1
|
Kowluru RA, Kumar J, Malaviya P. DNA methylation of long noncoding RNA cytochrome B in diabetic retinopathy. Noncoding RNA Res 2025; 11:141-149. [PMID: 39811245 PMCID: PMC11732211 DOI: 10.1016/j.ncrna.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic retinopathy, a microvascular complication of diabetes, is the leading cause of blindness in adults, but the molecular mechanism of its development remains unclear. Retinal mitochondrial DNA is damaged and hypermethylated, and mtDNA-encoded genes are downregulated. Expression of a long noncoding RNA (larger than 200 nucleotides, which does not translate into proteins), encoded by mtDNA, cytochrome B (LncCytB), is also downregulated. This study aims to investigate the role of DNA methylation in the downregulation of LncCytB in diabetic retinopathy. Human retinal endothelial cells, incubated in 5 mM (normal) or 20 mM (high) D-glucose, in the presence/absence of Azacytidine (a DNA methyl transferase inhibitor) were analyzed for LncCytB DNA methylation by immunoprecipitation and methylation specific PCR techniques, and LncCytB transcripts by strand-specific PCR and RNA-FISH. Mitochondrial genomic stability was evaluated by quantifying protective mtDNA nucleoids by SYBR green staining and by flow cytometry, and functional stability by oxygen consumption rate using Seahorse analyzer. Results were confirmed in an in vivo model using retina from diabetic rat. While high glucose elevated 5 mC and the ratio of methylated to unmethylated amplicons at LncCytB and downregulated its transcripts, azacytidine prevented LncCytB DNA hypermethylation and decrease in its expression. Azacytidine also ameliorated decrease in nucleoids and oxygen consumption rate. Similarly, azacytidine prevented increase in retinal LncCytB DNA methylation and decrease in its expression in diabetic rats. Thus, DNA hypermethylation plays a major role in the downregulation of retinal LncCytB in diabetes, resulting in impaired mitochondrial homeostasis, and culminating in the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Renu A. Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Jay Kumar
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Pooja Malaviya
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
2
|
Ntikoudi M, Farmaki TM, Tziomalos K. Dopamine: A New Player in the Pathogenesis of Diabetic Retinopathy? Int J Mol Sci 2024; 25:13196. [PMID: 39684908 DOI: 10.3390/ijms252313196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. The pathogenesis of diabetic retinopathy is multifactorial and incompletely understood. Accordingly, treatment options are limited. Recent data suggest that dopamine might play a role in the development and progression of DR. In the present review, we discuss these data and comment on the potential role of dopamine modulation in the management of this devastating microvascular complication of diabetes mellitus.
Collapse
Affiliation(s)
- Marianthi Ntikoudi
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece
| | - Theofano Myrto Farmaki
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece
| |
Collapse
|
3
|
Llewellyn J, Baratam R, Culig L, Beerman I. Cellular stress and epigenetic regulation in adult stem cells. Life Sci Alliance 2024; 7:e202302083. [PMID: 39348938 PMCID: PMC11443024 DOI: 10.26508/lsa.202302083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.
Collapse
Affiliation(s)
- Joey Llewellyn
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rithvik Baratam
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luka Culig
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
4
|
Stoccoro A, Lari M, Migliore L, Coppedè F. Associations between Circulating Biomarkers of One-Carbon Metabolism and Mitochondrial D-Loop Region Methylation Levels. EPIGENOMES 2024; 8:38. [PMID: 39449362 PMCID: PMC11503383 DOI: 10.3390/epigenomes8040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES One-carbon metabolism is a critical pathway for epigenetic mechanisms. Circulating biomarkers of one-carbon metabolism have been associated with changes in nuclear DNA methylation levels in individuals affected by age-related diseases. More and more studies are showing that even mitochondrial DNA (mtDNA) could be methylated. In particular, methylation of the mitochondrial displacement (D-loop) region modulates the gene expression and replication of mtDNA and, when altered, can contribute to the development of human illnesses. However, no study until now has demonstrated an association between circulating biomarkers of one-carbon metabolism and D-loop methylation levels. METHODS In the study presented herein, we searched for associations between circulating one-carbon metabolism biomarkers, including folate, homocysteine, and vitamin B12, and the methylation levels of the D-loop region in DNA obtained from the peripheral blood of 94 elderly voluntary subjects. RESULTS We observed a positive correlation between D-loop methylation and vitamin B12 (r = 0.21; p = 0.03), while no significant correlation was observed with folate (r = 0.02; p = 0.80) or homocysteine levels (r = 0.02; p = 0.82). Moreover, D-loop methylation was increased in individuals with high vitamin B12 levels compared to those with normal vitamin B12 levels (p = 0.04). CONCLUSIONS This is the first study suggesting an association between vitamin B12 circulating levels and mtDNA methylation in human subjects. Given the potential implications of altered one-carbon metabolism and mitochondrial epigenetics in human diseases, a deeper understanding of their interaction could inspire novel interventions with beneficial effects for human health.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Martina Lari
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Lucia Migliore
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Geng Q, Gao R, Sun Y, Chen S, Sun L, Li W, Li Z, Zhao Y, Zhao F, Zhang Y, Li A, Liu H. Mitochondrial DNA content and methylation in sperm of patients with asthenozoospermia. J Assist Reprod Genet 2024; 41:2795-2805. [PMID: 39190228 PMCID: PMC11535106 DOI: 10.1007/s10815-024-03236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
PURPOSE The aim of the current study was to investigate the mtDNA methylation levels and mtDNA copy numbers in the sperm of patients with asthenozoospermia and compare them to those observed in controls with normozoospermia. METHODS Pyrosequencing analysis of the methylation levels of the mitochondrial D-loop and MT-CO1/chr1:631,907-632083/chrX:26,471,887-126,472,063 (hereinafter referred to as "MT-CO1-AVG") region and quantitative PCR analysis of the mtDNA copy number were performed on sperm from 30 patients with asthenozoospermia and 30 controls with normozoospermia. RESULTS Compared with those of controls with normozoospermia, the methylation levels of D-loop and MT-CO1-AVG regions and mtDNA copy number were significantly higher in patients with asthenozoospermia. The methylation level of the D-loop region in patients with asthenozoospermia and controls with normozoospermia and that of MT-CO1-AVG region in patients with asthenozoospermia showed a decreasing tendency with increasing total sperm motility. A significant inverse correlation between the mtDNA copy number and total sperm motility was observed in patients with asthenozoospermia but not in controls with normozoospermia. In patients with asthenozoospermia, but not in controls with normozoospermia, we observed a significant inverse correlation between D-loop methylation levels and mtDNA copy number, while no significant correlation was observed between MT-CO1-AVG methylation levels and mtDNA copy number. CONCLUSION These results reveal the occurrence of mtDNA methylation in human sperm and altered D-loop and MT-CO1-AVG methylation levels in patients with asthenozoospermia. Additional research is needed to determine the function of these features in the etiology and course of asthenozoospermia.
Collapse
Affiliation(s)
- Qiang Geng
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruifang Gao
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China.
| | - Yuan Sun
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shaofeng Chen
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lili Sun
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Wei Li
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Zhong Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ying Zhang
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Anwen Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongbin Liu
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China.
- Health Commission of Heping District, Tianjin, China.
| |
Collapse
|
6
|
Fu M, Zhengran L, Yingli L, Tong W, Liyang C, Xi G, Xiongyi Y, Mingzhe C, Guoguo Y. The contribution of adiponectin to diabetic retinopathy progression: Association with the AGEs-RAGE pathway. Heliyon 2024; 10:e36111. [PMID: 39296166 PMCID: PMC11409038 DOI: 10.1016/j.heliyon.2024.e36111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/09/2024] [Accepted: 08/09/2024] [Indexed: 09/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a chronic complication of diabetes. Given that adiponectin plays a key role in DR progression, this study aims to elucidate the molecular mechanisms of sDR progression related to adiponectin. First, we extracted the microarray dataset GSE60436 from the Gene Expression Omnibus (GEO) database to identify hub genes associated with DR. Pathway enrichment analysis revealed a focus on inflammation, oxidative stress, and metabolic disease pathways. Gene Set Enrichment Analysis (GSEA) identified nine significant pathways related to DR. Immune infiltration analysis indicated increased infiltration of fibroblasts and endothelial cells in DR patients. Second, at the gene level, single-cell RNA sequencing (scRNA-seq) results showed a decrease in ADIPOQ gene expression as the disease progressed in our mouse models. At the protein level, ELISA results from sera of 31 patients and 11 control subjects demonstrated significantly lower adiponectin expression in the proliferative diabetic retinopathy (PDR) group compared to controls. Our findings reveal that adiponectin is involved in the advanced glycation end products (AGEs) and receptor of advanced glycation end products (RAGE) axis, as evidenced by hub gene analysis, scRNA-seq, and ELISA. In conclusion, adiponectin acts as a central molecule in the AGEs-RAGE axis, regulated by ADIPOQ, to influence DR progression.
Collapse
Affiliation(s)
- Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Zhengran
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- The Second Clinical School, Southern Medical University, Guangzhou, China
| | - Li Yingli
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wu Tong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- The First Clinical School, Southern Medical University, Guangzhou, China
| | - Cai Liyang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guo Xi
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Yang Xiongyi
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- The Second Clinical School, Southern Medical University, Guangzhou, China
| | - Cao Mingzhe
- Department of Ophthalmology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yi Guoguo
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Kumar J, Kowluru RA. Mitochondrial DNA transcription and mitochondrial genome-encoded long noncoding RNA in diabetic retinopathy. Mitochondrion 2024; 78:101925. [PMID: 38944370 PMCID: PMC11390302 DOI: 10.1016/j.mito.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
In diabetic retinopathy, mitochondrial DNA (mtDNA) is damaged and mtDNA-encoded genes and long noncoding RNA cytochrome B (LncCytB) are downregulated. LncRNAs lack an open reading frame, but they can regulate gene expression by associating with DNA/RNA/protein. Double stranded mtDNA has promoters on both heavy (HSP) and light (LSP) strands with binding sites for mitochondrial transcription factor A (TFAM) between them. The aim was to investigate the role of LncCytB in mtDNA transcription in diabetic retinopathy. Using human retinal endothelial cells incubated in high glucose, the effect of regulation of LncCytB on TFAM binding at mtDNA promoters was investigated by Chromatin immunoprecipitation, and binding of LncCytB at TFAM by RNA immunoprecipitation and RNA fluorescence in situ hybridization. High glucose decreased TFAM binding at both HSP and LSP, and binding of LncCytB at TFAM. While LncCytB overexpression ameliorated decrease in TFAM binding and transcription of genes encoded by both H- and L- strands, LncCytB-siRNA further downregulated them. Maintenance of mitochondrial homeostasis by overexpressing mitochondrial superoxide dismutase or Sirtuin-1 protected diabetes-induced decrease in TFAM binding at mtDNA and LncCytB binding at TFAM, and mtDNA transcription. Similar results were obtained from mouse retinal microvessels from streptozotocin-induced diabetic mice. Thus, LncCytB facilitates recruitment of TFAM at HSP and LSP, and its downregulation in diabetes compromises the binding, resulting in the downregulation of polypeptides encoded by mtDNA. Regulation of LncCytB, in addition to protecting mitochondrial genomic stability, should also help in maintaining the transcription of mtDNA encoded genes and electron transport chain integrity in diabetic retinopathy.
Collapse
Affiliation(s)
- Jay Kumar
- Ophthalmology, Visual and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA
| | - Renu A Kowluru
- Ophthalmology, Visual and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA.
| |
Collapse
|
8
|
Arivarasan VK, Diwakar D, Kamarudheen N, Loganathan K. Current approaches in CRISPR-Cas systems for diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:95-125. [PMID: 39824586 DOI: 10.1016/bs.pmbts.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
In the face of advancements in health care and a shift towards healthy lifestyle, diabetes mellitus (DM) still presents as a global health challenge. This chapter explores recent advancements in the areas of genetic and molecular underpinnings of DM, addressing the revolutionary potential of CRISPR-based genome editing technologies. We delve into the multifaceted relationship between genes and molecular pathways contributing to both type1 and type 2 diabetes. We highlight the importance of how improved genetic screening and the identification of susceptibility genes are aiding in early diagnosis and risk stratification. The spotlight then shifts to CRISPR-Cas9, a robust genome editing tool capable of various applications including correcting mutations in type 1 diabetes, enhancing insulin production in T2D, modulating genes associated with metabolism of glucose and insulin sensitivity. Delivery methods for CRISPR to targeted tissues and cells are explored, including viral and non-viral vectors, alongside the exciting possibilities offered by nanocarriers. We conclude by discussing the challenges and ethical considerations surrounding CRISPR-based therapies for DM. These include potential off-target effects, ensuring long-term efficacy and safety, and navigating the ethical implications of human genome modification. This chapter offers a comprehensive perspective on how genetic and molecular insights, coupled with the transformative power of CRISPR, are paving the way for potential cures and novel therapeutic approaches for DM.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Diksha Diwakar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neethu Kamarudheen
- The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | | |
Collapse
|
9
|
Jazieh C, Arabi TZ, Asim Z, Sabbah BN, Alsaud AW, Alkattan K, Yaqinuddin A. Unraveling the epigenetic fabric of type 2 diabetes mellitus: pathogenic mechanisms and therapeutic implications. Front Endocrinol (Lausanne) 2024; 15:1295967. [PMID: 38323108 PMCID: PMC10845351 DOI: 10.3389/fendo.2024.1295967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a rapidly escalating global health concern, with its prevalence projected to increase significantly in the near future. This review delves into the intricate role of epigenetic modifications - including DNA methylation, histone acetylation, and micro-ribonucleic acid (miRNA) expression - in the pathogenesis and progression of T2DM. We critically examine how these epigenetic changes contribute to the onset and exacerbation of T2DM by influencing key pathogenic processes such as obesity, insulin resistance, β-cell dysfunction, cellular senescence, and mitochondrial dysfunction. Furthermore, we explore the involvement of epigenetic dysregulation in T2DM-associated complications, including diabetic retinopathy, atherosclerosis, neuropathy, and cardiomyopathy. This review highlights recent studies that underscore the diagnostic and therapeutic potential of targeting epigenetic modifications in T2DM. We also provide an overview of the impact of lifestyle factors such as exercise and diet on the epigenetic landscape of T2DM, underscoring their relevance in disease management. Our synthesis of the current literature aims to illuminate the complex epigenetic underpinnings of T2DM, offering insights into novel preventative and therapeutic strategies that could revolutionize its management.
Collapse
|
10
|
de Lima CB, Martin H, Pecora Milazzotto M, Sirard MA. Genome-wide methylation profile of mitochondrial DNA across bovine preimplantation development. Epigenetics 2023; 18:2241010. [PMID: 37523633 PMCID: PMC10392754 DOI: 10.1080/15592294.2023.2241010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
This study characterized variations in the methylation profile of mitochondrial DNA (mtDNA) during initial bovine embryo development and correlated the presence of methylation with mtDNA transcription. Bovine oocytes were obtained from abattoir ovaries and submitted to in vitro culture procedures. Oocytes and embryos were collected at various stages (immature oocyte, IM; mature oocyte, MII; zygote, ZY; 4-cells, 4C; 16-cells, 16C and blastocysts, BL). Total DNA (including mtDNA) was used for Whole Genome Enzymatic Methyl Sequencing and for quantification of mtDNA copy number. Extracted RNA was used for quantification of mitochondrial transcripts using Droplet Digital PCR. We selected ND6, CYTB, tRNA-Phe and tRNA-Gln based on their location in the mitochondrial genome, functionality and/or previous literature associating these regions with cytosine methylation. The number of mtDNA copies per oocyte/embryo was found to be similar, while methylation levels in mtDNA varied among stages. Higher total methylation levels were found mainly at 4C and 16C. In specific gene regions, higher methylation levels were also observed at 4C and 16C (ND6, CYTB and tRNA-Phe), as well as an inverse correlation with the quantity of transcripts for these regions. This is a first description of epigenetic changes occurring in mtDNA during early embryonic development. Our results indicate that methylation might regulate the mtDNA transcription at a local level, particularly around the time of embryonic genome activation.
Collapse
Affiliation(s)
- Camila Bruna de Lima
- Centre de Recherche En Reproduction, Développement Et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Université Laval, Québec, QC, Canada
- Universidade Federal Do ABC, Centro de Ciências Naturais E Humanas, Santo André, SP, Brazil
| | - Hélène Martin
- Centre de Recherche En Reproduction, Développement Et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - Marcella Pecora Milazzotto
- Centre de Recherche En Reproduction, Développement Et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Université Laval, Québec, QC, Canada
- Universidade Federal Do ABC, Centro de Ciências Naturais E Humanas, Santo André, SP, Brazil
| | - Marc-André Sirard
- Centre de Recherche En Reproduction, Développement Et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Université Laval, Québec, QC, Canada
| |
Collapse
|
11
|
Camacho P, Ribeiro E, Pereira B, Varandas T, Nascimento J, Henriques J, Dutra-Medeiros M, Delgadinho M, Oliveira K, Silva C, Brito M. DNA methyltransferase expression (DNMT1, DNMT3a and DNMT3b) as a potential biomarker for anti-VEGF diabetic macular edema response. Eur J Ophthalmol 2023; 33:2267-2274. [PMID: 37082811 PMCID: PMC10590013 DOI: 10.1177/11206721231171623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE DNA methylation is involved in Diabetic Retinopathy progression showing a metabolic memory mechanism. However, the association of DNA methyltransferase with diabetic macular edema is still unknown. We aimed to describe the differences in DNA methyltransferase gene expression in patients with different diabetic macular edema responses. METHODS A total of 27 diabetic patients, aged 59-90 years, were prospectively enrolled in this cross-sectional study. The participants were classified into control group (CG, n = 11), diabetic macular edema responders (rDME, n = 9) and non-responder diabetic macular edema (nrDME, n = 7) after anti-vascular endothelial growth factor (anti-VEGF) treatment. Only cases with a complete ophthalmological examination, digital 133° color fundus, and SD-OCT assessments were used. After RNA extraction and first-strand cDNA synthesis, quantitative real-time PCR was performed with specific primers on the CFX Connect™ Real-Time PCR Detection System to assess differential transcriptional expression patterns. RESULTS The DNMT1 gene showed a positive correlation (r = 0.617; p = 0.043) with Best Corrected Visual Acuity (BCVA) in CG, a positive correlation (r = 0.917; p = 0.010) with HbA1c in nrDME and a negative correlation (r = -0.659; p = 0.049) with GCL-IPL thickness in rDME. DNMT3A gene showed a positive correlation (r = -0.890; p = 0.001) with Sub-foveal Choroidal thickness in rDME whereas DNMT3b gene showed a negative correlation (r = -0.815; p = 0.007) with HbA1c and RNFL (r = -0.664; p = 0.026) in CG. CONCLUSIONS Patients with similar metabolic profile risk factors showed associated DNA methyltransferase transcriptional expression patterns differences fitting with the anti-VEGF diabetic macular edema response. Further studies are needed to clarify if these results (1) reflect disease evolution, (2) translate the therapeutic impact, (3) or can help to predict the therapeutic resistance profile.
Collapse
Affiliation(s)
- Pedro Camacho
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- Ophtalmology Institute Dr. Gama Pinto, Lisbon, Portugal
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Edna Ribeiro
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Bruno Pereira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Retina Institute of Lisbon, Lisbon, Portugal
| | | | - João Nascimento
- Retina Institute of Lisbon, Lisbon, Portugal
- Beatriz Ângelo Hospital, Lisbon, Portugal
| | | | - Marco Dutra-Medeiros
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Central Lisbon Hospital Center, Lisbon, Portugal
| | - Mariana Delgadinho
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Ketlyn Oliveira
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Carina Silva
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Miguel Brito
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Hussain A, Ashique S, Afzal O, Altamimi MA, Malik A, Kumar S, Garg A, Sharma N, Farid A, Khan T, Altamimi ASA. A correlation between oxidative stress and diabetic retinopathy: An updated review. Exp Eye Res 2023; 236:109650. [PMID: 37734426 DOI: 10.1016/j.exer.2023.109650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Oxidative stress (OS) is a cytopathic outcome of excessively generated reactive oxygen species (ROS), down regulated antioxidant defense signaling pathways, and the imbalance between the produced radicals and their clearance. It plays a role in the genesis of several illnesses, especially hyperglycemia and its effects. Diabetic retinal illness, a micro vascular side effect of the condition, is the prime reason of diabetic related blindness. The OS (directly or indirectly) is associated with diabetic retinopathy (DR) and related consequences. The OS is responsible to induce and interfere the metabolic signaling pathways to enhance influx of the polyol cascades and hexosamine pathways, stimulate Protein Kinase-C (PKC) variants, and accumulate advanced glycation end products (AGEs). Additionally, the inequity between the scavenging and generation of ROS is caused by the epigenetic alteration caused by hyperglycemia that suppresses the antioxidant defense system. Induced by an excessive buildup of ROS, retinal changes in structure and function include mitochondrial damage, cellular death, inflammation, and lipid peroxidation. Therefore, it is crucial to comprehend and clarify the mechanisms connected to oxidative stress that underlie the development of DR.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal, 713346, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut, Uttar Pradesh, 250103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Nidhi Sharma
- Graduate Assistant, Department of Biomedical Engineering University of Connecticut, UCONN, Storrs Campus, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I. Khan, KPK, Pakistan
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| |
Collapse
|
13
|
Song H, Zhang X, Wang J, Wu Y, Xiong T, Shen J, Lin R, Xiao T, Lin W. The regulatory role of adipocyte mitochondrial homeostasis in metabolism-related diseases. Front Physiol 2023; 14:1261204. [PMID: 37920803 PMCID: PMC10619862 DOI: 10.3389/fphys.2023.1261204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Adipose tissue is the most important energy storage organ in the body, maintaining its normal energy metabolism function and playing a vital role in keeping the energy balance of the body to avoid the harm caused by obesity and a series of related diseases resulting from abnormal energy metabolism. The dysfunction of adipose tissue is closely related to the occurrence of diseases related to obesity metabolism. Among various organelles, mitochondria are the main site of energy metabolism, and mitochondria maintain their quality through autophagy, biogenesis, transfer, and dynamics, which play an important role in maintaining metabolic homeostasis of adipocytes. On the other hand, mitochondria have mitochondrial genomes which are vulnerable to damage due to the lack of protective structures and their proximity to sites of reactive oxygen species generation, thus affecting mitochondrial function. Notably, mitochondria are closely related to other organelles in adipocytes, such as lipid droplets and the endoplasmic reticulum, which enhances the function of mitochondria and other organelles and regulates energy metabolism processes, thus reducing the occurrence of obesity-related diseases. This article introduces the structure and quality control of mitochondria in adipocytes and their interactions with other organelles in adipocytes, aiming to provide a new perspective on the regulation of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases, and to provide theoretical reference for further revealing the molecular mechanism of mitochondrial homeostasis in adipocytes on the occurrence of obesity-related diseases.
Collapse
Affiliation(s)
- Hongbing Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohan Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taimin Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jieqiong Shen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
14
|
Lees J, Pèrtille F, Løtvedt P, Jensen P, Bosagna CG. The mitoepigenome responds to stress, suggesting novel mito-nuclear interactions in vertebrates. BMC Genomics 2023; 24:561. [PMID: 37736707 PMCID: PMC10515078 DOI: 10.1186/s12864-023-09668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The mitochondria are central in the cellular response to changing environmental conditions resulting from disease states, environmental exposures or normal physiological processes. Although the influences of environmental stressors upon the nuclear epigenome are well characterized, the existence and role of the mitochondrial epigenome remains contentious. Here, by quantifying the mitochondrial epigenomic response of pineal gland cells to circadian stress, we confirm the presence of extensive cytosine methylation within the mitochondrial genome. Furthermore, we identify distinct epigenetically plastic regions (mtDMRs) which vary in cytosinic methylation, primarily in a non CpG context, in response to stress and in a sex-specific manner. Motifs enriched in mtDMRs contain recognition sites for nuclear-derived DNA-binding factors (ATF4, HNF4A) important in the cellular metabolic stress response, which we found to be conserved across diverse vertebrate taxa. Together, these findings suggest a new layer of mito-nuclear interaction in which the nuclear metabolic stress response could alter mitochondrial transcriptional dynamics through the binding of nuclear-derived transcription factors in a methylation-dependent context.
Collapse
Affiliation(s)
- John Lees
- Evolutionsbiologiskt Centrum (EBC), Uppsala University, Uppsala, 75236, Sweden
| | - Fábio Pèrtille
- Evolutionsbiologiskt Centrum (EBC), Uppsala University, Uppsala, 75236, Sweden
| | - Pia Løtvedt
- Institutionen För Fysik, Kemi Och Biologi (IFM), Linköping University, Linköping, 58330, Sweden
| | - Per Jensen
- Institutionen För Fysik, Kemi Och Biologi (IFM), Linköping University, Linköping, 58330, Sweden
| | | |
Collapse
|
15
|
Li H, Liu X, Zhong H, Fang J, Li X, Shi R, Yu Q. Research progress on the pathogenesis of diabetic retinopathy. BMC Ophthalmol 2023; 23:372. [PMID: 37697295 PMCID: PMC10494348 DOI: 10.1186/s12886-023-03118-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Diabetic retinopathy is one of the most common and serious microvascular complications of diabetes mellitus. There are many factors leading to diabetic retinopathy, and its pathogenesis is still unclear. At present, there are still no effective measures for the early treatment of diabetic retinopathy, and the treatment options available when diabetes progresses to advanced stages are very limited, and the treatment results are often unsatisfactory. Detailed studies on the molecular mechanisms of diabetic retinopathy pathogenesis and the development of new therapeutic agents are of great importance. This review describes the potential pathogenesis of diabetic retinopathy for experimental studies and clinical practice.
Collapse
Affiliation(s)
- Hongbo Li
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.
| | - Xinyu Liu
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Hua Zhong
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Jiani Fang
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiaonan Li
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Rui Shi
- Department of Ophthalmology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qi Yu
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
16
|
Haydinger CD, Oliver GF, Ashander LM, Smith JR. Oxidative Stress and Its Regulation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1649. [PMID: 37627644 PMCID: PMC10451779 DOI: 10.3390/antiox12081649] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetic retinopathy is the retinal disease associated with hyperglycemia in patients who suffer from type 1 or type 2 diabetes. It includes maculopathy, involving the central retina and characterized by ischemia and/or edema, and peripheral retinopathy that progresses to a proliferative stage with neovascularization. Approximately 10% of the global population is estimated to suffer from diabetes, and around one in 5 of these individuals have diabetic retinopathy. One of the major effects of hyperglycemia is oxidative stress, the pathological state in which elevated production of reactive oxygen species damages tissues, cells, and macromolecules. The retina is relatively prone to oxidative stress due to its high metabolic activity. This review provides a summary of the role of oxidative stress in diabetic retinopathy, including a description of the retinal cell players and the molecular mechanisms. It discusses pathological processes, including the formation and effects of advanced glycation end-products, the impact of metabolic memory, and involvements of non-coding RNA. The opportunities for the therapeutic blockade of oxidative stress in diabetic retinopathy are also considered.
Collapse
Affiliation(s)
| | | | | | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (C.D.H.); (G.F.O.); (L.M.A.)
| |
Collapse
|
17
|
Zhao L, Xu H, Liu X, Cheng Y, Xie J. The role of TET2-mediated ROBO4 hypomethylation in the development of diabetic retinopathy. J Transl Med 2023; 21:455. [PMID: 37430272 DOI: 10.1186/s12967-023-04310-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND In diabetic retinopathy, increasing evidence points to a link between the pathogenesis of retinal microangiopathy and the endothelial cell-specific factor roundabout4 (ROBO4). According to earlier research, specificity protein 1 (SP1) enhances the binding to the ROBO4 promoter, increasing Robo4 expression and hastening the progression of diabetic retinopathy. To determine if this is related to aberrant epigenetic modifications of ROBO4, we examined the methylation level of the ROBO4 promoter and the corresponding regulatory mechanism during the course of diabetic retinopathy and explored the effect of this mechanism on retinal vascular leakage and neovascularization. METHODS The methylation level of CpG sites in the ROBO4 promoter was detected in human retinal endothelial cells (HRECs) cultured under hyperglycemic conditions and retinas from streptozotocin-induced diabetic mice. The effects of hyperglycemia on DNA methyltransferase 1, Tet methylcytosine dioxygenase 2 (TET2), 5-methylcytosine, 5-hydroxymethylcytosine, and the binding of TET2 and SP1 to the ROBO4 promoter, as well as the expression of ROBO4, zonula occludens 1 (ZO-1) and occludin were examined. Short hairpin RNA was used to suppress the expression of TET2 or ROBO4 and the structural and functional changes in the retinal microvascular system were assessed. RESULTS In HRECs cultured under hyperglycemic conditions, the ROBO4 promoter methylation level decreased. Hyperglycemia-induced TET2 overexpression caused active demethylation of ROBO4 by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, which enhanced the binding of SP1 to ROBO4, increased the expression of ROBO4, and decreased the expression of ZO-1 and occludin, leading to the abnormalities in monolayer permeability, migratory ability and angiogenesis of HRECs. The above pathway was also demonstrated in the retinas of diabetic mice, which caused leakage from retinal capillaries and neovascularization. Inhibition of TET2 or ROBO4 expression significantly ameliorated the dysfunction of HRECs and retinal vascular abnormalities. CONCLUSIONS In diabetes, TET2 can regulate the expression of ROBO4 and its downstream proteins by mediating active demethylation of the ROBO4 promoter, which accelerates the development of retinal vasculopathy. These findings suggest that TET2-induced ROBO4 hypomethylation is a potential therapeutic target, and anti- TET2/ROBO4 therapy is anticipated to emerge as a novel strategy for early intervention and delayed progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Liangliang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Haitao Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jia'nan Xie
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
18
|
Mposhi A, Cortés-Mancera F, Heegsma J, de Meijer VE, van de Sluis B, Sydor S, Bechmann LP, Theys C, de Rijk P, De Pooter T, Vanden Berghe W, İnce İA, Faber KN, Rots MG. Mitochondrial DNA methylation in metabolic associated fatty liver disease. Front Nutr 2023; 10:964337. [PMID: 37305089 PMCID: PMC10249072 DOI: 10.3389/fnut.2023.964337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Hepatic lipid accumulation and mitochondrial dysfunction are hallmarks of metabolic associated fatty liver disease (MAFLD), yet molecular parameters underlying MAFLD progression are not well understood. Differential methylation within the mitochondrial DNA (mtDNA) has been suggested to be associated with dysfunctional mitochondria, also during progression to Metabolic Steatohepatitis (MeSH). This study further investigates whether mtDNA methylation is associated with hepatic lipid accumulation and MAFLD. Methods HepG2 cells were constructed to stably express mitochondria-targeted viral and prokaryotic cytosine DNA methyltransferases (mtM.CviPI or mtM.SssI for GpC or CpG methylation, respectively). A catalytically inactive variant (mtM.CviPI-Mut) was constructed as a control. Mouse and human patients' samples were also investigated. mtDNA methylation was assessed by pyro- or nanopore sequencing. Results and discussion Differentially induced mtDNA hypermethylation impaired mitochondrial gene expression and metabolic activity in HepG2-mtM.CviPI and HepG2-mtM.SssI cells and was associated with increased lipid accumulation, when compared to the controls. To test whether lipid accumulation causes mtDNA methylation, HepG2 cells were subjected to 1 or 2 weeks of fatty acid treatment, but no clear differences in mtDNA methylation were detected. In contrast, hepatic Nd6 mitochondrial gene body cytosine methylation and Nd6 gene expression were increased in mice fed a high-fat high cholesterol diet (HFC for 6 or 20 weeks), when compared to controls, while mtDNA content was unchanged. For patients with simple steatosis, a higher ND6 methylation was confirmed using Methylation Specific PCR, but no additional distinctive cytosines could be identified using pyrosequencing. This study warrants further investigation into a role for mtDNA methylation in promoting mitochondrial dysfunction and impaired lipid metabolism in MAFLD.
Collapse
Affiliation(s)
- Archibold Mposhi
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Fabian Cortés-Mancera
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Departamento de Ciencias Aplicadas, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vincent E. de Meijer
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bart van de Sluis
- Section of Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Svenja Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
- Ruhr-University Bochum, Bochum, Germany
| | - Lars P. Bechmann
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
- Ruhr-University Bochum, Bochum, Germany
| | - Claudia Theys
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter de Rijk
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuromics Support Facility, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Tim De Pooter
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Neuromics Support Facility, VIB-UAntwerp Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - İkbal Agah İnce
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Medical Microbiology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marianne G. Rots
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Chappidi S, Buddolla V, Ankireddy SR, Lakshmi BA, Kim YJ. Recent trends in diabetic wound healing with nanofibrous scaffolds. Eur J Pharmacol 2023; 945:175617. [PMID: 36841285 DOI: 10.1016/j.ejphar.2023.175617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/26/2023]
Abstract
There is an emphasis in this review on nanofibrous scaffolds (NFSs) in diabetic wound healing, as well as their mechanisms and recent advancements. Diabetes-related complex wounds pose an important problem to humanity, due to the fact that their chronic nature can lead to serious complications including sepsis and amputations. Despite the fact that there are certain therapy options available for diabetic wound healing, these options are either ineffective or intrusive, making clinical intervention difficult. Clinical research is also challenged by the emergence of bacterial resistance to standard antibiotics. However, research into nanotechnology, in particular NFSs, is growing swiftly and has a positive impact on the treatment of diabetic wounds. For instance, SpinCare™, developed by Nanomedic Technologies Ltd, has successfully finished clinical testing and can re-epithelialize second-degree burns and chronic diabetic wounds in 7 and 14 days, respectively. In this review, we discussed homologous studies as well as other recent research studies on diabetic wound healing using NFSs.
Collapse
Affiliation(s)
| | - Viswanath Buddolla
- Dr. Buddolla's Institute of Life Sciences, Tirupati, 517503, Andhra Pradesh, India
| | | | - Buddolla Anantha Lakshmi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do, 13120, Republic of Korea.
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do, 13120, Republic of Korea.
| |
Collapse
|
20
|
Zhao B, Zhu L, Ye M, Lou X, Mou Q, Hu Y, Zhang H, Zhao Y. Oxidative stress and epigenetics in ocular vascular aging: an updated review. Mol Med 2023; 29:28. [PMID: 36849907 PMCID: PMC9972630 DOI: 10.1186/s10020-023-00624-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
Vascular aging is an inevitable process with advancing age, which plays a crucial role in the pathogenesis of cardiovascular and microvascular diseases. Diabetic retinopathy (DR) and age-related macular degeneration (AMD), characterized by microvascular dysfunction, are the common causes of irreversible blindness worldwide, however there is still a lack of effective therapeutic strategies for rescuing the visual function. In order to develop novel treatments, it is essential to illuminate the pathological mechanisms underlying the vascular aging during DR and AMD progression. In this review, we have summarized the recent discoveries of the effects of oxidative stress and epigenetics on microvascular degeneration, which could provide potential therapeutic targets for DR and AMD.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijia Zhu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianxue Mou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Low HC, Chilian WM, Ratnam W, Karupaiah T, Md Noh MF, Mansor F, Ng ZX, Pung YF. Changes in Mitochondrial Epigenome in Type 2 Diabetes Mellitus. Br J Biomed Sci 2023; 80:10884. [PMID: 36866104 PMCID: PMC9970885 DOI: 10.3389/bjbs.2023.10884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Type 2 Diabetes Mellitus is a major chronic metabolic disorder in public health. Due to mitochondria's indispensable role in the body, its dysfunction has been implicated in the development and progression of multiple diseases, including Type 2 Diabetes mellitus. Thus, factors that can regulate mitochondrial function, like mtDNA methylation, are of significant interest in managing T2DM. In this paper, the overview of epigenetics and the mechanism of nuclear and mitochondrial DNA methylation were briefly discussed, followed by other mitochondrial epigenetics. Subsequently, the association between mtDNA methylation with T2DM and the challenges of mtDNA methylation studies were also reviewed. This review will aid in understanding the impact of mtDNA methylation on T2DM and future advancements in T2DM treatment.
Collapse
Affiliation(s)
- Hui Ching Low
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - William M. Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown Township, OH, United States
| | - Wickneswari Ratnam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Tilakavati Karupaiah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, Subang Jaya, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Fazliana Mansor
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Shah Alam, Malaysia
| | - Zhi Xiang Ng
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Yuh Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia,*Correspondence: Yuh Fen Pung,
| |
Collapse
|
22
|
Devall M, Soanes DM, Smith AR, Dempster EL, Smith RG, Burrage J, Iatrou A, Hannon E, Troakes C, Moore K, O'Neill P, Al-Sarraj S, Schalkwyk L, Mill J, Weedon M, Lunnon K. Genome-wide characterization of mitochondrial DNA methylation in human brain. Front Endocrinol (Lausanne) 2023; 13:1059120. [PMID: 36726473 PMCID: PMC9885148 DOI: 10.3389/fendo.2022.1059120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 01/17/2023] Open
Abstract
Background There is growing interest in the role of DNA methylation in regulating the transcription of mitochondrial genes, particularly in brain disorders characterized by mitochondrial dysfunction. Here, we present a novel approach to interrogate the mitochondrial DNA methylome at single base resolution using targeted bisulfite sequencing. We applied this method to investigate mitochondrial DNA methylation patterns in post-mortem superior temporal gyrus and cerebellum brain tissue from seven human donors. Results We show that mitochondrial DNA methylation patterns are relatively low but conserved, with peaks in DNA methylation at several sites, such as within the D-LOOP and the genes MT-ND2, MT-ATP6, MT-ND4, MT-ND5 and MT-ND6, predominantly in a non-CpG context. The elevated DNA methylation we observe in the D-LOOP we validate using pyrosequencing. We identify loci that show differential DNA methylation patterns associated with age, sex and brain region. Finally, we replicate previously reported differentially methylated regions between brain regions from a methylated DNA immunoprecipitation sequencing study. Conclusions We have annotated patterns of DNA methylation at single base resolution across the mitochondrial genome in human brain samples. Looking to the future this approach could be utilized to investigate the role of mitochondrial epigenetic mechanisms in disorders that display mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthew Devall
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Darren M Soanes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Adam R Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Emma L Dempster
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Rebecca G Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Joe Burrage
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Artemis Iatrou
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Claire Troakes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Karen Moore
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Paul O'Neill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Safa Al-Sarraj
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Leonard Schalkwyk
- School of Biological Sciences, University of Essex, Essex, United Kingdom
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Michael Weedon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
23
|
Tang X, Wang J, Abboud HE, Chen Y, Wang JJ, Zhang SX. Sustained Upregulation of Endothelial Nox4 Mediates Retinal Vascular Pathology in Type 1 Diabetes. Diabetes 2023; 72:112-125. [PMID: 36321974 PMCID: PMC9797318 DOI: 10.2337/db22-0194] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022]
Abstract
NADPH oxidase 4 (Nox4) is a major source of reactive oxygen species (ROS) in retinal endothelial cells (ECs) and is upregulated under hyperglycemic and hypoxic conditions. However, the role of endothelial Nox4 upregulation in long-term retinal blood vessel damage in diabetic retinopathy (DR) remains undefined. Here, we attempted to address this question using humanized EC-specific Nox4 transgenic (hNox4EC-Tg) and EC-specific Nox4 knockout (Nox4EC-KO) mouse models. Our results show that hNox4EC-Tg mice at age of 10-12 months exhibited increased tortuosity of retinal blood vessels, focal vascular leakage, and acellular capillary formation. In vitro study revealed enhanced apoptosis in brain microvascular ECs derived from hNox4EC-Tg mice, concomitant with increased mitochondrial ROS, elevated lipid peroxidation, decreased mitochondrial membrane potential, and reduced mitochondrial respiratory function. In contrast, EC-specific deletion of Nox4 decreased mitochondrial ROS generation, alleviated mitochondrial damage, reduced EC apoptosis, and protected the retina from acellular capillary formation and vascular hyperpermeability in a streptozotocin-induced diabetes mouse model. These findings suggest that sustained upregulation of Nox4 in the endothelium contributes to retinal vascular pathology in diabetes, at least in part, through impairing mitochondrial function. Normalization of Nox4 expression in ECs may provide a new approach for prevention of vascular injury in DR.
Collapse
Affiliation(s)
- Xixiang Tang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY
- SUNY Eye Institute, State University of New York, Buffalo, NY
- Department of Endocrinology and Metabolism, Third Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
- VIP Medical Service Center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinli Wang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY
- SUNY Eye Institute, State University of New York, Buffalo, NY
| | - Hanna E. Abboud
- Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center, San Antonio, TX
| | - Yanming Chen
- Department of Endocrinology and Metabolism, Third Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Joshua J. Wang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY
- SUNY Eye Institute, State University of New York, Buffalo, NY
| | - Sarah X. Zhang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY
- SUNY Eye Institute, State University of New York, Buffalo, NY
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY
| |
Collapse
|
24
|
Cai C, Meng C, He S, Gu C, Lhamo T, Draga D, Luo D, Qiu Q. DNA methylation in diabetic retinopathy: pathogenetic role and potential therapeutic targets. Cell Biosci 2022; 12:186. [DOI: 10.1186/s13578-022-00927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
Diabetic retinopathy (DR), a specific neuron-vascular complication of diabetes, is a major cause of vision loss among middle-aged people worldwide, and the number of DR patients will increase with the increasing incidence of diabetes. At present, it is limited in difficult detection in the early stages, limited treatment and unsatisfactory treatment effects in the advanced stages.
Main body
The pathogenesis of DR is complicated and involves epigenetic modifications, oxidative stress, inflammation and neovascularization. These factors influence each other and jointly promote the development of DR. DNA methylation is the most studied epigenetic modification, which has been a key role in the regulation of gene expression and the occurrence and development of DR. Thus, this review investigates the relationship between DNA methylation and other complex pathological processes in the development of DR. From the perspective of DNA methylation, this review provides basic insights into potential biomarkers for diagnosis, preventable risk factors, and novel targets for treatment.
Conclusion
DNA methylation plays an indispensable role in DR and may serve as a prospective biomarker of this blinding disease in its relatively early stages. In combination with inhibitors of DNA methyltransferases can be a potential approach to delay or even prevent patients from getting advanced stages of DR.
Collapse
|
25
|
Wu Y, Zou H. Research Progress on Mitochondrial Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:2250. [PMID: 36421435 PMCID: PMC9686704 DOI: 10.3390/antiox11112250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 09/07/2023] Open
Abstract
Diabetic Retinopathy (DR) is one of the most important microvascular complications of diabetes mellitus, which can lead to blindness in severe cases. Mitochondria are energy-producing organelles in eukaryotic cells, which participate in metabolism and signal transduction, and regulate cell growth, differentiation, aging, and death. Metabolic changes of retinal cells and epigenetic changes of mitochondria-related genes under high glucose can lead to mitochondrial dysfunction and induce mitochondrial pathway apoptosis. In addition, mitophagy and mitochondrial dynamics also change adaptively. These mechanisms may be related to the occurrence and progression of DR, and also provide valuable clues for the prevention and treatment of DR. This article reviews the mechanism of DR induced by mitochondrial dysfunction, and the prospects for related treatment.
Collapse
Affiliation(s)
- Yiwei Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
26
|
Liu H, Liu Y, Wang H, Zhao Q, Zhang T, Xie S, Liu Y, Tang Y, Peng Q, Pang W, Yao W, Zhou J. Geometric Constraints Regulate Energy Metabolism and Cellular Contractility in Vascular Smooth Muscle Cells by Coordinating Mitochondrial DNA Methylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203995. [PMID: 36106364 PMCID: PMC9661866 DOI: 10.1002/advs.202203995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vascular smooth muscle cells (SMCs) can adapt to changes in cellular geometric cues; however, the underlying mechanisms remain elusive. Using 2D micropatterned substrates to engineer cell geometry, it is found that in comparison with an elongated geometry, a square-shaped geometry causes the nuclear-to-cytoplasmic redistribution of DNA methyltransferase 1 (DNMT1), hypermethylation of mitochondrial DNA (mtDNA), repression of mtDNA gene transcription, and impairment of mitochondrial function. Using irregularly arranged versus circumferentially aligned vascular grafts to control cell geometry in 3D growth, it is demonstrated that cell geometry, mtDNA methylation, and vessel contractility are closely related. DNMT1 redistribution is found to be dependent on the phosphoinositide 3-kinase and protein kinase B (AKT) signaling pathways. Cell elongation activates cytosolic phospholipase A2, a nuclear mechanosensor that, when inhibited, hinders AKT phosphorylation, DNMT1 nuclear accumulation, and energy production. The findings of this study provide insights into the effects of cell geometry on SMC function and its potential implications in the optimization of vascular grafts.
Collapse
Affiliation(s)
- Han Liu
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - Yuefeng Liu
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - He Wang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of EducationCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjin300071P. R. China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of EducationCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjin300071P. R. China
| | - Tao Zhang
- Department of Vascular SurgeryPeking University People's HospitalBeijing100044P. R. China
| | - Si‐an Xie
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - Yueqi Liu
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - Yuanjun Tang
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| | - Qin Peng
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518132P. R. China
| | - Wei Pang
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Weijuan Yao
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Jing Zhou
- Department of Physiology and PathophysiologySchool of Basic Medical Sciences; Hemorheology CenterSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Key Laboratory of Molecular Cardiovascular ScienceMinistry of EducationBeijing100191P. R. China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191P. R. China
| |
Collapse
|
27
|
Investigating the role of DNMT1 gene expression on myocardial ischemia reperfusion injury in rat and associated changes in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148566. [PMID: 35489443 DOI: 10.1016/j.bbabio.2022.148566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/31/2022]
Abstract
Altered DNA methylation and mitochondrial dysfunction are the two key features of myocardial ischemia reperfusion injury (I/R), but their association with I/R remains unknown. In the present study, the relationship between DNA methyl transferase1 (DNMT1), the key methylation gene, and the mitochondrial quality control genes in rat heart during I/R was explored. We used the Langendorff rat heart model with 30 min of ischemia followed by 60 min of reperfusion and subsequent inhibition of DNMT1 with 5-azacytidine to evaluate the role of DNA methylation in I/R. Reperfusion significantly increased the expression of the DNMT1 gene, enzyme activity, and global DNA methylation levels, along with decreased mitochondrial copy, electron transport chain (ETC) activities, and ATP level. This was in agreement with the significant downregulation of 11 mitochondrial genes PGC-1α, TFAM, POLG, MFN1 and MFN2, FIS1, PARKIN, OPTN, ND1, ND4L, Cyt B and COX1 in I/R induced rat hearts. The expression pattern of the mitochondrial genes PGC-1α, TFAM, ND1 and Cyt B showed a significant negative correlation with DNMT1 expression. Rate pressure product, index of cardiac performance negatively correlated with DNMT1 expression (r = -0.8231, p = 0.0456). However, DNMT1 inhibited rat hearts via 5-azacytidine significantly improved the heart from I/R injury and reversed the I/R associated changes in the gene expression of TFAM, POLG, PGC-1α, ND1, COX1 and Cyt B, and improved the overall mtDNA copies, with a subsequent improvement in the ETC enzyme activity and ATP levels. To conclude, I/R augmented the DNMT1 activity with a subsequent increase in cardiac injury via downregulating the mitochondrial functional genes.
Collapse
|
28
|
Chen Z, Natarajan R. Epigenetic modifications in metabolic memory: What are the memories, and can we erase them? Am J Physiol Cell Physiol 2022; 323:C570-C582. [PMID: 35785987 PMCID: PMC9359656 DOI: 10.1152/ajpcell.00201.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
Inherent and acquired abnormalities in gene regulation due to the influence of genetics and epigenetics (traits related to environment rather than genetic factors) underlie many diseases including diabetes. Diabetes could lead to multiple complications including retinopathy, nephropathy, and cardiovascular disease that greatly increase morbidity and mortality. Epigenetic changes have also been linked to diabetes-related complications. Genes associated with many pathophysiological features of these vascular complications (e.g., inflammation, fibrosis, and oxidative stress) can be regulated by epigenetic mechanisms involving histone posttranslational modifications, DNA methylation, changes in chromatin structure/remodeling, and noncoding RNAs. Intriguingly, these epigenetic changes triggered during early periods of hyperglycemic exposure and uncontrolled diabetes are not immediately corrected even after restoration of normoglycemia and metabolic balance. This latency in effect across time and conditions is associated with persistent development of complications in diabetes with prior history of poor glycemic control, termed as metabolic memory or legacy effect. Epigenetic modifications are generally reversible and provide a window of therapeutic opportunity to ameliorate cellular dysfunction and mitigate or "erase" metabolic memory. Notably, trained immunity and related epigenetic changes transmitted from hematopoietic stem cells to innate immune cells have also been implicated in metabolic memory. Hence, identification of epigenetic variations at candidate genes, or epigenetic signatures genome-wide by epigenome-wide association studies can aid in prompt diagnosis to prevent progression of complications and identification of much-needed new therapeutic targets. Herein, we provide a review of epigenetics and epigenomics in metabolic memory of diabetic complications covering the current basic research, clinical data, and translational implications.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
29
|
Takkar B, Sheemar A, Jayasudha R, Soni D, Narayanan R, Venkatesh P, Shivaji S, Das T. Unconventional avenues to decelerated diabetic retinopathy. Surv Ophthalmol 2022; 67:1574-1592. [PMID: 35803389 DOI: 10.1016/j.survophthal.2022.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is an important microvascular complication of diabetes mellitus (DM), causing significant visual impairment worldwide. Current gold standards for retarding the progress of DR include blood sugar control and regular fundus screening. Despite these measures, the incidence and prevalence of DR and vision-threatening DR remain high. Given its slowly progressive course and long latent period, opportunities to contain or slow DR before it threatens vision must be explored. This narrative review assesses the recently described unconventional strategies to retard DR progression. These include gut-ocular flow, gene therapy, mitochondrial dysfunction-oxidative stress, stem cell therapeutics, neurodegeneration, anti-inflammatory treatments, lifestyle modification, and usage of phytochemicals. These therapies impact DR directly, while some of them also influence DM control. Most of these strategies are currently in the preclinical stage, and clinical evidence remains low. Nevertheless, our review suggests that these approaches have the potential for human use to prevent the progression of DR.
Collapse
Affiliation(s)
- Brijesh Takkar
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India; Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India.
| | - Abhishek Sheemar
- Department of Ophthalmology, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Deepak Soni
- Department of Ophthalmology, All India Institute of Medical Sciences, Bhopal, India
| | - Raja Narayanan
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India; Indian Health Outcomes, Public Health, and Economics Research (IHOPE) Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Pradeep Venkatesh
- Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sisinthy Shivaji
- Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Taraprasad Das
- Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
30
|
Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol 2022; 18:243-258. [PMID: 35145250 PMCID: PMC9059418 DOI: 10.1038/s41574-021-00626-7] [Citation(s) in RCA: 364] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
Organismal ageing is accompanied by progressive loss of cellular function and systemic deterioration of multiple tissues, leading to impaired function and increased vulnerability to death. Mitochondria have become recognized not merely as being energy suppliers but also as having an essential role in the development of diseases associated with ageing, such as neurodegenerative and cardiovascular diseases. A growing body of evidence suggests that ageing and age-related diseases are tightly related to an energy supply and demand imbalance, which might be alleviated by a variety of interventions, including physical activity and calorie restriction, as well as naturally occurring molecules targeting conserved longevity pathways. Here, we review key historical advances and progress from the past few years in our understanding of the role of mitochondria in ageing and age-related metabolic diseases. We also highlight emerging scientific innovations using mitochondria-targeted therapeutic approaches.
Collapse
Affiliation(s)
- João A Amorim
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- IIIUC, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Giuseppe Coppotelli
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- George and Anne Ryan Institute for Neuroscience, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Anabela P Rolo
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences and Cell Biology of the University of Coimbra, Coimbra, Portugal
- Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Jaime M Ross
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
- George and Anne Ryan Institute for Neuroscience, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Liu Y, Song F, Yang Y, Yang S, Jiang M, Zhang W, Ma Z, Gu X. Mitochondrial DNA methylation drift and postoperative delirium in mice. Eur J Anaesthesiol 2022; 39:133-144. [PMID: 34726198 DOI: 10.1097/eja.0000000000001620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mitochondrial dysfunction is linked to the etiopathogenesis of postoperative delirium (POD), which severely affects the prognosis of elderly patients undergoing surgery. The methylation of mitochondrial DNA (mtDNA), a new and incompletely described phenomenon that regulates the structure and function of mitochondria, is associated with ageing. However, the relationship between mtDNA methylation and POD has not been established. OBJECTIVE To explore the potential roles of mitochondrial epigenetic regulation in POD. DESIGN A randomised animal study. PARTICIPANTS Eighty-eight 6-month-old and one hundred seventy-six 18-month-old male C57BL/6N mice. INTERVENTIONS POD was induced by abdominal surgery under 1.4% isoflurane for 2 h. Behavioural tests were performed at 24 h before surgery and at 6, 9 and 24 h after surgery. MAIN OUTCOME MEASURES 5-methylcytosine (5-mC) at five CpG sites of the displacement loop (D-loop) and at 60 CpG sites of coding gene loci in the mitochondrial genome after surgery of the hippocampus, prefrontal cortex, amygdala and anterior cingulate cortex in 6 and 18-month-old mice were detected using bisulfite pyrosequencing. Mitochondrial structure, mitochondrial gene expression and mtDNA copy number were also examined using Electron microscopy and real time PCR to find the association with mtDNA methylation. RESULTS The mtDNA methylation drift manifested as a decrease in the methylation levels at the D-loop and an increase or decrease in the methylation levels at several coding gene loci, ultimately resulting in reduced mtDNA copy numbers, altered mitochondrial gene expression and damaged mitochondrial structures in the hippocampus and prefrontal cortex after surgery. The activation of Silent information regulator-1 (SIRT1) ameliorated anaesthesia-induced and surgery-induced mitochondrial dysfunction and delirium-like behaviours by regulating mtDNA methyltransferase-mediated mtDNA methylation. CONCLUSION These data support the existence of epigenetic mtDNA regulation in POD; however, further studies are required to explore the specific mechanisms. TRIAL REGISTRATION No 20181204 Drum tower hospital.
Collapse
Affiliation(s)
- Yue Liu
- From the Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dubey R, Prabhakar PK, Gupta J. Epigenetics: key to improve delayed wound healing in type 2 diabetes. Mol Cell Biochem 2022; 477:371-383. [PMID: 34739665 DOI: 10.1007/s11010-021-04285-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Diabetes-related delayed wound healing is a multifactorial, nuanced, and intertwined complication that causes substantial clinical morbidity. The etiology of diabetes and its related microvascular complications is affected by genes, diet, and lifestyle factors. Epigenetic modifications such as DNA methylation, histone modifications, and post-transcriptional RNA regulation (microRNAs) are subsequently recognized as key facilitators of the complicated interaction between genes and the environment. Current research suggests that diabetes-persuaded dysfunction of epigenetic pathways, which results in changed expression of genes in target cells and cause diabetes-related complications including cardiomyopathy, nephropathy, retinopathy, delayed wound healing, etc., which are foremost drivers to diabetes-related adverse outcomes. In this paper, we discuss the role of epigenetic mechanisms in controlling tissue repair, angiogenesis, and expression of growth factors, as well as recent findings that show the alteration of epigenetic events during diabetic wound healing.
Collapse
Affiliation(s)
- Rupal Dubey
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, 144411, Phagwara, Punjab, India
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Physiotherapy and Paramedical Sciences, Lovely Professional University, 144411, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, 144411, Phagwara, Punjab, India.
| |
Collapse
|
33
|
Kowluru RA. Long Noncoding RNAs and Mitochondrial Homeostasis in the Development of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:915031. [PMID: 35733767 PMCID: PMC9207305 DOI: 10.3389/fendo.2022.915031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Retinopathy is one of the most devastating complications of diabetes, which a patient fears the most. Hyperglycemic environment results in many structural, functional, molecular and biochemical abnormalities in the retina, and overproduction of mitochondrial superoxide, induced by hyperglycemic milieu, is considered to play a central role in the development of diabetic retinopathy. Expression of many genes associated with maintaining mitochondrial homeostasis is also altered. Recent research has shown that several long noncoding RNAs, RNAs with more than 200 nucleotides but without any reading frames, are aberrantly expressed in diabetes, and altered expression of these long noncoding RNAs is now being implicated in the development of diabetes and its complications including retinopathy. This review focuses the role of long noncoding RNAs in the development of diabetic retinopathy, with a special emphasis on the maintenance of mitochondrial homeostasis.
Collapse
|
34
|
Rautenberg EK, Hamzaoui Y, Coletta DK. Mini-review: Mitochondrial DNA methylation in type 2 diabetes and obesity. Front Endocrinol (Lausanne) 2022; 13:968268. [PMID: 36093112 PMCID: PMC9453027 DOI: 10.3389/fendo.2022.968268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes (T2D) and obesity are two of the most challenging public health problems of our time. Therefore, understanding the molecular mechanisms that contribute to these complex metabolic disorders is essential. An underlying pathophysiological condition of T2D and obesity is insulin resistance (IR), a reduced biological response to insulin in peripheral tissues such as the liver, adipose tissue, and skeletal muscle. Many factors contribute to IR, including lifestyle variables such as a high-fat diet and physical inactivity, genetics, and impaired mitochondrial function. It is well established that impaired mitochondria structure and function occur in insulin-resistant skeletal muscle volunteers with T2D or obesity. Therefore, it could be hypothesized that the mitochondrial abnormalities are due to epigenetic regulation of mitochondrial and nuclear-encoded genes that code for mitochondrial structure and function. In this review, we describe the normal function and structure of mitochondria and highlight some of the key studies that demonstrate mitochondrial abnormalities in skeletal muscle of volunteers with T2D and obesity. Additionally, we describe epigenetic modifications in the context of IR and mitochondrial abnormalities, emphasizing mitochondria DNA (mtDNA) methylation, an emerging area of research.
Collapse
Affiliation(s)
- Emma K. Rautenberg
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - Yassin Hamzaoui
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| | - Dawn K. Coletta
- Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, United States
- Department of Medicine, Division of Endocrinology, The University of Arizona College of Medicine, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Dawn K. Coletta,
| |
Collapse
|
35
|
Balasubramanian N, Jadhav G, Sakharkar AJ. Repeated mild traumatic brain injuries perturb the mitochondrial biogenesis via DNA methylation in the hippocampus of rat. Mitochondrion 2021; 61:11-24. [PMID: 34508891 DOI: 10.1016/j.mito.2021.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Mitochondrial biogenesis in the brain is impaired in various neurological disorders including traumatic brain injury (TBI). The long-lasting effects of TBI may be, in part, attributed to epigenetic mechanisms such as DNA methylation. However, the role of DNA methylation on regulatory elements of nuclear and mitochondrial genome in mitochondrial biogenesis is not known. We examined the epigenetic regulation of mitochondrial transcription factor A (TFAM), and further probed its implications in mitochondrial dysfunction in the hippocampus of rats subjected to repeated mild TBI (rMTBI) using weight drop injury paradigm. rMTBI-induced hypermethylation at TFAM promoter resulted in deficits in its protein levels in mitochondria after immediate (48 h) and protracted (30 d) time points. Further, rMTBI also caused hypomethylation of mitochondrial DNA (mtDNA) promoters (HSP1 and HSP2), which further culminated into low binding of TFAM. rMTBI-induced changes weakened mitochondrial biogenesis in terms of reduced mtDNA-encoded rRNA, mRNA, and protein levels leading to shortages of ATP. To verify the potential role of mtDNA methylation in rMTBI-induced persistent mitochondrial dysfunction, rMTBI-induced rats were treated with methionine, a methyl donor. Methionine treatment restored the methylation levels on HSP1 and HSP2 resulting in efficient binding of TFAM and normalized the rRNA, mRNA, and protein levels. These findings suggest the crucial role of DNA methylation at nuclear and mitochondrial promoter regions in mitochondrial gene expression and ATP activity in the hippocampus after rMTBI.
Collapse
Affiliation(s)
| | - Gouri Jadhav
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411 007, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411 007, India.
| |
Collapse
|
36
|
Alikhani M, Touati E, Karimipoor M, Vosough M, Mohammadi M. Mitochondrial DNA Copy Number Variations in Gastrointestinal Tract Cancers: Potential Players. J Gastrointest Cancer 2021; 53:770-781. [PMID: 34486088 DOI: 10.1007/s12029-021-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Alterations of mitochondria have been linked to several cancers. Also, the mitochondrial DNA copy number (mtDNA-CN) is altered in various cancers, including gastrointestinal tract (GIT) cancers, and several research groups have investigated its potential as a cancer biomarker. However, the exact causes of mtDNA-CN variations are not yet revealed. This review discussed the conceivable players in this scheme, including reactive oxygen species (ROS), mtDNA genetic variations, DNA methylation, telomere length, autophagy, immune system activation, aging, and infections, and discussed their possible impact in the initiation and progression of cancer. By further exploring such mechanisms, mtDNA-CN variations may be effectively utilized as cancer biomarkers and provide grounds for developing novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Mehdi Alikhani
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS UMR2001, Institut Pasteur, 25-28 Rue du Dr Roux cedex 15, 75724, Paris, France
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Mohammadi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
37
|
Rasoulinejad SA, Maroufi F. CRISPR-Based Genome Editing as a New Therapeutic Tool in Retinal Diseases. Mol Biotechnol 2021; 63:768-779. [PMID: 34057656 DOI: 10.1007/s12033-021-00345-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/19/2021] [Indexed: 12/26/2022]
Abstract
Retinal diseases are the primary reasons for severe visual defects and irreversible blindness. Retinal diseases are also inherited and acquired. Both of them are caused by mutations in genes or disruptions in specific gene expression, which can be treated by gene-editing therapy. Clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) system is a frontier of gene-editing tools with great potential for therapeutic applications in the ophthalmology field to modify abnormal genes and treat the genome or epigenome-related retinal diseases. The CRISPR system is able to edit and trim the gene include deletion, insertion, inhibition, activation, replacing, remodeling, epigenetic alteration, and modify the gene expression. CRISPR-based genome editing techniques have indicated the enormous potential to treat retinal diseases that previous treatment was not available for them. Also, recent CRISPR genome surgery experiments have shown the improvement of patient's vision who suffered from severe visual loss. In this article, we review the applications of the CRISPR-Cas9 system in human or animal models for treating retinal diseases such as retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and proliferative vitreoretinopathy (PVR), then we survey limitations of CRISPR system for clinical therapy.
Collapse
Affiliation(s)
- Seyed Ahmad Rasoulinejad
- Department of Ophthalmology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran.
| | - Faezeh Maroufi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
38
|
Maresca A, Del Dotto V, Capristo M, Scimonelli E, Tagliavini F, Morandi L, Tropeano CV, Caporali L, Mohamed S, Roberti M, Scandiffio L, Zaffagnini M, Rossi J, Cappelletti M, Musiani F, Contin M, Riva R, Liguori R, Pizza F, La Morgia C, Antelmi E, Loguercio Polosa P, Mignot E, Zanna C, Plazzi G, Carelli V. DNMT1 mutations leading to neurodegeneration paradoxically reflect on mitochondrial metabolism. Hum Mol Genet 2021; 29:1864-1881. [PMID: 31984424 PMCID: PMC7372549 DOI: 10.1093/hmg/ddaa014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
ADCA-DN and HSN-IE are rare neurodegenerative syndromes caused by dominant mutations in the replication foci targeting sequence (RFTS) of the DNA methyltransferase 1 (DNMT1) gene. Both phenotypes resemble mitochondrial disorders, and mitochondrial dysfunction was first observed in ADCA-DN. To explore mitochondrial involvement, we studied the effects of DNMT1 mutations in fibroblasts from four ADCA-DN and two HSN-IE patients. We documented impaired activity of purified DNMT1 mutant proteins, which in fibroblasts results in increased DNMT1 amount. We demonstrated that DNMT1 is not localized within mitochondria, but it is associated with the mitochondrial outer membrane. Concordantly, mitochondrial DNA failed to show meaningful CpG methylation. Strikingly, we found activated mitobiogenesis and OXPHOS with significant increase of H2O2, sharply contrasting with a reduced ATP content. Metabolomics profiling of mutant cells highlighted purine, arginine/urea cycle and glutamate metabolisms as the most consistently altered pathways, similar to primary mitochondrial diseases. The most severe mutations showed activation of energy shortage AMPK-dependent sensing, leading to mTORC1 inhibition. We propose that DNMT1 RFTS mutations deregulate metabolism lowering ATP levels, as a result of increased purine catabolism and urea cycle pathways. This is associated with a paradoxical mitochondrial hyper-function and increased oxidative stress, possibly resulting in neurodegeneration in non-dividing cells.
Collapse
Affiliation(s)
- Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna 40139, Italy
| | - Valentina Del Dotto
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40139, Italy
| | - Mariantonietta Capristo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna 40139, Italy
| | - Emanuela Scimonelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40139, Italy
| | - Francesca Tagliavini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna 40139, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40139, Italy
| | | | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna 40139, Italy
| | - Susan Mohamed
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna 40139, Italy
| | - Marina Roberti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari 70126, Italy
| | - Letizia Scandiffio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari 70126, Italy
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Manuela Contin
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna 40139, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40139, Italy
| | - Roberto Riva
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna 40139, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40139, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna 40139, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40139, Italy
| | - Fabio Pizza
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna 40139, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40139, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna 40139, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40139, Italy
| | - Elena Antelmi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40139, Italy
| | - Paola Loguercio Polosa
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari 70126, Italy
| | - Emmanuel Mignot
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna 40139, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40139, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna 40139, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40139, Italy
| |
Collapse
|
39
|
Yang CX, Chen L, Yang YW, Mou Q, Du ZQ. Acute heat stress reduces viability but increases lactate secretion of porcine immature Sertoli cells through transcriptome reprogramming. Theriogenology 2021; 173:183-192. [PMID: 34392171 DOI: 10.1016/j.theriogenology.2021.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Sertoli cells, important constituents of the somatic niche, supports the growth and development of spermatogonia. Heat stress (HS), among multiple intrinsic and external factors, can induce physiological and biochemical changes in Sertoli cells. However, the underlying molecular mechanism remains largely unclear. Here, we showed that acute heat stress (43 °C, 0.5 h) could reduce cell viability, promote apoptosis, and increase the lactate production of porcine immature Sertoli cells (iSCs) cultured in vitro. Then, transcriptome sequencing identified 126 immediately and 3372 prolonged responded differentially expressed genes (DEGs) after acute heat stress (43 °C, 0.5 h) (HS0.5), and 36 h recovery culture following heat stress (HS0.5-R36), respectively. Enrichment analyses found different signaling pathways: immediate changes including cell response to heat, regulation of cellular response to stress, heat shock protein binding, chaperon-mediated protein folding, and sterol biosynthetic process, but prolonged changes mainly involving cell cycle, regulation of apoptotic process/cell proliferation, reproductive process, P53, PI3K-Akt and Glycolysis/Gluconeogenesis. Furthermore, transcriptional patterns of 9 DEGs (Dnajb1, Traf6, Insig1, Gadd45g, Hdac6, Fkbp4, Serpine1, Pfkp and Galm), and 6 heat shock proteins (HSPs) (Hspa6, Hspb1, Hspd1, HSP90aa1, HSP90ab1 and Hsph1) were validated, as well as the protein pattern of HSP90AA1 via immunostaining and western blot. Taken together, heat stress could initiate immediate changes of heat shock-related genes, and reprogram transcriptome and signaling pathways affecting the viability, apoptosis and metabolite production of pig iSCs.
Collapse
Affiliation(s)
- Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| | - Lu Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yu-Wei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Qiao Mou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
40
|
Zhu Y, Wang X, Zhou X, Ding L, Liu D, Xu H. DNMT1-mediated PPARα methylation aggravates damage of retinal tissues in diabetic retinopathy mice. Biol Res 2021; 54:25. [PMID: 34362460 PMCID: PMC8348846 DOI: 10.1186/s40659-021-00347-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Background Peroxisome proliferator-activated receptor alpha (PPARα) is associated with diabetic retinopathy (DR), and the underlying mechanism is still unclear. Aim of this work was to investigate the mechanism of PPARα in DR. Methods Human retinal capillary pericytes (HRCPs) were treated with high glucose (HG) to induce DR cell model. DR mouse model was established by streptozotocin injection, and then received 5-Aza-2-deoxycytidine (DAC; DNA methyltransferase inhibitor) treatment. Hematoxylin–eosin staining was performed to assess retinal tissue damage. PPARα methylation was examined by Methylation-Specific PCR. Flow cytometry and DCFH-DA fluorescent probe was used to estimate apoptosis and reactive oxygen species (ROS). The interaction between DNA methyltransferase-1 (DNMT1) and PPARα promoter was examined by Chromatin Immunoprecipitation. Quantitative real-time PCR and western blot were performed to assess gene and protein expression. Results HG treatment enhanced the methylation levels of PPARα, and repressed PPARα expression in HRCPs. The levels of apoptotic cells and ROS were significantly increased in HRCPs in the presence of HG. Moreover, DNMT1 was highly expressed in HG-treated HRCPs, and DNMT1 interacted with PPARα promoter. PPARα overexpression suppressed apoptosis and ROS levels of HRCPs, which was rescued by DNMT1 up-regulation. In DR mice, DAC treatment inhibited PPARα methylation and reduced damage of retinal tissues. Conclusion DNMT1-mediated PPARα methylation promotes apoptosis and ROS levels of HRCPs and aggravates damage of retinal tissues in DR mice. Thus, this study may highlight novel insights into DR pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00347-1.
Collapse
Affiliation(s)
- Ying Zhu
- Eye Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Hunan, 410008, Changsha, China
| | - Xinru Wang
- Eye Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Hunan, 410008, Changsha, China
| | - Xiaoyun Zhou
- Department of Ophthalmology, The First Hospital of Changsha, 311 Yingpan Road, Hunan, Changsha, China
| | - Lexi Ding
- Eye Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Hunan, 410008, Changsha, China
| | - Dan Liu
- Eye Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Hunan, 410008, Changsha, China
| | - Huizhuo Xu
- Eye Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Hunan, 410008, Changsha, China.
| |
Collapse
|
41
|
Mohd Khair SZN, Abd Radzak SM, Mohamed Yusoff AA. The Uprising of Mitochondrial DNA Biomarker in Cancer. DISEASE MARKERS 2021; 2021:7675269. [PMID: 34326906 PMCID: PMC8302403 DOI: 10.1155/2021/7675269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a heterogeneous group of diseases, the progression of which demands an accumulation of genetic mutations and epigenetic alterations of the human nuclear genome or possibly in the mitochondrial genome as well. Despite modern diagnostic and therapeutic approaches to battle cancer, there are still serious concerns about the increase in death from cancer globally. Recently, a growing number of researchers have extensively focused on the burgeoning area of biomarkers development research, especially in noninvasive early cancer detection. Intergenomic cross talk has triggered researchers to expand their studies from nuclear genome-based cancer researches, shifting into the mitochondria-mediated associations with carcinogenesis. Thus, it leads to the discoveries of established and potential mitochondrial biomarkers with high specificity and sensitivity. The research field of mitochondrial DNA (mtDNA) biomarkers has the great potential to confer vast benefits for cancer therapeutics and patients in the future. This review seeks to summarize the comprehensive insights of nuclear genome cancer biomarkers and their usage in clinical practices, the intergenomic cross talk researches that linked mitochondrial dysfunction to carcinogenesis, and the current progress of mitochondrial cancer biomarker studies and development.
Collapse
Affiliation(s)
- Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
42
|
Kowluru RA, Radhakrishnan R, Mohammad G. Regulation of Rac1 transcription by histone and DNA methylation in diabetic retinopathy. Sci Rep 2021; 11:14097. [PMID: 34238980 PMCID: PMC8266843 DOI: 10.1038/s41598-021-93420-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Cytosolic ROS, generated by NADPH oxidase 2 (Nox2) in diabetes, damage retinal mitochondria, which leads to the development of retinopathy. A small molecular weight G-protein essential for Nox2 activation, Rac1, is also transcriptionally activated via active DNA methylation-hydroxymethylation. DNA methylation is a dynamic process, and can also be regulated by histone modifications; diabetes alters retinal histone methylation machinery. Our aim is to investigate the role of histone methylation (H3K9me3) of Rac1 promoter in dynamic DNA methylation- transcriptional activation. Using human retinal endothelial cells in 20 mM D-glucose, H3K9me3 at Rac1 promoter was quantified by chromatin-Immunoprecipitation technique. Crosstalk between H3K9me3 and DNA methylation was examined in cells transfected with siRNA of histone trimethyl-transferase, Suv39H1, or Dnmt1, exposed to high glucose. Key parameters were confirmed in retinal microvessels from streptozotocin-induced diabetic mice, with intravitreally administered Suv39H1-siRNA or Dnmt1-siRNA. Compared to cells in normal glucose, high glucose increased H3K9me3 and Suv39H1 binding at Rac1 promoter, and Suv39H1-siRNA prevented glucose-induced increase 5 hydroxy methyl cytosine (5hmC) and Rac1 mRNA. Similarly, in diabetic mice, Suv39H1-siRNA attenuated increase in 5hmC and Rac1 mRNA. Thus, H3K9me3 at Rac1 promoter assists in active DNA methylation-hydroxymethylation, activating Rac1 transcription. Regulation of Suv39H1-H3K9 trimethylation could prevent further epigenetic modifications, and prevent diabetic retinopathy.
Collapse
Affiliation(s)
- Renu A Kowluru
- Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University, Detroit, MI, 48201, USA.
| | - Rakesh Radhakrishnan
- Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Ghulam Mohammad
- Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
43
|
Mitochondrial DNA Methylation and Human Diseases. Int J Mol Sci 2021; 22:ijms22094594. [PMID: 33925624 PMCID: PMC8123858 DOI: 10.3390/ijms22094594] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.
Collapse
|
44
|
Pérez-Muñoz AA, de Lourdes Muñoz M, García-Hernández N, Santander-Lucio H. A New Approach to Identify the Methylation Sites in the Control Region of Mitochondrial DNA. Curr Mol Med 2021; 21:151-164. [PMID: 32484108 DOI: 10.2174/1566524020666200528154005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
Mitochondrial DNA (mtDNA) methylation has the potential to be used as a biomarker of human development or disease. However, mtDNA methylation procedures are costly and time-consuming. Therefore, we developed a new approach based on an RT-PCR assay for the base site identification of methylated cytosine in the control region of mtDNA through a simple, fast, specific, and low-cost strategy. Total DNA was purified, and methylation was determined by RT-PCR bisulfite sequencing. This procedure included the DNA purification, bisulfite treatment and RT-PCR amplification of the control region divided into three subregions with specific primers. Sequences obtained with and without the bisulfite treatment were compared to identify the methylated cytosine dinucleotides. Furthermore, the efficiency of C to U conversion of cytosines was assessed by including a negative control. Interestingly, mtDNA methylation was observed mainly within non-Cphosphate- G (non-CpG) dinucleotides and mostly in the regions containing regulatory elements, such as OH or CSBI, CSBII, and CSBIII. This new approach will promote the generation of new information regarding mtDNA methylation patterns in samples from patients with different pathologies or that are exposed to a toxic environment in diverse human populations.
Collapse
Affiliation(s)
- Ashael Alfredo Pérez-Muñoz
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| | - María de Lourdes Muñoz
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| | - Normand García-Hernández
- Unidad de Investigacion Medica en Genetica Humana, Unidad Medica de Alta Especialidad Hospital de Pediatria "Dr. Silvestre Frenk Freund", Centro Medico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Heriberto Santander-Lucio
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| |
Collapse
|
45
|
He Y, Dan Y, Gao X, Huang L, Lv H, Chen J. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway. Am J Physiol Endocrinol Metab 2021; 320:E598-E608. [PMID: 33284093 DOI: 10.1152/ajpendo.00089.2020] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Diabetic retinopathy (DR) is one of the serious complications that occurs in diabetic patients that frequently causes blindness. Long noncoding RNAs (lncRNAs) have been associated with DR pathology. This study aimed to determine the underlying mechanism of lncRNA maternally expressed gene 3 (MEG3) in association with DNA methyltransferase 1 (DNMT1) in the endothelial-mesenchymal transition (endMT) that occurs in DR. A rat model of DR was induced by streptozotocin (STZ) injection, and a high-glucose (HG)-induced cell model was established by exposing microvascular endothelial cells obtained from retina of rats to HG. Subsequently, MEG3 was overexpressed in rat and cell models to characterize its impact on endMT in DR and the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. Furthermore, the methylation level of MEG3 promoter region was determined with the application of methylation-specific polymerase chain reaction, followed by chromatin immunoprecipitation assay for methyltransferase enrichment. Finally, we examined the regulation of DNMT1 on MEG3 methylation and endMT in the HG-induced cell model. The results obtained revealed downregulated MEG3 expression in DR rat and cell models. Overexpressed MEG3 was shown to suppress endMT in DR rat and cell models through the inhibition of the PI3K/Akt/mTOR signaling pathway. Notably, DNMT1 could promote MEG3 promoter methylation to inhibit MEG3 expression by recruiting methyltransferase, which activated the PI3K/Akt/mTOR signaling pathway to accelerate endMT in DR. These findings further highlighted the inhibitory effect of MEG3 on endMT in DR, thus presenting a novel therapeutic target candidate for DR treatment.
Collapse
Affiliation(s)
- Yue He
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yujiao Dan
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaorong Gao
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Huang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
46
|
Xu Y, Cheng L, Sun J, Li F, Liu X, Wei Y, Han M, Zhu Z, Bi J, Lai C, Wang Y. Hypermethylation of Mitochondrial Cytochrome b and Cytochrome c Oxidase II Genes with Decreased Mitochondrial DNA Copy Numbers in the APP/PS1 Transgenic Mouse Model of Alzheimer's Disease. Neurochem Res 2021; 46:564-572. [PMID: 33580369 DOI: 10.1007/s11064-020-03192-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Increasing evidence shows that mitochondrial DNA (mtDNA) methylation plays an essential role in many diseases related to mitochondrial dysfunction. Since mitochondrial impairment is a key feature of AD, mtDNA methylation may also contribute to AD, but few studies have addressed this issue. Methylation changes of the mitochondrial cytochrome b (CYTB) and cytochrome c oxidase II (COX II) genes in AD have not been reported. We analyzed mtDNA methylation changes of the CYTB and COX II genes in an APP/PS1 transgenic mouse model of AD using pyrosequencing. We examined mtDNA copy numbers and the levels of expression by quantitative real-time PCR. Average methylation levels of different CpG sites were ≤ 4.0%. Methylated mtDNA accounted for only a small part of the total mtDNA. We also observed hypermethylation of mitochondrial CYTB and COX II genes with decreased mtDNA copy numbers and expression in the hippocampi of APP/PS1 transgenic mice. mtDNA methylation may play an important role in AD pathology, which may open a new window for AD therapy.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Ling Cheng
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Jing Sun
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Fan Li
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Xiangtian Liu
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Yan Wei
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Min Han
- Department of General Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Zhengyu Zhu
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Jianzhong Bi
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Chao Lai
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China.
| | - Yun Wang
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China.
| |
Collapse
|
47
|
Patrick AT, He W, Madu J, Sripathi SR, Choi S, Lee K, Samson FP, Powell FL, Bartoli M, Jee D, Gutsaeva DR, Jahng WJ. Mechanistic dissection of diabetic retinopathy using the protein-metabolite interactome. J Diabetes Metab Disord 2021; 19:829-848. [PMID: 33520806 DOI: 10.1007/s40200-020-00570-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Purpose The current study aims to determine the molecular mechanisms of diabetic retinopathy (DR) using the protein-protein interactome and metabolome map. We examined the protein network of novel biomarkers of DR for direct (physical) and indirect (functional) interactions using clinical target proteins in different models. Methods We used proteomic tools including 2-dimensional gel electrophoresis, mass spectrometry analysis, and database search for biomarker identification using in vivo murine and human model of diabetic retinopathy and in vitro model of oxidative stress. For the protein interactome and metabolome mapping, various bioinformatic tools that include STRING and OmicsNet were used. Results We uncovered new diabetic biomarkers including prohibitin (PHB), dynamin 1, microtubule-actin crosslinking factor 1, Toll-like receptor (TLR 7), complement activation, as well as hypothetical proteins that include a disintegrin and metalloproteinase (ADAM18), vimentin III, and calcium-binding C2 domain-containing phospholipid-binding switch (CAC2PBS) using a proteomic approach. Proteome networks of protein interactions with diabetic biomarkers were established using known DR-related proteome data. DR metabolites were interconnected to establish the metabolome map. Our results showed that mitochondrial protein interactions were changed during hyperglycemic conditions in the streptozotocin-treated murine model and diabetic human tissue. Conclusions Our interactome mapping suggests that mitochondrial dysfunction could be tightly linked to various phases of DR pathogenesis including altered visual cycle, cytoskeletal remodeling, altered lipid concentration, inflammation, PHB depletion, tubulin phosphorylation, and altered energy metabolism. The protein-metabolite interactions in the current network demonstrate the etiology of retinal degeneration and suggest the potential therapeutic approach to treat DR.
Collapse
Affiliation(s)
- Ambrose Teru Patrick
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI USA
| | - Joshua Madu
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Srinivas R Sripathi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Seulggie Choi
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Kook Lee
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Faith Pwaniyibo Samson
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| | - Folami L Powell
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA USA
| | - Manuela Bartoli
- Department of Ophthalmology, Augusta University, Augusta, GA USA
| | - Donghyun Jee
- Division of Vitreous and Retina, Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Diana R Gutsaeva
- Department of Ophthalmology, Augusta University, Augusta, GA USA
| | - Wan Jin Jahng
- Retina Proteomics Laboratory, Department of Petroleum Chemistry, American University of Nigeria, Yola, Nigeria
| |
Collapse
|
48
|
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37:101799. [PMID: 33248932 PMCID: PMC7767789 DOI: 10.1016/j.redox.2020.101799] [Citation(s) in RCA: 474] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress, a cytopathic outcome of excessive generation of ROS and the repression of antioxidant defense system for ROS elimination, is involved in the pathogenesis of multiple diseases, including diabetes and its complications. Retinopathy, a microvascular complication of diabetes, is the primary cause of acquired blindness in diabetic patients. Oxidative stress has been verified as one critical contributor to the pathogenesis of diabetic retinopathy. Oxidative stress can both contribute to and result from the metabolic abnormalities induced by hyperglycemia, mainly including the increased flux of the polyol pathway and hexosamine pathway, the hyper-activation of protein kinase C (PKC) isoforms, and the accumulation of advanced glycation end products (AGEs). Moreover, the repression of the antioxidant defense system by hyperglycemia-mediated epigenetic modification also leads to the imbalance between the scavenging and production of ROS. Excessive accumulation of ROS induces mitochondrial damage, cellular apoptosis, inflammation, lipid peroxidation, and structural and functional alterations in retina. Therefore, it is important to understand and elucidate the oxidative stress-related mechanisms underlying the progress of diabetic retinopathy. In addition, the abnormalities correlated with oxidative stress provide multiple potential therapeutic targets to develop safe and effective treatments for diabetic retinopathy. Here, we also summarized the main antioxidant therapeutic strategies to control this disease. Oxidative stress can both contribute to and result from hyperglycemia-induced metabolic abnormalities in retina. Genes important in regulation of ROS are epigenetically modified, increasing ROS accumulation in retina. Oxidative stress is closely associated with the pathological changes in the progress of diabetic retinopathy. Antioxidants ameliorate retinopathy through targeting multiple steps of oxidative stress.
Collapse
Affiliation(s)
- Qingzheng Kang
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunxue Yang
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
49
|
Scisciola L, Rizzo MR, Cataldo V, Fontanella RA, Balestrieri ML, D'Onofrio N, Marfella R, Paolisso G, Barbieri M. Incretin drugs effect on epigenetic machinery: New potential therapeutic implications in preventing vascular diabetic complications. FASEB J 2020; 34:16489-16503. [PMID: 33090591 DOI: 10.1096/fj.202000860rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 11/11/2022]
Abstract
The effect of GLP-1R agonists on DNA methylation levels of NF-κB and SOD2 genes in human aortic endothelial cells exposed to high glucose and in diabetic patients treated and not with incretin-based drugs, was evaluated. Methylation levels, mRNA and protein expression of NF-κB and SOD2 genes were measured in human endothelial cells exposed to high glucose for 7 days and treated with GLP-1R agonists. Methylation status of NF-κB and SOD2 promoter was also analyzed in 128 diabetics and 116 nondiabetics and correlated with intima media thickness (ITM), an early marker of atherosclerotic process. Cells exposed to high glucose showed lower NF-κB and SOD2 methylation levels, increased NF-κB and reduced SOD2 expression compared to normal glucose cells. Co-treatment with GLP-1 agonists prevented methylation and genes expression changes induced by high glucose. Both high glucose and incretins exposure increased DNA methyltransferases and demethylases levels. In diabetics, incretin treatment resulted a significant predictor of NF-κB DNA methylation, independently of age, sex, body mass index (BMI), glucose and plasma lipid levels. NF-κB DNA methylation inversely correlated with IMT after adjusting for multiple covariates. Our results firstly provide new evidences of an additional mechanism by which incretin drugs could prevent vascular diabetic complications.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vittoria Cataldo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
50
|
Stoccoro A, Smith AR, Mosca L, Marocchi A, Gerardi F, Lunetta C, Cereda C, Gagliardi S, Lunnon K, Migliore L, Coppedè F. Reduced mitochondrial D-loop methylation levels in sporadic amyotrophic lateral sclerosis. Clin Epigenetics 2020; 12:137. [PMID: 32917270 PMCID: PMC7488473 DOI: 10.1186/s13148-020-00933-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondrial dysregulation and aberrant epigenetic mechanisms have been frequently reported in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), and several researchers suggested that epigenetic dysregulation in mitochondrial DNA (mtDNA) could contribute to the neurodegenerative process. We recently screened families with mutations in the major ALS causative genes, namely C9orf72, SOD1, FUS, and TARDBP, observing reduced methylation levels of the mtDNA regulatory region (D-loop) only in peripheral lymphocytes of SOD1 carriers. However, until now no studies investigated the potential role of mtDNA methylation impairment in the sporadic form of ALS, which accounts for the majority of disease cases. The aim of the current study was to investigate the D-loop methylation levels and the mtDNA copy number in sporadic ALS patients and compare them to those observed in healthy controls and in familial ALS patients. Pyrosequencing analysis of D-loop methylation levels and quantitative analysis of mtDNA copy number were performed in peripheral white blood cells from 36 sporadic ALS patients, 51 age- and sex-matched controls, and 27 familial ALS patients with germinal mutations in SOD1 or C9orf72 that represent the major familial ALS forms. Results In the total sample, D-loop methylation levels were significantly lower in ALS patients compared to controls, and a significant inverse correlation between D-loop methylation levels and the mtDNA copy number was observed. Stratification of ALS patients into different subtypes revealed that both SOD1-mutant and sporadic ALS patients showed lower D-loop methylation levels compared to controls, while C9orf72-ALS patients showed similar D-loop methylation levels than controls. In healthy controls, but not in ALS patients, D-loop methylation levels decreased with increasing age at sampling and were higher in males compared to females. Conclusions Present data reveal altered D-loop methylation levels in sporadic ALS and confirm previous evidence of an inverse correlation between D-loop methylation levels and the mtDNA copy number, as well as differences among the major familial ALS subtypes. Overall, present results suggest that D-loop methylation and mitochondrial replication are strictly related to each other and could represent compensatory mechanisms to counteract mitochondrial impairment in sporadic and SOD1-related ALS forms.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126, Pisa, Italy
| | - Adam R Smith
- University of Exeter Medical School, College of Medicine and Health, Exeter University, Exeter, UK
| | - Lorena Mosca
- Medical Genetics Unit, Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessandro Marocchi
- Medical Genetics Unit, Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | | | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Stella Gagliardi
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Katie Lunnon
- University of Exeter Medical School, College of Medicine and Health, Exeter University, Exeter, UK
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126, Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|