1
|
Kollerits B, Gruber S, Steinbrenner I, Schwaiger JP, Weissensteiner H, Schönherr S, Forer L, Kotsis F, Schultheiss UT, Meiselbach H, Wanner C, Eckardt KU, Kronenberg F. Apolipoprotein A-IV concentrations and cancer in a large cohort of chronic kidney disease patients: results from the GCKD study. BMC Cancer 2024; 24:320. [PMID: 38454416 PMCID: PMC10921727 DOI: 10.1186/s12885-024-12053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is highly connected to inflammation and oxidative stress. Both favour the development of cancer in CKD patients. Serum apolipoprotein A-IV (apoA-IV) concentrations are influenced by kidney function and are an early marker of kidney impairment. Besides others, it has antioxidant and anti-inflammatory properties. Proteomic studies and small case-control studies identified low apoA-IV as a biomarker for various forms of cancer; however, prospective studies are lacking. We therefore investigated whether serum apoA-IV is associated with cancer in the German Chronic Kidney Disease (GCKD) study. METHODS These analyses include 5039 Caucasian patients from the prospective GCKD cohort study followed for 6.5 years. Main inclusion criteria were an eGFR of 30-60 mL/min/1.73m2 or an eGFR > 60 mL/min/1.73m2 in the presence of overt proteinuria. RESULTS Mean apoA-IV concentrations of the entire cohort were 28.9 ± 9.8 mg/dL (median 27.6 mg/dL). 615 patients had a history of cancer before the enrolment into the study. ApoA-IV concentrations above the median were associated with a lower odds for a history of cancer (OR = 0.79, p = 0.02 when adjusted age, sex, smoking, diabetes, BMI, albuminuria, statin intake, and eGFRcreatinine). During follow-up 368 patients developed an incident cancer event and those with apoA-IV above the median had a lower risk (HR = 0.72, 95%CI 0.57-0.90, P = 0.004). Finally, 62 patients died from such an incident cancer event and each 10 mg/dL higher apoA-IV concentrations were associated with a lower risk for fatal cancer (HR = 0.62, 95%CI 0.44-0.88, P = 0.007). CONCLUSIONS Our data indicate an association of high apoA-IV concentrations with reduced frequencies of a history of cancer as well as incident fatal and non-fatal cancer events in a large cohort of patients with CKD.
Collapse
Affiliation(s)
- Barbara Kollerits
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria
| | - Simon Gruber
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Johannes P Schwaiger
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine IV - Nephrology and Primary Care, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine IV - Nephrology and Primary Care, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Chronic Kidney Disease Study, Erlangen, Germany
| | - Christoph Wanner
- Division of Nephrology, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Chronic Kidney Disease Study, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, Innsbruck, 6020, Austria.
| |
Collapse
|
2
|
Reijnders E, van der Laarse A, Ruhaak LR, Cobbaert CM. Closing the gaps in patient management of dyslipidemia: stepping into cardiovascular precision diagnostics with apolipoprotein profiling. Clin Proteomics 2024; 21:19. [PMID: 38429638 PMCID: PMC10908091 DOI: 10.1186/s12014-024-09465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
In persons with dyslipidemia, a high residual risk of cardiovascular disease remains despite lipid lowering therapy. Current cardiovascular risk prediction mainly focuses on low-density lipoprotein cholesterol (LDL-c) levels, neglecting other contributing risk factors. Moreover, the efficacy of LDL-c lowering by statins resulting in reduced cardiovascular risk is only partially effective. Secondly, from a metrological viewpoint LDL-c falls short as a reliable measurand. Both direct and calculated LDL-c tests produce inaccurate test results at the low end under aggressive lipid lowering therapy. As LDL-c tests underperform both clinically and metrologically, there is an urging need for molecularly defined biomarkers. Over the years, apolipoproteins have emerged as promising biomarkers in the context of cardiovascular disease as they are the functional workhorses in lipid metabolism. Among these, apolipoprotein B (ApoB), present on all atherogenic lipoprotein particles, has demonstrated to clinically outperform LDL-c. Other apolipoproteins, such as Apo(a) - the characteristic apolipoprotein of the emerging risk factor lipoprotein(a) -, and ApoC-III - an inhibitor of triglyceride-rich lipoprotein clearance -, have attracted attention as well. To support personalized medicine, we need to move to molecularly defined risk markers, like the apolipoproteins. Molecularly defined diagnosis and molecularly targeted therapy require molecularly measured biomarkers. This review provides a summary of the scientific validity and (patho)physiological role of nine serum apolipoproteins, Apo(a), ApoB, ApoC-I, ApoC-II, ApoC-III, ApoE and its phenotypes, ApoA-I, ApoA-II, and ApoA-IV, in lipid metabolism, their association with cardiovascular disease, and their potential as cardiovascular risk markers when measured in a multiplex apolipoprotein panel.
Collapse
Affiliation(s)
- Esther Reijnders
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Arnoud van der Laarse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Gong C, Saborit C, Long X, Wang A, Zheng B, Chung H, Lewis SK, Krishnareddy S, Bhagat G, Green PH, Kong XF. Serological Investigation of Persistent Villous Atrophy in Celiac Disease. Clin Transl Gastroenterol 2023; 14:e00639. [PMID: 37753949 PMCID: PMC10749705 DOI: 10.14309/ctg.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
INTRODUCTION Persistent villous atrophy (VA) is not uncommon in celiac disease (CeD) while patients take a gluten-free diet (GFD). METHODS We conducted a retrospective study with 122 serum samples collected from controls and patients with CeD either at the initial diagnosis or at the follow-up during endoscopy. These samples were assigned to 3 groups: nonceliac control, non-VA CeD (Marsh score 0-2), and VA CeD (Marsh score 3a-3c). We established an in-house multiplex assay to identify potential serological biomarkers for VA. We assessed autoantibodies reported to affect the small intestine, including IgA and IgG antibodies against tissue transglutaminase (tTG), interferons, villin, actin, autoimmune enteropathy-related 75 kDa antigen (AIE-75), and tryptophan hydroxylase (TPH)-1, as well as 27 cytokines. The apolipoproteins quantified included apo A1, apo B-100, and apo A4, which were produced predominantly by the intestinal epithelium or expressed specifically in villi. RESULTS Autoantibody levels were high only for tTG antibodies, which performed well in initial CeD diagnosis, but suboptimally for VA prediction during follow-up, because 14.6% of the follow-up patients with VA had low tTG-IgA. Increasing dilution improved tTG-IgA quantification, particularly when the antibody levels were extremely high but did not significantly improve VA detection. Among those with low tTG-IgA and persistent VA, high proinflammatory cytokines were observed in 2 patients. Median low-density lipoprotein cholesterol levels were significantly lower in the VA CeD group ( P = 0.03). Apolipoprotein levels were similar in patients with and without VA but diverged between those on a GFD or not. DISCUSSION tTG-IgA as a biomarker is suboptimal for VA prediction while on a GFD. Persistent VA is associated with low low-density lipoprotein cholesterol levels and partially related to persistent high proinflammatory cytokines.
Collapse
Affiliation(s)
- Changlin Gong
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Claudia Saborit
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Long
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ao Wang
- Department of Medicine, Celiac Disease Center, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Beishi Zheng
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Howard Chung
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Suzanne K. Lewis
- Department of Medicine, Celiac Disease Center, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Suneeta Krishnareddy
- Department of Medicine, Celiac Disease Center, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Govind Bhagat
- Department of Medicine, Celiac Disease Center, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
- Department of Pathology and Cell Biology, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Peter H.R. Green
- Department of Medicine, Celiac Disease Center, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, New York, USA
| | - Xiao-Fei Kong
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Qu J, Wu D, Ko CW, Zhu Q, Liu M, Tso P. Deficiency of apoA-IV in Female 129X1/SvJ Mice Leads to Diet-Induced Obesity, Insulin Resistance, and Decreased Energy Expenditure. Nutrients 2023; 15:4655. [PMID: 37960308 PMCID: PMC10650794 DOI: 10.3390/nu15214655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity is one of the main risk factors for cardiovascular diseases, type II diabetes, hypertension, and certain cancers. Obesity in women at the reproductive stage adversely affects contraception, fertility, maternal well-being, and the health of their offspring. Being a major protein component in chylomicrons and high-density lipoproteins, apolipoprotein A-IV (apoA-IV) is involved in lipid metabolism, food intake, glucose homeostasis, prevention against atherosclerosis, and platelet aggregation. The goal of the present study is to determine the impact of apoA-IV deficiency on metabolic functions in 129X1/SvJ female mouse strain. After chronic high-fat diet feeding, apoA-IV-/- mice gained more weight with a higher fat percentage than wild-type (WT) mice, as determined by measuring their body composition. Increased adiposity and adipose cell size were also observed with a microscope, particularly in periovarian fat pads. Based on plasma lipid and adipokine assays, we found that obesity in apoA-IV-/- mice was not associated with hyperlipidemia but with higher leptin levels. Compared to WT mice, apoA-IV deficiency displayed glucose intolerance and elevated insulin levels, according to the data of the glucose tolerance test, and increased HOMA-IR values at fasting, suggesting possible insulin resistance. Lastly, we found obesity in apoA-IV-/- mice resulting from reduced energy expenditure but not food intake. Together, we established a novel and excellent female mouse model for future mechanistic study of obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Jie Qu
- Medpace Reference Laboratories, LLC, 5365 Medpace Way, Cincinnati, OH 45227, USA;
| | - Dong Wu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China;
| | - Chih-Wei Ko
- Chroma Medicine, 201 Brookline Ave, Suite 1101, Boston, MA 02215, USA;
| | - Qi Zhu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237, USA; (Q.Z.); (M.L.)
| |
Collapse
|
5
|
Sato M, Neufeld EB, Playford MP, Lei Y, Sorokin AV, Aponte AM, Freeman LA, Gordon SM, Dey AK, Jeiran K, Hamasaki M, Sampson ML, Shamburek RD, Tang J, Chen MY, Kotani K, Anderson JL, Dullaart RP, Mehta NN, Tietge UJ, Remaley AT. Cell-free, high-density lipoprotein-specific phospholipid efflux assay predicts incident cardiovascular disease. J Clin Invest 2023; 133:e165370. [PMID: 37471145 PMCID: PMC10503808 DOI: 10.1172/jci165370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/18/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUNDCellular cholesterol efflux capacity (CEC) is a better predictor of cardiovascular disease (CVD) events than HDL-cholesterol (HDL-C) but is not suitable as a routine clinical assay.METHODSWe developed an HDL-specific phospholipid efflux (HDL-SPE) assay to assess HDL functionality based on whole plasma HDL apolipoprotein-mediated solubilization of fluorescent phosphatidylethanolamine from artificial lipid donor particles. We first assessed the association of HDL-SPE with prevalent coronary artery disease (CAD): study I included NIH severe-CAD (n = 50) and non-CAD (n = 50) participants, who were frequency matched for sex, BMI, type 2 diabetes mellitus, and smoking; study II included Japanese CAD (n = 70) and non-CAD (n = 154) participants. We also examined the association of HDL-SPE with incident CVD events in the Prevention of Renal and Vascular End-stage Disease (PREVEND) study comparing 340 patients with 340 controls individually matched for age, sex, smoking, and HDL-C levels.RESULTSReceiver operating characteristic curves revealed stronger associations of HDL-SPE with prevalent CAD. The AUCs in study I were as follows: HDL-SPE, 0.68; apolipoprotein A-I (apoA-I), 0.62; HDL-C, 0.63; and CEC, 0.52. The AUCs in study II were as follows: HDL-SPE, 0.83; apoA-I, 0.64; and HDL-C, 0.53. Also longitudinally, HDL-SPE was significantly associated with incident CVD events independent of traditional risk factors with ORs below 0.2 per SD increment in the PREVEND study (P < 0.001).CONCLUSIONHDL-SPE could serve as a routine clinical assay for improving CVD risk assessment and drug discovery.TRIAL REGISTRATIONClinicalTrials.gov NCT01621594.FUNDINGNHLBI Intramural Research Program, NIH (HL006095-06).
Collapse
Affiliation(s)
- Masaki Sato
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
- Division of Community and Family Medicine and Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Tochigi, Japan
- Biochemical Research Laboratory II, Eiken Chemical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Edward B. Neufeld
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Yu Lei
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Alexander V. Sorokin
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Angel M. Aponte
- Proteomics Core Facility, NHLBI, NIH, Bethesda, Maryland, USA
| | - Lita A. Freeman
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Scott M. Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Amit K. Dey
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Kianoush Jeiran
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Masato Hamasaki
- Division of Community and Family Medicine and Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Tochigi, Japan
- Biochemical Research Laboratory II, Eiken Chemical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | | | - Robert D. Shamburek
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Jingrong Tang
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Marcus Y. Chen
- Laboratory of Cardiovascular CT, NHLBI, NIH, Bethesda, Maryland, USA
| | - Kazuhiko Kotani
- Division of Community and Family Medicine and Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Tochigi, Japan
| | - Josephine L.C. Anderson
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robin P.F. Dullaart
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, NHLBI, NIH, Bethesda, Maryland, USA
| | - Uwe J.F. Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Alan T. Remaley
- Lipoprotein Metabolism Laboratory, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
- The NIH Clinical Center and
| |
Collapse
|
6
|
Andraski AB, Singh SA, Higashi H, Lee LH, Aikawa M, Sacks FM. The distinct metabolism between large and small HDL indicates unique origins of human apolipoprotein A4. JCI Insight 2023; 8:162481. [PMID: 37092549 DOI: 10.1172/jci.insight.162481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/01/2023] [Indexed: 04/25/2023] Open
Abstract
Apolipoprotein A4's (APOA4's) functions on HDL in humans are not well understood. A unique feature of APOA4 is that it is an intestinal apolipoprotein secreted on HDL and chylomicrons. The goal of this study was to gain a better understanding of the origin and function of APOA4 on HDL by studying its metabolism across 6 HDL sizes. Twelve participants completed a metabolic tracer study. HDL was isolated by APOA1 immunopurification and separated by size. Tracer enrichments for APOA4 and APOA1 were determined by targeted mass spectrometry, and metabolic rates were derived by compartmental modeling. APOA4 metabolism on small HDL (alpha3, prebeta, and very small prebeta) was distinct from that of APOA4 on large HDL (alpha0, 1, 2). APOA4 on small HDL appeared in circulation by 30 minutes and was relatively rapidly catabolized. In contrast, APOA4 on large HDL appeared in circulation later (1-2 hours) and had a much slower catabolism. The unique metabolic profiles of APOA4 on small and large HDL likely indicate that each has a distinct origin and function in humans. This evidence supports the notion that APOA4 on small HDL originates directly from the small intestine while APOA4 on large HDL originates from chylomicron transfer.
Collapse
Affiliation(s)
- Allison B Andraski
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, and
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, and
| | - Lang Ho Lee
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, and
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, and
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Li LY, Chen S, Wang YX, Ji R, Ding FH, Wang XQ, Chen QJ, Lu L, Dai Y. Serum apolipoprotein A-IV levels are associated with flow-mediated dilation in patients with type 2 diabetes mellitus. BMC Cardiovasc Disord 2022; 22:446. [PMID: 36284290 PMCID: PMC9594896 DOI: 10.1186/s12872-022-02898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 12/01/2022] Open
Abstract
Background Endothelial dysfunction is common in diabetes. Apolipoprotein (apo) A-IV functions to antagonize inflammation and oxidative stress. The present study aimed to investigate the relationship between flow-mediated dilation (FMD) and serum apoA-IV level in type 2 diabetes mellitus (T2DM) patients. Methods A total of 84 T2DM patients with chest discomfort were enrolled in this study. Their baseline characteristics and clinical parameters were documented. Endothelial function of the participants was evaluated by examining FMD of brachial artery. The severity of coronary atherosclerosis was determined by quantitative coronary angiography. Serum apoA-IV levels were measured by ELISA. Results These diabetic patients were dichotomized into low FMD (n = 42) and high FMD (n = 42) groups. Serum apoA-IV levels were significantly higher in high FMD group than in low FMD group (29.96 ± 13.17 vs 17.69 ± 9.16 mg/dL, P < 0.001). Moreover, the patients were also categorized into three apoA-IV tertile groups. FMD was significantly different across three apoA-IV tertiles (P < 0.001). Serum apoA-IV levels were positively correlated to FMD (r = 0.469, P < 0.001). Logistic regression analysis was performed to determine risk factors for low FMD. apoA-IV levels together with the risk factor hsCRP remained significantly to be independent determinants of low FMD (P < 0.01). Linear regression analysis was performed, and apoA-IV levels together with total-to-HDL cholesterol ratio were independently correlated with FMD (P < 0.01). Conclusions Serum apoA-IV levels are associated with FMD, suggesting that apoA-IV protects endothelial function in patients with T2DM.
Collapse
Affiliation(s)
- Le-Ying Li
- grid.412277.50000 0004 1760 6738Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025 People’s Republic of China
| | - Shuai Chen
- grid.412277.50000 0004 1760 6738Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025 People’s Republic of China
| | - Yi-Xuan Wang
- grid.412277.50000 0004 1760 6738Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025 People’s Republic of China
| | - Ri Ji
- grid.412277.50000 0004 1760 6738Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Feng-Hua Ding
- grid.412277.50000 0004 1760 6738Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025 People’s Republic of China
| | - Xiao-Qun Wang
- grid.412277.50000 0004 1760 6738Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025 People’s Republic of China ,grid.16821.3c0000 0004 0368 8293Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Qiu-Jing Chen
- grid.16821.3c0000 0004 0368 8293Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Lin Lu
- grid.412277.50000 0004 1760 6738Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025 People’s Republic of China ,grid.16821.3c0000 0004 0368 8293Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yang Dai
- grid.412277.50000 0004 1760 6738Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025 People’s Republic of China ,grid.16821.3c0000 0004 0368 8293Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Wang W, Jiang Q, Niu Y, Ding Q, Yang X, Zheng Y, Hao J, Wei D. Proteomics and bioinformatics analysis of follicular fluid from patients with polycystic ovary syndrome. Front Mol Biosci 2022; 9:956406. [PMID: 36072434 PMCID: PMC9441494 DOI: 10.3389/fmolb.2022.956406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder with heterogeneous manifestations and complex etiology. We used quantitative proteomics analysis based on mass spectrometry to identify the differences in proteomics profiles for follicular fluid obtained from patients with or without PCOS and explore possible mechanisms underlying PCOS. Methods: Follicular fluid samples were collected from infertile patients with (n = 9) or without (n = 9) PCOS. Total protein was extracted, quantitatively labeled with a tandem mass tag (TMT), and analyzed using liquid chromatography-mass spectrometry (LC‐MS). TMT-based proteomics and bioinformatics analysis were used to determine the differentially expressed proteins (DEPs) and understand the protein networks. The analysis included protein annotation, unsupervised hierarchical clustering, functional classification, functional enrichment and clustering, and protein-protein interaction analysis. Selected DEPs were confirmed by ELISA, and correlation analysis was performed between these DEPs and the clinical characteristics. Results: In this study, we have identified 1,216 proteins, including 70 DEPs (32 upregulated proteins, 38 downregulated proteins). Bioinformatics analysis revealed that the inflammatory response, complement and coagulation cascades, activation of the immune response, lipid transport, and regulation of protein metabolic processes were co-enriched in patients with PCOS. Based on ELISA results, insulin-like growth factor binding protein 1 (IGFBP1) and apolipoprotein C2 (APOC2) were differentially expressed between patients with and without PCOS. Follicular IGFBP1 showed a positive correlation with the serum levels of high-density lipoprotein cholesterol (HDL-C) (r = 0.3046, p = 0.0419), but negatively correlated with the serum levels of anti-Müllerian hormone (AMH) (r = –0.2924, p = 0.0354) and triglycerides (r = –0.3177, p = 0.0246). Follicular APOC2 was negatively correlated with the serum apolipoprotein A1 (APOA1) levels (r = 0.4509, p = 0.0002). Conclusion: Our study identified DEPs in the follicular fluid of patients with PCOS. Inflammatory response, complement and coagulation cascades, activation of the immune response, lipid transport, and regulation of protein metabolic process were deregulated in PCOS, which may play essential roles in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Wenqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Qi Jiang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Yue Niu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Qiaoqiao Ding
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Xiao Yang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Yanjun Zheng
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Jing Hao, ; Daimin Wei,
| | - Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- *Correspondence: Jing Hao, ; Daimin Wei,
| |
Collapse
|
9
|
Shearston K, Tan JTM, Cochran BJ, Rye KA. Inhibition of Vascular Inflammation by Apolipoprotein A-IV. Front Cardiovasc Med 2022; 9:901408. [PMID: 35845068 PMCID: PMC9279673 DOI: 10.3389/fcvm.2022.901408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Background Apolipoprotein (apo) A-IV, the third most abundant apolipoprotein in human high density lipoproteins (HDLs), inhibits intestinal and systemic inflammation. This study asks if apoA-IV also inhibits acute vascular inflammation. Methods Inflammation was induced in New Zealand White rabbits by placing a non-occlusive silastic collar around the common carotid artery. A single 1 mg/kg intravenous infusion of lipid-free apoA-IV or saline (control) was administered to the animals 24 h before collar insertion. The animals were euthanised 24 h post-collar insertion. Human coronary artery cells (HCAECs) were pre-incubated with reconstituted HDLs containing apoA-IV complexed with phosphatidylcholine, (A-IV)rHDLs, then activated by incubation with tumour necrosis factor (TNF)-α. Cell surface vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in the TNF-α-activated HCAECs was quantified by flow cytometry. VCAM-1, ICAM-1 and 3β-hydroxysteroid-Δ24 reductase (DHCR24) mRNA levels were quantified by real time PCR. Results Apolipoprotein ApoA-IV treatment significantly decreased collar-induced endothelial expression of VCAM-1, ICAM-1 and neutrophil infiltration into the arterial intima by 67.6 ± 9.9% (p < 0.01), 75.4 ± 6.9% (p < 0.01) and 74.4 ± 8.5% (p < 0.05), respectively. It also increased endothelial expression of DHCR24 by 2.6-fold (p < 0.05). Pre-incubation of HCAECs with (A-IV)rHDLs prior to stimulation with TNF-α inhibited VCAM-1 and ICAM-1 protein levels by 62.2 ± 12.1% and 33.7 ± 5.7%, respectively. VCAM-1 and ICAM-1 mRNA levels were decreased by 55.8 ± 7.2% and 49.6 ± 7.9%, respectively, while DHCR24 mRNA expression increased by threefold. Transfection of HCAECs with DHCR24 siRNA attenuated the anti-inflammatory effects of (A-IV)rHDLs. Pre-incubation of TNF-α-activated HCAECs with (A-IV)rHDLs also inhibited nuclear translocation of the p65 subunit of nuclear factor-κB (NF-κB), and decreased IκBα phosphorylation. Conclusion These results indicate that apoA-IV inhibits vascular inflammation in vitro and in vivo by inhibiting NF-κB activation in a DHCR24-dependent manner.
Collapse
Affiliation(s)
- Kate Shearston
- Lipid Research Group, Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Joanne T. M. Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Blake J. Cochran
- Lipid Research Group, Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Kerry-Anne Rye,
| |
Collapse
|
10
|
Schwaiger JP, Kollerits B, Steinbrenner I, Weissensteiner H, Schönherr S, Forer L, Kotsis F, Lamina C, Schneider MP, Schultheiss UT, Wanner C, Köttgen A, Eckardt KU, Kronenberg F. Apolipoprotein A-IV concentrations and clinical outcomes in a large chronic kidney disease cohort: Results from the GCKD study. J Intern Med 2022; 291:622-636. [PMID: 34914850 PMCID: PMC9305919 DOI: 10.1111/joim.13437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) represents a chronic proinflammatory state and is associated with very high cardiovascular risk. Apolipoprotein A-IV (apoA-IV) has antiatherogenic, antioxidative, anti-inflammatory and antithrombotic properties and levels increase significantly during the course of CKD. OBJECTIVES We aimed to investigate the association between apoA-IV and all-cause mortality and cardiovascular outcomes in the German Chronic Kidney Disease study. METHODS This was a prospective cohort study including 5141 Caucasian patients with available apoA-IV measurements and CKD. The majority of the patients had an estimated glomerular filtration rate (eGFR) of 30-60 ml/min/1.73m2 or an eGFR >60 ml/min/1.73m2 in the presence of overt proteinuria. Median follow-up was 6.5 years. The association of apoA-IV with comorbidities at baseline and endpoints during follow-up was modelled adjusting for major confounders. RESULTS Mean apoA-IV concentrations of the entire cohort were 28.9 ± 9.8 mg/dl. Patients in the highest apoA-IV quartile had the lowest high-sensitivity C-reactive protein values despite the highest prevalence of diabetes, albuminuria and the lowest eGFR. Each 10 mg/dl higher apoA-IV translated into lower odds of prevalent cardiovascular disease (1289 cases, odds ratio = 0.80, 95% confidence interval [CI] 0.72-0.86, p = 0.0000003). During follow-up, each 10 mg/dl higher apoA-IV was significantly associated with a lower risk for all-cause mortality (600 cases, hazard ratio [HR] = 0.81, 95% CI 0.73-0.89, p = 0.00004), incident major adverse cardiovascular events (506 cases, HR = 0.88, 95% CI 0.79-0.99, p = 0.03) and death or hospitalizations due to heart failure (346 cases, HR = 0.84, 95% CI 0.73-0.96, p = 0.01). CONCLUSIONS These data support a link between elevated apoA-IV concentrations and reduced inflammation in moderate CKD. ApoA-IV appears to be an independent risk marker for reduced all-cause mortality, cardiovascular events and heart failure in a large cohort of patients with CKD.
Collapse
Affiliation(s)
- Johannes P Schwaiger
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Internal Medicine, Landeskrankenhaus Hall i.T., Hall in Tirol, Austria
| | - Barbara Kollerits
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Department of Medicine IV - Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus P Schneider
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Department of Medicine IV - Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Christoph Wanner
- Division of Nephrology, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | -
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Frudd K, Sivaprasad S, Raman R, Krishnakumar S, Revathy YR, Turowski P. Diagnostic circulating biomarkers to detect vision-threatening diabetic retinopathy: Potential screening tool of the future? Acta Ophthalmol 2022; 100:e648-e668. [PMID: 34269526 DOI: 10.1111/aos.14954] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
With the increasing prevalence of diabetes in developing and developed countries, the socio-economic burden of diabetic retinopathy (DR), the leading complication of diabetes, is growing. Diabetic retinopathy (DR) is currently one of the leading causes of blindness in working-age adults worldwide. Robust methodologies exist to detect and monitor DR; however, these rely on specialist imaging techniques and qualified practitioners. This makes detecting and monitoring DR expensive and time-consuming, which is particularly problematic in developing countries where many patients will be remote and have little contact with specialist medical centres. Diabetic retinopathy (DR) is largely asymptomatic until late in the pathology. Therefore, early identification and stratification of vision-threatening DR (VTDR) is highly desirable and will ameliorate the global impact of this disease. A simple, reliable and more cost-effective test would greatly assist in decreasing the burden of DR around the world. Here, we evaluate and review data on circulating protein biomarkers, which have been verified in the context of DR. We also discuss the challenges and developments necessary to translate these promising data into clinically useful assays, to detect VTDR, and their potential integration into simple point-of-care testing devices.
Collapse
Affiliation(s)
- Karen Frudd
- Institute of Ophthalmology University College London London UK
| | - Sobha Sivaprasad
- Institute of Ophthalmology University College London London UK
- NIHR Moorfields Biomedical Research Centre Moorfields Eye Hospital London UK
| | - Rajiv Raman
- Vision Research Foundation Sankara Nethralaya Chennai Tamil Nadu India
| | | | | | - Patric Turowski
- Institute of Ophthalmology University College London London UK
| |
Collapse
|
12
|
HDL Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:1-11. [DOI: 10.1007/978-981-19-1592-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Fan Y, Gao J, Li Y, Chen X, Zhang T, You W, Xue Y, Shen C. The Variants at APOA1 and APOA4 Contribute to the Susceptibility of Schizophrenia With Inhibiting mRNA Expression in Peripheral Blood Leukocytes. Front Mol Biosci 2021; 8:785445. [PMID: 34938775 PMCID: PMC8685515 DOI: 10.3389/fmolb.2021.785445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022] Open
Abstract
Objective: Abnormal lipid metabolism has a close link to the pathophysiology of schizophrenia (SZ). This study mainly aimed to evaluate the association of variants at apolipoprotein A1 (APOA1) and APOA4 with SZ in a Chinese Han population. Methods: The rs5072 of APOA1 and rs1268354 of APOA4 were examined in a case–control study involving 2,680 patients with SZ from the hospital and 2,223 healthy controls screened by physical examination from the community population. The association was estimated with the odds ratio (OR) and 95% confidence intervals (95% CIs) by logistic regression. The APOA1 and APOA4 messenger RNA (mRNA) in peripheral blood leukocytes were measured by real-time PCR and compared between SZ cases and controls. Serum apoA1 levels were detected by turbidimetric inhibition immunoassay and high-density lipoprotein cholesterol (HDL-C) levels were detected by the homogeneous method. Results: Both of the rs5072 of APOA1 and rs1268354 of APOA4 had statistically significant associations with SZ. After adjustment for age and sex, ORs (95% CIs) of the additive model of rs5072 and rs1268354 were 0.82 (0.75–0.90) and 1.120 (1.03–1.23), and p-values were 3.22 × 10−5 and 0.011, respectively. The association of rs5072 with SZ still presented statistical significance even after Bonferroni correction (p-value×6). SZ patients during the episode presented lower levels of apoA1, HDL-C, mRNA of APOA1 common variants and transcript variant 4, and APOA4 mRNA than controls (p < 0.01) while SZ patients in remission showed a significantly decreased APOA1 transcript variant 3 expression level and increased APOA4 mRNA expression level (p < 0.01). mRNA expression levels of APOA1 transcript variant 4 significantly increased with the variations of rs5072 in SZ during the episode (ptrend = 0.017). After the SZ patients received an average of 27.50 ± 9.90 days of antipsychotic treatment, the median (interquartile) of serum apoA1 in the SZ episode significantly increased from 1.03 (1.00.1.20) g/L to 1.08 (1.00.1.22) g/L with the p-value of 0.044. Conclusion: Our findings suggest that the genetic variations of APOA1 rs5072 and APOA4 rs1268354 contribute to the susceptibility of SZ, and the expression levels of APOA1 and APOA4 mRNA of peripheral blood leukocytes decreased in SZ patients during the episode while APOA4 increased after antipsychotic treatment.
Collapse
Affiliation(s)
- Yao Fan
- Department of Clinical Epidemiology, Jiangsu Province Geriatric Institute, Geriatric Hospital of Nanjing Medical University, Nanjing, China.,Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jun Gao
- Department of Neurobiology, Nanjing Medical University, Nanjing, China
| | - Yinghui Li
- Department of Medical Psychology, Huai'an Third Hospital, Huai'an, China
| | - Xuefei Chen
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Ting Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weiyan You
- Department of Neurobiology, Nanjing Medical University, Nanjing, China
| | - Yong Xue
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Qu J, Fourman S, Fitzgerald M, Liu M, Nair S, Oses-Prieto J, Burlingame A, Morris JH, Davidson WS, Tso P, Bhargava A. Low-density lipoprotein receptor-related protein 1 (LRP1) is a novel receptor for apolipoprotein A4 (APOA4) in adipose tissue. Sci Rep 2021; 11:13289. [PMID: 34168225 PMCID: PMC8225859 DOI: 10.1038/s41598-021-92711-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
Apolipoprotein A4 (APOA4) is one of the most abundant and versatile apolipoproteins facilitating lipid transport and metabolism. APOA4 is synthesized in the small intestine, packaged onto chylomicrons, secreted into intestinal lymph and transported via circulation to several tissues, including adipose. Since its discovery nearly 4 decades ago, to date, only platelet integrin αIIbβ3 has been identified as APOA4 receptor in the plasma. Using co-immunoprecipitation coupled with mass spectrometry, we probed the APOA4 interactome in mouse gonadal fat tissue, where ApoA4 gene is not transcribed but APOA4 protein is abundant. We demonstrate that lipoprotein receptor-related protein 1 (LRP1) is the cognate receptor for APOA4 in adipose tissue. LRP1 colocalized with APOA4 in adipocytes; it interacted with APOA4 under fasting condition and their interaction was enhanced during lipid feeding concomitant with increased APOA4 levels in plasma. In 3T3-L1 mature adipocytes, APOA4 promoted glucose uptake both in absence and presence of insulin in a dose-dependent manner. Knockdown of LRP1 abrogated APOA4-induced glucose uptake as well as activation of phosphatidylinositol 3 kinase (PI3K)-mediated protein kinase B (AKT). Taken together, we identified LRP1 as a novel receptor for APOA4 in promoting glucose uptake. Considering both APOA4 and LRP1 are multifunctional players in lipid and glucose metabolism, our finding opens up a door to better understand the molecular mechanisms along APOA4-LRP1 axis, whose dysregulation leads to obesity, cardiovascular disease, and diabetes.
Collapse
Affiliation(s)
- Jie Qu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Sarah Fourman
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Maureen Fitzgerald
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Supna Nair
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - Juan Oses-Prieto
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - Alma Burlingame
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - John H Morris
- Departments of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, San Francisco, CA, 94158, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 2180 E Galbraith Road, Cincinnati, 45237-0507, USA
| | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California San Francisco, 513 Parnassus Avenue, Rm HSE1636, San Francisco, CA, 94143-0556, USA.
| |
Collapse
|
15
|
Kaykhaei MA, Ghezel A, Ansari-Moghaddam A, Sandoughi M, Sheikhi V, Heidari Z. Changes in serum levels of Apo AIV in patients with newly diagnosed hyperthyroidism and hypothyroidism: a preliminary study. Horm Mol Biol Clin Investig 2021; 42:175-181. [PMID: 33544467 DOI: 10.1515/hmbci-2020-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Apolipoprotein AIV has a role in chylomicrons and lipid secretion and catabolism. Also, Apo-AIV plays a role in the regulation of appetite and satiety. Previous studies on rats have shown that hyperthyroidism and hypothyroidism are associated with significant changes in Apo-AIV serum levels. There has been no research on serum Apo-AIV changes in hyper and hypothyroidism in humans. METHODS This case-control study was performed on new patients with hyper and hypothyroidism. Eighteen patients with hyperthyroidism and 18 patients with hypothyroidism enrolled in the study. After 12 weeks treatment blood samples were recruited. If euthyroidism was achieved, serum Apo-AIV level was measured. Eighteen euthyroid healthy individuals without thyroid disease were chosen as the control group from general population. RESULTS Serum levels of Apo-AIV before treatment in hypothyroidism, hyperthyroidism and in the control group were 85.61, 110.66 and 33.51 mg/dL respectively (p<0.001), which was significantly higher in hyperthyroid patients than hypothyroidism and control group. In patients with hyperthyroidism there was a significant decrease in serum levels of Apo-AIV after treatment (p=0.044). However in hypothyroidism a non-significant elevation in serum levels of Apo-AIV was observed (p=0.403). Furthermore, serum levels of Apo-AIV after treatment were significantly higher in both hyperthyroidism and hypothyroidism in comparison to control group (p<0.001). CONCLUSIONS The results of this study for the first time showed that the serum level of Apo-AIV is increased in patients with hyperthyroidism and is decreased in patients with hypothyroidism, and after treatment, there was a significant difference with the control group.
Collapse
Affiliation(s)
- Mahmoud Ali Kaykhaei
- Department of Endocrinology and Metabolism, Zahedan University of Medical Sciences, Zahedan, Iran.,Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Avadan Ghezel
- Department of Endocrinology and Metabolism, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Mahnaz Sandoughi
- Department of Rheumatology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Vahid Sheikhi
- Department of Pediatric Nephrology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Heidari
- Department of Endocrinology and Metabolism, Zahedan University of Medical Sciences, Zahedan, Iran.,Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
16
|
Ullah J, Hashmi S, Ali A, Khan F, Sami SA, Basir N, Bokhari SS, Sharif H, El-Seedi HR, Musharraf SG. Pericardial fluid proteomic label-free quantification of differentially expressed proteins in ischemic heart disease patients with systolic dysfunction by nano-LC-ESI-MS/MS analysis. RSC Adv 2020; 11:320-327. [PMID: 35423047 PMCID: PMC8691035 DOI: 10.1039/d0ra08389e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
Left ventricular systolic dysfunction (LVSD) is common in patients with pre-existing ischemic heart disease (IHD) and myocardial infarction. An untargeted proteomic approach is used to improve the understanding of the molecular mechanisms associated with LVSD and to find out potential proteomic signatures in pericardial fluid. The pericardial fluid of IHD (n = 45) patients was grouped into two categories according to the left ventricular ejection fraction, LVEF ≥45 (n = 33) and LVEF <45 (n = 12), and analyzed by using nano-liquid chromatography-mass spectrometry (nano-LC-MS/MS) technique. The nano-LC-MS/MS analysis resulted in the identification of 709 pericardial fluid (PF) proteins in both normal and impaired systolic functional groups (LVEF ≥45 vs. LVEF <45). Sixteen proteins were found to be differentially expressed (p < 0.05, fold change >2) including 12 down-regulated and 4 up-regulated in the impaired systolic functional group (LVEF <45) compared to the normal group (LVEF ≥45). Among the differentially expressed proteins the inflammatory marker albumin, atherosclerosis marker apolipoprotein A-IV and hedgehog-interacting protein marker of angiogenesis were predominantly associated with the impaired LVEF <45 group. KEGG pathway analysis revealed that the hedgehog (Hh) signalling pathway is up-regulated in LVSD reflecting the underlying molecular and pathophysiological processes.
Collapse
Affiliation(s)
- Junaid Ullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan +92 213 4819018 +92 213 4819019 +92 213 4824924 +92 213 4824925 +92 213 4819010
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Agha Khan University Karachi-74800 Pakistan
| | - Arslan Ali
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Faisal Khan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Shahid Ahmed Sami
- Department of Surgery, The Aga Khan University Hospital Karachi-74800 Pakistan
| | - Nageeb Basir
- Department of Medicine, The Aga Khan University Hospital Karachi-74800 Pakistan
| | - Syeda Saira Bokhari
- Department of Medicine, The Aga Khan University Hospital Karachi-74800 Pakistan
| | - Hasanat Sharif
- Department of Surgery, The Aga Khan University Hospital Karachi-74800 Pakistan
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University SE-751 23 Uppsala Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University Zhenjiang 212013 China
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan +92 213 4819018 +92 213 4819019 +92 213 4824924 +92 213 4824925 +92 213 4819010
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| |
Collapse
|
17
|
Karlsson C, Wallenius K, Walentinsson A, Greasley PJ, Miliotis T, Hammar M, Iaconelli A, Tapani S, Raffaelli M, Mingrone G, Carlsson B. Identification of Proteins Associated with the Early Restoration of Insulin Sensitivity After Biliopancreatic Diversion. J Clin Endocrinol Metab 2020; 105:5896394. [PMID: 32830851 PMCID: PMC7518464 DOI: 10.1210/clinem/dgaa558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/18/2020] [Indexed: 01/15/2023]
Abstract
CONTEXT Insulin resistance (IR) is a risk factor for type 2 diabetes, diabetic kidney disease, cardiovascular disease and nonalcoholic steatohepatitis. Biliopancreatic diversion (BPD) is the most effective form of bariatric surgery for improving insulin sensitivity. OBJECTIVE To identify plasma proteins correlating with the early restoration of insulin sensitivity after BPD. DESIGN Prospective single-center study including 20 insulin-resistant men with morbid obesity scheduled for BPD. Patient characteristics and blood samples were repeatedly collected from baseline up to 4 weeks postsurgery. IR was assessed by homeostatic model assessment for insulin resistance (HOMA-IR), Matsuda Index, and by studying metabolic profiles during meal tolerance tests. Unbiased proteomic analysis was performed to identify plasma proteins altered by BPD. Detailed plasma profiles were made on a selected set of proteins by targeted multiple reaction monitoring mass spectrometry (MRM/MS). Changes in plasma proteome were evaluated in relation to metabolic and inflammatory changes. RESULTS BPD resulted in improved insulin sensitivity and reduced body weight. Proteomic analysis identified 29 proteins that changed following BPD. Changes in plasma levels of afamin, apolipoprotein A-IV (ApoA4), and apolipoprotein A-II (ApoA2) correlated significantly with changes in IR. CONCLUSION Circulating levels of afamin, ApoA4, and ApoA2 were associated with and may contribute to the rapid improvement in insulin sensitivity after BPD.
Collapse
Affiliation(s)
- Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Correspondence and Reprint Requests: Cecilia Karlsson, MD, PhD, Assoc Prof, Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden, Pepparedsleden 1, SE-431 83 Mölndal, Sweden. E-mail:
| | - Kristina Wallenius
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Anna Walentinsson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Peter J Greasley
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Tasso Miliotis
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Mårten Hammar
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | | | - Sofia Tapani
- Early Biometrics and Statistical Innovation, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Marco Raffaelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geltrude Mingrone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Diabetes, King’s College London, London, United Kingdom
| | - Björn Carlsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| |
Collapse
|
18
|
Viñas A, Pardina E, Targarona J, Ruiz J, Pita AM, Virgili N, López-Tejero MD. Apolipoprotein A-IV measurements in paired venous and fingerprick blood samples: Agreement analysis. Clin Chim Acta 2019; 502:261-262. [PMID: 31758932 DOI: 10.1016/j.cca.2019.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 11/19/2022]
Affiliation(s)
- A Viñas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain.
| | - E Pardina
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain.
| | - J Targarona
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - J Ruiz
- MIXeSTAT S.L., Barcelona, Spain.
| | - A M Pita
- Unitat de Nutrició i Dietètica, Servei d'Endocrinologia i Nutrició, Hospital Universitari de Bellvitge (HUB), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - N Virgili
- Unitat de Nutrició i Dietètica, Servei d'Endocrinologia i Nutrició, Hospital Universitari de Bellvitge (HUB), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - M D López-Tejero
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
19
|
Luu L, Johnston LJ, Derricott H, Armstrong SD, Randle N, Hartley CS, Duckworth CA, Campbell BJ, Wastling JM, Coombes JL. An Open-Format Enteroid Culture System for Interrogation of Interactions Between Toxoplasma gondii and the Intestinal Epithelium. Front Cell Infect Microbiol 2019; 9:300. [PMID: 31555604 PMCID: PMC6723115 DOI: 10.3389/fcimb.2019.00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
When transmitted through the oral route, Toxoplasma gondii first interacts with its host at the small intestinal epithelium. This interaction is crucial to controlling initial invasion and replication, as well as shaping the quality of the systemic immune response. It is therefore an attractive target for the design of novel vaccines and adjuvants. However, due to a lack of tractable infection models, we understand surprisingly little about the molecular pathways that govern this interaction. The in vitro culture of small intestinal epithelium as 3D enteroids shows great promise for modeling the epithelial response to infection. However, the enclosed luminal space makes the application of infectious agents to the apical epithelial surface challenging. Here, we have developed three novel enteroid-based techniques for modeling T. gondii infection. In particular, we have adapted enteroid culture protocols to generate collagen-supported epithelial sheets with an exposed apical surface. These cultures retain epithelial polarization, and the presence of fully differentiated epithelial cell populations. They are susceptible to infection with, and support replication of, T. gondii. Using quantitative label-free mass spectrometry, we show that T. gondii infection of the enteroid epithelium is associated with up-regulation of proteins associated with cholesterol metabolism, extracellular exosomes, intermicrovillar adhesion, and cell junctions. Inhibition of host cholesterol and isoprenoid biosynthesis with Atorvastatin resulted in a reduction in parasite load only at higher doses, indicating that de novo synthesis may support, but is not required for, parasite replication. These novel models therefore offer tractable tools for investigating how interactions between T. gondii and the host intestinal epithelium influence the course of infection.
Collapse
Affiliation(s)
- Lisa Luu
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Luke J. Johnston
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hayley Derricott
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Stuart D. Armstrong
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Nadine Randle
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Catherine S. Hartley
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A. Duckworth
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J. Campbell
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan M. Wastling
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Janine L. Coombes
- Department of Infection Biology, Faculty of Health and Life Sciences, School of Veterinary Science, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
20
|
Wang Z, Wang L, Zhang Z, Feng L, Song X, Wu J. Apolipoprotein A-IV involves in glucose and lipid metabolism of rat. Nutr Metab (Lond) 2019; 16:41. [PMID: 31303888 PMCID: PMC6604154 DOI: 10.1186/s12986-019-0367-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/06/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Apolipoprotein A-IV (ApoA-IV) exists in relatively high levels in the circulation systems of animals, but its roles are not fully elucidated. It is known that the Apoa4 gene resides in the cluster Apoa1/Apoc3/Apoa4. Because of a short intergenic sequence between Apoc3 and Apoa4, a previous ApoA-IV knockout mouse model by gene targeting had an accompanying deficiency in ApoC-III expression, which limited its application in investigating the precise roles of ApoA-IV. To solve this problem, we created a specific knockout of ApoA-IV in Sprague-Dawlay rats by TALEN approach. METHODS Age-matched knockout rats and their wild-type littermate controls maintained on a standard rodent diet were studied and blood metabolic parameters were measured. Glucose, insulin, olive oil, and intralipid tolerance tests were performed to study the glucose and lipid metabolism of rats. Quantitative real-time PCR and RNA-seq analysis in liver and inguinal white adipose tissue (iWAT) of rats at three ages (18 weeks, 45 weeks and 90 weeks) were performed to identify the genes altered by ApoA-IV knockout. RESULTS ApoA-IV knockout rats were apparently normal and fertile, but exhibited improved glucose clearance when challenged with glucose tolerance test. In addition, fasting-induced hepatic steatosis was more pronounced in ApoA-IV knockout rats. Further analysis identified that a set of hepatic genes involved in glycolysis, gluconeogenesis and de novo lipogenesis were altered in the absence of ApoA-IV, which induced enhanced glycolysis, attenuated gluconeogenesis and elevated de novo lipogenesis. And the RNA-seq results also confirmed that almost all the genes mentioned in the phenotyping section were highly consistent throughout the three studied ages. CONCLUSIONS ApoA-IV functions in an age-independent manner in the modulation of glucose and lipid metabolism of rats, and may serve as a potential linker between hepatic glucose and lipid metabolism.
Collapse
Affiliation(s)
- Zhenguo Wang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Lu Wang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Zhuzhen Zhang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Li Feng
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Xue Song
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210 China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210 China
| |
Collapse
|
21
|
Pence S, Zhu Q, Binne E, Liu M, Shi H, Lo CC. Reduced Diet-induced Thermogenesis in Apolipoprotein A-IV Deficient Mice. Int J Mol Sci 2019; 20:E3176. [PMID: 31261740 PMCID: PMC6651278 DOI: 10.3390/ijms20133176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022] Open
Abstract
In the presence of dietary lipids, both apolipoprotein A-IV (ApoA-IV) production and brown adipose tissue (BAT) thermogenesis are increased. The effect of dietary lipid-induced AproA-IV on BAT thermogenesis and energy expenditure remains unknown. In the present study, we hypothesized that ApoA-IV knockout (ApoA-IV-KO) mice exhibited decreased BAT thermogenesis to affect energy homeostasis. To test this hypothesis, BAT thermogenesis in wildtype (WT) and ApoA-IV-KO mice fed either a standard low-fat chow diet or a high-fat diet (HFD) was investigated. When fed a chow diet, energy expenditure and food intake were comparable between WT and ApoA-IV-KO mice. After 1 week of HFD consumption, ApoA-IV-KO mice had comparable energy intake but produced lower energy expenditure relative to their WT controls in the dark phase. After an acute feeding of dietary lipids or 1-week HFD feeding, ApoA-IV-KO mice produced lower levels of uncoupling protein 1 (UCP1) and exhibited reduced expression of thermogenic genes in the BAT compared with WT controls. In response to cold exposure, however, ApoA-IV-KO mice had comparable energy expenditure and BAT temperature relative to WT mice. Thus, ApoA-IV-KO mice exhibited reduced diet-induced BAT thermogenesis and energy expenditure.
Collapse
Affiliation(s)
- Sydney Pence
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Diabetes Institute and Honor Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Qi Zhu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Erin Binne
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Diabetes Institute and Honor Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH 45215, USA
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Chunmin C Lo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Diabetes Institute and Honor Tutorial College, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
22
|
Wang X, Gong Y, Deng T, Zhang L, Liao X, Han C, Yang C, Huang J, Wang Q, Song X, Zhang T, Yu T, Zhu G, Ye X, Peng T. Diagnostic and prognostic significance of mRNA expressions of apolipoprotein A and C family genes in hepatitis B virus-related hepatocellular carcinoma. J Cell Biochem 2019; 120:18246-18265. [PMID: 31211449 DOI: 10.1002/jcb.29131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is among the most common and lethal malignancies worldwide. Apolipoproteins (APOs) have been reported increasingly for their relationships with tumors. We aim at exploring the potential relationships of apolipoprotein A (APOA) and apolipoprotein C (APOC) family members with HCC. METHODS A data set, containing 212 hepatitis B virus-related HCC patients, was used for analysis. The diagnostic and prognostic ability of APOA and APOC family genes was figured out. Risk score models and nomograms were developed for the HCC prognosis prediction. Moreover, molecular mechanism exploration were identified biological processes and metabolic pathways of these genes involved in. Validation analysis was carried out using online website. RESULTS APOA1, APOC1, APOC3, and APOC4 showed robust diagnosis significance (all P < 0.05). APOA4, APOC3, and APOC4 were associated with the overall survival (OS) while APOA4 and APOC4 were linked to recurrence-free survival (RFS, all P ≤ 0.05). Risk score models and nomograms had the advantage of predicting OS and RFS for HCC. Molecular mechanism exploration indicated that these genes were involved in the steroid metabolic process, the PPAR signaling pathway, and fatty acid metabolism. Besides that, validation analysis revealed that APOC1 and APOC4 had an association with OS; and APOC3 was associated with OS and RFS (all P ≤ 0.05). CONCLUSIONS APOA1, APOC1, APOC3, and APOC4 are likely to be potential diagnostic biomarkers and APOC3 and APOC4 are likely to be potential prognostic biomarkers for hepatitis B virus-related HCC. They may be involved in the steroid metabolic process, PPAR signaling pathway, and fatty acid metabolism.
Collapse
Affiliation(s)
- Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Teng Deng
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Linbo Zhang
- Department of Health Management and Division of Physical Examination, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianlu Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiaoqi Wang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaowei Song
- Department of Gastrointestinal Glands, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tengfang Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Qu J, Ko CW, Tso P, Bhargava A. Apolipoprotein A-IV: A Multifunctional Protein Involved in Protection against Atherosclerosis and Diabetes. Cells 2019; 8:E319. [PMID: 30959835 PMCID: PMC6523623 DOI: 10.3390/cells8040319] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is a lipid-binding protein, which is primarily synthesized in the small intestine, packaged into chylomicrons, and secreted into intestinal lymph during fat absorption. In the circulation, apoA-IV is present on chylomicron remnants, high-density lipoproteins, and also in lipid-free form. ApoA-IV is involved in a myriad of physiological processes such as lipid absorption and metabolism, anti-atherosclerosis, platelet aggregation and thrombosis, glucose homeostasis, and food intake. ApoA-IV deficiency is associated with atherosclerosis and diabetes, which renders it as a potential therapeutic target for treatment of these diseases. While much has been learned about the physiological functions of apoA-IV using rodent models, the action of apoA-IV at the cellular and molecular levels is less understood, let alone apoA-IV-interacting partners. In this review, we will summarize the findings on the molecular function of apoA-IV and apoA-IV-interacting proteins. The information will shed light on the discovery of apoA-IV receptors and the understanding of the molecular mechanism underlying its mode of action.
Collapse
Affiliation(s)
- Jie Qu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Aditi Bhargava
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA.
| |
Collapse
|
24
|
Estrada-Luna D, Ortiz-Rodriguez MA, Medina-Briseño L, Carreón-Torres E, Izquierdo-Vega JA, Sharma A, Cancino-Díaz JC, Pérez-Méndez O, Belefant-Miller H, Betanzos-Cabrera G. Current Therapies Focused on High-Density Lipoproteins Associated with Cardiovascular Disease. Molecules 2018; 23:molecules23112730. [PMID: 30360466 PMCID: PMC6278283 DOI: 10.3390/molecules23112730] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins (HDL) comprise a heterogeneous family of lipoprotein particles divided into subclasses that are determined by density, size and surface charge as well as protein composition. Epidemiological studies have suggested an inverse correlation between High-density lipoprotein-cholesterol (HDL-C) levels and the risk of cardiovascular diseases and atherosclerosis. HDLs promote reverse cholesterol transport (RCT) and have several atheroprotective functions such as anti-inflammation, anti-thrombosis, and anti-oxidation. HDLs are considered to be atheroprotective because they are associated in serum with paraoxonases (PONs) which protect HDL from oxidation. Polyphenol consumption reduces the risk of chronic diseases in humans. Polyphenols increase the binding of HDL to PON1, increasing the catalytic activity of PON1. This review summarizes the evidence currently available regarding pharmacological and alternative treatments aimed at improving the functionality of HDL-C. Information on the effectiveness of the treatments has contributed to the understanding of the molecular mechanisms that regulate plasma levels of HDL-C, thereby promoting the development of more effective treatment of cardiovascular diseases. For that purpose, Scopus and Medline databases were searched to identify the publications investigating the impact of current therapies focused on high-density lipoproteins.
Collapse
Affiliation(s)
- Diego Estrada-Luna
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | - María Araceli Ortiz-Rodriguez
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, UAEM, Calle Río Iztaccihuatl S/N, Vista Hermosa, 62350 Cuernavaca, Morelos, Mexico.
| | - Lizett Medina-Briseño
- Universidad de la Sierra Sur, UNSIS, Miahuatlán de Porfirio Díaz, 70800 Oaxaca, Mexico.
| | - Elizabeth Carreón-Torres
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | - Jeannett Alejandra Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Actopan-Tilcuautla, Ex-Hacienda La Concepción S/N, San Agustín Tlaxiaca, 42160 Hidalgo, Mexico.
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, 76130 Queretaro, Mexico.
| | - Juan Carlos Cancino-Díaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
| | - Oscar Pérez-Méndez
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | | | - Gabriel Betanzos-Cabrera
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Actopan-Tilcuautla, Ex-Hacienda La Concepción S/N, San Agustín Tlaxiaca, 42160 Hidalgo, Mexico.
| |
Collapse
|
25
|
Jiang TT, Shi LY, Chen J, Wei LL, Li M, Hu YT, Gan L, Liu CM, Tu HH, Li ZB, Yi WJ, Li JC. Screening and identification of potential protein biomarkers for evaluating the efficacy of intensive therapy in pulmonary tuberculosis. Biochem Biophys Res Commun 2018; 503:2263-2270. [PMID: 29959917 DOI: 10.1016/j.bbrc.2018.06.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022]
Abstract
This research aimed to discover potential biomarkers for evaluating the therapeutic efficacy of intensive therapy in pulmonary tuberculosis (TB). Protein profiles in 2-months intensively treated TB patients, untreated TB patients, and healthy controls were investigated with iTRAQ-2DLC-MS/MS technique. 71 differential proteins were identified in 2-months intensively treated TB patients. Significant differences in complement component C7 (CO7), apolipoprotein A-IV (APOA4), apolipoprotein C-II (APOC2), and angiotensinogen (ANGT) were found by ELISA validation. CO7 and ANGT were also found significantly different in sputum negative patients, compared with sputum positive patients after intensive treatment. Clinical analysis showed that after 2-months intensive treatment several indicators were significantly changed, and the one-year cure rate of sputum negative patients were significantly higher than sputum positive patients. Diagnostic models consisting of APOC2, CO7 and APOA4 were established to distinguish intensively treated TB patients from untreated TB patients and healthy controls with the AUC value of 0.910 and 0.935. Meanwhile, ANGT and CO7 were combined to identify sputum negative and sputum positive TB patients after intensive treatment with 89.36% sensitivity, 71.43% specificity, and the AUC value of 0.853. The results showed that APOC2, CO7, APOA4, and ANGT may be potential biomarkers for evaluating the efficacy of intensive anti-TB therapy.
Collapse
Affiliation(s)
- Ting-Ting Jiang
- South China University of Technology School of Medicine, Guangzhou, 510006, China
| | - Li-Ying Shi
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, 310013, China
| | - Jing Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China
| | - Li-Liang Wei
- Department of Pneumology, Shaoxing Municipal Hospital, Shaoxing, 312000, China
| | - Meng Li
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, 310013, China
| | - Yu-Ting Hu
- South China University of Technology School of Medicine, Guangzhou, 510006, China
| | - Lin Gan
- South China University of Technology School of Medicine, Guangzhou, 510006, China
| | - Chang-Ming Liu
- Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Hui Tu
- Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Bin Li
- Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Jing Yi
- Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China
| | - Ji-Cheng Li
- South China University of Technology School of Medicine, Guangzhou, 510006, China; Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Zhan J, Weng J, Hunt BG, Sean Davidson W, Liu M, Lo CC. Apolipoprotein A-IV enhances cholecystokinnin secretion. Physiol Behav 2018; 188:11-17. [PMID: 29378187 PMCID: PMC5845788 DOI: 10.1016/j.physbeh.2018.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 02/05/2023]
Abstract
Cholecystokinin (CCK) and apolipoprotein A-IV (ApoA-IV) are gastrointestinal peptides that play an important role in controlling energy homeostasis. Lymphatic ApoA-IV and plasma CCK secretion are mediated via a chylomicron formation-dependent pathway during a dietary lipid infusion. Given their similar roles as satiating proteins, the present study examines how the two peptides interact in their function. Specifically, this study sought to understand how ApoA-IV regulates CCK secretion. For this purpose, Cck gene expression in the small intestines of ApoA-IV knockout (ApoA-IV-KO) and wild-type (WT) mice were compared under an array of feeding conditions. When fed with a chow or high-fat diet (HFD), basal levels of Cck transcripts were significantly reduced in the duodenum of ApoA-IV-KO mice compared to WT mice. Furthermore, after an oral gavage of a lipid mixture, Cck gene expression in the duodenum was significantly reduced in ApoA-IV-KO mice relative to the change seen in WT mice. To determine the mechanism by which ApoA-IV modulates Cck gene expression, STC-1 cells were transfected with predesigned mouse lysophosphatidic acid receptor 5 (LPAR5) small interfering RNA (siRNA) to knockdown Lpar5 gene expression. In this in-vitro study, mouse recombinant ApoA-IV protein increased Cck gene expression in enteroendocrine STC-1 cells and stimulated CCK release from the STC-1 cells. However, the levels of CCK protein and Cck expression were attenuated when Lpar5 was knocked down in the STC-1 cells. Together these observations suggest that dietary lipid-induced ApoA-IV is associated with Cck synthesis in the duodenum and that ApoA-IV protein directly enhances CCK release through the activation of a LPAR5-dependent pathway.
Collapse
Affiliation(s)
- Jesse Zhan
- Department of Biomedical Sciences, Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan Weng
- Department of Biomedical Sciences, Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Brian G Hunt
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Chunmin C Lo
- Department of Biomedical Sciences, Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
27
|
Miyauchi E, Furuta T, Ohtsuki S, Tachikawa M, Uchida Y, Sabit H, Obuchi W, Baba T, Watanabe M, Terasaki T, Nakada M. Identification of blood biomarkers in glioblastoma by SWATH mass spectrometry and quantitative targeted absolute proteomics. PLoS One 2018. [PMID: 29513714 PMCID: PMC5841790 DOI: 10.1371/journal.pone.0193799] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Molecular biomarkers in blood are needed to aid the early diagnosis and clinical assessment of glioblastoma (GBM). Here, in order to identify biomarker candidates in plasma of GBM patients, we performed quantitative comparisons of the plasma proteomes of GBM patients (n = 14) and healthy controls (n = 15) using SWATH mass spectrometry analysis. The results were validated by means of quantitative targeted absolute proteomics analysis. As a result, we identified eight biomarker candidates for GBM (leucine-rich alpha-2-glycoprotein (LRG1), complement component C9 (C9), C-reactive protein (CRP), alpha-1-antichymotrypsin (SERPINA3), apolipoprotein B-100 (APOB), gelsolin (GSN), Ig alpha-1 chain C region (IGHA1), and apolipoprotein A-IV (APOA4)). Among them, LRG1, C9, CRP, GSN, IGHA1, and APOA4 gave values of the area under the receiver operating characteristics curve of greater than 0.80. To investigate the relationships between the biomarker candidates and GBM biology, we examined correlations between plasma concentrations of biomarker candidates and clinical presentation (tumor size, progression-free survival time, or overall survival time) in GBM patients. The plasma concentrations of LRG1, CRP, and C9 showed significant positive correlations with tumor size (R2 = 0.534, 0.495, and 0.452, respectively).
Collapse
Affiliation(s)
- Eisuke Miyauchi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Wataru Obuchi
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Tomoko Baba
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Michitoshi Watanabe
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
28
|
Abstract
The picture of HDL cholesterol (HDL-C) as the "good" cholesterol has eroded. This is even more surprising because there exists strong evidence that HDL-C is associated with cardiovascular disease (CVD) in the general population as well as in patients with impairment of kidney function and/or progression of CKD. However, drugs that dramatically increase HDL-C have mostly failed to decrease CVD events. Furthermore, genetic studies took the same line, as genetic variants that have a pronounced influence on HDL-C concentrations did not show an association with cardiovascular risk. For many, this was not surprising, given that an HDL particle is highly complex and carries >80 proteins and several hundred lipid species. Simply measuring cholesterol might not reflect the variety of biologic effects of heterogeneous HDL particles. Therefore, functional studies and the involvement of HDL components in the reverse cholesterol transport, including the cholesterol efflux capacity, have become a further focus of study during recent years. As also observed for other aspects, CKD populations behave differently compared with non-CKD populations. Although clear disturbances have been observed for the "functionality" of HDL particles in patients with CKD, this did not necessarily translate into clear-cut associations with outcomes.
Collapse
Affiliation(s)
- Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Molina-Sánchez P, Jorge I, Martinez-Pinna R, Blanco-Colio LM, Tarin C, Torres-Fonseca MM, Esteban M, Laustsen J, Ramos-Mozo P, Calvo E, Lopez JA, Ceniga MVD, Michel JB, Egido J, Andrés V, Vazquéz J, Meilhac O, Burillo E, Lindholt JS, Martin-Ventura JL. ApoA-I/HDL-C levels are inversely associated with abdominal aortic aneurysm progression. Thromb Haemost 2017; 113:1335-46. [DOI: 10.1160/th14-10-0874] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/21/2015] [Indexed: 12/18/2022]
Abstract
SummaryAbdominal aortic aneurysm (AAA) evolution is unpredictable, and there is no therapy except surgery for patients with an aortic size > 5 cm (large AAA). We aimed to identify new potential biomarkers that could facilitate prognosis and treatment of patients with AAA. A differential quantitative proteomic analysis of plasma proteins was performed in AAA patients at different stages of evolution [small AAA (aortic size=3�5cm) vs large AAA] using iTRAQ labelling, highthroughput nano-LC-MS/MS and a novel multi-layered statistical model. Among the proteins identified, ApoA-I was decreased in patients with large AAA compared to those with small AAA. These results were validated by ELISA on plasma samples from small (n=90) and large AAA (n=26) patients (150 ± 3 vs 133 ± 5 mg/dl, respectively, p< 0.001). ApoA-I levels strongly correlated with HDL-Cholesterol (HDL-C) concentration (r=0.9, p< 0.001) and showed a negative correlation with aortic size (r=-0.4, p< 0.01) and thrombus volume (r=-0.3, p< 0.01), which remained significant after adjusting for traditional risk factors. In a prospective study, HDL-C independently predicted aneurysmal growth rate in multiple linear regression analysis (n=122, p=0.008) and was inversely associated with need for surgical repair (Adjusted hazard ratio: 0.18, 95 % confidence interval: 0.04�0.74, p=0.018). In a nation-wide Danish registry, we found lower mean HDL-C concentration in large AAA patients (n=6,560) compared with patients with aorto-iliac occlusive disease (n=23,496) (0.89 ± 2.99 vs 1.59 ± 5.74 mmol/l, p< 0.001). Finally, reduced mean aortic AAA diameter was observed in AngII-infused mice treated with ApoA-I mimetic peptide compared with saline-injected controls. In conclusion, ApoAI/ HDL-C systemic levels are negatively associated with AAA evolution. Therapies targeting HDL functionality could halt AAA formation.
Collapse
|
30
|
Synergic effects of the ApoC3 and ApoA4 polymorphisms on the risk of hypertension. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Weng J, Lou D, Benoit SC, Coschigano N, Woods SC, Tso P, Lo CC. Energy homeostasis in apolipoprotein AIV and cholecystokinin-deficient mice. Am J Physiol Regul Integr Comp Physiol 2017; 313:R535-R548. [PMID: 28768657 DOI: 10.1152/ajpregu.00034.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
Apolipoprotein AIV (ApoAIV) and cholecystokinin (CCK) are well-known satiating signals that are stimulated by fat consumption. Peripheral ApoAIV and CCK interact to prolong satiating signals. In the present study, we hypothesized that ApoAIV and CCK control energy homeostasis in response to high-fat diet feeding. To test this hypothesis, energy homeostasis in ApoAIV and CCK double knockout (ApoAIV/CCK-KO), ApoAIV knockout (ApoAIV-KO), and CCK knockout (CCK-KO) mice were monitored. When animals were maintained on a low-fat diet, ApoAIV/CCK-KO, ApoAIV-KO, and CCK-KO mice had comparable energy intake and expenditure, body weight, fat mass, fat absorption, and plasma parameters relative to the controls. In contrast, these KO mice exhibited impaired lipid transport to epididymal fat pads in response to intraduodenal infusion of dietary lipids. Furthermore, ApoAIV-KO mice had upregulated levels of CCK receptor 2 (CCK2R) in the small intestine while ApoAIV/CCK-KO mice had upregulated levels of CCK2R in the brown adipose tissue. After 20 wk of a high-fat diet, ApoAIV-KO and CCK-KO mice had comparable body weight and fat mass, as well as lower energy expenditure at some time points. However, ApoAIV/CCK-KO mice exhibited reduced body weight and adiposity relative to wild-type mice, despite having normal food intake. Furthermore, ApoAIV/CCK-KO mice displayed normal fat absorption and locomotor activity, as well as enhanced energy expenditure. These observations suggest that mice lacking ApoAIV and CCK have reduced body weight and adiposity, possibly due to impaired lipid transport and elevated energy expenditure.
Collapse
Affiliation(s)
- Jonathan Weng
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NewYork
| | - Danwen Lou
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio; and
| | - Stephen C Benoit
- Department of Psychiatry, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Natalie Coschigano
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio
| | - Stephen C Woods
- Department of Psychiatry, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio; and
| | - Chunmin C Lo
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, and Diabetes Institute, Ohio University, Athens, Ohio;
| |
Collapse
|
32
|
Kang M, Kim J, An HT, Ko J. Human leucine zipper protein promotes hepatic steatosis via induction of apolipoprotein A-IV. FASEB J 2017; 31:2548-2561. [PMID: 28246167 DOI: 10.1096/fj.201601227r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022]
Abstract
The molecular mechanism of stress-induced hepatic steatosis is not well known. Human leucine zipper protein (LZIP) regulates the expression of genes involved in inflammation, cell migration, and stress response. The aim of this study was to determine the regulatory role of LZIP in stress-induced hepatic steatosis. We used a microarray analysis to identify LZIP-induced genes involved in hepatic lipid metabolism. LZIP increased the expression of apolipoprotein A-IV (APOA4) mRNA. In the presence of stress inducer, APOA4 promoter analysis was performed, and LZIP-induced lipid accumulation was monitored in mouse primary cells and human tissues. Under Golgi stress conditions, LZIP underwent proteolytic cleavage and was phosphorylated by AKT to protect against proteasome degradation. The stabilized N-terminal LZIP was translocated to the nucleus, where it directly bound to the APOA4 promoter, leading to APOA4 induction. LZIP-induced APOA4 expression resulted in increased absorption of surrounding free fatty acids. LZIP also promoted hepatic steatosis in mouse liver. Both LZIP and APOA4 were highly expressed in human steatosis samples. Our findings indicate that LZIP is a novel modulator of APOA4 expression and hepatic lipid metabolism. LZIP might be a therapeutic target for developing treatment strategies for hepatic steatosis and related metabolic diseases.-Kang, M., Kim, J., An, H.-T., Ko, J. Human leucine zipper protein promotes hepatic steatosis via induction of apolipoprotein A-IV.
Collapse
Affiliation(s)
| | | | | | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is a common disease with an estimated prevalence of 10-12%. There are pronounced differences between ethnicities with a 3-fold to 4-fold higher lifetime risk for end-stage kidney disease in African Americans compared to European Americans. The purpose of this review was to discuss recent findings on two apolipoproteins (apolipoprotein L1 and A-IV) in the context of kidney disease and kidney function. RECENT FINDINGS The observation that certain apolipoprotein L1 risk genotypes that are only present in African Americans might explain a major fraction of the ethnic differences for nondiabetic CKD has set the stage for this otherwise under-researched apolipoprotein. These risk genotypes on the one hand protect African Americans against African sleeping sickness but cause on the other hand several types of nondiabetic CKD. We are currently beginning to understand the mechanisms how apolipoprotein L1 is involved in the modification of lysosomal and cytoplasmic membranes. The second protein, apolipoprotein A-IV (apoA-IV), turned out to be an early marker of kidney impairment not only in patients with primary CKD but also in individuals from the general population. Genetic studies provided strong support of a causal effect of kidney function on apoA-IV concentrations. SUMMARY These two apolipoproteins have very distinct properties. Apolipoprotein L1 is causally involved in the development of nondiabetic CKD in African Americans. In contrast, apoA-IV is an early marker for kidney impairment.
Collapse
Affiliation(s)
- Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Schöpfstr. 41, 6020 Innsbruck, Austria
| |
Collapse
|
34
|
Dorcely B, Katz K, Jagannathan R, Chiang SS, Oluwadare B, Goldberg IJ, Bergman M. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab Syndr Obes 2017; 10:345-361. [PMID: 28860833 PMCID: PMC5565252 DOI: 10.2147/dmso.s100074] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The number of individuals with prediabetes is expected to grow substantially and estimated to globally affect 482 million people by 2040. Therefore, effective methods for diagnosing prediabetes will be required to reduce the risk of progressing to diabetes and its complications. The current biomarkers, glycated hemoglobin (HbA1c), fructosamine, and glycated albumin have limitations including moderate sensitivity and specificity and are inaccurate in certain clinical conditions. Therefore, identification of additional biomarkers is being explored recognizing that any single biomarker will also likely have inherent limitations. Therefore, combining several biomarkers may more precisely identify those at high risk for developing prediabetes and subsequent progression to diabetes. This review describes recently identified biomarkers and their potential utility for addressing the burgeoning epidemic of dysglycemic disorders.
Collapse
Affiliation(s)
- Brenda Dorcely
- New York University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY
| | - Karin Katz
- New York University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY
| | - Ram Jagannathan
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Stephanie S Chiang
- New York University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY
| | - Babajide Oluwadare
- New York University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY
| | - Ira J Goldberg
- New York University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY
| | - Michael Bergman
- New York University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY
- Correspondence: Michael Bergman, New York University School of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, 550 1st Avenue, Suite 5E, New York, NY 10016, USA, Tel +1 212 481 1350, Fax +1 212 481 1355, Email
| |
Collapse
|
35
|
López-Tejero MD, Virgili N, Targarona J, Ruiz J, García N, Oró D, García-Villoria J, Creus G, Pita AM. Apo AIV and Citrulline Plasma Concentrations in Short Bowel Syndrome Patients: The Influence of Short Bowel Anatomy. PLoS One 2016; 11:e0163762. [PMID: 27689355 PMCID: PMC5045203 DOI: 10.1371/journal.pone.0163762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 08/25/2016] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Parenteral nutrition (PN) dependence in short bowel syndrome (SBS) patients is linked to the functionality of the remnant small bowel (RSB). Patients may wean off PN following a period of intestinal adaptation that restores this functionality. Currently, plasma citrulline is the standard biomarker for monitoring intestinal functionality and adaptation. However, available studies reveal that the relationship the biomarker with the length and function of the RSB is arguable. Thus, having additional biomarkers would improve pointing out PN weaning. AIM By measuring concomitant changes in citrulline and the novel biomarker apolipoprotein AIV (Apo AIV), as well as taking into account the anatomy of the RSB, this exploratory study aims to a better understanding of the intestinal adaptation process and characterization of the SBS patients under PN. METHODS Thirty four adult SBS patients were selected and assigned to adapted (aSBS) and non-adapted (nSBS) groups after reconstructive surgeries. Remaining jejunum and ileum lengths were recorded. The aSBS patients were either on an oral diet (ORAL group), those with intestinal insufficiency, or on oral and home parenteral nutrition (HPN group), those with chronic intestinal failure. Apo AIV and citrulline were analyzed in plasma samples after overnight fasting. An exploratory ROC analysis using citrulline as gold standard was performed. RESULTS Biomarkers, Apo AIV and citrulline showed a significant correlation with RSBL in aSBS patients. In jejuno-ileocolic patients, only Apo AIV correlated with RSBL (rb = 0.54) and with ileum length (rb = 0.84). In patients without ileum neither biomarker showed any correlation with RSBL. ROC analysis indicated the Apo AIV cut-off value to be 4.6 mg /100 mL for differentiating between the aSBS HPN and ORAL groups. CONCLUSIONS Therefore, in addition to citrulline, Apo AIV can be set as a biomarker to monitor intestinal adaptation in SBS patients. As short bowel anatomy is shown to influence citrulline and Apo AIV plasma values, both biomarkers complement each other furnishing a new insight to manage PN dependence.
Collapse
Affiliation(s)
- M. Dolores López-Tejero
- Departament de Bioquimica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| | - Núria Virgili
- Unitat de Nutrició i Dietètica, Servei d’Endocrinologia i Nutrició, Hospital Universitari de Bellvitge (HUB), IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Targarona
- Departament de Bioquimica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | - Natalia García
- Departament de Bioquimica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Denise Oró
- Departament de Bioquimica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Judit García-Villoria
- Sección de Errores Congénitos del Metabolismo-IBC, Servicio de Bioquímica y Genética Molecular, Hospital Clínic de Barcelona, CIBERER, IDIBAPS, Barcelona, Spain
| | - Gloria Creus
- Unitat de Nutrició i Dietètica, Servei d’Endocrinologia i Nutrició, Hospital Universitari de Bellvitge (HUB), IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Ana M. Pita
- Unitat de Nutrició i Dietètica, Servei d’Endocrinologia i Nutrició, Hospital Universitari de Bellvitge (HUB), IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
36
|
Cheng D, Xu X, Simon T, Boudyguina E, Deng Z, VerHague M, Lee AH, Shelness GS, Weinberg RB, Parks JS. Very Low Density Lipoprotein Assembly Is Required for cAMP-responsive Element-binding Protein H Processing and Hepatic Apolipoprotein A-IV Expression. J Biol Chem 2016; 291:23793-23803. [PMID: 27655915 DOI: 10.1074/jbc.m116.749283] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatic apolipoprotein A-IV (apoA-IV) expression is correlated with hepatic triglyceride (TG) content in mouse models of chronic hepatosteatosis, and steatosis-induced hepatic apoA-IV gene expression is regulated by nuclear transcription factor cAMP-responsive element-binding protein H (CREBH) processing. To define what aspects of TG homeostasis regulate hepatic CREBH processing and apoA-IV gene expression, several mouse models of attenuated VLDL particle assembly were subjected to acute hepatosteatosis induced by an overnight fast or short term ketogenic diet feeding. Compared with chow-fed C57BL/6 mice, fasted or ketogenic diet-fed mice displayed increased hepatic TG content, which was highly correlated (r2 = 0.95) with apoA-IV gene expression, and secretion of larger, TG-enriched VLDL, despite a lower rate of TG secretion and a similar or reduced rate of apoB100 secretion. When VLDL particle assembly and secretion was inhibited by hepatic shRNA-induced apoB silencing or genetic or pharmacologic reduction in microsomal triglyceride transfer protein (MTP) activity, hepatic TG content increased dramatically; however, CREBH processing and apoA-IV gene expression were attenuated compared with controls. Adenovirus-mediated reconstitution of MTP expression proportionately restored CREBH processing and apoA-IV expression in liver-specific MTP knock-out mice. These results reveal that hepatic TG content, per se, does not regulate CREBH processing. Instead, TG mobilization into the endoplasmic reticulum for nascent VLDL particle assembly activates CREBH processing and enhances apoA-IV gene expression in the setting of acute steatosis. We conclude that VLDL assembly and CREBH activation play key roles in the response to hepatic steatosis by up-regulating apoA-IV and promoting assembly and secretion of larger, more TG-enriched VLDL particles.
Collapse
Affiliation(s)
- Dongmei Cheng
- From the Departments of Internal Medicine-Section on Molecular Medicine
| | - Xu Xu
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Trang Simon
- Internal Medicine-Section on Gastroenterology
| | - Elena Boudyguina
- From the Departments of Internal Medicine-Section on Molecular Medicine
| | | | - Melissa VerHague
- From the Departments of Internal Medicine-Section on Molecular Medicine
| | - Ann-Hwee Lee
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | | | | | - John S Parks
- From the Departments of Internal Medicine-Section on Molecular Medicine, .,Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| |
Collapse
|
37
|
von Toerne C, Huth C, de Las Heras Gala T, Kronenberg F, Herder C, Koenig W, Meisinger C, Rathmann W, Waldenberger M, Roden M, Peters A, Thorand B, Hauck SM. MASP1, THBS1, GPLD1 and ApoA-IV are novel biomarkers associated with prediabetes: the KORA F4 study. Diabetologia 2016; 59:1882-92. [PMID: 27344311 DOI: 10.1007/s00125-016-4024-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/19/2016] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Individuals at a high risk of type 2 diabetes demonstrate moderate impairments in glucose metabolism years before the clinical manifestation of type 2 diabetes, a state called 'prediabetes'. In order to elucidate the pathophysiological processes leading to type 2 diabetes, we aimed to identify protein biomarkers associated with prediabetes. METHODS In a proteomics study, we used targeted selected reaction monitoring (SRM)-MS to quantify 23 candidate proteins in the plasma of 439 randomly selected men and women aged 47-76 years from the population-based German KORA F4 study. Cross-sectional associations of protein levels with prediabetes (impaired fasting glucose and/or impaired glucose tolerance), type 2 diabetes, glucose levels in both the fasting state and 2 h after an OGTT, fasting insulin and insulin resistance were investigated using regression models adjusted for technical covariables, age, sex, BMI, smoking, alcohol intake, physical inactivity, actual hypertension, triacylglycerol levels, total cholesterol/HDL-cholesterol ratio, and high-sensitivity C-reactive protein levels. RESULTS Mannan-binding lectin serine peptidase 1 (MASP1; OR per SD 1.77 [95% CI 1.26, 2.47]), thrombospondin 1 (THBS1; OR per SD 1.55 [95% CI 1.16, 2.07]) and glycosylphosphatidylinositol-specific phospholipase D1 (GPLD1; OR per SD 1.40 [95% CI 1.01, 1.94]) were positively associated with prediabetes, and apolipoprotein A-IV (ApoA-IV; OR per SD 0.75 [95% CI 0.56, 1.00]) was inversely associated with prediabetes. MASP1 was positively associated with fasting and 2 h glucose levels. ApoA-IV was inversely and THBS1 was positively associated with 2 h glucose levels. MASP1 associations with prediabetes and fasting glucose resisted Bonferroni correction. Type 2 diabetes associations were partly influenced by glucose-lowering medication. CONCLUSIONS/INTERPRETATION We discovered novel and independent associations of prediabetes and related traits with MASP1, and some evidence for associations with THBS1, GPLD1 and ApoA-IV, suggesting a role for these proteins in the pathophysiology of type 2 diabetes.
Collapse
Affiliation(s)
- Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764, München, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Cornelia Huth
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Tonia de Las Heras Gala
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Herder
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Koenig
- Department of Internal Medicine II - Cardiology, University of Ulm Medical Center, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, München, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, München, Germany
| | - Christa Meisinger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- MONICA/KORA Myocardial Infarction Registry, Central Hospital of Augsburg, Augsburg, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, D-85764, München, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
38
|
Leung JM, Chen V, Hollander Z, Dai D, Tebbutt SJ, Aaron SD, Vandemheen KL, Rennard SI, FitzGerald JM, Woodruff PG, Lazarus SC, Connett JE, Coxson HO, Miller B, Borchers C, McManus BM, Ng RT, Sin DD. COPD Exacerbation Biomarkers Validated Using Multiple Reaction Monitoring Mass Spectrometry. PLoS One 2016; 11:e0161129. [PMID: 27525416 PMCID: PMC4985129 DOI: 10.1371/journal.pone.0161129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/30/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) result in considerable morbidity and mortality. However, there are no objective biomarkers to diagnose AECOPD. METHODS We used multiple reaction monitoring mass spectrometry to quantify 129 distinct proteins in plasma samples from patients with COPD. This analytical approach was first performed in a biomarker cohort of patients hospitalized with AECOPD (Cohort A, n = 72). Proteins differentially expressed between AECOPD and convalescent states were chosen using a false discovery rate <0.01 and fold change >1.2. Protein selection and classifier building were performed using an elastic net logistic regression model. The performance of the biomarker panel was then tested in two independent AECOPD cohorts (Cohort B, n = 37, and Cohort C, n = 109) using leave-pair-out cross-validation methods. RESULTS Five proteins were identified distinguishing AECOPD and convalescent states in Cohort A. Biomarker scores derived from this model were significantly higher during AECOPD than in the convalescent state in the discovery cohort (p<0.001). The receiver operating characteristic cross-validation area under the curve (CV-AUC) statistic was 0.73 in Cohort A, while in the replication cohorts the CV-AUC was 0.77 for Cohort B and 0.79 for Cohort C. CONCLUSIONS A panel of five biomarkers shows promise in distinguishing AECOPD from convalescence and may provide the basis for a clinical blood test to diagnose AECOPD. Further validation in larger cohorts is necessary for future clinical translation.
Collapse
Affiliation(s)
- Janice M. Leung
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Division of Respiratory Medicine, Department of Medicine, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Virginia Chen
- PROOF Center of Excellence, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Zsuzsanna Hollander
- PROOF Center of Excellence, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Darlene Dai
- PROOF Center of Excellence, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Scott J. Tebbutt
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Division of Respiratory Medicine, Department of Medicine, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- PROOF Center of Excellence, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Shawn D. Aaron
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kathy L. Vandemheen
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen I. Rennard
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- AstraZeneca, Cambridge, United Kingdom
| | - J. Mark FitzGerald
- Division of Respiratory Medicine, Department of Medicine, Vancouver General Hospital and the Institute for Heart and Lung Health, Vancouver, British Columbia, Canada
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Stephen C. Lazarus
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - John E. Connett
- University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Harvey O. Coxson
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Bruce Miller
- GlaxoSmithKline Research and Development, King of Prussia, Pennsylvania, United States of America
| | - Christoph Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Bruce M. McManus
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- PROOF Center of Excellence, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Raymond T. Ng
- PROOF Center of Excellence, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Don D. Sin
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Division of Respiratory Medicine, Department of Medicine, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Cubedo J, Padró T, Alonso R, Mata P, Badimon L. ApoL1 levels in high density lipoprotein and cardiovascular event presentation in patients with familial hypercholesterolemia. J Lipid Res 2016; 57:1059-73. [PMID: 27112635 DOI: 10.1194/jlr.p061598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 01/07/2023] Open
Abstract
HDL composition rather than HDL-cholesterol (HDL-C) levels seems to be a key determinant of HDL-induced atheroprotection. Heterozygous familial hypercholesterolemia (FH) patients, with lifelong exposure to high LDL levels, show a high prevalence of premature coronary artery disease. We hypothesized that HDL of FH patients might have a modified protein composition and investigated the proteomic signature of HDL obtained from FH patients and their unaffected relatives. HDLs were characterized by 2D electrophoresis/MS in 10 families from the SAFEHEART cohort (3 individuals/family: 2 with genetic FH diagnosis and 1 non-FH relative) clinically characterized and treated as per guidelines. FH patients had lower apoA-I levels and a differential HDL distribution profile of apoL1 and apoA-IV. ELISA validation revealed decreased apoL1 serum levels in FH patients. ApoL1 levels were able to predict presentation of an ischemic cardiac event, and apoL1/HDL-C ratio was associated with the survival rate after the event. FH patients who died because of a fatal cardiac event had lower apoL1 and LCAT content in HDL3 an average of 3.5 years before the event than those who survived. Changes in HDL protein composition could affect patients' prognosis. The proteomic profile of apoL1 is modified in HDLs of high cardiovascular risk patients, and apoL1 plasma levels are significantly lower in serum and in HDL3 of patients that will suffer an adverse cardiac event within 3 years.
Collapse
Affiliation(s)
- Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | | | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain Cardiovascular Research Chair, Autonomous University of Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
40
|
Targeted exonic sequencing of GWAS loci in the high extremes of the plasma lipids distribution. Atherosclerosis 2016; 250:63-8. [PMID: 27182959 DOI: 10.1016/j.atherosclerosis.2016.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) for plasma lipid levels have mapped numerous genomic loci, with each region often containing many protein-coding genes. Targeted re-sequencing of exons is a strategy to pinpoint causal variants and genes. METHODS We performed solution-based hybrid selection of 9008 exons at 939 genes within 95 GWAS loci for plasma lipid levels and sequenced using next-generation sequencing technology individuals with extremely high as well as low to normal levels of low-density lipoprotein cholesterol (LDL-C, n = 311; mean low = 71 mg/dl versus high = 241 mg/dl), triglycerides (TG, n = 308; mean low = 75 mg/dl versus high = 1938 mg/dl), and high-density lipoprotein cholesterol (HDL-C, n = 684; mean low = 32 mg/dl versus high = 102 mg/dl). We identified 15,002 missense, nonsense, or splice site variants with a frequency <5%. We tested whether coding sequence variants, individually or aggregated within a gene, were associated with plasma lipid levels. To replicate findings, we performed sequencing in independent participants (n = 6424). RESULTS Across discovery and replication sequencing, we found 6 variants with significant associations with plasma lipids. Of these, one was a novel association: p.Ser147Asn variant in APOA4 (14.3% frequency, TG OR = 0.49, P = 7.1 × 10(-4)) with TG. In gene-level association analyses where rare variants within each gene are collapsed, APOC3 (P = 2.1 × 10(-5)) and LDLR (P = 5.0 × 10(-12)) were associated with plasma lipids. CONCLUSIONS After sequencing genes from 95 GWAS loci in participants with extremely high plasma lipid levels, we identified one new coding variant associated with TG. These results provide insight regarding design of similar sequencing studies with respect to sample size, follow-up, and analysis methodology.
Collapse
|
41
|
Julve J, Martín-Campos JM, Escolà-Gil JC, Blanco-Vaca F. Chylomicrons: Advances in biology, pathology, laboratory testing, and therapeutics. Clin Chim Acta 2016; 455:134-48. [PMID: 26868089 DOI: 10.1016/j.cca.2016.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/01/2016] [Accepted: 02/06/2016] [Indexed: 01/17/2023]
Abstract
The adequate absorption of lipids is essential for all mammalian species due to their inability to synthesize some essential fatty acids and fat-soluble vitamins. Chylomicrons (CMs) are large, triglyceride-rich lipoproteins that are produced in intestinal enterocytes in response to fat ingestion, which function to transport the ingested lipids to different tissues. In addition to the contribution of CMs to postprandial lipemia, their remnants, the degradation products following lipolysis by lipoprotein lipase, are linked to cardiovascular disease. In this review, we will focus on the structure-function and metabolism of CMs. Second, we will analyze the impact of gene defects reported to affect CM metabolism and, also, the role of CMs in other pathologies, such as atherothrombotic cardiovascular disease and diabetes mellitus. Third, we will provide an overview of the laboratory tests currently used to study CM disorders, and, finally, we will highlight current treatments in diseases affecting CMs.
Collapse
Affiliation(s)
- Josep Julve
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.
| | - Jesús M Martín-Campos
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Francisco Blanco-Vaca
- Institut de Recerca de l'HSCSP - Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain; Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica, Barcelona, Spain
| |
Collapse
|
42
|
Khatun I, Clark RW, Vera NB, Kou K, Erion DM, Coskran T, Bobrowski WF, Okerberg C, Goodwin B. Characterization of a Novel Intestinal Glycerol-3-phosphate Acyltransferase Pathway and Its Role in Lipid Homeostasis. J Biol Chem 2015; 291:2602-15. [PMID: 26644473 DOI: 10.1074/jbc.m115.683359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 01/01/2023] Open
Abstract
Dietary triglycerides (TG) are absorbed by the enterocytes of the small intestine after luminal hydrolysis into monacylglycerol and fatty acids. Before secretion on chylomicrons, these lipids are reesterified into TG, primarily through the monoacylglycerol pathway. However, targeted deletion of the primary murine monoacylglycerol acyltransferase does not quantitatively affect lipid absorption, suggesting the existence of alternative pathways. Therefore, we investigated the role of the glycerol 3-phosphate pathway in dietary lipid absorption. The expression of glycerol-3-phosphate acyltransferase (GPAT3) was examined throughout the small intestine. To evaluate the role for GPAT3 in lipid absorption, mice harboring a disrupted GPAT3 gene (Gpat3(-/-)) were subjected to an oral lipid challenge and fed a Western-type diet to characterize the role in lipid and cholesterol homeostasis. Additional mechanistic studies were performed in primary enterocytes. GPAT3 was abundantly expressed in the apical surface of enterocytes in the small intestine. After an oral lipid bolus, Gpat3(-/-) mice exhibited attenuated plasma TG excursion and accumulated lipid in the enterocytes. Electron microscopy studies revealed a lack of lipids in the lamina propria and intercellular space in Gpat3(-/-) mice. Gpat3(-/-) enterocytes displayed a compensatory increase in the synthesis of phospholipid and cholesteryl ester. When fed a Western-type diet, hepatic TG and cholesteryl ester accumulation was significantly higher in Gpat3(-/-) mice compared with the wild-type mice accompanied by elevated levels of alanine aminotransferase, a marker of liver injury. Dysregulation of bile acid metabolism was also evident in Gpat3-null mice. These studies identify GPAT3 as a novel enzyme involved in intestinal lipid metabolism.
Collapse
Affiliation(s)
- Irani Khatun
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Ronald W Clark
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Nicholas B Vera
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Kou Kou
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Derek M Erion
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Timothy Coskran
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340
| | - Walter F Bobrowski
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340
| | - Carlin Okerberg
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340
| | - Bryan Goodwin
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| |
Collapse
|
43
|
Roman-Padilla J, Rodríguez-Rua A, Claros MG, Hachero-Cruzado I, Manchado M. Genomic characterization and expression analysis of four apolipoprotein A-IV paralogs in Senegalese sole (Solea senegalensis Kaup). Comp Biochem Physiol B Biochem Mol Biol 2015; 191:84-98. [PMID: 26453798 DOI: 10.1016/j.cbpb.2015.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 01/21/2023]
Abstract
The apolipoprotein A-IV (ApoA-IV) plays a key role in lipid transport and feed intake regulation. In this work, four cDNA sequences encoding ApoA-IV paralogs were identified. Sequence analysis revealed conserved structural features including the common 33-codon block and nine repeated motifs. Gene structure analysis identified four exons and three introns except for apoA-IVAa1 (with only 3 exons). Synteny analysis showed that the four paralogs were structured into two clusters (cluster A containing apoA-IVAa1 and apoA-IVAa2 and cluster B with apoA-IVBa3 and apoA-IVBa4) linked to an apolipoprotein E. Phylogenetic analysis clearly separated the paralogs according to their cluster organization as well as revealed four subclades highly conserved in Acanthopterygii. Whole-mount analyses (WISH) in early larvae (0 and 1day post-hatch (dph)) showed that the four paralogs were mainly expressed in yolk syncytial layer surrounding the oil globules. Later, at 3 and 5dph, the four paralogs were mainly expressed in liver and intestine although with differences in their relative abundance and temporal expression patterns. Diet supply triggered the intensity of WISH signals in the intestine of the four paralogs. Quantification of mRNA abundance by qPCR using whole larvae only detected the induction by diet at 5dph. Moreover, transcript levels increased progressively with age except for apoA-IVAa2, which appeared as a low-expressed isoform. Expression analysis in juvenile tissues confirmed that the four paralogs were mainly expressed in liver and intestine and secondary in other tissues. The role of these ApoA-IV genes in lipid transport and the possible role of apoA-IVAa2 as a regulatory form are discussed.
Collapse
Affiliation(s)
- J Roman-Padilla
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - A Rodríguez-Rua
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - M G Claros
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
| | - I Hachero-Cruzado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - M Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
44
|
Stangl S, Kollerits B, Lamina C, Meisinger C, Huth C, Stöckl A, Dähnhardt D, Böger CA, Krämer BK, Peters A, Kronenberg F. Association between apolipoprotein A-IV concentrations and chronic kidney disease in two large population-based cohorts: results from the KORA studies. J Intern Med 2015; 278:410-23. [PMID: 26037138 DOI: 10.1111/joim.12380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Apolipoprotein A-IV (apoA-IV) is an anti-atherogenic and antioxidative glycoprotein. Plasma apoA-IV levels are elevated in patients with primary chronic kidney disease (CKD) or renal failure. The association between apoA-IV and kidney function has not been investigated in the general population; therefore, we analysed this relationship in two large population-based cohorts. METHODS Plasma apoA-IV concentrations were measured in the Cooperative Health Research in the Region of Augsburg (KORA) F3 (n = 3159) and KORA F4 (n = 3061) studies. CKD was defined by the serum creatinine-estimated glomerular filtration rate (eGFR) and/or urine albumin-to-creatinine ratio. RESULTS Mean (±SD) apoA-IV concentration was 17.3 ± 4.7 mg dL(-1) in KORA F3 and 15.3 ± 4.3 mg dL(-1) in KORA F4. Fully adjusted linear mixed models revealed a significant association between apoA-IV concentration and lower eGFR in the third and fourth versus the first quartile of apoA-IV (β = -1.78 mL min(-1) /1.73 m², P = 0.0003 and β = -5.09 mL min(-1) /1.73 m², P = 2.83 × 10(-23) , respectively). ApoA-IV was significantly associated with an eGFR of <60 mL min(-1) /1.73 m², which was observed in 601 of the 6220 study participants [odds ratio (OR) 1.46, P = 0.03 and OR 3.47, P = 6.84 × 10(-15) for the third and fourth vs. the first quartile of apoA-IV, respectively]. Adding apoA-IV (fourth vs. first quartile) to the fully adjusted model significantly improved discrimination of eGFR <60 mL min(-1) /1.73 m² in KORA F3 [integrated discrimination improvement (IDI) 0.03, P = 1.30 × 10(-7) ] and KORA F4 (IDI 0.04, P = 1.32 × 10(-9) ) beyond classical risk factors for CKD. CONCLUSION The present analysis in two population-based cohorts revealed that high plasma apoA-IV concentrations are strongly associated with low kidney function defined by eGFR independent of major CKD risk factors. ApoA-IV appears to be an early marker of impaired kidney function.
Collapse
Affiliation(s)
- S Stangl
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - B Kollerits
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - C Lamina
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - C Meisinger
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - C Huth
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - A Stöckl
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - D Dähnhardt
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - C A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - B K Krämer
- Vth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, University Medicine Mannheim, Mannheim, Germany
| | - A Peters
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - F Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
45
|
Betancor MB, Sprague M, Sayanova O, Usher S, Campbell PJ, Napier JA, Caballero MJ, Tocher DR. Evaluation of a high-EPA oil from transgenic Camelina sativa in feeds for Atlantic salmon ( Salmo salar L.): Effects on tissue fatty acid composition, histology and gene expression. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2015; 444:1-12. [PMID: 26146421 PMCID: PMC4459488 DOI: 10.1016/j.aquaculture.2015.03.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 05/12/2023]
Abstract
Currently, one alternative for dietary fish oil (FO) in aquafeeds is vegetable oils (VO) that are devoid of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFAs). Entirely new sources of n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids through de novo production are a potential solution to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil (ECO) with > 20% EPA and its potential to substitute for FO in Atlantic salmon feeds was tested. Fish were fed with one of the three experimental diets containing FO, wild-type camelina oil (WCO) or ECO as the sole lipid sources for 7 weeks. Inclusion of ECO did not affect any of the performance parameters studied and enhanced apparent digestibility of individual n-6 and n-3 PUFA compared to dietary WCO. High levels of EPA were maintained in brain, liver and intestine (pyloric caeca), and levels of DPA and DHA were increased in liver and intestine of fish fed ECO compared to fish fed WCO likely due to increased LC-PUFA biosynthesis based on up-regulation of the genes. Fish fed ECO showed slight lipid accumulation within hepatocytes similar to that with WCO, although not significantly different to fish fed FO. The regulation of a small number of genes could be attributed to the specific effect of ECO (311 features) with metabolism being the most affected category. The EPA oil from transgenic Camelina (ECO) could be used as a substitute for FO, however it is a hybrid oil containing both FO (EPA) and VO (18:2n-6) fatty acid signatures that resulted in similarly mixed metabolic and physiological responses.
Collapse
Affiliation(s)
- M B Betancor
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - M Sprague
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - O Sayanova
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - S Usher
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - P J Campbell
- Biomar Ltd., North Shore Road, Grangemouth FK3 8UL, United Kingdom
| | - J A Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - M J Caballero
- Aquaculture Research Group, University of Las Palmas de Gran Canaria & ICCM, Instituto Universitario de Sanidad Animal, Trasmontaña s/n, 35413, Arucas, Las Palmas, Canary Islands, Spain
| | - D R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| |
Collapse
|
46
|
Giammanco A, Cefalù AB, Noto D, Averna MR. The pathophysiology of intestinal lipoprotein production. Front Physiol 2015; 6:61. [PMID: 25852563 PMCID: PMC4367171 DOI: 10.3389/fphys.2015.00061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/14/2015] [Indexed: 12/12/2022] Open
Abstract
Intestinal lipoprotein production is a multistep process, essential for the absorption of dietary fats and fat-soluble vitamins. Chylomicron assembly begins in the endoplasmic reticulum with the formation of primordial, phospholipids-rich particles that are then transported to the Golgi for secretion. Several classes of transporters play a role in the selective uptake and/or export of lipids through the villus enterocytes. Once secreted in the lymph stream, triglyceride-rich lipoproteins (TRLs) are metabolized by Lipoprotein lipase (LPL), which catalyzes the hydrolysis of triacylglycerols of very low density lipoproteins (VLDLs) and chylomicrons, thereby delivering free fatty acids to various tissues. Genetic mutations in the genes codifying for these proteins are responsible of different inherited disorders affecting chylomicron metabolism. This review focuses on the molecular pathways that modulate the uptake and the transport of lipoproteins of intestinal origin and it will highlight recent findings on TRLs assembly.
Collapse
Affiliation(s)
| | | | | | - Maurizio R. Averna
- Dipartimento Biomedico di Medicina Interna e Specialistica, Università degli Studi di PalermoPalermo, Italy
| |
Collapse
|
47
|
Kohan AB, Wang F, Lo CM, Liu M, Tso P. ApoA-IV: current and emerging roles in intestinal lipid metabolism, glucose homeostasis, and satiety. Am J Physiol Gastrointest Liver Physiol 2015; 308:G472-81. [PMID: 25591862 PMCID: PMC4360046 DOI: 10.1152/ajpgi.00098.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apolipoprotein A-IV (apoA-IV) is secreted by the small intestine on chylomicrons into intestinal lymph in response to fat absorption. Many physiological functions have been ascribed to apoA-IV, including a role in chylomicron assembly and lipid metabolism, a mediator of reverse-cholesterol transport, an acute satiety factor, a regulator of gastric function, and, finally, a modulator of blood glucose homeostasis. The purpose of this review is to update our current view of intestinal apoA-IV synthesis and secretion and the physiological roles of apoA-IV in lipid metabolism and energy homeostasis, and to underscore the potential for intestinal apoA-IV to serve as a therapeutic target for the treatment of diabetes and obesity-related disease.
Collapse
Affiliation(s)
- Alison B. Kohan
- 2Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut
| | - Fei Wang
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Chun-Min Lo
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Min Liu
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| | - Patrick Tso
- 1Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; and
| |
Collapse
|
48
|
Wang F, Kohan AB, Lo CM, Liu M, Howles P, Tso P. Apolipoprotein A-IV: a protein intimately involved in metabolism. J Lipid Res 2015; 56:1403-18. [PMID: 25640749 DOI: 10.1194/jlr.r052753] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut Advanced Technology Laboratory, Storrs, CT 06269
| | - Chun-Min Lo
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Philip Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
49
|
Hebiguchi T, Mezaki Y, Morii M, Watanabe R, Yoshikawa K, Miura M, Imai K, Senoo H, Yoshino H. Massive bowel resection upregulates the intestinal mRNA expression levels of cellular retinol-binding protein II and apolipoprotein A-IV and alters the intestinal vitamin A status in rats. Int J Mol Med 2015; 35:724-30. [PMID: 25585692 DOI: 10.3892/ijmm.2015.2066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/24/2014] [Indexed: 11/06/2022] Open
Abstract
Short bowel (SB) syndrome causes the malabsorption of various nutrients. Among these, vitamin A is important for a number of physiological activities. Vitamin A is absorbed by epithelial cells of the small intestine and is discharged into the lymphatic vessels as a component of chylomicrons and is delivered to the liver. In the present study, we used a rat model of SB syndrome in order to assess its effects on the expression of genes associated with the absorption, transport and metabolism of vitamin A. In the rats with SB, the intestinal mRNA expression levels of cellular retinol-binding protein II (CRBP II, gene symbol Rbp2) and apolipoprotein A-IV (gene symbol Apoa4) were higher than those in the sham-operated rats, as shown by RT-qPCR. Immunohistochemical analysis revealed that absorptive epithelial cells stained positive for both CRBP II and lecithin retinol acyltransferase, which are both required for the effective esterification of vitamin A. In the rats with SB, the retinol content in the ileum and the retinyl ester content in the jejunum were lower than those in the sham-operated rats, as shown by quantitative analysis of retinol and retinyl esters by high performance liquid chromatography. These results suggest that the elevated mRNA expression levels of Rbp2 and Apoa4 in the rats with SB contribute to the effective esterification and transport of vitamin A.
Collapse
Affiliation(s)
- Taku Hebiguchi
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yoshihiro Mezaki
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Mayako Morii
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Ryo Watanabe
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Kiwamu Yoshikawa
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Mitsutaka Miura
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Katsuyuki Imai
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Haruki Senoo
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Hiroaki Yoshino
- Department of Pediatric Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
50
|
Amyloid-Forming Properties of Human Apolipoproteins: Sequence Analyses and Structural Insights. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:175-211. [PMID: 26149931 DOI: 10.1007/978-3-319-17344-3_8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apolipoproteins are protein constituents of lipoproteins that transport cholesterol and fat in circulation and are central to cardiovascular health and disease. Soluble apolipoproteins can transiently dissociate from the lipoprotein surface in a labile free form that can misfold, potentially leading to amyloid disease. Misfolding of apoA-I, apoA-II, and serum amyloid A (SAA) causes systemic amyloidoses, apoE4 is a critical risk factor in Alzheimer's disease, and apolipoprotein misfolding is also implicated in cardiovascular disease. To explain why apolipoproteins are over-represented in amyloidoses, it was proposed that the amphipathic α-helices, which form the lipid surface-binding motif in this protein family, have high amyloid-forming propensity. Here, we use 12 sequence-based bioinformatics approaches to assess amyloid-forming potential of human apolipoproteins and to identify segments that are likely to initiate β-aggregation. Mapping such segments on the available atomic structures of apolipoproteins helps explain why some of them readily form amyloid while others do not. Our analysis shows that nearly all amyloidogenic segments: (i) are largely hydrophobic, (ii) are located in the lipid-binding amphipathic α-helices in the native structures of soluble apolipoproteins, (iii) are predicted in both native α-helices and β-sheets in the insoluble apoB, and (iv) are predicted to form parallel in-register β-sheet in amyloid. Most of these predictions have been verified experimentally for apoC-II, apoA-I, apoA-II and SAA. Surprisingly, the rank order of the amino acid sequence propensity to form amyloid (apoB>apoA-II>apoC-II≥apoA-I, apoC-III, SAA, apoC-I>apoA-IV, apoA-V, apoE) does not correlate with the proteins' involvement in amyloidosis. Rather, it correlates directly with the strength of the protein-lipid association, which increases with increasing protein hydrophobicity. Therefore, the lipid surface-binding function and the amyloid-forming propensity are both rooted in apolipoproteins' hydrophobicity, suggesting that functional constraints make it difficult to completely eliminate pathogenic apolipoprotein misfolding. We propose that apolipoproteins have evolved protective mechanisms against misfolding, such as the sequestration of the amyloidogenic segments via the native protein-lipid and protein-protein interactions involving amphipathic α-helices and, in case of apoB, β-sheets.
Collapse
|