1
|
Otto M, Zheng Y, Grablowitz P, Wiehe T. Detecting adaptive changes in gene copy number distribution accompanying the human out-of-Africa expansion. Hum Genome Var 2024; 11:37. [PMID: 39313504 PMCID: PMC11420239 DOI: 10.1038/s41439-024-00293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 09/25/2024] Open
Abstract
Genes with multiple copies are likely to be maintained by stabilizing selection, which puts a bound to unlimited expansion of copy number. We designed a model in which copy number variation is generated by unequal recombination, which fits well with several genes surveyed in three human populations. Based on this theoretical model and computer simulations, we were interested in determining whether the gene copy number distribution in the derived European and Asian populations can be explained by a purely demographic scenario or whether shifts in the distribution are signatures of adaptation. Although the copy number distribution in most of the analyzed gene clusters can be explained by a bottleneck, such as in the out-of-Africa expansion of Homo sapiens 60-10 kyrs ago, we identified several candidate genes, such as AMY1A and PGA3, whose copy numbers are likely to differ among African, Asian, and European populations.
Collapse
Affiliation(s)
- Moritz Otto
- Institue for Genetics, University of Cologne, Cologne, Germany
| | - Yichen Zheng
- Institue for Genetics, University of Cologne, Cologne, Germany
| | - Paul Grablowitz
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Thomas Wiehe
- Institue for Genetics, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Lee BH, Na YG, Ham SH, Jin M, Kim YT, Kim KO, Sim JA. Tryptophanyl tRNA synthetase is an alternative synovial biomarker for diagnosis of septic arthritis in knee joint. Knee Surg Relat Res 2024; 36:27. [PMID: 39285443 PMCID: PMC11403948 DOI: 10.1186/s43019-024-00229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND To evaluate the diagnostic characteristics of tryptophanyl tRNA synthetase (WRS) for the diagnosis of septic arthritis of the knee joint and to determine whether it is a reliable and sensitive synovial biomarker for discriminating septic arthritis from other types of arthritis. METHODS Patients joint effusions for which septic arthritis was suspected were prospectively recruited between January 2019 and September 2020. A total of 9 patients had septic arthritis, 6 had acute gout attack, 1 had an acute flare of chronic rheumatic arthritis, and 46 had pseudogout or reactive arthropathy. Traditional inflammatory markers were measured, and their diagnostic abilities were compared. Neutrophil count, C-reactive protein (CRP) level, WRS, and human neutrophil α-defensin levels were assessed in the synovial fluids. Demographic parameters and biomarkers with a P < 0.05 in differentiating septic from nonseptic arthritis were included in a multivariable model. A multivariable logistic regression with a stepwise selection was performed to build the final combined model. Receiver operating characteristic curves were used to establish optimal thresholds for the diagnosis of septic arthritis of the knee joint, and the area under the curve was calculated to determine the overall accuracy of these tests compared with patients with nonseptic inflammatory arthritis. RESULTS Patients with septic arthritis were more likely to display higher serum WBC and CRP levels, synovial neutrophil counts, and levels of two synovial biomarkers, including WRS and α-defensin. WRS showed the highest specificity (87.5%) and sensitivity (83.3%) with α-defensin among the three synovial biomarkers. CONCLUSIONS Synovial fluid WRS is a relevant biomarker in discriminating septic arthritis from other inflammatory arthritis and should be tested in an independent cohort. LEVEL OF EVIDENCE prospective observational study, III.
Collapse
Affiliation(s)
- Byung Hoon Lee
- Department of Orthopaedic Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Young Gon Na
- Department of Orthopaedic Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Seong Hyup Ham
- Department of Orthopaedic Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Mirim Jin
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Korea
- Department of Health Science and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Yoon Tae Kim
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Korea
- Department of Health Science and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Kyung-Ok Kim
- Gil Medical Center, Gachon Medical Research Institute, Gachon University, Incheon, Republic of Korea.
| | - Jae Ang Sim
- Department of Orthopaedic Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea.
| |
Collapse
|
3
|
Li T, Ren X, Luo X, Wang Z, Li Z, Luo X, Shen J, Li Y, Yuan D, Nussinov R, Zeng X, Shi J, Cheng F. A Foundation Model Identifies Broad-Spectrum Antimicrobial Peptides against Drug-Resistant Bacterial Infection. Nat Commun 2024; 15:7538. [PMID: 39214978 PMCID: PMC11364768 DOI: 10.1038/s41467-024-51933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Development of potent and broad-spectrum antimicrobial peptides (AMPs) could help overcome the antimicrobial resistance crisis. We develop a peptide language-based deep generative framework (deepAMP) for identifying potent, broad-spectrum AMPs. Using deepAMP to reduce antimicrobial resistance and enhance the membrane-disrupting abilities of AMPs, we identify, synthesize, and experimentally test 18 T1-AMP (Tier 1) and 11 T2-AMP (Tier 2) candidates in a two-round design and by employing cross-optimization-validation. More than 90% of the designed AMPs show a better inhibition than penetratin in both Gram-positive (i.e., S. aureus) and Gram-negative bacteria (i.e., K. pneumoniae and P. aeruginosa). T2-9 shows the strongest antibacterial activity, comparable to FDA-approved antibiotics. We show that three AMPs (T1-2, T1-5 and T2-10) significantly reduce resistance to S. aureus compared to ciprofloxacin and are effective against skin wound infection in a female wound mouse model infected with P. aeruginosa. In summary, deepAMP expedites discovery of effective, broad-spectrum AMPs against drug-resistant bacteria.
Collapse
Affiliation(s)
- Tingting Li
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Xuanbai Ren
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Xiaoli Luo
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Zhuole Wang
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Zhenlu Li
- School of Life Science, Tianjin University, Tianjin, 300072, China
| | - Xiaoyan Luo
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Jun Shen
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Yun Li
- Department of Ophthalmology, The 2nd Xiangya Hospital of Central South University, Changsha, China
| | - Dan Yuan
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD, 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xiangxiang Zeng
- College of Information Science and Engineering, Hunan University, Changsha, China.
| | - Junfeng Shi
- Affiliated Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China.
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Genome Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Thangaiyan R, Sakwe AM, Hawkins AT, Washington MK, Ballard BR, Izban MG, Chirwa SS, Hildreth JEK, Shanker A, Blum DL, M'Koma AE. Anti-DEFA5 Monoclonal Antibody Clones 1A8 and 4F5 Immunoreactive Bioassay for Diagnosing Inflammatory Bowel Disease. RESEARCH SQUARE 2024:rs.3.rs-4843765. [PMID: 39257990 PMCID: PMC11384025 DOI: 10.21203/rs.3.rs-4843765/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Background Robust evidence suggests that the aberrant expression of α defensin 5 protein (DEFA5) in colon inflammatory bowel diseases (IBDs) underlies the distinct pathogenesis of Crohn's colitis, can be exploited as a reliable diagnostic biomarker to differential diagnosis of Crohn's colitis (CC) from Ulcerative colitis (UC) in otherwise indeterminate colitis (IC). We evaluated the specificity of the commercially available anti-DEFA5 antibodies and showed further validation of their appropriateness for a given application is required. Methods We established two mouse monoclonal DEFA5 antibody clones 1A8 and 4F5 by immunizing the mice with purified recombinant protein and validated the specificity, selectivity and cross reactivity in recognizing the endogenous and recombinant DEFA5 protein, especially for Immunohistochemistry, Western blot, Immunoprecipitation, or enzyme-linked immunosorbent assay. Results Clones 1A8 and 4F5 recognized effectively the endogenous DEFA5 in active human diverticulitis (DV), UC, CC or IC disease samples, including transiently transfected HEK293T cells expressing DEFA5 with high degree of specificity and minimal non-confounding cross reactivity. Conclusions 1A8 and 4F5 clones are worth studying in larger IBD cohorts to fully address whether DEFA5 expression may be used as a diagnostic biomarker to discrimination of the diagnosis of UC from CC or IC into authentic CC or UC or a colitis with different pathological characteristics.
Collapse
|
5
|
Yada N, Zhang Q, Bignotti A, Ye Z, Zheng XL. ADAMTS13 or Caplacizumab Reduces the Accumulation of Neutrophil Extracellular Traps and Thrombus in Whole Blood of COVID-19 Patients under Flow. Thromb Haemost 2024; 124:725-738. [PMID: 38272066 PMCID: PMC11260255 DOI: 10.1055/a-2253-9359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
BACKGROUND Neutrophil NETosis and neutrophil extracellular traps (NETs) play a critical role in pathogenesis of coronavirus disease 2019 (COVID-19)-associated thrombosis. However, the extents and reserve of NETosis, and potential of thrombus formation under shear in whole blood of patients with COVID-19 are not fully elucidated. Neither has the role of recombinant ADAMTS13 or caplacizumab on the accumulation of NETs and thrombus in COVID-19 patients' whole blood under shear been investigated. METHODS Flow cytometry and microfluidic assay, as well as immunoassays, were employed for the study. RESULTS We demonstrated that the percentage of H3Cit + MPO+ neutrophils, indicative of NETosis, was dramatically increased in patients with severe but not critical COVID-19 compared with that in asymptomatic or mild disease controls. Upon stimulation with poly [I:C], a double strain DNA mimicking viral infection, or bacterial shigatoxin-2, the percentage of H3Cit + MPO+ neutrophils was not significantly increased in the whole blood of severe and critical COVID-19 patients compared with that of asymptomatic controls, suggesting the reduction in NETosis reserve in these patients. Microfluidic assay demonstrated that the accumulation of NETs and thrombus was significantly enhanced in the whole blood of severe/critical COVID-19 patients compared with that of asymptomatic controls. Like DNase I, recombinant ADAMTS13 or caplacizumab dramatically reduced the NETs accumulation and thrombus formation under arterial shear. CONCLUSION Significantly increased neutrophil NETosis, reduced NETosis reserve, and enhanced thrombus formation under arterial shear may play a crucial role in the pathogenesis of COVID-19-associated coagulopathy. Recombinant ADAMTS13 or caplacizumab may be explored for the treatment of COVID-19-associated thrombosis.
Collapse
Affiliation(s)
- Noritaka Yada
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - Quan Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - Antonia Bignotti
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - Zhan Ye
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
- Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kanas City, Kansas, United States
| |
Collapse
|
6
|
Sangeetha Vijayan P, Xavier J, Valappil MP. A review of immune modulators and immunotherapy in infectious diseases. Mol Cell Biochem 2024; 479:1937-1955. [PMID: 37682390 DOI: 10.1007/s11010-023-04825-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/05/2023] [Indexed: 09/09/2023]
Abstract
The human immune system responds to harmful foreign invaders frequently encountered by the body and employs defense mechanisms to counteract such assaults. Various exogenous and endogenous factors play a prominent role in maintaining the balanced functioning of the immune system, which can result in immune suppression or immune stimulation. With the advent of different immune-modulatory agents, immune responses can be modulated or regulated to control infections and other health effects. Literature provides evidence on various immunomodulators from different sources and their role in modulating immune responses. Due to the limited efficacy of current drugs and the rise in drug resistance, there is a growing need for new therapies for infectious diseases. In this review, we aim to provide a comprehensive overview of different immune-modulating agents and immune therapies specifically focused on viral infectious diseases.
Collapse
Affiliation(s)
- P Sangeetha Vijayan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Joseph Xavier
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Mohanan Parayanthala Valappil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India.
| |
Collapse
|
7
|
Sun J, Chen M, Hu Z, Xu N, Wang W, Ping Z, Zhu J, Sun D, Zhu Z, Li H, Ge X, Luo L, Zhou W, Bai R, Xu Z, Sheng J. Ribonuclease 4 functions as an intestinal antimicrobial protein to maintain gut microbiota and metabolite homeostasis. Nat Commun 2024; 15:5778. [PMID: 38987259 PMCID: PMC11237007 DOI: 10.1038/s41467-024-50223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Antimicrobial proteins contribute to host-microbiota interactions and are associated with inflammatory bowel disease (IBD), but our understanding on antimicrobial protein diversity and functions remains incomplete. Ribonuclease 4 (Rnase4) is a potential antimicrobial protein with no known function in the intestines. Here we find that RNASE4 is expressed in intestinal epithelial cells (IEC) including Paneth and goblet cells, and is detectable in human and mouse stool. Results from Rnase4-deficient mice and recombinant protein suggest that Rnase4 kills Parasutterella to modulate intestinal microbiome, thereby enhancing indoleamine-2,3-dioxygenase 1 (IDO1) expression and subsequently kynurenic and xanthurenic acid production in IECs to reduce colitis susceptibility. Furthermore, deceased RNASE4 levels are observed in the intestinal tissues and stool from patients with IBD, correlating with increased stool Parasutterella. Our results thus implicate Rnase4 as an intestinal antimicrobial protein regulating gut microbiota and metabolite homeostasis, and as a potential diagnostic biomarker and therapeutic target for IBD.
Collapse
Affiliation(s)
- Jun Sun
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Muxiong Chen
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhen Hu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ningqin Xu
- Division of Health Sciences, Hangzhou Normal University, Hangzhou, 310015, China
| | - Wenguang Wang
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zejun Ping
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jiayi Zhu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Desen Sun
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhehao Zhu
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Hangyu Li
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaolong Ge
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Liang Luo
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wei Zhou
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rongpan Bai
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhengping Xu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Jinghao Sheng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
8
|
Moura MM, Monteiro A, Salgado AJ, Silva NA, Monteiro S. Disrupted autonomic pathways in spinal cord injury: Implications for the immune regulation. Neurobiol Dis 2024; 195:106500. [PMID: 38614275 DOI: 10.1016/j.nbd.2024.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
Spinal Cord Injury (SCI) disrupts critical autonomic pathways responsible for the regulation of the immune function. Consequently, individuals with SCI often exhibit a spectrum of immune dysfunctions ranging from the development of damaging pro-inflammatory responses to severe immunosuppression. Thus, it is imperative to gain a more comprehensive understanding of the extent and mechanisms through which SCI-induced autonomic dysfunction influences the immune response. In this review, we provide an overview of the anatomical organization and physiology of the autonomic nervous system (ANS), elucidating how SCI impacts its function, with a particular focus on lymphoid organs and immune activity. We highlight recent advances in understanding how intraspinal plasticity that follows SCI may contribute to aberrant autonomic activity in lymphoid organs. Additionally, we discuss how sympathetic mediators released by these neuron terminals affect immune cell function. Finally, we discuss emerging innovative technologies and potential clinical interventions targeting the ANS as a strategy to restore the normal regulation of the immune response in individuals with SCI.
Collapse
Affiliation(s)
- Maria M Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal.
| |
Collapse
|
9
|
Prema P, Ali D, Nguyen VH, Pradeep BV, Veeramanikandan V, Daglia M, Arciola CR, Balaji P. A Response Surface Methodological Approach for Large-Scale Production of Antibacterials from Lactiplantibacillus plantarum with Potential Utility against Foodborne and Orthopedic Infections. Antibiotics (Basel) 2024; 13:437. [PMID: 38786166 PMCID: PMC11118495 DOI: 10.3390/antibiotics13050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
A variety of bacteria, including beneficial probiotic lactobacilli, produce antibacterials to kill competing bacteria. Lactobacilli secrete antimicrobial peptides (AMPs) called bacteriocins and organic acids. In the food industry, bacteriocins, but even whole cell-free supernatants, are becoming more and more important as bio-preservatives, while, in orthopedics, bacteriocins are introducing new perspectives in biomaterials technologies for anti-infective surfaces. Studies are focusing on Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum). L. plantarum exhibits great phenotypic versatility, which enhances the chances for its industrial exploitation. Importantly, more than other lactobacilli, it relies on AMPs for its antibacterial activity. In this study, Response Surface Methodology (RSM) through a Box-Behnken experimental design was used to estimate the optimal conditions for the production of antibacterials by L. plantarum. A temperature of 35 °C, pH 6.5, and an incubation time of 48 h provided the highest concentration of antibacterials. The initial pH was the main factor influencing the production of antibacterials, at 95% confidence level. Thanks to RSM, the titer of antibacterials increased more than 10-fold, this result being markedly higher than those obtained in the very few studies that have so far used similar statistical methodologies. The Box-Behnken design turned out to be a valid model to satisfactorily plan a large-scale production of antibacterials from L. plantarum.
Collapse
Affiliation(s)
- Paulpandian Prema
- Department of Zoology, VHN Senthikumar Nadar College, Virudhunagar 626001, TN, India;
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, TN, India;
| | - Bhathini Vaikuntavasan Pradeep
- Centre for Microbial Technology, Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore 641021, TN, India; (B.V.P.); (V.V.)
| | - Veeramani Veeramanikandan
- Centre for Microbial Technology, Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore 641021, TN, India; (B.V.P.); (V.V.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Paulraj Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur 635130, TN, India
| |
Collapse
|
10
|
Chi H, Qin Q, Hao X, Dalmo RA, Tang X, Xing J, Sheng X, Zhan W. Adjuvant effects of β-defensin on DNA vaccine OmpC against edwardsiellosis in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109502. [PMID: 38471627 DOI: 10.1016/j.fsi.2024.109502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
β-defensin of flounder plays an important role in immunomodulation by recruiting immune cells and has a potential vaccine adjuvant effect in addition to its bactericidal activity. In this study, adjuvant effects of β-defensin on DNA vaccine OmpC against edwardsiellosis in flounder (Paralichthys olivaceus) were investigated. The bicistronic eukaryotic expression plasmid pBudCE4.1 plasmid vector with two independent coding regions was selected to construct DNA vaccine of p-OmpC which express only the gene for the outer membrane protein of Edwardsiella tarda and the vaccine of p-OmpC-βdefensin which express both the outer membrane protein of the bacterium and β-defensin of flounder. In vitro and in vivo studies have shown that the constructed plasmids can be expressed in flounder embryonic cell lines and injection sites of muscles. After vaccination by intramuscular injection, both p-OmpC and p-OmpC-βdefensin groups showed significant upregulation of immune-response. Compared to the pBbudCE4.1 and the p-OmpC vaccinated groups, the p-OmpC-βdefensin vaccinated group showed significantly more cell aggregation at the injection site and intense immune response. The proportion of sIgM+ cells, as well as the CD4-1+ and CD4-2+ cells in both spleen and kidney was significantly higher in the p-OmpC-βdefensin vaccinated group at peak time point than in the control groups. The relative survival rate of the p-OmpC-βdefensin vaccine was 74.17%, which was significantly higher than that of the p-OmpC vaccinated group 48.33%. The results in this study determined that β-defensin enhances the responses in cellular and humoral immunity and evokes a high degree of protection against E. tarda, which is a promising candidate for vaccine adjuvant.
Collapse
Affiliation(s)
- Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Qingqing Qin
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiaokai Hao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, The Arctic University of Norway, Tromsø, N-9037, Norway
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
11
|
Mazzella FM, Zhang Y, Bauer TW. Update on the role of pathology and laboratory medicine in diagnosing periprosthetic infection. Hum Pathol 2024; 147:5-14. [PMID: 38280657 DOI: 10.1016/j.humpath.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Technological and implant design advances have helped reduce the frequency of aseptic total joint arthroplasty failure, but periprosthetic joint infections (PJI) remain a clinical important problem with high patient morbidity. Misinterpreting PJI as aseptic mechanical loosening commonly leads to unsatisfactory revision arthroplasty, persistent infection, and poor long-term results. While there is no single "gold standard" diagnostic test for PJI, recent collaborative efforts by Orthopaedic and Infectious Disease Societies have developed algorithms for diagnosing PJI. However, the efficacy of individual tests as well as diagnostic thresholds are controversial. We review the recommended thresholds for commonly used screening tests as well as tissue histopathology and confirmatory tests to diagnose periprosthetic infection. We also update lesser-known laboratory tests, and we briefly summarize rapidly evolving molecular tests to diagnose periprosthetic infection. Pathologists hold a critical role in assisting with PJI diagnosis, maintaining laboratory test quality and interpreting test results. Collaboration between clinicians and pathologists is essential to provide optimal patient care and reduce the burden of PJI.
Collapse
Affiliation(s)
- Fermina M Mazzella
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, USA
| | - Yaxia Zhang
- Department of Pathology and Laboratory Medicine, Hospital for Sprecial Surgery, Weill Cornell College of Medicine, USA
| | - Thomas W Bauer
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, Weill Cornell Medical College, 535 East 70th St, New York, NY, 10021, USA.
| |
Collapse
|
12
|
Vega LA, Sansón-Iglesias M, Mukherjee P, Buchan K, Morrison G, Hohlt AE, Flores AR. LiaR-dependent gene expression contributes to antimicrobial responses in group A Streptococcus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588141. [PMID: 38617309 PMCID: PMC11014544 DOI: 10.1101/2024.04.04.588141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The ability to sense and respond to host defenses is essential for pathogen survival. Some mechanisms involve two-component systems (TCS) that respond to host molecules, such as antimicrobial peptides (AMPs) and activate specific gene regulatory pathways to aid in survival. Alongside TCSs, bacteria coordinate cell division proteins, chaperones, cell wall sortases and secretory translocons at discrete locations within the cytoplasmic membrane, referred to as functional membrane microdomains (FMMs). In Group A Streptococcus (GAS), the FMM or "ExPortal" coordinates protein secretion, cell wall synthesis and sensing of AMP-mediated cell envelope stress via the LiaFSR three-component system. Previously we showed GAS exposure to a subset of AMPs (α-defensins) activates the LiaFSR system by disrupting LiaF and LiaS co-localization in the ExPortal, leading to increased LiaR phosphorylation, expression of the transcriptional regulator SpxA2, and altered GAS virulence gene expression. The mechanisms by which LiaFSR integrates cell envelope stress with responses to AMP activity and virulence are not fully elucidated. Here, we show the LiaFSR regulon is comprised of genes encoding SpxA2 and three membrane-associated proteins: a PspC domain-containing protein (PCP), the lipoteichoic acid-modifying protein LafB and the membrane protein insertase YidC2. Our data show phosphorylated LiaR induces transcription of these genes via a conserved operator, whose disruption attenuates GAS virulence and increases susceptibility to AMPs in a manner primarily dependent on differential expression of SpxA2. Our work expands understanding of the LiaFSR regulatory network in GAS and identifies targets for further investigation of mechanisms of cell envelope stress tolerance contributing to GAS pathogenesis.
Collapse
|
13
|
Gao X, Feng J, Wei L, Dong P, Chen J, Zhang L, Yang Y, Xu L, Wang H, Luo J, Qin M. Defensins: A novel weapon against Mycobacterium tuberculosis? Int Immunopharmacol 2024; 127:111383. [PMID: 38118315 DOI: 10.1016/j.intimp.2023.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Tuberculosis (TB) is a serious airborne communicable disease caused by organisms of the Mycobacterium tuberculosis (Mtb) complex. Although the standard treatment antimicrobials, including isoniazid, rifampicin, pyrazinamide, and ethambutol, have made great progress in the treatment of TB, problems including the rising incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the severe toxicity and side effects of antimicrobials, and the low immunity of TB patients have become the bottlenecks of the current TB treatments. Therefore, both safe and effective new strategies to prevent and treat TB have become a top priority. As a subfamily of cationic antimicrobial peptides, defensins are rich in cysteine and play a vital role in resisting the invasion of microorganisms and regulating the immune response. Inspired by studies on the roles of defensins in host defence, we describe their research history and then review their structural features and antimicrobial mechanisms, specifically for fighting Mtb in detail. Finally, we discuss the clinical relevance, therapeutic potential, and potential challenges of defensins in anti-TB therapy. We further debate the possible solutions of the current application of defensins to provide new insights for eliminating Mtb.
Collapse
Affiliation(s)
- Xuehan Gao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jihong Feng
- Department of Oncology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Linna Wei
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Pinzhi Dong
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jin Chen
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Langlang Zhang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuhan Yang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haiyan Wang
- Department of Epidemiology and Health Statistics, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Junmin Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Ming Qin
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
14
|
Stefanik O, Majerova P, Kovac A, Mikus P, Piestansky J. Capillary electrophoresis in the analysis of therapeutic peptides-A review. Electrophoresis 2024; 45:120-164. [PMID: 37705480 DOI: 10.1002/elps.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Therapeutic peptides are a growing class of innovative drugs with high efficiency and a low risk of adverse effects. These biomolecules fall within the molecular mass range between that of small molecules and proteins. However, their inherent instability and potential for degradation underscore the importance of reliable and effective analytical methods for pharmaceutical quality control, therapeutic drug monitoring, and compliance testing. Liquid chromatography-mass spectrometry (LC-MS) has long time been the "gold standard" conventional method for peptide analysis, but capillary electrophoresis (CE) is increasingly being recognized as a complementary and, in some cases, superior, highly efficient, green, and cost-effective alternative technique. CE can separate peptides composed of different amino acids owing to differences in their net charge and size, determining their migration behavior in an electric field. This review provides a comprehensive overview of therapeutic peptides that have been used in the clinical environment for the last 25 years. It describes the properties, classification, current trends in development, and clinical use of therapeutic peptides. From the analytical point of view, it discusses the challenges associated with the analysis of therapeutic peptides in pharmaceutical and biological matrices, as well as the evaluation of CE as a whole and the comparison with LC methods. The article also highlights the use of microchip electrophoresis, nonaqueous CE, and nonconventional hydrodynamically closed CE systems and their applications. Overall, the article emphasizes the importance of developing new CE-based analytical methods to ensure the high quality, safety, and efficacy of therapeutic peptides in clinical practice.
Collapse
Affiliation(s)
- Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
15
|
Lee J, Mohammad N, Lu Y, Oshins R, Aranyos A, Brantly M. Alpha-defensins inhibit ERK/STAT3 signaling during monocyte-macrophage differentiation and impede macrophage function. Respir Res 2023; 24:309. [PMID: 38082274 PMCID: PMC10714504 DOI: 10.1186/s12931-023-02605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Alpha-1-antitrypsin deficiency (AATD) is a genetic disorder associated with a 5-tenfold decrease in lung levels of alpha-1-antitrypsin (AAT) and an increased risk for obstructive lung disease. α-defensins are cationic broad-spectrum cytotoxic and pro-inflammatory peptides found in the azurophilic granules of neutrophils. The concentration of α-defensins is less than 30 nM in the bronchoalveolar lavage fluid of healthy controls but is up to 6 μM in AATD individuals with significant lung function impairment. Alveolar macrophages are generally classified into pro-inflammatory (M1) or anti-inflammatory (M2) subsets that play distinct roles in the initiation and resolution of inflammation. Therefore, monocyte-macrophage differentiation should be tightly controlled to maintain lung integrity. In this study, we determined the effect of α-defensins on monocyte-macrophage differentiation and identified the molecular mechanism of this effect. The results of this study demonstrate that 2.5 μM of α-defensins inhibit the phosphorylation of ERK1/2 and STAT3 and suppress the expression of M2 macrophage markers, CD163 and CD206. In addition, a scratch assay shows that the high concentration of α-defensins inhibits cell movement by ~ 50%, and the phagocytosis assay using flow cytometry shows that α-defensins significantly reduce the bacterial phagocytosis rate of monocyte-derived macrophages (MDMs). To examine whether exogenous AAT is able to alleviate the inhibitory effect of α-defensins on macrophage function, we incubated MDMs with AAT prior to α-defensin treatment and demonstrate that AAT improves the migratory ability and phagocytic ability of MDMs compared with MDMs incubated only with α-defensins. Taken together, this study suggests that a high concentration of α-defensins inhibits the activation of ERK/STAT3 signaling, negatively regulates the expression of M2 macrophage markers, and impairs innate immune function of macrophages.
Collapse
Affiliation(s)
- Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Naweed Mohammad
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Yuanqing Lu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Regina Oshins
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Alek Aranyos
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Mark Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Gandotra R, Kuo FC, Lee MS, Lee GB. A paper-based aptamer-sandwich assay for detection of HNP 1 as a biomarker for periprosthetic joint infections on an integrated microfluidic platform. Anal Chim Acta 2023; 1281:341879. [PMID: 38783735 DOI: 10.1016/j.aca.2023.341879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Total joint arthroplasty (TJA) has significantly improved the quality of life for millions suffering from end-stage arthritis. However, periprosthetic joint infections (PJI) remain a serious complication, necessitating extensive interventions and prolonged antimicrobial treatments. The aging population is expected to lead to a rise in TJA cases, subsequently increasing the incidence of PJI, particularly in the elderly who face higher mortality rates. Current diagnostic methods for suspected PJI, such as radiographs and biochemical markers like CRP and ESR, exhibit limited sensitivity. Therefore, there is a critical need for a specific synovial fluid biomarker assay to enhance PJI diagnosis using specific SF-based assay. RESULTS This study introduces a novel microfluidic chip with a paper-based aptamer-sandwich assay for the quantitative detection of HNP 1, a crucial PJI biomarker, in synovial fluid. The assay leverages the advantages of aptamers over antibodies, demonstrating high selectivity and affinity for target molecules. The integration of a nitrocellulose (NC) membrane onto the microfluidic platform represents a significant advancement, reducing background signals and simplifying the assay procedure without intricate procedure and pre-treatment. The NC membrane-based microfluidic device offers rapid, cost-effective, and highly sensitive detection of HNP 1, with a limit of detection of 0.5 mg L-1. The microfluidic device demonstrates exceptional performance, detecting up to four clinical samples in approximately 42 min on a single chip with 100 % accuracy, as confirmed by analysis of 12 clinical samples and comparison with "gold-standard". Moreover, the assay exhibits a wide dynamic range of 0.5-100 mg L-1, underscoring its potential as a powerful tool for PJI diagnosis in clinical settings. SIGNIFICANCE This work introduces a paper-based microfluidic system tailored for rapid HNP 1 detection using synovial fluid near joint region (and not serum via blood) for better diagnosis. The innovative paper-based aptamer-sandwich assay yields results within 42-min. Significantly, it boasts a wide dynamic range, detecting levels from an impressive 0.5 mg L-1, crucial in the 2.6 mg L-1 threshold region. This heightened sensitivity and expansive detection capability establish our assay as a leader in PJI diagnostics, promising unmatched precision and efficiency in clinical applications.
Collapse
Affiliation(s)
- Rishabh Gandotra
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Feng-Chih Kuo
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Mel S Lee
- Department of Orthopedic Surgery, Paochien Hospital, Pintung, Taiwan.
| | - Gwo-Bin Lee
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
17
|
Tripathi AK, Singh J, Trivedi R, Ranade P. Shaping the Future of Antimicrobial Therapy: Harnessing the Power of Antimicrobial Peptides in Biomedical Applications. J Funct Biomater 2023; 14:539. [PMID: 37998108 PMCID: PMC10672284 DOI: 10.3390/jfb14110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as a promising class of bioactive molecules with the potential to combat infections associated with medical implants and biomaterials. This review article aims to provide a comprehensive analysis of the role of antimicrobial peptides in medical implants and biomaterials, along with their diverse clinical applications. The incorporation of AMPs into various medical implants and biomaterials has shown immense potential in mitigating biofilm formation and preventing implant-related infections. We review the latest advancements in biomedical sciences and discuss the AMPs that were immobilized successfully to enhance their efficacy and stability within the implant environment. We also highlight successful examples of AMP coatings for the treatment of surgical site infections (SSIs), contact lenses, dental applications, AMP-incorporated bone grafts, urinary tract infections (UTIs), medical implants, etc. Additionally, we discuss the potential challenges and prospects of AMPs in medical implants, such as effectiveness, instability and implant-related complications. We also discuss strategies that can be employed to overcome the limitations of AMP-coated biomaterials for prolonged longevity in clinical settings.
Collapse
Affiliation(s)
- Amit Kumar Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.T.); (P.R.)
| | - Jyotsana Singh
- Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rucha Trivedi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.T.); (P.R.)
| | - Payal Ranade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (R.T.); (P.R.)
| |
Collapse
|
18
|
Carrera-Aubesart A, Gallo M, Defaus S, Todorovski T, Andreu D. Topoisomeric Membrane-Active Peptides: A Review of the Last Two Decades. Pharmaceutics 2023; 15:2451. [PMID: 37896211 PMCID: PMC10610229 DOI: 10.3390/pharmaceutics15102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent decades, bioactive peptides have been gaining recognition in various biomedical areas, such as intracellular drug delivery (cell-penetrating peptides, CPPs) or anti-infective action (antimicrobial peptides, AMPs), closely associated to their distinct mode of interaction with biological membranes. Exploiting the interaction of membrane-active peptides with diverse targets (healthy, tumoral, bacterial or parasitic cell membranes) is opening encouraging prospects for peptides in therapeutics. However, ordinary peptides formed by L-amino acids are easily decomposed by proteases in biological fluids. One way to sidestep this limitation is to use topoisomers, namely versions of the peptide made up of D-amino acids in either canonic (enantio) or inverted (retroenantio) sequence. Rearranging peptide sequences in this fashion provides a certain degree of native structure mimicry that, in appropriate contexts, may deliver desirable biological activity while avoiding protease degradation. In this review, we will focus on recent accounts of membrane-active topoisomeric peptides with therapeutic applications as CPP drug delivery vectors, or as antimicrobial and anticancer candidates. We will also discuss the most common modes of interaction of these peptides with their membrane targets.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Maria Gallo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Sira Defaus
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Toni Todorovski
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| |
Collapse
|
19
|
Wang G. The antimicrobial peptide database is 20 years old: Recent developments and future directions. Protein Sci 2023; 32:e4778. [PMID: 37695921 PMCID: PMC10535814 DOI: 10.1002/pro.4778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
In 2023, the Antimicrobial Peptide Database (currently available at https://aps.unmc.edu) is 20-years-old. The timeline for the APD expansion in peptide entries, classification methods, search functions, post-translational modifications, binding targets, and mechanisms of action of antimicrobial peptides (AMPs) has been summarized in our previous Protein Science paper. This article highlights new database additions and findings. To facilitate antimicrobial development to combat drug-resistant pathogens, the APD has been re-annotating the data for antibacterial activity (active, inactive, and uncertain), toxicity (hemolytic and nonhemolytic AMPs), and salt tolerance (salt sensitive and insensitive). Comparison of the respective desired and undesired AMP groups produces new knowledge for peptide design. Our unification of AMPs from the six life kingdoms into "natural AMPs" enabled the first comparison with globular or transmembrane proteins. Due to the dominance of amphipathic helical and disulfide-linked peptides, cysteine, glycine, and lysine in natural AMPs are much more abundant than those in globular proteins. To include peptides predicted by machine learning, a new "predicted" group has been created. Remarkably, the averaged amino acid composition of predicted peptides is located between the lower bound of natural AMPs and the upper bound of synthetic peptides. Synthetic peptides in the current APD, with the highest cationic and hydrophobic amino acid percentages, are mostly designed with varying degrees of optimization. Hence, natural AMPs accumulated in the APD over 20 years have laid the foundation for machine learning prediction. We discuss future directions for peptide discovery. It is anticipated that the APD will continue to play a role in research and education.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
20
|
von Beck T, Navarrete K, Arce NA, Gao M, Dale GA, Davis-Gardner ME, Floyd K, Mena Hernandez L, Mullick N, Vanderheiden A, Skountzou I, Kuchipudi SV, Saravanan R, Li R, Skolnick J, Suthar MS, Jacob J. A wild boar cathelicidin peptide derivative inhibits severe acute respiratory syndrome coronavirus-2 and its drifted variants. Sci Rep 2023; 13:14650. [PMID: 37670110 PMCID: PMC10480232 DOI: 10.1038/s41598-023-41850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a clear threat to humanity. It has infected over 200 million and killed 4 million people worldwide, and infections continue with no end in sight. To control the pandemic, multiple effective vaccines have been developed, and global vaccinations are in progress. However, the virus continues to mutate. Even when full vaccine coverage is achieved, vaccine-resistant mutants will likely emerge, thus requiring new annual vaccines against drifted variants analogous to influenza. A complimentary solution to this problem could be developing antiviral drugs that inhibit SARS CoV-2 and its drifted variants. Host defense peptides represent a potential source for such an antiviral as they possess broad antimicrobial activity and significant diversity across species. We screened the cathelicidin family of peptides from 16 different species for antiviral activity and identified a wild boar peptide derivative that inhibits SARS CoV-2. This peptide, which we named Yongshi and means warrior in Mandarin, acts as a viral entry inhibitor. Following the binding of SARS-CoV-2 to its receptor, the spike protein is cleaved, and heptad repeats 1 and 2 multimerize to form the fusion complex that enables the virion to enter the cell. A deep learning-based protein sequence comparison algorithm and molecular modeling suggest that Yongshi acts as a mimetic to the heptad repeats of the virus, thereby disrupting the fusion process. Experimental data confirm the binding of Yongshi to the heptad repeat 1 with a fourfold higher affinity than heptad repeat 2 of SARS-CoV-2. Yongshi also binds to the heptad repeat 1 of SARS-CoV-1 and MERS-CoV. Interestingly, it inhibits all drifted variants of SARS CoV-2 that we tested, including the alpha, beta, gamma, delta, kappa and omicron variants.
Collapse
Affiliation(s)
- Troy von Beck
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Karla Navarrete
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Nicholas A Arce
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mu Gao
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, GA, 30332, USA
| | - Gordon A Dale
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Meredith E Davis-Gardner
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Katharine Floyd
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Luis Mena Hernandez
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Nikita Mullick
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Abigail Vanderheiden
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Ioanna Skountzou
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Rathi Saravanan
- Centre of Regulatory Excellence (CoRE), Duke-NUS Medical School, Level 6, 8 College Road, Singapore, 169857, Singapore
| | - Renhao Li
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, GA, 30332, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Joshy Jacob
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
21
|
Tripathi S, Tarabichi S, Parvizi J, Rajgopal A. Current relevance of biomarkers in diagnosis of periprosthetic joint infection: an update. ARTHROPLASTY 2023; 5:41. [PMID: 37525262 PMCID: PMC10391917 DOI: 10.1186/s42836-023-00192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/03/2023] [Indexed: 08/02/2023] Open
Abstract
With a significant rise in the number of arthroplasty procedures performed worldwide, the increasing revision burden posed by periprosthetic joint infection (PJI) is a matter of growing concern. In spite of various attempts to diagnose PJI, there are no defined tests that can be called a gold standard. Given the importance of early diagnosis in PJI, newer tests and biomarkers have been introduced to improve cumulative diagnostic accuracy. Novel biomarkers like calprotectin, lipocalcin, monocyte-to-lymphocyte ratio, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio and platelet-to-mean platelet volume ratio have demonstrated a potential as diagnostic biomarkers for PJI. This article discusses the relevance of available and newly described diagnostic biomarkers to provide a perspective on the practical applicability in current medical practice, as well as highlights some recent advances in biomarkers for the diagnosis of PJI.
Collapse
Affiliation(s)
- Saksham Tripathi
- Institute of Musculoskeletal Disorders and Orthopaedics, Medanta-The Medicity, Gurugram, HR, 122001, India.
| | - Saad Tarabichi
- Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA
| | - Javad Parvizi
- Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA, 19107, USA
| | - Ashok Rajgopal
- Institute of Musculoskeletal Disorders and Orthopaedics, Medanta-The Medicity, Gurugram, HR, 122001, India
| |
Collapse
|
22
|
Zhang C, Cao J, Xu M, Wu D, Li W, Chang Y. The role of neutrophils in chorioamnionitis. Front Immunol 2023; 14:1198831. [PMID: 37475854 PMCID: PMC10354368 DOI: 10.3389/fimmu.2023.1198831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Chorioamnionitis, commonly referred to as intrauterine infection or inflammation, is pathologically defined by neutrophil infiltration and inflammation at the maternal-fetal interface. Chorioamnionitis is the common complication during late pregnancy, which lead to a series of serious consequences, such as preterm labor, preterm premature rupture of the fetal membranes, and fetal inflammatory response syndrome. During infection, a large number of neutrophils migrate to the chorio-decidua in response to chemokines. Although neutrophils, a crucial part of innate immune cells, have strong anti-inflammatory properties, over-activating them can harm the body while also eliminating pathogens. This review concentrated on the latest studies on chorioamnionitis-related consequences as well as the function and malfunction of neutrophils. The release of neutrophil extracellular traps, production of reactive oxygen species, and degranulation from neutrophils during intrauterine infection, as well as their pathological roles in complications related to chorioamnionitis, were discussed in detail, offering fresh perspectives on the treatment of chorioamnionitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin central hospital of Gynecology Obstetrics, Tianjin, China
| |
Collapse
|
23
|
Biswas S, Sarojini S, Jayaram S, Philip I, Umesh M, Mascarenhas R, Pappuswamy M, Balasubramanian B, Arokiyaraj S. Understanding the Role of Antimicrobial Peptides in Neutrophil Extracellular Traps Promoting Autoimmune Disorders. Life (Basel) 2023; 13:1307. [PMID: 37374090 DOI: 10.3390/life13061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
AMPs are small oligopeptides acting as integral elements of the innate immune system and are of tremendous potential in the medical field owing to their antimicrobial and immunomodulatory activities. They offer a multitude of immunomodulatory properties such as immune cell differentiation, inflammatory responses, cytokine production, and chemoattraction. Aberrancy in neutrophil or epithelial cell-producing AMPs leads to inflammation culminating in various autoimmune responses. In this review, we have tried to explore the role of prominent mammalian AMPs-defensins and cathelicidins, as immune regulators with special emphasis on their role in neutrophil extracellular traps which promotes autoimmune disorders. When complexed with self-DNA or self-RNA, AMPs act as autoantigens which activate plasmacytoid dendritic cells and myeloid dendritic cells leading to the production of interferons and cytokines. These trigger a series of self-directed inflammatory reactions, leading to the emergence of diverse autoimmune disorders. Since AMPs show both anti- and pro-inflammatory abilities in different ADs, there is a dire need for a complete understanding of their role before developing AMP-based therapy for autoimmune disorders.
Collapse
Affiliation(s)
- Soma Biswas
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Suma Sarojini
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Saranya Jayaram
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Indhu Philip
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Roseanne Mascarenhas
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | - Manikantan Pappuswamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India
| | | | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
24
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
25
|
Alrayes MM, Sukeik MT. Emerging Technologies in Diagnosing Periprosthetic Joint Infections. Indian J Orthop 2023; 57:643-652. [PMID: 37128562 PMCID: PMC10147868 DOI: 10.1007/s43465-023-00891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Periprosthetic joint infection (PJI) is a well-known serious complication following joint replacement surgeries and is responsible for high failure rates of implanted devices. Any delay in the diagnosis can compromise treatment success, putting a huge burden on the patients' wellness and healthcare systems. Diagnosing PJIs is quite complex as there is still no gold standard test to reach the definitive diagnosis in a timely manner. A number of laboratory tests and radiological imaging inventions have evolved in the past few years, requiring consistent updates of the available guidelines to keep up with the latest advances in the field. This article highlights the recent advances in diagnosing PJIs and discusses their validity for use in clinical practice.
Collapse
Affiliation(s)
- Majd M. Alrayes
- Department of Trauma & Orthopedics, Dammam Medical Complex, Dammam, 32210 Saudi Arabia
| | - Mohamed T. Sukeik
- Department of Trauma & Orthopaedics, Dr. Sulaiman Al-Habib Hospital–Al Khobar, Al Khobar, 34423 Saudi Arabia
| |
Collapse
|
26
|
RM VR, Singh N, Murmu S, Abhishek, Raina S, Singh S. Salivary physicochemical characteristics and antimicrobial human peptide among Indian children with dental caries. Bioinformation 2023; 19:428-432. [PMID: 37822819 PMCID: PMC10563558 DOI: 10.6026/97320630019428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/30/2023] [Accepted: 04/30/2023] [Indexed: 10/13/2023] Open
Abstract
Salivary innate defenses encompass mechanical cleaning, calcium phosphate salts and fluoride ion reduction of enamel dissolution rate, buffering capacity and neutralizing capacity, and antibacterial properties employing antimicrobial substances like antimicrobial peptides,agglutins,lactoferrin, lactoperoxidase, lysozyme and immuno globulins. Antimicrobial peptides play a key role in the initial defensive responses that make up innate immunity. The aim of this study was to assess the relationship between salivary physicochemical characteristics like buffering capacity, pH, flow rate, and concentrations antimicrobial human peptide like HBD-3, HNP1-3 and LL-37 and caries activity in young children. Before to collecting the samples, informed permission papers were gathered and completed by the children's legal guardians or parents. There was significant correlation showing reduced caries activity on increased concentrations of HNP1-3. When there was analysis of correlation of CAS with LL-37 concentrations then the p value vas 0.002 showing the correlation was significant. There is significant relationship between salivary physicochemical characteristics like buffering capacity, pH, flow rate, and concentrations antimicrobial human peptide like HBD-3, HNP1-3 and LL-37 and caries activity in young children.
Collapse
Affiliation(s)
- Vatchala Rani RM
- Department of Oral Pathology and Microbiology Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Neha Singh
- Tutor, Department of Periodontology, Dental College, Rims, Ranchi, Jharkhand, India
| | - Swati Murmu
- Post Graduate Student, Department of Paediatric and Preventive Dentistry, Hazaribag College of Dental Sciences and Hospital, Hazaribagh, Jharkhand, India
| | - Abhishek
- Private Practioner, Oral and Maxillofacial Surgeon, Oro Care Facial Trauma Centre, Patna, Bihar, India
| | - Sakshi Raina
- Department of Orthodontics, Dental Officer, Echs Polyclinic (Ministry of Defence) Samastipur, Bihar, India
| | - Shalini Singh
- Senior Resident, Department of Pedodontist, Safdarjung Hospital, New Delhi, India
| |
Collapse
|
27
|
Hrynkiewicz R, Niedźwiedzka-Rystwej P. Etiology of viral induced acute liver failure and defensins as potential therapeutic agents in ALF treatment. Front Immunol 2023; 14:1153528. [PMID: 37153560 PMCID: PMC10160486 DOI: 10.3389/fimmu.2023.1153528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Acute liver failure (ALF) is a rare and severe disease, which, despite continuous advances in medicine, is still characterized by high mortality (65-85%). Very often, a liver transplant is the only effective treatment for ALF. Despite the implementation of prophylactic vaccinations in the world, the viral background of ALF is still a problem and leads to many deaths. Depending on the cause of ALF, it is sometimes possible to reverse this condition with appropriate therapies, which is why the search for effective antiviral agents seems to be a very desirable direction of research. Defensins, which are our natural antimicrobial peptides, have a very high potential to be used as therapeutic agents for infectious liver diseases. Previous studies on the expression of human defensins have shown that increased expression of human α and β-defensins in HCV and HBV infections is associated with a better response to treatment. Unfortunately, conducting clinical trials for ALF is very difficult due to the severity of the disease and the low incidence, therefore animal models are important for the development of new therapeutic strategies. One of the best animal models that has real reference to research on acute liver failure (ALF) is rabbit hemorrhagic disease in rabbits caused by the Lagovirus europaeus virus. So far, there have been no studies on the potential of defensins in rabbits infected with Lagovirus europaeus virus.
Collapse
|
28
|
Tapilskaya NI, Savicheva AM, Shalepo KV, Budilovskaya OV, Gzgzyan AM, Bespalova ON, Khusnutdinova TA, Krysanova AA, Obedkova KV, Safarian GK. Local Immune Biomarker Expression Depending on the Uterine Microbiota in Patients with Idiopathic Infertility. Int J Mol Sci 2023; 24:ijms24087572. [PMID: 37108732 PMCID: PMC10143846 DOI: 10.3390/ijms24087572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The endometrium has traditionally been considered sterile. Nowadays, active studies are performed on the female upper genital tract microbiota. Bacteria and/or viruses colonizing the endometrium are known to alter its functional properties, including receptivity and embryo implantation. Uterine cavity inflammation caused by microorganisms leads to disrupted cytokine expression, which, in turn, is mandatory for the successful implantation of the embryo. The present study assessed the vaginal and endometrial microbiota composition and its relation to the levels of cytokines produced by the endometrium in reproductive-aged women complaining of secondary infertility of unknown origin. The multiplex real-time PCR assay was applied for vaginal and endometrial microbiota analysis. The quantitative measurement of endometrial α-defensin (DEFa1), transforming growth factor (TGFβ1), and basic fibroblast growth factor (bFGF2) was carried out using the ELISA (Cloud-Clone Corporation (Katy, TX, USA; manufactured in Wuhan, China). A reliable decline in endometrial TGFβ1 and bFGF2 and an increase in DEFa1 were demonstrated in women with idiopathic infertility when compared to fertile patients. However, TGFβ1, bFGF2, and DEFa1 expression correlated reliably only with the presence of Peptostreptococcus spp. and HPV in the uterine cavity. The obtained results highlight the importance of local immune biomarker determination in the assessment of certain bacteria and viruses' significance as causative agents of infertility.
Collapse
Affiliation(s)
- Natalya I Tapilskaya
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Alevtina M Savicheva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Kira V Shalepo
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Olga V Budilovskaya
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Aleksandr M Gzgzyan
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Olesya N Bespalova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Tatiana A Khusnutdinova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Anna A Krysanova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Kseniia V Obedkova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| | - Galina Kh Safarian
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, 199034 St. Petersburg, Russia
| |
Collapse
|
29
|
Ali Mohammadie Kojour M, Jang HA, Lee YS, Jo YH, Han YS. Innate Immune Response of TmToll-3 Following Systemic Microbial Infection in Tenebrio molitor. Int J Mol Sci 2023; 24:ijms24076751. [PMID: 37047723 PMCID: PMC10095136 DOI: 10.3390/ijms24076751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Although Toll-like receptors have been widely identified and functionally characterized in mammalian models and Drosophila, the immunological function of these receptors in other insects remains unclear. Here, we explored the relevant innate immune response of Tenebrio molitor (T. molitor) Toll-3 against Gram-negative bacteria, Gram-positive bacteria, and fungal infections. Our findings indicated that TmToll-3 expression was mainly induced by Candida albicans infections in the fat bodies, gut, Malpighian tubules, and hemolymph of young T. molitor larvae. Surprisingly, Escherichia coli systemic infection caused mortality after TmToll-3 knockdown via RNA interference (RNAi) injection, which was not observed in the control group. Further analyses indicated that in the absence of TmToll-3, the final effector of the Toll signaling pathway, antimicrobial peptide (AMP) genes and relevant transcription factors were significantly downregulated after E. coli challenge. Our results indicated that the expression of almost all AMP genes was suppressed in silenced individuals, whereas the expression of relevant genes was positively regulated after fungal injection. Therefore, this study revealed the immunological involvement of TmToll-3 in T. molitor in response to systematic infections.
Collapse
Affiliation(s)
- Maryam Ali Mohammadie Kojour
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ho Am Jang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Yong Seok Lee
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Yong Hun Jo
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
30
|
Role of Defensins in Tumor Biology. Int J Mol Sci 2023; 24:ijms24065268. [PMID: 36982340 PMCID: PMC10049535 DOI: 10.3390/ijms24065268] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Defensins have long been considered as merely antimicrobial peptides. Throughout the years, more immune-related functions have been discovered for both the α-defensin and β-defensin subfamily. This review provides insights into the role of defensins in tumor immunity. Since defensins are present and differentially expressed in certain cancer types, researchers started to unravel their role in the tumor microenvironment. The human neutrophil peptides have been demonstrated to be directly oncolytic by permealizing the cell membrane. Further, defensins can inflict DNA damage and induce apoptosis of tumor cells. In the tumor microenvironment, defensins can act as chemoattractants for subsets of immune cells, such as T cells, immature dendritic cells, monocytes and mast cells. Additionally, by activating the targeted leukocytes, defensins generate pro-inflammatory signals. Moreover, immuno-adjuvant effects have been reported in a variety of models. Therefore, the action of defensins reaches beyond their direct antimicrobial effect, i.e., the lysis of microbes invading the mucosal surfaces. By causing an increase in pro-inflammatory signaling events, cell lysis (generating antigens) and attraction and activation of antigen presenting cells, defensins could have a relevant role in activating the adaptive immune system and generating anti-tumor immunity, and could thus contribute to the success of immune therapy.
Collapse
|
31
|
Yeh JC, Hazam PK, Hsieh CY, Hsu PH, Lin WC, Chen YR, Li CC, Chen JY. Rational Design of Stapled Antimicrobial Peptides to Enhance Stability and In Vivo Potency against Polymicrobial Sepsis. Microbiol Spectr 2023; 11:e0385322. [PMID: 36877022 PMCID: PMC10101059 DOI: 10.1128/spectrum.03853-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
In this work, we sought to develop a TP4-based stapled peptide that can be used to counter polymicrobial sepsis. First, we segregated the TP4 sequence into hydrophobic and cationic/hydrophilic zones and substituted the preferred residue, lysine, as the sole cationic amino acid. These modifications minimized the intensity of cationic or hydrophobic characteristics within small segments. Then, we incorporated single or multiple staples into the peptide chain, bracketing the cationic/hydrophilic segments to improve pharmacological suitability. Using this approach, we were able to develop an AMP with low toxicity and notable in vivo efficacy. IMPORTANCE In our in vitro studies, one dual stapled peptide out of the series of candidates (TP4-3: FIIXKKSXGLFKKKAGAXKKKXIKK) showed significant activity, low toxicity, and high stability (in 50% human serum). When tested in cecal ligation and puncture (CLP) mouse models of polymicrobial sepsis, TP4-3 improved survival (87.5% on day 7). Furthermore, TP4-3 enhanced the activity of meropenem against polymicrobial sepsis (100% survival on day 7) compared to meropenem alone (37.5% survival on day 7). Molecules such as TP4-3 may be well suited for a wide variety of clinical applications.
Collapse
Affiliation(s)
- Jih-Chao Yeh
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan
| | - Prakash Kishore Hazam
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan
| | - Chu-Yi Hsieh
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan
| | - Po-Hsien Hsu
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Wen-Chun Lin
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan
| | - Yun-Ru Chen
- Academia Sinica Protein Clinic, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chao-Chin Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan
- The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
32
|
Teng P, Shao H, Huang B, Xie J, Cui S, Wang K, Cai J. Small Molecular Mimetics of Antimicrobial Peptides as a Promising Therapy To Combat Bacterial Resistance. J Med Chem 2023; 66:2211-2234. [PMID: 36739538 DOI: 10.1021/acs.jmedchem.2c00757] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinically, antibiotics are widely used to treat infectious diseases; however, excessive drug abuse and overuse exacerbate the prevalence of drug-resistant bacterial pathogens, making the development of novel antibiotics extremely difficult. Antimicrobial peptide (AMP) is one of the most promising candidates for overcoming bacterial resistance owing to its unique structure and mechanism of action. This study examines the development of small molecular mimetics of AMPs over the past two decades. These mimetics can selectively disrupt membranes, which are the characteristic antibacterial mechanism of AMPs. In addition, the advantages and disadvantages of small AMP mimetics are discussed. The small molecular mimetics of AMPs are anticipated to garner interest and investment in discovering new antibiotics. This Perspective will assist in revitalizing the golden age of antibiotics in the current era of combating bacterial resistance.
Collapse
Affiliation(s)
- Peng Teng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Haodong Shao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Bo Huang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
33
|
Bober P, Talian I, Mihalik D, Verbová G, Sabo J. MALDI-TOF/MS Profiling of Whole Saliva and Gingival Crevicular Fluid in Patients with the Invisalign System and Fixed Orthodontic Appliances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3252. [PMID: 36833947 PMCID: PMC9960105 DOI: 10.3390/ijerph20043252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The movement of teeth by orthodontic treatment with the Invisalign (IN) system and fixed orthodontic appliances (FOA) is characterized by the reconstruction of periodontal ligaments, alveolar bone, and gingiva. A reflection of these phenomena can be found in the composition of gingival crevicular fluid (GCF). A total of 90 samples from 45 participants (45 whole saliva and 45 GCF), including 15 patients with FOA, 15 patients with IN, and 15 patients with oral health, were subjected to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF/MS) analysis. Mass fingerprints were generated for each sample. Three models were tested: a quick classifier (QC), a genetic algorithm (GA), and a supervised neural network (SNN). For both groups of samples (saliva and GCF), the GA model showed the highest recognition abilities of 88.89% (saliva) and 95.56% (GCF). Differences between the treated (FOA and IN) groups and the control group in saliva and GCF samples were determined using cluster analysis. In addition, we monitored the effect of long-term orthodontic treatment (after 6 months) in the lag phase of orthodontic tooth movement. The results show increased levels of inflammatory markers (α-defensins), which may indicate an ongoing inflammatory process even after 21 days from force application.
Collapse
Affiliation(s)
- Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia
| | - Dávid Mihalik
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia
| | - Gabriela Verbová
- 1st Department of Stomatology, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP1, 04011 Košice, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia
| |
Collapse
|
34
|
Mouse α-Defensins: Structural and Functional Analysis of the 17 Cryptdin Isoforms Identified from a Single Jejunal Crypt. Infect Immun 2023; 91:e0036122. [PMID: 36472443 PMCID: PMC9872612 DOI: 10.1128/iai.00361-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mouse α-defensins, better known as cryptdins, are host protective antimicrobial peptides produced in the intestinal crypt by Paneth cells. To date, more than 20 cryptdin mRNAs have been identified from mouse small intestine, of which the first six cryptdins (Crp1 to Crp6) have been isolated and characterized at the peptide level. We quantified bactericidal activities against Escherichia coli and Staphylococcus aureus of the 17 cryptdin isoforms identified by Ouellette and colleagues from a single jejunal crypt (A. J. Ouellette et al., Infect Immun 62:5040-5047, 1994), along with linearized analogs of Crp1, Crp4, and Crp14. In addition, we analyzed the most potent and weakest cryptdins in the panel with respect to their ability to self-associate in solution. Finally, we solved, for the first time, the high-resolution crystal structure of a cryptdin, Crp14, and performed molecular dynamics simulation on Crp14 and a hypothetical mutant, T14K-Crp14. Our results indicate that mutational effects are highly dependent on cryptdin sequence, residue position, and bacterial strain. Crp14 adopts a disulfide-stabilized, three-stranded β-sheet core structure and forms a noncanonical dimer stabilized by asymmetrical interactions between the two β1 strands in parallel. The killing of E. coli by cryptdins is generally independent of their tertiary and quaternary structures that are important for the killing of S. aureus, which is indicative of two distinct mechanisms of action. Importantly, sequence variations impact the bactericidal activity of cryptdins by influencing their ability to self-associate in solution. This study expands our current understanding of how cryptdins function at the molecular level.
Collapse
|
35
|
Ghaly G, Tallima H, Dabbish E, Badr ElDin N, Abd El-Rahman MK, Ibrahim MAA, Shoeib T. Anti-Cancer Peptides: Status and Future Prospects. Molecules 2023; 28:molecules28031148. [PMID: 36770815 PMCID: PMC9920184 DOI: 10.3390/molecules28031148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The dramatic rise in cancer incidence, alongside treatment deficiencies, has elevated cancer to the second-leading cause of death globally. The increasing morbidity and mortality of this disease can be traced back to a number of causes, including treatment-related side effects, drug resistance, inadequate curative treatment and tumor relapse. Recently, anti-cancer bioactive peptides (ACPs) have emerged as a potential therapeutic choice within the pharmaceutical arsenal due to their high penetration, specificity and fewer side effects. In this contribution, we present a general overview of the literature concerning the conformational structures, modes of action and membrane interaction mechanisms of ACPs, as well as provide recent examples of their successful employment as targeting ligands in cancer treatment. The use of ACPs as a diagnostic tool is summarized, and their advantages in these applications are highlighted. This review expounds on the main approaches for peptide synthesis along with their reconstruction and modification needed to enhance their therapeutic effect. Computational approaches that could predict therapeutic efficacy and suggest ACP candidates for experimental studies are discussed. Future research prospects in this rapidly expanding area are also offered.
Collapse
Affiliation(s)
- Gehane Ghaly
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Hatem Tallima
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Eslam Dabbish
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Norhan Badr ElDin
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
| | - Mohamed K. Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
- Correspondence:
| |
Collapse
|
36
|
Zhang Y, Wang C, Zhang W, Li X. Bioactive peptides for anticancer therapies. BIOMATERIALS TRANSLATIONAL 2023; 4:5-17. [PMID: 37206303 PMCID: PMC10189813 DOI: 10.12336/biomatertransl.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 05/21/2023]
Abstract
Cancer is a serious concern in public health worldwide. Numerous modalities including surgery, radiotherapy, and chemotherapy, have been used for cancer therapies in clinic. Despite progress in anticancer therapies, the usage of these methods for cancer treatment is often related to deleterious side effects and multidrug resistance of conventional anticancer drugs, which have prompted the development of novel therapeutic methods. Anticancer peptides (ACPs), derived from naturally occurring and modified peptides, have received great attention in these years and emerge as novel therapeutic and diagnostic candidates for cancer therapies, because of several advantages over the current treatment modalities. In this review, the classification and properties of ACPs, the mode of action and mechanism of membrane disruption, as well as the natural sources of bioactive peptides with anticancer activities were summarised. Because of their high efficacy for inducing cancer cell death, certain ACPs have been developed to work as drugs and vaccines, evaluated in varied phases of clinical trials. We expect that this summary could facilitate the understanding and design of ACPs with increased specificity and toxicity towards malignant cells and with reduced side effects to normal cells.
Collapse
|
37
|
Meinshausen AK, Färber J, Illiger S, Macor P, Lohmann CH, Bertrand J. C9 immunostaining as a tissue biomarker for periprosthetic joint infection diagnosis. Front Immunol 2023; 14:1112188. [PMID: 36895567 PMCID: PMC9989178 DOI: 10.3389/fimmu.2023.1112188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
Background Culture-negative periprosthetic joint infections (PJI) are often false diagnosed as aseptic implant failure leading to unnecessary revision surgeries due to repeated infections. A marker to increase the security of e PJI diagnosis is therefore of great importance. The aim of this study was to test C9 immunostaining of periprosthetic tissue as a novel tissue-biomarker for a more reliable identification of PJI, as well as potential cross-reactivity. Method We included 98 patients in this study undergoing septic or aseptic revision surgeries. Standard microbiological diagnosis was performed in all cases for classification of patients. Serum parameters including C-reactive protein (CRP) serum levels and white blood cell (WBC) count were included, and the periprosthetic tissue was immunostained for C9 presence. The amount of C9 tissue staining was evaluated in septic versus aseptic tissue and the amount of C9 staining was correlated with the different pathogens causing the infection. To exclude cross-reactions between C9 immunostaining and other inflammatory joint conditions, we included tissue samples of a separate cohort with rheumatoid arthritis, wear particles and chondrocalcinosis. Results The microbiological diagnosis detected PJI in 58 patients; the remaining 40 patients were classified as aseptic. Serum CRP values were significantly increased in the PJI cohort. Serum WBC was not different between septic and aseptic cases. We found a significant increase in C9 immunostaining in the PJI periprosthetic tissue. To test the predictive value of C9 as biomarker for PJI we performed a ROC analyses. According to the Youden's criteria C9 is a very good biomarker for PJI detection with a sensitivity of 89% and a specificity of 75% and an AUC of 0.84. We did not observe a correlation of C9 staining with the pathogen causing the PJI. However, we observed a cross reactivity with the inflammatory joint disease like rheumatoid arthritis and different metal wear types. In addition, we did not observe a cross reactivity with chondrocalcinosis. Conclusion Our study identifies C9 as a potential tissue-biomarker for the identification of PJI using immunohistological staining of tissue biopsies. The use of C9 staining could help to reduce the number of false negative diagnoses of PJI.
Collapse
Affiliation(s)
- Ann-Kathrin Meinshausen
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jacqueline Färber
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Illiger
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
38
|
Zhao G, Jia C, Zhu C, Fang M, Li C, Chen Y, He Y, Han S, He Y, Gao J, Wang T, Wang C, Wang J. γ-Core Guided Antibiotic Design Based on Human Enteric Defensin 5. MEMBRANES 2022; 13:51. [PMID: 36676858 PMCID: PMC9862697 DOI: 10.3390/membranes13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
An increase in the number of infections caused by resistant bacteria worldwide necessitates the development of alternatives to antibiotics. Human defensin (HD) 5 is an innate immune peptide with broad-spectrum antibacterial activity, but its complicated structure makes its preparation difficult. Herein, we truncated the HD5 structure by extracting the highly conserved γ-core motif. A structure-activity study showed that this motif was ineffective in killing bacteria in the absence of specific spatial conformation. Notably, after the introduction of two intramolecular disulfide bonds, its antibacterial activity was markedly improved. Glu and Ser residues were then replaced with Arg to create the derivative RC18, which exhibited stronger potency than HD5, particularly against methicillin-resistant S. aureus (MRSA). Mechanistically, RC18 bound to lipid A and lipoteichoic acid at higher affinities than HD5. Furthermore, RC18 was more efficient than HD5 in penetrating the bacterial membranes. Molecular dynamics simulation revealed that five Arg residues, Arg1, Arg7, Arg9, Arg15, and Arg18, mediated most of the polar interactions of RC18 with the phospholipid head groups during membrane penetration. In vivo experiments indicated that RC18 decreased MRSA colonization and dramatically improved the survival of infected mice, thus demonstrating that RC18 is a promising drug candidate to treat MRSA infections.
Collapse
Affiliation(s)
- Gaomei Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Changsheng Jia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Minchao Fang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chenwenya Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yingjuan He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Songling Han
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yongwu He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jining Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Tao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
39
|
Owens JM, Dennis DA, Abila PM, Johnson RM, Jennings JM. Alpha-Defensin Offers Limited Utility in Work-Up Prior to Reimplantation in Chronic Periprosthetic Joint Infection in Total Joint Arthroplasty Patients. J Arthroplasty 2022; 37:2431-2436. [PMID: 35803520 DOI: 10.1016/j.arth.2022.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Alpha-defensin (AD) is a synovial biomarker included in the 2018 consensus criteria for diagnosing periprosthetic joint infection (PJI). Its value in assessing eradication of infection prior to second stage reimplantation is unclear. The purpose of this study was to evaluate the impact of AD on eligibility for reimplantation following resection for chronic PJI. METHODS This study included patients who previously underwent resection arthroplasty for PJI. Synovial fluid aspirated from 87 patients was retrospectively reviewed. All patients completed a 6-week course of intravenous antibiotics and an appropriate drug holiday. Synovial white blood cell count, percentage neutrophils, and culture from the AD immunoassay laboratory were reviewed with serum erythrocyte sedimentation rate and C-reactive protein values from our institution. A modified version of the 2018 consensus criteria was used, including white blood cell count, percentage neutrophils, erythrocyte sedimentation rate, and C-reactive protein. AD was then added to determine if it changed diagnosis or clinical management. RESULTS Four patients were categorized as "infected" (score >6), none exhibited a positive AD or positive culture. Sixty eight patients were diagnosed as "possibly infected" (score 2 to 5), none had a positive AD, and one had a positive culture (Cutibacterium acnes). AD did not change the diagnosis from "possibly infected" to "infected" in any case or alter treatment plans. Fifteen patients had a score of <2 (not infected) and none had a positive AD. CONCLUSION The routine use of AD in the work-up prior to a second-stage arthroplasty procedure for PJI may not be warranted.
Collapse
Affiliation(s)
| | - Douglas A Dennis
- Colorado Joint Replacement, Denver, Colorado; Department of Mechanical and Materials Engineering, University of Denver, Denver, Colorado; Department of Orthopaedics, University of Colorado School of Medicine, Denver, Colorado; Department of Biomedical Engineering, University of Tennessee, Knoxville, Tennessee
| | | | | | - Jason M Jennings
- Colorado Joint Replacement, Denver, Colorado; Department of Mechanical and Materials Engineering, University of Denver, Denver, Colorado
| |
Collapse
|
40
|
Solarino G, Bizzoca D, Moretti L, Vicenti G, Piazzolla A, Moretti B. What's New in the Diagnosis of Periprosthetic Joint Infections: Focus on Synovial Fluid Biomarkers. Trop Med Infect Dis 2022; 7:355. [PMID: 36355897 PMCID: PMC9692966 DOI: 10.3390/tropicalmed7110355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 08/10/2023] Open
Abstract
Periprosthetic joint infections are some of the leading causes of revision prosthetic surgery, accounting for 25% of failed total knee replacements and 15% of failed total hip replacements. The search for a biomarker that, together with clinical and radiological findings, could improve the management of such patients is currently a significant challenge for orthopaedic surgeons. Synovial fluid is a viscous and mucinous substance produced by the synovium, a specialized connective tissue that lines diarthrodial joints. Synovial fluid is an ultrafiltrate of plasma but also contains proteins secreted from the surrounding tissues, including the articular cartilage and synovium. Therefore, synovial fluid represents a source of disease-related proteins that could be used as potential biomarkers in several articular diseases. Based on these findings, the study of synovial fluid has been gaining increasing importance in recent years. This review aims to assess the accuracy and the limitations of the most promising synovial fluid biomarkers-i.e., Alpha-Defensin, Leukocyte Esterase, C-Reactive Protein, Interleukin-6, Calprotectin, Presepsin and Neopterin-in the diagnosis of PJI. Special attention will be given to emerging synovial biomarkers, which could soon be important in diagnosing PJIs.
Collapse
Affiliation(s)
- Giuseppe Solarino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic and Trauma Unit, University of Bari “Aldo Moro”-AOU Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Davide Bizzoca
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic and Trauma Unit, University of Bari “Aldo Moro”-AOU Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
- AOU Consorziale Policlinico di Bari, UOSD Spinal Surgery and Scoliosis Deformity Centre, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Lorenzo Moretti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic and Trauma Unit, University of Bari “Aldo Moro”-AOU Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Giovanni Vicenti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic and Trauma Unit, University of Bari “Aldo Moro”-AOU Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Andrea Piazzolla
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic and Trauma Unit, University of Bari “Aldo Moro”-AOU Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
- AOU Consorziale Policlinico di Bari, UOSD Spinal Surgery and Scoliosis Deformity Centre, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Biagio Moretti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Orthopaedic and Trauma Unit, University of Bari “Aldo Moro”-AOU Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
41
|
The Usefulness of Synovial Fluid Proteome Analysis in Orthopaedics: Focus on Osteoarthritis and Periprosthetic Joint Infections. J Funct Morphol Kinesiol 2022; 7:jfmk7040097. [PMID: 36412759 PMCID: PMC9680387 DOI: 10.3390/jfmk7040097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022] Open
Abstract
Synovial fluid (SF) is a viscous and mucinous substance produced by the synovium, a specialized connective tissue that lines diarthrodial joints. SF represents a source of disease-related proteins that could be used as potential biomarkers in several articular diseases. Based on these findings the study of SF has been gaining increasing importance, in recent years. This review aims to summarize the usefulness of synovial fluid in orthopaedics research and clinical practice, mainly focusing on osteoarthritis (OA) and periprosthetic joint infections (PJIs). Proteomics of the SF has shown the up-regulation of several components of the classic complement pathway in OA samples, including C1, C2, C3, C4A, C4B, C5, and C4 C4BPA, thus depicting that complement is involved in the pathogenesis of OA. Moreover, proteomics has demonstrated that some pro-inflammatory cytokines, namely IL-6, IL-8, and IL-18, have a role in OA. Several SF proteins have been studied to improve the diagnosis of PJIs, including alpha-defensin (Alpha-D), leukocyte esterase (LE), c-reactive protein (CRP), interleukin-6 (IL-6), calprotectin and presepsin. The limits and potentials of these SF biomarkers will be discussed.
Collapse
|
42
|
Yan J, Cai J, Zhang B, Wang Y, Wong DF, Siu SWI. Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning. Antibiotics (Basel) 2022; 11:1451. [PMID: 36290108 PMCID: PMC9598685 DOI: 10.3390/antibiotics11101451] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance has become a critical global health problem due to the abuse of conventional antibiotics and the rise of multi-drug-resistant microbes. Antimicrobial peptides (AMPs) are a group of natural peptides that show promise as next-generation antibiotics due to their low toxicity to the host, broad spectrum of biological activity, including antibacterial, antifungal, antiviral, and anti-parasitic activities, and great therapeutic potential, such as anticancer, anti-inflammatory, etc. Most importantly, AMPs kill bacteria by damaging cell membranes using multiple mechanisms of action rather than targeting a single molecule or pathway, making it difficult for bacterial drug resistance to develop. However, experimental approaches used to discover and design new AMPs are very expensive and time-consuming. In recent years, there has been considerable interest in using in silico methods, including traditional machine learning (ML) and deep learning (DL) approaches, to drug discovery. While there are a few papers summarizing computational AMP prediction methods, none of them focused on DL methods. In this review, we aim to survey the latest AMP prediction methods achieved by DL approaches. First, the biology background of AMP is introduced, then various feature encoding methods used to represent the features of peptide sequences are presented. We explain the most popular DL techniques and highlight the recent works based on them to classify AMPs and design novel peptide sequences. Finally, we discuss the limitations and challenges of AMP prediction.
Collapse
Affiliation(s)
- Jielu Yan
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Jianxiu Cai
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
- Institute of Science and Environment, University of Saint Joseph, Estr. Marginal da Ilha Verde, Macau, China
| | - Bob Zhang
- PAMI Research Group, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Yapeng Wang
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, China
| | - Derek F. Wong
- NLP2CT Lab, Department of Computer and Information Science, University of Macau, Taipa, Macau, China
| | - Shirley W. I. Siu
- Institute of Science and Environment, University of Saint Joseph, Estr. Marginal da Ilha Verde, Macau, China
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| |
Collapse
|
43
|
Wu E, Zhu J, Ma Z, Tuo B, Terai S, Mizuno K, Li T, Liu X. Gastric alarmin release: A warning signal in the development of gastric mucosal diseases. Front Immunol 2022; 13:1008047. [PMID: 36275647 PMCID: PMC9583272 DOI: 10.3389/fimmu.2022.1008047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alarmins exist outside cells and are early warning signals to the immune system; as such, alarmin receptors are widely distributed on various immune cells. Alarmins, proinflammatory molecular patterns associated with tissue damage, are usually released into the extracellular space, where they induce immune responses and participate in the damage and repair processes of mucosal diseases.In the stomach, gastric alarmin release has been shown to be involved in gastric mucosal inflammation, antibacterial defense, adaptive immunity, and wound healing; moreover, this release causes damage and results in the development of gastric mucosal diseases, including various types of gastritis, ulcers, and gastric cancer. Therefore, it is necessary to understand the role of alarmins in gastric mucosal diseases. This review focuses on the contribution of alarmins, including IL33, HMGB1, defensins and cathelicidins, to the gastric mucosal barrier and their role in gastric mucosal diseases. Here, we offer a new perspective on the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Enqin Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuji Terai
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenichi Mizuno
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Xuemei Liu, ; Taolang Li,
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Xuemei Liu, ; Taolang Li,
| |
Collapse
|
44
|
Luong AD, Buzid A, Luong JHT. Important Roles and Potential Uses of Natural and Synthetic Antimicrobial Peptides (AMPs) in Oral Diseases: Cavity, Periodontal Disease, and Thrush. J Funct Biomater 2022; 13:jfb13040175. [PMID: 36278644 PMCID: PMC9589978 DOI: 10.3390/jfb13040175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Numerous epithelial cells and sometimes leukocytes release AMPs as their first line of defense. AMPs encompass cationic histatins, defensins, and cathelicidin to encounter oral pathogens with minimal resistance. However, their concentrations are significantly below the effective levels and AMPs are unstable under physiological conditions due to proteolysis, acid hydrolysis, and salt effects. In parallel to a search for more effective AMPs from natural sources, considerable efforts have focused on synthetic stable and low-cytotoxicy AMPs with significant activities against microorganisms. Using natural AMP templates, various attempts have been used to synthesize sAMPs with different charges, hydrophobicity, chain length, amino acid sequence, and amphipathicity. Thus far, sAMPs have been designed to target Streptococcus mutans and other common oral pathogens. Apart from sAMPs with antifungal activities against Candida albicans, future endeavors should focus on sAMPs with capabilities to promote remineralization and antibacterial adhesion. Delivery systems using nanomaterials and biomolecules are promising to stabilize, reduce cytotoxicity, and improve the antimicrobial activities of AMPs against oral pathogens. Nanostructured AMPs will soon become a viable alternative to antibiotics due to their antimicrobial mechanisms, broad-spectrum antimicrobial activity, low drug residue, and ease of synthesis and modification.
Collapse
Affiliation(s)
- Albert Donald Luong
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University of Buffalo, Buffalo, NY 14215, USA
| | - Alyah Buzid
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - John H. T. Luong
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, T12 YN60 Cork, Ireland
- Correspondence: or
| |
Collapse
|
45
|
Chinipardaz Z, Zhong JM, Yang S. Regulation of LL-37 in Bone and Periodontium Regeneration. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101533. [PMID: 36294968 PMCID: PMC9604716 DOI: 10.3390/life12101533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The goal of regenerative therapy is to restore the structure and function of the lost tissues in the fields of medicine and dentistry. However, there are some challenges in regeneration therapy such as the delivery of oxygen and nutrition, and the risk of infection in conditions such as periodontitis, osteomyelitis, etc. Leucine leucine-37 (LL-37) is a 37-residue, amphipathic, and helical peptide found only in humans and is expressed throughout the body. It has been shown to induce neovascularization and vascular endothelial growth factor (VEGF) expression. LL-37 also stimulates the migration and differentiation of mesenchymal stem cells (MSCs). Recent studies have shown that LL-37 plays an important role in the innate defense system through the elimination of pathogenic microbes and the modulation of the host immune response. LL-37 also manifests other functions such as promoting wound healing, angiogenesis, cell differentiation, and modulating apoptosis. This review summarizes the current studies on the structure, expression, and function of LL-37 and highlights the contributions of LL-37 to oral cavity, periodontium, and bone regeneration.
Collapse
Affiliation(s)
- Zahra Chinipardaz
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica M. Zhong
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
| | - Shuying Yang
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
46
|
Zhai YJ, Feng Y, Ma X, Ma F. Defensins: defenders of human reproductive health. Hum Reprod Update 2022; 29:126-154. [PMID: 36130055 PMCID: PMC9825273 DOI: 10.1093/humupd/dmac032] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Reproductive tract infection is an important factor leading to male and female infertility. Among female infertility factors, microbial and viral infections are the main factors affecting female reproductive health and causing tubal infertility, ectopic tubal pregnancy and premature delivery. Among male infertility factors, 13-15% of male infertility is related to infection. Defensins are cationic antibacterial and antiviral peptides, classified into α-defensins, β-defensins and θ-defensins. Humans only have α-defensins and β-defensins. Apart from their direct antimicrobial functions, defensins have an immunomodulatory function and are involved in many physiological processes. Studies have shown that defensins are widely distributed in the female reproductive tract (FRT) and male reproductive tract (MRT), playing a dual role of host defence and fertility protection. However, to our knowledge, the distribution, regulation and function of defensins in the reproductive tract and their relation to reproduction have not been reviewed. OBJECTIVE AND RATIONALE This review summarizes the expression, distribution and regulation of defensins in the reproductive tracts to reveal the updated research on the dual role of defensins in host defence and the protection of fertility. SEARCH METHODS A systematic search was conducted in PubMed using the related keywords through April 2022. Related data from original researches and reviews were integrated to comprehensively review the current findings and understanding of defensins in the human reproductive system. Meanwhile, female and male transcriptome data in the GEO database were screened to analyze defensins in the human reproductive tracts. OUTCOMES Two transcriptome databases from the GEO database (GSE7307 and GSE150852) combined with existing researches reveal the expression levels and role of the defensins in the reproductive tracts. In the FRT, a high expression level of α-defensin is found, and the expression levels of defensins in the vulva and vagina are higher than those in other organs. The expression of defensins in the endometrium varies with menstrual cycle stages and with microbial invasion. Defensins also participate in the local immune response to regulate the risk of spontaneous preterm birth. In the MRT, a high expression level of β-defensins is also found. It is mainly highly expressed in the epididymal caput and corpus, indicating that defensins play an important role in sperm maturation. The expression of defensins in the MRT varies with androgen levels, age and the status of microbial invasion. They protect the male reproductive system from bacterial infections by neutralizing lipopolysaccharide and downregulating pro-inflammatory cytokines. In addition, animal and clinical studies have shown that defensins play an important role in sperm maturation, motility and fertilization. WIDER IMPLICATIONS As a broad-spectrum antimicrobial peptide without drug resistance, defensin has great potential for developing new natural antimicrobial treatments for reproductive tract infections. However, increasing evidence has shown that defensins can not only inhibit microbial invasion but can also promote the invasion and adhesion of some microorganisms in certain biological environments, such as human immunodeficiency virus. Therefore, the safety of defensins as reproductive tract anti-infective drugs needs more in-depth research. In addition, the modulatory role of defensins in fertility requires more in-depth research since the current conclusions are based on small-size samples. At present, scientists have made many attempts at the clinical transformation of defensins. However, defensins have problems such as poor stability, low bioavailability and difficulties in their synthesis. Therefore, the production of safe, effective and low-cost drugs remains a challenge.
Collapse
Affiliation(s)
| | | | - Xue Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| | - Fang Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| |
Collapse
|
47
|
Li G, Wang Q, Feng J, Wang J, Wang Y, Huang X, Shao T, Deng X, Cao Y, Zhou M, Zhao C. Recent insights into the role of defensins in diabetic wound healing. Biomed Pharmacother 2022; 155:113694. [PMID: 36099789 DOI: 10.1016/j.biopha.2022.113694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic wound, one of the most common serious complications of diabetic patients, is an important factor in disability and death. Much of the research on the pathophysiology of diabetic wound healing has long focused on mechanisms mediated by hyperglycemia, chronic inflammation, microcirculatory and macrocirculatory dysfunction. However, recent evidence suggests that defensins may play a crucial role in the development and perpetuation of diabetic wound healing. The available findings suggest that defensins exert a beneficial influence on diabetic wound healing through antimicrobial, immunomodulatory, angiogenic, tissue regenerator effects, and insulin resistance improvement. Therefore, summarizing the existing research progress on defensins in the diabetic wound may present a promising strategy for diabetic patients.
Collapse
Affiliation(s)
- Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jialin Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoting Huang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tengteng Shao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
48
|
Abdo RCT, Gobbi RG, Leite CBG, Pasoto SG, Leon EP, Lima ALLM, Bonfa E, Pécora JR, Demange MK. Quantitative alpha-defensin testing: Is synovial fluid dilution important? World J Orthop 2022; 13:760-767. [PMID: 36159623 PMCID: PMC9453281 DOI: 10.5312/wjo.v13.i8.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/04/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alpha-defensin has been widely studied for the diagnosis of periprosthetic joint infection (PJI). However, there is a lack of detailed information regarding the proper laboratory technique of the enzyme-linked immunosorbent assay (ELISA) method, such as sample dilution.
AIM To assess the influence of dilution in the synovial fluid during ELISA for the diagnosis of knee PJI; and determine which dilution presents a better performance.
METHODS Forty samples of synovial fluid from arthroplasty knees were included, 17 in the infected group and 23 in the aseptic group, according to Musculoskeletal Infection Society criteria. Initially, five synovial fluid samples from each group were assessed for quantitative analysis of alpha-defensin using ELISA. Different dilution ratios (1:10, 1:100, 1:500, 1:1000 and 1:5000) were tested based on the predetermined cutoff value of 5.2 mg/L. The dilutions that performed better were used to compare the results of all samples.
RESULTS For infected cases, a gradual increase in the dilution of synovial fluid samples led to an equivalent increase in alpha-defensin level. The same was not observed in the aseptic cases. Both 1:1000 and 1:5000 dilutions presented satisfactory results to differentiate infected and aseptic cases. Further analyses were performed using 1:1000 and 1:5000 for all 40 samples. The 1:1000 dilution resulted in a sensitivity of 88.2% (95%CI, 66%-98%) and specificity of 95.7% (95%CI, 79%-99%), whereas the 1:5000 dilution presented a sensitivity of 94.1% (95%CI, 73%-99%) and a specificity of 100% (95%CI, 86%-100%).
CONCLUSION The synovial fluid dilution had an important influence on the alpha-defensin ELISA results. Dilutions of 1:5000 showed the best performance for the diagnosis of knee PJI. The results of this study set the basis for a more reliable and reproducible alpha-defensin ELISA during the investigation of PJI, contributing to the expansion of this technique in different treatment centers worldwide.
Collapse
Affiliation(s)
- Rodrigo Calil Teles Abdo
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-010, Brazil
- Orthopaedic Department, HCor - Hospital do Coração, Sao Paulo 04004-030, Brazil
| | - Riccardo Gomes Gobbi
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-010, Brazil
- Orthopaedic Department, HCor - Hospital do Coração, Sao Paulo 04004-030, Brazil
| | - Chilan Bou Ghosson Leite
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-010, Brazil
| | - Sandra Gofinet Pasoto
- Division of Rheumatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-010, Brazil
| | - Elaine Pires Leon
- Division of Rheumatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-010, Brazil
| | - Ana Lucia Lei Munhoz Lima
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-010, Brazil
| | - Eloisa Bonfa
- Division of Rheumatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-010, Brazil
| | - José Ricardo Pécora
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-010, Brazil
| | - Marco Kawamura Demange
- Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-010, Brazil
| |
Collapse
|
49
|
New Antimicrobial Peptide with Two CRAC Motifs: Activity against Escherichia coli and Bacillus subtilis. Microorganisms 2022; 10:microorganisms10081538. [PMID: 36013956 PMCID: PMC9412426 DOI: 10.3390/microorganisms10081538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Due to the emergence of multiple antibiotic resistance in many pathogens, the studies on new antimicrobial peptides (AMPs) have become a priority scientific direction in fundamental and applied biology. Diverse mechanisms underlie the antibacterial action of AMPs. Among them are the effects that AMPs cause on bacterial cell membranes. In this work, we studied the antibacterial activity of a peptide named P4 with the following sequence RTKLWEMLVELGNMDKAVKLWRKLKR that was constructed from two alpha-helical fragments of the influenza virus protein M1 and containing two cholesterol-recognizing amino-acid consensus (CRAC) motifs. Previously we have shown that 50 μM of peptide P4 is toxic to cultured mouse macrophages. In the present work, we have found that peptide P4 inhibits the growth of E. coli and B. subtilis strains at concentrations that are significantly lower than the cytotoxic concentration that was found for macrophages. The half-maximal inhibitory concentration (IC50) for B. subtilis and E. coli cells were 0.07 ± 0.01 μM and 1.9 ± 0.4 μM, respectively. Scramble peptide without CRAC motifs did not inhibit the growth of E. coli cells and was not cytotoxic for macrophages but had an inhibitory effect on the growth of B. subtilis cells (IC50 0.4 ± 0.2 μM). A possible involvement of CRAC motifs and membrane sterols in the mechanism of the antimicrobial action of the P4 peptide is discussed. We assume that in the case of the Gram-negative bacterium E. coli, the mechanism of the toxic action of peptide P4 is related to the interaction of CRAC motifs with sterols that are present in the bacterial membrane, whereas in the case of the Gram-positive bacterium B. subtilis, which lacks sterols, the toxic action of peptide P4 is based on membrane permeabilization through the interaction of the peptide cationic domain and anionic lipids of the bacterial membrane. Whatever the mechanism can be, we report antimicrobial activity of the peptide P4 against the representatives of Gram-positive (B. subtilis) and Gram-negative (E. coli) bacteria.
Collapse
|
50
|
Hou Y, Tan T, Guo Z, Ji Y, Hu J, Zhang Y. Gram-selective antibacterial peptide hydrogels. Biomater Sci 2022; 10:3831-3844. [PMID: 35678287 DOI: 10.1039/d2bm00558a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The human microbiome plays fundamental roles in human health and disease. However, widely used broad-spectrum antibiotics severely disrupt human-related microbial communities, eventually leading to resistant bacteria, posing a growing threat to global medical health. Antimicrobial peptides (AMPs) are promising antimicrobial agents that barely cause bacterial resistance. Excellent broad-spectrum antimicrobial activities have been achieved using hydrogels self-assembled from AMPs, but there is still a lack of AMP hydrogels that can target Gram-positive and Gram-negative bacteria. Herein, several hydrogels self-assembled from AMPs, termed IK1, IK3, and IK4, were designed and synthesized. In vitro antibacterial results indicated that the IK1 and IK4 hydrogels specifically targeted Gram-positive and Gram-negative bacteria, respectively, while the IK3 hydrogel targeted both Gram-positive and Gram-negative bacteria. The desired broad-spectrum or Gram-selective AMP hydrogels are believed to be obtained through the rational design of the hydrophilicity, hydrophobicity, and charge properties of the peptide molecules. Good in vivo Gram-selective antibacterial properties and the ability to promote wound healing have been demonstrated via treating mouse wound models with these AMP hydrogels. We believe that these Gram-selective AMP hydrogels could potentially have important applications in treating common recurring infections.
Collapse
Affiliation(s)
- Yangqian Hou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyuan Tan
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Guo
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Ji
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|