Kadi
- , Rabat, Morocco
- Department of Biology, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Azeddine Ibrahimi
- , Rabat, Morocco
- Medical Biotechnology Laboratory, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Jamal-Eddine Bourkadi
- Pneumo-Phtisiology Department, Moulay Youssef Hospital, Rabat, Morocco
- Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | | |
Collapse
|
39
|
Jiang A, Liu N, Wang J, Zheng X, Ren M, Zhang W, Yao Y. The role of PD-1/PD-L1 axis in idiopathic pulmonary fibrosis: Friend or foe? Front Immunol 2022; 13:1022228. [PMID: 36544757 PMCID: PMC9760949 DOI: 10.3389/fimmu.2022.1022228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 12/08/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with a bleak prognosis. Mounting evidence suggests that IPF shares bio-molecular similarities with lung cancer. Given the deep understanding of the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway in cancer immunity and the successful application of immune checkpoint inhibitors (ICIs) in lung cancer, recent studies have noticed the role of the PD-1/PD-L1 axis in IPF. However, the conclusions are ambiguous, and the latent mechanisms remain unclear. In this review, we will summarize the role of the PD-1/PD-L1 axis in IPF based on current murine models and clinical studies. We found that the PD-1/PD-L1 pathway plays a more predominant profibrotic role than its immunomodulatory role in IPF by interacting with multiple cell types and pathways. Most preclinical studies also indicated that blockade of the PD-1/PD-L1 pathway could attenuate the severity of pulmonary fibrosis in mice models. This review will bring significant insights into understanding the role of the PD-1/PD-L1 pathway in IPF and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Na Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengdi Ren
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Zhang
- Military Physical Education Teaching and Research Section of Air Force Medical Service Training Base, Air Force Medical University, Xi’an, China,*Correspondence: Yu Yao, ; Wei Zhang,
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yu Yao, ; Wei Zhang,
| |
Collapse
|
40
|
Dang W, Tao Y, Xu X, Zhao H, Zou L, Li Y. The role of lung macrophages in acute respiratory distress syndrome. Inflamm Res 2022; 71:1417-1432. [PMID: 36264361 PMCID: PMC9582389 DOI: 10.1007/s00011-022-01645-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute and diffuse inflammatory lung injury in a short time, one of the common severe manifestations of the respiratory system that endangers human life and health. As an innate immune cell, macrophages play a key role in the inflammatory response. For a long time, the role of pulmonary macrophages in ARDS has tended to revolve around the polarization of M1/M2. However, with the development of single-cell RNA sequencing, fate mapping, metabolomics, and other new technologies, a deeper understanding of the development process, classification, and function of macrophages in the lung are acquired. Here, we discuss the function of pulmonary macrophages in ARDS from the two dimensions of anatomical location and cell origin and describe the effects of cell metabolism and intercellular interaction on the function of macrophages. Besides, we explore the treatments for targeting macrophages, such as enhancing macrophage phagocytosis, regulating macrophage recruitment, and macrophage death. Considering the differences in responsiveness of different research groups to these treatments and the tremendous dynamic changes in the gene expression of monocyte/macrophage, we discussed the possibility of characterizing the gene expression of monocyte/macrophage as the biomarkers. We hope that this review will provide new insight into pulmonary macrophage function and therapeutic targets of ARDS.
Collapse
Affiliation(s)
- Wenpei Dang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xinxin Xu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Hui Zhao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Lijuan Zou
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
41
|
Ge R. Targeting airway macrophages for inflammatory lung diseases-insights from traditional Chinese medicine. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1086. [PMID: 36388793 PMCID: PMC9652522 DOI: 10.21037/atm-22-4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 08/30/2023]
Affiliation(s)
- Ruowen Ge
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Gu Y, Lawrence T, Mohamed R, Liang Y, Yahaya BH. The emerging roles of interstitial macrophages in pulmonary fibrosis: A perspective from scRNA-seq analyses. Front Immunol 2022; 13:923235. [PMID: 36211428 PMCID: PMC9536737 DOI: 10.3389/fimmu.2022.923235] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is an irreversible and progressive disease affecting the lungs, and the etiology remains poorly understood. This disease can be lethal and currently has no specific clinical therapeutic regimen. Macrophages, the most common type of immune cell in the lungs, have been reported to play a key role in the pathogenesis of fibrotic disease. The lung macrophage population is mostly composed of alveolar macrophages and interstitial macrophages, both of which have not been thoroughly studied in the pathogenesis of lung fibrosis. Interstitial macrophages have recently been recognised for their participation in lung fibrosis due to new technology arising from a combination of bioinformatics and single-cell RNA sequencing analysis. This paper reviews recent developments regarding lung macrophage classification and summarizes the origin and replenishment of interstitial macrophages and their function in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yanrong Gu
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Lung Stem Cells and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, Kepala Batas, Malaysia
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Toby Lawrence
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Centre for Inflammation Biology and Cancer Immunology, Cancer Research UK King’s Health Partners Centre, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Rafeezul Mohamed
- Lung Stem Cells and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, Kepala Batas, Malaysia
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Yinming Liang, ; Badrul Hisham Yahaya,
| | - Badrul Hisham Yahaya
- Lung Stem Cells and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, Kepala Batas, Malaysia
- *Correspondence: Yinming Liang, ; Badrul Hisham Yahaya,
| |
Collapse
|
43
|
Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. Immunity 2022; 55:1564-1580. [PMID: 36103853 DOI: 10.1016/j.immuni.2022.08.010] [Citation(s) in RCA: 193] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
Tissue-resident alveolar and interstitial macrophages and recruited macrophages are critical players in innate immunity and maintenance of lung homeostasis. Until recently, assessing the differential functional contributions of tissue-resident versus recruited macrophages has been challenging because they share overlapping cell surface markers, making it difficult to separate them using conventional methods. This review describes how scRNA-seq and spatial transcriptomics can separate these subpopulations and help unravel the complexity of macrophage biology in homeostasis and disease. First, we provide a guide to identifying and distinguishing lung macrophages from other mononuclear phagocytes in humans and mice. Second, we outline emerging concepts related to the development and function of the various lung macrophages in the alveolar, perivascular, and interstitial niches. Finally, we describe how different tissue states profoundly alter their functions, including acute and chronic lung disease, cancer, and aging.
Collapse
Affiliation(s)
- Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
44
|
Guo R, Zhou Y, Lin F, Li M, Tan C, Xu B. A novel gene signature based on the hub genes of COVID-19 predicts the prognosis of idiopathic pulmonary fibrosis. Front Pharmacol 2022; 13:981604. [PMID: 36147332 PMCID: PMC9489050 DOI: 10.3389/fphar.2022.981604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Increasing evidence has demonstrated that there was a strong correlation between COVID-19 and idiopathic pulmonary fibrosis (IPF). However, the studies are limited, and the real biological mechanisms behind the IPF progression were still uncleared.Methods: GSE70866 and GSE 157103 datasets were downloaded. The weight gene co-expression network analysis (WGCNA) algorithms were conducted to identify the most correlated gene module with COVID-19. Then the genes were extracted to construct a risk signature in IPF patients by performing Univariate and Lasso Cox Regression analysis. Univariate and Multivariate Cox Regression analyses were used to identify the independent value for predicting the prognosis of IPF patients. What’s more, the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and gene set enrichment analysis (GSEA) were conducted to unveil the potential biological pathways. CIBERSORT algorithms were performed to calculate the correlation between the risk score and immune cells infiltrating levels.Results: Two hundred thirty three differentially expressed genes were calculated as the hub genes in COVID-19. Fourteen of these genes were identified as the prognostic differentially expressed genes in IPF. Three (MET, UCHL1, and IGF1) of the fourteen genes were chosen to construct the risk signature. The risk signature can greatly predict the prognosis of high-risk and low-risk groups based on the calculated risk score. The functional pathway enrichment analysis and immune infiltrating analysis showed that the risk signature may regulate the immune-related pathways and immune cells.Conclusion: We identified prognostic differentially expressed hub genes related to COVID-19 in IPF. A risk signature was constructed based on those genes and showed great value for predicting the prognosis in IPF patients. What’s more, three genes in the risk signature may be clinically valuable as potential targets for treating IPF patients and IPF patients with COVID-19.
Collapse
Affiliation(s)
- Run Guo
- Department of Respiratory Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Yuefei Zhou
- Department of Orthopedics Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fang Lin
- Department of Respiratory Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Mengxing Li
- Department of Respiratory Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Chunting Tan
- Department of Respiratory Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
- *Correspondence: Chunting Tan, ; Bo Xu,
| | - Bo Xu
- Department of Respiratory Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
- *Correspondence: Chunting Tan, ; Bo Xu,
| |
Collapse
|
45
|
Wang Z, Li S, Huang B. Alveolar macrophages: Achilles' heel of SARS-CoV-2 infection. Signal Transduct Target Ther 2022; 7:242. [PMID: 35853858 PMCID: PMC9295089 DOI: 10.1038/s41392-022-01106-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/11/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused more than 6.3 million deaths to date. Despite great efforts to curb the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccines and neutralizing antibodies are in the gloom due to persistent viral mutations and antiviral compounds face challenges of specificity and safety. In addition, vaccines are unable to treat already-infected individuals, and antiviral drugs cannot be used prophylactically. Therefore, exploration of unconventional strategies to curb the current pandemic is highly urgent. Alveolar macrophages (AMs) residing on the surface of alveoli are the first immune cells that dispose of alveoli-invading viruses. Our findings demonstrate that M1 AMs have an acidic endosomal pH, thus favoring SARS-CoV-2 to leave endosomes and release into the cytosol where the virus initiates replication; in contrast, M2 AMs have an increased endosomal pH, which dampens the viral escape and facilitates delivery of the virus for lysosomal degradation. In this review, we propose that AMs are the Achilles’ heel of SARS-CoV-2 infection and that modulation of the endosomal pH of AMs has the potential to eliminate invaded SARS-CoV-2; the same strategy might also be suitable for other lethal respiratory viruses.
Collapse
Affiliation(s)
- Zhenfeng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, 100005, Beijing, China
| | - Shunshun Li
- Department of Immunology, Basic Medicine College, China Medical University, 110122, Shenyang, Liaoning, China
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, 100005, Beijing, China. .,Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, 430030, Wuhan, China.
| |
Collapse
|
46
|
Rahimi RA, Cho JL, Jakubzick CV, Khader SA, Lambrecht BN, Lloyd CM, Molofsky AB, Talbot S, Bonham CA, Drake WP, Sperling AI, Singer BD. Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 67:e1-18. [PMID: 35776495 PMCID: PMC9273224 DOI: 10.1165/rcmb.2022-0167st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.
Collapse
|
47
|
Liu GY, Budinger GRS, Dematte JE. Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis. BMJ 2022; 377:e066354. [PMID: 36946547 DOI: 10.1136/bmj-2021-066354] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Similarly to idiopathic pulmonary fibrosis (IPF), other interstitial lung diseases can develop progressive pulmonary fibrosis (PPF) characterized by declining lung function, a poor response to immunomodulatory therapies, and early mortality. The pathophysiology of disordered lung repair involves common downstream pathways that lead to pulmonary fibrosis in both IPF and PPF. The antifibrotic drugs, such as nintedanib, are indicated for the treatment of IPF and PPF, and new therapies are being evaluated in clinical trials. Clinical, radiographic, and molecular biomarkers are needed to identify patients with PPF and subgroups of patients likely to respond to specific therapies. This article reviews the evidence supporting the use of specific therapies in patients with IPF and PPF, discusses agents being considered in clinical trials, and considers potential biomarkers based on disease pathogenesis that might be used to provide a personalized approach to care.
Collapse
Affiliation(s)
- Gabrielle Y Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Jane E Dematte
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
48
|
Qin W, Spek CA, Scicluna BP, van der Poll T, Duitman J. Myeloid DNA methyltransferase3b deficiency aggravates pulmonary fibrosis by enhancing profibrotic macrophage activation. Respir Res 2022; 23:162. [PMID: 35725453 PMCID: PMC9210707 DOI: 10.1186/s12931-022-02088-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and severe disease characterized by excessive matrix deposition in the lungs. Macrophages play crucial roles in maintaining lung homeostasis but are also central in the pathogenesis of lung diseases like pulmonary fibrosis. Especially, macrophage polarization/activation seems to play a crucial role in pathology and epigenetic reprograming is well-known to regulate macrophage polarization. DNA methylation alterations in IPF lungs have been well documented, but the role of DNA methylation in specific cell types, especially macrophages, is poorly defined. METHODS In order to determine the role of DNA methylation in macrophages during pulmonary fibrosis, we subjected macrophage specific DNA methyltransferase (DNMT)3B, which mediates the de novo DNA methylation, deficient mice to the bleomycin-induced pulmonary fibrosis model. Macrophage polarization and fibrotic parameters were evaluated at 21 days after bleomycin administration. Dnmt3b knockout and wild type bone marrow-derived macrophages were stimulated with either interleukin (IL)4 or transforming growth factor beta 1 (TGFB1) in vitro, after which profibrotic gene expression and DNA methylation at the Arg1 promotor were determined. RESULTS We show that DNMT3B deficiency promotes alternative macrophage polarization induced by IL4 and TGFB1 in vitro and also enhances profibrotic macrophage polarization in the alveolar space during pulmonary fibrosis in vivo. Moreover, myeloid specific deletion of DNMT3B promoted the development of experimental pulmonary fibrosis. CONCLUSIONS In summary, these data suggest that myeloid DNMT3B represses fibrotic macrophage polarization and protects against bleomycin induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105AZ, Amsterdam, The Netherlands.
| | - C Arnold Spek
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105AZ, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105AZ, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei Hospital, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105AZ, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Aschner Y, Correll KA, Beke K, Foster DG, Roybal HM, Nelson MR, Meador CL, Strand M, Anderson KC, Moore CM, Reynolds PR, Kopf KW, Burnham EL, Downey GP. PTPα Promotes Fibroproliferative Responses After Acute Lung Injury. Am J Physiol Lung Cell Mol Physiol 2022; 323:L69-L83. [PMID: 35670474 DOI: 10.1152/ajplung.00436.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Acute Respiratory Distress Syndrome (ARDS) is a major healthcare problem, accounting for significant mortality and long-term disability. Approximately 25% of patients with ARDS will develop an over-exuberant fibrotic response, termed fibroproliferative ARDS (FP-ARDS) that portends a poor prognosis and increased mortality. The cellular pathologic processes that drive FP-ARDS remain incompletely understood. We have previously shown that the transmembrane receptor-type tyrosine phosphatase Protein Tyrosine Phosphatase-a (PTPa) promotes pulmonary fibrosis in preclinical murine models through regulation of TGF-b signaling. In this study, we examine the role of PTPa in the pathogenesis of FP-ARDS in a preclinical murine model of acid (HCl)-induced acute lung injury. We demonstrate that while mice genetically deficient in PTPa (Ptpra-/-) are susceptible to early HCl-induced lung injury, they exhibit markedly attenuated fibroproliferative responses. Additionally, early pro-fibrotic gene expression is reduced in lung tissue after acute lung injury in Ptpra-/- mice, and stimulation of naïve lung fibroblasts with the BAL fluid from these mice results in attenuated fibrotic outcomes compared to wild type littermate controls. Transcriptomic analyses demonstrates reduced Extracellular Matrix (ECM) deposition and remodeling in mice genetically deficient in PTPa. Importantly, human lung fibroblasts modified with a CRISPR-targeted deletion of PTPRA exhibit reduced expression of profibrotic genes in response to TGF-β stimulation, demonstrating the importance of PTPa in human lung fibroblasts. Together, these findings demonstrate that PTPa is a key regulator of fibroproliferative processes following acute lung injury and could serve as a therapeutic target for patients at risk for poor long-term outcomes in ARDS.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States.,Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Kelly A Correll
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Keriann Beke
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Daniel G Foster
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Helen M Roybal
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Meghan R Nelson
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Carly L Meador
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Matthew Strand
- Division of Biostatistics, National Jewish Health, Denver, CO, United States
| | - Kelsey C Anderson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | - Camille M Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States
| | - Paul R Reynolds
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Katrina W Kopf
- Office of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO, United States.,Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States.,Office of Academic Affairs, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
50
|
Abstract
Current therapies for pulmonary fibrosis (PF) focus on slowing disease progression and reducing functional decline in patients by dampening the activation of fibroblasts and other implicated cells. There is a need for strategies that target the essential cells and signaling pathways involved in disease pathogenesis. Monocyte-derived macrophages (Mo-Macs) are known to express profibrotic genes and are involved in the pathogenesis of PF. Our results show that engineered mannosylated albumin nanoparticles specifically targeted disease-inducing Mo-Macs, and further, that nanoparticles efficiently delivered small-interfering RNA against profibrotic cytokine tumor growth factor β1 to prevent bleomycin-induced lung fibrosis. The pathogenesis of lung fibrosis involves hyperactivation of innate and adaptive immune pathways that release inflammatory cytokines and growth factors such as tumor growth factor (TGF)β1 and induce aberrant extracellular matrix protein production. During the genesis of pulmonary fibrosis, resident alveolar macrophages are replaced by a population of newly arrived monocyte-derived interstitial macrophages that subsequently transition into alveolar macrophages (Mo-AMs). These transitioning cells initiate fibrosis by releasing profibrotic cytokines and remodeling the matrix. Here, we describe a strategy for leveraging the up-regulation of the mannose receptor CD206 in interstitial macrophages and Mo-AM to treat lung fibrosis. We engineered mannosylated albumin nanoparticles, which were found to be internalized by fibrogenic CD206+ monocyte derived macrophages (Mo-Macs). Mannosylated albumin nanoparticles incorporating TGFβ1 small-interfering RNA (siRNA) targeted the profibrotic subpopulation of CD206+ macrophages and prevented lung fibrosis. The findings point to the potential utility of mannosylated albumin nanoparticles in delivering TGFβ-siRNA into CD206+ profibrotic macrophages as an antilung fibrosis strategy.
Collapse
|