1
|
Gonzalez JT, Lolli L, Veasey RC, Rumbold PLS, Betts JA, Atkinson G, Stevenson EJ. Are there interindividual differences in the reactive hypoglycaemia response to breakfast? A replicate crossover trial. Eur J Nutr 2024; 63:2897-2909. [PMID: 39231870 PMCID: PMC11519142 DOI: 10.1007/s00394-024-03467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/01/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Following consumption of a meal, circulating glucose concentrations can rise and then fall briefly below the basal/fasting concentrations. This phenomenon is known as reactive hypoglycaemia but to date no researcher has explored potential inter-individual differences in response to meal consumption. OBJECTIVE We conducted a secondary analysis of existing data to examine inter-individual variability of reactive hypoglycaemia in response to breakfast consumption. METHODS Using a replicate crossover design, 12 healthy, physically active men (age: 18-30 y, body mass index: 22.1 to 28.0 kg⋅m- 2) completed two identical control (continued overnight fasting) and two breakfast (444 kcal; 60% carbohydrate, 17% protein, 23% fat) conditions in randomised sequences. Blood glucose and lactate concentrations, serum insulin and non-esterified fatty acid concentrations, whole-body energy expenditure, carbohydrate and fat oxidation rates, and appetite ratings were determined before and 2 h after the interventions. Inter-individual differences were explored using Pearson's product-moment correlations between the first and second replicates of the fasting-adjusted breakfast response. Within-participant covariate-adjusted linear mixed models and a random-effects meta-analytical approach were used to quantify participant-by-condition interactions. RESULTS Breakfast consumption lowered 2-h blood glucose by 0.44 mmol/L (95%CI: 0.76 to 0.12 mmol/L) and serum NEFA concentrations, whilst increasing blood lactate and serum insulin concentrations (all p < 0.01). Large, positive correlations were observed between the first and second replicates of the fasting-adjusted insulin, lactate, hunger, and satisfaction responses to breakfast consumption (all r > 0.5, 90%CI ranged from 0.03 to 0.91). The participant-by-condition interaction response variability (SD) for serum insulin concentration was 11 pmol/L (95%CI: 5 to 16 pmol/L), which was consistent with the τ-statistic from the random-effects meta-analysis (11.7 pmol/L, 95%CI 7.0 to 22.2 pmol/L) whereas effects were unclear for other outcome variables (e.g., τ-statistic value for glucose: 0 mmol/L, 95%CI 0.0 to 0.5 mmol/L). CONCLUSIONS Despite observing reactive hypoglycaemia at the group level, we were unable to detect any meaningful inter-individual variability of the reactive hypoglycaemia response to breakfast. There was, however, evidence that 2-h insulin responses to breakfast display meaningful inter-individual variability, which may be explained by relative carbohydrate dose ingested and variation in insulin sensitivity of participants.
Collapse
Affiliation(s)
- Javier T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK.
- Department for Health, University of Bath, Bath, BA2 7AY, UK.
| | - Lorenzo Lolli
- Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Rachel C Veasey
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Penny L S Rumbold
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - James A Betts
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
- Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Greg Atkinson
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Emma J Stevenson
- Faculty of Medical Sciences, Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Abo SMC, Layton AT. Modeling sex-specific whole-body metabolic responses to feeding and fasting. Comput Biol Med 2024; 181:109024. [PMID: 39178806 DOI: 10.1016/j.compbiomed.2024.109024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024]
Abstract
Men generally favor carbohydrate metabolism, while women lean towards lipid metabolism, resulting in significant sex-based differences in energy oxidation across various metabolic states such as fasting and feeding. These differences are influenced by body composition and inherent metabolic fluxes, including increased lipolysis rates in women. However, understanding how sex influences organ-specific metabolism and systemic manifestations remains incomplete. To address these gaps, we developed a sex-specific, whole-body metabolic model for feeding and fasting scenarios in healthy young adults. Our model integrates organ metabolism with whole-body responses to mixed meals, particularly high-carbohydrate and high-fat meals. Our predictions suggest that differences in liver and adipose tissue nutrient storage and oxidation patterns drive systemic metabolic disparities. We propose that sex differences in fasting hepatic glucose output may result from the different handling of free fatty acids, glycerol, and glycogen. We identified a metabolic pathway, possibly more prevalent in female livers, redirecting lipids towards carbohydrate metabolism to support hepatic glucose production. This mechanism is facilitated by the TG-FFA cycle between adipose tissue and the liver. Incorporating sex-specific data into multi-scale frameworks offers insights into how sex modulates human metabolism.
Collapse
Affiliation(s)
- Stéphanie M C Abo
- Department of Applied Mathematics, University of Waterloo, 200 University Ave W, Waterloo, N2L 3G1, Ontario, Canada.
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, 200 University Ave W, Waterloo, N2L 3G1, Ontario, Canada; Cheriton School of Computer Science, Department of Biology, and School of Pharmacy, 200 University Ave W, Waterloo, N2L 3G1, Ontario, Canada.
| |
Collapse
|
3
|
Williamson A, Norris DM, Yin X, Broadaway KA, Moxley AH, Vadlamudi S, Wilson EP, Jackson AU, Ahuja V, Andersen MK, Arzumanyan Z, Bonnycastle LL, Bornstein SR, Bretschneider MP, Buchanan TA, Chang YC, Chuang LM, Chung RH, Clausen TD, Damm P, Delgado GE, de Mello VD, Dupuis J, Dwivedi OP, Erdos MR, Fernandes Silva L, Frayling TM, Gieger C, Goodarzi MO, Guo X, Gustafsson S, Hakaste L, Hammar U, Hatem G, Herrmann S, Højlund K, Horn K, Hsueh WA, Hung YJ, Hwu CM, Jonsson A, Kårhus LL, Kleber ME, Kovacs P, Lakka TA, Lauzon M, Lee IT, Lindgren CM, Lindström J, Linneberg A, Liu CT, Luan J, Aly DM, Mathiesen E, Moissl AP, Morris AP, Narisu N, Perakakis N, Peters A, Prasad RB, Rodionov RN, Roll K, Rundsten CF, Sarnowski C, Savonen K, Scholz M, Sharma S, Stinson SE, Suleman S, Tan J, Taylor KD, Uusitupa M, Vistisen D, Witte DR, Walther R, Wu P, Xiang AH, Zethelius B, Ahlqvist E, Bergman RN, Chen YDI, Collins FS, Fall T, Florez JC, Fritsche A, Grallert H, Groop L, Hansen T, Koistinen HA, Komulainen P, Laakso M, Lind L, Loeffler M, März W, Meigs JB, Raffel LJ, Rauramaa R, Rotter JI, Schwarz PEH, Stumvoll M, Sundström J, Tönjes A, Tuomi T, Tuomilehto J, Wagner R, Barroso I, Walker M, Grarup N, Boehnke M, Wareham NJ, Mohlke KL, Wheeler E, O'Rahilly S, Fazakerley DJ, Langenberg C. Genome-wide association study and functional characterization identifies candidate genes for insulin-stimulated glucose uptake. Nat Genet 2023; 55:973-983. [PMID: 37291194 PMCID: PMC7614755 DOI: 10.1038/s41588-023-01408-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/26/2023] [Indexed: 06/10/2023]
Abstract
Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in >55,000 participants from three ancestry groups. We identified ten new loci (P < 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits.
Collapse
Affiliation(s)
- Alice Williamson
- MRC Epidemiology Unit Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Dougall M Norris
- Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Xianyong Yin
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Anne H Moxley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | - Emma P Wilson
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Anne U Jackson
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Vasudha Ahuja
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mette K Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zorayr Arzumanyan
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lori L Bonnycastle
- Center for Precision Health Research National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stefan R Bornstein
- Department of Internal Medicine III, Metabolic and Vascular Medicine, Medical Faculty Carl Gustav Carus, Dresden, Germany
- Helmholtz Zentrum München Paul Langerhans Institute Dresden (PLID), University Hospital and Faculty of Medicine TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Maxi P Bretschneider
- Department of Internal Medicine III, Metabolic and Vascular Medicine, Medical Faculty Carl Gustav Carus, Dresden, Germany
- Helmholtz Zentrum München Paul Langerhans Institute Dresden (PLID), University Hospital and Faculty of Medicine TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Thomas A Buchanan
- Department of Medicine, Division of Endocrinology and Diabetes, Keck School of Medicine USC, Los Angeles, CA, USA
| | - Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei City, Taiwan
- Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, National Taiwan University Hospital, Taipei City, Taiwan
| | - Ren-Hua Chung
- Institute of Population Health Sciences, National Health Research Institutes, Toufen, Taiwan
| | - Tine D Clausen
- Department of Gynecology and Obstetrics, Nordsjaellands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Damm
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vanessa D de Mello
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Quebec, Canada
| | - Om P Dwivedi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Michael R Erdos
- Center for Precision Health Research National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Christian Gieger
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Mark O Goodarzi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiuqing Guo
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Liisa Hakaste
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Ulf Hammar
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Gad Hatem
- Clinical Sciences Malmö, Genomics, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Sandra Herrmann
- Helmholtz Zentrum München Paul Langerhans Institute Dresden (PLID), University Hospital and Faculty of Medicine TU Dresden, Dresden, Germany
- Department of Internal Medicine III, Prevention and Care of Diabetes, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Katrin Horn
- Medical Faculty Institute for Medical Informatics, Statistics and Epidemiology, Leipzig, Germany
- LIFE Leipzig Research Center for Civilization Diseases, Medical Faculty, Leipzig, Germany
| | - Willa A Hsueh
- Internal Medicine, Endocrinology, Diabetes and Metabolism, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan
| | - Chii-Min Hwu
- Department of Medicine Section of Endocrinology and Metabolism, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Anna Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line L Kårhus
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Marcus E Kleber
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Timo A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Marie Lauzon
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - I-Te Lee
- Department of Internal Medicine Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Cecilia M Lindgren
- Big Data Institute Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
- Broad Institute, Cambridge, MA, USA
| | | | - Allan Linneberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Dina Mansour Aly
- Clinical Sciences Malmö, Genomics, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Elisabeth Mathiesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
- Department of Endocrinology Rigshospitalet, Copenhagen, Denmark
| | - Angela P Moissl
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Institute of Nutritional Sciences, Friedrich-Schiller-University, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena, Jena, Germany
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Narisu Narisu
- Center for Precision Health Research National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nikolaos Perakakis
- Department of Internal Medicine III, Metabolic and Vascular Medicine, Medical Faculty Carl Gustav Carus, Dresden, Germany
- Helmholtz Zentrum München Paul Langerhans Institute Dresden (PLID), University Hospital and Faculty of Medicine TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Rashmi B Prasad
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Clinical Sciences Malmö, Genomics, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Roman N Rodionov
- Department of Internal Medicine III, University Center for Vascular Medicine, Medical Faculty Carl Gustav Carus, Dresden, Germany
- College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Kathryn Roll
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carsten F Rundsten
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chloé Sarnowski
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center, Houston, TX, USA
| | - Kai Savonen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Markus Scholz
- Medical Faculty Institute for Medical Informatics, Statistics and Epidemiology, Leipzig, Germany
- LIFE Leipzig Research Center for Civilization Diseases, Medical Faculty, Leipzig, Germany
| | - Sapna Sharma
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Freising-Weihenstephan, München, Germany
| | - Sara E Stinson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sufyan Suleman
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jingyi Tan
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Dorte Vistisen
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Daniel R Witte
- Steno Diabetes Center Aarhus, Aarhus, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Romy Walther
- Helmholtz Zentrum München Paul Langerhans Institute Dresden (PLID), University Hospital and Faculty of Medicine TU Dresden, Dresden, Germany
- Department of Internal Medicine III, Pathobiochemistry, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Peitao Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Anny H Xiang
- Research and Evaluation, Division of Biostatistics, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Björn Zethelius
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Emma Ahlqvist
- Clinical Sciences Malmö, Genomics, Diabetes and Endocrinology, Lund University, Malmö, Sweden
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Francis S Collins
- Center for Precision Health Research National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Jose C Florez
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, The Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andreas Fritsche
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Harald Grallert
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Leif Groop
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Clinical Sciences Malmö, Genomics, Diabetes and Endocrinology, Lund University, Lund, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heikki A Koistinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Markus Loeffler
- Medical Faculty Institute for Medical Informatics, Statistics and Epidemiology, Leipzig, Germany
- LIFE Leipzig Research Center for Civilization Diseases, Medical Faculty, Leipzig, Germany
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany
| | - James B Meigs
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
- Clinical Sciences Malmö, Genomics, Diabetes and Endocrinology, Lund University, Lund, Sweden
- Department of Medicine Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Leslie J Raffel
- Department of Pediatrics, Genetic and Genomic Medicine, University of California, Irvine, CA, USA
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Peter E H Schwarz
- Helmholtz Zentrum München Paul Langerhans Institute Dresden (PLID), University Hospital and Faculty of Medicine TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Department of Internal Medicine III, Prevention and Care of Diabetes, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Johan Sundström
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Anke Tönjes
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Wagner
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Mark Walker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Boehnke
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| | - Eleanor Wheeler
- MRC Epidemiology Unit Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Stephen O'Rahilly
- Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK.
| | - Daniel J Fazakerley
- Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK.
| | - Claudia Langenberg
- MRC Epidemiology Unit Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, Germany.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
4
|
Mistry J, Biswas M, Sarkar S, Ghosh S. Antidiabetic activity of mango peel extract and mangiferin in alloxan-induced diabetic rats. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
Abstract
Background
In diabetic animals, there is a significant increase in plasma glucose, serum total cholesterol, triglyceride, and low-density lipoprotein levels, and decreased body weight, liver and muscle glycogen, and high-density lipoprotein. Effective treatment of diabetes mellitus is not yet known, even though the management of diabetes mellitus is considered a global concern. Plants and herbs have played an important role in the healthcare of many societies throughout history. Today’s researchers are investigating the potential for using these nonpharmaceutical approaches to treat and control diabetes, either in conjunction with standard treatments or as an alternative to them. Herbal formulations are favored because to lower cost and fewer side effects compared to other methods for alleviating diabetes and its consequences. In ethnomedicinal practices, different parts of Mangifera indica are used to treatment of diabetes. The present investigation was undertaken to evaluate the antidiabetic activity of an ethanolic extract of Mangifera indica and mangiferin in alloxan-induced diabetic rats. This experiment was conducted in a set of two with four groups of animals namely control (Tc), treatment alloxan (Ta), treatment extract (Tae), and treatment mangiferin (Tam). To develop diabetes, Wistar rats treated with 150 mg/kg b.w. of alloxan monohydrate were injected intraperitoneally. Tae and Tam’s groups received a freshly prepared single dose of extract and mangiferin in distilled water via the oral route. All experimental groups received laboratory pallet feed diet and drinking water ad libitum. Diabetic rats were treated for 21 days with an ethanolic extract of mango peel and pure mangiferin orally daily at rates of 200 mg/kg b.w. and 20 mg/kg b.w.
Results
An alloxan-induced diabetic rat treated with mango peel extract and mangiferin significantly improved the overhead impact due to diabetes. There was a significant (p < 0.05) body weight loss in the alloxan-induced diabetic rats (Ta), whereas animals given mango peel extract and mangiferin showed a significant increase in body weight from 2 weeks onwards in comparison with control. Alloxan-induced rats (Ta) group have higher blood glucose levels and are significantly different (p < 0.01) from the control group. Mango peel extract and mangiferin significantly reduced the levels of fasting glucose after 21 days of treatment in comparison with diabetic animals. Mango peel extract and mangiferin influence the glycogen synthesis pathway in diabetes groups by increasing glycogen levels in muscle and liver. mango peel extract and mangiferin were found to have a nonsignificant impact on plasma cholesterol and HDL levels compared with the control group. Mango peel extract was found to have a significant difference (p < 0.05) in LDL levels compared with the control group. Mangiferin was found to have a significant difference (p < 0.05) in triglyceride and VLDL levels when compared with the control group. Histopathological examination of the pancreas in rats with type I diabetes caused by alloxan found that therapy with an ethanolic extract of mango peel and mangiferin restored beta cell function as well as rejuvenation of Islets of Langerhans.
Conclusions
Mango peel extract and mangiferin have antidiabetic, glycogenesis, and hypolipidemic properties when administered to alloxan-induced diabetic rats.
Graphical abstract
Collapse
|
5
|
Roumans KHM, Veelen A, Andriessen C, Mevenkamp J, Kornips E, Veeraiah P, Havekes B, Peters HPF, Lindeboom L, Schrauwen P, Schrauwen-Hinderling VB. A prolonged fast improves overnight substrate oxidation without modulating hepatic glycogen in adults with and without nonalcoholic fatty liver: A randomized crossover trial. Obesity (Silver Spring) 2023; 31:757-767. [PMID: 36756887 DOI: 10.1002/oby.23676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 02/10/2023]
Abstract
OBJECTIVE Increasing overnight fasting time seems a promising strategy to improve metabolic health in individuals with nonalcoholic fatty liver (NAFL). Mechanisms underlying the beneficial effects of fasting may be related to larger fluctuations in hepatic glycogen and higher fat oxidation. This study investigated whether prolonging an overnight fast depletes hepatic glycogen stores and improves substrate metabolism in individuals with NAFL and healthy lean individuals. METHODS Eleven individuals with NAFL and ten control individuals participated in this randomized crossover trial. After a 9.5-hour or 16-hour fast, hepatic glycogen was measured by using carbon-13 magnetic resonance spectroscopy, and a meal test was performed. Nocturnal substrate oxidation was measured with indirect calorimetry. RESULTS Extending fasting time led to lower nocturnal carbohydrate oxidation and higher fat oxidation in both groups (intervention × time, p < 0.005 for carbohydrate and fat oxidation). In both arms, the respiratory exchange ratio measured during the night remained higher in the group with NAFL compared with the control group (population p < 0.001). No changes were observed in hepatic glycogen depletion with a prolonged overnight fast in the group with NAFL or the control group. CONCLUSIONS These results suggest that acutely prolonging the overnight fast can improve overnight substrate oxidation and that these alterations are not mediated by changes in hepatic glycogen depletion.
Collapse
Affiliation(s)
- Kay H M Roumans
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Anna Veelen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Charlotte Andriessen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Julian Mevenkamp
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Esther Kornips
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Pandichelvam Veeraiah
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bas Havekes
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Lucas Lindeboom
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
6
|
Zhou J, Chen X, Chen Q, Pan B, Lou J, Jia Z, Du Y, Xu W, Zhang L, Feng X, Jin L, Shi M, Li X, Huang Z, Sun J. Novel Muscle-Homing Peptide FGF1 Conjugate Based on AlphaFold for Type 2 Diabetes Mellitus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6397-6410. [PMID: 36625595 DOI: 10.1021/acsami.2c18461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Drugs for metabolic diseases usually require systemic administration and act on multiple tissues, which may produce some unpredictable side effects. There have been many successful studies on targeted drugs, especially antitumor drugs. However, there is still little research on metabolic disease drugs targeting specific tissues. Fibroblast growth factor 1 (FGF1) is a potential therapy for type 2 diabetes (T2D) without the risk of hypoglycemia. However, the major impediment to the clinical application of FGF1 is its mitogenic potential. We previously engineered an FGF1 variant (named FGF1ΔHBS) to tune down its mitogenic activity via reducing the heparin-binding ability. However, other notable side effects still remained, including severe appetite inhibition, pathogenic loss of body weight, and increase in fatality rate. In this study, we used AlphaFold2 and PyMOL visualization tools to construct a novel FGF1ΔHBS conjugate fused with skeletal muscle-targeted (MT) peptide through a flexible peptide linker termed MT-FGF1ΔHBS. We found that MT-FGF1ΔHBS specifically homed to skeletal muscle tissue after systemic administration and induced a potent glucose-lowering effect in T2D mice without hypoglycemia. Mechanistically, MT-FGF1ΔHBS elicits the glucose-lowering effect via AMPK activation to promote the GLUT4 expression and translocation in skeletal muscle cells. Notably, compared with native FGF1ΔHBS, MT-FGF1ΔHBS had minimal effects on food intake and body weight and did not induce any hyperplasia in major tissues of both T2D and normal mice, indicating that this muscle-homing protein may be a promising candidate for T2D treatment. Our targeted peptide strategy based on computer-aided structure prediction in this study could be effectively applied for delivering agents to functional tissues to treat metabolic or other diseases, offering enhanced efficacy and reducing systemic off-target side effects.
Collapse
Affiliation(s)
- Jie Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Xinwei Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Qiong Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Beibing Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Jiaxin Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Zhenyu Jia
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Yali Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Wenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Lu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Xin Feng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Lingwei Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325035, China
| | - Mengru Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Zhifeng Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| | - Jian Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang 325035, China
| |
Collapse
|
7
|
Horstman AM, Bawden SJ, Spicer A, Darwish N, Goyer A, Egli L, Rupp N, Minehira K, Gowland P, Breuillé D, Macdonald IA, Simpson EJ. Liver glycogen stores via 13C magnetic resonance spectroscopy in healthy children: randomized, controlled study. Am J Clin Nutr 2023; 117:709-716. [PMID: 36797201 DOI: 10.1016/j.ajcnut.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Owing to its role in glucose homeostasis, liver glycogen concentration ([LGly]) can be a marker of altered metabolism seen in disorders that impact the health of children. However, there is a paucity of normative data for this measure in children to allow comparison with patients, and time-course assessment of [LGly] in response to feeding has not been reported. In addition, carbon-13 magnetic resonance spectroscopy (13C-MRS) is used extensively in research to assess liver metabolites in adult health and disease noninvasively, but similar measurements in children are lacking. OBJECTIVES The main objectives were to quantify the depletion of [LGly] after overnight fasting and the subsequent response to feeding. METHODS In a randomly assigned, open-label, incomplete block design study, healthy, normal-weight children (8-12 y) attended 2 evening visits, each separated by ≥5 d and directly followed by a morning visit. An individually tailored, standardized meal was consumed 3-h prior to evening assessments. Participants then remained fasted until the morning visit. [LGly] was assessed once in the fed (20:00) and fasted state (08:00) using 13C-MRS. After the 8:00 assessment, 200 ml of a mixed-macronutrient drink containing 15.5 g (402 kJ) or 31 g carbohydrates (804 kJ), or water only, was consumed, with 13C-MRS measurements then performed hourly for 4 h. Each child was randomly assigned to 2 of 3 drink options across the 2 mornings. Data are expressed as mean (SD). RESULTS Twenty-four children including females and males (13F:11M) completed the study [9.9 (1.1) y, BMI percentile 45.7 (25.9)]. [LGly] decreased from 377.9 (141.3) to 277.3 (107.4) mmol/L overnight; depletion rate 0.14 (0.15) mmol/L min. Incremental responses of [LGly] to test drinks differed (P < 0.001), with incremental net area under the curve of [LGly] over 4 h being higher for 15.5 g [-67.1 (205.8) mmol/L·240 min; P < 0.01] and 31 g carbohydrates [101.6 (180.9) mmol/L·240 min; P < 0.005] compared with water [-253.1 (231.2) mmol/L·240 min]. CONCLUSIONS After overnight fasting, [LGly] decreased by 22.9 (25.1)%, and [LGly] incremental net area under the curve over 4 h was higher after subsequent consumption of 15.5 g and 31 g carbohydrates, compared to water. Am J Clin Nutr 20XX;xx:xx-xx.
Collapse
Affiliation(s)
- Astrid Mh Horstman
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Stephen J Bawden
- National Institute for Health Research Biomedical Research Centre, Queen's Medical Centre, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Abi Spicer
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Noura Darwish
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Amélie Goyer
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Léonie Egli
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Natacha Rupp
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Kaori Minehira
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Penny Gowland
- National Institute for Health Research Biomedical Research Centre, Queen's Medical Centre, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Denis Breuillé
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland
| | - Ian A Macdonald
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, Lausanne, Switzerland; David Greenfield Human Physiology Unit, MRC/ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham School of Life Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| | - Elizabeth J Simpson
- National Institute for Health Research Biomedical Research Centre, Queen's Medical Centre, Nottingham, United Kingdom; David Greenfield Human Physiology Unit, MRC/ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham School of Life Sciences, Queen's Medical Centre, Nottingham, United Kingdom.
| |
Collapse
|
8
|
For Flux Sake: Isotopic Tracer Methods of Monitoring Human Carbohydrate Metabolism During Exercise. Int J Sport Nutr Exerc Metab 2023; 33:60-70. [PMID: 36448486 DOI: 10.1123/ijsnem.2022-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 12/05/2022]
Abstract
Isotopic tracers can reveal insights into the temporal nature of metabolism and track the fate of ingested substrates. A common use of tracers is to assess aspects of human carbohydrate metabolism during exercise under various established models. The dilution model is used alongside intravenous infusion of tracers to assess carbohydrate appearance and disappearance rates in the circulation, which can be further delineated into exogenous and endogenous sources. The incorporation model can be used to estimate exogenous carbohydrate oxidation rates. Combining methods can provide insight into key factors regulating health and performance, such as muscle and liver glycogen utilization, and the underlying regulation of blood glucose homeostasis before, during, and after exercise. Obtaining accurate, quantifiable data from tracers, however, requires careful consideration of key methodological principles. These include appropriate standardization of pretrial diet, specific tracer choice, whether a background trial is necessary to correct expired breath CO2 enrichments, and if so, what the appropriate background trial should consist of. Researchers must also consider the intensity and pattern of exercise, and the type, amount, and frequency of feeding (if any). The rationale for these considerations is discussed, along with an experimental design checklist and equation list which aims to assist researchers in performing high-quality research on carbohydrate metabolism during exercise using isotopic tracer methods.
Collapse
|
9
|
Magnetic Resonance Imaging and Spectroscopy Methods to Study Hepatic Glucose Metabolism and Their Applications in the Healthy and Diabetic Liver. Metabolites 2022; 12:metabo12121223. [PMID: 36557261 PMCID: PMC9788351 DOI: 10.3390/metabo12121223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The liver plays an important role in whole-body glucose homeostasis by taking up glucose from and releasing glucose into the blood circulation. In the postprandial state, excess glucose in the blood circulation is stored in hepatocytes as glycogen. In the postabsorptive state, the liver produces glucose by breaking down glycogen and from noncarbohydrate precursors such as lactate. In metabolic diseases such as diabetes, these processes are dysregulated, resulting in abnormal blood glucose levels. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are noninvasive techniques that give unique insight into different aspects of glucose metabolism, such as glycogenesis, glycogenolysis, and gluconeogenesis, in the liver in vivo. Using these techniques, liver glucose metabolism has been studied in regard to a variety of interventions, such as fasting, meal intake, and exercise. Moreover, deviations from normal hepatic glucose metabolism have been investigated in both patients with type 1 and 2 diabetes, as well as the effects of antidiabetic medications. This review provides an overview of current MR techniques to measure hepatic glucose metabolism and the insights obtained by the application of these techniques in the healthy and diabetic liver.
Collapse
|
10
|
Di Ciaula A, Bonfrate L, Baj J, Khalil M, Garruti G, Stellaard F, Wang HH, Wang DQH, Portincasa P. Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling. Nutrients 2022; 14:nu14234950. [PMID: 36500979 PMCID: PMC9738051 DOI: 10.3390/nu14234950] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Bile acids (BA) are amphiphilic molecules synthesized in the liver (primary BA) starting from cholesterol. In the small intestine, BA act as strong detergents for emulsification, solubilization and absorption of dietary fat, cholesterol, and lipid-soluble vitamins. Primary BA escaping the active ileal re-absorption undergo the microbiota-dependent biotransformation to secondary BA in the colon, and passive diffusion into the portal vein towards the liver. BA also act as signaling molecules able to play a systemic role in a variety of metabolic functions, mainly through the activation of nuclear and membrane-associated receptors in the intestine, gallbladder, and liver. BA homeostasis is tightly controlled by a complex interplay with the nuclear receptor farnesoid X receptor (FXR), the enterokine hormone fibroblast growth factor 15 (FGF15) or the human ortholog FGF19 (FGF19). Circulating FGF19 to the FGFR4/β-Klotho receptor causes smooth muscle relaxation and refilling of the gallbladder. In the liver the binding activates the FXR-small heterodimer partner (SHP) pathway. This step suppresses the unnecessary BA synthesis and promotes the continuous enterohepatic circulation of BAs. Besides BA homeostasis, the BA-FXR-FGF19 axis governs several metabolic processes, hepatic protein, and glycogen synthesis, without inducing lipogenesis. These pathways can be disrupted in cholestasis, nonalcoholic fatty liver disease, and hepatocellular carcinoma. Thus, targeting FXR activity can represent a novel therapeutic approach for the prevention and the treatment of liver and metabolic diseases.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
| | - Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany
| | - Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari “Aldo Moro” Medical School, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-328-4687215
| |
Collapse
|
11
|
Silfvergren O, Simonsson C, Ekstedt M, Lundberg P, Gennemark P, Cedersund G. Digital twin predicting diet response before and after long-term fasting. PLoS Comput Biol 2022; 18:e1010469. [PMID: 36094958 PMCID: PMC9499255 DOI: 10.1371/journal.pcbi.1010469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 09/22/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Today, there is great interest in diets proposing new combinations of macronutrient compositions and fasting schedules. Unfortunately, there is little consensus regarding the impact of these different diets, since available studies measure different sets of variables in different populations, thus only providing partial, non-connected insights. We lack an approach for integrating all such partial insights into a useful and interconnected big picture. Herein, we present such an integrating tool. The tool uses a novel mathematical model that describes mechanisms regulating diet response and fasting metabolic fluxes, both for organ-organ crosstalk, and inside the liver. The tool can mechanistically explain and integrate data from several clinical studies, and correctly predict new independent data, including data from a new study. Using this model, we can predict non-measured variables, e.g. hepatic glycogen and gluconeogenesis, in response to fasting and different diets. Furthermore, we exemplify how such metabolic responses can be successfully adapted to a specific individual’s sex, weight, height, as well as to the individual’s historical data on metabolite dynamics. This tool enables an offline digital twin technology. Fasting and diet are central components of prevention against cardiovascular disease. Unfortunately, there is little consensus regarding which diet schemes are optimal. This is partially because different clinical studies contribute with different non-connected pieces of knowledge, which have not been fully integrated into a useful and interconnected big picture. In principle, mathematical models describing meal responses could be used for such an integration. However, today’s models still lack critical mechanisms, such as protein metabolism and a dynamic glycogen regulation. Herein, we present a) a new expanded model structure including these mechanisms; b) a set of parameters which can simultaneously describe a wide array of complementary estimation data, in both healthy and diabetic populations; c) a personalisation-script, which allows these generic parameters to be tuned to an individual/sub-population, using demographics (age, weight, height, diabetes status) and historic metabolic data. We exemplify how this personalisation can be used to predict new independent data, including a new clinical study, where a qualitatively new prediction is validated: that an oral protein tolerance test gives a clear response in plasma glucose, after, but not before, a 48h fasting period. Our combined model, parameters, and fitting script lay the foundation for an offline digital twin.
Collapse
Affiliation(s)
- Oscar Silfvergren
- Department of Biomedical Engineering, IMT, Linköping University, Linköping, Sweden
| | - Christian Simonsson
- Department of Biomedical Engineering, IMT, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualisation, Linköping University, Linköping, Sweden
| | - Mattias Ekstedt
- Center for Medical Image Science and Visualisation, Linköping University, Linköping, Sweden
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualisation, Linköping University, Linköping, Sweden
- Department of Medical Radiation Physics, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Gennemark
- Department of Biomedical Engineering, IMT, Linköping University, Linköping, Sweden
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, IMT, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualisation, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
12
|
Hepatic Positron Emission Tomography: Applications in Metabolism, Haemodynamics and Cancer. Metabolites 2022; 12:metabo12040321. [PMID: 35448508 PMCID: PMC9026326 DOI: 10.3390/metabo12040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Evaluating in vivo the metabolic rates of the human liver has been a challenge due to its unique perfusion system. Positron emission tomography (PET) represents the current gold standard for assessing non-invasively tissue metabolic rates in vivo. Here, we review the existing literature on the assessment of hepatic metabolism, haemodynamics and cancer with PET. The tracer mainly used in metabolic studies has been [18F]2-fluoro-2-deoxy-D-glucose (18F-FDG). Its application not only enables the evaluation of hepatic glucose uptake in a variety of metabolic conditions and interventions, but based on the kinetics of 18F-FDG, endogenous glucose production can also be assessed. 14(R,S)-[18F]fluoro-6-thia-Heptadecanoic acid (18F-FTHA), 11C-Palmitate and 11C-Acetate have also been applied for the assessment of hepatic fatty acid uptake rates (18F-FTHA and 11C-Palmitate) and blood flow and oxidation (11C-Acetate). Oxygen-15 labelled water (15O-H2O) has been used for the quantification of hepatic perfusion. 18F-FDG is also the most common tracer used for hepatic cancer diagnostics, whereas 11C-Acetate has also shown some promising applications in imaging liver malignancies. The modelling approaches used to analyse PET data and also the challenges in utilizing PET in the assessment of hepatic metabolism are presented.
Collapse
|
13
|
Thota RN, Moughan PJ, Singh H, Garg ML. Significance of Postprandial Insulin and Triglycerides to Evaluate the Metabolic Response of Composite Meals Differing in Nutrient Composition – A Randomized Cross-Over Trial. Front Nutr 2022; 9:816755. [PMID: 35308275 PMCID: PMC8924580 DOI: 10.3389/fnut.2022.816755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background and aims GlucoTRIG, based on postprandial plasma insulin and triglyceride concentrations, has been recently developed as a novel index to determine the postprandial metabolic response to the meals. This study aimed to test GlucoTRIG as a measure for ranking composite meals for their metabolic effects. Methods In a randomized cross-over trial, healthy adult volunteers (both males and females; n = 10 for each meal) consumed three is caloric (2000 kj) test meals (meal 1, meal 2, meal 3) of varying macronutrient composition. Postmeal consumption, venous blood samples were collected to determine plasma insulin and plasma triglycerides for estimating the GlucoTRIG value using (Triglycerides180min × Insulin180min) - (Triglycerides0min × Insulin0min). Results The GlucoTRIG values differed significantly (p = 0.0085) across meals. The statistical significance remains even after adjusting for confounding variables such as baseline diet, insulin, and triglycerides. The meal (M3) with a high fiber, low total fat content and containing less refined foods (fruits, beans, vegetables, plain yogurt) exhibited a significantly (p = 0.007) lower GlucoTRIG value (10 ± 7.7) compared to the other two meals, M1 (77 ± 19.8) and M2 (38 ± 12.1) which contained low processed foods, and were relatively high in fat and low in fiber meals. No statistically significant differences were observed between M1 and M2 meal. Conclusions GlucoTRIG is a physiologically based index that may be useful to rank composite meals for reducing the risk of metabolic diseases. Further research focusing on the application of GlucoTRIG to foods, meals, and diets is warranted. ACTRN12619000973112 (Australian New Zealand Clinical Trials Registry, ANZCTR).
Collapse
Affiliation(s)
- Rohith N. Thota
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Paul J. Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Manohar L. Garg
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- *Correspondence: Manohar L. Garg
| |
Collapse
|
14
|
Builes-Montaño CE, Lema-Perez L, Garcia-Tirado J, Alvarez H. Main glucose hepatic fluxes in healthy subjects predicted from a phenomenological-based model. Comput Biol Med 2022; 142:105232. [DOI: 10.1016/j.compbiomed.2022.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 11/28/2022]
|
15
|
Henselmans M, Bjørnsen T, Hedderman R, Vårvik FT. The Effect of Carbohydrate Intake on Strength and Resistance Training Performance: A Systematic Review. Nutrients 2022; 14:nu14040856. [PMID: 35215506 PMCID: PMC8878406 DOI: 10.3390/nu14040856] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
High carbohydrate intakes are commonly recommended for athletes of various sports, including strength trainees, to optimize performance. However, the effect of carbohydrate intake on strength training performance has not been systematically analyzed. A systematic literature search was conducted for trials that manipulated carbohydrate intake, including supplements, and measured strength, resistance training or power either acutely or after a diet and strength training program. Studies were categorized as either (1) acute supplementation, (2) exercise-induced glycogen depletion with subsequent carbohydrate manipulation, (3) short-term (2–7 days) carbohydrate manipulation or (4) changes in performance after longer-term diet manipulation and strength training. Forty-nine studies were included: 19 acute, six glycogen depletion, seven short-term and 17 long-term studies. Participants were strength trainees or athletes (39 studies), recreationally active (six studies) or untrained (four studies). Acutely, higher carbohydrate intake did not improve performance in 13 studies and enhanced performance in six studies, primarily in those with fasted control groups and workouts with over 10 sets per muscle group. One study found that a carbohydrate meal improved performance compared to water but not in comparison to a sensory-matched placebo breakfast. There was no evidence of a dose-response effect. After glycogen depletion, carbohydrate supplementation improved performance in three studies compared to placebo, in particular during bi-daily workouts, but not in research with isocaloric controls. None of the seven short-term studies found beneficial effects of carbohydrate manipulation. Longer-term changes in performance were not influenced by carbohydrate intake in 15 studies; one study favored the higher- and one the lower-carbohydrate condition. Carbohydrate intake per se is unlikely to strength training performance in a fed state in workouts consisting of up to 10 sets per muscle group. Performance during higher volumes may benefit from carbohydrates, but more studies with isocaloric control groups, sensory-matched placebos and locally measured glycogen depletion are needed.
Collapse
Affiliation(s)
- Menno Henselmans
- The International Scientific Research Foundation for Fitness and Nutrition, David Blesstraat 28HS, 1073 LC Amsterdam, The Netherlands; (R.H.); (F.T.V.)
- Correspondence: ; Tel.: +31-61-809-5999
| | - Thomas Bjørnsen
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, 4630 Kristiansand, Norway;
| | - Richie Hedderman
- The International Scientific Research Foundation for Fitness and Nutrition, David Blesstraat 28HS, 1073 LC Amsterdam, The Netherlands; (R.H.); (F.T.V.)
| | - Fredrik Tonstad Vårvik
- The International Scientific Research Foundation for Fitness and Nutrition, David Blesstraat 28HS, 1073 LC Amsterdam, The Netherlands; (R.H.); (F.T.V.)
- Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, 4630 Kristiansand, Norway;
| |
Collapse
|
16
|
13C-magnetic resonance spectroscopy; a viable technique to study overnight liver glycogen depletion and response to feeding in 8–12-year-old children. Proc Nutr Soc 2022. [DOI: 10.1017/s0029665122001379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Abstract
Altered metabolic activity contributes to the pathogenesis of a number of diseases, including diabetes, heart failure, cancer, fibrosis and neurodegeneration. These diseases, and organismal metabolism more generally, are only partially recapitulated by cell culture models. Accordingly, it is important to measure metabolism in vivo. Over the past century, researchers studying glucose homeostasis have developed strategies for the measurement of tissue-specific and whole-body metabolic activity (pathway fluxes). The power of these strategies has been augmented by recent advances in metabolomics technologies. Here, we review techniques for measuring metabolic fluxes in intact mammals and discuss how to analyse and interpret the results. In tandem, we describe important findings from these techniques, and suggest promising avenues for their future application. Given the broad importance of metabolism to health and disease, more widespread application of these methods holds the potential to accelerate biomedical progress.
Collapse
Affiliation(s)
- Caroline R Bartman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tara TeSlaa
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
18
|
Bruce CR, Hamley S, Ang T, Howlett KF, Shaw CS, Kowalski GM. Translating glucose tolerance data from mice to humans: Insights from stable isotope labelled glucose tolerance tests. Mol Metab 2021; 53:101281. [PMID: 34175474 PMCID: PMC8313600 DOI: 10.1016/j.molmet.2021.101281] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
Objective The glucose tolerance test (GTT) is widely used in human and animal biomedical and pharmaceutical research. Despite its prevalent use, particularly in mouse metabolic phenotyping, to the best of our knowledge we are not aware of any studies that have attempted to qualitatively compare the metabolic events during a GTT in mice with those performed in humans. Methods Stable isotope labelled oral glucose tolerance tests (siOGTTs; [6,6-2H2]glucose) were performed in both human and mouse cohorts to provide greater resolution into postprandial glucose kinetics. The siOGTT allows for the partitioning of circulating glucose into that derived from exogenous and endogenous sources. Young adults spanning the spectrum of normal glucose tolerance (n = 221), impaired fasting (n = 14), and impaired glucose tolerance (n = 19) underwent a 75g siOGTT, whereas a 50 mg siOGTT was performed on chow (n = 43) and high-fat high-sucrose fed C57Bl6 male mice (n = 46). Results During the siOGTT in humans, there is a long period (>3hr) of glucose absorption and, accordingly, a large, sustained insulin response and robust suppression of lipolysis and endogenous glucose production (EGP), even in the presence of glucose intolerance. In contrast, mice appear to be highly reliant on glucose effectiveness to clear exogenous glucose and experience only modest, transient insulin responses with little, if any, suppression of EGP. In addition to the impaired stimulation of glucose uptake, mice with the worst glucose tolerance appear to have a paradoxical and persistent rise in EGP during the OGTT, likely related to handling stress. Conclusions The metabolic response to the OGTT in mice and humans is highly divergent. The potential reasons for these differences and their impact on the interpretation of mouse glucose tolerance data and their translation to humans are discussed. We compared the mechanisms governing glucose handling in humans and mice. Humans and mice underwent stable isotope labelled oral glucose tolerance tests. Metabolic responses between humans and mice were highly divergent. Unlike humans, most mice exhibit little EGP suppression or insulin response.
Collapse
Affiliation(s)
- Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Steven Hamley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia; Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia.
| |
Collapse
|
19
|
The Change in Glucagon Following Meal Ingestion Is Associated with Glycemic Control, but Not with Incretin, in People with Diabetes. J Clin Med 2021; 10:jcm10112487. [PMID: 34199839 PMCID: PMC8200068 DOI: 10.3390/jcm10112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We aimed to investigate the changes in glucagon levels in people with diabetes after the ingestion of a mixed meal and the correlations of variation in glucagon levels with incretin and clinico-biochemical characteristics. METHODS Glucose, C-peptide, glucagon, intact glucagon-like peptide 1 (iGLP-1), and intact glucose-dependent insulinotropic polypeptide (iGIP) were measured in blood samples collected from 317 people with diabetes before and 30 min after the ingestion of a standard mixed meal. The delta (Δ) is the 30-min value minus the basal value. RESULTS At 30 min after meal ingestion, the glucagon level showed no difference relative to the basal value, whereas glucose, C-peptide, iGLP-1, and iGIP levels showed a significant increase. In univariate analysis, Δglucagon showed not only a strong correlation with HbA1c but also a significant correlation with fasting glucose, Δglucose, and estimated glomerular filtration rate. However, Δglucagon showed no significant correlations with ΔiGLP-1 and ΔiGIP. In the hierarchical multiple regression analysis, HbA1c was the only variable that continued to show the most significant correlation with Δglucagon. CONCLUSIONS People with diabetes showed no suppression of glucagon secretion after meal ingestion. Patients with poorer glycemic control may show greater increase in postprandial glucagon level, and this does not appear to be mediated by incretin.
Collapse
|
20
|
|
21
|
Griffiths A, Deighton K, Boos CJ, Rowe J, Morrison DJ, Preston T, King R, O'Hara JP. Carbohydrate Supplementation and the Influence of Breakfast on Fuel Use in Hypoxia. Med Sci Sports Exerc 2021; 53:785-795. [PMID: 33044437 DOI: 10.1249/mss.0000000000002536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE This study investigated the effect of carbohydrate supplementation on substrate oxidation during exercise in hypoxia after preexercise breakfast consumption and omission. METHODS Eleven men walked in normobaric hypoxia (FiO2 ~11.7%) for 90 min at 50% of hypoxic V˙O2max. Participants were supplemented with a carbohydrate beverage (1.2 g·min-1 glucose) and a placebo beverage (both enriched with U-13C6 D-glucose) after breakfast consumption and after omission. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate carbohydrate (exogenous and endogenous [muscle and liver]) and fat oxidation. RESULTS In the first 60 min of exercise, there was no significant change in relative substrate oxidation in the carbohydrate compared with placebo trial after breakfast consumption or omission (both P = 0.99). In the last 30 min of exercise, increased relative carbohydrate oxidation occurred in the carbohydrate compared with placebo trial after breakfast omission (44.0 ± 8.8 vs 28.0 ± 12.3, P < 0.01) but not consumption (51.7 ± 12.3 vs 44.2 ± 10.4, P = 0.38). In the same period, a reduction in relative liver (but not muscle) glucose oxidation was observed in the carbohydrate compared with placebo trials after breakfast consumption (liver, 7.7% ± 1.6% vs 14.8% ± 2.3%, P < 0.01; muscle, 25.4% ± 9.4% vs 29.4% ± 11.1%, P = 0.99) and omission (liver, 3.8% ± 0.8% vs 8.7% ± 2.8%, P < 0.01; muscle, 19.4% ± 7.5% vs 19.2% ± 12.2%, P = 0.99). No significant difference in relative exogenous carbohydrate oxidation was observed between breakfast consumption and omission trials (P = 0.14). CONCLUSION In acute normobaric hypoxia, carbohydrate supplementation increased relative carbohydrate oxidation during exercise (>60 min) after breakfast omission, but not consumption.
Collapse
Affiliation(s)
- Alex Griffiths
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - Kevin Deighton
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | | | - Joshua Rowe
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - Douglas J Morrison
- Stable Isotope Biochemistry Laboratory, SUERC, University of Glasgow. East Kilbride, Scotland, UNITED KINGDOM
| | - Tom Preston
- Stable Isotope Biochemistry Laboratory, SUERC, University of Glasgow. East Kilbride, Scotland, UNITED KINGDOM
| | - Roderick King
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - John P O'Hara
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| |
Collapse
|
22
|
López-Soldado I, Guinovart JJ, Duran J. Increasing hepatic glycogen moderates the diabetic phenotype in insulin-deficient Akita mice. J Biol Chem 2021; 296:100498. [PMID: 33667544 PMCID: PMC8027280 DOI: 10.1016/j.jbc.2021.100498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatic glycogen metabolism is impaired in diabetes. We previously demonstrated that strategies to increase liver glycogen content in a high-fat-diet mouse model of obesity and insulin resistance led to a reduction in food intake and ameliorated obesity and glucose tolerance. These effects were accompanied by a decrease in insulin levels, but whether this decrease contributed to the phenotype observed in this animal was unclear. Here we sought to evaluate this aspect directly, by examining the long-term effects of increasing liver glycogen in an animal model of insulin-deficient and monogenic diabetes, namely the Akita mouse, which is characterized by reduced insulin production. We crossed Akita mice with animals overexpressing protein targeting to glycogen (PTG) in the liver to generate Akita mice with increased liver glycogen content (Akita-PTGOE). Akita-PTGOE animals showed lower glycemia, lower food intake, and decreased water consumption and urine output compared with Akita mice. Furthermore, Akita-PTGOE mice showed a restoration of the hepatic energy state and a normalization of gluconeogenesis and glycolysis back to nondiabetic levels. Moreover, hepatic lipogenesis, which is reduced in Akita mice, was reverted in Akita-PTGOE animals. These results demonstrate that strategies to increase liver glycogen content lead to the long-term reduction of the diabetic phenotype, independently of circulating insulin.
Collapse
Affiliation(s)
- Iliana López-Soldado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
23
|
Virtual metabolic human dynamic model for pathological analysis and therapy design for diabetes. iScience 2021; 24:102101. [PMID: 33615200 PMCID: PMC7878987 DOI: 10.1016/j.isci.2021.102101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
A virtual metabolic human model is a valuable complement to experimental biology and clinical studies, because in vivo research involves serious ethical and technical problems. I have proposed a multi-organ and multi-scale kinetic model that formulates the reactions of enzymes and transporters with the regulation of hormonal actions at postprandial and postabsorptive states. The computational model consists of 202 ordinary differential equations for metabolites with 217 reaction rates and 1,140 kinetic parameter constants. It is the most comprehensive, largest, and highly predictive model of the whole-body metabolism. Use of the model revealed the mechanisms by which individual disorders, such as steatosis, β cell dysfunction, and insulin resistance, were combined to cause diabetes. The model predicted a glycerol kinase inhibitor to be an effective medicine for type 2 diabetes, which not only decreased hepatic triglyceride but also reduced plasma glucose. The model also enabled us to rationally design combination therapy. A standard of virtual metabolic human dynamic models is proposed It integrates the three scales of molecules, organs, and whole body It gets insight into pathological mechanisms of type 1 and type 2 diabetes It enables the computer-aided design of medication treatment for diabetes
Collapse
|
24
|
Dimitriadis GD, Maratou E, Kountouri A, Board M, Lambadiari V. Regulation of Postabsorptive and Postprandial Glucose Metabolism by Insulin-Dependent and Insulin-Independent Mechanisms: An Integrative Approach. Nutrients 2021; 13:E159. [PMID: 33419065 PMCID: PMC7825450 DOI: 10.3390/nu13010159] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Glucose levels in blood must be constantly maintained within a tight physiological range to sustain anabolism. Insulin regulates glucose homeostasis via its effects on glucose production from the liver and kidneys and glucose disposal in peripheral tissues (mainly skeletal muscle). Blood levels of glucose are regulated simultaneously by insulin-mediated rates of glucose production from the liver (and kidneys) and removal from muscle; adipose tissue is a key partner in this scenario, providing nonesterified fatty acids (NEFA) as an alternative fuel for skeletal muscle and liver when blood glucose levels are depleted. During sleep at night, the gradual development of insulin resistance, due to growth hormone and cortisol surges, ensures that blood glucose levels will be maintained within normal levels by: (a) switching from glucose to NEFA oxidation in muscle; (b) modulating glucose production from the liver/kidneys. After meals, several mechanisms (sequence/composition of meals, gastric emptying/intestinal glucose absorption, gastrointestinal hormones, hyperglycemia mass action effects, insulin/glucagon secretion/action, de novo lipogenesis and glucose disposal) operate in concert for optimal regulation of postprandial glucose fluctuations. The contribution of the liver in postprandial glucose homeostasis is critical. The liver is preferentially used to dispose over 50% of the ingested glucose and restrict the acute increases of glucose and insulin in the bloodstream after meals, thus protecting the circulation and tissues from the adverse effects of marked hyperglycemia and hyperinsulinemia.
Collapse
Affiliation(s)
- George D. Dimitriadis
- Sector of Medicine, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Eirini Maratou
- Department of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Department of Clinical Biochemistry, Medical School, “Attikon” University Hospital, Rimini 1, 12462 Chaidari, Greece
| | - Aikaterini Kountouri
- Research Institute and Diabetes Center, 2nd Department of Internal Medicine, “Attikon” University Hospital, 1 Rimini Street, 12542 Haidari, Greece; (A.K.); (V.L.)
| | - Mary Board
- St. Hilda’s College, University of Oxford, Cowley, Oxford OX4 1DY, UK;
| | - Vaia Lambadiari
- Research Institute and Diabetes Center, 2nd Department of Internal Medicine, “Attikon” University Hospital, 1 Rimini Street, 12542 Haidari, Greece; (A.K.); (V.L.)
| |
Collapse
|
25
|
Green tea polyphenols ameliorate metabolic abnormalities and insulin resistance by enhancing insulin signalling in skeletal muscle of Zucker fatty rats. Clin Sci (Lond) 2020; 134:1167-1180. [PMID: 32458968 DOI: 10.1042/cs20200107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
In the present study, we evaluated the metabolic effects of green tea polyphenols (GTPs) in high-fat diet (HFD) fed Zucker fatty (ZF) rats, in particular the effects of GTP on skeletal muscle insulin sensitivity. Body weight, visceral fat, glucose tolerance, lipid profiles and whole-body insulin sensitivity were measured in HFD-fed ZF rats after 8-week-treatment with GTP (200 mg/kg of body weight) or saline (5 ml/kg of body weight). Zucker lean rats were studied as controls. Ex vivo insulin-mediated muscle glucose uptake was assessed. Immunoblotting was used to evaluate the expression of key insulin signalling proteins in skeletal muscle. GTP treatment attenuated weight gain (P<0.05) and visceral fat accumulation (27.6%, P<0.05), and significantly reduced fasting serum glucose (P<0.05) and insulin (P<0.01) levels. Homoeostasis model assessment of insulin resistance (HOMA-IR), a measure of insulin resistance, was lower (P<0.01) in GTP-treated animals compared with ZF controls. Moreover, insulin-stimulated glucose uptake by isolated soleus muscle was increased (P<0.05) in GTP-ZF rats compared with ZF-controls. GTP treatment attenuated the accumulation of ectopic lipids (triacyl- and diacyl-glycerols), enhanced the expression and translocation of glucose transporter-4, and decreased pSer612IRS-1 and increased pSer473Akt2 expression in skeletal muscle. These molecular changes were also associated with significantly decreased activation of the inhibitory (muscle-specific) protein kinase (PKC) isoform, PKC-θ. Taken together, the present study has shown that regular ingestion of GTP exerts a number of favourable metabolic and molecular effects in an established animal model of obesity and insulin resistance. The benefits of GTP are mediated in part by inhibiting PKC-θ and improving muscle insulin sensitivity.
Collapse
|
26
|
Iwayama K, Onishi T, Maruyama K, Takahashi H. Diurnal variation in the glycogen content of the human liver using 13 C MRS. NMR IN BIOMEDICINE 2020; 33:e4289. [PMID: 32157774 DOI: 10.1002/nbm.4289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Glycogen in tissues functions not only as carbohydrate reserves, but also as molecular sensors capable of activating signaling pathways in response to physical activity. While glycogen in the skeletal muscles is mainly a local energy substrate, glycogen in the liver serves as a glucose reserve to maintain normal blood glucose levels in the body, even during the sleep state. The aim of this study is to compare the diurnal variation of glycogen in the muscle and liver of human subjects under normal conditions. The glycogen content was measured in the muscle and liver of 10 young, healthy, male volunteers using 13 C MRS, a non-invasive technique. The subjects remained sedentary, and glycogen concentration was measured six times daily. Experimental meals were provided to achieve individual energy balance, estimated according to the energy requirement guideline for patients from Japan. The largest variation in muscle glycogen compared with 1 h after supper (20:00 on Day 1) was 3.1 ± 8.2 mmol/L (16:00 on Day 2). In the liver, however, the glycogen content decreased by 80.6 ± 40.4 mmol/L through the overnight fasting period (07:00 on Day 2). This study demonstrated that the glycogen content in the liver was significantly lower in the morning, while the glycogen content in the calf muscles underwent minimal diurnal variation. The overnight fast is a characteristic daily condition, in which liver glycogen content is low, whereas muscle glycogen content is relatively unaffected.
Collapse
Affiliation(s)
- Kaito Iwayama
- Faculty of Budo and Sport Studies, Tenri University, Nara, Japan
| | - Takahiro Onishi
- Medical Center, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Katsuya Maruyama
- MR Research & Collaboration Department, Siemens Healthcare K.K., Tokyo, Japan
| | - Hideyuki Takahashi
- Department of Sport Research, Japan Institute of Sports Sciences, Tokyo, Japan
| |
Collapse
|
27
|
Shaw DM, Merien F, Braakhuis A, Maunder ED, Dulson DK. Effect of a Ketogenic Diet on Submaximal Exercise Capacity and Efficiency in Runners. Med Sci Sports Exerc 2020; 51:2135-2146. [PMID: 31033901 DOI: 10.1249/mss.0000000000002008] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE We investigated the effect of a 31-d ketogenic diet (KD) on submaximal exercise capacity and efficiency. METHODS A randomized, repeated-measures, crossover study was conducted in eight trained male endurance athletes (V˙O2max, 59.4 ± 5.2 mL⋅kg⋅min). Participants ingested their habitual diet (HD) (13.1 MJ, 43% [4.6 g⋅kg⋅d] carbohydrate and 38% [1.8 g⋅kg⋅d] fat) or an isoenergetic KD (13.7 MJ, 4% [0.5 g·kg⋅d] carbohydrate and 78% [4 g⋅kg⋅d] fat) from days 0 to 31 (P < 0.001). Participants performed a fasted metabolic test on days -2 and 29 (~25 min) and a run-to-exhaustion trial at 70% V˙O2max on days 0 and 31 following the ingestion of a high-carbohydrate meal (2 g⋅kg) or an isoenergetic low-carbohydrate, high-fat meal (<10 g CHO), with carbohydrate (~55 g⋅h) or isoenergetic fat (0 g CHO⋅h) supplementation during exercise. RESULTS Training loads were similar between trials and V˙O2max was unchanged (all, P > 0.05). The KD impaired exercise efficiency, particularly at >70% V˙O2max, as evidenced by increased energy expenditure and oxygen uptake that could not be explained by shifts in respiratory exchange ratio (RER) (all, P < 0.05). However, exercise efficiency was maintained on a KD when exercising at <60% V˙O2max (all, P > 0.05). Time-to-exhaustion (TTE) was similar for each dietary adaptation (pre-HD, 237 ± 44 vs post-HD, 231 ± 35 min; P = 0.44 and pre-KD, 239 ± 27 vs post-KD, 219 ± 53 min; P = 0.36). Following keto-adaptation, RER >1.0 vs <1.0 at V˙O2max coincided with the preservation and reduction in TTE, respectively. CONCLUSION A 31-d KD preserved mean submaximal exercise capacity in trained endurance athletes without necessitating acute carbohydrate fuelling strategies. However, there was a greater risk of an endurance decrement at an individual level.
Collapse
Affiliation(s)
- David M Shaw
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, NEW ZEALAND
| | - Fabrice Merien
- AUT-Roche Diagnostics Laboratory, School of Science, Auckland University of Technology, Auckland, NEW ZEALAND
| | - Andrea Braakhuis
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, NEW ZEALAND
| | - E D Maunder
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, NEW ZEALAND
| | - Deborah K Dulson
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, NEW ZEALAND
| |
Collapse
|
28
|
Goedeke L, Perry RJ, Shulman GI. Emerging Pharmacological Targets for the Treatment of Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Type 2 Diabetes. Annu Rev Pharmacol Toxicol 2020; 59:65-87. [PMID: 30625285 DOI: 10.1146/annurev-pharmtox-010716-104727] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) is characterized by persistent hyperglycemia despite hyperinsulinemia, affects more than 400 million people worldwide, and is a major cause of morbidity and mortality. Insulin resistance, of which ectopic lipid accumulation in the liver [nonalcoholic fatty liver disease (NAFLD)] and skeletal muscle is the root cause, plays a major role in the development of T2D. Although lifestyle interventions and weight loss are highly effective at reversing NAFLD and T2D, weight loss is difficult to sustain, and newer approaches aimed at treating the root cause of T2D are urgently needed. In this review, we highlight emerging pharmacological strategies aimed at improving insulin sensitivity and T2D by altering hepatic energy balance or inhibiting key enzymes involved in hepatic lipid synthesis. We also summarize recent research suggesting that liver-targeted mitochondrial uncoupling may be an attractive therapeutic approach to treat NAFLD, nonalcoholic steatohepatitis, and T2D.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , ,
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA; , , .,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
29
|
Thota RN, Moughan PJ, Singh H, Garg ML. GlucoTRIG: a novel tool to determine the nutritional quality of foods and meals in general population. Lipids Health Dis 2020; 19:83. [PMID: 32366255 PMCID: PMC7199359 DOI: 10.1186/s12944-020-01268-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/24/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND This study aimed to develop a novel criterion, GlucoTRIG, to rank meals for healthiness, that considers both glycaemic (serum insulin) and lipaemic (serum triglycerides) responses. METHODS Healthy volunteers (n = 10) were recruited with the aim of deriving a standard GlucoTRIG value for a reference meal. Volunteers consumed the reference meal (2 regular slices of wholemeal bread; 250 mL chocolate flavoured milk; 7 g butter and 11 g peanut butter) comprising of carbohydrate, fat and protein (41, 40 and 16% energy respectively) on three different occasions with a minimum washout period of 3 days. The GlucoTRIG value was determined as the difference between the product of insulin and triglyceride obtained from venous blood samples at baseline and the product of insulin and triglyceride at 180 min. RESULTS There were no significant differences in the participants' dietary intakes and their metabolic parameters between three visits (P > 0.005). The GlucoTRIG value obtained from three mean values of the reference meal was found to be 19 ± 3.5. There were no significant (P = 0.2303) differences observed between the GlucoTRIG values for the three visits. CONCLUSION GlucoTRIG, consisting of both glycaemic and lipaemic responses, may be a physiologically relevant tool to rank foods and meals for reducing the risk of metabolic diseases. TRIAL REGISTRATION ACTRN12619000973112.
Collapse
Affiliation(s)
- Rohith N Thota
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Priority Research Centre in Physical Activity & Nutrition, University of Newcastle, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Paul J Moughan
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Manohar L Garg
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia. .,Riddet Institute, Massey University, Palmerston North, New Zealand. .,Priority Research Centre in Physical Activity & Nutrition, University of Newcastle, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
30
|
Yeh YT, Lu TJ, Lian GT, Lung MC, Lee YL, Chiang AN, Hsieh SC. Chinese olive (Canarium album L.) fruit regulates glucose utilization by activating AMP-activated protein kinase. FASEB J 2020; 34:7866-7884. [PMID: 32333610 DOI: 10.1096/fj.201902494rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/04/2020] [Accepted: 03/26/2020] [Indexed: 11/11/2022]
Abstract
A growing body of evidence demonstrates obesity-induced insulin resistance is associated with the development of metabolic diseases. This study was designed to investigate ethyl acetate fraction of Chinese olive fruit extract (CO-EtOAc)-mediated attenuation of obesity and hyperglycemia in a mouse model. About 60% HFD-fed mice were treated intragastrically with CO-EtOAc for last 6 weeks, and body weight, blood biochemical parameters as well as hepatic inflammation response were investigated. Our results showed that CO-EtOAc treatment significantly reduced the formation of hepatic lipid droplets, body weight gain, blood glucose, and improved serum biochemical parameters in HFD-induced obese and insulin resistant mice. We further explored the molecular mechanism underlying the blood glucose modulating effect of CO-EtOAc using L6 myotubes model. We conclude that CO-EtOAc effectively increases the glycogen content and glucose uptake by stimulating the membrane translocation of glucose transporter 4. In addition, CO-EtOAc depolarizes the mitochondrial membrane and decreases the mitochondrial oxygen consumption, which may result in AMPK activation and the consequent mitochondrial fission. This study shows that CO-EtOAc prevents the development of obesity in mice fed with HFD and is also capable of stimulating glucose uptake. The possible mechanism might be due to the effects of CO-EtOAc on activation of AMPK and promotion of mitochondrial fission.
Collapse
Affiliation(s)
- Yu-Te Yeh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, Johns Hopkins University School of Medicine, St. Petersburg, FL, USA
| | - Ting-Jang Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Guan-Ting Lian
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Meng-Chuan Lung
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Lee
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - An-Na Chiang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Flynn CR, Albaugh VL, Tamboli RA, Gregory JM, Bosompem A, Sidani RM, Winnick JJ. Roux-en-Y gastric bypass surgery improves hepatic glucose metabolism and reduces plasma kisspeptin levels in morbidly obese patients with type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 2020; 318:G370-G374. [PMID: 31709832 PMCID: PMC7052573 DOI: 10.1152/ajpgi.00224.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Roux-en-Y gastric bypass surgery (RYGB) is known to improve whole-body glucose metabolism in patients with type 2 diabetes (T2D), although the mechanisms are not entirely clear and are likely multifactorial. The aim of this study was to assess fasting hepatic glucose metabolism and other markers of metabolic activity before and after RYGB in patients with and without T2D. Methods: Metabolic characteristics of patients who are obese with T2D were compared with those without the disease (non-T2D) before and 1 and 6 mo after RYGB. Fasting plasma insulin and the insulin:glucagon ratio were markedly reduced as early as 1 mo after RYGB in both patients with T2D and without T2D. Despite this reduction, endogenous glucose production and fasting plasma glucose levels were lower in both groups after RYGB, with the reductions being much larger in T2D. Plasma kisspeptin, an inhibitor of insulin secretion, was reduced only in T2D after surgery. Improved hepatic glucose metabolism and lower plasma kisspeptin in T2D after RYGB may link improved hepatic function with enhanced insulin responsiveness after surgery.NEW & NOTEWORTHY Our manuscript is the first, to the best of our knowledge, to present data showing that Roux-en-Y gastric bypass surgery (RYGB) lowers fasting kisspeptin levels in patients who are obese with type 2 diabetes. This lowering of kisspeptin is important because it could link improvements in liver glucose metabolism after RYGB with increased insulin responsiveness also seen after surgery.
Collapse
Affiliation(s)
- C. Robb Flynn
- 1Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Vance L. Albaugh
- 1Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Robyn A. Tamboli
- 1Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Justin M. Gregory
- 2Ian Burr Division of Pediatric Endocrinology and Diabetes, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Amma Bosompem
- 1Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Reem M. Sidani
- 1Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jason J. Winnick
- 3University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Cincinnati, Ohio
| |
Collapse
|
32
|
Stender S, Zaha VG, Malloy CR, Sudderth J, DeBerardinis RJ, Park JM. Assessment of Rapid Hepatic Glycogen Synthesis in Humans Using Dynamic 13C Magnetic Resonance Spectroscopy. Hepatol Commun 2020; 4:425-433. [PMID: 32140658 PMCID: PMC7049683 DOI: 10.1002/hep4.1458] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/19/2019] [Indexed: 01/04/2023] Open
Abstract
Carbon-13 magnetic resonance spectroscopy (MRS) following oral intake of 13C-labeled glucose is the gold standard for imaging glycogen metabolism in humans. However, the temporal resolution of previous studies has been >13 minutes. Here, we describe a high-sensitivity 13C MRS method for imaging hepatic glycogen synthesis with a temporal resolution of 1 minute or less. Nuclear magnetic resonance spectra were acquired from the liver of 3 healthy volunteers, using a 13C clamshell radiofrequency transmit and paddle-shaped array receive coils in a 3 Tesla magnetic resonance imaging system. Following a 15-minute baseline 13C MRS scan of the liver, [1-13C]-glucose was ingested and 13C MRS data were acquired for an additional 1-3 hours. Dynamic change of the hepatic glycogen synthesis level was analyzed by reconstructing the acquired MRS data with temporal resolutions of 30 seconds to 15 minutes. Plasma levels of 13C-labeled glucose and lactate were measured using gas chromatography-mass spectrometry. While not detected at baseline 13C MRS, [1-13C]-labeled α-glucose and β-glucose and glycogen peaks accumulated rapidly, beginning as early as ~2 minutes after oral administration of [1-13C]-glucose. The [1-13C]-glucose signals peaked at ~5 minutes, whereas [1-13C]-glycogen peaked at ~25 minutes after [1-13C]-glucose ingestion; both signals declined toward baseline levels over the next 1-3 hours. Plasma levels of 13C-glucose and 13C-lactate rose gradually, and approximately 20% of all plasma glucose and 5% of plasma lactate were 13C-labeled by 2 hours after ingestion. Conclusion: We observed rapid accumulation of hepatic [1-13C]-glycogen following orally administered [1-13C]-glucose, using a dynamic 13C MRS method with a temporal resolution of 1 minute or less. Commercially available technology allows high temporal resolution studies of glycogen metabolism in the human liver.
Collapse
Affiliation(s)
- Stefan Stender
- Department of Molecular Genetics University of Texas Southwestern Medical Center Dallas TX.,Department of Clinical Biochemistry Rigshospitalet Copenhagen Denmark
| | - Vlad G Zaha
- Advanced Imaging Research Center University of Texas Southwestern Medical Center Dallas TX.,Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| | - Craig R Malloy
- Advanced Imaging Research Center University of Texas Southwestern Medical Center Dallas TX.,Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| | - Jessica Sudderth
- Howard Hughes Medical Institute and Children's Medical Center Research Institute University of Texas Southwestern Medical Center Dallas TX
| | - Ralph J DeBerardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute University of Texas Southwestern Medical Center Dallas TX
| | - Jae Mo Park
- Advanced Imaging Research Center University of Texas Southwestern Medical Center Dallas TX.,Department of Radiology University of Texas Southwestern Medical Center Dallas TX.,Department of Electrical and Computer Engineering University of Texas at Dallas Richardson TX
| |
Collapse
|
33
|
Postexercise Glucose–Fructose Coingestion Augments Cycling Capacity During Short-Term and Overnight Recovery From Exhaustive Exercise, Compared With Isocaloric Glucose. Int J Sport Nutr Exerc Metab 2020; 30:54-61. [DOI: 10.1123/ijsnem.2019-0211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 11/18/2022]
Abstract
During short-term recovery, postexercise glucose–fructose coingestion can accelerate total glycogen repletion and augment recovery of running capacity. It is unknown if this advantage translates to cycling, or to a longer (e.g., overnight) recovery. Using two experiments, the present research investigated if postexercise glucose–fructose coingestion augments exercise capacity following 4-hr (short experiment; n = 8) and 15-hr (overnight experiment; n = 8) recoveries from exhaustive exercise in trained cyclists, compared with isocaloric glucose alone. In each experiment, a glycogen depleting exercise protocol was followed by a 4-hr recovery, with ingestion of 1.5 or 1.2 g·kg−1·hr−1 carbohydrate in the short experiment (double blind) and the overnight experiment (single blind), respectively. Treatments were provided in a randomized order using a crossover design. Four or fifteen hours after the glycogen depletion protocol, participants cycled to exhaustion at 70% Wmax or 65% Wmax in the short experiment and the overnight experiment, respectively. In both experiments there was no difference in substrate oxidation or blood glucose and lactate concentrations between treatments during the exercise capacity test (trial effect, p > .05). Nevertheless, cycling capacity was greater in glucose + fructose versus glucose only in the short experiment (28.0 ± 8.4 vs. 22.8 ± 7.3 min, d = 0.65, p = .039) and the overnight experiment (35.9 ± 10.7 vs. 30.6 ± 9.2 min, d = 0.53, p = .026). This is the first study to demonstrate that postexercise glucose–fructose coingestion enhances cycling capacity following short-term (4 hr) and overnight (15 hr) recovery durations. Therefore, if multistage endurance athletes are ingesting glucose for rapid postexercise recovery then fructose containing carbohydrates may be advisable.
Collapse
|
34
|
Taylor R, Al-Mrabeh A, Sattar N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol 2019; 7:726-736. [PMID: 31097391 DOI: 10.1016/s2213-8587(19)30076-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
Abstract
Clinical and pathophysiological studies have shown type 2 diabetes to be a condition mainly caused by excess, yet reversible, fat accumulation in the liver and pancreas. Within the liver, excess fat worsens hepatic responsiveness to insulin, leading to increased glucose production. Within the pancreas, the β cell seems to enter a survival mode and fails to function because of the fat-induced metabolic stress. Removal of excess fat from these organs via substantial weight loss can normalise hepatic insulin responsiveness and, in the early years post-diagnosis, is associated with β-cell recovery of acute insulin secretion in many individuals, possibly by redifferentiation. Collectively, these changes can normalise blood glucose levels. Importantly, the primary care-based Diabetes Remission Clinical Trial (DiRECT) showed that 46% of people with type 2 diabetes could achieve remission at 12 months, and 36% at 24 months, mediated by weight loss. This major change in our understanding of the underlying mechanisms of disease permits a reassessment of advice for people with type 2 diabetes.
Collapse
Affiliation(s)
- Roy Taylor
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | - Ahmad Al-Mrabeh
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
35
|
Jaiswal N, Gavin MG, Quinn WJ, Luongo TS, Gelfer RG, Baur JA, Titchenell PM. The role of skeletal muscle Akt in the regulation of muscle mass and glucose homeostasis. Mol Metab 2019; 28:1-13. [PMID: 31444134 PMCID: PMC6822261 DOI: 10.1016/j.molmet.2019.08.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Skeletal muscle insulin signaling is a major determinant of muscle growth and glucose homeostasis. Protein kinase B/Akt plays a prominent role in mediating many of the metabolic effects of insulin. Mice and humans harboring systemic loss-of-function mutations in Akt2, the most abundant Akt isoform in metabolic tissues, are glucose intolerant and insulin resistant. Since the skeletal muscle accounts for a significant amount of postprandial glucose disposal, a popular hypothesis in the diabetes field suggests that a reduction in Akt, specifically in skeletal muscle, leads to systemic glucose intolerance and insulin resistance. Despite this common belief, the specific role of skeletal muscle Akt in muscle growth and insulin sensitivity remains undefined. METHODS We generated multiple mouse models of skeletal muscle Akt deficiency to evaluate the role of muscle Akt signaling in vivo. The effects of these genetic perturbations on muscle mass, glucose homeostasis and insulin sensitivity were assessed using both in vivo and ex vivo assays. RESULTS Surprisingly, mice lacking Akt2 alone in skeletal muscle displayed normal skeletal muscle insulin signaling, glucose tolerance, and insulin sensitivity despite a dramatic reduction in phosphorylated Akt. In contrast, deletion of both Akt isoforms (M-AktDKO) prevented downstream signaling and resulted in muscle atrophy. Despite the absence of Akt signaling, in vivo and ex vivo insulin-stimulated glucose uptake were normal in M-AktDKO mice. Similar effects on insulin sensitivity were observed in mice with prolonged deletion (4 weeks) of both skeletal muscle Akt isoforms selectively in adulthood. Conversely, short term deletion (2 weeks) of skeletal muscle specific Akt in adult muscles impaired insulin tolerance paralleling the effect observed by acute pharmacological inhibition of Akt in vitro. Mechanistically, chronic ablation of Akt induced mitochondrial dysfunction and activation of AMPK, which was required for insulin-stimulated glucose uptake in the absence of Akt. CONCLUSIONS Together, these data indicate that chronic reduction in Akt activity alone in skeletal muscle is not sufficient to induce insulin resistance or prevent glucose uptake in all conditions. Therefore, since insulin-stimulated glucose disposal in skeletal muscle is markedly impaired in insulin-resistant states, we hypothesize that alterations in signaling molecules in addition to skeletal muscle Akt are necessary to perturb glucose tolerance and insulin sensitivity in vivo.
Collapse
Affiliation(s)
- N Jaiswal
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - M G Gavin
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - W J Quinn
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - T S Luongo
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - R G Gelfer
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - J A Baur
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - P M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Increased glucose production associated with hepatic insulin resistance contributes to the development of hyperglycemia in T2D. The molecular mechanisms accounting for increased glucose production remain controversial. Our aims were to review recent literature concerning molecular mechanisms regulating glucose production and to discuss these mechanisms in the context of physiological experiments and observations in humans and large animal models. RECENT FINDINGS Genetic intervention studies in rodents demonstrate that insulin can control hepatic glucose production through both direct effects on the liver, and through indirect effects to inhibit adipose tissue lipolysis and limit gluconeogenic substrate delivery. However, recent experiments in canine models indicate that the direct effects of insulin on the liver are dominant over the indirect effects to regulate glucose production. Recent molecular studies have also identified insulin-independent mechanisms by which hepatocytes sense intrahepatic carbohydrate levels to regulate carbohydrate disposal. Dysregulation of hepatic carbohydrate sensing systems may participate in increased glucose production in the development of diabetes.
Collapse
Affiliation(s)
- Ashot Sargsyan
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Mark A Herman
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
- Division of Diabetes, Endocrinology, and Metabolism, Duke University, Durham, NC, USA.
| |
Collapse
|
37
|
Daurio NA, Wang Y, Chen Y, Zhou H, Carballo-Jane E, Mane J, Rodriguez CG, Zafian P, Houghton A, Addona G, McLaren DG, Zhang R, Shyong BJ, Bateman K, Downes DP, Webb M, Kelley DE, Previs SF. Spatial and temporal studies of metabolic activity: contrasting biochemical kinetics in tissues and pathways during fasted and fed states. Am J Physiol Endocrinol Metab 2019; 316:E1105-E1117. [PMID: 30912961 DOI: 10.1152/ajpendo.00459.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of nutrient homeostasis, i.e., the ability to transition between fasted and fed states, is fundamental in maintaining health. Since food is typically consumed over limited (anabolic) periods, dietary components must be processed and stored to counterbalance the catabolic stress that occurs between meals. Herein, we contrast tissue- and pathway-specific metabolic activity in fasted and fed states. We demonstrate that knowledge of biochemical kinetics that is obtained from opposite ends of the energetic spectrum can allow mechanism-based differentiation of healthy and disease phenotypes. Rat models of type 1 and type 2 diabetes serve as case studies for probing spatial and temporal patterns of metabolic activity via [2H]water labeling. Experimental designs that capture integrative whole body metabolism, including meal-induced substrate partitioning, can support an array of research surrounding metabolic disease; the relative simplicity of the approach that is discussed here should enable routine applications in preclinical models.
Collapse
Affiliation(s)
- Natalie A Daurio
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Yichen Wang
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Ying Chen
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Haihong Zhou
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Ester Carballo-Jane
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Joel Mane
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Carlos G Rodriguez
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Peter Zafian
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Andrea Houghton
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - George Addona
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - David G McLaren
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Rena Zhang
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Bao Jen Shyong
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Kevin Bateman
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Daniel P Downes
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Maria Webb
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - David E Kelley
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Stephen F Previs
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| |
Collapse
|
38
|
Learsi SK, Ghiarone T, Silva-Cavalcante MD, Andrade-Souza VA, Ataide-Silva T, Bertuzzi R, de Araujo GG, McConell G, Lima-Silva AE. Cycling time trial performance is improved by carbohydrate ingestion during exercise regardless of a fed or fasted state. Scand J Med Sci Sports 2019; 29:651-662. [PMID: 30672619 DOI: 10.1111/sms.13393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE We tested the hypothesis that carbohydrate ingestion during exercise improves time trial (TT) performance and that this carbohydrate-induced improvement is greater when carbohydrates are ingested during exercise in a fasted rather than a fed state. METHODS Nine males performed 105 minutes of constant-load exercise (50% of the difference between the first and second lactate thresholds), followed by a 10-km cycling TT. Exercise started at 9 am, 3 hours after either breakfast (FED, 824 kcal, 67% carbohydrate) or a 15-hour overnight fast (FAST). Before exercise, after every 15 minutes of exercise and at 5 km of the TT, participants ingested 2 mL kg-1 body mass of a non-caloric sweetened solution containing either carbohydrate (8% of maltodextrin, CHO) or placebo (0% carbohydrate, PLA). RESULTS Irrespective of the fasting state, when carbohydrate was ingested during exercise, the rating of perceived exertion (RPE) was lower throughout the constant-load exercise, while the plasma glucose concentration and carbohydrate oxidation were higher during the last stages of the constant-load exercise (P < 0.05). Consequently, TT performance was faster when carbohydrate was ingested during exercise (18.5 ± 0.3 and 18.7 ± 0.4 minutes for the FEDCHO and FASTCHO conditions, respectively) than when the placebo was ingested during exercise (20.2 ± 0.8 and 21.7 ± 1.4 minutes for the FEDPLA and FASTPLA conditions, respectively), regardless of fasting. CONCLUSION These findings indicate that even when breakfast is provided before exercise, carbohydrate ingestion during exercise is still beneficial for exercise performance. However, ingesting carbohydrate during exercise can overcome a lack of breakfast.
Collapse
Affiliation(s)
- Sara K Learsi
- Sport Science Research Group, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Brazil.,Department of Physical Education, Sciences Applied Sciences in Sports Research Group, Federal University of Alagoas, Maceio, Brazil
| | - Thaysa Ghiarone
- Sport Science Research Group, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Brazil
| | - Marcos D Silva-Cavalcante
- Sport Science Research Group, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Brazil
| | - Victor A Andrade-Souza
- Sport Science Research Group, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Brazil
| | - Thays Ataide-Silva
- Sport Science Research Group, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Gustavo G de Araujo
- Department of Physical Education, Sciences Applied Sciences in Sports Research Group, Federal University of Alagoas, Maceio, Brazil
| | - Glenn McConell
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
| | - Adriano E Lima-Silva
- Sport Science Research Group, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Brazil.,Human Performance Research Group, Academic Department of Physical Education, Technological Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
39
|
Hirase H, Akther S, Wang X, Oe Y. Glycogen distribution in mouse hippocampus. J Neurosci Res 2019; 97:923-932. [PMID: 30675919 DOI: 10.1002/jnr.24386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
The hippocampus is a limbic structure involved in the consolidation of episodic memory. In the recent decade, glycogenolysis in the rodent hippocampus has been shown critical for synaptic plasticity and memory formation. Astrocytes are the primary cells that store glycogen which is subject to degradation in hypoglycemic conditions. Focused microwave application to the brain halts metabolic activities, and therefore preserves brain glycogen. Immunohistochemistry against glycogen on focused microwave-assisted brain samples is suitable for both macroscopic and microscopic investigation of glycogen distribution. Glycogen immunohistochemistry in the hippocampus showed a characteristic punctate signal pattern that depended on hippocampal layers. In particular, the hilus is the most glycogen-rich subregion of the hippocampus. Moreover, large glycogen puncta (>0.5 µm in diameter) observed in neuropil areas are organized in a patchy pattern consisting of puncta-rich and -poor astrocytes. These observations are discussed with respect to distinct hippocampal neural activity states observed in live animals.
Collapse
Affiliation(s)
- Hajime Hirase
- RIKEN Center for Brain Science, Wako, Japan.,Saitama University Brain Science Institute, Saitama, Japan.,Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonam Akther
- RIKEN Center for Brain Science, Wako, Japan.,Saitama University Brain Science Institute, Saitama, Japan
| | | | - Yuki Oe
- RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
40
|
Adeva-Andany MM, Rañal-Muíño E, Fernández-Fernández C, Pazos-García C, Vila-Altesor M. Metabolic Effects of Metformin in Humans. Curr Diabetes Rev 2019; 15:328-339. [PMID: 30306875 DOI: 10.2174/1573399814666181009125348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Both insulin deficiency and insulin resistance due to glucagon secretion cause fasting and postprandial hyperglycemia in patients with diabetes. INTRODUCTION Metformin enhances insulin sensitivity, being used to prevent and treat diabetes, although its mechanism of action remains elusive. RESULTS Patients with diabetes fail to store glucose as hepatic glycogen via the direct pathway (glycogen synthesis from dietary glucose during the post-prandial period) and via the indirect pathway (glycogen synthesis from "de novo" synthesized glucose) owing to insulin deficiency and glucagoninduced insulin resistance. Depletion of the hepatic glycogen deposit activates gluconeogenesis to replenish the storage via the indirect pathway. Unlike healthy subjects, patients with diabetes experience glycogen cycling due to enhanced gluconeogenesis and failure to store glucose as glycogen. These defects raise hepatic glucose output causing both fasting and post-prandial hyperglycemia. Metformin reduces post-prandial plasma glucose, suggesting that the drug facilitates glucose storage as hepatic glycogen after meals. Replenishment of glycogen store attenuates the accelerated rate of gluconeogenesis and reduces both glycogen cycling and hepatic glucose output. Metformin also reduces fasting hyperglycemia due to declining hepatic glucose production. In addition, metformin reduces plasma insulin concentration in subjects with impaired glucose tolerance and diabetes and decreases the amount of insulin required for metabolic control in patients with diabetes, reflecting improvement of insulin activity. Accordingly, metformin preserves β-cell function in patients with type 2 diabetes. CONCLUSION Several mechanisms have been proposed to explain the metabolic effects of metformin, but evidence is not conclusive and the molecular basis of metformin action remains unknown.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazan s/n, 15406 Ferrol, Spain
| | - Eva Rañal-Muíño
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazan s/n, 15406 Ferrol, Spain
| | | | - Cristina Pazos-García
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazan s/n, 15406 Ferrol, Spain
| | - Matilde Vila-Altesor
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazan s/n, 15406 Ferrol, Spain
| |
Collapse
|
41
|
Ang T, Kowalski GM, Bruce CR. Endogenous glucose production after sequential meals in humans: evidence for more prolonged suppression after ingestion of a second meal. Am J Physiol Endocrinol Metab 2018; 315:E904-E911. [PMID: 30106620 DOI: 10.1152/ajpendo.00233.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single-meal studies have shown that carbohydrate ingestion causes rapid and persistent suppression of endogenous glucose production (EGP). However, little is known about the regulation of EGP under real-life eating patterns in which multiple carbohydrate-containing meals are consumed throughout the day. Therefore, we aimed to characterize the regulation of EGP in response to sequential meals, specifically during the breakfast-lunch transition. Nine healthy individuals (5 men, 4 women; 32 ± 2 yr; 25.0 ± 1.4 kg/m2) ingested two identical mixed meals, each containing 25 g of glucose, separated by 4 h, and EGP was determined by the variable infusion tracer-clamp approach. EGP was rapidly suppressed after both meals, with the pattern and magnitude of suppression being similar over the initial 75-min postmeal period. However, EGP suppression was more transient after breakfast compared with lunch, with EGP returning to basal rates 3 h after breakfast. In contrast, EGP remained in a suppressed state for the entire 4-h postlunch period. This occurred despite each meal eliciting similar plasma glucose and insulin responses. However, there was greater suppression of plasma glucagon levels after lunch, likely contributing to this response. These findings highlight the potential for distinct regulation of EGP with each meal of the day and suggest that EGP may be in a suppressed state for much of the day, since EGP did not return to basal rates even after a lunch meal containing a modest amount of carbohydrate.
Collapse
Affiliation(s)
- Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Geelong , Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Geelong , Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Geelong , Australia
| |
Collapse
|
42
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1460] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
43
|
Perception of Breakfast Ingestion Enhances High-Intensity Cycling Performance. Int J Sports Physiol Perform 2018; 13:504-509. [PMID: 28952831 DOI: 10.1123/ijspp.2017-0318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To examine the effect on short-duration, high-intensity cycling time-trial (TT) performance when a semisolid breakfast containing carbohydrate (CHO) or a taste- and texture-matched placebo is ingested 90 min preexercise compared with a water (WAT) control. METHODS A total of 13 well-trained cyclists (mean [SD]: age = 25 [8] y, body mass = 71.1 [5.9] kg, height = 1.76 [0.04] m, maximum power output = 383 [46] W, and peak oxygen uptake = 4.42 [0.53] L·min-1) performed 3 experimental trials examining breakfast ingestion 90 min before a 10-min steady-state cycle (60% maximum power output) and an ∼20-min TT (to complete a workload target of 376 [36] kJ). Subjects consumed either WAT, a semisolid CHO breakfast (2 g carbohydrate CHO·kg-1 body mass), or a taste- and texture-matched placebo (PLA). Blood lactate and glucose concentrations were measured periodically throughout the rest and exercise periods. RESULTS The TT was completed more quickly in CHO (1120 [69] s; P = .006) and PLA (1112 [50] s; P = .030) compared with WAT (1146 [74] s). Ingestion of CHO caused an increase in blood glucose concentration throughout the rest period in CHO (peak at 30-min rest = 7.37 [1.10] mmol·L-1; P < .0001) before dropping below baseline levels after the steady-state cycling. CONCLUSION A short-duration cycling TT was completed more quickly when subjects perceived that they had consumed breakfast (PLA or CHO) 90 min prior to the start of the exercise. The improvement in performance is likely attributable to a psychological rather than physiological effect.
Collapse
|
44
|
Shiose K, Yamada Y, Motonaga K, Takahashi H. Muscle glycogen depletion does not alter segmental extracellular and intracellular water distribution measured using bioimpedance spectroscopy. J Appl Physiol (1985) 2018; 124:1420-1425. [PMID: 29420149 DOI: 10.1152/japplphysiol.00666.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although each gram of glycogen is well known to bind 2.7-4.0 g of water, no studies have been conducted on the effect of muscle glycogen depletion on body water distribution. We investigated changes in extracellular and intracellular water (ECW and ICW) distribution in each body segment in muscle glycogen-depletion and glycogen-recovery condition using segmental bioimpedance spectroscopy technique (BIS). Twelve male subjects consumed 7.0 g/kg body mass of indigestible (glycogen-depleted group) or digestible (glycogen-recovered group) carbohydrate for 24 h after a glycogen-depletion cycling exercise. Muscle glycogen content using 13C-magnetic resonance spectroscopy, blood hydration status, body composition, and ECW and ICW content of the arm, trunk, and leg using BIS were measured. Muscle glycogen content at the thigh muscles decreased immediately after exercise (glycogen-depleted group, 71.6 ± 12.1 to 25.5 ± 10.1 mmol/kg wet wt; glycogen-recovered group, 76.2 ± 16.4 to 28.1 ± 16.8 mmol/kg wet wt) and recovered in the glycogen-recovered group (72.7 ± 21.2 mmol/kg wet wt) but not in the glycogen-depleted group (33.2 ± 12.6 mmol/kg wet wt) 24 h postexercise. Fat-free mass decreased in the glycogen-depleted group ( P < 0.05) but not in the glycogen-recovered group 24 h postexercise. However, no changes were observed in ECW and ICW content at the leg in both groups. Our results suggested that glycogen depletion per se does not alter body water distribution as estimated via BIS. This information is valuable in assessing body composition using BIS in athletes who show variable glycogen status during training and recovery. NEW & NOTEWORTHY Segmental bioimpedance spectroscopy analysis reveals the effect of muscle glycogen depletion on body segmental water distribution in controlled conditions. Despite the significant difference in the muscle glycogen levels at the leg, no difference was observed in body resistance and the corresponding water content of the extracellular and intracellular compartments.
Collapse
Affiliation(s)
- Keisuke Shiose
- Faculty of Sports and Health Science, Fukuoka University , Fukuoka , Japan.,Fukuoka University Institute for Physical Activity , Fukuoka , Japan.,Japan Institute of Sports Sciences , Tokyo , Japan
| | - Yosuke Yamada
- Fukuoka University Institute for Physical Activity , Fukuoka , Japan.,National Institutes of Biomedical Innovation, Health, and Nutrition, Tokyo , Japan
| | | | | |
Collapse
|
45
|
A Narrative Review of Potential Future Antidiabetic Drugs: Should We Expect More? Indian J Clin Biochem 2017; 33:121-131. [PMID: 29651202 DOI: 10.1007/s12291-017-0668-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
Prevalence of diabetes mellitus, a chronic metabolic disease characterized by hyperglycemia, is growing worldwide. The majority of the cases belong to type 2 diabetes mellitus (T2DM). Globally, India ranks second in terms of diabetes prevalence among adults. Currently available classes of therapeutic agents are used alone or in combinations but seldom achieve treatment targets. Diverse pathophysiology and the need of therapeutic agents with more favourable pharmacokinetic-pharmacodynamics profile make newer drug discoveries in the field of T2DM essential. A large number of molecules, some with novel mechanisms, are in pipeline. The essence of this review is to track and discuss these potential agents, based on their developmental stages, especially those in phase 3 or phase 2. Unique molecules are being developed for existing drug classes like insulins, DPP-4 inhibitors, GLP-1 analogues; and under newer classes like dual/pan PPAR agonists, dual SGLT1/SGLT2 inhibitors, glimins, anti-inflammatory agents, glucokinase activators, G-protein coupled receptor agonists, hybrid peptide agonists, apical sodium-dependent bile acid transporter (ASBT) inhibitors, glucagon receptor antagonists etc. The heterogeneous clinical presentation and therapeutic outcomes in phenotypically similar patients is a clue to think beyond the standard treatment strategy.
Collapse
|
46
|
Weis J, Kullberg J, Ahlström H. Multiple breath-hold proton spectroscopy of human liver at 3T: Relaxation times and concentrations of glycogen, choline, and lipids. J Magn Reson Imaging 2017; 47:410-417. [PMID: 28419608 DOI: 10.1002/jmri.25734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/29/2017] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To evaluate the feasibility of an expiration multiple breath-hold 1 H-MRS technique to measure glycogen (Glycg), choline-containing compounds (CCC), and lipid relaxation times T1 , T2 , and their concentrations in normal human liver. MATERIALS AND METHODS Thirty healthy volunteers were recruited. Experiments were performed at 3T. Multiple expiration breath-hold single-voxel point-resolved spectroscopy (PRESS) technique was used for localization. Water-suppressed spectra were used for the estimation of Glycg, CCC, lipid methylene (CH2 )n relaxation times and concentrations. Residual water lines were removed by the Hankel Lanczos singular value decomposition filter. After phase correction and frequency alignment, spectra were averaged and processed by LCModel. Summed signals of Glycg resonances H2H4', H3, and H5 between 3.6 and 4 ppm were used to estimate their apparent relaxation times and concentration. Glycg, CCC, and lipid content were estimated from relaxation corrected spectral intensity ratios to unsuppressed water line. RESULTS Relaxation times were measured for liver Glycg (T1 , 892 ± 126 msec; T2 , 13 ± 4 msec), CCC (T1 , 842 ± 75 msec; T2 , 50 ± 5 msec), lipid (CH2 )n (T1 , 402 ± 19 msec; T2 , 52 ± 3 msec), and water (T1 , 990 ± 89 msec; T2 , 30 ± 2 msec). Mean CCC and lipid concentrations of healthy liver were 7.8 ± 1.3 mM and 15.8 ± 23.6 mM, respectively. Glycg content was found lower in the morning (48 ± 21 mM) compared to the afternoon (145 ± 50 mM). CONCLUSION Multiple breath-hold 1 H-MRS together with dedicated postprocessing is a feasible technique for the quantification of liver Glycg, CCC, and lipid relaxation times and concentrations. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:410-417.
Collapse
Affiliation(s)
- Jan Weis
- Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden.,Department of Radiology, Uppsala University Hospital, Uppsala, Sweden
| | - Joel Kullberg
- Department of Radiology, Uppsala University Hospital, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Radiology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
47
|
Funnell MP, Dykes NR, Owen EJ, Mears SA, Rollo I, James LJ. Ecologically Valid Carbohydrate Intake during Soccer-Specific Exercise Does Not Affect Running Performance in a Fed State. Nutrients 2017; 9:nu9010039. [PMID: 28067762 PMCID: PMC5295083 DOI: 10.3390/nu9010039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 12/04/2022] Open
Abstract
This study assessed the effect of carbohydrate intake on self-selected soccer-specific running performance. Sixteen male soccer players (age 23 ± 4 years; body mass 76.9 ± 7.2 kg; predicted VO2max = 54.2 ± 2.9 mL∙kg−1∙min−1; soccer experience 13 ± 4 years) completed a progressive multistage fitness test, familiarisation trial and two experimental trials, involving a modified version of the Loughborough Intermittent Shuttle Test (LIST) to simulate a soccer match in a fed state. Subjects completed six 15 min blocks (two halves of 45 min) of intermittent shuttle running, with a 15-min half-time. Blocks 3 and 6, allowed self-selection of running speeds and sprint times, were assessed throughout. Subjects consumed 250 mL of either a 12% carbohydrate solution (CHO) or a non-caloric taste matched placebo (PLA) before and at half-time of the LIST. Sprint times were not different between trials (CHO 2.71 ± 0.15 s, PLA 2.70 ± 0.14 s; p = 0.202). Total distance covered in self-selected blocks (block 3: CHO 2.07 ± 0.06 km; PLA 2.09 ± 0.08 km; block 6: CHO 2.04 ± 0.09 km; PLA 2.06 ± 0.08 km; p = 0.122) was not different between trials. There was no difference between trials for distance covered (p ≥ 0.297) or mean speed (p ≥ 0.172) for jogging or cruising. Blood glucose concentration was greater (p < 0.001) at the end of half-time during the CHO trial. In conclusion, consumption of 250 mL of 12% CHO solution before and at half-time of a simulated soccer match does not affect self-selected running or sprint performance in a fed state.
Collapse
Affiliation(s)
- Mark P Funnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire LE11 3TU, UK.
| | - Nick R Dykes
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire LE11 3TU, UK.
| | - Elliot J Owen
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire LE11 3TU, UK.
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire LE11 3TU, UK.
| | - Ian Rollo
- The Gatorade Sports Science Institute, PepsiCo Global Nutrition, Leicester LE3 9QH, UK.
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire LE11 3TU, UK.
| |
Collapse
|
48
|
Mittermayer F, Caveney E, De Oliveira C, Fleming GA, Gourgiotis L, Puri M, Tai LJ, Turner JR. Addressing Unmet Medical Needs in Type 1 Diabetes: A Review of Drugs Under Development. Curr Diabetes Rev 2017; 13:300-314. [PMID: 27071617 PMCID: PMC5748875 DOI: 10.2174/1573399812666160413115655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/21/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The incidence of type 1 diabetes (T1D) is increasing worldwide and there is a very large need for effective therapies. Essentially no therapies other than insulin are currently approved for the treatment of T1D. Drugs already in use for type 2 diabetes and many new drugs are under clinical development for T1D, including compounds with both established and new mechanisms of action. Content of the Review: Most of the new compounds in clinical development are currently in Phase 1 and 2. Drug classes discussed in this review include new insulins, SGLT inhibitors, GLP-1 agonists, immunomodulatory drugs including autoantigens and anti-cytokines, agents that regenerate β-cells and others. Regulatory Considerations: In addition, considerations are provided with regard to the regulatory environment for the clinical development of drugs for T1D, with a focus on the United States Food and Drug Administration and the European Medicines Agency. Future opportunities, such as combination treatments of immunomodulatory and beta-cell regenerating therapies, are also discussed.
Collapse
Affiliation(s)
| | - Erica Caveney
- Diabetes Center of Excellence, Quintiles,
Durham, NC, USA
| | | | | | | | - Mala Puri
- Cardiovascular and Metabolic Diseases, Quintiles, Durham, NC, USA
| | | | - J. Rick Turner
- Diabetes Center of Excellence, Quintiles,
Durham, NC, USA
| |
Collapse
|
49
|
Bawden S, Stephenson M, Falcone Y, Lingaya M, Ciampi E, Hunter K, Bligh F, Schirra J, Taylor M, Morris P, Macdonald I, Gowland P, Marciani L, Aithal GP. Increased liver fat and glycogen stores after consumption of high versus low glycaemic index food: A randomized crossover study. Diabetes Obes Metab 2017; 19:70-77. [PMID: 27593525 DOI: 10.1111/dom.12784] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/31/2022]
Abstract
AIM To investigate the acute and longer-term effects of low (LGI) versus high glycaemic index (HGI) diets on hepatic fat and glycogen accumulation and related blood measures in healthy volunteers. METHODS Eight healthy men (age 20.1 ± 0.4 years, body mass index 23.0 ± 0.9 kg/m2 ) attended a test day before and after a 7-day macronutrient- and energy-matched HGI or LGI diet, followed by a minimum 4-week wash-out period, and then returned to repeat the intervention with the alternative diet. During test days, participants consumed either an HGI or an LGI test meal corresponding to their diet week, and liver fat [ 1 H magnetic resonance spectroscopy (MRS)], glycogen ( 13 C MRS) and gastric content volume (MRI) were measured. Blood samples were obtained regularly throughout the test day to assess plasma glucose and insulin levels. RESULTS Plasma glucose and insulin peak values and area under the curve were significantly greater after the HGI test meal compared with the LGI test meal, as expected. Hepatic glycogen concentrations increased more after the HGI test meal ( P < .05) and peak levels were significantly greater after 7 days of HGI dietary intervention compared with those at the beginning of the intervention ( P < .05). Liver fat fractions increased significantly after the HGI dietary intervention compared with the LGI dietary intervention (two-way repeated-measures analysis of variance P ≤ .05). CONCLUSIONS Compared with an LGI diet, a 1-week HGI diet increased hepatic fat and glycogen stores. This may have important clinical relevance for dietary interventions in the prevention and management of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Stephen Bawden
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
- Physics and Astronomy, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Mary Stephenson
- Clinical Imaging Research Centre, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yirga Falcone
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Melanie Lingaya
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | | | | | | | - Jörg Schirra
- Department of Internal Medicine II, Clinical Research Unit, Ludwig-Maxmillians University, Munich, Germany
| | - Moira Taylor
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Peter Morris
- Physics and Astronomy, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Ian Macdonald
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Penny Gowland
- Physics and Astronomy, Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Luca Marciani
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Guruprasad P Aithal
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| |
Collapse
|
50
|
Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJC. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endocrinol Metab 2016; 311:E543-53. [PMID: 27436612 DOI: 10.1152/ajpendo.00232.2016] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
Abstract
Carbohydrate and fat are the main substrates utilized during prolonged endurance-type exercise. The relative contribution of each is determined primarily by the intensity and duration of exercise, along with individual training and nutritional status. During moderate- to high-intensity exercise, carbohydrate represents the main substrate source. Because endogenous carbohydrate stores (primarily in liver and muscle) are relatively small, endurance-type exercise performance/capacity is often limited by endogenous carbohydrate availability. Much exercise metabolism research to date has focused on muscle glycogen utilization, with little attention paid to the contribution of liver glycogen. (13)C magnetic resonance spectroscopy permits direct, noninvasive measurements of liver glycogen content and has increased understanding of the relevance of liver glycogen during exercise. In contrast to muscle, endurance-trained athletes do not exhibit elevated basal liver glycogen concentrations. However, there is evidence that liver glycogenolysis may be lower in endurance-trained athletes compared with untrained controls during moderate- to high-intensity exercise. Therefore, liver glycogen sparing in an endurance-trained state may account partly for training-induced performance/capacity adaptations during prolonged (>90 min) exercise. Ingestion of carbohydrate at a relatively high rate (>1.5 g/min) can prevent liver glycogen depletion during moderate-intensity exercise independent of the type of carbohydrate (e.g., glucose vs. sucrose) ingested. To minimize gastrointestinal discomfort, it is recommended to ingest specific combinations or types of carbohydrates (glucose plus fructose and/or sucrose). By coingesting glucose with either galactose or fructose, postexercise liver glycogen repletion rates can be doubled. There are currently no guidelines for carbohydrate ingestion to maximize liver glycogen repletion.
Collapse
Affiliation(s)
- Javier T Gonzalez
- Department for Health, University of Bath, Bath, United Kingdom; and
| | - Cas J Fuchs
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - James A Betts
- Department for Health, University of Bath, Bath, United Kingdom; and
| | - Luc J C van Loon
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|