1
|
Mahmoodi M, Mirzarazi Dahagi E, Nabavi M, Penalva YCM, Gosaine A, Murshed M, Couldwell S, Munter LM, Kaartinen MT. Circulating plasma fibronectin affects tissue insulin sensitivity, adipocyte differentiation, and transcriptional landscape of adipose tissue in mice. Physiol Rep 2024; 12:e16152. [PMID: 39054559 PMCID: PMC11272447 DOI: 10.14814/phy2.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Plasma fibronectin (pFN) is a hepatocyte-derived circulating extracellular matrix protein that affects cell morphology, adipogenesis, and insulin signaling of adipocytes in vitro. In this study, we show pFN accrual to adipose tissue and its contribution to tissue homeostasis in mice. Hepatocyte-specific conditional Fn1 knockout mice (Fn1-/-ALB) show a decrease in adipose tissue FN levels and enhanced insulin sensitivity of subcutaneous (inguinal), visceral (epididymal) adipose tissue on a normal diet. Diet-induced obesity model of the Fn1-/-ALB mouse showed normal weight gain and whole-body fat mass, and normal adipose tissue depot volumes and unaltered circulating leptin and adiponectin levels. However, Fn1-/-ALB adipose depots showed significant alterations in adipocyte size and gene expression profiles. The inguinal adipose tissue on a normal diet, which had alterations in fatty acid metabolism and thermogenesis suggesting browning. The presence of increased beige adipocyte markers Ucp1 and Prdm16 supported this. In the inguinal fat, the obesogenic diet resulted in downregulation of the browning markers and changes in gene expression reflecting development, morphogenesis, and mesenchymal stem cell maintenance. Epididymal adipose tissue showed alterations in developmental and stem cell gene expression on both diets. The data suggests a role for pFN in adipose tissue insulin sensitivity and cell profiles.
Collapse
Affiliation(s)
- Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Mir‐Hamed Nabavi
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Ylauna C. M. Penalva
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Centre de Recherche en Biologie Structurale (CRBS)McGill UniversityMontrealQuebecCanada
| | - Amrita Gosaine
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| | - Sandrine Couldwell
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
| | - Lisa M. Munter
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Centre de Recherche en Biologie Structurale (CRBS)McGill UniversityMontrealQuebecCanada
| | - Mari T. Kaartinen
- Faculty of Dental Medicine and Oral Health Sciences (Biomedical Sciences)McGill UniversityMontrealQuebecCanada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Department of Medicine (Division of Experimental Medicine), Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
2
|
Coate KC, Ramnanan CJ, Smith M, Winnick JJ, Kraft G, Irimia-Dominguez J, Farmer B, Donahue EP, Roach PJ, Cherrington AD, Edgerton DS. Integration of metabolic flux with hepatic glucagon signaling and gene expression profiles in the conscious dog. Am J Physiol Endocrinol Metab 2024; 326:E428-E442. [PMID: 38324258 PMCID: PMC11193521 DOI: 10.1152/ajpendo.00316.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Glucagon rapidly and profoundly stimulates hepatic glucose production (HGP), but for reasons that are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course of glucagon-mediated molecular events and their relevance to metabolic flux in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a sixfold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group, glucose remained at basal, whereas in the other, glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) and largely sustained increase in hepatic cAMP over 4 h, a continued elevation in glucose-6-phosphate (G6P), and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis increased rapidly, peaking at 15 min due to activation of the cAMP/PKA pathway, then slowly returned to baseline over the next 3 h in line with allosteric inhibition by glucose and G6P. Glucagon's stimulatory effect on HGP was sustained relative to the hyperglycemic control group due to continued PKA activation. Hepatic gluconeogenic flux did not increase due to the lack of glucagon's effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, as well as downregulation of genes involved in extracellular matrix assembly and development.NEW & NOTEWORTHY Glucagon rapidly stimulates hepatic glucose production, but these effects are transient. This study links the molecular and metabolic flux changes that occur in the liver over time in response to a rise in glucagon, demonstrating the strength of the dog as a translational model to couple findings in small animals and humans. In addition, this study clarifies why the rapid effects of glucagon on liver glycogen metabolism are not sustained.
Collapse
Affiliation(s)
- Katie C Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher J Ramnanan
- Department of Innovation in Medical Education, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jason J Winnick
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jose Irimia-Dominguez
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute, Duarte, California, United States
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - E Patrick Donahue
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
3
|
Choi PP, Wang Q, Brenner LA, Li AJ, Ritter RC, Appleyard SM. Lesion of NPY Receptor-expressing Neurons in Perifornical Lateral Hypothalamus Attenuates Glucoprivic Feeding. Endocrinology 2024; 165:bqae021. [PMID: 38368624 PMCID: PMC11043786 DOI: 10.1210/endocr/bqae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Glucoprivic feeding is one of several counterregulatory responses (CRRs) that facilitates restoration of euglycemia following acute glucose deficit (glucoprivation). Our previous work established that glucoprivic feeding requires ventrolateral medullary (VLM) catecholamine (CA) neurons that coexpress neuropeptide Y (NPY). However, the connections by which VLM CA/NPY neurons trigger increased feeding are uncertain. We have previously shown that glucoprivation, induced by an anti-glycolygic agent 2-deoxy-D-glucose (2DG), activates perifornical lateral hypothalamus (PeFLH) neurons and that expression of NPY in the VLM CA/NPY neurons is required for glucoprivic feeding. We therefore hypothesized that glucoprivic feeding and possibly other CRRs require NPY-sensitive PeFLH neurons. To test this, we used the ribosomal toxin conjugate NPY-saporin (NPY-SAP) to selectively lesion NPY receptor-expressing neurons in the PeFLH of male rats. We found that NPY-SAP destroyed a significant number of PeFLH neurons, including those expressing orexin, but not those expressing melanin-concentrating hormone. The PeFLH NPY-SAP lesions attenuated 2DG-induced feeding but did not affect 2DG-induced increase in locomotor activity, sympathoadrenal hyperglycemia, or corticosterone release. The 2DG-induced feeding response was also significantly attenuated in NPY-SAP-treated female rats. Interestingly, PeFLH NPY-SAP lesioned male rats had reduced body weights and decreased dark cycle feeding, but this effect was not seen in female rats. We conclude that a NPY projection to the PeFLH is necessary for glucoprivic feeding, but not locomotor activity, hyperglycemia, or corticosterone release, in both male and female rats.
Collapse
Affiliation(s)
- Pique P Choi
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Qing Wang
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Lynne A Brenner
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Ai-Jun Li
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Robert C Ritter
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Suzanne M Appleyard
- Neuroscience Program, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
4
|
Hölzen L, Schultes B, Meyhöfer SM, Meyhöfer S. Hypoglycemia Unawareness-A Review on Pathophysiology and Clinical Implications. Biomedicines 2024; 12:391. [PMID: 38397994 PMCID: PMC10887081 DOI: 10.3390/biomedicines12020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoglycemia is a particular problem in people with diabetes while it can also occur in other clinical circumstances. Hypoglycemia unawareness describes a condition in which autonomic and neuroglycopenic symptoms of hypoglycemia decrease and hence are hardly perceivable. A failure to recognize hypoglycemia in time can lead to unconsciousness, seizure, and even death. The risk factors include intensive glycemic control, prior episodes of severe hypoglycemia, long duration of diabetes, alcohol consumption, exercise, renal failure, and sepsis. The pathophysiological mechanisms are manifold, but mainly concern altered brain glucose sensing, cerebral adaptations, and an impaired hormonal counterregulation with an attenuated release of glucagon, epinephrine, growth hormone, and other hormones, as well as impaired autonomous and neuroglycopenic symptoms. Physiologically, this counterregulatory response causes blood glucose levels to rise. The impaired hormonal counterregulatory response to recurrent hypoglycemia can lead to a vicious cycle of frequent and poorly recognized hypoglycemic episodes. There is a shift in glycemic threshold to trigger hormonal counterregulation, resulting in hypoglycemia-associated autonomic failure and leading to the clinical syndrome of hypoglycemia unawareness. This clinical syndrome represents a particularly great challenge in diabetes treatment and, thus, prevention of hypoglycemia is crucial in diabetes management. This mini-review provides an overview of hypoglycemia and the associated severe complication of impaired hypoglycemia awareness and its symptoms, pathophysiology, risk factors, consequences, as well as therapeutic strategies.
Collapse
Affiliation(s)
- Laura Hölzen
- Institute for Endocrinology & Diabetes, University of Lübeck, 23562 Lübeck, Germany; (L.H.); (B.S.)
- Department of Internal Medicine 1, Endocrinology & Diabetes, University of Lübeck, 23562 Lübeck, Germany
| | - Bernd Schultes
- Institute for Endocrinology & Diabetes, University of Lübeck, 23562 Lübeck, Germany; (L.H.); (B.S.)
- Metabolic Center St. Gallen, friendlyDocs Ltd., 9016 St. Gallen, Switzerland
| | - Sebastian M. Meyhöfer
- Institute for Endocrinology & Diabetes, University of Lübeck, 23562 Lübeck, Germany; (L.H.); (B.S.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Svenja Meyhöfer
- Institute for Endocrinology & Diabetes, University of Lübeck, 23562 Lübeck, Germany; (L.H.); (B.S.)
- Department of Internal Medicine 1, Endocrinology & Diabetes, University of Lübeck, 23562 Lübeck, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
5
|
Fernandes Gregnani M, Budu A, Batista RO, Ornellas FH, Estrela GR, Arruda AC, Freitas Lima LC, Kremer JL, Favaroni Mendes LA, Casarini DE, Lotfi CFP, Oyama LM, Bader M, Araújo RC. Kinin B1 receptor modulates glucose homeostasis and physical exercise capacity by altering adrenal catecholamine synthesis and secretion. Mol Cell Endocrinol 2024; 579:112085. [PMID: 37827227 DOI: 10.1016/j.mce.2023.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Our group has shown in several papers that kinin B1 receptor (B1R) is involved in metabolic adaptations, mediating glucose homeostasis and interfering in leptin and insulin signaling. Since catecholamines are involved with metabolism management, we sought to evaluate B1R role in catecholamine synthesis/secretion. Using B1R global knockout mice, we observed increased basal epinephrine content, accompanied by decreased hepatic glycogen content and increased glucosuria. When these mice were challenged with maximal intensity exercise, they showed decreased epinephrine and norepinephrine response, accompanied by disturbed glycemic responses to effort and poor performance. This phenotype was related to alterations in adrenal catecholamine synthesis: increased basal epinephrine concentration and reduced norepinephrine content in response to exercise, as well decreased gene expression and protein content of tyrosine hydroxylase and decreased gene expression of dopamine beta hydroxylase and kinin B2 receptor. We conclude that the global absence of B1R impairs catecholamine synthesis, interfering with glucose metabolism at rest and during maximal exercise.
Collapse
Affiliation(s)
- Marcos Fernandes Gregnani
- Department of Byophisics, Federal University of São Paulo, Brazil; Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Alexandre Budu
- Department of Byophisics, Federal University of São Paulo, Brazil
| | | | | | - Gabriel Rufino Estrela
- Department of Medicine, Discipline of Nephrology, Federal University of Sao Paulo, São Paulo, Brazil; Department of Clinical and Experimental Oncology, Discipline of Hematology and Hematotherapy, Federal University of São Paulo, 04037002, São Paulo, Brazil
| | | | | | - Jean Lucas Kremer
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Dulce Elena Casarini
- Department of Medicine, Discipline of Nephrology, Federal University of Sao Paulo, São Paulo, Brazil
| | | | | | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10117, Berlin, Germany; Max Delbrück Center of Molecular Medicine, Charité University Medicine, Charitéplatz 1, 10117, Berlin, Germany; Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | | |
Collapse
|
6
|
Coate KC, Ramnanan CJ, Smith M, Winnick JJ, Kraft G, Irimia JM, Farmer B, Donahue P, Roach PJ, Cherrington AD, Edgerton DS. Integration of metabolic flux with hepatic glucagon signaling and gene expression profiles in the conscious dog. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559999. [PMID: 37808670 PMCID: PMC10557670 DOI: 10.1101/2023.09.28.559999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Glucagon rapidly and profoundly simulates hepatic glucose production (HGP), but for reasons which are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course and relevance (to metabolic flux) of glucagon mediated molecular events in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a 6-fold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group glucose remained at basal while in the other glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) but only partially sustained increase in hepatic cAMP over 4h, a continued elevation in G6P, and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis and HGP increased rapidly, peaking at 30 min, then returned to baseline over the next 3h (although glucagons stimulatory effect on HGP was sustained relative to the hyperglycemic control group). Hepatic gluconeogenic flux did not increase due to lack of glucagon effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, and downregulation of genes involved in extracellular matrix assembly and development.
Collapse
|
7
|
Flatt AJ, Peleckis AJ, Dalton-Bakes C, Nguyen HL, Ilany S, Matus A, Malone SK, Goel N, Jang S, Weimer J, Lee I, Rickels MR. Automated Insulin Delivery for Hypoglycemia Avoidance and Glucose Counterregulation in Long-Standing Type 1 Diabetes with Hypoglycemia Unawareness. Diabetes Technol Ther 2023; 25:302-314. [PMID: 36763336 PMCID: PMC10171955 DOI: 10.1089/dia.2022.0506] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Objective: Automated insulin delivery (AID) may benefit individuals with long-standing type 1 diabetes where frequent exposure to hypoglycemia impairs counterregulatory responses. This study assessed the effect of 18 months AID on hypoglycemia avoidance and glucose counterregulatory responses to insulin-induced hypoglycemia in long-standing type 1 diabetes complicated by impaired awareness of hypoglycemia. Methods: Ten participants mean ± standard deviation age 49 ± 16 and diabetes duration 34 ± 16 years were initiated on AID. Continuous glucose monitoring was paired with actigraphy to assess awake- and sleep-associated hypoglycemia exposure every 3 months. Hyperinsulinemic hypoglycemic clamp experiments were performed at baseline, 6, and 18 months postintervention. Hypoglycemia exposure was reduced by 3 months, especially during sleep, with effects sustained through 18 months (P ≤ 0.001) together with reduced glucose variability (P < 0.01). Results: Hypoglycemia awareness and severity scores improved (P < 0.01) with severe hypoglycemia events reduced from median (interquartile range) 3 (3-10) at baseline to 0 (0-1) events/person·year postintervention (P = 0.005). During the hypoglycemic clamp experiments, no change was seen in the endogenous glucose production (EGP) response, however, peripheral glucose utilization during hypoglycemia was reduced following intervention [pre: 4.6 ± 0.4, 6 months: 3.8 ± 0.5, 18 months: 3.4 ± 0.3 mg/(kg·min), P < 0.05]. There were increases over time in pancreatic polypeptide (Pre:62 ± 29, 6 months:127 ± 44, 18 months:176 ± 58 pmol/L, P < 0.01), epinephrine (Pre: 199 ± 53, 6 months: 332 ± 91, 18 months: 386 ± 95 pg/mL, P = 0.001), and autonomic symptom (Pre: 6 ± 2, 6 months: 6 ± 2, 18 months: 10 ± 2, P < 0.05) responses. Conclusions: AID led to a sustained reduction of hypoglycemia exposure. EGP in response to insulin-induced hypoglycemia remained defective, however, partial recovery of glucose counterregulation was evidenced by a reduction in peripheral glucose utilization likely mediated by increased epinephrine secretion and, together with improved autonomic symptoms, may contribute to the observed clinical reduction in hypoglycemia.
Collapse
Affiliation(s)
- Anneliese J. Flatt
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy J. Peleckis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cornelia Dalton-Bakes
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Huong-Lan Nguyen
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah Ilany
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Austin Matus
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan K. Malone
- Rory Meyers College of Nursing, New York University, New York, New York, USA
| | - Namni Goel
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sooyong Jang
- PRECISE Center, Department of Computer and Information Science, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Weimer
- PRECISE Center, Department of Computer and Information Science, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Insup Lee
- PRECISE Center, Department of Computer and Information Science, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Mott J, Gilor C. Glucose Counterregulation: Clinical Consequences of Impaired Sympathetic Responses in Diabetic Dogs and Cats. Vet Clin North Am Small Anim Pract 2023; 53:551-564. [PMID: 36898860 DOI: 10.1016/j.cvsm.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Insulin induced hypoglycemia (IIH) is common in veterinary patients and limits the clinician's ability to obtain adequate glycemic control with insulin therapy. Not all diabetic dogs and cats with IIH exhibit clinical signs and hypoglycemia might be missed by routine blood glucose curve monitoring. In diabetic patients, counterregulatory responses to hypoglycemia are impaired (lack of decrease in insulin levels, lack of increase in glucagon, and attenuation of the parasympathetic and sympathoadrenal autonomic nervous systems) and have been documented in people and in dogs but not yet in cats. Antecedent hypoglycemic episodes increase the patient's risk for future severe hypoglycemia.
Collapse
Affiliation(s)
- Jocelyn Mott
- College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, Gainesville, FL 32610-0126, USA
| | - Chen Gilor
- Small Animal Internal Medicine, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, Gainesville, FL 32610-0126, USA.
| |
Collapse
|
9
|
Hoffman EG, D'Souza NC, Aiken J, Atherley S, Liggins R, Riddell MC. Effects of somatostatin receptor type 2 antagonism during insulin-induced hypoglycaemia in male rats with prediabetes. Diabetes Obes Metab 2023; 25:1547-1556. [PMID: 36734462 DOI: 10.1111/dom.15002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
AIMS To examine if glucagon counterregulatory defects exist in a rat model of prediabetes (pre-T2D) and to assess if a selective somatostatin receptor 2 antagonist (SSTR2a), ZT-01, enhances the glucagon response to insulin-induced hypoglycaemia. MATERIALS AND METHODS Hyperglycaemia was induced in 8- to 9-week-old male, Sprague-Dawley rats via 7 weeks of high-fat diet followed by a single, low-dose intraperitoneal injection of streptozotocin (30 mg/kg). After 2 weeks of basal insulin therapy (0-4 U/d insulin glargine, administered subcutaneously [SC]) to facilitate partial glycaemic recovery and a pre-T2D phenotype, n = 17 pre-T2D and n = 10 normal chow-fed control rats underwent the first of two hypoglycaemic treatment-crossover experiments, separated by a 1-week washout period. On each experimental day, SSTR2a (3 mg/kg ZT-01, SC) or vehicle was administered 1 hour prior to insulin-induced hypoglycaemia (insulin aspart, 6 U/kg, SC). RESULTS Glucagon counterregulation was marginally reduced with the induction of pre-T2D. Treatment with SSTR2a raised peak plasma glucagon levels and glucagon area under the curve before and after insulin overdose in both and pre-T2D rats. Blood glucose concentration was elevated by 30 minutes after SSTR2a treatment in pre-T2D rats, and hypoglycaemia onset (≤3.9 mmol/L) was delayed by 15 ± 12 minutes compared with vehicle (P < 0.001), despite similar glucose nadirs in the two treatment groups (1.4 ± 0.3 mmol/L). SSTR2a treatment had no effect on blood glucose levels in the control group or on the hypoglycaemia-induced decline in plasma C-peptide levels in either group. CONCLUSIONS Treatment with an SSTR2a increases glucagon responsiveness and delays the onset of insulin-induced hypoglycaemia in this rat model of pre-T2D where only a modest deficiency in glucagon counterregulation exists.
Collapse
Affiliation(s)
- Emily G Hoffman
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Ninoschka C D'Souza
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Julian Aiken
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Sara Atherley
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | | | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Panzer JK, Tamayo A, Caicedo A. Restoring glutamate receptor signaling in pancreatic alpha cells rescues glucagon responses in type 1 diabetes. Cell Rep 2022; 41:111792. [PMID: 36516761 DOI: 10.1016/j.celrep.2022.111792] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/19/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Glucagon secretion from pancreatic alpha cells is crucial to prevent hypoglycemia. People with type 1 diabetes lose this glucoregulatory mechanism and are susceptible to dangerous hypoglycemia for reasons still unclear. Here we determine that alpha cells in living pancreas slices from donors with type 1 diabetes do not mount an adequate glucagon response and cannot activate the positive autocrine feedback mediated by AMPA/kainate glutamate receptors. This feedback is required to elicit full glucagon responses in the healthy state. Reactivating residual AMPA/kainate receptor function with positive allosteric modulators restores glucagon secretion in human slices from donors with type 1 diabetes as well as glucose counterregulation in non-obese diabetic mice. Our study thus identifies a defect in autocrine signaling that contributes to alpha cell failure. The use of positive allosteric modulators of AMPA/kainate receptors overcomes this deficiency and prevents hypoglycemia, an effect that could be used to improve the management of diabetes.
Collapse
Affiliation(s)
- Julia K Panzer
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Alejandro Tamayo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
11
|
Sanchez-Rangel E, Deajon-Jackson J, Hwang JJ. Pathophysiology and management of hypoglycemia in diabetes. Ann N Y Acad Sci 2022; 1518:25-46. [PMID: 36202764 DOI: 10.1111/nyas.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the century since the discovery of insulin, diabetes has changed from an early death sentence to a manageable chronic disease. This change in longevity and duration of diabetes coupled with significant advances in therapeutic options for patients has fundamentally changed the landscape of diabetes management, particularly in patients with type 1 diabetes mellitus. However, hypoglycemia remains a major barrier to achieving optimal glycemic control. Current understanding of the mechanisms of hypoglycemia has expanded to include not only counter-regulatory hormonal responses but also direct changes in brain glucose, fuel sensing, and utilization, as well as changes in neural networks that modulate behavior, mood, and cognition. Different strategies to prevent and treat hypoglycemia have been developed, including educational strategies, new insulin formulations, delivery devices, novel technologies, and pharmacologic targets. This review article will discuss current literature contributing to our understanding of the myriad of factors that lead to the development of clinically meaningful hypoglycemia and review established and novel therapies for the prevention and treatment of hypoglycemia.
Collapse
Affiliation(s)
- Elizabeth Sanchez-Rangel
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jelani Deajon-Jackson
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Janice Jin Hwang
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.,Division of Endocrinology, Department of Internal Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Rokamp KZ, Holst JJ, Olsen NV, Dela F, Secher NH, Juul A, Faber J, Wiberg S, Thorsteinsson B, Pedersen-Bjergaard U. Impact of Polymorphism in the β2-Receptor Gene on Metabolic Responses to Repeated Hypoglycemia in Healthy Humans. J Clin Endocrinol Metab 2022; 107:e3194-e3205. [PMID: 35552407 DOI: 10.1210/clinem/dgac297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT The Arg16 variant in the β2-receptor gene is associated with increased risk of severe hypoglycemia in subjects with type 1 diabetes mellitus. OBJECTIVE We hypothesized that the Arg16 variant is associated with decreased metabolic and symptomatic responses to recurrent hypoglycemia. METHODS Twenty-five healthy male subjects selected according to ADRB2 genotype and being homozygous for either Arg16 (AA; n = 13) or Gly16 (GG; n = 12) participated in 2 consecutive trial days with 3 periods of hypoglycemia (H1-H3) induced by a hyperinsulinemic hypoglycemic clamp. The main outcome measure was mean glucose infusion rate (GIR) during H1-H3. RESULTS During H1-H3, there was no difference between AA or GG subjects in GIR, counter-regulatory hormones (glucagon, epinephrine, cortisol, growth hormone), or substrate levels of lactate, glycerol, and free fatty acids (FFAs), and no differences in symptom response score or cognitive performance (trail making test, Stroop test). At H3, lactate response was reduced in both genotype groups, but AA subjects had decreased response (mean ± standard error of the mean of area under the curve) of glycerol (-13.1 ± 3.8 μmol L-1 hours; P = .0052), FFA (-30.2 ± 11.1 μmol L-1 hours; P = .021), and β-hydroxybutyrate (-0.008 ± 0.003 mmol L-1 hour; P = .027), while in GG subjects alanine response was increased (negative response values) (-53.9 ± 20.6 μmol L-1 hour; P = .024). CONCLUSION There was no difference in GIR between genotype groups, but secondary outcomes suggest a downregulation of the lipolytic and β-hydroxybutyrate responses to recurrent hypoglycemia in AA subjects, in contrast to the responses in GG subjects.
Collapse
Affiliation(s)
- Kim Zillo Rokamp
- Endocrine Section, Department of Endocrinology and Nephrology, Copenhagen University Hospital, Nordsjællands Hospital, Hillerød, Denmark
- Department of Anaesthesia, Zealand University Hospital, Køge, Denmark
- Department of Neuroanaesthesia, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- The NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Departments of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Niels V Olsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Biomedical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatrics, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Niels H Secher
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Departments of Anaesthesia, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Faber
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital, Herlev-Gentofte Hospital, Copenhagen, Denmark
| | - Sebastian Wiberg
- Department of Anaesthesia, Zealand University Hospital, Køge, Denmark
| | - Birger Thorsteinsson
- Endocrine Section, Department of Endocrinology and Nephrology, Copenhagen University Hospital, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Pedersen-Bjergaard
- Endocrine Section, Department of Endocrinology and Nephrology, Copenhagen University Hospital, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Verberne AJM, Mussa BM. Neural control of pancreatic peptide hormone secretion. Peptides 2022; 152:170768. [PMID: 35189258 DOI: 10.1016/j.peptides.2022.170768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/20/2022]
Abstract
Pancreatic peptide hormone secretion is inextricably linked to maintenance of normal levels of blood glucose. In animals and man, pancreatic peptide hormone secretion is controlled, at least in part, by input from parasympathetic (vagal) premotor neurons that are found principally in the dorsal motor nucleus of the vagus (DMV). Iatrogenic (insulin-induced) hypoglycaemia evokes a homeostatic response commonly referred to as the glucose counter-regulatory response. This homeostatic response is of particular importance in Type 1 diabetes in which episodes of hypoglycaemia are common, debilitating and lead to suboptimal control of blood glucose. Glucagon is the principal counterregulatory hormone but for reasons unknown, its secretion during insulin-induced hypoglycaemia is impaired. Pancreatic parasympathetic neurons are distinguishable electrophysiologically from those that control other (e.g. gastric) functions and are controlled by supramedullary inputs from hypothalamic structures such as the perifornical region. During hypoglycaemia, glucose-sensitive, GABAergic neurons in the ventromedial hypothalamus are inhibited leading to disinhibition of perifornical orexin neurons with projections to the DMV which, in turn, leads to increased secretion of glucagon.
Collapse
Affiliation(s)
- Anthony J M Verberne
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia.
| | - Bashair M Mussa
- Basic Medical Science Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
14
|
Panzer JK, Caicedo A. Targeting the Pancreatic α-Cell to Prevent Hypoglycemia in Type 1 Diabetes. Diabetes 2021; 70:2721-2732. [PMID: 34872936 PMCID: PMC8660986 DOI: 10.2337/dbi20-0048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
Life-threatening hypoglycemia is a limiting factor in the management of type 1 diabetes. People with diabetes are prone to develop hypoglycemia because they lose physiological mechanisms that prevent plasma glucose levels from falling. Among these so-called counterregulatory responses, secretion of glucagon from pancreatic α-cells is preeminent. Glucagon, a hormone secreted in response to a lowering in glucose concentration, counteracts a further drop in glycemia by promoting gluconeogenesis and glycogenolysis in target tissues. In diabetes, however, α-cells do not respond appropriately to changes in glycemia and, thus, cannot mount a counterregulatory response. If the α-cell could be targeted therapeutically to restore its ability to prevent hypoglycemia, type 1 diabetes could be managed more efficiently and safely. Unfortunately, the mechanisms that allow the α-cell to respond to hypoglycemia have not been fully elucidated. We know even less about the pathophysiological mechanisms that cause α-cell dysfunction in diabetes. Based on published findings and unpublished observations, and taking into account its electrophysiological properties, we propose here a model of α-cell function that could explain its impairment in diabetes. Within this frame, we emphasize those elements that could be targeted pharmacologically with repurposed U.S. Food and Drug Administration-approved drugs to rescue α-cell function and restore glucose counterregulation in people with diabetes.
Collapse
Affiliation(s)
- Julia K Panzer
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
15
|
Maharjan A, Peng M, Cakmak YO. The effects of frequency-specific, non-invasive, median nerve stimulation on food-related attention and appetite. Appetite 2021; 169:105807. [PMID: 34798222 DOI: 10.1016/j.appet.2021.105807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022]
Abstract
Median nerve stimulation (MNS) in the existing literature has been used for treating gastrointestinal disorders and amelioration of nausea and vomiting. Recently, studies have shown that MNS can also exert effects on olfactory performances and corresponding anatomical regions through the activation of vagal pathways. This study aimed to test effects of specific frequencies of MNS on food-related attention and appetite. The experiment used an odourised, dot probe task for testing food-related attention and a combination of behavioural (i.e., visual analogue scales; VAS) and physiological approaches (i.e., electrocardiograph; ECG - root mean square of successive differences between normal heartbeats-RMSSD: parasympathetic nervous system activation (RMSSD), stress index-SI: sympathetic nervous system activation) for measuring hunger, appetite, and satiation. Twenty-four healthy, male adults completed a VAS and dot probe task before and after receiving either 40 Hz-, 80 Hz-, 120 Hz MNS or sham (control) across four different sessions with continuous ECG recording throughout each session. Data from the dot probe task were analysed using repeated-measures ANOVA, while pair-wise tests were used for ECG recordings and VAS. Improvements on the dot probe task, not specific to odour-food congruence were found after 40 Hz MNS (p-value = 0.048; strong effect size (0.308 partial eta squared)) while increased ratings of hunger (VAS) (p-value = 0.03, small effect size (0.47 Cohen-D)) and RMSSD scores (p-value < 0.001; medium effect size (0.76 Cohen-D)) were found after 120 Hz MNS. These findings implore further testing of MNS frequency parameters on improving RMSSD, a characteristic marker of measuring parasympathetic/autonomic nervous system activation pertaining to the vagal network. Furthermore, improving sympathovagal balance is associated with cardiovascular benefits in numerous health-related conditions such as obesity, hypertension and diabetes.
Collapse
Affiliation(s)
- Ashim Maharjan
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mei Peng
- Sensory Neuroscience Laboratory, Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Yusuf O Cakmak
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, Dunedin, New Zealand; Medical Technologies Centre of Research Excellence, Auckland, New Zealand.
| |
Collapse
|
16
|
Hicks R, Marks BE, Oxman R, Moheet A. Spontaneous and iatrogenic hypoglycemia in cystic fibrosis. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2021; 26:100267. [PMID: 34745906 PMCID: PMC8551648 DOI: 10.1016/j.jcte.2021.100267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/02/2021] [Accepted: 10/10/2021] [Indexed: 12/12/2022]
Abstract
Spontaneous episodes of hypoglycemia can occur in people with cystic fibrosis (CF) without diabetes, who are not on glucose lowering medications. Spontaneous hypoglycemia in CF could occur both in the fasting or postprandial state (reactive hypoglycemia). The pathophysiology of fasting hypoglycemia is thought to be related to malnutrition and increased energy expenditure in the setting of inflammation and acute infections. Reactive hypoglycemia is thought to be due to impaired first phase insulin release in response to a glucose load, followed by a delayed and extended second phase insulin secretion; ineffective counterregulatory response to dropping glucose levels may also play a role. The overall prevalence of spontaneous hypoglycemia varies from 7 to 69% as examined with oral glucose tolerance test (OGTT) or with continuous glucose monitoring (CGM) under free living conditions. Spontaneous hypoglycemia in CF is associated with worse lung function, higher hospitalization rates, and worse clinical status. In addition, patients with CF related diabetes on glucose-lowering therapies are at risk for iatrogenic hypoglycemia. In this article, we will review the pathophysiology, prevalence, risk factors, clinical implications, and management of spontaneous and iatrogenic hypoglycemia in patients with CF.
Collapse
Affiliation(s)
- Rebecca Hicks
- Division of Pediatric Endocrinology, David Geffen School of Medicine, UCLA, 10833 Le Conte Ave., MDCC 22-315, Los Angeles, CA, USA
| | - Brynn E Marks
- Division of Endocrinology and Diabetes, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine & Health Sciences, Ross Hall, 2300 Eye Street, NW, Washington, DC, USA
| | - Rachael Oxman
- Division of Endocrinology, Diabetes and Metabolism, UCLA Santa Monica Medical Center, 2020 Santa Monica Boulevard, Suite 550, Santa Monica, CA, USA
| | - Amir Moheet
- Division of Endocrinology, Diabetes and Metabolism, University of Minnesota, 420 Delaware Street SE, MMC 101, Minneapolis, MN, USA
| |
Collapse
|
17
|
Affinati AH, Wallia A, Gianchandani RY. Severe hyperglycemia and insulin resistance in patients with SARS-CoV-2 infection: a report of two cases. Clin Diabetes Endocrinol 2021; 7:8. [PMID: 33992101 PMCID: PMC8123093 DOI: 10.1186/s40842-021-00121-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Severe insulin resistance is an uncommon finding in patients with type 2 diabetes but is often associated with difficult to managing blood glucose. While severe insulin resistance is most frequently seen in the setting of medication side effects or rare genetic conditions, this report of two cases highlights the presence of severe insulin resistance in the setting of severe COVID-19 and explores how this may contribute to the poor prognosis of patients with diabetes who become infected with SARS-CoV-2. CASE PRESENTATION Here we present the cases of two African-American women with pre-existing type 2 diabetes who developed severe COVID-19 requiring mechanical ventilation and concurrent severe insulin resistance with total daily insulin dose requirements of greater than 5 unit/kg. Both patients received aggressive insulin infusion and subcutaneous insulin therapy to obtain adequate glucose management. As their COVID-19 clinical course improved, their severe insulin resistance improved as well. CONCLUSIONS The association between critical illness and hyperglycemia is well documented in the literature, however severe insulin resistance is not commonly identified and may represent a unique clinical feature of the interaction between SARS-CoV-2 infection and type 2 diabetes.
Collapse
Affiliation(s)
- Alison H Affinati
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Domino's Farms (Lobby G, Suite 1500), 24 Frank Lloyd Wright Drive, MI, 48106, Ann Arbor, USA
| | - Amisha Wallia
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, IL, Chicago, USA
| | - Roma Y Gianchandani
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Domino's Farms (Lobby G, Suite 1500), 24 Frank Lloyd Wright Drive, MI, 48106, Ann Arbor, USA.
| |
Collapse
|
18
|
Dimitriadis GD, Maratou E, Kountouri A, Board M, Lambadiari V. Regulation of Postabsorptive and Postprandial Glucose Metabolism by Insulin-Dependent and Insulin-Independent Mechanisms: An Integrative Approach. Nutrients 2021; 13:E159. [PMID: 33419065 PMCID: PMC7825450 DOI: 10.3390/nu13010159] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Glucose levels in blood must be constantly maintained within a tight physiological range to sustain anabolism. Insulin regulates glucose homeostasis via its effects on glucose production from the liver and kidneys and glucose disposal in peripheral tissues (mainly skeletal muscle). Blood levels of glucose are regulated simultaneously by insulin-mediated rates of glucose production from the liver (and kidneys) and removal from muscle; adipose tissue is a key partner in this scenario, providing nonesterified fatty acids (NEFA) as an alternative fuel for skeletal muscle and liver when blood glucose levels are depleted. During sleep at night, the gradual development of insulin resistance, due to growth hormone and cortisol surges, ensures that blood glucose levels will be maintained within normal levels by: (a) switching from glucose to NEFA oxidation in muscle; (b) modulating glucose production from the liver/kidneys. After meals, several mechanisms (sequence/composition of meals, gastric emptying/intestinal glucose absorption, gastrointestinal hormones, hyperglycemia mass action effects, insulin/glucagon secretion/action, de novo lipogenesis and glucose disposal) operate in concert for optimal regulation of postprandial glucose fluctuations. The contribution of the liver in postprandial glucose homeostasis is critical. The liver is preferentially used to dispose over 50% of the ingested glucose and restrict the acute increases of glucose and insulin in the bloodstream after meals, thus protecting the circulation and tissues from the adverse effects of marked hyperglycemia and hyperinsulinemia.
Collapse
Affiliation(s)
- George D. Dimitriadis
- Sector of Medicine, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Eirini Maratou
- Department of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Department of Clinical Biochemistry, Medical School, “Attikon” University Hospital, Rimini 1, 12462 Chaidari, Greece
| | - Aikaterini Kountouri
- Research Institute and Diabetes Center, 2nd Department of Internal Medicine, “Attikon” University Hospital, 1 Rimini Street, 12542 Haidari, Greece; (A.K.); (V.L.)
| | - Mary Board
- St. Hilda’s College, University of Oxford, Cowley, Oxford OX4 1DY, UK;
| | - Vaia Lambadiari
- Research Institute and Diabetes Center, 2nd Department of Internal Medicine, “Attikon” University Hospital, 1 Rimini Street, 12542 Haidari, Greece; (A.K.); (V.L.)
| |
Collapse
|
19
|
Moheet A, Chan CL, Granados A, Ode KL, Moran A, Battezzati A. Hypoglycemia in cystic fibrosis: Prevalence, impact and treatment. J Cyst Fibros 2020; 18 Suppl 2:S19-S24. [PMID: 31679723 DOI: 10.1016/j.jcf.2019.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022]
Abstract
Hypoglycemia is a common and feared complication of insulin therapy. As in type 1 and type 2 diabetes, people with cystic fibrosis related diabetes are also at risk for hypoglycemia related to insulin therapy. Spontaneous hypoglycemia is also common in patients with CF without diabetes, who are not on glucose lowering medications. Spontaneous hypoglycemia in CF may also occur during or after an oral glucose tolerance test. In this review, we will discuss the definition, epidemiology, pathophysiology and impact of hypoglycemia, with a focus on people with cystic fibrosis. We will also review strategies to manage and prevent hypoglycemia.
Collapse
Affiliation(s)
- Amir Moheet
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| | - Christine L Chan
- Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| | - Andrea Granados
- Department of Pediatrics, Washington University School of Medicine in St. Louis, MO, USA
| | - Katie Larson Ode
- Department of Pediatrics, University of Iowa Stead Family Children's Hospital, Iowa City, IA, USA
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Alberto Battezzati
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Counter-regulatory responses to Telfairia occidentalis-induced hypoglycaemia. Metabol Open 2020; 8:100065. [PMID: 33235989 PMCID: PMC7670218 DOI: 10.1016/j.metop.2020.100065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Background Telfairia occidentalis (TO) has many biological activities including blood glucose regulation. Thus, it is being used in the treatment of diabetes mellitus. TO has been shown to cause insulin-mediated hypoglycaemia, which leads to post-hypoglycaemic hyperglycaemia. However, the mechanism involved in the post-hypoglycaemic hyperglycaemia is still poorly understood. Objective This research was designed to determine the response of glucoregulatory hormones and enzymes to TO treatment. Methods Thirty-five male Wistar rats were divided into seven oral treatment groups (n = 5/group), which received either of 100 mg/kg or 200 mg/kg TO for 7-, 10- or 14 days. Results The 7-day treatment with TO significantly increased the levels of insulin, glucagon, and glucose-6-phosphatase (G6Pase) activity but decreased the levels of glucose, adrenaline, and glucokinase (GCK) activity. The 10-day treatment with 100 mg/kg TO increased glucose and decreased GCK activity while 200 mg/kg for the same duration increased glucose, insulin, GCK and G6Pase activities but reduced glucagon. The 14-day treatment with 100 mg/kg TO decreased glucose and glucagon but increased cortisol, while 200 mg/kg TO for same duration increased insulin, but reduced glucagon and GCK activity. Conclusion The TO's post-hypoglycaemic hyperglycaemia results from increased glucagon and G6Pase activity, and reduced GCK activity. Moreover, the glucagon response mainly depends on glucose rather than insulin.
Collapse
Key Words
- ANOVA, Analysis of Variance
- Avidin-HRP, Avidin-Horseradish Peroxidase
- Counter-regulatory hormones
- EGP, Endogenous glucose production
- ELISA, Enzyme-linked immunosorbent assay
- G6P, Glucose-6-phosphate
- G6PD, Glucose-6-phosphate dehydrogenase
- G6Pase, Glucose-6-phosphatase
- GCK, Glucokinase
- Glucoregulatory enzymes
- Insulin
- LDH, Lactate dehydrogenase
- LSD, Least Significance Difference
- NAD, Nicotinamide adenine dinucleotide
- NIH, National Institutes of Health
- Plasma glucose
- SEM, Standard error of mean
- SPSS, Statistical Package for the Social Sciences
- TO, Telfairia occidentalis
- Telfairia occidentalis
- cAMP, Cyclic adenosine monophosphate
Collapse
|
21
|
Remesar X, Alemany M. Dietary Energy Partition: The Central Role of Glucose. Int J Mol Sci 2020; 21:E7729. [PMID: 33086579 PMCID: PMC7593952 DOI: 10.3390/ijms21207729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Humans have developed effective survival mechanisms under conditions of nutrient (and energy) scarcity. Nevertheless, today, most humans face a quite different situation: excess of nutrients, especially those high in amino-nitrogen and energy (largely fat). The lack of mechanisms to prevent energy overload and the effective persistence of the mechanisms hoarding key nutrients such as amino acids has resulted in deep disorders of substrate handling. There is too often a massive untreatable accumulation of body fat in the presence of severe metabolic disorders of energy utilization and disposal, which become chronic and go much beyond the most obvious problems: diabetes, circulatory, renal and nervous disorders included loosely within the metabolic syndrome. We lack basic knowledge on diet nutrient dynamics at the tissue-cell metabolism level, and this adds to widely used medical procedures lacking sufficient scientific support, with limited or nil success. In the present longitudinal analysis of the fate of dietary nutrients, we have focused on glucose as an example of a largely unknown entity. Even most studies on hyper-energetic diets or their later consequences tend to ignore the critical role of carbohydrate (and nitrogen disposal) as (probably) the two main factors affecting the substrate partition and metabolism.
Collapse
Affiliation(s)
- Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| |
Collapse
|
22
|
Fabris C, Kovatchev B. The closed‐loop artificial pancreas in 2020. Artif Organs 2020; 44:671-679. [DOI: 10.1111/aor.13704] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chiara Fabris
- Center for Diabetes Technology University of Virginia Charlottesville VA USA
| | - Boris Kovatchev
- Center for Diabetes Technology University of Virginia Charlottesville VA USA
| |
Collapse
|
23
|
Pedersen C, Kraft G, Edgerton DS, Scott M, Farmer B, Smith M, Laneve DC, Williams PE, Moore LM, Cherrington AD. The kinetics of glucagon action on the liver during insulin-induced hypoglycemia. Am J Physiol Endocrinol Metab 2020; 318:E779-E790. [PMID: 32208001 PMCID: PMC7272728 DOI: 10.1152/ajpendo.00466.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon's effect on hepatic glucose production (HGP), under hyperglycemic conditions, is time dependent such that after an initial burst of HGP, it slowly wanes. It is not known whether this is also the case under hypoglycemic conditions, where an increase in HGP is essential. This question was addressed using adrenalectomized dogs to avoid the confounding effects of other counterregulatory hormones. During the study, infusions of epinephrine and cortisol were given to maintain basal levels. Somatostatin and insulin (800 µU·kg-1·min-1) were infused to induce hypoglycemia. After 30 min, glucagon was infused at a basal rate (1 ng·kg-1·min-1, baGGN group, n = 5 dogs) or a rate eightfold basal (8 ng·kg-1·min-1, hiGGN group, n = 5 dogs) for 4 h. Glucose was infused to match the arterial glucose levels between groups (≈50 mg/dL). Our data showed that glucagon has a biphasic effect on the liver despite hypoglycemia. Hyperglucagonemia stimulated a rapid, transient peak in HGP (4-fold basal production) over ~60 min, which was followed by a slow reduction in HGP to a rate 1.5-fold basal. During the last 2 h of the experiment, hiGGN stimulated glucose production at a rate fivefold greater than baGGN (2.5 vs. 0.5 mg·kg-1·min-1, respectively), indicating a sustained effect of the hormone. Of note, the hypoglycemia-induced rises in norepinephrine and glycerol were smaller in hiGGN compared with the baGGN group despite identical hypoglycemia. This finding suggests that there is reciprocity between glucagon and the sympathetic nervous system such that when glucagon is increased, the sympathetic nervous response to hypoglycemia is downregulated.
Collapse
Affiliation(s)
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Melanie Scott
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David C Laneve
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Phillip E Williams
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - L Merkle Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
24
|
Aitken ML, Szkudlinska MA, Boyko EJ, Ng D, Utzschneider KM, Kahn SE. Impaired counterregulatory responses to hypoglycaemia following oral glucose in adults with cystic fibrosis. Diabetologia 2020; 63:1055-1065. [PMID: 31993716 PMCID: PMC7150633 DOI: 10.1007/s00125-020-05096-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/20/2019] [Indexed: 02/01/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine the mechanism(s) for hypoglycaemia occurring late following oral glucose loading in patients with cystic fibrosis (CF). METHODS A 3 h 75 g OGTT was performed in 27 non-diabetic adults with CF who were classified based on this test as experiencing hypoglycaemia (glucose <3.3 mmol/l with or without symptoms or glucose <3.9 mmol/l with symptoms, n = 14) or not (n = 13). Beta cell function, incretin (glucagon-like peptide-1 [GLP-1] and glucose-dependent insulinotropic peptide [GIP]) and counterregulatory hormone responses (glucagon, catecholamines, growth hormone and cortisol) were assessed. RESULTS The two groups did not differ in age, weight or BMI. There were more male participants and individuals with pancreatic exocrine insufficiency in the hypoglycaemia group. Fasting plasma glucose did not differ between the two groups (5.3 ± 0.16 vs 5.3 ± 0.10 mmol/l). Both fasting insulin (20.7 ± 2.9 vs 36.5 ± 4.8 pmol/l; p = 0.009) and C-peptide (0.38 ± 0.03 vs 0.56 ± 0.05 nmol/l; p = 0.002) were lower in those who experienced hypoglycaemia. Following glucose ingestion, glucose concentrations were significantly lower in the hypoglycaemia group from 135 min onwards, with a nadir of 3.2 ± 0.2 vs 4.8 ± 0.3 mmol/l at 180 min (p < 0.001). The test was terminated early in three participants because of a glucose level <2.5 mmol/l. Insulin and C-peptide concentrations were also lower in the hypoglycaemia group, while incretin hormone responses were not different. Modelling demonstrated that those experiencing hypoglycaemia were more insulin sensitive (439 ± 17.3 vs 398 ± 13.1 ml min-1 m-2, p = 0.074 based on values until 120 min [n = 14]; 512 ± 18.9 vs 438 ± 15.5 ml min-1 m-2, p = 0.006 based on values until 180 min [n = 11]). In line with their better insulin sensitivity, those experiencing hypoglycaemia had lower insulin secretion rates (ISRfasting: 50.8 ± 3.2 vs 74.0 ± 5.9 pmol min-1 m-2, p = 0.002; ISROGTT: 44.9 ± 5.0 vs 63.4 ± 5.2 nmol/m2, p = 0.018) and beta cell glucose sensitivity (47.4 ± 4.5 vs 79.2 ± 7.5 pmol min-1 m-2 [mmol/l]-1, p = 0.001). Despite the difference in glucose concentrations, there were no significant increases in glucagon, noradrenaline, cortisol or growth hormone levels. Adrenaline increased by only 66% and 61% above baseline at 165 and 180 min when glucose concentrations were 3.8 ± 0.2 and 3.2 ± 0.2 mmol/l, respectively. CONCLUSIONS/INTERPRETATION Hypoglycaemia occurring late during an OGTT in people with CF was not associated with the expected counterregulatory hormone response, which may be a consequence of more advanced pancreatic dysfunction/destruction.
Collapse
Affiliation(s)
- Moira L Aitken
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Magdalena A Szkudlinska
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Edward J Boyko
- Division of General Internal Medicine, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | - Debbie Ng
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kristina M Utzschneider
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
| |
Collapse
|
25
|
Rickels MR, Evans-Molina C, Bahnson HT, Ylescupidez A, Nadeau KJ, Hao W, Clements MA, Sherr JL, Pratley RE, Hannon TS, Shah VN, Miller KM, Greenbaum CJ. High residual C-peptide likely contributes to glycemic control in type 1 diabetes. J Clin Invest 2020; 130:1850-1862. [PMID: 31895699 PMCID: PMC7108933 DOI: 10.1172/jci134057] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/26/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUNDResidual C-peptide is detected in many people for years following the diagnosis of type 1 diabetes; however, the physiologic significance of low levels of detectable C-peptide is not known.METHODSWe studied 63 adults with type 1 diabetes classified by peak mixed-meal tolerance test (MMTT) C-peptide as negative (<0.007 pmol/mL; n = 15), low (0.017-0.200; n = 16), intermediate (>0.200-0.400; n = 15), or high (>0.400; n = 17). We compared the groups' glycemia from continuous glucose monitoring (CGM), β cell secretory responses from a glucose-potentiated arginine (GPA) test, insulin sensitivity from a hyperinsulinemic-euglycemic (EU) clamp, and glucose counterregulatory responses from a subsequent hypoglycemic (HYPO) clamp.RESULTSLow and intermediate MMTT C-peptide groups did not exhibit β cell secretory responses to hyperglycemia, whereas the high C-peptide group showed increases in both C-peptide and proinsulin (P ≤ 0.01). All groups with detectable MMTT C-peptide demonstrated acute C-peptide and proinsulin responses to arginine that were positively correlated with peak MMTT C-peptide (P < 0.0001 for both analytes). During the EU-HYPO clamp, C-peptide levels were proportionately suppressed in the low, intermediate, and high C-peptide compared with the negative group (P ≤ 0.0001), whereas glucagon increased from EU to HYPO only in the high C-peptide group compared with negative (P = 0.01). CGM demonstrated lower mean glucose and more time in range for the high C-peptide group.CONCLUSIONThese results indicate that in adults with type 1 diabetes, β cell responsiveness to hyperglycemia and α cell responsiveness to hypoglycemia are observed only at high levels of residual C-peptide that likely contribute to glycemic control.FUNDINGFunding for this work was provided by the Leona M. and Harry B. Helmsley Charitable Trust, the National Center for Advancing Translational Sciences, and the National Institute of Diabetes and Digestive and Kidney Diseases.
Collapse
Affiliation(s)
- Michael R. Rickels
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | - Kristen J. Nadeau
- Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Wei Hao
- Benaroya Research Institute, Seattle, Washington, USA
| | | | | | - Richard E. Pratley
- AdventHealth Translational Research Institute for Metabolism and Diabetes, Orlando, Florida, USA
| | - Tamara S. Hannon
- Center for Diabetes and Metabolic Disease, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Viral N. Shah
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
26
|
Villas Boas GR, Rodrigues Lemos JM, de Oliveira MW, dos Santos RC, Stefanello da Silveira AP, Barbieri Bacha F, Ito CNA, Bortolotte Cornelius E, Brioli Lima F, Sachilarid Rodrigues AM, Belmal Costa N, Francisco Bittencourt F, Freitas de Lima F, Meirelles Paes M, Gubert P, Oesterreich SA. Aqueous extract from Mangifera indica Linn. (Anacardiaceae) leaves exerts long-term hypoglycemic effect, increases insulin sensitivity and plasma insulin levels on diabetic Wistar rats. PLoS One 2020; 15:e0227105. [PMID: 31914140 PMCID: PMC6948748 DOI: 10.1371/journal.pone.0227105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetes mellitus is one of the most common todays public health problems. According to a survey by the World Health Organization, this metabolic disorder has reached global epidemic proportions, with a worldwide prevalence of 8.5% in the adult population. OBJECTIVES The present study aimed to investigate the hypoglycemic effect of aqueous extract of Mangifera indica (EAMI) leaves in streptozotocin-induced diabetic rats. METHODS Sixty male rats were divided into 2 groups: Normoglycemic and Diabetic. Each group was subdivided into negative control, glibenclamide 3 or 10 mg/kg, EAMI 125, 250, 500, and 1000 mg/kg. Intraperitoneal injection of streptozotocin 100 mg/kg was used to DM induction. The hypoglycemic response was assessed acutely after two and four weeks of treatment. After a 6-hour fasting period, the fasting blood glucose of animals was verified, and 2.5 g/kg glucose solution was orally administered. The insulin tolerance test and plasma insulin levels assessment were performed in the morning after fasting of 12 to 14 hours. RESULTS AND CONCLUSION The chemical analysis of EAMI showed high levels of phenolic compounds. There was no significant difference in fasting blood glucose between normoglycemic and diabetic groups, and that EAMI did not have an acute effect on diabetes. After two and four weeks of treatment, the extract significantly reduced blood glucose levels, exceeding glibenclamide effects. EAMI was effective in maintaining the long-term hypoglycemic effect, as well as, significantly increased the sensitivity of diabetic animals to insulin and the plasma insulin level.
Collapse
Affiliation(s)
- Gustavo Roberto Villas Boas
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | | | | | | | | | - Flávia Barbieri Bacha
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Caren Naomi Aguero Ito
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | | | - Fernanda Brioli Lima
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | | | - Nathália Belmal Costa
- Faculty of Health Sciences, University Center of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | | | - Fernando Freitas de Lima
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Marina Meirelles Paes
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
| | - Priscila Gubert
- Research Group on Development of Pharmaceutical Products (P&DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Barreiras, Bahia, Brazil
- Department of Biochemistry, Laboratory of Imunopathology Keizo Asami, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
27
|
Nagarajan A, Srivastava H, Jablonsky J, Sun LY. Tissue-Specific GHR Knockout Mice: An Updated Review. Front Endocrinol (Lausanne) 2020; 11:579909. [PMID: 33162937 PMCID: PMC7581730 DOI: 10.3389/fendo.2020.579909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/14/2020] [Indexed: 01/01/2023] Open
Abstract
Growth hormone (GH) signaling plays a key role in mediating growth, development, metabolism, and lifespan regulation. However, the mechanisms of longevity regulation at the cellular and molecular level are still not well-understood. An important area in the field of GH research is in the development of advanced transgenic systems for conditional expression of GH signaling in a cell type- or tissue-specific manner. There have been many recent studies conducted to examine the effects of tissue-specific GHR disruption. This review updates our previous discussions on this topic and summarizes recent data on the newly-made tissue-specific GHR-KO mice including intestinal epithelial cells, bone, hematopoietic stem cells, cardiac myocytes, and specific brain regions. The data from these new genetically-engineered mice have a significant impact on our understanding of the local GH signaling function.
Collapse
|
28
|
Baiardo Redaelli M, Zangrillo A, Gregorc V, Ciceri F, Dagna L, Tshomba Y, Navalesi P, Landoni G. How to obtain severe hypoglycemia without causing brain or cardiac damage. Med Hypotheses 2019; 130:109276. [DOI: 10.1016/j.mehy.2019.109276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
|
29
|
Furigo IC, de Souza GO, Teixeira PDS, Guadagnini D, Frazão R, List EO, Kopchick JJ, Prada PO, Donato J. Growth hormone enhances the recovery of hypoglycemia via ventromedial hypothalamic neurons. FASEB J 2019; 33:11909-11924. [PMID: 31366244 DOI: 10.1096/fj.201901315r] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth hormone (GH) is secreted during hypoglycemia, and GH-responsive neurons are found in brain areas containing glucose-sensing neurons that regulate the counter-regulatory response (CRR). However, whether GH modulates the CRR to hypoglycemia via specific neuronal populations is currently unknown. Mice carrying ablation of GH receptor (GHR) either in leptin receptor (LepR)- or steroidogenic factor-1 (SF1)-expressing cells were studied. We also investigated the importance of signal transducer and activator of transcription 5 (STAT5) signaling in SF1 cells for the CRR. GHR ablation in LepR cells led to impaired capacity to recover from insulin-induced hypoglycemia and to a blunted CRR caused by 2-deoxy-d-glucose (2DG) administration. GHR inactivation in SF1 cells, which include ventromedial hypothalamic neurons, also attenuated the CRR. The reduced CRR was prevented by parasympathetic blockers. Additionally, infusion of 2DG produced an abnormal hyperactivity of parasympathetic preganglionic neurons, whereas the 2DG-induced activation of anterior bed nucleus of the stria terminalis neurons was reduced in mice without GHR in SF1 cells. Mice carrying ablation of Stat5a/b genes in SF1 cells showed no defects in the CRR. In summary, GHR expression in SF1 cells is required for a normal CRR, and these effects are largely independent of STAT5 pathway.-Furigo, I. C., de Souza, G. O., Teixeira, P. D. S., Guadagnini, D., Frazão, R., List, E. O., Kopchick, J. J., Prada, P. O., Donato, J., Jr. Growth hormone enhances the recovery of hypoglycemia via ventromedial hypothalamic neurons.
Collapse
Affiliation(s)
- Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriel O de Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pryscila D S Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dioze Guadagnini
- School of Applied Sciences, State University of Campinas, Limeira, Brazil
| | - Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Patricia O Prada
- School of Applied Sciences, State University of Campinas, Limeira, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Rhyu YA, Jang JY, Park S, An JH, Kim DL, Kim SK, Song KH. Impaired Cortisol and Growth Hormone Counterregulatory Responses among Severe Hypoglycemic Patients with Type 2 Diabetes Mellitus. Endocrinol Metab (Seoul) 2019; 34:187-194. [PMID: 31257746 PMCID: PMC6599906 DOI: 10.3803/enm.2019.34.2.187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Elevated levels of cortisol and growth hormone are critical counterregulatory responses to severe hypoglycemia. However, the proportion and clinical characteristics of patients with type 2 diabetes mellitus (DM) who fail to show appropriate cortisol and/or growth hormone secretion in response to severe hypoglycemia have not been investigated. METHODS We measured plasma cortisol and growth hormone levels in type 2 DM patients with severe hypoglycemia who visited the emergency department between 2006 and 2015. RESULTS Of 112 hypoglycemic patients, 23 (20.5%) had an impaired cortisol response (<18 μg/dL) and 82 patients (73.2%) had an impaired growth hormone response (<5 ng/mL). Nineteen patients (17.0%) had impaired responses to both cortisol and growth hormone. The patients with impaired responses of cortisol, growth hormone, and both hormones were significantly older and more likely to be female, and had higher admission rates, lower growth hormone levels, and lower adrenocorticotropic hormone levels than the patients with a normal hormonal response. Multivariate logistic regression analysis indicated that an impaired growth hormone response was significantly associated with advanced age, shorter DM duration, a higher admission rate, and a higher body mass index (BMI). An impaired cortisol response was significantly associated with growth hormone levels. Patients with an impaired growth hormone response had higher admission rates than patients with a normal response. CONCLUSION A considerable number of type 2 DM patients had impaired cortisol and/or growth hormone responses to severe hypoglycemia. Advanced age, shorter DM duration, and higher BMI were independently associated with an abnormal growth hormone response.
Collapse
Affiliation(s)
- Young A Rhyu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Ju Young Jang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Sooyoun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Jee Hyun An
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Dong Lim Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Suk Kyeong Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Kee Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea.
| |
Collapse
|
31
|
Ronen JA, Gavin M, Ruppert MD, Peiris AN. Glycemic Disturbances in Pheochromocytoma and Paraganglioma. Cureus 2019; 11:e4551. [PMID: 31275775 PMCID: PMC6592834 DOI: 10.7759/cureus.4551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review article, we aimed to analyze the available data on pheochromocytomas and paragangliomas as it pertains to their not as well-recognized association with significant glycemic abnormalities in the preoperative, perioperative, and postoperative settings as well as how they should be managed clinically. Pheochromocytomas are rare adrenal tumors that account for about 0.1% of hypertension. Paragangliomas, on the other hand, are even less common and have fewer clinical manifestations. Both types of tumors may have unusual modes of presentation which can challenge even the most experienced clinicians and are easy to overlook, resulting in post-mortem diagnosis. We wish to draw further attention to the life-threatening effects on glucose and insulin homeostasis that can occur in the form of hyperglycemic and hypoglycemic states. Hyperglycemia is a result of a glucose intolerant state created in the setting of catecholamine excess, which can present in the form of resistant diabetes, diabetic ketoacidosis (DKA), or even hyperglycemic hyperosmolar states (HHS). In many reported cases, these abnormalities resolve with resection of the tumor. However, past clinicians have also described a state of "reactive hypoglycemia" that can occur following tumor resection, further emphasizing the need for very close perioperative and postoperative monitoring. Severe hypoglycemia may also occur with inherited diseases linked to pheochromocytoma such as von Hippel-Lindau (VHL) disease as well as predominantly epinephrine-producing tumors, given some of the dramatic downstream effects of alpha and beta adrenoceptor agonization. While much of the data remains anecdotal, clinicians will benefit from the awareness of the protean manifestations of these tumors and the varied and lesser-known effects on glucose and insulin homeostasis.
Collapse
Affiliation(s)
- Joshua A Ronen
- Internal Medicine, Texas Tech University Health Sciences Center, Odessa, USA
| | - Meredith Gavin
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, USA
| | - Misty D Ruppert
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, USA
| | - Alan N Peiris
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, USA
| |
Collapse
|
32
|
Rickels MR, Robertson RP. Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocr Rev 2019; 40:631-668. [PMID: 30541144 PMCID: PMC6424003 DOI: 10.1210/er.2018-00154] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic islet transplantation has become an established approach to β-cell replacement therapy for the treatment of insulin-deficient diabetes. Recent progress in techniques for islet isolation, islet culture, and peritransplant management of the islet transplant recipient has resulted in substantial improvements in metabolic and safety outcomes for patients. For patients requiring total or subtotal pancreatectomy for benign disease of the pancreas, isolation of islets from the diseased pancreas with intrahepatic transplantation of autologous islets can prevent or ameliorate postsurgical diabetes, and for patients previously experiencing painful recurrent acute or chronic pancreatitis, quality of life is substantially improved. For patients with type 1 diabetes or insulin-deficient forms of pancreatogenic (type 3c) diabetes, isolation of islets from a deceased donor pancreas with intrahepatic transplantation of allogeneic islets can ameliorate problematic hypoglycemia, stabilize glycemic lability, and maintain on-target glycemic control, consequently with improved quality of life, and often without the requirement for insulin therapy. Because the metabolic benefits are dependent on the numbers of islets transplanted that survive engraftment, recipients of autoislets are limited to receive the number of islets isolated from their own pancreas, whereas recipients of alloislets may receive islets isolated from more than one donor pancreas. The development of alternative sources of islet cells for transplantation, whether from autologous, allogeneic, or xenogeneic tissues, is an active area of investigation that promises to expand access and indications for islet transplantation in the future treatment of diabetes.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - R Paul Robertson
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Pacific Northwest Diabetes Research Institute, Seattle, Washington
| |
Collapse
|
33
|
Halama A, Kahal H, Bhagwat AM, Zierer J, Sathyapalan T, Graumann J, Suhre K, Atkin SL. Metabolic and proteomic signatures of hypoglycaemia in type 2 diabetes. Diabetes Obes Metab 2019; 21:909-919. [PMID: 30525282 DOI: 10.1111/dom.13602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/20/2018] [Accepted: 12/01/2018] [Indexed: 12/31/2022]
Abstract
AIMS To determine the biochemical changes that underlie hypoglycaemia in a healthy control group and in people with type 2 diabetes (T2D). MATERIALS AND METHODS We report a hypoglycaemic clamp study in seven healthy controls and 10 people with T2D. Blood was withdrawn at four time points: at baseline after an overnight fast; after clamping to euglycaemia at 5 mmol/L; after clamping to hypoglycaemia at 2.8 mmol/L; and 24 hours later, after overnight fast. Deep molecular phenotyping using non-targeted metabolomics and the SomaLogic aptamer-based proteomics platform was performed on collected samples. RESULTS A total of 955 metabolites and 1125 proteins were identified, with significant alterations in >90 molecules. A number of metabolites significantly increased during hypoglycaemia, but only cortisol, adenosine-3',5'-cyclic monophosphate (cyclic AMP), and pregnenolone sulphate, were independent of insulin. By contrast, identified protein changes were triggered by hypoglycaemia rather than insulin. The T2D group had significantly higher levels of fatty acids including 10-nonadecenoate, linolenate and dihomo-linoleate during hypoglycaemia compared with the control group. Molecules contributing to cardiovascular complications such as fatty-acid-binding protein-3 and pregnenolone sulphate were altered in the participants with T2D during hypoglycaemia. Almost all molecules returned to baseline at 24 hours. CONCLUSIONS The present study provides a comprehensive description of molecular events that are triggered by insulin-induced hypoglycaemia. We identified deregulated pathways in T2D that may play a role in the pathophysiology of hypoglycaemia-induced cardiovascular complications.
Collapse
Affiliation(s)
- Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Doha, Qatar
| | - Hassan Kahal
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
| | - Aditya M Bhagwat
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Doha, Qatar
| | - Jonas Zierer
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | | | - Johannes Graumann
- Proteomics Core, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Doha, Qatar
| | - Stephen L Atkin
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Doha, Qatar
| |
Collapse
|
34
|
Marathe CS, Marathe JA, Rayner CK, Kar P, Jones KL, Horowitz M. Hypoglycaemia and gastric emptying. Diabetes Obes Metab 2019; 21:491-498. [PMID: 30378748 DOI: 10.1111/dom.13570] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/15/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Hypoglycaemia is arguably the most important complication of insulin therapy in type 1 and type 2 diabetes. Counter-regulation of hypoglycaemia is dependent on autonomic function and frequent hypoglycaemia may lead to reductions in both autonomic warning signals and the catecholamine response, the so-called "impaired awareness of hypoglycaemia". It is now appreciated that gastric emptying is a major determinant of the glycaemic response to carbohydrate-containing meals in both health and diabetes, that disordered (especially delayed) gastric emptying occurs frequently in diabetes, and that acute hypoglycaemia accelerates gastric emptying substantially. However, the potential relevance of gastric emptying to the predisposition to, and counter-regulation of, hypoglycaemia has received little attention. In insulin-treated patients, the rate of gastric emptying influences the timing of the postprandial insulin requirement, and gastroparesis is likely to predispose to postprandial hypoglycaemia. Conversely, the marked acceleration of gastric emptying induced by hypoglycaemia probably represents an important counter-regulatory response to increase the rate of carbohydrate absorption. This review summarizes the current knowledge of the inter-relationships between hypoglycaemia and gastric emptying, with a focus on clinical implications.
Collapse
Affiliation(s)
- Chinmay S Marathe
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Jessica A Marathe
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Christopher K Rayner
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Palash Kar
- Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Karen L Jones
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- NHMRC Centre of Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
35
|
Rezg R, Abot A, Mornagui B, Knauf C. Bisphenol S exposure affects gene expression related to intestinal glucose absorption and glucose metabolism in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3636-3642. [PMID: 30523531 DOI: 10.1007/s11356-018-3823-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol S, an industrial chemical, has raised concerns for both human and ecosystem health. Yet, health hazards posed by bisphenol S (BPS) exposure remain poorly studied. Compared to all tissues, the intestine and the liver are among the most affected by environmental endocrine disruptors. The aim of this study was to investigate the molecular effect of BPS on gene expression implicated in the control of glucose metabolism in the intestine (apelin and its receptor APJ, SGLT1, GLUT2) and in the liver (glycogenolysis and/or gluconeogenesis key enzymes (glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK)) and pro-inflammatory cytokine expression (TNF-α and IL-1β)). BPS at 25, 50, and 100 μg/kg was administered to mice in water drink for 10 weeks. In the duodenum, BPS exposure reduces significantly mRNA expression of sodium glucose transporter 1 (SGLT1), glucose transporter 2 (GLUT2), apelin, and APJ mRNA. In the liver, BPS exposure increases the expression of G6Pase and PEPCK, but does not affect pro-inflammatory markers. These data suggest that alteration of apelinergic system and glucose transporters expression could contribute to a disruption of intestinal glucose absorption, and that BPS stimulates glycogenolysis and/or gluconeogenesis in the liver. Collectively, we reveal that BPS heightens the risk of metabolic syndrome.
Collapse
Affiliation(s)
- Raja Rezg
- High Institute of Biotechnology of Monastir, Laboratory of Bioresources: Integrative Biology and Valorisation BIOLIVAL, University of Monastir, Monastir 5000, Tunisia.
| | - Anne Abot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), CHU Purpan, Place du Docteur Baylac, CS 60039, 31024, Toulouse Cedex 3, France
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL, Toulouse, France
| | - Bessem Mornagui
- Faculty of Sciences of Gabes, Laboratoire de Biodiversité et valorisation des bioressources des zones arides, LR18ES36, University of Gabes, Gabes 6072, Tunisia
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1220, Université Paul Sabatier, UPS, Institut de Recherche en Santé Digestive et Nutrition (IRSD), CHU Purpan, Place du Docteur Baylac, CS 60039, 31024, Toulouse Cedex 3, France
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL, Toulouse, France
| |
Collapse
|
36
|
Rehni AK, Dave KR. Impact of Hypoglycemia on Brain Metabolism During Diabetes. Mol Neurobiol 2018; 55:9075-9088. [PMID: 29637442 PMCID: PMC6179939 DOI: 10.1007/s12035-018-1044-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/27/2018] [Indexed: 12/24/2022]
Abstract
Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA.
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
37
|
Bolli GB. John E. Gerich: Father of Modern Physiology of Glucose Homeostasis, Counterregulation to Hypoglycemia, and Mechanistic Treatment of Diabetes. Diabetes Care 2018; 41:2059-2063. [PMID: 30237234 DOI: 10.2337/dci18-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Geremia B Bolli
- Section of Internal Medicine, Endocrinology and Metabolism, Department of Medicine, Perugia University Medical School, Perugia, Italy
| |
Collapse
|
38
|
Abderrahman AB, Rhibi F, Ouerghi N, Hackney AC, Saeidi A, Zouhal H. Effects of Recovery Mode during High Intensity Interval Training on Glucoregulatory Hormones and Glucose Metabolism in Response to Maximal Exercise. ACTA ACUST UNITED AC 2018; 7. [PMID: 30191154 DOI: 10.4172/2324-9080.1000292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Catecholamines [adrenaline (A) and noradrenaline (NA)] are known to stimulate glucose metabolism at rest and in response to maximal exercise. However, training and recovery mode can alter theses hormones. Thus our study aims to examine the effects of recovery mode during High-intensity Interval Training (HIIT) on glucoregulatory hormone responses to maximal exercise in young adults. Twenty-four male enrolled in this randomized study, assigned to: control group (eg, n=6), and two HIIT groups: intermittent exercise (30 s run/30 s recovery) with active (arg, n=9) or passive (prg, n=9) recovery, arg and prg performed HIIT 3 times weekly for 7 weeks. Before and after HIIT, participants undergo a Maximal Graded Test (MGT). Plasma catecholamines, glucose, insulin, growth hormone (Gh) and cortisol were determined at rest, at the end of MGT, after 10 and 30 min of recovery. After training V02max and Maximal Aerobic Velocity (MAV) increased significantly (p<0.05) in arg. After HIIT and in response to MGT plasma glucose increase significantly (p=0.008) lesser in arg compared to prg whereas insulin concentrations were similar. The glucose/insulin ratio was significantly lower at MGT end (p=0.033) only in arg after training. After HIIT, in response to MGT, plasma A, NA, cortisol and Gh concentrations were significantly higher only in arg (p<0.05). HIIT using active recovery is beneficial for aerobic fitness, plasma glucose and glucoregulatory hormones better than HIIT with passive recovery. These findings suggest that HIIT with active recovery may improve some metabolic and hormonal parameters in young adults.
Collapse
Affiliation(s)
- A B Abderrahman
- Laboratory of Biomonitoring of the Environment, Faculty of Science of bizerte, University of Carthage, Tunisia
| | - F Rhibi
- Laboratory of Biomonitoring of the Environment, Faculty of Science of bizerte, University of Carthage, Tunisia.,Univ rennes, m2s (laboratoire mouvement, sport, santé) - ea 1274, f-35000 rennes, France
| | - N Ouerghi
- Research unit, Sportive performance and physical rehabilitation, High institute of sports and physlcal educatlon of kef, University of jendouba, kef, Tunisia
| | - A C Hackney
- Department of exercise & sport science, university of north Carolina, chapel hill, nc, USA
| | - A Saeidi
- Exercise physiology department, Islamic azad university, saghez branch, saghez, Iran
| | - H Zouhal
- Univ rennes, m2s (laboratoire mouvement, sport, santé) - ea 1274, f-35000 rennes, France
| |
Collapse
|
39
|
Mathews EH, Mathews GE, Meyer AA. A hypothetical method for controlling highly glycolytic cancers and metastases. Med Hypotheses 2018; 118:19-25. [PMID: 30037608 DOI: 10.1016/j.mehy.2018.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023]
Abstract
Most proliferating cancer cells and cancer-associated tumor stroma have an upregulated glucose energy demand in relation to normal cells. Cancer cells are further less metabolically flexible than normal cells. They can therefore not survive metabolic stress as well as normal cells can. Metabolic deprivation thus provides a potential therapeutic window. Unfortunately, current glucose blockers have toxicity problems. An alternative way to reduce a cancer patient's blood glucose (BG), for a short-term period to very low levels, without the concomitant toxicity, is hypothesized in this paper. In vitro tests have shown that short-term BG deprivation to 2 mmol/L for 180 min is an effective cancer treatment. This level of hypoglycaemia can be maintained in vivo with a combination of very low-dose insulin and the suppression of the glucose counter-regulation system. Such suppression can be safely achieved by the infusion of somatostatin and a combination of both α and β-blockers. The proposed short-term in vivo method, was shown to be non-toxic and safe for non-cancer patients. The next step is to test the effect of the proposed method on cancer patients. It is also suggested to incorporate well-known, long-term BG deprivation treatments to achieve maximum effect.
Collapse
Affiliation(s)
- Edward H Mathews
- CRCED, North-West University, P.O. Box 11207, Silver Lakes 0054, South Africa.
| | - George E Mathews
- CRCED, North-West University, P.O. Box 11207, Silver Lakes 0054, South Africa.
| | - Albertus A Meyer
- CRCED, North-West University, P.O. Box 11207, Silver Lakes 0054, South Africa.
| |
Collapse
|
40
|
Li NX, Brown S, Kowalski T, Wu M, Yang L, Dai G, Petrov A, Ding Y, Dlugos T, Wood HB, Wang L, Erion M, Sherwin R, Kelley DE. GPR119 Agonism Increases Glucagon Secretion During Insulin-Induced Hypoglycemia. Diabetes 2018; 67:1401-1413. [PMID: 29669745 PMCID: PMC6014553 DOI: 10.2337/db18-0031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/10/2018] [Indexed: 01/08/2023]
Abstract
Insulin-induced hypoglycemia in diabetes is associated with impaired glucagon secretion. In this study, we tested whether stimulation of GPR119, a G-protein-coupled receptor expressed in pancreatic islet as well as enteroendocrine cells and previously shown to stimulate insulin and incretin secretion, might enhance glucagon secretion during hypoglycemia. In the study, GPR119 agonists were applied to isolated islets or perfused pancreata to assess insulin and glucagon secretion during hypoglycemic or hyperglycemic conditions. Insulin infusion hypoglycemic clamps were performed with or without GPR119 agonist pretreatment to assess glucagon counterregulation in healthy and streptozotocin (STZ)-induced diabetic rats, including those exposed to recurrent bouts of insulin-induced hypoglycemia that leads to suppression of hypoglycemia-induced glucagon release. Hypoglycemic clamp studies were also conducted in GPR119 knockout (KO) mice to evaluate whether the pharmacological stimulatory actions of GPR119 agonists on glucagon secretion during hypoglycemia were an on-target effect. The results revealed that GPR119 agonist-treated pancreata or cultured islets had increased glucagon secretion during low glucose perfusion. In vivo, GPR119 agonists also significantly increased glucagon secretion during hypoglycemia in healthy and STZ-diabetic rats, a response that was absent in GPR119 KO mice. In addition, impaired glucagon counterregulatory responses were restored by a GPR119 agonist in STZ-diabetic rats that were exposed to antecedent bouts of hypoglycemia. Thus, GPR119 agonists have the ability to pharmacologically augment glucagon secretion, specifically in response to hypoglycemia in diabetic rodents. Whether this effect might serve to diminish the occurrence and severity of iatrogenic hypoglycemia during intensive insulin therapy in patients with diabetes remains to be established.
Collapse
Affiliation(s)
- Nina Xiaoyan Li
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | | | - Tim Kowalski
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Margaret Wu
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Liming Yang
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Ge Dai
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Aleksandr Petrov
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | | | | | - Harold B Wood
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Liangsu Wang
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | - Mark Erion
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| | | | - David E Kelley
- Discovery, Preclinical and Early Development, Merck & Co., Inc., Kenilworth, NJ
| |
Collapse
|
41
|
Meek TH, Matsen ME, Faber CL, Samstag CL, Damian V, Nguyen HT, Scarlett JM, Flak JN, Myers MG, Morton GJ. In Uncontrolled Diabetes, Hyperglucagonemia and Ketosis Result From Deficient Leptin Action in the Parabrachial Nucleus. Endocrinology 2018; 159:1585-1594. [PMID: 29438473 PMCID: PMC5939636 DOI: 10.1210/en.2017-03199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Abstract
Growing evidence implicates neurons that project from the lateral parabrachial nucleus (LPBN) to the hypothalamic ventromedial nucleus (VMN) in a neurocircuit that drives counterregulatory responses to hypoglycemia, including increased glucagon secretion. Among LPBN neurons in this circuit is a subset that expresses cholecystokinin (LPBNCCK neurons) and is tonically inhibited by leptin. Because uncontrolled diabetes is associated with both leptin deficiency and hyperglucagonemia, and because intracerebroventricular (ICV) leptin administration reverses both hyperglycemia and hyperglucagonemia in this setting, we hypothesized that deficient leptin inhibition of LPBNCCK neurons drives activation of this LPBN→VMN circuit and thereby results in hyperglucagonemia. Here, we report that although bilateral microinjection of leptin into the LPBN does not ameliorate hyperglycemia in rats with streptozotocin-induced diabetes mellitus (STZ-DM), it does attenuate the associated hyperglucagonemia and ketosis. To determine if LPBN leptin signaling is required for the antidiabetic effect of ICV leptin in STZ-DM, we studied mice in which the leptin receptor was selectively deleted from LPBNCCK neurons. Our findings show that although leptin signaling in these neurons is not required for the potent antidiabetic effect of ICV leptin, it is required for leptin-mediated suppression of diabetic hyperglucagonemia. Taken together, these findings suggest that leptin-mediated effects in animals with uncontrolled diabetes occur through actions involving multiple brain areas, including the LPBN, where leptin acts specifically to inhibit glucagon secretion and associated ketosis.
Collapse
Affiliation(s)
- Thomas H Meek
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington
| | - Miles E Matsen
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington
| | - Chelsea L Faber
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington
| | - Colby L Samstag
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington
| | - Vincent Damian
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington
| | - Hong T Nguyen
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington
| | - Jarrad M Scarlett
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington
| | - Jonathan N Flak
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gregory J Morton
- University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
42
|
Lontchi-Yimagou E, You JY, Carey M, Gabriely I, Shamoon H, Hawkins M. Potential approaches to prevent hypoglycemia-associated autonomic failure. J Investig Med 2018; 66:641-647. [PMID: 29141871 PMCID: PMC6338223 DOI: 10.1136/jim-2017-000582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 01/27/2023]
Abstract
Clear health benefits are associated with intensive glucose control in type 1 diabetes mellitus (T1DM). However, maintaining near-normal glycemia remains an elusive goal for many patients, in large part owing to the risk of severe hypoglycemia. In fact, recurrent episodes of hypoglycemia lead to 'hypoglycemia-associated autonomic failure' (HAAF), characterized by defective counter-regulatory responses to hypoglycemia. Extensive studies to understand the mechanisms underlying HAAF have revealed multiple potential etiologies, suggesting various approaches to prevent the development of HAAF. In this review, we present an overview of the literature focused on pharmacological approaches that may prevent the development of HAAF. The purported underlying mechanisms of HAAF include: 1) central mechanisms (opioid receptors, ATP-sensitive K+(KATP) channels, adrenergic receptors, serotonin selective receptor inhibitors, γ-aminobuyric acid receptors, N-methyl D-aspartate receptors); 2) hormones (cortisol, estrogen, dehydroepiandrosterone (DHEA) or DHEA sulfate, glucagon-like peptide-1) and 3) nutrients (fructose, free fatty acids, ketones), all of which have been studied vis-à-vis their ability to impact the development of HAAF. A careful review of the current literature reveals many promising therapeutic approaches to treat or reduce this important limitation to optimal glycemic control.
Collapse
Affiliation(s)
- Eric Lontchi-Yimagou
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jee Young You
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Michelle Carey
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Ilan Gabriely
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Harry Shamoon
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Meredith Hawkins
- Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
43
|
Manell E, Jensen-Waern M, Hedenqvist P. Anaesthesia and changes in parameters that reflect glucose metabolism in pigs – a pilot study. Lab Anim 2016; 51:509-517. [DOI: 10.1177/0023677216682773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pigs are commonly used in diabetes research due to their many physiological similarities to humans. They are especially useful in imaging procedures because of their large size. However, to achieve imaging procedures the pig must lie completely still, and thus needs to be anaesthetized. Most anaesthetic drugs used in laboratory animals affect carbohydrate metabolism by the inhibition of insulin release. The aim of this pilot study was primarily to develop an anaesthetic protocol for pigs that did not have an effect on blood glucose levels throughout the 3 h of anaesthesia; and secondly, to evaluate the most promising protocol in combination with an oral glucose tolerance test (OGTT). Two anaesthetic protocols were used in four growing pigs. Intravenous propofol infusion caused hyperglycaemia in three out of four pigs within 5–10 min after induction and was therefore excluded. Intravenous infusion with tiletamine, zolazepam and butorphanol (TZB) for 3 h did not affect blood glucose levels. The pigs underwent OGTT twice, once without anaesthesia and once with TZB induction after glucose intake. Anaesthesia during OGTT resulted in a lower area under the curve (AUC) of glucose ( P < 0.05), higher AUC of glucagon ( P < 0.05) and an insulin response less than 10% of that during OGTT without anaesthesia. In conclusion, long-term infusion anaesthesia with TZB does not affect glucose homeostasis in pigs. However, the protocol is not effective when combined with OGTT, as glucose, insulin and glucagon levels are affected.
Collapse
Affiliation(s)
- Elin Manell
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marianne Jensen-Waern
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Patricia Hedenqvist
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
44
|
|
45
|
Abstract
Diabetes mellitus is the commonest cause of an autonomic neuropathy in the developed world. Diabetic autonomic neuropathy causes a constellation of symptoms and signs affecting cardiovascular, urogenital, gastrointestinal, pupillomotor, thermoregulatory, and sudomotor systems. Several discrete syndromes associated with diabetes cause autonomic dysfunction. The most prevalent of these are: generalized diabetic autonomic neuropathy, autonomic neuropathy associated with the prediabetic state, treatment-induced painful and autonomic neuropathy, and transient hypoglycemia-associated autonomic neuropathy. These autonomic manifestations of diabetes are responsible for the most troublesome and disabling features of diabetic peripheral neuropathy and result in a significant proportion of the mortality and morbidity associated with the disease.
Collapse
Affiliation(s)
- Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Harp JB, Yancopoulos GD, Gromada J. Glucagon orchestrates stress-induced hyperglycaemia. Diabetes Obes Metab 2016; 18:648-53. [PMID: 27027662 PMCID: PMC5084782 DOI: 10.1111/dom.12668] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/19/2016] [Accepted: 03/24/2016] [Indexed: 01/08/2023]
Abstract
Hyperglycaemia is commonly observed on admission and during hospitalization for medical illness, traumatic injury, burn and surgical intervention. This transient hyperglycaemia is referred to as stress-induced hyperglycaemia (SIH) and frequently occurs in individuals without a history of diabetes. SIH has many of the same underlying hormonal disturbances as diabetes mellitus, specifically absolute or relative insulin deficiency and glucagon excess. SIH has the added features of elevated blood levels of catecholamines and cortisol, which are not typically present in people with diabetes who are not acutely ill. The seriousness of SIH is highlighted by its greater morbidity and mortality rates compared with those of hospitalized patients with normal glucose levels, and this increased risk is particularly high in those without pre-existing diabetes. Insulin is the treatment standard for SIH, but new therapies that reduce glucose variability and hypoglycaemia are desired. In the present review, we focus on the key role of glucagon in SIH and discuss the potential use of glucagon receptor blockers and glucagon-like peptide-1 receptor agonists in SIH to achieve target glucose control.
Collapse
Affiliation(s)
- J B Harp
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - J Gromada
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| |
Collapse
|
47
|
Winnick JJ, Kraft G, Gregory JM, Edgerton DS, Williams P, Hajizadeh IA, Kamal MZ, Smith M, Farmer B, Scott M, Neal D, Donahue EP, Allen E, Cherrington AD. Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis. J Clin Invest 2016; 126:2236-48. [PMID: 27140398 DOI: 10.1172/jci79895] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/10/2016] [Indexed: 11/17/2022] Open
Abstract
Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion.
Collapse
|
48
|
Abstract
While it is well established that the adiposity hormone leptin plays a key role in the regulation of energy homeostasis, growing evidence suggests that leptin is also critical for glycaemic control. In this review we examine the role of the brain in the glucose-lowering actions of leptin and the potential mediators responsible for driving hyperglycaemia in states of uncontrolled insulin-deficient diabetes (uDM). These considerations highlight the possibility of targeting leptin-sensitive pathways as a therapeutic option for the treatment of diabetes. This review summarises a presentation given at the 'Is leptin coming back?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Christoffer Clemmensen and colleagues, DOI: 10.1007/s00125-016-3906-7 , and by Gerald Shulman and colleagues, DOI: 10.1007/s00125-016-3909-4 ) and an overview by the Session Chair, Ulf Smith (DOI: 10.1007/s00125-016-3894-7 ).
Collapse
Affiliation(s)
- Thomas H Meek
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington at South Lake Union, 850 Republican St., N335, Box 358055, Seattle, WA, 98195, USA
| | - Gregory J Morton
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington at South Lake Union, 850 Republican St., N335, Box 358055, Seattle, WA, 98195, USA.
| |
Collapse
|
49
|
Lavoie S, Steullet P, Kulak A, Preitner F, Do KQ, Magistretti PJ. Glutamate Cysteine Ligase-Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage. Front Physiol 2016; 7:142. [PMID: 27148080 PMCID: PMC4838631 DOI: 10.3389/fphys.2016.00142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/04/2016] [Indexed: 01/22/2023] Open
Abstract
Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.
Collapse
Affiliation(s)
- Suzie Lavoie
- Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital and University of LausanneLausanne-Prilly, Switzerland; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The University of MelbourneParkville, VIC, Australia
| | - Pascal Steullet
- Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne Lausanne-Prilly, Switzerland
| | - Anita Kulak
- Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne Lausanne-Prilly, Switzerland
| | - Frederic Preitner
- Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne Lausanne, Switzerland
| | - Kim Q Do
- Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital and University of Lausanne Lausanne-Prilly, Switzerland
| | - Pierre J Magistretti
- Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital and University of LausanneLausanne-Prilly, Switzerland; Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland; BESE Division, King Abdullah University of Sciences and Technology (KAUST)Thuwal, Saudi Arabia
| |
Collapse
|
50
|
Dagogo-Jack S. Philip E. Cryer, MD: Seminal Contributions to the Understanding of Hypoglycemia and Glucose Counterregulation and the Discovery of HAAF (Cryer Syndrome). Diabetes Care 2015; 38:2193-9. [PMID: 26604275 PMCID: PMC4876742 DOI: 10.2337/dc15-0533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Optimized glycemic control prevents and slows the progression of long-term complications in patients with type 1 and type 2 diabetes. In healthy individuals, a decrease in plasma glucose below the physiological range triggers defensive counterregulatory responses that restore euglycemia. Many individuals with diabetes harbor defects in their defenses against hypoglycemia, making iatrogenic hypoglycemia the Achilles heel of glycemic control. This Profile in Progress focuses on the seminal contributions of Philip E. Cryer, MD, to our understanding of hypoglycemia and glucose counterregulation, particularly his discovery of the syndrome of hypoglycemia-associated autonomic failure (HAAF).
Collapse
Affiliation(s)
- Samuel Dagogo-Jack
- Division of Endocrinology, Diabetes and Metabolism, The University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|