1
|
Feger M, Hammerschmidt K, Liesche I, Rausch S, Alber J, Föller M. Prostaglandin E 2 signaling through prostaglandin E receptor subtype 2 and Nurr1 induces fibroblast growth factor 23 production. Biomed Pharmacother 2024; 180:117475. [PMID: 39332190 DOI: 10.1016/j.biopha.2024.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Bone cells produce fibroblast growth factor 23 (FGF23), a hormone regulating renal phosphate and vitamin D homeostasis, and a paracrine factor produced in further tissues. Chronic kidney disease and cardiovascular disorders are associated with early elevations of plasma FGF23 levels associated with clinical outcomes. FGF23 production is dependent on many conditions including inflammation. Prostaglandin E2 (PGE2) is a major eicosanoid with a broad role in pain, inflammation, and fever. Moreover, it regulates renal blood flow, renin secretion, natriuresis as well as bone formation through prostaglandin E receptor 2 (EP2). Here, we studied the role of PGE2 and its signaling for the production of FGF23. Osteoblast-like UMR-106 cells were exposed to EP receptor agonists, antagonists or RNAi. Wild type and EP2 knockout mice were treated with stable EP2 agonist misoprostol. Fgf23 or Nurr1 gene expression was determined by quantitative real-time PCR, hormone and further blood parameters by enzyme-linked immunosorbent assay and colorimetric methods. PGE2 and EP2 agonists misoprostol and butaprost enhanced FGF23 production in UMR-106 cells, effects mediated by EP2 and transcription factor Nurr1. A single dose of misoprostol up-regulated bone Fgf23 expression and FGF23 serum levels in wild type mice with subtle effects on parameters of mineral metabolism only. Compared to wild type mice, the FGF23 effect of misoprostol was significantly lower in EP2-deficient mice. To conclude, PGE2 signaling through EP2 and Nurr1 induces FGF23 production. Given the broad physiological and pathophysiological implications of PGE2 signaling, this effect is likely of clinical relevance.
Collapse
Affiliation(s)
- Martina Feger
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | | | - Ilona Liesche
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Steffen Rausch
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Jana Alber
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Michael Föller
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany.
| |
Collapse
|
2
|
Kim J. The pathophysiology of diabetic foot: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2023; 40:328-334. [PMID: 37797951 PMCID: PMC10626291 DOI: 10.12701/jyms.2023.00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
An aging population and changes in dietary habits have increased the incidence of diabetes, resulting in complications such as diabetic foot ulcers (DFUs). DFUs can lead to serious disabilities, substantial reductions in patient quality of life, and high financial costs for society. By understanding the etiology and pathophysiology of DFUs, their occurrence can be prevented and managed more effectively. The pathophysiology of DFUs involves metabolic dysfunction, diabetic immunopathy, diabetic neuropathy, and angiopathy. The processes by which hyperglycemia causes peripheral nerve damage are related to adenosine triphosphate deficiency, the polyol pathway, oxidative stress, protein kinase C activity, and proinflammatory processes. In the context of hyperglycemia, the suppression of endothelial nitric oxide production leads to microcirculation atherosclerosis, heightened inflammation, and abnormal intimal growth. Diabetic neuropathy involves sensory, motor, and autonomic neuropathies. The interaction between these neuropathies forms a callus that leads to subcutaneous hemorrhage and skin ulcers. Hyperglycemia causes peripheral vascular changes that result in endothelial cell dysfunction and decreased vasodilator secretion, leading to ischemia. The interplay among these four preceding pathophysiological factors fosters the development and progression of infections in individuals with diabetes. Charcot neuroarthropathy is a chronic and progressive degenerative arthropathy characterized by heightened blood flow, increased calcium dissolution, and repeated minor trauma to insensate joints. Directly and comprehensively addressing the pathogenesis of DFUs could pave the way for the development of innovative treatment approaches with the potential to avoid the most serious complications, including major amputations.
Collapse
Affiliation(s)
- Jiyoun Kim
- Department of Orthopaedic Surgery, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
3
|
Huang Z, Chen J, Wang C, Xiao M, Zhu Y, Li N, Huang Z, Liu B, Huang Y. Antidiabetic potential of Chlorella pyrenoidosa functional formulations in streptozocin-induced type 2 diabetic mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
4
|
Pan D, Xu L, Guo M. The role of protein kinase C in diabetic microvascular complications. Front Endocrinol (Lausanne) 2022; 13:973058. [PMID: 36060954 PMCID: PMC9433088 DOI: 10.3389/fendo.2022.973058] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Protein kinase C (PKC) is a family of serine/threonine protein kinases, the activation of which plays an important role in the development of diabetic microvascular complications. The activation of PKC under high-glucose conditions stimulates redox reactions and leads to an accumulation of redox stress. As a result, various types of cells in the microvasculature are influenced, leading to changes in blood flow, microvascular permeability, extracellular matrix accumulation, basement thickening and angiogenesis. Structural and functional disorders further exacerbate diabetic microvascular complications. Here, we review the roles of PKC in the development of diabetic microvascular complications, presenting evidence from experiments and clinical trials.
Collapse
Affiliation(s)
- Deng Pan
- Xiyuan hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lin Xu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ming Guo
- Xiyuan hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Adoptive transfer of metabolically reprogrammed macrophages for atherosclerosis treatment in diabetic ApoE−/- mice. Bioact Mater 2022; 16:82-94. [PMID: 35386323 PMCID: PMC8958426 DOI: 10.1016/j.bioactmat.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 01/02/2023] Open
Abstract
Atherosclerosis is characterized by inflammation in the arterial wall, which is known to be exacerbated by diabetes. Therapeutic repression of inflammation is a promising strategy for treating atherosclerosis. In this study, we showed that diabetes aggravated atherosclerosis in apolipoproteinE knockout (ApoE−/-) mice, in which increased expression of long-chain acyl-CoA synthetase 1 (Acsl1) in macrophages played an important role. Knockdown of Acsl1 in macrophages (MφshAcsl1) reprogrammed macrophages to an anti-inflammatory phenotype, especially under hyperglycemic conditions. Injection of MφshAcsl1 reprogrammed macrophages into streptozotocin (STZ)-induced diabetic ApoE−/- mice (ApoE−/-+ STZ) alleviated inflammation locally in the plaque, liver and spleen. Consistent with the reduction in inflammation, plaques became smaller and more stable after the adoptive transfer of reprogrammed macrophages. Taken together, our findings indicate that increased Acsl1 expression in macrophages play a key role in aggravated atherosclerosis of diabetic mice, possibly by promoting inflammation. Adoptive transfer of Acsl1 silenced macrophages may serve as a potential therapeutic strategy for atherosclerosis. Increased Acsl1 in macrophages is responsible for the exacerbated inflammation in diabetes MφshAcsl1 is characterized as anti-inflammatory phenotype Adoptive transfer of MφshAcsl1 alleviates atherosclerosis in diabetic ApoE−/- mice MφshAcsl1 inhibits both local and systemic inflammation in vivo
Collapse
|
6
|
Araújo AC, Wheelock CE, Haeggström JZ. The Eicosanoids, Redox-Regulated Lipid Mediators in Immunometabolic Disorders. Antioxid Redox Signal 2018; 29:275-296. [PMID: 28978222 DOI: 10.1089/ars.2017.7332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The oxidation of arachidonic acid via cyclooxygenase (COX) and lipoxygenase (LOX) activity to produce eicosanoids during inflammation is a well-known biosynthetic pathway. These lipid mediators are involved in fever, pain, and thrombosis and are produced from multiple cells as well as cell/cell interactions, for example, immune cells and epithelial/endothelial cells. Metabolic disorders, including hyperlipidemia, hypertension, and diabetes, are linked with chronic low-grade inflammation, impacting the immune system and promoting a variety of chronic diseases. Recent Advances: Multiple studies have corroborated the important function of eicosanoids and their receptors in (non)-inflammatory cells in immunometabolic disorders (e.g., insulin resistance, obesity, and cardiovascular and nonalcoholic fatty liver diseases). In this context, LOX and COX products are involved in both pro- and anti-inflammatory responses. In addition, recent work has elucidated the potent function of specialized proresolving mediators (i.e., lipoxins and resolvins) in resolving inflammation, protecting organs, and stimulating tissue repair and remodeling. CRITICAL ISSUES Inhibiting/stimulating selected eicosanoid pathways may result in anti-inflammatory and proresolution responses leading to multiple beneficial effects, including the abrogation of reactive oxygen species production, increased speed of resolution, and overall improvement of diseases related to immunometabolic perturbations. FUTURE DIRECTIONS Despite many achievements, it is crucial to understand the molecular and cellular mechanisms underlying immunological/metabolic cross talk to offer substantial therapeutic promise. Antioxid. Redox Signal. 29, 275-296.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
7
|
Abstract
The body is exposed to foreign pathogens every day, but remarkably, most pathogens are effectively cleared by the innate immune system without the need to invoke the adaptive immune response. Key cellular components of the innate immune system include macrophages and neutrophils and the recruitment and function of these cells are tightly regulated by chemokines and cytokines in the tissue space. Innate immune responses are also known to regulate development of adaptive immune responses often via the secretion of various cytokines. In addition to these protein regulators, numerous lipid mediators can also influence innate and adaptive immune functions. In this review, we cover one particular lipid regulator, prostaglandin E2 (PGE2) and describe its synthesis and signaling and what is known about the ability of this lipid to regulate immunity and host defense against viral, fungal and bacterial pathogens.
Collapse
Affiliation(s)
| | - Bethany B Moore
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Das UN. Ageing: Is there a role for arachidonic acid and other bioactive lipids? A review. J Adv Res 2018; 11:67-79. [PMID: 30034877 PMCID: PMC6052661 DOI: 10.1016/j.jare.2018.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
Ageing is inevitable. Recent studies suggest that it could be delayed. Low-grade systemic inflammation is seen in type 2 diabetes mellitus, hypertension and endothelial dysfunction that are common with increasing age. In all these conditions, an alteration in arachidonic acid (AA) metabolism is seen in the form of increased formation of pro-inflammatory eicosanoids and decreased production of anti-inflammatory lipoxins, resolvins, protectins and maresins and decreased activity of desaturases. Calorie restriction, exercise and parabiosis delay age-related changes that could be related to enhanced proliferation of stem cells, decrease in inflammation and transfer of GDF-11 (growth differentiation factor-11) and other related molecules from the young to the old, increase in the formation of lipoxin A4, resolvins, protectins and maresins, hydrogen sulfide (H2S) and nitric oxide (NO); inhibition of ageing-related hypothalamic or brain IKK-β and NF-kB activation, decreased gonadotropin-releasing hormone (GnRH) release resulting in increased neurogenesis and consequent decelerated ageing. This suggests that hypothalamus participates in ageing process. N-acylethanolamines (NAEs) and lipid-derived signalling molecules can be tuned favorably under dietary restriction to extend lifespan and/or prevent advanced age associated diseases in an mTOR dependent pathway manner. Sulfur amino acid (SAA) restriction increased hydrogen sulfide (H2S) production and protected tissues from hypoxia and tissue damage. Anti-inflammatory metabolites formed from AA such as LXA4, resolvins, protectins and maresins enhance production of NO, CO, H2S; suppress NF-kB expression and alter mTOR expression and thus, may aid in delaying ageing process. Dietary restriction and exercise enhance AA metabolism to form LXA4, resolvins, protectins and maresins that have anti-inflammatory actions. AA and their metabolites also influence stem cell biology, enhance neurogenesis to improve memory and augment autophagy to prolong life span. Thus, AA and other PUFAs and their anti-inflammatory metabolites inhibit inflammation, augment stem cell proliferation, restore to normal lipid-derived signaling molecules and NO and H2S production, enhance autophagy and prolong life span.
Collapse
|
9
|
Abadir PM, Siragy HM. Angiotensin type 1 receptor mediates renal production and conversion of prostaglandins E2 to F2α in conscious diabetic rats. J Renin Angiotensin Aldosterone Syst 2015. [PMID: 26195268 DOI: 10.1177/1470320315592566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Previous studies demonstrated that stimulation of angiotensin subtype 1 receptor (AT1R) led to increased renal generation of prostaglandins E2 (PGE2) and renal inflammation. In turn, PGE2 increases AT1R activity. The conversion of PGE2 to the less active metabolite prostaglandin F2α (PGF2α) via 9-ketoreductase interrupts this feedback loop. The effects of diabetes on the interface between AT1R, PGE2 and PGF2α are not well established. We hypothesized that in diabetes, an aberrant AT1R activity enhances the biosynthesis of PGE2 and impairs the activity of PGE 9-ketoreductase, leading to accumulation of PGE2. MATERIALS AND METHODS Using microdialysis technique, we monitored renal interstitial fluid levels of angiotensin II (Ang II), PGE2 and PGF2α in control and AT1R blocker, valsartan, treated diabetic rats (N=8 each). We utilized the PGF2α to PGE2 ratio as indirect measure of PGE 9-ketoreductase activity. RESULTS Diabetes increased renal interstitial fluid levels of Ang II, PGE2 and PGF2α. PGF2α/PGE2 ratio increased by the third week, but declined by the sixth week of diabetes. Valsartan reduced PGE2 and PGF2α levels and increased Ang II and the conversion of PGE2 to PGF2α. CONCLUSION Our results suggest that in diabetes, AT1R increases PGE2 generation and reduces conversion of PGE2 to PGF2α with the progression of diabetes.
Collapse
Affiliation(s)
- Peter M Abadir
- Johns Hopkins University, Division of Geriatrics Medicine and Gerontology, Baltimore, USA
| | - Helmy M Siragy
- University of Virginia School of Medicine, Department of Medicine, Charlottesville, USA
| |
Collapse
|
10
|
Jia Z, Sun Y, Liu S, Liu Y, Yang T. COX-2 but not mPGES-1 contributes to renal PGE2 induction and diabetic proteinuria in mice with type-1 diabetes. PLoS One 2014; 9:e93182. [PMID: 24984018 PMCID: PMC4077725 DOI: 10.1371/journal.pone.0093182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/28/2014] [Indexed: 01/11/2023] Open
Abstract
Prostaglandin E2 (PGE2) has been implicated to play a pathogenic role in diabetic nephropathy (DN) but its source remains unlcear. To elucidate whether mPGES-1, the best characterized PGE2 synthase, was involved in the development of DN, we examined the renal phenotype of mPGES-1 KO mice subjected to STZ-induced type-1 diabetes. After STZ treatment, mPGES-1 WT and KO mice presented the similar onset of diabetes as shown by similar elevation of blood glucose. Meanwhile, both genotypes of mice exhibited similar increases of urinary and renal PGE2 production. In parallel with this comparable diabetic status, the kidney injury indices including the urinary albumin excretion, kidney weight and the kidney histology (PAS staining) did not show any difference between the two genotypes. By Western-blotting and quantitative qRT-PCR, mPGES-1, mPGES-2, cPGES and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) remain unaltered following six weeks of diabetes. Finally, a selective COX-2 inhibitor celecoxib (50 mg/kg/day) was applied to the STZ-treated KO mice, which resulted in significant reduction of urinary albumin excretion (KO/STZ: 141.5±38.4 vs. KO/STZ + Celebrex: 48.7±20.8 ug/24 h, p<0.05) and the blockade of renal PGE2 induction (kidney: KO/STZ: 588.7±89.2 vs. KO/STZ + Celebrex: 340.8±58.7 ug/24 h, p<0.05; urine: KO/STZ 1667.6±421.4 vs. KO/STZ + Celebrex 813.6±199.9 pg/24 h, p<0.05), without affecting the blood glucose levels and urine volume. Taken together, our data suggests that an as yet unidentified prostaglanind E synthase but not mPGES-1 may couple with COX-2 to mediate increased renal PGE2 sythsesis in DN.
Collapse
Affiliation(s)
- Zhanjun Jia
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Ying Sun
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Shanshan Liu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Ying Liu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
- * E-mail:
| |
Collapse
|
11
|
Tikellis C, Brown R, Head GA, Cooper ME, Thomas MC. Angiotensin-converting enzyme 2 mediates hyperfiltration associated with diabetes. Am J Physiol Renal Physiol 2014; 306:F773-80. [PMID: 24477684 DOI: 10.1152/ajprenal.00264.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The degradation of ANG II by angiotensin-converting enzyme 2 (ACE2), leading to the formation of ANG(1-7), is an important step in the regulation of the renin-angiotensin-aldosterone system (RAAS), and one that is significantly altered in the diabetic kidney. This study examined the role of ACE2 in the hyperfiltration associated with diabetes. Streptozotocin diabetes was induced in male C57BL6 mice and ACE2 knockout (KO) mice. C57BL6 mice were further randomized to receive the selective ACE2 inhibitor MLN-4760. After 2 wk of study, animals were subjected to micropuncture experiments. The renal reserve was further assessed in C57BL6 mice and ACE2 KO mice after exposure to a high-protein diet. The induction of diabetes in wild-type mice was associated with increased renal ACE2 activity, hyperfiltration, and renal hypertrophy. On micropuncture, diabetes was associated with increased tubular free flow and stop-flow pressure, enhanced tubuloglomerular feedback reactivity, and an increased maximal response indicative of increased glomerular hydrostatic capillary pressure. Each of these increases were prevented in diabetic ACE2 KO mice and diabetic mice treated with a selective ACE2 inhibitor for 2 wk. However, unlike chronically treated animals, ACE2 inhibition with MLN-4760 had no acute effect on stop-flow pressure or tubuloglomerular feedback reactivity. ACE2 KO mice also failed to increase their creatinine clearance in response to a high-protein diet. The results of our study suggest that ACE2 plays a key role in the recruitment of the renal reserve and hyperfiltration associated with diabetes.
Collapse
Affiliation(s)
- Chris Tikellis
- Baker IDI Heart and Diabetes Institute, PO Box 6492, St Kilda Central, Melbourne 8008, Victoria, Australia.
| | | | | | | | | |
Collapse
|
12
|
PPARγ Agonist Rosiglitazone Suppresses Renal mPGES-1/PGE2 Pathway in db/db Mice. PPAR Res 2013; 2013:612971. [PMID: 24489534 PMCID: PMC3892750 DOI: 10.1155/2013/612971] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022] Open
Abstract
Evidence had shown the detrimental effect of prostaglandin (PG) E2 in diabetic nephropathy (DN) of STZ-induced type-1 diabetes but its role in the development of DN of type-2 diabetes remains uncertain. The present study was undertaken to investigate the regulation of PGE2 synthetic pathway and the interaction between peroxisome proliferator-activated receptor (PPAR) γ and PGE2 synthesis in the kidneys of db/db mice. Strikingly, urinary PGE2 was remarkably elevated in db/db mice paralleled with the increased protein expressions of COX-2 and mPGES-1. In contrast, the protein expressions of COX-1, mPGES-2, cPGES, and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) were not altered. Following 1-week rosiglitazone (Rosi) therapy, urinary PGE2, but not other prostanoids, was reduced by 57% in parallel with significant reduction of mPGES-1 protein and EP4 mRNA expressions. By immunohistochemistry, mPGES-1 was significantly induced in the glomeruli of db/db mice, which was almost entirely abolished by Rosi. In line with the reduction of glomerular mPGES-1, the glomerular injury score showed a tendency of improvement after 1 week of Rosi therapy. Collectively, the present study demonstrated an inhibitory effect of PPAR γ activation on renal mPGES-1/PGE2/EP4 pathway in type-2 diabetes and suggested that mPGES-1 may potentially serve as a therapeutic target for treating type-2 diabetes-associated DN.
Collapse
|
13
|
Abstract
Diabetes mellitus contributes greatly to morbidity, mortality, and overall health care costs. In major part, these outcomes derive from the high incidence of progressive kidney dysfunction in patients with diabetes making diabetic nephropathy a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved and of the early dysfunctions observed in the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. Here we review the pathophysiological changes that occur in the kidney in response to hyperglycemia, including the cellular responses to high glucose and the responses in vascular, glomerular, podocyte, and tubular function. The molecular basis, characteristics, and consequences of the unique growth phenotypes observed in the diabetic kidney, including glomerular structures and tubular segments, are outlined. We delineate mechanisms of early diabetic glomerular hyperfiltration including primary vascular events as well as the primary role of tubular growth, hyperreabsorption, and tubuloglomerular communication as part of a "tubulocentric" concept of early diabetic kidney function. The latter also explains the "salt paradox" of the early diabetic kidney, that is, a unique and inverse relationship between glomerular filtration rate and dietary salt intake. The mechanisms and consequences of the intrarenal activation of the renin-angiotensin system and of diabetes-induced tubular glycogen accumulation are discussed. Moreover, we aim to link the changes that occur early in the diabetic kidney including the growth phenotype, oxidative stress, hypoxia, and formation of advanced glycation end products to mechanisms involved in progressive kidney disease.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego & VA San Diego Healthcare System, San Diego, California, USA.
| | | |
Collapse
|
14
|
PTGER1 deletion attenuates renal injury in diabetic mouse models. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1789-1802. [PMID: 24113456 DOI: 10.1016/j.ajpath.2013.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/23/2013] [Accepted: 08/22/2013] [Indexed: 01/11/2023]
Abstract
We hypothesized that the EP1 receptor promotes renal damage in diabetic nephropathy. We rendered EP1 (PTGER1, official symbol) knockout mice (EP1(-/-)) diabetic using the streptozotocin and OVE26 models. Albuminuria, mesangial matrix expansion, and glomerular hypertrophy were each blunted in EP1(-/-) streptozotocin and OVE26 cohorts compared with wild-type counterparts. Although diabetes-associated podocyte depletion was unaffected by EP1 deletion, EP1 antagonism with ONO-8711 in cultured podocytes decreased angiotensin II-mediated superoxide generation, suggesting that EP1-associated injury of remaining podocytes in vivo could contribute to filtration barrier dysfunction. Accordingly, EP1 deletion in OVE26 mice prevented nephrin mRNA expression down-regulation and ameliorated glomerular basement membrane thickening and foot process effacement. Moreover, EP1 deletion reduced diabetes-induced expression of fibrotic markers fibronectin and α-actin, whereas EP1 antagonism decreased fibronectin in cultured proximal tubule cells. Similarly, proximal tubule megalin expression was reduced by diabetes but was preserved in EP1(-/-) mice. Finally, the diabetes-associated increase in angiotensin II-mediated constriction of isolated mesenteric arteries was blunted in OVE26EP1(-/-) mice, demonstrating a role for EP1 receptors in the diabetic vasculature. These data suggest that EP1 activation contributes to diabetic nephropathy progression at several locations, including podocytes, proximal tubule, and the vasculature. The EP1 receptor facilitates the actions of angiotensin II, thereby suggesting that targeting of both the renin-angiotensin system and the EP1 receptor could be beneficial in diabetic nephropathy.
Collapse
|
15
|
Dietary fish oil reduces glomerular injury and elevated renal hydroxyeicosatetraenoic acid levels in the JCR:LA-cp rat, a model of the metabolic syndrome. Br J Nutr 2012; 110:11-9. [DOI: 10.1017/s0007114512004606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have previously shown nutritional intervention with fish oil (n-3 PUFA) to reduce numerous complications associated with the metabolic syndrome (MetS) in the JCR:LA-corpulent (cp) rat. In the present study, we sought to explore the potential role of fish oil to prevent glomerulosclerosis in JCR:LA-cp rats via renal eicosanoid metabolism and lipidomic analysis. Male lean and MetS JCR:LA-cp rats were fed a lipid-balanced diet supplemented with fish oil (5 or 10 % of total fat). After 16 weeks of feeding, albuminuria was significantly reduced in MetS rats supplemented with 5 or 10 % fish oil ( − 53 and − 70 %, respectively, compared with the untreated MetS rats). The 5 % fish oil diet resulted in markedly lower glomerulosclerosis ( − 43 %) in MetS rats and to a lesser extent in those supplemented with 10 % fish oil. Interestingly, untreated MetS rats had higher levels of 11- and 12-hydroxyeicosatetraenoic acids (HETE) v. lean rats. Dietary fish oil reduced these levels, as well as other (5-, 9- and 15-) HETE. Whilst genotype did not alter prostanoid levels, fish oil reduced endogenous renal levels of 6-keto PGF1α (PGI2 metabolite), thromboxane B2 (TxB2), PGF2α and PGD2 by approximately 60 % in rats fed 10 % fish oil, and TxB2 ( − 50 %) and PGF2α ( − 41 %) in rats fed 5 % fish oil. In conclusion, dietary fish oil prevented glomerular damage in MetS rats and mitigated the elevation in renal HETE levels. These results suggest a potential role for dietary fish oil to improve dysfunctional renal eicosanoid metabolism associated with kidney damage during conditions of the MetS.
Collapse
|
16
|
Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proc Natl Acad Sci U S A 2012; 109:E715-24. [PMID: 22308341 DOI: 10.1073/pnas.1111600109] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mechanisms that promote an inflammatory environment and accelerated atherosclerosis in diabetes are poorly understood. We show that macrophages isolated from two different mouse models of type 1 diabetes exhibit an inflammatory phenotype. This inflammatory phenotype associates with increased expression of long-chain acyl-CoA synthetase 1 (ACSL1), an enzyme that catalyzes the thioesterification of fatty acids. Monocytes from humans and mice with type 1 diabetes also exhibit increased ACSL1. Furthermore, myeloid-selective deletion of ACSL1 protects monocytes and macrophages from the inflammatory effects of diabetes. Strikingly, myeloid-selective deletion of ACSL1 also prevents accelerated atherosclerosis in diabetic mice without affecting lesions in nondiabetic mice. Our observations indicate that ACSL1 plays a critical role by promoting the inflammatory phenotype of macrophages associated with type 1 diabetes; they also raise the possibilities that diabetic atherosclerosis has an etiology that is, at least in part, distinct from the etiology of nondiabetic vascular disease and that this difference is because of increased monocyte and macrophage ACSL1 expression.
Collapse
|
17
|
Luo P, Wang MH. Eicosanoids, β-cell function, and diabetes. Prostaglandins Other Lipid Mediat 2011; 95:1-10. [PMID: 21757024 DOI: 10.1016/j.prostaglandins.2011.06.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Arachidonic acid (AA) is metabolized by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes into eicosanoids, which are involved in diverse diseases, including type 1 and type 2 diabetes. During the last 30 years, evidence has been accumulated that suggests important functions for eicosanoids in the control of pancreatic β-cell function and destruction. AA metabolites of the COX pathway, especially prostaglandin E(2) (PGE(2)), appear to be significant factors to β-cell dysfunction and destruction, participating in the pathogenesis of diabetes and its complications. Several elegant studies have contributed to the sorting out of the importance of 12-LOX eicosanoids in cytokine-mediated inflammation in pancreatic β cells. The role of CYP eicosanoids in diabetes is yet to be explored. A recent publication has demonstrated that stabilizing the levels of epoxyeicosatrienoic acids (EETs), CYP eicosanoids, by inhibiting or deleting soluble epoxide hydrolase (sEH) improves β-cell function and reduces β-cell apoptosis in diabetes. In this review we summarize recent findings implicating these eicosanoid pathways in diabetes and its complications. We also discuss the development of animal models with targeted gene deletion and specific enzymatic inhibitors in each pathway to identify potential targets for the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Pengcheng Luo
- Department of Nephrology, Renmin Hospital of Wuhan University, China
| | | |
Collapse
|
18
|
Alique M, Calleros L, Luengo A, Griera M, Iñiguez MÁ, Punzón C, Fresno M, Rodríguez-Puyol M, Rodríguez-Puyol D. Changes in extracellular matrix composition regulate cyclooxygenase-2 expression in human mesangial cells. Am J Physiol Cell Physiol 2011; 300:C907-18. [DOI: 10.1152/ajpcell.00176.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glomerular diseases are characterized by a sustained synthesis and accumulation of abnormal extracellular matrix proteins, such as collagen type I. The extracellular matrix transmits information to cells through interactions with membrane components, which directly activate many intracellular signaling events. Moreover, accumulating evidence suggests that eicosanoids derived from cyclooxygenase (COX)-2 participate in a number of pathological processes in immune-mediated renal diseases, and it is known that protein kinase B (AKT) may act through different transcription factors in the regulation of the COX-2 promoter. The present results show that progressive accumulation of collagen I in the extracellular medium induces a significant increase of COX-2 expression in human mesangial cells, resulting in an enhancement in PGE2 production. COX-2 overexpression is due to increased COX-2 mRNA levels. The study of the mechanism implicated in COX-2 upregulation by collagen I showed focal adhesion kinase (FAK) activation. Furthermore, we observed that the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway by collagen I and collagen I-induced COX-2 overexpression was abolished by PI3K and AKT inhibitors. Additionally, we showed that the cAMP response element (CRE) transcription factor is implicated. Finally, we studied COX-2 expression in an animal model, NG-nitro-l-arginine methyl ester hypertensive rats. In renal tissue and vascular walls, COX-2 and collagen type I content were upregulated. In summary, our results provide evidence that collagen type I increases COX-2 expression via the FAK/PI3K/AKT/cAMP response element binding protein signaling pathway.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento de Fisiología,
- Inststuto Reina Sofía de Investigación Nefrológica, and
| | - Laura Calleros
- Departamento de Fisiología,
- Inststuto Reina Sofía de Investigación Nefrológica, and
| | - Alicia Luengo
- Departamento de Fisiología,
- Inststuto Reina Sofía de Investigación Nefrológica, and
| | - Mercedes Griera
- Departamento de Fisiología,
- Inststuto Reina Sofía de Investigación Nefrológica, and
| | - Miguel Ángel Iñiguez
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior Investigaciones Científicas-Universidad Autónoma de Mardrid, Madrid, Spain
| | - Carmen Punzón
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior Investigaciones Científicas-Universidad Autónoma de Mardrid, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular “Severo Ochoa,” Consejo Superior Investigaciones Científicas-Universidad Autónoma de Mardrid, Madrid, Spain
| | | | - Diego Rodríguez-Puyol
- Inststuto Reina Sofía de Investigación Nefrológica, and
- Nephrology Section of the “Príncipe de Asturias Hospital,” Alcala University, Alcalá de Henares,
| |
Collapse
|
19
|
Quilley J, Santos M, Pedraza P. Renal protective effect of chronic inhibition of COX-2 with SC-58236 in streptozotocin-diabetic rats. Am J Physiol Heart Circ Physiol 2011; 300:H2316-22. [PMID: 21441310 DOI: 10.1152/ajpheart.01259.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The induction of renal cyclooxygenase-2 (COX-2) in diabetes has been implicated in the renal functional and structural changes in models where hypertension or uninephrectomy was superimposed. We examined the protective effects of 3 mo treatment of streptozotocin-diabetic rats with a highly selective COX-2 inhibitor (SC-58236) in terms of albuminuria, renal hypertrophy, and the excretion of TNF-α and TGF-β, which have also been implicated in the detrimental renal effects of diabetes. SC-58236 treatment (3 mg·kg(-1)·day(-1)) of diabetic rats resulted in reduced urinary excretion of PGE(2), 6-ketoPGF(1α), and thromboxane B(2), all of which were increased in the diabetic rat compared with age-matched nondiabetic rats. However, serum thromboxane B(2) levels were unchanged, confirming the selectivity of SC-58236 for COX-2. The renal protective effects of treatment of diabetic rats with the COX-2 inhibitor were reflected by a marked reduction in albuminuria, a reduction in kidney weight-to-body weight ratio, and TGF-β excretion and a marked decrease in the urinary excretion of TNF-α. The protective effects of SC-58236 were independent of changes in plasma glucose levels or serum advanced glycation end-product levels, which were not different from those of untreated diabetic rats. In an additional study, the inhibition of COX-2 with SC-58236 for 4 wk in diabetic rats resulted in creatinine clearance rates not different from those of control rats. These results confirm that the inhibition of COX-2 in the streptozotocin-diabetic rat confers renal protection and suggest that the induction of COX-2 precedes the increases in cytokines, TNF-α, and TGF-β.
Collapse
Affiliation(s)
- J Quilley
- Dept. of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
20
|
Chen YJ, Santos M, Quilley J. Treatment of diabetic rats with a peroxynitrite decomposition catalyst prevents induction of renal COX-2. Am J Physiol Heart Circ Physiol 2011; 300:H1125-32. [PMID: 21239635 DOI: 10.1152/ajpheart.00768.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cyclooxygenase (COX)-2 expression is increased in the kidney of rats made diabetic with streptozotocin and associated with enhanced release of prostaglandins stimulated by arachidonic acid (AA). Treatment of diabetic rats with nitro-L-arginine methyl ester (L-NAME) to inhibit nitric oxide synthase or with tempol to reduce superoxide prevented these changes, suggesting the possibility that peroxynitrite (ONOO) may be the stimulus for the induction of renal COX-2 in diabetes. Consequently, we tested the effects of an ONOO decomposition catalyst, 5,10,15,20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron(III) (FeTMPyP), which was administered for 3-4 wk after the induction of diabetes. FeTMPyP treatment normalized the twofold increase in the expression of nitrotyrosine, a marker for ONOO formation, in the diabetic rat and prevented the increase in renal COX-2 expression without modifying the two- to threefold increases in renal release of prostaglandins PGE(2) and 6-ketoPGF(1α) in response to AA. FeTMPyP treatment of diabetic rats reduced the elevated creatinine clearance and urinary excretion of TNF-α and transforming growth factor (TGF)-β, suggesting a renoprotective effect. Double immunostaining of renal sections and immunoprecipitation of COX-2 and nitrotyrosine suggested nitration of COX-2 in diabetic rats. In cultured human umbilical vein endothelial cells (HUVECs) exposed to elevated glucose (450 mg/dl) or ONOO derived from 3-morpholinosydnonimine (SIN-1), expression of COX-2 was increased and was prevented when endothelial cells were treated with FeTMPyP. These results indicate that elevated glucose increases the formation of ONOO, which contributes to the induction of renal COX-2 in the diabetic rat.
Collapse
Affiliation(s)
- Yu-Jung Chen
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | |
Collapse
|
21
|
|
22
|
Lee JJ, Hung CC, Tsai JC, Chen HC. Endothelin-1 enhances superoxide and prostaglandin E2 production of isolated diabetic glomeruli. Kaohsiung J Med Sci 2010; 26:350-6. [PMID: 20638037 DOI: 10.1016/s1607-551x(10)70058-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 01/06/2010] [Indexed: 11/28/2022] Open
Abstract
Endothelin-1 (ET-1) plays an important role in the pathogenic mechanism of diabetic nephropathy. However, the regulatory effects of ET-1 on superoxide and prostaglandin E2 (PGE2) in diabetic glomeruli are unclear. The aim of this study was to determine whether ET-1 exerts a differential effect on the production of superoxide and PGE2 in diabetic glomeruli. The regulatory effects of indomethacin, insulin, dexamethasone, and heparin were also investigated. Freshly isolated glomeruli were obtained from normal and streptozotocin-induced diabetic rats for 1 week (DM1W), 1 month (DM1M), and 3 months (DM3M), respectively. Our results showed that the basal superoxide production of isolated glomeruli was significantly higher in DM1M and DM3M than in the normal rats (p < 0.01). ET-1 stimulated superoxide production in normal, DM1W and DM1M glomeruli (p < 0.01) but not in DM3M rats. The basal production of PGE2 in isolated glomeruli did not differ between diabetic and normal rats. ET-1 also stimulated PGE2 production in diabetic rats (p < 0.05). Pretreatment with indomethacin further enhanced ET-1-stimulated superoxide production in all groups of diabetic rats (p < 0.05), while the ET-1-stimulated PGE2 production was attenuated by indomethacin. Insulin, dexamethasone and heparin had no additional effects on ET-1-mediated superoxide and PGE2 production. In conclusion, basal glomerular production of superoxide but not PGE2 was increased in the diabetic glomeruli. ET-1 further stimulated production of both superoxide and PGE2. Indomethacin could enhance ET-1-stimulated superoxide production while attenuating PGE2 production.
Collapse
Affiliation(s)
- Jia-Jung Lee
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
23
|
Abdel-Rahman EM, Abadir PM, Siragy HM. Regulation of renal 12(S)-hydroxyeicosatetraenoic acid in diabetes by angiotensin AT1 and AT2 receptors. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1473-8. [PMID: 18799632 DOI: 10.1152/ajpregu.90699.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Diabetes is associated with increased production of 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE]. The mechanisms involved in this process remain unclear. We hypothesized that hyperglycemia and angiotensin II (ANG II) regulate renal 12(S)-HETE production via a balance between angiotensin AT(1) and AT(2) receptors activities. Using a microdialysis technique, renal interstitial fluid (RIF) levels of ANG II and 12(S)-HETE were monitored in normal control and streptozotocin-induced diabetic rats at baseline and then weekly thereafter for 12 wk. In a second group of normal and diabetic rats, 3 wk after development of diabetes, we monitored RIF 12(S)-HETE levels in response to acute AT(1) receptor blockade with valsartan or AT(2) receptor blockade with PD123319 individually or combined. Two weeks after induction of diabetes there was a 404% increase in ANG II (P < 0.05), a 149% increase in 12S-HETE (P < 0.05), and a 649% increase in urinary albumin excretion (P < 0.05). These levels remained elevated throughout the study. PD123319 given alone had no effect on 12(S)-HETE. Valsartan decreased 12(S)-HETE by 61.6% (P < 0.0001), a response that was abrogated when PD123319 was given with valsartan. These data demonstrate that hyperglycemia increases renal ANG II and 12(S)-HETE levels. The increase in 12(S)-HETE is mediated via AT(1) receptor. The attenuation of the effects of AT(1) receptor blockade by PD123319 suggests that AT(2) receptor contributes to the downregulation of renal 12(S)-HETE production.
Collapse
Affiliation(s)
- Emaad M Abdel-Rahman
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908-1409, USA
| | | | | |
Collapse
|
24
|
Chen YJ, Li J, Quilley J. Deficient renal 20-HETE release in the diabetic rat is not the result of oxidative stress. Am J Physiol Heart Circ Physiol 2008; 294:H2305-12. [PMID: 18326808 DOI: 10.1152/ajpheart.00868.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We confirmed that release of 20-hydroxyeicosatetraenoic acid (20-HETE) from the isolated perfused kidney of diabetic rats is greatly reduced compared with age-matched control rats. The present studies were undertaken to examine potential mechanisms for the deficit in renal 20-HETE in rats with streptozotocin-induced diabetes of 3-4 wk duration. A role for oxidative stress was excluded, inasmuch as treatment of diabetic rats with tempol, an SOD mimetic, for 4 wk did not affect the renal release of 20-HETE. Similarly, chronic inhibition of nitric oxide formation with nitro-l-arginine methyl ester or aldose reductase with zopolrestat failed to alter the release of 20-HETE from the diabetic rat kidney. Inasmuch as 20-HETE may be metabolized by cyclooxygenase (COX), the expression/activity of which is increased in diabetes, we included indomethacin in the perfusate of the isolated kidney to inhibit COX but found no effect on 20-HETE release. Diabetic rats were treated for 3 wk with fenofibrate to increase expression of cytochrome P-450 (CYP4A) in an attempt to find an intervention that would restore release of 20-HETE from the diabetic rat kidney. However, fenofibrate reduced 20-HETE release in diabetic and control rat kidneys but increased expression of CYP4A. Only insulin treatment of diabetic rats for 2 wk to reverse the hyperglycemia and maintain blood glucose levels at <200 mg/dl reversed the renal deficit in 20-HETE. We conclude that oxidative stress, increased aldose reductase activity, or increased COX activity does not contribute to the renal deficit of 20-HETE in diabetes, which may be directly related to insulin deficiency.
Collapse
Affiliation(s)
- Yu-Jung Chen
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
25
|
Cherney DZI, Miller JA, Scholey JW, Bradley TJ, Slorach C, Curtis JR, Dekker MG, Nasrallah R, Hébert RL, Sochett EB. The effect of cyclooxygenase-2 inhibition on renal hemodynamic function in humans with type 1 diabetes. Diabetes 2008; 57:688-95. [PMID: 18083781 DOI: 10.2337/db07-1230] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Studies in animal models suggest that cyclooxygenase-2 (COX2) plays a role in the regulation of the renal microcirculation in diabetes. Accordingly, we examined the role of COX2 in the control of renal hemodynamic function and in the renal response to hyperglycemia in humans with uncomplicated type 1 diabetes. We hypothesized that COX2 inhibition would alleviate the hyperfiltration state and would abrogate the hyperglycemia-mediated rise in glomerular filtration rate (GFR). RESEARCH DESIGN AND METHODS; Renal function was assessed during clamped euglycemia and hyperglycemia on 2 consecutive days before and then again after 14 days of COX2 inhibition using 200 mg celecoxib once daily by mouth. For analysis, the cohort was then divided into two groups based on the baseline GFR: 9 subjects exhibited hyperfiltration (GFR >or=135 ml/min per 1.73 m(2)), and 12 subjects exhibited normofiltration (GFR <135 ml/min per 1.73 m(2)). RESULTS Under euglycemic conditions, COX2 inhibition resulted in a significant decline in GFR in the hyperfiltration group (150 +/- 5 to 139 +/- 5 ml/min per 1.73 m(2)) but increased GFR in the normofiltration group (118 +/- 5 to 138 +/- 5 ml/min per 1.73 m(2)). COX2 inhibition did not blunt the hyperglycemia-associated rise in GFR in the normofiltration group and was instead associated with an augmented rise in GFR. CONCLUSIONS In summary, our results support the hypothesis that COX2 is an important determinant of renal hemodynamic function in subjects with type 1 diabetes. The renal response to COX2 inhibition emphasizes that hyperfiltration and normofiltration are distinct physiological states.
Collapse
Affiliation(s)
- David Z I Cherney
- Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen YJ, Quilley J. Fenofibrate treatment of diabetic rats reduces nitrosative stress, renal cyclooxygenase-2 expression, and enhanced renal prostaglandin release. J Pharmacol Exp Ther 2007; 324:658-63. [PMID: 17993607 DOI: 10.1124/jpet.107.129197] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Renal cyclooxygenase (COX)-2 expression is increased in the diabetic rat and has been linked to increased glomerular filtration rate (GFR) and renal injury. Our studies indicate that oxidative stress in the form of peroxynitrite (ONOO) may be the stimulus for induction of COX-2. In this study, we addressed the effects of a peroxisome proliferator-activated receptor alpha agonist on renal COX-2 expression as fibrates exert renal protective effects. Forty-eight hours after the induction of diabetes with streptozotocin in male Wistar rats, fenofibrate treatment (100 mg/kg/day) was started, and the effects were compared with untreated diabetic rats and treated and untreated age-matched control rats (n = 5 per group). After 12 to 14 weeks of treatment, the right kidney was perfused to determine prostaglandin release in response to arachidonic acid (AA), and the left kidney was used to examine the expression of COX-2 and nitrotyrosine, an index of ONOO formation. Release of prostaglandin (PG) E(2) in response to AA was enhanced in the diabetic rat kidney compared with control (4.8 +/- 0.7 versus 1.9 +/- 0.7 ng/min) and reduced by fenofibrate to 0.6 +/- 0.2 ng/min. A similar pattern was obtained for AA-stimulated release of 6-ketoPGF(1alpha). The effects of fenofibrate were associated with reduced renal expression of COX-2 and nitrotyrosine in diabetic rats. We used creatinine clearance as an index of GFR, which was increased in the diabetic rat, 3.09 +/- 0.4 versus 1.15 +/- 0.1 ml/min for control, and reduced by fenofibrate treatment to 1.87 +/- 0.3 ml/min. These results show that fenofibrate treatment of diabetic rats decreases renal COX-2 expression, possibly by reducing nitrosative stress, and is associated with a reduction of the enhanced GFR.
Collapse
Affiliation(s)
- Yu-Jung Chen
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | |
Collapse
|
27
|
Vukicevic S, Simic P, Borovecki F, Grgurevic L, Rogic D, Orlic I, Grasser WA, Thompson DD, Paralkar VM. Role of EP2 and EP4 receptor-selective agonists of prostaglandin E2 in acute and chronic kidney failure. Kidney Int 2006; 70:1099-106. [PMID: 16871242 DOI: 10.1038/sj.ki.5001715] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We tested the efficacy of three selective agonists of prostaglandin E(2) (PGE(2)) receptor, EP2 (CP-536,745-01), EP2/4 (CP-043,305-02), and EP4 (CP-044,519-02), in two models of acute and chronic kidney failure. In the nephrotoxic mercury chloride (HgCl(2)) rat model of acute kidney failure systemically administered EP4 agonist reduced the serum creatinine values and increased the survival rate. Although the EP2 or the EP2/4 agonist did not change the serum creatinine values, the EP2 receptor agonist increased the survival rate. Histological evaluation of kidneys from EP4-treated rats indicated less proximal tubular necrosis and less apoptotic cells. In a rat model of chronic renal failure, the three receptor agonists decreased the serum creatinine and increased the glomerular filtration rate at 9 weeks following therapy. Kidneys treated with the EP4 agonist had less glomerular sclerosis, better preservation of proximal and distal tubules and blood vessels, increased convoluted epithelium proliferation and less apoptotic cells. Nephrectomy had no influence on the expression of the EP4 receptor, whereas EP2 receptor expression was reduced by 50% and then corrected following treatment with EP2 and EP2/4 receptor agonists. These findings suggest that PGE(2) has an important role in acute kidney failure via the EP4 receptor, whereas in chronic kidney failure both EP2 and EP4 receptors are equally important in preserving the progression of chronic kidney failure. Thus, agonism of EP2 and EP4 receptors may provide a basis for treating acute and chronic kidney failure.
Collapse
MESH Headings
- Acute Kidney Injury/metabolism
- Acute Kidney Injury/physiopathology
- Animals
- Dinoprostone/metabolism
- Disease Models, Animal
- Immunohistochemistry
- Kidney Failure, Chronic/metabolism
- Kidney Failure, Chronic/physiopathology
- Male
- Mercuric Chloride/toxicity
- Nephrectomy
- Rats
- Rats, Wistar
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
Collapse
Affiliation(s)
- S Vukicevic
- Laboratory of Mineralized Tissues, Department of Anatomy, Zagreb Medical School, University of Zagreb, Zagreb, Croatia.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen YJ, Li J, Quilley J. Effect of inhibition of nitric oxide synthase on renal cyclooxygenase in the diabetic rat. Eur J Pharmacol 2006; 541:80-6. [PMID: 16753143 DOI: 10.1016/j.ejphar.2006.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 04/28/2006] [Accepted: 05/08/2006] [Indexed: 01/09/2023]
Abstract
Renal cyclooxygenase (COX)-2 expression and arachidonic acid-stimulated prostaglandin release are increased in streptozotocin-diabetic rats and are reduced by tempol treatment, indicating a role for superoxide. Generation of nitric oxide (NO) and its product with superoxide, peroxynitrite, is also increased in diabetes and can induce COX-2. To investigate a role of NO, rats were treated with L-nitroarginine methyl ester (L-NAME; 100 mg/kg/day) to inhibit NO synthase (NOS) for 14-18 days. In isolated perfused kidneys from diabetic rats, prostaglandin release and vasoconstrictor responses to arachidonic acid were increased and renal cortical expression of COX-2 was 2-fold that of control rats. Treatment of diabetic rats with L-NAME reduced arachidonic acid-stimulated release of prostaglandins and the expression of COX-2. L-NAME increased vasoconstrictor responses to AA in diabetic and non-diabetic rats but abolished the differences between the two. These results, coupled with those using tempol, suggest that NO or its product with superoxide may contribute to the induction of renal COX-2 in the diabetic rat.
Collapse
Affiliation(s)
- Yu-Jung Chen
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | | | | |
Collapse
|
29
|
Harding P, Balasubramanian L, Swegan J, Stevens A, Glass WF. Transforming growth factor beta regulates cyclooxygenase-2 in glomerular mesangial cells. Kidney Int 2006; 69:1578-85. [PMID: 16572115 DOI: 10.1038/sj.ki.5000323] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study examines the hypothesis that transforming growth factor beta (TGFbeta) regulates cyclooxygenase-2 (COX-2) and induces prostaglandin E synthase (mPGES-1) in rat mesangial cells. COX-2 expression was determined by Northern blot analysis after treatment with either TGFbeta1 or the selective COX-2 inhibitor, NS398. mPGES-1 expression was determined by real-time polymerase chain reaction. The effect of TGFbeta1 on COX-2 gene transcription was assessed using a luciferase reporter assay, and mRNA stability was also determined. To determine whether TGFbeta1 activates elements of the COX-2 promoter, we performed gel shift analyses to examine activation of activator protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB). Prostaglandin E(2) (PGE(2)) and thromboxane B2 (TxB2) production was assayed by enzyme immunoassay. Finally, the pathophysiological relevance of COX-2 inhibition on the downstream effects of TGFbeta was assessed by examining collagen type I mRNA and net collagen production. COX-2 mRNA and mPGES-1 were induced after treatment with TGFbeta1 for 4 h, and this rise was accompanied by a three-fold increase in PGE(2) production that could be antagonized by selective inhibition of COX-2 with NS398. TGFbeta1 increased transcription by approximately 50% and activated both AP-1 and NF-kappaB. These effects were antagonized by co-treatment with NS398. Treatment with TGFbeta1 also doubled the half-life of COX-2 mRNA. Neither collagen type I mRNA nor net collagen production were altered by co-treatment with NS398. In conclusion, these results indicate that TGFbeta stimulates COX-2 and mPGES-1, with additional effects on transcription and stability of COX-2 mRNA.
Collapse
Affiliation(s)
- P Harding
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia, USA.
| | | | | | | | | |
Collapse
|
30
|
Hirasawa Y, Muramatsu A, Suzuki Y, Nagamatsu T. Insufficient Expression of Cyclooxygenase-2 Protein Is Associated With Retarded Degradation of Aggregated Protein in Diabetic Glomeruli. J Pharmacol Sci 2006; 102:173-81. [PMID: 17031073 DOI: 10.1254/jphs.fpj06010x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
To elucidate the involvement of cyclooxygenase (COX) in degradation of aggregated protein in diabetic glomeruli, we used streptozotocin (STZ)-induced diabetic mice and aggregated bovine serum albumin (a-BSA) as a model protein. There was a higher deposition of a-BSA in diabetic glomeruli compared to normal glomeruli 18 h after a-BSA injection at 4 and 8 weeks after STZ. Degradation of a-BSA was confirmed using isolated glomeruli. Diabetic glomeruli produced prostaglandin E(2) (PGE(2)) more than normal glomeruli in the basal level at 8 weeks. a-BSA caused further increase of PGE(2) production in normal glomeruli, but not in diabetic glomeruli. Niflimic acid, a selective COX-2 inhibitor, reduced PGE(2) production of normal glomeruli in the a-BSA loading group, but not that in the control group. In diabetic glomeruli, niflimic acid reduced PGE(2) production in both the control group and a-BSA loading group. In normal glomeruli, a-BSA increased expressions of both COX-2 mRNA and protein. However, in diabetic glomeruli, a-BSA increased COX-2 mRNA expression but not COX-2 protein expression. These results suggest that retarded degradation of aggregated protein in diabetic glomeruli is associated with lack of further expression of COX-2 protein and further production of PGE(2) in response to aggregated protein.
Collapse
Affiliation(s)
- Yasushi Hirasawa
- Department of Pharmacobiology and Therapeutics, Faculty of Pharmacy, Meijo University, Japan.
| | | | | | | |
Collapse
|
31
|
Kamata K, Hosokawa M, Matsumoto T, Kobayashi T. Acetylcholine-induced vasodilation in the perfused kidney of the streptozotocin-induced diabetic rat: role of prostacyclin. J Smooth Muscle Res 2006; 42:159-70. [PMID: 17159332 DOI: 10.1540/jsmr.42.159] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using the perfused kidneys of age-matched controls and streptozotocin (STZ)-induced diabetic rats, we previously demonstrated that endothelial dysfunction is present in STZ-induced diabetic rats and that acetylcholine (ACh) increases the level of 6-keto-prostaglandin F(1 alpha) (a metabolite of prostacyclin) in the effluent from such perfused kidneys. Here, we investigated whether the ACh-induced relaxation in the perfused kidney is modulated by prostacyclin and/or thromboxane A(2) (TXA(2)) in the STZ-induced diabetic state. ACh-induced renal vasodilatation was significantly weaker in STZ-induced diabetic rats than in age-matched controls, and it was not affected by treatment with 10 microM furegrelate (TXA(2) -synthase inhibitor) or 1 microM SQ29548 (TXA(2) -receptor antagonist) in either group. However, it was attenuated by 10 microM tranylcypromine (prostacyclin-synthesis inhibitor), but only in the diabetic group. These results suggest that the endothelium-dependent relaxation induced by ACh in the renal vascular bed of STZ-induced diabetic rats is regulated by prostacyclin, not by TXA(2). Increased prostacyclin-signaling may occur to help compensate for the impaired endothelial function seen in the kidney in long-term diabetic states.
Collapse
Affiliation(s)
- Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan.
| | | | | | | |
Collapse
|
32
|
Li J, Chen YJ, Quilley J. Effect of Tempol on Renal Cyclooxygenase Expression and Activity in Experimental Diabetes in the Rat. J Pharmacol Exp Ther 2005; 314:818-24. [PMID: 15879008 DOI: 10.1124/jpet.104.076927] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Renal cyclooxygenase (COX)-2 expression is increased in the streptozotocin (STZ)-diabetic rat and is associated with enhanced renal prostaglandin release in response to arachidonic acid (AA). Endoperoxide-mediated vasoconstrictor responses to AA were also enhanced in the diabetic rat kidney. Because oxidative stress is increased in diabetes and has been shown to induce COX-2, we assessed its contribution to prostaglandin release by treating diabetic rats with tempol (120 mg/kg/day) for 28 days. Release of AA-stimulated prostaglandins PGE(2) and 6-ketoPGF(1alpha) from the isolated perfused kidney was used as an index of COX activity, and Western analysis was used to determine COX-2 protein expression. In untreated diabetic rats, the release of prostaglandins in response to AA was markedly enhanced; the increase in release of both 6-ketoPGF(1alpha) and PGE(2) after AA was twice that in control rats. Renal cortical COX-2 expression in diabetic rats was 3-fold that of control rats. Tempol treatment reduced the AA-stimulated release of prostaglandins to levels seen in control rats; this was associated with reduced expression of COX-2 protein to levels not different from that in control rats. However, the enhanced vasoconstrictor response to AA in diabetic rats was unaffected by tempol treatment but abolished by inhibition of COX-1 with SC58560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole]. The addition of tempol to the perfusate of kidneys from diabetic and control rats had only a slight effect on prostaglandin release. We conclude that oxidative stress is an integral component of the mechanism involved in the induction of renal COX-2 in diabetes.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
33
|
Iino K, Iwase M, Sonoki K, Yoshinari M, Iida M. Combination treatment of vitamin C and desferrioxamine suppresses glomerular superoxide and prostaglandin E production in diabetic rats. Diabetes Obes Metab 2005; 7:106-9. [PMID: 15642082 DOI: 10.1111/j.1463-1326.2005.00371.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Increased oxidative stress may contribute to the development of diabetic nephropathy. Conversely, it has been proposed that enhanced glomerular production of prostaglandin E(2) (PGE(2)) may be the cause of glomerular hyperfiltration in streptozotocin (STZ)-induced diabetic rats. As the role of superoxide anion (O(2-)) production in early diabetic nephropathy is not fully understood, we investigated the effect of vitamin C and desferrioxamine treatment on glomerular O(2-) and PGE(2) production in diabetic rats. METHODS STZ-induced diabetic rats were given drinking water containing 1 g/l of vitamin C and desferrioxamine for 10 days, and glomerular O(2-) production, glomerular PGE(2) synthesis and creatinine clearance were examined. RESULTS Glomerular O(2-) production increased in untreated diabetic rats compared to non-diabetic controls (142.2 +/- 12.4 vs. 65.4 +/- 3.6 counts/mg protein/min). Treatment with vitamin C and desferrioxamine significantly decreased glomerular O(2-) production (93.7 +/- 6.7 counts/mg protein/min). Glomerular PGE(2) synthesis and creatinine clearance were significantly increased in untreated diabetic rats compared to controls and PGE(2) synthesis was reduced and creatinine clearance tended to decrease by the treatment. CONCLUSIONS Our results demonstrated that vitamin C and desferrioxamine suppressed the enhanced glomerular O(2-) production with subsequent decrease in PGE(2) production. Antioxidant therapy may be beneficial in preventing the development of diabetic nephropathy.
Collapse
Affiliation(s)
- K Iino
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyusyu University, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
34
|
Sheu ML, Ho FM, Chao KF, Kuo ML, Liu SH. Activation of phosphoinositide 3-kinase in response to inflammation and nitric oxide leads to the up-regulation of cyclooxygenase-2 expression and subsequent cell proliferation in mesangial cells. Cell Signal 2004; 66:187-96. [PMID: 15213311 DOI: 10.1124/mol.66.1.187] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we showed that nitric oxide (NO) donors induced the mesangial cell proliferation and cyclooxygenase-2 (COX-2) protein expression in murine mesangial cells. An inflammatory condition [lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma)] could also induce cell proliferation and significantly enhance inducible nitric oxide synthase (iNOS) and COX-2 expression. Phosphoinositide 3-kinase (PI3K) inhibitor, LY294002, inhibited these responses. LPS/IFN-gamma-induced COX-2 expression in mesangial cells could be inhibited by iNOS inhibitor, aminoguanidine. Selective COX-2 inhibitor, NS398, was capable of inhibiting NO donor- or LPS/IFN-gamma-induced mesangial cell proliferation. Both NO donor and LPS/IFN-gamma markedly activated the PI3K activity and the phosphorylation of Akt and nuclear factor (NF)-kappaB DNA binding activity in mesangial cells, which could be inhibited by LY294002 and transfection of dominant-negative vectors of PI3K/p85 and Akt. These results indicate that a PI3K/Akt-dependent pathway involved in the NO-regulated COX-2 expression and cell proliferation in mesangial cells under inflammatory condition.
Collapse
Affiliation(s)
- Meei Ling Sheu
- Institute of Toxicology, College of Medicine, National Taiwan University, 1, Section 1, Jen-Ai Road, Taipei, 10043, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Dey A, Williams RS, Pollock DM, Stepp DW, Newman JW, Hammock BD, Imig JD. Altered kidney CYP2C and cyclooxygenase-2 levels are associated with obesity-related albuminuria. ACTA ACUST UNITED AC 2004; 12:1278-89. [PMID: 15340111 DOI: 10.1038/oby.2004.162] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To determine cytochrome P450 (CYP450) and cyclooxygenase (COX) expression and metabolite regulation and renal damage in the early stages of obesity-related hypertension and diabetes. RESEARCH METHODS AND PROCEDURES Obese and lean Zucker rats at 10 to 12 weeks of age were studied. Blood pressure was measured in the conscious state using radiotelemetry. Blood glucose levels and body weight were measured periodically. Protein expression of CYP450 and COX enzymes in the kidney cortex, renal microvessels, and glomeruli was studied. The levels of CYP450 and COX metabolites in urine were measured, and urinary albumin excretion, an indicator of kidney damage, was measured. RESULTS Body weight and blood glucose averaged 432 +/- 20 grams and 105 +/- 5 mg/dl, respectively, in obese Zucker rats as compared with 320 +/- 8 grams and 91 +/- 5 mg/dl, respectively, in age-matched 10- to 12-week-old lean Zucker rats. Renal microvascular CYP4A and COX-2 protein levels were increased 2.3- and 17.0-fold, respectively, in obese Zucker rats. The protein expression of CYP2C11 and CYP2C23 was decreased 2.0-fold in renal microvessels isolated from obese Zucker rats when compared with lean Zucker rats. The urinary excretion rate of thromboxane B(2) was increased significantly in obese Zucker as compared with lean Zucker rats (22.0 +/- 1.8 vs. 13.4 +/- 1.0 ng/d). Urinary albumin excretion, an index of kidney damage, was increased in the obese Zucker rat at this early age. DISCUSSION These results suggest that increased CYP4A and COX-2 protein levels and decreased CYP2C11 and CYP2C23 protein levels occur in association with microalbuminuria during the onset of obesity-related hypertension and type 2 diabetes.
Collapse
Affiliation(s)
- Aparajita Dey
- Vascular Biology Center, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Nasrallah R, Hébert RL. Reduced IP receptors in STZ-induced diabetic rat kidneys and high-glucose-treated mesangial cells. Am J Physiol Renal Physiol 2004; 287:F673-81. [PMID: 15161601 DOI: 10.1152/ajprenal.00025.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mesangial cells (MG) are an important source of renal PGE2 and PGI2. The purpose of this study was to examine the effects of cicaprost (CCP; PGI2 analog) on MG function and the expression of IP receptors in streptozotocin (STZ)-diabetic rats and glucose-treated MG cells. CCP increased cellular cAMP in immortalized rat MG cells. Both glucose and anisomycin attenuated CCP-cAMP, but not PMA, angiotensin II, or transforming growth factor-beta. Also, IP receptor protein was reduced in response to glucose. While CCP decreased the levels of the cell cycle inhibitor p27, it did not alter thymidine or leucine incorporation. However, CCP reduced fibronectin levels by 40% and increased matrix metalloproteinase-2 levels threefold, a key enzyme in matrix degradation. Finally, IP receptors were significantly reduced in the outer medulla of 4- and 12-wk STZ-diabetic rats and in the cortex, outer, and inner medullary regions in 6-mo uninephrectomized STZ-diabetic rats. The changes in the CCP/IP system observed in this study suggest that IP may serve as an alternate therapeutic target in diabetes.
Collapse
MESH Headings
- Animals
- Anisomycin/pharmacology
- Cell Cycle Proteins/metabolism
- Cell Line, Transformed
- Cyclic AMP/metabolism
- Cyclin-Dependent Kinase Inhibitor p27
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/physiopathology
- Epoprostenol/analogs & derivatives
- Epoprostenol/pharmacology
- Fibronectins/metabolism
- Glomerular Mesangium/cytology
- Glomerular Mesangium/drug effects
- Glucose/pharmacology
- Matrix Metalloproteinase 2/metabolism
- Prostaglandins, Synthetic/pharmacology
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP3 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Rania Nasrallah
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Rm. 1337, Ottawa, ON, K1H 8M5, Canada
| | | |
Collapse
|
37
|
Wang A, Hascall VC. Hyaluronan Structures Synthesized by Rat Mesangial Cells in Response to Hyperglycemia Induce Monocyte Adhesion. J Biol Chem 2004; 279:10279-85. [PMID: 14679194 DOI: 10.1074/jbc.m312045200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mesangial expansion, the principal glomerular lesion in diabetic nephropathy, is preceded by a phenotypic activation and transient proliferation of the glomerular mesangial cells and by a prominent glomerular infiltration of monocytes and macrophages. Because this infiltration seems to play a key role in the subsequent mesangial matrix expansion, we tested the response of cultures of rat mesangial cells (RMCs) for monocyte adhesion in response to hyperglycemia. Increasing the medium glucose concentration from 5.6 mm (normal) to 25.6 mm (hyperglycemic) significantly increased hyaluronan in the cell matrix, with a concurrent 3- to 4-fold increase in adhesion of U937 monocytic leukemic cells to cultures of near confluent RMCs. These responses were attributed directly to the high glucose concentration and not to increased extracellular osmolality. The monocytes primarily bind directly to hyaluronan-based structures in vitro. Abnormal deposits of hyaluronan were found in glomeruli of kidney sections from diabetic rats 1 week after streptozotocin treatment, often with closely associated monocytes/macrophages, suggesting that similar structures are relevant in vivo. The monocyte adhesion response to high glucose concentration required growth stimulation of RMCs by serum and activation of protein kinase C, and was inhibited by prior passage of the RMCs in the presence of heparin. These results suggest that the response may be cell growth state and protein kinase C-dependent. When incubated with the viral mimetic, poly I:C, in the presence of normal glucose, heparin-passaged RMCs still increased cell-associated hyaluronan and exhibited hyaluronan-mediated adhesion of monocytes, indicating that the two stimuli, high glucose and viral mimetic, induce the production of the hyaluronan structures that promote monocyte adhesion by distinctly different intracellular signaling mechanisms.
Collapse
Affiliation(s)
- Aimin Wang
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
38
|
Suganami T, Mori K, Tanaka I, Mukoyama M, Sugawara A, Makino H, Muro S, Yahata K, Ohuchida S, Maruyama T, Narumiya S, Nakao K. Role of prostaglandin E receptor EP1 subtype in the development of renal injury in genetically hypertensive rats. Hypertension 2004; 42:1183-90. [PMID: 14670979 DOI: 10.1161/01.hyp.0000101689.64849.97] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the major causes of end-stage renal diseases is hypertensive renal disease, in which enhanced renal prostaglandin (PG) E2 production has been shown. PGE2, a major arachidonic acid metabolite produced in the kidney, acts on 4 receptor subtypes, EP1 through EP4, but the pathophysiological importance of the PGE2/EP subtypes in the development of hypertensive renal injury remains to be elucidated. In this study, we investigated whether an orally active EP1-selective antagonist (EP1A) prevents the progression of renal damage in stroke-prone spontaneously hypertensive rats (SHRSP), a model of human malignant hypertension. Ten-week-old SHRSP, with established hypertension but with minimal renal damage, were given EP1A or vehicle for 5 weeks. After the treatment period, vehicle-treated SHRSP showed prominent proliferative lesions in arterioles, characterized by decreased alpha-smooth muscle actin expression in multilayered vascular smooth muscle cells. Upregulation of transforming growth factor-beta expression and tubulointerstitial fibrosis were also observed in vehicle-treated SHRSP. All these changes were dramatically attenuated in EP1A-treated SHRSP. Moreover, EP1A treatment significantly inhibited both increase in urinary protein excretion and decrease in creatinine clearance but had little effect on systemic blood pressure. These findings indicate that the PGE2/EP1 signaling pathway plays a crucial role in the development of renal injury in SHRSP. This study opens a novel therapeutic potential of selective blockade of EP1 for the treatment of hypertensive renal disease.
Collapse
Affiliation(s)
- Takayoshi Suganami
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nasrallah R, Landry A, Singh S, Sklepowicz M, Hébert RL. Increased expression of cyclooxygenase-1 and -2 in the diabetic rat renal medulla. Am J Physiol Renal Physiol 2003; 285:F1068-77. [PMID: 12888618 DOI: 10.1152/ajprenal.00434.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alterations in renal prostaglandins (PGs) may contribute to some of the renal manifestations in diabetes leading to nephropathy. PG production is dependent on the activity of cyclooxygenases (COX-1 AND -2) and PG synthases. Our present study investigated levels of these enzymes in streptozotocin-diabetic rats at 2, 4, 6, and 8 wk of diabetes. Immunohistochemical analysis revealed an increase in COX signal in the inner and outer medulla of diabetic rats. This was confirmed by Western blotting, showing up to a fourfold increase in both COX isoforms at 4-6 wk of diabetes. Also, Western blot analysis revealed a sixfold increase in PGE2 synthase expression in the outer medullary region of 6-wk diabetic rats but no difference in the inner medulla. In cultured rat inner medullary collecting duct (IMCD), levels of COX were increased two- to threefold in cells exposed for 4 days to 37.5 mM glucose compared with control of 17.5 mM. While no change in PGE2 synthase levels was noted, PGE2 synthesis was increased. Furthermore, levels of EP1 and EP4 mRNA were increased, as well as a twofold increase in EP4 protein levels. Future studies will determine which COX isoform is contributing to the majority of PGE2 produced in the diabetic IMCD and the significance of these findings to disturbances in IMCD function and to the progression of diabetic nephropathy.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cyclooxygenase 1
- Cyclooxygenase 2
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Dinoprostone/metabolism
- Gene Expression
- Glucose/pharmacology
- Immunohistochemistry
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Kidney Medulla/enzymology
- Male
- Membrane Proteins
- Prostaglandin-Endoperoxide Synthases/genetics
- Prostaglandin-Endoperoxide Synthases/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
Collapse
Affiliation(s)
- Rania Nasrallah
- Dept. of Cellular and Molecular Medicine, and Kidney Research Centre, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Rm. 1337, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | |
Collapse
|
40
|
Kiritoshi S, Nishikawa T, Sonoda K, Kukidome D, Senokuchi T, Matsuo T, Matsumura T, Tokunaga H, Brownlee M, Araki E. Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes 2003; 52:2570-7. [PMID: 14514642 DOI: 10.2337/diabetes.52.10.2570] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hyperglycemia increases the production of reactive oxygen species (ROS) from the mitochondrial electron transport chain in bovine endothelial cells. Because several studies have postulated a role for prostaglandins (PGs) in the glomerular hyperfiltration seen in early diabetes, we evaluated the effect of mitochondrial ROS on expression of the inducible isoform of cyclooxygenase (COX-2) in cultured human mesangial cells (HMCs). We first confirmed that incubation of HMC with 30 mmol/l glucose significantly increased COX-2 mRNA but not COX-1 mRNA, compared with 5.6 mmol/l glucose. Similarly, incubation of HMCs with 30 mmol/l glucose significantly increased mitochondrial membrane potential, intracellular ROS production, COX-2 protein expression, and PGE2 synthesis, and these events were completely suppressed by thenoyltrifluoroacetone or carbonyl cyanide m-chlorophenylhydrazone, inhibitors of mitochondrial metabolism, or by overexpression of uncoupling protein-1 or manganese superoxide dismutase. Furthermore, increased expression of COX-2 mRNA and protein was confirmed in glomeruli of streptozotocin-induced diabetic mice. In addition, hyperglycemia induced activation of the COX-2 gene promoter, which was completely abrogated by mutation of two nuclear factor kappaB (NF-kappaB) binding sites in the promoter region. Our results suggest that hyperglycemia increases mitochondrial ROS production, resulting in NF-kappaB activation, COX-2 mRNA induction, COX-2 protein production, and PGE2 synthesis. This chain of events might contribute to the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Shinsuke Kiritoshi
- Department of Metabolic Medicine, Kumamoto University School of Medicine, Honjo, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Haneda M, Koya D, Isono M, Kikkawa R. Overview of glucose signaling in mesangial cells in diabetic nephropathy. J Am Soc Nephrol 2003; 14:1374-82. [PMID: 12707407 DOI: 10.1097/01.asn.0000064500.89551.76] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Masakazu Haneda
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga 520-2192, Japan.
| | | | | | | |
Collapse
|
42
|
Harding P, Glass WF, Scherer SD. COX-2 inhibition potentiates the antiproteinuric effect of enalapril in uninephrectomized SHR. Prostaglandins Leukot Essent Fatty Acids 2003; 68:17-25. [PMID: 12538086 DOI: 10.1016/s0952-3278(02)00231-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PGE(2) and PGI(2) reduce extracellular matrix deposition and their production is altered after ACE inhibitor (ACEi) treatment. We therefore hypothesized that cyclooxygenase (COX)-2 inhibition would exacerbate renal injury and antagonize the effects of ACEi. To test these hypotheses, WKY and SHR were uninephrectomized (UNX) and treated with either vehicle, enalapril, NS398 or enalapril+NS398. NS398 did not affect systolic blood pressure nor antagonize the antihypertensive effect of enalapril. Urinary protein excretion in UNX WKY was significantly decreased after treatment with either enalapril or NS398. In UNX SHR, enalapril reduced proteinuria, but NS398 alone had no effect. Administration of both drugs, however, further reduced proteinuria. In UNX WKY, treatment with either NS398 alone or both drugs reduced glomerular volume and similar results were observed in SHR. Surprisingly, these results disprove our original hypothesis and suggest that inhibition of COX-2 provides additional renoprotection to that of enalapril alone.
Collapse
Affiliation(s)
- Pamela Harding
- Department of Pathology and Anatomy, Eastern Virginia Medical School, 700 Olney Road, Norfolk, VA 23501, USA.
| | | | | |
Collapse
|
43
|
Makino H, Tanaka I, Mukoyama M, Sugawara A, Mori K, Muro S, Suganami T, Yahata K, Ishibashi R, Ohuchida S, Maruyama T, Narumiya S, Nakao K. Prevention of diabetic nephropathy in rats by prostaglandin E receptor EP1-selective antagonist. J Am Soc Nephrol 2002; 13:1757-65. [PMID: 12089371 DOI: 10.1097/01.asn.0000019782.37851.bf] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Local production of prostaglandins (PGs) in the kidney is increased in clinical and experimental diabetic nephropathy, but the role of PGs in the pathogenesis and progression of diabetic nephropathy has remained unclear. It is here shown that an orally active antagonist selective for the PGE receptor EP1 subtype potently prevents the progression of nephropathy in streptozotocin-induced diabetic rats. The effects are shown by ameliorated renal and glomerular hypertrophy, decreased mesangial expansion, inhibited transcriptional activation of transforming growth factor-beta (TGF-beta) and fibronectin, and complete suppression of proteinuria. In vitro, this agent completely inhibits TGF-beta and fibronectin upregulation in mesangial cells cultured under high-glucose conditions. These data indicate that the PGE2-EP1 system plays a crucial role in the development of diabetic renal injury in rats. It is further shown that both the EP1 antagonist and aspirin, a nonselective PG synthase inhibitor, markedly attenuate mesangial expansion, whereas only the EP1 antagonist inhibits glomerular hypertrophy and proteinuria, which suggests that these changes are caused by different mechanisms. This study reveals a potential usefulness of selective EP1 blockade as a novel therapeutic strategy for diabetic nephropathy and also brings a new insight into our understanding of this disease.
Collapse
Affiliation(s)
- Hisashi Makino
- Department of Medicine and Clinical Science, Department of Pharmacology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 806-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hayama M, Inoue R, Akiba S, Sato T. ERK and p38 MAP kinase are involved in arachidonic acid release induced by H(2)O(2) and PDGF in mesangial cells. Am J Physiol Renal Physiol 2002; 282:F485-91. [PMID: 11832430 DOI: 10.1152/ajprenal.00210.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased prostaglandin production is implicated in the pathogenesis of glomerular disease. With this consideration, we examined the combined effects of reactive oxygen species and platelet-derived growth factor (PDGF), which might initiate glomerular dysfunction, on arachidonic acid release and cytosolic phospholipase A(2) (cPLA(2)) activation in rat mesangial cells. H(2)O(2)-induced release of arachidonic acid was enhanced by PDGF, which by itself had little effect on the release, and the enhancement was completely inhibited by a cPLA(2) inhibitor. The phosphorylation of cPLA(2), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein (MAP) kinase was upregulated by H(2)O(2) or PDGF alone and except for ERK was enhanced further by the two in combination. The release of arachidonic acid induced by PDGF together with H(2)O(2) was inhibited partially by an inhibitor of ERK or p38 MAP kinase and completely when the two inhibitors were combined; the inhibitory pattern was similar to that for the phosphorylation of cPLA(2). These results suggest that the ERK and p38 MAP kinase pathways are involved in the increase in cPLA(2) activation and arachidonic acid release induced by PDGF together with H(2)O(2).
Collapse
Affiliation(s)
- Misako Hayama
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | |
Collapse
|
45
|
Abstract
Hyperglycemic control in diabetes is key to preventing the development and progression of vascular complications such as retinopathy, nephropathy and neuropathy. Increased activation of the diacylglycerol (DAG)-protein kinase C (PKC) signal transduction pathway has been identified in vascular tissues from diabetic animals, and in vascular cells exposed to elevated glucose. Vascular abnormalities associated with glucose-induced PKC activation leading to increased synthesis of DAG include altered vascular blood flow, extracellular matrix deposition, basement membrane thickening, increased permeability and neovascularization. Preferential activation of the PKCbeta isoform by elevated glucose is reported to occur in a variety of vascular tissues. This has lead to the development of LY333531, a PKCbeta isoform specific inhibitor, which has shown potential in animal models to be an orally effective and nontoxic therapy able to produce significant improvements in diabetic retinopathy, nephropathy, neuropathy and cardiac dysfunction. Additionally, the antioxidant vitamin E has been identified as an inhibitor of the DAG-PKC pathway, and shows promise in reducing vascular complications in animal models of diabetes. Given the overwhelming evidence indicating a role for PKC activation in contributing to the development of diabetic vascular complications, pharmacological therapies that can modulate this pathway, particularly with PKC isoform selectivity, show great promise for treatment of vascular complications, even in the presence of hyperglycemia.
Collapse
Affiliation(s)
- K J Way
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
46
|
Conde-Knape K. Heparan sulfate proteoglycans in experimental models of diabetes: a role for perlecan in diabetes complications. Diabetes Metab Res Rev 2001; 17:412-21. [PMID: 11757076 DOI: 10.1002/dmrr.236] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteoglycans are ubiquitous extracellular proteins that serve a variety of functions throughout the organism. Unlike other glycoproteins, proteoglycans are classified based on the structure of the glycosaminoglycan carbohydrate chains, not the core proteins. Perlecan, a member of the heparan sulfate proteoglycan (HSPG) family, has been implicated in many complications of diabetes. Decreased levels of perlecan have been observed in the kidney and in other organs, both in patients with diabetes and in animal models. Perlecan has an important role in the maintenance of the glomerular filtration barrier. Decreased perlecan in the glomerular basement membrane has a central role in the development of diabetic albuminuria. The involvement of this proteoglycan in diabetic complications and the possible mechanisms underlying such a role have been addressed using a variety of models. Due to the importance of nephropathy among diabetic patients most of the studies conducted so far relate to diabetes effects on perlecan in different types of kidney cells. The various diabetic models used have provided information on some of the mechanisms underlying perlecan's role in diabetes as well as on possible factors affecting its regulation. However, many other aspects of perlecan metabolism still await full elucidation. The present review provides a description of the models that have been used to study HSPG and in particular perlecan metabolism in diabetes and some of the factors that have been found to be important in the regulation of perlecan.
Collapse
Affiliation(s)
- K Conde-Knape
- Department of Medicine, Division of Preventive Medicine, Columbia University, 630 W 168th St, New York, NY 10032, USA.
| |
Collapse
|
47
|
Aragno M, Parola S, Brignardello E, Manti R, Betteto S, Tamagno E, Danni O, Boccuzzi G. Oxidative stress and eicosanoids in the kidneys of hyperglycemic rats treated with dehydroepiandrosterone. Free Radic Biol Med 2001; 31:935-42. [PMID: 11595378 DOI: 10.1016/s0891-5849(01)00669-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidative stress plays a crucial role in the pathogenesis of chronic diabetic complications. Normoglycemic and streptozotocin-diabetic rats were treated with dehydroepiandrosterone (DHEA) (4 mg/d per rat) for 3 weeks. At the end of treatment, hydroxynonenal, hydroperoxyeicosatetraenoic acids and antioxidant levels, as well as Na/K-ATPase activity and membrane fatty acids composition were evaluated in kidney homogenates. Chronic hyperglycemia caused a marked increase of both hydroxynonenal and lipoxygenase pathway products and a drop in both GSH levels and membrane Na/K-ATPase activity. DHEA treatment restored the antioxidant levels to close to the control value and considerably reduced hydroxynonenal and hydroperoxyeicosatetraenoic acid levels. Moreover, DHEA counteracted the detrimental effect of hyperglycemia on membrane function: the drop of Na/K-ATPase activity in diabetic animals was significantly inhibited by DHEA treatment. These results show that DHEA reduces oxidative stress and the consequent increase of lipoxygenase pathway products induced by experimental diabetes in rat kidney; they also suggest that, by reducing the inflammatory response to oxidative stress, DHEA treatment might delay the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- M Aragno
- Department of Experimental Medicine and Oncology, General Pathology Section, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Komers R, Lindsley JN, Oyama TT, Schutzer WE, Reed JF, Mader SL, Anderson S. Immunohistochemical and functional correlations of renal cyclooxygenase-2 in experimental diabetes. J Clin Invest 2001; 107:889-98. [PMID: 11285308 PMCID: PMC199567 DOI: 10.1172/jci10228] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prostaglandins (PGs) generated by the enzyme cyclooxygenase (COX) have been implicated in the pathological renal hemodynamics and structural alterations in diabetes mellitus, but the role of individual COX isoenzymes in diabetic nephropathy remains unknown. We explored COX-1 and COX-2 expression and hemodynamic responses to the COX-1 inhibitor valeryl salicylate (VS) or the COX-2 inhibitor NS398 in moderately hyperglycemic, streptozotocin-diabetic (D) and control (C) rats. Immunoreactive COX-2 was increased in D rats compared with C rats and normalized by improved glycemic control. Acute systemic administration of NS398 induced no significant changes in mean arterial pressure and renal plasma flow in either C or D rats but reduced glomerular filtration rate in D rats, resulting in a decrease in filtration fraction. VS had no effect on renal hemodynamics in D rats. Both inhibitors decreased urinary excretion of PGE(2). However, only NS398 reduced excretion of thromboxane A(2). In conclusion, we documented an increase in renal cortical COX-2 protein expression associated with a different renal hemodynamic response to selective systemic COX-2 inhibition in D as compared with C animals, indicating a role of COX-2-derived PG in pathological renal hemodynamic changes in diabetes.
Collapse
Affiliation(s)
- R Komers
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health Sciences University, Portland, Oregon 97201-2940, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Vascular complications in diabetes mellitus are known to be associated with the activation of the protein kinase C (PKC) pathway through the de novo synthesis of diacylglycerol (DAG) from glycolytic intermediates. Specific PKC isoforms, mainly the beta- and delta-isoforms, have been shown to be persistently activated in diabetic mellitus. Multiple studies have reported that the activation of PKC leads to increased production of extracellular matrix and cytokines, enhances contractility, permeability and vascular cell proliferation, induces the activation of cytosolic phospholipase A2 and inhibits the activity of Na+-K+-ATPase. These events are not only frequently observed in diabetes mellitus but are also involved in the actions of vasoactive agents or oxidative stress. Inhibition of PKC by two different kinds of PKC inhibitors - LY333531, a selective PKC-beta-isoform inhibitor, and vitamin E, d-alpha-tocopheron - were able to prevent or reverse the various vascular dysfunctions in vitro and in vivo. Clinical studies using these compounds are now ongoing to evaluate the significance of DAG-PKC pathway activation in the development of vascular complications in diabetic patients.
Collapse
Affiliation(s)
- M Meier
- Research Division of Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|