1
|
Pan WW, Wubben TJ, Zacks DN. Promising therapeutic targets for neuroprotection in retinal disease. Curr Opin Ophthalmol 2025; 36:247-252. [PMID: 39927457 DOI: 10.1097/icu.0000000000001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW Neurodegeneration is a common endpoint of various blinding retinal diseases. Yet, despite exciting advances in disease treatment, there continues to exist a critical need for the development of neuroprotective strategies to prevent retinal cell death. Here, we summarize the recent advances in neuroprotective strategies. RECENT FINDINGS From laboratory deciphering of the mechanisms involved in disease, many novel neuroprotective strategies have emerged and are currently under investigation for the treatment of various retinal and ocular diseases such as inherited retinal degeneration, retinal detachment, diabetic retinopathy, age-related macular degeneration, macular telangiectasia type 2, and glaucoma. These strategies include gene therapies, Fas inhibition, and targeting inflammatory, metabolic and reduction-oxidation abnormalities. Interestingly, investigation of several treatments across different diseases suggests shared neuroprotection mechanisms that can be targeted regardless of the particular disease. SUMMARY Retinal neuroprotection can improve treatment of different retinal diseases. Fortunately, the current landscape, with a plethora of novel neuroprotective therapies, portends a better future for patients.
Collapse
Affiliation(s)
- Warren W Pan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
2
|
Mu J, Zhang Z, Jiang C, Geng H, Duan J. Role of Tau Protein Hyperphosphorylation in Diabetic Retinal Neurodegeneration. J Ophthalmol 2025; 2025:3278794. [PMID: 40109357 PMCID: PMC11922625 DOI: 10.1155/joph/3278794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 12/25/2024] [Accepted: 02/22/2025] [Indexed: 03/22/2025] Open
Abstract
Diabetic retinal neurodegeneration (DRN) is an early manifestation of diabetic retinopathy (DR) characterized by neurodegeneration that precedes microvascular abnormalities in the retina. DRN is characterized by apoptosis of retinal ganglion cells (involves alterations in retinal ganglion cells [RGCs], photoreceptors, amacrine cells and bipolar cells and so on), reactive gliosis, and reduced retinal neuronal function. Tau, a microtubule-associated protein, is a key mediator of neurotoxicity in neurodegenerative diseases, with functions in phosphorylation-dependent microtubule assembly and stabilization, axonal transport, and neurite outgrowth. The hyperphosphorylated tau (p-tau) loses its ability to bind to microtubules and aggregates to form paired helical filaments (PHFs), which further form neurofibrillary tangles (NFTs), leading to abnormal cell scaffolding and cell death. Studies have shown that p-tau can cause degeneration of RGCs in DR, making tau pathology a new pathophysiological model for DR. Here, we review the mechanisms by which p-tau contribute to DRN, including insulin resistance or lack of insulin, mitochondrial damage such as mitophagy impairment, mitochondrial axonal transport defects, mitochondrial bioenergetics dysfunction, and impaired mitochondrial dynamics, Abeta toxicity, and inflammation. Therefore, this article proposes that tau protein hyperphosphorylation plays a crucial role in the pathogenesis of DRN and may serve as a novel therapeutic target for combating DRN.
Collapse
Affiliation(s)
- Jingyu Mu
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Zengrui Zhang
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Chao Jiang
- College of Life and Health Sciences, Institute of Neuroscience, Northeastern University, Shenyang, China
| | - Haoming Geng
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Canz MJ, Baguña-Torres J, Huerta J, Isla-Magrané H, Zufiaurre-Seijo M, Salas A, Hernandez C, Simó R, García-Arumí J, Herance JR, Bogdanov P, Duarri A. Diabetic retinopathy features in lund MetS rats. Exp Eye Res 2025; 252:110274. [PMID: 39923911 DOI: 10.1016/j.exer.2025.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
The Lund MetS rat (BBDR.cg-Leprdb/db.cp/LundRj) is a novel animal model that has a congenic leptin receptor deficiency (LepR-/-) and males exhibit a variety of metabolic abnormalities mimicking the human metabolic syndrome, including hyperglycemia, dyslipidemia, severe obesity, and a type 2 diabetes-like condition from 14 weeks of age. However, whether Lund MetS rats (LM rats) develop diabetic retinopathy is still unknown. The purpose is to investigate the features of diabetic retinopathy in this model. In this study, male LM rats aged 15 and 30 weeks were analyzed for pathological retinal changes, including vasculopathy, inflammation, reactive gliosis, oxidative stress, and neurodegeneration features on the retinas by histological, immunohistochemical, and gene and protein expression analysis. Compared with the non-diabetic LM rats, diabetic LM rats, mainly at 30 weeks of age, had a decrease in retinal thickness and loss of retinal ganglion cells and photoreceptors, indicating retinal neurodegeneration. They also presented an increase in VEGF-A expression, Endra, Icam-1, Vcam-1, and Endrb vascular genes, and albumin suggesting neurovascular unit dysfunction. Furthermore, retinas presented reactive gliosis and infiltration of microglia, TNF-α-positive vessels and expressed elevated levels of inflammatory genes Tnf-α, IL-18 and IL-6, and oxidative stress markers Sod2 and 8-hydroxy-2-deoxyguanosine (8-OHdG). Our results suggest that diabetic LM rats reproduce the early neurodegenerative and altered neuro-vascular features that also occur in the human diabetic eye.
Collapse
Affiliation(s)
- María José Canz
- Ophthalmology Research Group, Vall d'Hebron Research Institute, 08035, Barcelona, Spain
| | - Julia Baguña-Torres
- Medical Molecular Imaging Research Group, Vall d'Hebron Research Institute, 08035, Barcelona, Spain
| | - Jordi Huerta
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, 08035, Barcelona, Spain
| | - Helena Isla-Magrané
- Ophthalmology Research Group, Vall d'Hebron Research Institute, 08035, Barcelona, Spain
| | | | - Anna Salas
- Ophthalmology Research Group, Vall d'Hebron Research Institute, 08035, Barcelona, Spain
| | - Cristina Hernandez
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, 08035, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBER-DEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, 08035, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBER-DEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - José García-Arumí
- Ophthalmology Research Group, Vall d'Hebron Research Institute, 08035, Barcelona, Spain; Departments of Medicine and Ophthalmology, Universitat Autonoma de Barcelona, Bellaterra, 08193, Spain
| | - Jose Raul Herance
- Medical Molecular Imaging Research Group, Vall d'Hebron Research Institute, 08035, Barcelona, Spain; CIBER-BBN (ISCIII), Instituto de Salud Carlos III (ISCIII), 28040, Madrid, Spain
| | - Patricia Bogdanov
- Medical Molecular Imaging Research Group, Vall d'Hebron Research Institute, 08035, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBER-DEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| | - Anna Duarri
- Ophthalmology Research Group, Vall d'Hebron Research Institute, 08035, Barcelona, Spain.
| |
Collapse
|
4
|
Chang MC, Lin DPC, Chang HH. Hepatic Satellite Cell Activation and Alteration of Vitamin A Status Are Relevant to the Aggravation of Retinopathy by T2DM. Invest Ophthalmol Vis Sci 2025; 66:7. [PMID: 39903179 PMCID: PMC11801389 DOI: 10.1167/iovs.66.2.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/28/2024] [Indexed: 02/06/2025] Open
Abstract
Purpose Type 2 diabetes mellitus (T2DM) leads to diabetic retinopathy (DR) and hepatic impairments. The potential mutual interaction and the intermediator between these two injuries are not well elucidated. Both the retina and liver are involved in vitamin A metabolism, suggesting a potential involvement of vitamin A and its metabolites in this mutual interaction. This study aimed to elucidate the impact of either DR or hepatic impairment on the pathogenesis and vitamin A status of each during injury progression. Methods A streptozotocin (STZ)-high-fat diet (HFD)-induced T2DM rodent model was applied to examine via electroretinography (ERG) retinal and hepatic histopathology at 0, 12, 16, 20, 24, 28, and 30 weeks after T2DM induction. The levels of retinol in the retina, liver, serum, all-trans-retinal in the retina, and retinyl palmitate in the liver were measured at various time points after T2DM induction. Results Retinal dysfunction, evidenced by reduced ERG responses, appeared at week 12, followed by photoreceptor and ganglion cell damage after the 16th week. Hepatic impairments began with hepatic stellate cell activation and decreased retinyl palmitate storage, concurrent with reduced retinal retinol and increased all-trans-retinal. Serum retinol levels remained stable, but reductions in transthyretin (TTR) and retinol-binding protein 4 (RBP4) were found, likely disrupting vitamin A transport in the serum. Conclusions These results provide novel insights into hepatic injury and vitamin A status, implicating both in the aggravation of retinopathy under the influence of T2DM. The current results may raise clinical awareness on hepatic issues and vitamin A involvement during DR progression.
Collapse
Affiliation(s)
- Min-Chun Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Han-Hsin Chang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Yang S, Xin Z, Cheng W, Zhong P, Liu R, Zhu Z, Zhu LZ, Shang X, Chen S, Huang W, Zhang L, Wang W. Photoreceptor metabolic window unveils eye-body interactions. Nat Commun 2025; 16:697. [PMID: 39814712 PMCID: PMC11736035 DOI: 10.1038/s41467-024-55035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025] Open
Abstract
Photoreceptors are specialized neurons at the core of the retina's functionality, with optical accessibility and exceptional sensitivity to systemic metabolic stresses. Here we show the ability of risk-free, in vivo photoreceptor assessment as a window into systemic health and identify shared metabolic underpinnings of photoreceptor degeneration and multisystem health outcomes. A thinner photoreceptor layer thickness is significantly associated with an increased risk of future mortality and 13 multisystem diseases, while systematic analyses of circulating metabolomics enable the identification of 109 photoreceptor-related metabolites, which in turn elevate or reduce the risk of these health outcomes. To translate these insights into a practical tool, we developed an artificial intelligence (AI)-driven photoreceptor metabolic window framework and an accompanying interpreter that comprehensively captures the metabolic landscape of photoreceptor-systemic health linkages and simultaneously predicts 16 multisystem health outcomes beyond established approaches while retaining interpretability. Our work, replicated across cohorts of diverse ethnicities, reveals the potential of photoreceptors to inform systemic health and advance a multisystem perspective on human health by revealing eye-body connections and shared metabolic influences.
Collapse
Affiliation(s)
- Shaopeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China
| | - Zhuoyao Xin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Weijing Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China
| | - Pingting Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China
| | - Riqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China
| | - Ziyu Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China
| | - Lisa Zhuoting Zhu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Xianwen Shang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Shida Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China
| | - Wenyong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China
| | - Lei Zhang
- Clinical Medical Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China.
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, Hainan Province, China.
| |
Collapse
|
6
|
Chen S, Sun D, Zhang S, Xu L, Wang N, Li H, Xu X, Wei F. TIN2 modulates FOXO1 mitochondrial shuttling to enhance oxidative stress-induced apoptosis in retinal pigment epithelium under hyperglycemia. Cell Death Differ 2024; 31:1487-1505. [PMID: 39080375 PMCID: PMC11519896 DOI: 10.1038/s41418-024-01349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 10/30/2024] Open
Abstract
Progressive dysfunction of the retinal pigment epithelium (RPE) and the adjacent photoreceptor cells in the outer retina plays a pivotal role in the pathogenesis of diabetic retinopathy (DR). Here, we observed a marked increase in oxidative stress-induced apoptosis in parallel with higher expression of telomeric protein TIN2 in RPE cells under hyperglycemia in vivo and in vitro. Delving deeper, we confirm that high glucose-induced elevation of mitochondria-localized TIN2 compromises mitochondrial activity and weakens the intrinsic antioxidant defense, thereby leading to the activation of mitochondria-dependent apoptotic pathways. Mechanistically, mitochondrial TIN2 promotes the phosphorylation of FOXO1 and its relocation to the mitochondria. Such translocation of transcription factor FOXO1 not only promotes its binding to the D-loop region of mitochondrial DNA-resulting in the inhibition of mitochondrial respiration-but also hampers its availability to nuclear target DNA, thereby undermining the intrinsic antioxidant defense. Moreover, TIN2 knockdown effectively mitigates oxidative-induced apoptosis in diabetic mouse RPE by preserving mitochondrial homeostasis, which concurrently prevents secondary photoreceptor damage. Our study proposes the potential of TIN2 as a promising molecular target for therapeutic interventions for diabetic retinopathy, which emphasizes the potential significance of telomeric proteins in the regulation of metabolism and mitochondrial function. Created with BioRender ( https://www.biorender.com/ ).
Collapse
Affiliation(s)
- Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Li Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Ning Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Huiming Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Disease; Shanghai Engineering Center for Visual Science and Photo Medicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
7
|
Bautista-Elivar N, Avilés-Trigueros M, Bueno JM. Quantification of Photoreceptors' Changes in a Diabetic Retinopathy Model with Two-Photon Imaging Microscopy. Int J Mol Sci 2024; 25:8756. [PMID: 39201444 PMCID: PMC11354294 DOI: 10.3390/ijms25168756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Emerging evidence suggests that retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR), preceding the development of microvascular abnormalities. Here, we assessed the impact of neuroinflammation on the retina of diabetic-induced rats. For this aim we have used a two-photon microscope to image the photoreceptors (PRs) at different eccentricities in unstained retinas obtained from both control (N = 4) and pathological rats (N = 4). This technique provides high-resolution images where individual PRs can be identified. Within each image, every PR was located, and its transversal area was measured and used as an objective parameter of neuroinflammation. In control samples, the size of the PRs hardly changed with retinal eccentricity. On the opposite end, diabetic retinas presented larger PR transversal sections. The ratio of PRs suffering from neuroinflammation was not uniform across the retina. Moreover, the maximum anatomical resolving power (in cycles/deg) was also calculated. This presents a double-slope pattern (from the central retina towards the periphery) in both types of specimens, although the values for diabetic retinas were significantly lower across all retinal locations. The results show that chronic retinal inflammation due to diabetes leads to an increase in PR transversal size. These changes are not uniform and depend on the retinal location. Two-photon microscopy is a useful tool to accurately characterize and quantify PR inflammatory processes and retinal alterations.
Collapse
Affiliation(s)
- Nazario Bautista-Elivar
- Departamento de Ingeniería Eléctrica y Electrónica, Tecnológico Nacional de México/Instituto Tecnológico de Pachuca, Pachuca 42082, Hidalgo, Mexico
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, “Campus Mare Nostrum” de Excelencia International, 30100 Murcia, Spain
| | - Juan M. Bueno
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
8
|
Balas M, Issa M, Popovic MM, Moayad L, Zajner C, Aponte PO, Hamli H, Yan P, Wright T, Melo IM, Muni RH. ADAPTIVE OPTICS IMAGING IN DIABETIC RETINOPATHY: A Prospective Cohort Study. Retina 2024; 44:1115-1123. [PMID: 38478760 DOI: 10.1097/iae.0000000000004088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
PURPOSE To investigate the correlation between diabetic retinopathy (DR) severity and microscopic retinal and vascular alterations using adaptive optics imaging. METHODS In this single-center, prospective cohort study, adult participants with healthy eyes or DR underwent adaptive optics imaging. Participants were classified into control/mild nonproliferative DR, moderate/severe nonproliferative DR, and proliferative DR. Adaptive optics imaging using the RTX1 camera was obtained from 48 participants (87 eyes) for photoreceptor data and from 36 participants (62 eyes) for vascular data. RESULTS Photoreceptor parameters significantly differed between DR groups at 2° and 4° of retinal eccentricity. Wall-to-lumen ratio varied significantly at 2° eccentricity, while other vascular parameters remained nonsignificant. Cone density and dispersion were the strongest predictors for DR severity ( P < 0.001) in multivariable generalized estimating equation modeling, while other vascular parameters remained nonsignificant between DR severity groups. All photoreceptor parameters showed significant correlations with visual acuity overall and across most DR severity groups. CONCLUSION To date, this is one of the largest studies evaluating the use of adaptive optics imaging in DR. Adaptive optics imaging was demonstrated to differentiate between various levels of disease severity in DR. These results support the potential role in diagnostic and therapeutic microstructural evaluation in research and clinical practice.
Collapse
Affiliation(s)
- Michael Balas
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mariam Issa
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marko M Popovic
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Lana Moayad
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Chris Zajner
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Paola Oquendo Aponte
- Department of Ophthalmology, McMaster University, Hamilton, Ontario, Canada
- Department of Ophthalmology, Unity Health Toronto, Toronto, Ontario, Canada; and
| | - Hesham Hamli
- Department of Ophthalmology, Unity Health Toronto, Toronto, Ontario, Canada; and
| | - Peng Yan
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Kensington Eye Institute, Toronto, Ontario, Canada
| | - Tom Wright
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Kensington Eye Institute, Toronto, Ontario, Canada
| | - Isabela M Melo
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology, Unity Health Toronto, Toronto, Ontario, Canada; and
| | - Rajeev H Muni
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology, Unity Health Toronto, Toronto, Ontario, Canada; and
- Kensington Eye Institute, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Szabó K, Dékány B, Énzsöly A, Hajdú RI, Laurik-Feuerstein LK, Szabó A, Radovits T, Mátyás C, Oláh A, Kovács KA, Szél Á, Somfai GM, Lukáts Á. Possible retinotoxicity of long-term vardenafil treatment. Exp Eye Res 2024; 243:109890. [PMID: 38615833 DOI: 10.1016/j.exer.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Phosphodiesterase (PDE) inhibitors - such as vardenafil - are used primarily for treating erectile dysfunction via increasing cyclic guanosine monophosphate (cGMP) levels. Recent studies have also demonstrated their significant cardioprotective effects in several diseases, including diabetes, upon long-term, continuous application. However, PDE inhibitors are not specific for PDE5 and also inhibit the retinal isoform. A sustained rise in cGMP in photoreceptors is known to be toxic; therefore, we hypothesized that long-term vardenafil treatment might result in retinotoxicity. The hypothesis was tested in a clinically relevant animal model of type 2 diabetes mellitus. Histological experiments were performed on lean and diabetic Zucker Diabetic Fatty rats. Half of the animals were treated with vardenafil for six months, and the retinal effects were evaluated. Vardenafil treatment alleviated rod outer segment degeneration but decreased rod numbers in some positions and induced changes in the interphotoreceptor matrix, even in control animals. Vardenafil treatment decreased total retinal thickness in the control and diabetic groups and reduced the number of nuclei in the outer nuclear layer. Müller cell activation was detectable even in the vardenafil-treated control animals, and vardenafil did not improve gliosis in the diabetic group. Vardenafil-treated animals showed complex retinal alterations with improvements in some parameters while deterioration in others. Our results point towards the retinotoxicity of vardenafil, even without diabetes, which raises doubts about the retinal safety of long-term continuous vardenafil administration. This effect needs to be considered when approving PDE inhibitors for alternative indications.
Collapse
Affiliation(s)
- Klaudia Szabó
- Institute of Education and Psychology at Szombathely, Faculty of Education and Psychology, ELTE Eötvös Loránd University, Szombathely, Hungary; Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bulcsú Dékány
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Anna Énzsöly
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Rozina Ida Hajdú
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Department of Ophthalmology, Semmelweis University, Budapest, Hungary; Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Krisztián András Kovács
- Institute of Translational Medicine, Translational Retina Research Group, Semmelweis University, Budapest, Hungary
| | - Ágoston Szél
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor Márk Somfai
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary; Spross Research Institute, Zurich, Switzerland; Department of Ophthalmology, Stadtspital Zurich, Zurich, Switzerland
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Institute of Translational Medicine, Translational Retina Research Group, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
10
|
Pilotto E, Cosmo E, Torresin T, Coppola M, Gutierrez De Rubalcava Doblas J, Midena G, Moretti C, Midena E. Outer Retinal and Choroidal Changes in Adolescents with Long-Lasting Type 1 Diabetes. J Clin Med 2023; 13:229. [PMID: 38202235 PMCID: PMC10779656 DOI: 10.3390/jcm13010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to assess outer retinal layer (ORL), retinal pigment epithelium (RPE), choroid (Ch) and choriocapillaris (CC) modifications in adolescents with long-lasting (>10 years) type 1 diabetes (T1D) without (noDR) or with diabetic retinopathy (DR). ORL and RPE thickness were measured at optical coherence tomography (OCT) macular scans. Vascular parameters of Ch and CC were quantified after elaboration of macular OCT-angiography (OCTA) images. Insulin dose and auxological and metabolic parameters were correlated with OCT and OCTA findings in patients. ORL thickness was higher in DR eyes than in noDR and healthy controls (HC), and RPE thickness was higher in noDR and DR eyes than in HC, with statistical significance for some sectors in noDR versus HC. No OCTA parameters of CC and Ch differed among groups, and no significant correlation was observed with auxological and metabolic parameters. In conclusion, ORL and RPE were both increased in adolescents with long-lasting T1D. Such changes were not associated with insulin dose and glycemia control, nor to any choroid or choriocapillaris flow change clinically detectable at OCTA, and they could be potential imaging biomarkers of disease progression.
Collapse
Affiliation(s)
- Elisabetta Pilotto
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (E.C.); (T.T.); (M.C.); (E.M.)
| | - Eleonora Cosmo
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (E.C.); (T.T.); (M.C.); (E.M.)
| | - Tommaso Torresin
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (E.C.); (T.T.); (M.C.); (E.M.)
| | - Marco Coppola
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (E.C.); (T.T.); (M.C.); (E.M.)
| | | | | | - Carlo Moretti
- Pediatric Diabetes Unit, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (J.G.D.R.D.); (C.M.)
| | - Edoardo Midena
- Department of Neuroscience—Ophthalmology, University of Padova, 35128 Padova, Italy; (E.C.); (T.T.); (M.C.); (E.M.)
- IRCCS—Fondazione Bietti, 00198 Rome, Italy;
| |
Collapse
|
11
|
Yang S, Zhu Z, Chen S, Yuan Y, He M, Wang W. Metabolic fingerprinting on retinal pigment epithelium thickness for individualized risk stratification of type 2 diabetes mellitus. Nat Commun 2023; 14:6573. [PMID: 37852995 PMCID: PMC10585002 DOI: 10.1038/s41467-023-42404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
The retina is an important target organ of diabetes mellitus, with increasing evidence from patients and animal models suggesting that retinal pigment epithelium (RPE) may serve as an early marker for diabetes-related damages. However, their longitudinal relationship and the biological underpinnings remain less well understood. Here, we demonstrate that reduced in vivo measurements of RPE thickness (RPET) represents a significant risk factor for future type 2 diabetes mellitus (T2DM) and its microvascular phenotypes. After performing systematic analyses of circulating plasma metabolites using two complementary approaches, we identify a wide range of RPET metabolic fingerprints that are independently associated with reduced RPET. These fingerprints hold their potential to improve predictability and clinical utility for stratifying future T2DM and related microvascular phenotypes beyond traditional clinical indicators, providing insights into the promising role of retinas as a window to systemic health.
Collapse
Affiliation(s)
- Shaopeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| | - Zhuoting Zhu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Shida Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| | - Yixiong Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
- Experimental Ophthalmology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China.
| |
Collapse
|
12
|
Swinkels D, Baes M. The essential role of docosahexaenoic acid and its derivatives for retinal integrity. Pharmacol Ther 2023; 247:108440. [PMID: 37201739 DOI: 10.1016/j.pharmthera.2023.108440] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The fatty acid composition of photoreceptor outer segment (POS) phospholipids diverges from other membranes, being highly enriched in polyunsaturated fatty acids (PUFAs). The most abundant PUFA is docosahexaenoic acid (DHA, C22:6n-3), an omega-3 PUFA that amounts to over 50% of the POS phospholipid fatty acid side chains. Interestingly, DHA is the precursor of other bioactive lipids such as elongated PUFAs and oxygenated derivatives. In this review, we present the current view on metabolism, trafficking and function of DHA and very long chain polyunsaturated fatty acids (VLC-PUFAs) in the retina. New insights on pathological features generated from PUFA deficient mouse models with enzyme or transporter defects and corresponding patients are discussed. Not only the neural retina, but also abnormalities in the retinal pigment epithelium are considered. Furthermore, the potential involvement of PUFAs in more common retinal degeneration diseases such as diabetic retinopathy, retinitis pigmentosa and age-related macular degeneration are evaluated. Supplementation treatment strategies and their outcome are summarized.
Collapse
Affiliation(s)
- Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
13
|
Calbiague García V, Cadiz B, Herrera P, Díaz A, Schmachtenberg O. Evaluation of Photobiomodulation and Boldine as Alternative Treatment Options in Two Diabetic Retinopathy Models. Int J Mol Sci 2023; 24:ijms24097918. [PMID: 37175628 PMCID: PMC10178531 DOI: 10.3390/ijms24097918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetic retinopathy causes progressive and irreversible damage to the retina through activation of inflammatory processes, overproduction of oxidative species, and glial reactivity, leading to changes in neuronal function and finally ischemia, edema, and hemorrhages. Current treatments are invasive and mostly applied at advanced stages, stressing the need for alternatives. To this end, we tested two unconventional and potentially complementary non-invasive treatment options: Photobiomodulation, the stimulation with near-infrared light, has shown promising results in ameliorating retinal pathologies and insults in several studies but remains controversial. Boldine, on the other hand, is a potent natural antioxidant and potentially useful to prevent free radical-induced oxidative stress. To establish a baseline, we first evaluated the effects of diabetic conditions on the retina with immunofluorescence, histological, and ultrastructural analysis in two diabetes model systems, obese LepRdb/db mice and organotypic retinal explants, and then tested the potential benefits of photobiomodulation and boldine treatment in vitro on retinal explants subjected to high glucose concentrations, mimicking diabetic conditions. Our results suggest that the principal subcellular structures affected by these conditions were mitochondria in the inner segment of photoreceptors, which displayed morphological changes in both model systems. In retinal explants, lactate metabolism, assayed as an indicator of mitochondrial function, was altered, and decreased photoreceptor viability was observed, presumably as a consequence of increased oxidative-nitrosative stress. The latter was reduced by boldine treatment in vitro, while photobiomodulation improved mitochondrial metabolism but was insufficient to prevent retinal structural damage caused by high glucose. These results warrant further research into alternative and complementary treatment options for diabetic retinopathy.
Collapse
Affiliation(s)
- Víctor Calbiague García
- Ph. D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Bárbara Cadiz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Pablo Herrera
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Alejandra Díaz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
14
|
Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells 2022; 11:cells11213362. [PMID: 36359761 PMCID: PMC9655436 DOI: 10.3390/cells11213362] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic retinopathy (DR), with increasing incidence, is the major cause of vision loss and blindness worldwide in working-age adults. Diabetic macular edema (DME) remains the main cause of vision impairment in diabetic patients, with its pathogenesis still not completely elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in the pathogenesis of DR and DME. Currently, intravitreal injection of anti-VEGF agents remains as the first-line therapy in DME treatment due to the superior anatomic and functional outcomes. However, some patients do not respond satisfactorily to anti-VEGF injections. More than 30% patients still exist with persistent DME even after regular intravitreal injection for at least 4 injections within 24 weeks, suggesting other pathogenic factors, beyond VEGF, might contribute to the pathogenesis of DME. Recent advances showed nearly all the retinal cells are involved in DR and DME, including breakdown of blood-retinal barrier (BRB), drainage dysfunction of Müller glia and retinal pigment epithelium (RPE), involvement of inflammation, oxidative stress, and neurodegeneration, all complicating the pathogenesis of DME. The profound understanding of the changes in proteomics and metabolomics helps improve the elucidation of the pathogenesis of DR and DME and leads to the identification of novel targets, biomarkers and potential therapeutic strategies for DME treatment. The present review aimed to summarize the current understanding of DME, the involved molecular mechanisms, and the changes in proteomics and metabolomics, thus to propose the potential therapeutic recommendations for personalized treatment of DME.
Collapse
|
15
|
MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression? Int J Mol Sci 2022; 23:ijms232012099. [PMID: 36292956 PMCID: PMC9603433 DOI: 10.3390/ijms232012099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic disease associated with diabetes mellitus and is a leading cause of visual impairment among the working population in the US. Clinically, DR has been diagnosed and treated as a vascular complication, but it adversely impacts both neural retina and retinal vasculature. Degeneration of retinal neurons and microvasculature manifests in the diabetic retina and early stages of DR. Retinal photoreceptors undergo apoptosis shortly after the onset of diabetes, which contributes to the retinal dysfunction and microvascular complications leading to vision impairment. Chronic inflammation is a hallmark of diabetes and a contributor to cell apoptosis, and retinal photoreceptors are a major source of intraocular inflammation that contributes to vascular abnormalities in diabetes. As the levels of microRNAs (miRs) are changed in the plasma and vitreous of diabetic patients, miRs have been suggested as biomarkers to determine the progression of diabetic ocular diseases, including DR. However, few miRs have been thoroughly investigated as contributors to the pathogenesis of DR. Among these miRs, miR-150 is downregulated in diabetic patients and is an endogenous suppressor of inflammation, apoptosis, and pathological angiogenesis. In this review, how miR-150 and its downstream targets contribute to diabetes-associated retinal degeneration and pathological angiogenesis in DR are discussed. Currently, there is no effective treatment to stop or reverse diabetes-caused neural and vascular degeneration in the retina. Understanding the molecular mechanism of the pathogenesis of DR may shed light for the future development of more effective treatments for DR and other diabetes-associated ocular diseases.
Collapse
|
16
|
Antioxidant and anti-apoptotic effects of tocotrienol-rich fraction against streptozotocin-induced diabetic retinopathy in rats. Biomed Pharmacother 2022; 153:113533. [DOI: 10.1016/j.biopha.2022.113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
|
17
|
Retinal Microvascular and Neuronal Changes Are Also Present, Even If Differently, in Adolescents with Type 1 Diabetes without Clinical Diabetic Retinopathy. J Clin Med 2022; 11:jcm11143982. [PMID: 35887746 PMCID: PMC9323684 DOI: 10.3390/jcm11143982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
The purpose of this study was to evaluate retinal changes in adolescents with childhood-onset, long-lasting type 1 diabetes mellitus (T1D). Patients and healthy controls (HC) underwent optical coherence tomography (OCT) and OCT-angiography (OCTA). Individual macular layers, peripapillary retinal nerve fiber layer (pRNFL), and vascular parameters (vessel area density (VAD), vessel length fraction (VLF) and vessel diameter index (VDI)) of macular superficial vascular (SVP), intermediate (ICP), deep (DCP) and radial peripapillary capillary plexuses (RPCP) were quantified. Thirty-nine patients (5 with (DR group) and 34 without (noDR group) diabetic retinopathy) and 20 HC were enrolled. The pRNFL and ganglion cell layer (GCL) were thicker in noDR compared to HC and DR, reaching statistically significant values versus HC for some sectors. At the macular level, VAD and VLF were reduced in DR versus HC in all plexuses, and versus noDR in SVP (p < 0.005 for all). At the RPCP level, VAD and VDI were increased in noDR versus HC, significantly for VDI (p = 0.0067). Glycemic indices correlated to retinal parameters. In conclusion, in T1D adolescents, retinal capillary and neuronal changes are present after long-lasting disease, even in the absence of clinical DR. These changes modify when clinical retinopathy develops. The precocious identification of specific OCT and OCTA changes may be a hallmark of subsequent overt retinopathy.
Collapse
|
18
|
Li M, Tian M, Jiang X, Liu Y, Wang Y, Li Y. Inhibition of galectin-3 ameliorates high-glucose-induced oxidative stress and inflammation in ARPE-19 cells. Cutan Ocul Toxicol 2022; 41:179-186. [PMID: 35658762 DOI: 10.1080/15569527.2022.2081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Retinal pigment epithelium (RPE) has been found to be participated in the pathogenesis of DR in recent years. Galectin-3 (Gal-3) is involved in many diabetic complications and ophthalmological diseases. However, the role of Gal-3 in RPE cells in DR remains unknown. This study aims to investigate the role of Gal-3 in ARPE-19 cells under high glucose treatment. MATERIALS AND METHODS ARPE-19 cells were cultured under normal or high glucose (HG) for 48 h. Expression of Gal-3 was inhibited by Si-Gal-3 transfection. Apoptosis was checked by flow cytometry. Oxidative stress was checked by measuring ROS, MDA levels, and SOD activities. Occludin and ZO-1 expression were checked by immunofluorescence staining. Genes involved in inflammatory response were measured by real-time PCR and Western blot. RESULTS Gal-3 expression could be increased by HG treatment in ARPE-19 cells. Gal-3 knockdown might reduce oxidative stress, apoptosis, and gene expression of VCAM-1, ICAM-1, and integrin-β1 induced by HG treatment. The gene expression of IL-1β could be markedly promoted by HG treatment and this increasement was partly alleviated by Gal-3 knockdown only at the mRNA level. The reduced expression of ZO-1 and occludin caused by HG could also be improved by Gal-3 knockdown. CONCLUSION Gal-3 participated in increased oxidative stress and inflammatory response caused by HG in ARPE-19 cells.
Collapse
Affiliation(s)
- Min Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meimei Tian
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinli Jiang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
19
|
Carpi-Santos R, de Melo Reis RA, Gomes FCA, Calaza KC. Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:617. [PMID: 35453302 PMCID: PMC9027671 DOI: 10.3390/antiox11040617] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic retinopathy is a neurovascular complication of diabetes and the main cause of vision loss in adults. Glial cells have a key role in maintenance of central nervous system homeostasis. In the retina, the predominant element is the Müller cell, a specialized cell with radial morphology that spans all retinal layers and influences the function of the entire retinal circuitry. Müller cells provide metabolic support, regulation of extracellular composition, synaptic activity control, structural organization of the blood-retina barrier, antioxidant activity, and trophic support, among other roles. Therefore, impairments of Müller actions lead to retinal malfunctions. Accordingly, increasing evidence indicates that Müller cells are affected in diabetic retinopathy and may contribute to the severity of the disease. Here, we will survey recently described alterations in Müller cell functions and cellular events that contribute to diabetic retinopathy, especially related to oxidative stress and inflammation. This review sheds light on Müller cells as potential therapeutic targets of this disease.
Collapse
Affiliation(s)
- Raul Carpi-Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Ricardo A. de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Flávia Carvalho Alcantara Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Karin C. Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niteroi 24210-201, RJ, Brazil
| |
Collapse
|
20
|
Canovai A, Amato R, Melecchi A, Dal Monte M, Rusciano D, Bagnoli P, Cammalleri M. Preventive Efficacy of an Antioxidant Compound on Blood Retinal Barrier Breakdown and Visual Dysfunction in Streptozotocin-Induced Diabetic Rats. Front Pharmacol 2022; 12:811818. [PMID: 35046830 PMCID: PMC8762314 DOI: 10.3389/fphar.2021.811818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
In diabetic retinopathy (DR), high blood glucose drives chronic oxidative stress and inflammation that trigger alterations of the neurovascular balance finally resulting in vascular abnormalities and retinal cell death, which converge towards altered electroretinogram (ERG). In the last years, a growing body of preclinical evidence has suggested that nutrients with anti-inflammatory/antioxidant properties can be able to hamper DR progression since its very early stages. In the present study, we used a streptozotocin-induced rat model of DR, which mimics most aspects of the early stages of human DR, to test the preventive efficacy of a novel compound containing cyanidin-3-glucoside (C3G), verbascoside and zinc as nutrients with antioxidant and anti-inflammatory properties. Western blot, immunofluorescence and electroretinographic analyses demonstrated a dose-dependent inhibition of oxidative stress- and inflammation-related mechanisms, with a significant counterpart in preventing molecular mechanisms leading to DR-associated vasculopathy and its related retinal damage. Preventive efficacy of the compound on dysfunctional a- and b-waves was also demonstrated by electroretinography. The present demonstration that natural compounds, possibly as a consequence of vascular rescue following ameliorated oxidative stress and inflammation, may prevent the apoptotic cascade leading to ERG dysfunction, adds further relevance to the potential application of antioxidants as a preventive therapy to counteract DR progression.
Collapse
Affiliation(s)
| | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | | | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Pöstyéni E, Szabadfi K, Sétáló G, Gabriel R. A Promising Combination: PACAP and PARP Inhibitor Have Therapeutic Potential in Models of Diabetic and Hypertensive Retinopathies. Cells 2021; 10:cells10123470. [PMID: 34943979 PMCID: PMC8700737 DOI: 10.3390/cells10123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Diabetes and hypertension are complex pathologies with increasing prevalence nowadays. Their interconnected pathways are frequently manifested in retinopathies. Severe retinal consequences and their tight connections as well as their possible treatments are particularly important to retinal research. In the present, work we induced diabetes with streptozotocin in spontaneously hypertensive rats and treated them either with PACAP or olaparib and alternatively with both agents. Morphological and immunohistochemical analyses were carried out to describe cell-specific changes during pathologies and after different treatments. Diabetes and hypertension caused massive structural and cellular changes especially when they were elicited together. Hypertension was crucial in the formation of ONL and OPL damage while diabetes caused significant differences in retinal thickness, OPL thickness and in the cell number of the GCL. In diabetes, double neuroprotective treatment ameliorated changes of calbindin-positive cells, rod bipolar cells and dopaminergic amacrine cells. Double treatment was curative in hypertensive diabetic rat retinas, especially in the case of rod bipolar and parvalbumin-positive cells compared to untreated or single-treated retinas. Our results highlighted the promising therapeutic benefits of olaparib and PACAP in these severe metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary; (E.P.); (K.S.)
| | - Krisztina Szabadfi
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary; (E.P.); (K.S.)
| | - György Sétáló
- Department of Medical Biology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary; (E.P.); (K.S.)
- Correspondence:
| |
Collapse
|
22
|
Early (5-Day) Onset of Diabetes Mellitus Causes Degeneration of Photoreceptor Cells, Overexpression of Incretins, and Increased Cellular Bioenergetics in Rat Retina. Cells 2021; 10:cells10081981. [PMID: 34440748 PMCID: PMC8394146 DOI: 10.3390/cells10081981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The effects of early (5-day) onset of diabetes mellitus (DM) on retina ultrastructure and cellular bioenergetics were examined. The retinas of streptozotocin-induced diabetic rats were compared to those of non-diabetic rats using light and transmission electron microscopy. Tissue localization of glucagon-like-peptide-1 (GLP-1), exendin-4 (EXE-4), and catalase (CAT) in non-diabetic and diabetic rat retinas was conducted using immunohistochemistry, while the retinal and plasma concentration of GLP-1, EXE-4, and CAT were measured with ELISA. Lipid profiles and kidney and liver function markers were measured from the blood of non-diabetic and diabetic rats with an automated biochemical analyzer. Oxygen consumption was monitored using a phosphorescence analyzer, and the adenosine triphosphate (ATP) level was determined using the Enliten ATP assay kit. Blood glucose and cholesterol levels were significantly higher in diabetic rats compared to control. The number of degenerated photoreceptor cells was significantly higher in the diabetic rat retina. Tissue levels of EXE-4, GLP-1 and CAT were significantly (p = 0.002) higher in diabetic rat retina compared to non-diabetic controls. Retinal cellular respiration was 50% higher (p = 0.004) in diabetic (0.53 ± 0.16 µM O2 min−1 mg−1, n = 10) than in non-diabetic rats (0.35 ± 0.07 µM O2 min−1 mg−1, n = 11). Retinal cellular ATP was 76% higher (p = 0.077) in diabetic (205 ± 113 pmol mg−1, n = 10) than in non-diabetic rats (116 ± 99 pmol mg−1, n = 12). Thus, acute (5-day) or early onslaught of diabetes-induced hyperglycemia increased incretins and antioxidant levels and oxidative phosphorylation. All of these events could transiently preserve retinal function during the early phase of the progression of diabetes.
Collapse
|
23
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
24
|
Énzsöly A, Hajdú RI, Turóczi Z, Szalai I, Tátrai E, Pálya F, Nagy ZZ, Mátyás C, Oláh A, Radovits T, Szabó K, Dékány B, Szabó A, Kusnyerik Á, Soltész P, Veres DS, Somogyi A, Somfai GM, Lukáts Á. The Predictive Role of Thyroid Hormone Levels for Early Diabetic Retinal Changes in Experimental Rat and Human Diabetes. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 34010957 PMCID: PMC8142702 DOI: 10.1167/iovs.62.6.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In diabetic subjects, early visual functional alterations such as color vision deficiencies (CVDs) are known to precede clinically apparent diabetic retinopathy. Prominent photoreceptor outer segment degeneration and an increase in the number of retinal dual cones (co-expressing S- and M-opsins simultaneously) have been described in diabetic rat models, suggesting a connection with the development of CVDs. As cone opsin expression is controlled by thyroid hormones, we investigated the diabetic retina in association with thyroid hormone alterations. Methods In rat models of type 1 and 2 diabetes, dual cones were labeled by immunohistochemistry, and their numbers were analyzed in relation to free triiodothyronine (fT3) and free thyroxine (fT4) levels. Quantification of dual cones was also performed in human postmortem retinas. Additionally, a cross-sectional case–control study was performed where thyroid hormone levels were measured and color vision was assessed with Lanthony desaturated D15 discs. Results A higher number of dual cones was detectable in diabetic rats, correlating with fT4 levels. Dual cones were also present in postmortem human retinas, with higher numbers in the three diabetic retinas. As expected, age was strongly associated with CVDs in human patients, and the presence of diabetes also increased the risk. However, the current study failed to detect any effect of thyroid hormones on the development of CVDs. Conclusions Our results point toward the involvement of thyroid homeostasis in the opsin expression changes in diabetic rats and human samples. The evaluation of the possible clinical consequences warrants further research.
Collapse
Affiliation(s)
- Anna Énzsöly
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Rozina I Hajdú
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zsolt Turóczi
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Irén Szalai
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Erika Tátrai
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Fanni Pálya
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Z Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Klaudia Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bulcsú Dékány
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ákos Kusnyerik
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Petra Soltész
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Dániel S Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Anikó Somogyi
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor M Somfai
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary.,Eye Clinic, Stadtspital Waid and Triemli, Zürich, Switzerland.,Werner H. Spross Foundation for the Advancement of Research and Teaching in Ophthalmology, Zürich, Switzerland
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
El-Mansi AA, Al-Kahtani MA, Rady AM, El-Bealy EA, Al-Asmari AM. Vitamin A and Daucus carota root extract mitigate STZ-induced diabetic retinal degeneration in Wistar albino rats by modulating neurotransmission and downregulation of apoptotic pathways. J Food Biochem 2021; 45:e13688. [PMID: 33687088 DOI: 10.1111/jfbc.13688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/14/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
The objective of our study was to explore the deleterious effects of diabetes on the visual functions of the retina and to address whether the administration of vitamin A and carrot root extract (CE) confer retinal protection in hyperglycemic rats via modulation of oxidative stress, biochemical alternations, and retinal neurotransmission. Fifty male Wistar albino rats weighing 180 ± 12.41 g were randomized into five groups (n = 10): controls, diabetic group (injected with 40 mg/kg dissolved in 0.1 sodium citrate buffer), diabetic group treated with vitamin A (2,500 IU/kg, low dose), diabetic group treated with vitamin (5,000 IU/kg, high dose), and diabetic groups administered CE (200 mg/kg/every other day). Our findings showed that, compared to controls, diabetic rats showed a significant decrease in their retinal thickness, increased apoptotic ganglion cells, and a noticeable degeneration of their synaptic layers. The inner retina displayed increased activity of neovascularization; however, the outer retina exhibited vacuolar degeneration of the photoreceptor cell layer. Our biochemical assessments showed reduced levels of CAT, SOD, and GST along with increased lipid peroxidation. Concurrently, cellular angiogenic and stress markers were significantly elevated associated with increased apoptotic activities as evidenced by increased expressions of annexin-V and PARP. Furthermore, the neurotransmitter content of the retina was altered in diabetic rats compared to controls and diabetic-treated groups. Paradoxically, vitamin A and CE supplementation attenuate these retinal insults in diabetic animals and normalized aforementioned assayed parameters; evidencing that both treatments exerted ameliorative impacts and restored visual functions by diminishing oxidative stress and neuronal degeneration. PRACTICAL APPLICATIONS: Diabetes is a complex disease that involves various physiological perturbations especially visual functions. In our study, we showed that vitamin A and carrot root extract (CE) confer remarkable protection against retinal degeneration in STZ-induced diabetic rats. Our findings showed that the chemical and phytochemical ingredients of the vitamin A and CE substantially attenuated the histopathological changes, oxidative stress, inflammatory reactions, and cellular death in diabetic rats. These favorable changes are attributable to the high content of retinoic acid, carotenoids, and phenolic compounds that effectively regulates the production of visual pigments, increases the antioxidant defense system, and diminishes the pro-inflammatory and apoptotic pathways. Thus, the nutritional values of vitamin A and CE represent promising therapeutic choices to mitigate the retinal-induced diabetic insults.
Collapse
Affiliation(s)
- Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - M A Al-Kahtani
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed M Rady
- Biology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Eman A El-Bealy
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - A M Al-Asmari
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
26
|
Targeted pharmacotherapy against neurodegeneration and neuroinflammation in early diabetic retinopathy. Neuropharmacology 2021; 187:108498. [PMID: 33582150 DOI: 10.1016/j.neuropharm.2021.108498] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR), the most frequent complication of diabetes, is one of the leading causes of irreversible blindness in working-age adults and has traditionally been regarded as a microvascular disease. However, increasing evidence has revealed that synaptic neurodegeneration of retinal ganglion cells (RGCs) and activation of glial cells may represent some of the earliest events in the pathogenesis of DR. Upon diabetes-induced metabolic stress, abnormal glycogen synthase kinase-3β (GSK-3β) activation drives tau hyperphosphorylation and β-catenin downregulation, leading to mitochondrial impairment and synaptic neurodegeneration prior to RGC apoptosis. Moreover, glial cell activation triggers enhanced inflammation and oxidative stress, which may accelerate the deterioration of diabetic RGCs neurodegeneration. These findings have opened up opportunities for therapies, such as inhibition of GSK-3β, glial cell activation, glutamate excitotoxicity and the use of neuroprotective drugs targeting early neurodegenerative processes in the retina and halting the progression of DR before the manifestation of microvascular abnormalities. Such interventions could potentially remedy early neurodegeneration and help prevent vision loss in people suffering from DR.
Collapse
|
27
|
Gorbatyuk OS, Pitale PM, Saltykova IV, Dorofeeva IB, Zhylkibayev AA, Athar M, Fuchs PA, Samuels BC, Gorbatyuk MS. A Novel Tree Shrew Model of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2021; 12:799711. [PMID: 35046899 PMCID: PMC8762304 DOI: 10.3389/fendo.2021.799711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 01/03/2023] Open
Abstract
Existing animal models with rod-dominant retinas have shown that hyperglycemia injures neurons, but it is not yet clearly understood how blue cone photoreceptors and retinal ganglion cells (RGCs) deteriorate in patients because of compromised insulin tolerance. In contrast, northern tree shrews (Tupaia Belangeri), one of the closest living relatives of primates, have a cone-dominant retina with short wave sensitivity (SWS) and long wave sensitivity (LWS) cones. Therefore, we injected animals with a single streptozotocin dose (175 mg/kg i.p.) to investigate whether sustained hyperglycemia models the features of human diabetic retinopathy (DR). We used the photopic electroretinogram (ERG) to measure the amplitudes of A and B waves and the photopic negative responses (PhNR) to evaluate cone and RGC function. Retinal flat mounts were prepared for immunohistochemical analysis to count the numbers of neurons with antibodies against cone opsins and RGC specific BRN3a proteins. The levels of the proteins TRIB3, ISR-1, and p-AKT/p-mTOR were measured with western blot. The results demonstrated that tree shrews manifested sustained hyperglycemia leading to a slight but significant loss of SWS cones (12%) and RGCs (20%) 16 weeks after streptozotocin injection. The loss of BRN3a-positive RGCs was also reflected by a 30% decline in BRN3a protein expression. These were accompanied by reduced ERG amplitudes and PhNRs. Importantly, the diabetic retinas demonstrated increased expression of TRIB3 and level of p-AKT/p-mTOR axis but reduced level of IRS-1 protein. Therefore, a new non-primate model of DR with SWS cone and RGC dysfunction lays the foundation to better understand retinal pathophysiology at the molecular level and opens an avenue for improving the research on the treatment of human eye diseases.
Collapse
Affiliation(s)
- Oleg S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Priyamvada M Pitale
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Irina V Saltykova
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Iuliia B Dorofeeva
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Assylbek A Zhylkibayev
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohammad Athar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Preston A Fuchs
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
28
|
Alzahrani S, Ajwah SM, Alsharif SY, Said E, El-Sherbiny M, Zaitone SA, Al-Shabrawey M, Elsherbiny NM. Isoliquiritigenin downregulates miR-195 and attenuates oxidative stress and inflammation in STZ-induced retinal injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2375-2385. [PMID: 32699958 DOI: 10.1007/s00210-020-01948-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is a major microvascular complication of diabetes mellitus that leads to significant vision loss. Isoliquiritigenin (ISL) is a bioactive flavonoid found in the root of licorice with reported anti-oxidant and anti-inflammatory activities. In the present study, we evaluated the effect of ISL administration on diabetes-induced retinal injury. Diabetes was induced in male Sprague-Dawley rats using single intraperitoneal streptozotocin (STZ, 50 mg/kg) injection. Diabetic rats showed up-regulated retinal miR-195, reduced retinal levels of SIRT-1, and increased levels of oxidative stress, nuclear factor-κB (NF-κB), inflammatory cytokines, and endothelin-1. Moreover, histopathological and electron microscopy studies revealed distorted retinal layers and reduced number of ganglion cells. Oral administration of ISL (20 mg/kg/day) to diabetic rats for 8 weeks improved diabetes-induced retinal injury via down-regulation of miR-195, restoration of retinal SIRT-1 level, attenuation of oxidative stress, inflammation, and endothelial damage as well as preservation of retinal normal histology and ultrastructure. In conclusion, our results showed that ISL could be a promising therapeutic intervention to prevent the development and progression of DR. It also suggested that the miR-195/SIRT-1/NF-κB pathway may contribute to ISL treatment-induced beneficial effects.
Collapse
Affiliation(s)
- Sharifa Alzahrani
- Pharmacology Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Sadeem M Ajwah
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
- College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Al-Shabrawey
- Department of Cellular Biology and Anatomy, Department of Ophthalmology, Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, MCG, Augusta University, Augusta, GA, USA
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
29
|
Frizziero L, Midena G, Longhin E, Berton M, Torresin T, Parrozzani R, Pilotto E. Early Retinal Changes by OCT Angiography and Multifocal Electroretinography in Diabetes. J Clin Med 2020; 9:jcm9113514. [PMID: 33143008 PMCID: PMC7692230 DOI: 10.3390/jcm9113514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background: To evaluate the earliest retinal morphological and functional changes in diabetic eyes without or with early signs of diabetic retinopathy (DR). Methods: Twenty-two eyes with no DR (noDR group), 22 eyes with mild DR (DR group), and 18 healthy nondiabetic eyes (controls) were enrolled. All eyes were studied by means of spectral domain optical coherence tomography (OCT), OCT angiography (OCTA), and multifocal electroretinogram (mfERG). Results: A significantly higher number of OCT hyperreflective intraretinal foci (HRF) was found in both noDR and DR groups versus controls, but not between DR groups. The OCTA parameters of the superficial vascular plexus (SVP) were significantly reduced in the noDR group both versus controls and DR group (p < 0.05). The OCTA parameters of the intermediate capillary plexus (ICP) were significantly reduced in the DR group versus controls. An increased number of altered hexagons on mfERG was found in the noDR versus the DR group (p = 0.0192). Conclusions: Retinal vascular and functional parameters are differently involved in diabetic eyes; major vascular changes in the SVP and functional alterations of the mfERG are present in diabetic eyes with no clinical microvascular signs of DR, while ICP is mainly involved when early ophthalmoscopic signs of DR are present. The integrated use of mfERG and OCTA provides new significant insights into the pathogenesis of diabetic related retinal disease.
Collapse
Affiliation(s)
- Luisa Frizziero
- IRCCS—Fondazione Bietti, 00198 Rome, Italy
- Correspondence: ; Tel.: +39-049-821-2110
| | - Giulia Midena
- Institute of Ophthalmology, Policlinico Gemelli, IRCCS, 00168 Rome, Italy;
| | - Evelyn Longhin
- Department of Ophthalmology, University of Padova, 35128 Padova, Italy; (E.L.); (T.T.); (R.P.); (E.P.)
| | | | - Tommaso Torresin
- Department of Ophthalmology, University of Padova, 35128 Padova, Italy; (E.L.); (T.T.); (R.P.); (E.P.)
| | - Raffaele Parrozzani
- Department of Ophthalmology, University of Padova, 35128 Padova, Italy; (E.L.); (T.T.); (R.P.); (E.P.)
| | - Elisabetta Pilotto
- Department of Ophthalmology, University of Padova, 35128 Padova, Italy; (E.L.); (T.T.); (R.P.); (E.P.)
| |
Collapse
|
30
|
The cells involved in the pathological process of diabetic retinopathy. Biomed Pharmacother 2020; 132:110818. [PMID: 33053509 DOI: 10.1016/j.biopha.2020.110818] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
Diabetic retinopathy(DR) is an expanding global health problem, the exact mechanism of which has not yet been clarified clearly, new insights into retinal physiology indicate that diabetes-induced retinal dysfunction may be viewed as an impairment of the retinal neurovascular unit, including retinal ganglion cells, glial cells, endothelial cells, pericytes, and retinal pigment epithelium. Different retinal cells have unique structure and functions, while the interactions among which are less known. Cells are the basic unit of organism structure and function, their impairment could lead to abnormal physiological functions and even organ disorder. Considering the body is multi-dimension and the complexity of DR, one point or a single type of cell can't be used to illustrate the mechanism of occurrence and development of DR. In this review, we provided a systematic and comprehensive elaboration of the cells that are involved in the process of DR. We underlined the importance of considering the neurovascular unit, not just retinal vascular and neural cells, in understanding the pathophysiology of DR. Our studies provided a better understanding of the pathological process in DR and provide a theoretical basis for further research.
Collapse
|
31
|
Diabetic Retinopathy: The Role of Mitochondria in the Neural Retina and Microvascular Disease. Antioxidants (Basel) 2020; 9:antiox9100905. [PMID: 32977483 PMCID: PMC7598160 DOI: 10.3390/antiox9100905] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR), a common chronic complication of diabetes mellitus and the leading cause of vision loss in the working-age population, is clinically defined as a microvascular disease that involves damage of the retinal capillaries with secondary visual impairment. While its clinical diagnosis is based on vascular pathology, DR is associated with early abnormalities in the electroretinogram, indicating alterations of the neural retina and impaired visual signaling. The pathogenesis of DR is complex and likely involves the simultaneous dysregulation of multiple metabolic and signaling pathways through the retinal neurovascular unit. There is evidence that microvascular disease in DR is caused in part by altered energetic metabolism in the neural retina and specifically from signals originating in the photoreceptors. In this review, we discuss the main pathogenic mechanisms that link alterations in neural retina bioenergetics with vascular regression in DR. We focus specifically on the recent developments related to alterations in mitochondrial metabolism including energetic substrate selection, mitochondrial function, oxidation-reduction (redox) imbalance, and oxidative stress, and critically discuss the mechanisms of these changes and their consequences on retinal function. We also acknowledge implications for emerging therapeutic approaches and future research directions to find novel mitochondria-targeted therapeutic strategies to correct bioenergetics in diabetes. We conclude that retinal bioenergetics is affected in the early stages of diabetes with consequences beyond changes in ATP content, and that maintaining mitochondrial integrity may alleviate retinal disease.
Collapse
|
32
|
Abstract
Diabetic retinopathy is now well understood as a neurovascular disease. Significant deficits early in diabetes are found in the inner retina that consists of bipolar cells that receive inputs from rod and cone photoreceptors, ganglion cells that receive inputs from bipolar cells, and amacrine cells that modulate these connections. These functional deficits can be measured in vivo in diabetic humans and animal models using the electroretinogram (ERG) and behavioral visual testing. Early effects of diabetes on both the human and animal model ERGs are changes to the oscillatory potentials that suggest dysfunctional communication between amacrine cells and bipolar cells as well as ERG measures that suggest ganglion cell dysfunction. These are coupled with changes in contrast sensitivity that suggest inner retinal changes. Mechanistic in vitro neuronal studies have suggested that these inner retinal changes are due to decreased inhibition in the retina, potentially due to decreased gamma aminobutyric acid (GABA) release, increased glutamate release, and increased excitation of retinal ganglion cells. Inner retinal deficits in dopamine levels have also been observed that can be reversed to limit inner retinal damage. Inner retinal targets present a promising new avenue for therapies for early-stage diabetic eye disease.
Collapse
|
33
|
Bueno JM, Cruz-Castillo R, Avilés-Trigueros M, Bautista-Elivar N. Arrangement of the photoreceptor mosaic in a diabetic rat model imaged with multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4901-4914. [PMID: 33014589 PMCID: PMC7510868 DOI: 10.1364/boe.399835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Diabetic retinopathy (DR) is defined as a microvascular pathology. However, some data have suggested that the retinal photoreceptors (PRs) might be important in the pathogenesis of this ocular disease. In this study the organization of the PRs in control and diabetic-induced rats was compared using multiphoton microscopy. The PR mosaic was imaged at different locations in non-stained retinas. The density of PRs was directly quantified from cell counting. The spatially resolved density presents a double-slope pattern (from the central retina towards the periphery) in both healthy and pathological samples, although the values for the latter were significantly lower all across the retina. Moreover, Voronoi analysis was performed to explore changes in PR topography. In control specimens a hexagonally packed structure was dominant. However, despite the non-controlled effects of the disease in retinal structures, this PR regularity was fairly maintained in diabetic retinas.
Collapse
Affiliation(s)
- Juan M. Bueno
- Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Murcia, Spain
| | - Ricardo Cruz-Castillo
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, “Campus Mare Nostrum” de Excelencia International, Murcia, Spain
| | - Nazario Bautista-Elivar
- Departamento de Ingeniería Eléctrica, Tecnológico Nacional de México, Instituto Tecnológico de Pachuca, Hidalgo, Mexico
| |
Collapse
|
34
|
Hajdú RI, Laurik LK, Szabó K, Dékány B, Almási Z, Énzsöly A, Szabó A, Radovits T, Mátyás C, Oláh A, Szél Á, Somfai GM, Dávid C, Lukáts Á. Detailed Evaluation of Possible Ganglion Cell Loss in the Retina of Zucker Diabetic Fatty (ZDF) Rats. Sci Rep 2019; 9:10463. [PMID: 31320684 PMCID: PMC6639371 DOI: 10.1038/s41598-019-46879-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/21/2019] [Indexed: 01/06/2023] Open
Abstract
A thinning of the inner retina is one of the earliest potential markers of neuroretinal damage in diabetic subjects. The histological background is uncertain; retinal ganglion cell (RGC) loss and changes in the structure or thickness of the inner plexiform layer (IPL) have been suspected. Studies conducted on animal models on RGC pathology gave contradictory results. Hereby we present RGC numbers, distribution patterns and IPL thickness from Zucker Diabetic Fatty (ZDF) rats. After labelling RGCs on retinal whole mounts, isodensity maps were constructed, RGC numbers and distribution patterns analysed using a custom-built algorithm, enabling point-by-point comparison. There was no change in staining characteristics of the antibodies and no significant difference in average RGC densities was found compared to controls. The distribution patterns were also comparable and no significant difference was found in IPL thickness and stratification or in the number of apoptotic cells in the ganglion cell layer (GCL). Our results provide a detailed evaluation of the inner retina and exclude major RGC loss in ZDF rats and suggest that other factors could serve as a potential explanation for inner retinal thinning in clinical studies. Our custom-built method could be adopted for the assessment of other animal or human retinas.
Collapse
Affiliation(s)
- Rozina I Hajdú
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lenke K Laurik
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Klaudia Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bulcsú Dékány
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Almási
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Anna Énzsöly
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Ágoston Szél
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor M Somfai
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Retinology Unit, Pallas Kliniken, Olten, Switzerland
| | - Csaba Dávid
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
35
|
D'Amico AG, Maugeri G, Rasà D, Federico C, Saccone S, Lazzara F, Fidilio A, Drago F, Bucolo C, D'Agata V. NAP modulates hyperglycemic-inflammatory event of diabetic retina by counteracting outer blood retinal barrier damage. J Cell Physiol 2019; 234:5230-5240. [PMID: 30374973 DOI: 10.1002/jcp.27331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Abstract
Diabetic retinopathy (DR) is a common microvascular complication of diabetes. Prolonged hyperglycemia stimulates inflammatory pathway characterized by the release of some cytokines leading to the impairment of blood retinal barrier (BRB). NAP exerts a protective effect in various eye diseases, including DR. So far, the role of NAP in the modulation of inflammatory event during early phase of this pathology has not been investigated yet. In the current study, we have studied the retinal protective effect of NAP, injected into the eye, in diabetic rats. NAP treatment exerts a dual effect downregulating interleukin (IL)-1β and its related receptors and upregulating IL-1Ra expression. We have also tested the role of this peptide in human retinal epithelial cells (ARPE19) cultured on a semipermeable support and exposed to hyperglycemic-inflammatory insult, representing a in vitro model of diabetic macular edema, a clinical manifestation of DR. The results have shown that NAP prevents outer BRB impairment by upregulating the tight junctions. In conclusion, deepened characterization of NAP action mechanism on hyperglycemic-inflammatory damage may be useful to develop a new strategy to prevent retinal damage during DR.
Collapse
Affiliation(s)
- Agata Grazia D'Amico
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Daniela Rasà
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Annamaria Fidilio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| |
Collapse
|
36
|
Schröder K, Szendroedi J, Benthin A, Gontscharuk V, Ackermann P, Völker M, Steingrube N, Nowotny B, Ziegler D, Müssig K, Geerling G, Kuß O, Roden M, Guthoff R. German Diabetes Study - Baseline data of retinal layer thickness measured by SD-OCT in early diabetes mellitus. Acta Ophthalmol 2019; 97:e303-e307. [PMID: 30238609 DOI: 10.1111/aos.13851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/20/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE Recent studies highlighted that early diabetic neurodegeneration is present before microvascular changes are visible. Retinal neurodegeneration can decrease retinal layer thickness. We aimed to determine whether decreased retinal layer thickness is present already in the early time course of disease. METHODS A cross-sectional analysis of patients and healthy adults from the German Diabetes Study (GDS, ClinicalTrials.gov Identifier number: CT01055093, https://clinicaltrials.gov/ct2/show/NCT01055093). Inclusion criteria were a diagnosis of diabetes mellitus (DM) within the last 12 months. Retinal layers thickness in the nasal pericentral segment was measured by spectral domain ocular coherence tomography (SD-OCT). For statistical analysis proc mixed (sas-version 9.4) was used. RESULTS One hundred and seventy-eight eyes of 89 patients with type 1 DM (58 males, age 36 ± 11 years, BMI 25.5 ± 4.2 kg/m²) and 242 eyes of 121 patients with type 2 DM (84 males, age 53 ± 10 years, BMI 31.9 ± 6.3 kg/m²) with a disease duration of less than 1 year were compared to 76 eyes of 38 controls (27 males, age 41 ± 16 years, BMI 27.3 ± 6.4 kg/m²). Analysis of retinal layer thickness and visual function did not reveal a significant difference between patients and controls. CONCLUSION In the early course of DM potential, neurodegeneration does not relate to measureable changes of retinal layer thickness.
Collapse
Affiliation(s)
- Katharina Schröder
- Department of Ophthalmology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology German Diabetes Center Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf Düsseldorf Germany
- Division of Endocrinology and Diabetology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
- German Center of Diabetes Research (DZD e.V.) München‐Neuherberg Germany
| | - Anna Benthin
- Department of Ophthalmology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Veronika Gontscharuk
- Institute of Medical Statistics Düsseldorf University Hospital and Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Philipp Ackermann
- Department of Ophthalmology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Magdalena Völker
- Department of Ophthalmology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Nadine Steingrube
- Department of Ophthalmology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Bettina Nowotny
- Institute for Clinical Diabetology German Diabetes Center Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf Düsseldorf Germany
- Division of Endocrinology and Diabetology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
- German Center of Diabetes Research (DZD e.V.) München‐Neuherberg Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology German Diabetes Center Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf Düsseldorf Germany
- Division of Endocrinology and Diabetology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
- German Center of Diabetes Research (DZD e.V.) München‐Neuherberg Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology German Diabetes Center Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf Düsseldorf Germany
- Division of Endocrinology and Diabetology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
- German Center of Diabetes Research (DZD e.V.) München‐Neuherberg Germany
| | - Gerd Geerling
- Department of Ophthalmology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Oliver Kuß
- German Center of Diabetes Research (DZD e.V.) München‐Neuherberg Germany
- Institute of Medical Statistics Düsseldorf University Hospital and Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
- Institute for Biometrics and Epidemiology German Diabetes Center Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Michael Roden
- Institute for Clinical Diabetology German Diabetes Center Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf Düsseldorf Germany
- Division of Endocrinology and Diabetology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
- German Center of Diabetes Research (DZD e.V.) München‐Neuherberg Germany
| | - Rainer Guthoff
- Department of Ophthalmology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | | |
Collapse
|
37
|
Lim RR, Grant DG, Olver TD, Padilla J, Czajkowski AM, Schnurbusch TR, Mohan RR, Hainsworth DP, Walters EM, Chaurasia SS. Young Ossabaw Pigs Fed a Western Diet Exhibit Early Signs of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2019; 59:2325-2338. [PMID: 29847637 PMCID: PMC5937800 DOI: 10.1167/iovs.17-23616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Recent clinical data suggest an increasing prevalence of obesity and type 2 diabetes in adolescents, placing them at high risk of developing diabetic retinopathy during adult working years. The present study was designed to characterize the early retinal and microvascular alterations in young Ossabaw pigs fed a Western diet, described as a model of metabolic syndrome genetically predisposed to type 2 diabetes. Methods Four-month-old Ossabaw miniature pigs were divided into two groups, lean and diet-induced obesity. Obese pigs were fed a Western diet with high-fat/high-fructose corn syrup/high-choleric content for 10 weeks. Blood and retina were collected for biochemical profiling, trypsin digest, flatmounts, Fluoro-Jade C staining, electron microscopy, quantitative PCR, immunohistochemistry, and Western blots. Results Young Ossabaw pigs had elevated fasting blood glucose after feeding on a Western diet for 10 weeks. Their retina showed disrupted cellular architecture across neural layers, with numerous large vacuoles seen in cell bodies of the inner nuclear layer. Microvessels in the obese animals exhibited thickened basement membrane, along with pericyte ghosts and acellular capillaries. The pericyte to endothelial ratio decreased significantly. Retina flatmounts from obese pigs displayed reduced capillary density, numerous terminal capillary loops, and string vessels, which stained collagen IV but not isolectin IB4. Quantitative PCR and Western blots showed significantly high levels of basement membrane proteins collagen IV and fibronectin in obese pigs. Conclusions This is the first study to describe the ultrastructural neuronal and vascular changes in the retina of young Ossabaw pigs fed a Western diet, simulating early signs of diabetic retinopathy pathogenesis.
Collapse
Affiliation(s)
- Rayne R Lim
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, Missouri, United States.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri, United States
| | - DeAna G Grant
- Electron Microscopy Core, University of Missouri, Columbia, Missouri, United States
| | - T Dylan Olver
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States.,Child Health, University of Missouri, Columbia, Missouri, United States
| | - Alana M Czajkowski
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, United States
| | - Teagan R Schnurbusch
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, United States
| | - Rajiv R Mohan
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, Missouri, United States.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri, United States.,Mason Eye Institute, University of Missouri, Columbia, Missouri, United States
| | - Dean P Hainsworth
- Mason Eye Institute, University of Missouri, Columbia, Missouri, United States
| | - Eric M Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, United States
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, Missouri, United States.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri, United States
| |
Collapse
|
38
|
Burns SA, Elsner AE, Sapoznik KA, Warner RL, Gast TJ. Adaptive optics imaging of the human retina. Prog Retin Eye Res 2019; 68:1-30. [PMID: 30165239 PMCID: PMC6347528 DOI: 10.1016/j.preteyeres.2018.08.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
Abstract
Adaptive Optics (AO) retinal imaging has provided revolutionary tools to scientists and clinicians for studying retinal structure and function in the living eye. From animal models to clinical patients, AO imaging is changing the way scientists are approaching the study of the retina. By providing cellular and subcellular details without the need for histology, it is now possible to perform large scale studies as well as to understand how an individual retina changes over time. Because AO retinal imaging is non-invasive and when performed with near-IR wavelengths both safe and easily tolerated by patients, it holds promise for being incorporated into clinical trials providing cell specific approaches to monitoring diseases and therapeutic interventions. AO is being used to enhance the ability of OCT, fluorescence imaging, and reflectance imaging. By incorporating imaging that is sensitive to differences in the scattering properties of retinal tissue, it is especially sensitive to disease, which can drastically impact retinal tissue properties. This review examines human AO retinal imaging with a concentration on the use of the Adaptive Optics Scanning Laser Ophthalmoscope (AOSLO). It first covers the background and the overall approaches to human AO retinal imaging, and the technology involved, and then concentrates on using AO retinal imaging to study the structure and function of the retina.
Collapse
Affiliation(s)
- Stephen A Burns
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States.
| | - Ann E Elsner
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Kaitlyn A Sapoznik
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Raymond L Warner
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| | - Thomas J Gast
- 800E. Atwater S, School of Optometry, Indiana University, Bloomington, IN, United States
| |
Collapse
|
39
|
Chen Q, Tang L, Xin G, Li S, Ma L, Xu Y, Zhuang M, Xiong Q, Wei Z, Xing Z, Niu H, Huang W. Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium. Free Radic Biol Med 2019; 130:48-58. [PMID: 30339883 DOI: 10.1016/j.freeradbiomed.2018.10.419] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023]
Abstract
Retinal pigment epithelium (RPE) dysfunction is thought to increase the risk of the development and progression of diabetic retinopathy (DR), the leading cause of blindness. However, the molecular mechanism behind high glucose-induced RPE cell damage is still blurred. We reported that ARPE-19 exposed to 25 mM glucose for 48 h did not induce apoptosis, but senescence validated by SA-β-Gal staining, p21 expression and cell cycle distribution. High glucose also increased oxidant species that exerted a pivotal role in senescence, which could be relieved by the treatment with antioxidant N-acetylcysteine (NAC). The accumulation of lipid droplets and the increase of lipid oxidation were also observed in ARPE-19 treated with high glucose. And the supplementation of free fatty acids (FFAs) indicated that lipid metabolism was associated with the generation of hydrogen peroxide (H2O2) and subsequent senescence in ARPE-19. PI3K/Akt/mTOR signaling pathway was shown to be responsible for the accumulation of intracellular lipids by regulating fatty acid synthesis, which in turn controlled senescence. Furthermore, high glucose induced autophagy in ARPE-19 with the treatment of glucose for 48 h, and autophagy inhibitor hydroxychloroquine (HCQ) or bafilomycin further aggravated the senescence, accompanying by an increase in oxidant species. Whereas, prolonged high glucose exposure inhibited autophagy and increased apoptotic cells. Experiments above provide evidence that lipid metabolism plays an important role in oxidative stressed senescence of RPE.
Collapse
Affiliation(s)
- Qingqiu Chen
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Li Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guang Xin
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Limei Ma
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Yao Xu
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Manjiao Zhuang
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Qiuyang Xiong
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China
| | - Hai Niu
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China.
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China School of Pharmacy, West China Hospital, Sichuan University, Keyuan Road 4 No.1, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan 610041, China.
| |
Collapse
|
40
|
Tanaka Y, Takagi R, Ohta T, Sasase T, Kobayashi M, Toyoda F, Shimmura M, Kinoshita N, Takano H, Kakehashi A. Pathological Features of Diabetic Retinopathy in Spontaneously Diabetic Torii Fatty Rats. J Diabetes Res 2019; 2019:8724818. [PMID: 31637263 PMCID: PMC6766157 DOI: 10.1155/2019/8724818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The Spontaneously Diabetic Torii (SDT) fatty rat, established by introducing the fa allele (obesity gene) of the Zucker fatty rat into the SDT rat genome, is a new model of obese type 2 diabetes. We studied the pathologic features of diabetic retinopathy (DR) in this animal. METHODS The eyes of SDT fatty, SDT (controls), and Sprague Dawley (SD) rats (normal controls) were enucleated at 8, 16, 24, 32, and 40 weeks of age (n = 5-6 for each rat type at each age). The retinal thicknesses, numbers of retinal folds, and choroidal thicknesses were evaluated. Immunostaining for glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) was performed. Quantitative analyses of the immunopositive regions were performed using a cell-counting algorithm. RESULTS The retinas tended to be thicker in the SDT fatty rats and SDT rats than in the SD rats; the choroids tended to be thicker in the SDT fatty rats than in the SD rats. The retinal folds in the SDT fatty rats developed earlier and were more severe than in the SDT rats. Quantitative analyses showed that the GFAP- and VEGF-positive regions in the retinas of the SDT fatty rats were significantly larger than those of the SDT rats. CONCLUSIONS SDT fatty rats developed more severe DR earlier than the SDT rats. The SDT fatty rats might be useful as a type 2 diabetes animal model to study DR.
Collapse
Affiliation(s)
- Yoshiaki Tanaka
- Department of Ophthalmology, Jichi Medical University, Saitama Medical Center, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama 330-8503, Japan
| | - Rina Takagi
- Department of Ophthalmology, Jichi Medical University, Saitama Medical Center, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama 330-8503, Japan
| | - Takeshi Ohta
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tomohiko Sasase
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Mina Kobayashi
- Department of Ophthalmology, Jichi Medical University, Saitama Medical Center, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama 330-8503, Japan
| | - Fumihiko Toyoda
- Toyoda Eye Clinic, 7-1-10, Kisicho, Urawa-ku, Saitama, Saitama, Japan
| | - Machiko Shimmura
- Department of Ophthalmology, Jichi Medical University, Saitama Medical Center, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama 330-8503, Japan
| | - Nozomi Kinoshita
- Department of Ophthalmology, Jichi Medical University, Saitama Medical Center, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama 330-8503, Japan
| | - Hiroko Takano
- Department of Ophthalmology, Jichi Medical University, Saitama Medical Center, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama 330-8503, Japan
| | - Akihiro Kakehashi
- Department of Ophthalmology, Jichi Medical University, Saitama Medical Center, 1-847 Amanuma-cho, Omiya-ku, Saitama, Saitama 330-8503, Japan
| |
Collapse
|
41
|
Danilova I, Medvedeva S, Shmakova S, Chereshneva M, Sarapultsev A, Sarapultsev P. Pathological changes in the cellular structures of retina and choroidea in the early stages of alloxan-induced diabetes. World J Diabetes 2018; 9:239-251. [PMID: 30588286 PMCID: PMC6304297 DOI: 10.4239/wjd.v9.i12.239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/11/2018] [Accepted: 11/03/2018] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the temporal sequence of pathological changes in the cellular structures of retina and choroidea in the early stages of diabetes in laboratory animals.
METHODS Experimental type 1 diabetes was modeled by three intraperitoneal injections of an alloxan solution into 30 male nonlinear rats at 16 wk of age. The 30th and 60th days from the final alloxan injection were chosen as the endpoints. Light and electron microscopy and morphometric and immunohistochemical studies were performed on histological slices of eyeballs from experimental animals.
RESULTS Diabetic disturbances progressed to 60 d of the experiment. Thus, in the retina, a partial destruction of photoreceptors accompanied by interstitial edema was observed. The morphometric analysis revealed a reduction in the thickness of the retina. A reduction in the number of blood vessels of the choroid with disturbances of the endothelial cells and the vascular walls and a persistent reduction in the number of melanocytes were observed. The number of proliferating Ki-67 positive cells decreased, and the number of macrophages increased with diabetes development.
CONCLUSION The starting point in the development of destructive changes involves early reduction in the number of melanocytes of the choroidea and alterations in the retinal pigment epithelium.
Collapse
Affiliation(s)
- Irina Danilova
- Department of Biology and Fundamental Medicine, Institute of Natural Sciences and Mathematics, Ural Federal University Named After the First Pres. of Russia B.N. Yeltsin, Ekaterinburg 620002, Russia
- Laboratory of Morphology and Biochemistry, Institute of Immunology and Physiology, Ural Division of Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Svetlana Medvedeva
- Department of Biology and Fundamental Medicine, Institute of Natural Sciences and Mathematics, Ural Federal University Named After the First Pres. of Russia B.N. Yeltsin, Ekaterinburg 620002, Russia
- Laboratory of Morphology and Biochemistry, Institute of Immunology and Physiology, Ural Division of Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Svetlana Shmakova
- Department of Biology and Fundamental Medicine, Institute of Natural Sciences and Mathematics, Ural Federal University Named After the First Pres. of Russia B.N. Yeltsin, Ekaterinburg 620002, Russia
- Laboratory of Morphology and Biochemistry, Institute of Immunology and Physiology, Ural Division of Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Margarita Chereshneva
- Laboratory of Immunophysiology and Immunopharmacology, Institute of Immunology and Physiology, Ural Division of Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Alexey Sarapultsev
- Institute of Chemical Engineering, Ural Federal University Named After the First Pres. of Russia B.N. Yeltsin, Ekaterinburg 620002, Russia
- Laboratory of Immunophatophysiology, Institute of Immunology and Physiology, Ural Division of Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Petr Sarapultsev
- Institute of Chemical Engineering, Ural Federal University Named After the First Pres. of Russia B.N. Yeltsin, Ekaterinburg 620002, Russia
- Laboratory of Immunophatophysiology, Institute of Immunology and Physiology, Ural Division of Russian Academy of Sciences, Ekaterinburg 620049, Russia
| |
Collapse
|
42
|
Rübsam A, Parikh S, Fort PE. Role of Inflammation in Diabetic Retinopathy. Int J Mol Sci 2018; 19:ijms19040942. [PMID: 29565290 PMCID: PMC5979417 DOI: 10.3390/ijms19040942] [Citation(s) in RCA: 495] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy is a common complication of diabetes and remains the leading cause of blindness among the working-age population. For decades, diabetic retinopathy was considered only a microvascular complication, but the retinal microvasculature is intimately associated with and governed by neurons and glia, which are affected even prior to clinically detectable vascular lesions. While progress has been made to improve the vascular alterations, there is still no treatment to counteract the early neuro-glial perturbations in diabetic retinopathy. Diabetes is a complex metabolic disorder, characterized by chronic hyperglycemia along with dyslipidemia, hypoinsulinemia and hypertension. Increasing evidence points to inflammation as one key player in diabetes-associated retinal perturbations, however, the exact underlying molecular mechanisms are not yet fully understood. Interlinked molecular pathways, such as oxidative stress, formation of advanced glycation end-products and increased expression of vascular endothelial growth factor have received a lot of attention as they all contribute to the inflammatory response. In the current review, we focus on the involvement of inflammation in the pathophysiology of diabetic retinopathy with special emphasis on the functional relationships between glial cells and neurons. Finally, we summarize recent advances using novel targets to inhibit inflammation in diabetic retinopathy.
Collapse
Affiliation(s)
- Anne Rübsam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA.
| | - Sonia Parikh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA.
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
43
|
Neurodegeneration in diabetic retinopathy: Potential for novel therapies. Vision Res 2017; 139:82-92. [PMID: 28988945 DOI: 10.1016/j.visres.2017.06.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 11/20/2022]
Abstract
The complex pathology of diabetic retinopathy (DR) affects both vascular and neural tissue. The characteristics of neurodegeneration are well-described in animal models but have more recently been confirmed in the clinical setting, mostly by using non-invasive imaging approaches such as spectral domain optical coherence tomography (SD-OCT). The most frequent observations report loss of tissue in the nerve fiber layer and inner plexiform layer, confirming earlier findings from animal models. In several cases the reduction in inner retinal layers is reported in patients with little evidence of vascular lesions or macular edema, suggesting that degenerative loss of neural tissue in the inner retina can occur after relatively short durations of diabetes. Animal studies also suggest that neurodegeneration leading to retinal thinning is not limited to cell death and tissue loss but also includes changes in neuronal morphology, reduced synaptic protein expression and alterations in neurotransmission, including changes in expression of neurotransmitter receptors as well as neurotransmitter release, reuptake and metabolism. The concept of neurodegeneration as an early component of DR introduces the possibility to explore alternative therapies to prevent the onset of vision loss, including neuroprotective therapies and drugs targeting individual neurotransmitter systems, as well as more general neuroprotective approaches to preserve the integrity of the neural retina. In this review we consider some of the evidence for progressive retinal neurodegeneration in diabetes, and explore potential neuroprotective therapies.
Collapse
|
44
|
Szabó K, Énzsöly A, Dékány B, Szabó A, Hajdú RI, Radovits T, Mátyás C, Oláh A, Laurik LK, Somfai GM, Merkely B, Szél Á, Lukáts Á. Histological Evaluation of Diabetic Neurodegeneration in the Retina of Zucker Diabetic Fatty (ZDF) Rats. Sci Rep 2017; 7:8891. [PMID: 28827737 PMCID: PMC5566374 DOI: 10.1038/s41598-017-09068-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/21/2017] [Indexed: 01/24/2023] Open
Abstract
In diabetes, retinal dysfunctions exist prior to clinically detectable vasculopathy, however the pathology behind these functional deficits is still not fully established. Previously, our group published a detailed study on the retinal histopathology of type 1 diabetic (T1D) rat model, where specific alterations were detected. Although the majority of human diabetic patients have type 2 diabetes (T2D), similar studies on T2D models are practically absent. To fill this gap, we examined Zucker Diabetic Fatty (ZDF) rats - a model for T2D - by immunohistochemistry at the age of 32 weeks. Glial reactivity was observed in all diabetic specimens, accompanied by an increase in the number of microglia cells. Prominent outer segment degeneration was detectable with changes in cone opsin expression pattern, without a decrease in the number of labelled elements. The immunoreactivity of AII amacrine cells was markedly decreased and changes were detectable in the number and staining of some other amacrine cell subtypes, while most other cells examined did not show any major alterations. Overall, the retinal histology of ZDF rats shows a surprising similarity to T1D rats indicating that despite the different evolution of the disease, the neuroretinal cells affected are the same in both subtypes of diabetes.
Collapse
Affiliation(s)
- Klaudia Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary
| | - Anna Énzsöly
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, H-1085, Hungary
| | - Bulcsú Dékány
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary
| | - Rozina I Hajdú
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, H-1085, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Budapest, H-1085, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, H-1085, Hungary
| | - Lenke K Laurik
- Department of Ophthalmology, Semmelweis University, Budapest, H-1085, Hungary
| | - Gábor M Somfai
- Department of Ophthalmology, Semmelweis University, Budapest, H-1085, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, H-1085, Hungary
| | - Ágoston Szél
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary.
| |
Collapse
|
45
|
You ZP, Zhang YL, Shi K, Shi L, Zhang YZ, Zhou Y, Wang CY. Suppression of diabetic retinopathy with GLUT1 siRNA. Sci Rep 2017; 7:7437. [PMID: 28785055 PMCID: PMC5547104 DOI: 10.1038/s41598-017-07942-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/05/2017] [Indexed: 01/12/2023] Open
Abstract
To investigate the effect of glucose transporter-1 (GLUT1) inhibition on diabetic retinopathy, we divided forty-eight mice into scrambled siRNA, diabetic scrambled siRNA, and GLUT1 siRNA (intravitreally injected) groups. Twenty-one weeks after diabetes induction, we calculated retinal glucose concentrations, used electroretinography (ERG) and histochemical methods to assess photoreceptor degeneration, and conducted immunoblotting, leukostasis and vascular leakage assays to estimate microangiopathy. The diabetic scrambled siRNA and GLUT1 siRNA exhibited higher glucose concentrations than scrambled siRNA, but GLUT1 siRNA group concentrations were only 50.05% of diabetic scrambled siRNA due to downregulated GLUT1 expression. The diabetic scrambled siRNA and GLUT1 siRNA had lower ERG amplitudes and ONL thicknesses than scrambled siRNA. However, compared with diabetic scrambled siRNA, GLUT1 siRNA group amplitudes and thicknesses were higher. Diabetic scrambled siRNA cones were more loosely arranged and had shorter outer segments than GLUT1 siRNA cones. ICAM-1 and TNF-α expression levels, adherent leukocyte numbers, fluorescence leakage areas and extravasated Evans blue in diabetic scrambled siRNA were higher than those in scrambled siRNA. However, these parameters in the GLUT1 siRNA were lower than diabetic scrambled siRNA. Together, these results demonstrate that GLUT1 siRNA restricted glucose transport by inhibiting GLUT1 expression, which decreased retinal glucose concentrations and ameliorated diabetic retinopathy.
Collapse
Affiliation(s)
- Zhi-Peng You
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Yu-Lan Zhang
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Ke Shi
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, China.
| | - Lu Shi
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Yue-Zhi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Yue Zhou
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| | - Chang-Yun Wang
- Department of Ophthalmology, The Second Affiliated Hospital, Nanchang University, Nanchang, 330006, China
| |
Collapse
|
46
|
Tonade D, Kern TS. Diabetes of 5 years duration does not lead to photoreceptor degeneration in the canine non-tapetal inferior-nasal retina. Exp Eye Res 2017; 162:126-128. [PMID: 28734672 DOI: 10.1016/j.exer.2017.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 11/19/2022]
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland OH 44106, United States
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland OH 44106, United States; Department of Medicine, Case Western Reserve University, Cleveland OH 44106, United States; Veterans Administration Medical Center Research Service, Cleveland, OH 44106, United States.
| |
Collapse
|
47
|
Sawides L, Sapoznik KA, de Castro A, Walker BR, Gast TJ, Elsner AE, Burns SA. Alterations to the Foveal Cone Mosaic of Diabetic Patients. Invest Ophthalmol Vis Sci 2017; 58:3395-3403. [PMID: 28687853 PMCID: PMC5501497 DOI: 10.1167/iovs.17-21793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose We measured localized changes occurring in the foveal cone photoreceptors and related defects in the cone mosaic to alterations in the nearby retinal vasculature. Methods The central 4° of the retina of 54 diabetic (53.7 ± 12.5 years) and 85 control (35.8 ± 15.2 years) participants were imaged with the Indiana adaptive optics scanning laser ophthalmoscope. Foveal cones and overlying retinal capillaries were imaged and infrared scanning laser ophthalmoscopy (IR SLO) images and optical coherence tomography (OCT) B-scans were obtained. Follow-up imaging sessions were performed with intervals from 4 to 50 months for 22 of the 54 diabetic participants. Results The foveal cone mosaics of 49 of 54 diabetic participants were of sufficient quality to assess the absence or presence of small localized defects in the cone mosaic. In 13 of these 49 diabetic participants we found localized defects, visualized as sharp-edged areas of cones with diminished reflectivity. These small, localized areas ranged in size from 10 × 10 μm to 75 × 30 μm. Of these 13 participants with cone defects, 11 were imaged over periods from 4 to 50 months and the defects remained relatively stable. These dark regions were not shadows of overlying retinal vessels, but all participants with these localized defects had alterations in the juxtafoveal capillary network. Conclusions The foveal cone mosaic can show localized areas of dark cones that persist over time, that apparently correspond to either missing or nonreflecting cones, and may be related to local retinal ischemia.
Collapse
Affiliation(s)
- Lucie Sawides
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Kaitlyn A Sapoznik
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Alberto de Castro
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Brittany R Walker
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Thomas J Gast
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Ann E Elsner
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Stephen A Burns
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
48
|
Tarchick MJ, Bassiri P, Rohwer RM, Samuels IS. Early Functional and Morphologic Abnormalities in the Diabetic Nyxnob Mouse Retina. Invest Ophthalmol Vis Sci 2017; 57:3496-508. [PMID: 27367517 PMCID: PMC4961059 DOI: 10.1167/iovs.15-18775] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The electroretinogram c-wave is generated by the summation of the positive polarity hyperpolarization of the apical RPE membrane and a negative polarity slow PIII response of Müller glia cells. Therefore, the c-wave reduction noted in prior studies of mouse models of diabetes could reflect a reduction in the RPE component or an increase in slow PIII. The present study used a genetic approach to distinguish between these two alternatives. Methods Nyxnob mice lack the ERG b-wave, revealing the early phase of slow PIII. To visualize changes in slow PIII due to diabetes, Nyxnob mice were given streptozotocin (STZ) injections to induce diabetes or received vehicle as a control. After 1, 2, and 4 weeks of sustained hyperglycemia (>250 mg/dL), standard strobe flash ERG and dc-ERG testing were conducted. Histological analysis of the retina was performed. Results A reduced c-wave was noted at the 1 week time point, and persisted at later time points. In comparison, slow PIII amplitudes were unaffected after 1 week of hyperglycemia, but were significantly reduced in STZ mice at the 2-week time point. The decrease in amplitude occurred before any identifiable decrease to the a-wave. At the later time point, the a-wave became involved, although the slow PIII reductions were more pronounced. Morphological abnormalities in the RPE, including increased thickness and altered melanosome distribution, were identified in diabetic animals. Conclusions Because the c-wave and slow PIII were both reduced, these results demonstrated that diabetes-induced reductions to the c-wave cannot be attributed to an early increase in the Müller glia-derived potassium conductance. Furthermore, because the a-wave, slow PIII and c-wave reductions were not equivalent, and varied in their onset, the reductions cannot reflect the same mechanism, such as a change in membrane resistance. The presence of small changes to RPE architecture indicate that the c-wave reductions present in diabetic mice likely represents a primary change in the RPE induced by hyperglycemia.
Collapse
Affiliation(s)
- Matthew J Tarchick
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States 2Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Parastoo Bassiri
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Rebecca M Rohwer
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ivy S Samuels
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States 2Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
49
|
Hammoum I, Benlarbi M, Dellaa A, Szabó K, Dékány B, Csaba D, Almási Z, Hajdú RI, Azaiz R, Charfeddine R, Lukáts Á, Ben Chaouacha-Chekir R. Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula. J Comp Neurol 2017; 525:2890-2914. [PMID: 28542922 DOI: 10.1002/cne.24245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
The purpose of this work was to evaluate a potentially useful animal model, Meriones shawi (M.sh)-developing metabolic X syndrome, diabetes and possessing a visual streak similar to human macula-in the study of diabetic retinopathy and diabetic macular edema (DME). Type 2 diabetes (T2D) was induced by high fat diet administration in M.sh. Body weights, blood glucose levels were monitored throughout the study. Diabetic retinal histopathology was evaluated 3 and 7 months after diabetes induction. Retinal thickness was measured, retinal cell types were labeled by immunohistochemistry and the number of stained elements were quantified. Apoptosis was determined with TUNEL assay. T2D induced progressive changes in retinal histology. A significant decrease of retinal thickness and glial reactivity was observed without an increase in apoptosis rate. Photoreceptor outer segment degeneration was evident, with a significant decrease in the number of all cones and M-cone subtype, but-surprisingly-an increase in S-cones. Damage of the pigment epithelium was also confirmed. A decrease in the number and labeling intensity of parvalbumin- and calretinin-positive amacrine cells and a loss of ganglion cells was detected. Other cell types showed no evident alterations. No DME-like condition was noticed even after 7 months. M.sh could be a useful model to study the evolution of diabetic retinal pathology and to identify the role of hypertension and dyslipidemia in the development of the reported alterations. Longer follow up would be needed to evaluate the potential use of the visual streak in modeling human macular diseases.
Collapse
Affiliation(s)
- Imane Hammoum
- Laboratory of Physiopathology, Food and Biomolecules (PAB), department of Biotechnology, High Institute of Biotechnology of Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia.,Faculty of Sciences of Tunis, El Manar University (UTM), Tunis, Tunisia
| | - Maha Benlarbi
- Laboratory of Physiopathology, Food and Biomolecules (PAB), department of Biotechnology, High Institute of Biotechnology of Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| | - Ahmed Dellaa
- Laboratory of Physiopathology, Food and Biomolecules (PAB), department of Biotechnology, High Institute of Biotechnology of Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| | - Klaudia Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bulcsú Dékány
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Dávid Csaba
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Almási
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rozina I Hajdú
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rached Azaiz
- UNIMED Pharmaceutical Industry, Industrial area Kalaa Kebira, Sousse, Tunisia
| | - Ridha Charfeddine
- UNIMED Pharmaceutical Industry, Industrial area Kalaa Kebira, Sousse, Tunisia
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rafika Ben Chaouacha-Chekir
- Laboratory of Physiopathology, Food and Biomolecules (PAB), department of Biotechnology, High Institute of Biotechnology of Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| |
Collapse
|
50
|
Xia T, Rizzolo LJ. Effects of diabetic retinopathy on the barrier functions of the retinal pigment epithelium. Vision Res 2017; 139:72-81. [PMID: 28347688 DOI: 10.1016/j.visres.2017.02.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy is a debilitating microvascular complication of diabetes mellitus. A rich literature describes the breakdown of retinal endothelial cells and the inner blood-retinal barrier, but the effects of diabetes on the retinal pigment epithelium (RPE) has received much less attention. RPE lies between the choroid and neurosensory retina to form the outer blood-retinal barrier. RPE's specialized and dynamic barrier functions are crucial for maintaining retinal health. RPE barrier functions include a collection of interrelated structures and activities that regulate the transepithelial movement of solutes, including: diffusion through the paracellular spaces, facilitated diffusion through the cells, active transport, receptor-mediated and bulk phase transcytosis, and metabolic processing of solutes in transit. In the later stages of diabetic retinopathy, the tight junctions that regulate the paracellular space begin to disassemble, but there are earlier effects on the other aspects of RPE barrier function, particularly active transport and metabolic processing. With advanced understanding of RPE-specific barrier functions, and more in vivo-like culture models, the time is ripe for revisiting experiments in the literature to resolve controversies and extend our understanding of how diabetes affects the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Tina Xia
- Departments of Surgery and Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| | - Lawrence J Rizzolo
- Departments of Surgery and Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| |
Collapse
|