1
|
Ponsuksili S, Hadlich F, Li S, Trakooljul N, Reyer H, Oster M, Abitew YA, Sommerfeld V, Rodehutscord M, Wimmers K. DNA methylation dynamics in the small intestine of egg-selected laying hens along egg production stages. Physiol Genomics 2025; 57:125-139. [PMID: 39869094 DOI: 10.1152/physiolgenomics.00063.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann Selected Leghorn-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics. Our sampling encompassed key developmental stages: the pullet stage (10 and 16 wk old), peak production (24 and 30 wk old), and later stage (60 wk old) (n = 99; 10 per group), allowing us to elucidate the temporal dynamics of epigenetic regulation. Our findings highlight a crucial window of epigenetic modulation during the prelaying period, characterized by stage-specific methylation alterations and the involvement of predicted transcription factor motifs within methylated regions. This observation was consistent with the expression patterns of DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B. In addition, a higher methylation level was observed in specific loci or regions in the LSL compared with the LB strain. Notably, we uncover strain-specific differences in methylation levels, particularly pronounced in genomic regions associated with intestinal integrity, inflammation, and energy homeostasis. Our research contributes to the multidisciplinary framework of epigenetics and egg-laying performance, offering valuable implications for poultry production and welfare.NEW & NOTEWORTHY Our study reveals key methylation changes in the jejunum mucosa of laying hens across developmental stages and between strains, with implications for gut health, immune function, and egg production. These findings highlight a crucial role of epigenetic regulation in optimizing performance.
Collapse
Affiliation(s)
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Shuaichen Li
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Saeed F, Adamopoulos IE. Pathogenesis of psoriatic arthritis: new insights from a bone marrow perspective. Curr Opin Rheumatol 2025; 37:136-141. [PMID: 39470182 PMCID: PMC11779588 DOI: 10.1097/bor.0000000000001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW Psoriatic arthritis is an immune-mediated disease that primarily affects the skin and joints. It falls under the umbrella term of rheumatic diseases, which describes a group of closely related yet distinct disorders with many common underlying molecular pathways. Despite the distinct clinical manifestation of each disorder, the shared therapeutic strategies attest to the commonality of cellular and molecular underpinnings. Herein we provide a concise yet comprehensive overview of the interleukin (IL)-23/IL-17 axis and its involvement in mechanistic pathways leading to the pathogenesis of this dual skin and joint clinical manifestation which is characteristic of psoriatic arthritis and other rheumatic diseases. RECENT FINDINGS The interconnection between activated innate immune cells and adaptive immunity has transformed current thinking to include other organs such as the bone marrow as potential tissue of disease origin. A plethora of animal models and genetic studies converge on the critical role of IL-23/IL-17 axis, and highlight the importance of myeloid cell activation as common pathways between autoinflammatory and autoimmune diseases and chronic inflammation. These findings underscore the intricate immune mechanisms involved in inflammatory arthritis and highlight molecular mechanisms in disease pathogenesis. SUMMARY These insights pave the way for the development of novel diagnostic and therapeutic strategies, with a focus on translating these findings into improved clinical practice.
Collapse
Affiliation(s)
- Fatima Saeed
- Department of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Iannis E. Adamopoulos
- Department of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| |
Collapse
|
3
|
Wang Z, Zhang W, Liu Z, Huang D, Kang H, Wang J, Jiang G, Gao A. Gut microbiota dysbiosis involved in decabromodiphenyl ether-induced bone homeostasis disorder through inflammaging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125710. [PMID: 39837379 DOI: 10.1016/j.envpol.2025.125710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
BDE-209 has a causal relationship with adverse health outcomes. However, research on its effect on bone homeostasis is relatively lacking. This study examined the relationship between BDE-209 exposure and bone health, as well as the underlying mechanisms, using both in vitro and in vivo models. In animal studies, female SD rats were administered BDE-209 for 60 days. Bone mineral density, bone microstructure, gut microbiota, and inflammaging markers were measured. Furtherly, THP-1 cell-derived macrophages were treated with a culture medium containing population-relevant dose of BDE-209 or sodium butyrate. The expression of M1 macrophage markers, osteoclast markers, and inflammatory cytokines was measured. Then macrophages were induced by osteoclast conditioned medium to evaluate the effect of BDE-209 on their differentiation into osteoclasts. Results showed reduced humeral bone density, enhanced osteoclast activity, upregulation of IL-1β, TNF-α, IL-6, and activation of PGC-1α/NAD+/cGAS-STING in the exposed group. 16s sequencing revealed that BDE-209 disrupts the abundance of the gut microbiota, notably a reduction in Lachnospiraceae. In vitro, BDE-209 can stimulate macrophages to differentiate more osteoclasts and activate the cGAS-STING pathway, while sodium butyrate can inhibit these effects. This study reveals that gut microbiota dysbiosis is involved in BDE-209-induced bone homeostasis disorder through inflammatory aging and sodium butyrate can mitigate this effect. Overall, this study provides research data for the precaution and treatment of osteoporosis associated with BDE-209 exposure.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Danyang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Guangyu Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
4
|
Zhu K, Liu W, Peng Y, Wang X, Wang Z, Zheng J, Deng G, Wang Q. Study on the mechanism of Shuanghe decoction against steroid-induced osteonecrosis of the femoral head: insights from network pharmacology, metabolomics, and gut microbiota. J Orthop Surg Res 2025; 20:202. [PMID: 40001178 PMCID: PMC11863617 DOI: 10.1186/s13018-025-05619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a challenging and debilitating orthopedic condition with a rising incidence in recent years. Shuanghe Decoction (SHD), a traditional Chinese medicine formula, has shown significant efficacy in treating SONFH, though its underlying mechanisms remain unclear. PURPOSE This study aims to elucidate the therapeutic effects and potential mechanisms of SHD on SONFH through in vivo experiments, combined with network pharmacology, metabolomics, and gut microbiota analysis. MATERIALS AND METHODS Forty male Sprague-Dawley rats (300 ± 20 g) were randomly assigned to four groups: Control, Model, SHD-L, and SHD-H, with 10 rats each. SONFH was induced in all groups except the Control group using lipopolysaccharide and methylprednisolone. The SHD-L and SHD-H groups were treated with Shuanghe decoction at doses of 4.86 g/kg/day and 9.72 g/kg/day, respectively, for eight weeks. Bone morphology, pathological changes, and osteogenic factors were evaluated using Micro-CT, histological staining, and immunohistochemistry. Network pharmacology, metabolomics, and gut microbiota analyses were conducted to explore SHD's mechanisms. RESULTS SHD improved bone morphology and increased osteogenic factor expression (RUNX2, OCN, COL-I). Network pharmacology indicated that metabolic pathways play a key role in SHD's therapeutic effects. Metabolomic analysis identified 14 differential metabolites, including 21-hydroxypregnenolone and tyramine, which were restored to normal levels by SHD. Gut microbiota analysis revealed that SHD modulated bacterial abundance, particularly Verrucomicrobia, Allobaculum, and Burkholderiales. A comprehensive network identified two key metabolites (tyramine, 21-hydroxypregnenolone), seven targets (CYP19A1, CYP1A2, CYP1B1, CYP2C9, CYP3A4, MIF, and HSD11B1), two metabolic pathways (tyrosine metabolism, steroid hormone biosynthesis), and four bacterial taxa (Jeotgalicoccus, Clostridium, Corynebacterium, rc4-4) as central to SHD against SONFH. CONCLUSION SHD alleviates SONFH by reshaping gut microbiota, reversing metabolic imbalances, and enhancing osteogenesis. Our findings provide novel insights into the pharmacological mechanisms of SHD, laying a foundation for its clinical application in treating SONFH.
Collapse
Affiliation(s)
- Kai Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China
| | - Wanxin Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China
| | - Yuanyuan Peng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China
| | - Xiaoqiang Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China
| | - Zhenhao Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China
| | - Jun Zheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China.
| | - Guoying Deng
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, P.R. China.
| | - Qiugen Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China.
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, P.R. China.
| |
Collapse
|
5
|
Zhang J, Wang B, Du P, Song H, Yang L, Zhou Y. Gut-disc axis: A Mendelian randomization study on the relationship between gut microbiota and cervical spondylosis. Medicine (Baltimore) 2025; 104:e41536. [PMID: 39960933 PMCID: PMC11835084 DOI: 10.1097/md.0000000000041536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
The gut-disc axis, which refers to the interaction between gut microbiota and bone health, has recently garnered widespread attention in the scientific community. However, it remains to be determined whether gut microbiota directly induces cervical spondylosis (CS). This study employed a bidirectional 2-sample Mendelian randomization (MR) analysis to explore the potential causal link between gut microbiota and CS. We initially used the inverse variance weighted method for preliminary estimation and supplemented it with other MR methods, including MR-Egger, weighted median, weighted mode, and simple mode. Furthermore, we utilized the Cochrane Q test, MR-PRESSO global test, and MR-Egger intercept test to assess possible pleiotropy and heterogeneity. Ultimately, we conducted a bidirectional MR study to investigate potential reverse associations between gut microbiota and CS. The preliminary MR analysis identified 27 gut microbiota significantly associated with CS, of which 12 may be contributing factors, while 15 may have protective effects. The reverse MR analysis further revealed a potential causal relationship between CS and 24 gut microbiota. In this study, no significant heterogeneity or pleiotropy was detected. Through MR analysis, we uncovered a significant causal relationship between gut microbiota and CS, providing new perspectives for the prevention and treatment of CS, especially in the modulation of the microbiota.
Collapse
Affiliation(s)
- Jiling Zhang
- Department of Clinical Laboratory, Beijing Shunyi District Hospital, Beijing, China
| | - Baodong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Peng Du
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - He Song
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lihui Yang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yu Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
7
|
Stumpff F, Manneck D. Prebiotics as modulators of colonic calcium and magnesium uptake. Acta Physiol (Oxf) 2025; 241:e14262. [PMID: 39803707 PMCID: PMC11726438 DOI: 10.1111/apha.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/23/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Ca2+ and Mg2+ are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca2+ and Mg2+ can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg2+ deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca2+ and Mg2+ from supplements is significantly lower than that from milk products. Problems are likely to increase as populations age and the number of people on vegan diets surges. Developing new therapeutic strategies requires a better understanding of the molecular mechanisms involved in absorption by intestinal epithelia. The vitamin-D dependent, active pathway for the uptake of Ca2+ from the upper small intestine involving TRPV6 is highly efficient but only accounts for about 20% of total uptake. Instead, most Ca2+ uptake is thought to occur via passive paracellular diffusion across the ileum, although sufficiently high luminal concentrations are difficult to achieve.. Interestingly, colon and caecum also have a considerable capacity for the active absorption of Ca2+ and Mg2+, the molecular mechanisms of which are unclear. Intriguingly, stimulating fermentation by prebiotics enhances colonic absorption, which can rise from ~10% to ~30% of the total. Notably, fermentation releases protons, which inhibits channels highly selective for Ca2+ and Mg2+ (TRPV6 and TRPM6/TRPM7). Conversely, the non-selective cation channel TRPV3 is stimulated by both intracellular acidification and by numerous herbal compounds. Spicy, fiber-rich food, as traditionally consumed in many cultures, might enhance the uptake of Ca2+ and Mg2+ via this pathway.
Collapse
Affiliation(s)
- Friederike Stumpff
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| | - David Manneck
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| |
Collapse
|
8
|
Al-Adham ISI, Agha ASAA, Al-Akayleh F, Al-Remawi M, Jaber N, Al Manasur M, Collier PJ. Prebiotics Beyond the Gut: Omics Insights, Artificial Intelligence, and Clinical Trials in Organ-Specific Applications. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10465-x. [PMID: 39878922 DOI: 10.1007/s12602-025-10465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications. Integrating these innovations with "omics" technologies enables precise microbial modulation, fostering personalized nutrition and precision therapies. This review examines organ-specific effects of prebiotics, highlights findings from clinical trials, and explores biotechnological innovations that enhance prebiotic efficacy, laying the groundwork for future personalized therapeutic strategies.
Collapse
Affiliation(s)
- Ibrahim S I Al-Adham
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan.
| | - Ahmed S A Ali Agha
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Manar Al Manasur
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan.
| |
Collapse
|
9
|
Yang F, Yan Q, Wang Y, Li Q, Wang J, Zeng X, Pi Y, Zhang M, Wei L. AMP1-1 alleviates bone loss in weightless rats by reducing peripheral 5-HT content via the microbiota-gut-bone axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156447. [PMID: 39923429 DOI: 10.1016/j.phymed.2025.156447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Weightlessness-induced bone loss (WIBL) refers to the reduction of bone mass and the decline of bone resistance to load in a weightless environment. However, current treatment strategies aimed at increasing bone mass are associated with various limitations and side effects, highlighting the urgent need for safer and more effective therapeutic options to address WIBL. PURPOSE We aimed to further explore the potential mechanism of the anti-WIBL effect of Atractylodes macrocephalon polysaccharide1-1(AMP1-1). To find a better way to treat WIBL and provide new insights for the development of therapeutic drugs for this condition. METHODS Firstly, the anti-weightlessness bone loss of AMP1-1 was verified by micro-computed tomography (Micro-CT), three-point mechanical bending test and Western Blot (WB). Subsequently, the intestinal barrier was examined using histopathology, immunohistochemistry (IHC), and WB. Finally, validation experiments were performed using fecal microbiota transplantation (FMT). After FMT, 16S rDNA sequencing was used to analyze the gut microbiota composition in the rat feces. RESULTS AMP1-1 was able to inhibit WIBL by enhancing bone mass, improving toughness, and increasing osteogenic activity. Meanwhile, AMP1-1 reduced peripheral 5-HT content by restoring enterochromaffin cell function through gut microbiota regulation and tight junction repair. FMT of rat fecal microbiota after gavage of AMP1-1 into tail suspension rats still has the effects of regulating gut microbiota, repairing intestinal barrier and reducing bone loss. CONCLUSION Our results demonstrate that AMP1-1 exerts a protective effect against WIBL in rats, potentially by modulating 5-HT content and 5-HT-related metabolism in bone tissue through microbiota-gut-bone axis. This study is the first to elucidate the mechanism of AMP1-1 in mitigating WIBL through the perspective of the microbiota-gut-bone axis. Moreover, this research integrates plant extract research with the issue of bone loss induced by microgravity (aerospace medicine), thereby opening new avenues for natural drug research.
Collapse
Affiliation(s)
- Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Qiuxin Yan
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Yunhao Wang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Qiao Li
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Jinpeng Wang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Xiangyin Zeng
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Yaning Pi
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Manrui Zhang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Lijun Wei
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China.
| |
Collapse
|
10
|
Yu T, Bai R, Wang Z, Qin Y, Wang J, Wei Y, Zhao R, Nie G, Han B. Colon-targeted engineered postbiotics nanoparticles alleviate osteoporosis through the gut-bone axis. Nat Commun 2024; 15:10893. [PMID: 39738035 DOI: 10.1038/s41467-024-55263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site. These engineered postbiotics nanoparticles can effectively suppress macrophage inflammatory activation, modulate the redox balance, and regulate the composition of the gut microbiota, thereby restoring epithelial barriers, inhibiting bacterial invasion, and down-regulating pro-inflammatory responses. As a result, the remission of systemic inflammation is accompanied by a rebalancing of osteoblast and osteoclast activity, alleviating inflammatory bowel disease-related and post-menopausal bone loss. Specifically, the treatment of engineered postbiotics nanoparticles can also improve the quality and quantity of bone with restoration of deteriorative mechanical properties, which indicating a therapeutic potential on fracture prevention. This study provides valuable insights into the gut-bone axis and establishes a promising and safe therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Zeming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Jingwei Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
- National Center for Stomatology, Beijing, China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| |
Collapse
|
11
|
Sukul P, Fischer DC, Broderius C, Grzegorzewski S, Rahn A, Mittlmeier T, Kreikemeyer B, Reuter DA, Schubert JK, Miekisch W. Exhaled breath metabolites reveal postmenopausal gut-bone cross-talk and non-invasive markers for osteoporosis. COMMUNICATIONS MEDICINE 2024; 4:279. [PMID: 39732987 DOI: 10.1038/s43856-024-00723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Menopause driven decline in estrogen exposes women to risk of osteoporosis. Detection of early onset and silent progression are keys to prevent fractures and associated burdens. METHODS In a discovery cohort of 120 postmenopausal women, we combined repeated quantitative pulse-echo ultrasonography of bone, assessment of grip strength and serum bone markers with mass-spectrometric analysis of exhaled metabolites to find breath volatile markers and quantitative cutoff levels for osteoporosis. Obtained markers and cutoffs were validated in an independent cohort of 49 age-matched women with six months apart seasonal follow-ups. RESULTS Here, within the discovery cohort, concentrations of exhaled end-tidal dimethyl sulfide (DMS), allyl-methyl sulfide, butanethiol and butyric acid are increased (p ≤ 0.005) pronouncedly in subjects with bone mineral density (BMD) at high-risk of osteoporosis and fracture, when compared to subjects with normal BMD. Increased age and decreased grip strength are concomitant. All changes are reproduced during independent validation and seasonal follow-ups. Exhaled metabolite expressions remain age independent. Serum markers show random expressions without reproducibility. DMS exhalations differs between patients with recent, old and without fractures. Metabolite exhalations and BMDs are down-regulated during winter. ROC analysis in discovery cohort yields high classification accuracy of DMS with a cutoff for osteoporosis, which predicts subjects at high-risk within the independent validation cohort with >91% sensitivity and specificity. CONCLUSIONS Non-invasive analysis of exhaled DMS allowed more reliable classification of osteoporosis risk than conventional serum markers. We identified associations of exhaled organosulfur and short-chain fatty acids to bone metabolism in postmenopausal osteoporosis via a gut-bone axis.
Collapse
Affiliation(s)
- Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Rostock, Germany.
| | | | - Celine Broderius
- Department of Pediatrics, Rostock University Medical Center, Rostock, Germany
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Center, Rostock, Germany
| | - Simon Grzegorzewski
- Department of Pediatrics, Rostock University Medical Center, Rostock, Germany
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Center, Rostock, Germany
| | - Anja Rahn
- Department of Pediatrics, Rostock University Medical Center, Rostock, Germany
| | - Thomas Mittlmeier
- Department of Traumatology, Hand and Reconstructive Surgery, Rostock University Medical Center, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Daniel A Reuter
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Rostock, Germany
| | - Jochen K Schubert
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Rostock, Germany
| | - Wolfram Miekisch
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
12
|
Song C, Yan Q, Ma Y, Li P, Yang Y, Wang Y, Li W, Wan X, Li Y, Zhu R, Liu H, Zhang Z. Modified Zuo Gui Wan Ameliorates Ovariectomy-Induced Osteoporosis in Rats by Regulating the SCFA-GPR41-p38MAPK Signaling Pathway. Drug Des Devel Ther 2024; 18:6359-6377. [PMID: 39741920 PMCID: PMC11687096 DOI: 10.2147/dddt.s482965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/14/2024] [Indexed: 01/03/2025] Open
Abstract
Objective Modified Zuo Gui Wan (MZGW) was a combination of Zuo Gui Wan and red yeast rice used for treating osteoporosis (OP), but its mechanism remains unclear. We aimed to validate the anti-OP effect of MZGW and explore its underlying mechanism. Methods An ovariectomy (OVX) rat model in vivo and a RANKL-induced osteoclasts (OCs) model in vitro were established. Key active ingredients in MZGW high dose (MZGW-H) group were detected by UPLC-MS/MS. Micro-CT scans and histomorphology analysis were performed in OVX rats. 16S rRNA gene sequencing was performed to investigate the relationship between the anti-OP effect of MZGW-H and intestinal flora. CCK-8 assay was applied to examine the optimal concentration of Modified Zuo Gui Wan drug serum (MZGW-DS) on osteoclasts. The qRT-PCR and Western blotting were utilized to explore the potential anti-OP pathway of MZGW, namely the SCFA-GPR41-p38MAPK signaling pathway. GPR41 was knocked down to further reverse to verify whether the pathway was the key pathway for MZGW-DS to exert its inhibitory effect on osteoclasts. Results The three main blood components, Ferulic acid, L-Ascorbic acid and Riboflavin, were examined mainly by UPLC-MS/MS. 16S rRNA gene sequencing showed that MZGW-H changed the metabolism of SCFAs. In vivo studies verified that MZGW-H ameliorated microstructure damage, improved histological changes and reduced TRAP, BALP, and BGP in OVX rats by regulating the SCFA-GPR41-p38MAPK signaling pathway. CCK-8 revealed that 5% MZGW-DS group was the most optimal concentration of MZGW-DS to inhibit osteoclast differentiation. In vitro, MZGW-DS was better than peripheral blood concentration of SCFAs in inhibiting osteoclasts. After the knockout of GPR41, MZGW-DS could not inhibit the expression of osteoclast-related protein (CTSK and NFATc1) via SCFA-GPR41-p38MAPK signaling pathway. Conclusion MZGW-H effectively ameliorates OVX-induced osteoporosis partially achieved by increasing SCFAs metabolism and modulating the SCFA-GPR41-p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Changheng Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Pei Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Ying Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yuhan Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wenjie Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xinyu Wan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yubo Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Haixia Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Zhiguo Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
13
|
Jakubowska D, Dąbrowska AZ, Staniewska K, Kiełczewska K, Przybyłowicz KE, Żulewska J, Łobacz A. Health Benefits of Dairy Products' Consumption-Consumer Point of View. Foods 2024; 13:3925. [PMID: 39682996 DOI: 10.3390/foods13233925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this study was to identify and analyse consumer perceptions regarding the health benefits of different dairy products in Poland. This study examines the consumption frequency of selected dairy products in Poland and the health benefits which consumers associate with their regular consumption. It also explores how demographic factors, such as age, gender, and consumption frequency, influence these perceptions and identifies which dairy products are the most linked to specific health benefits. This study involved a quantitative survey of a representative sample of 2009 Polish consumers aged 19-30 and 66-75 years. This study revealed that the vast majority of the consumers recognise the health benefits of dairy products, particularly in areas such as better bone health, enhanced immune function, and improved digestion. The benefits associated with the regular consumption of milk, natural fresh cheeses, and natural fermented milk beverages were most frequently recognised. The respondents' age had no significant effect on their perceptions of the health benefits of the selected dairy products. A statistically significant effect of gender was found only for the perceived benefits of consuming flavoured, fermented milk beverages. The frequency of consumption had a significant effect on the respondents' perceptions of the benefits of all the studied groups of dairy products. In general, the consumers had positive attitudes towards the dairy products and believed in their potential health benefits. These findings have important implications for policy-makers. They underline the need for targeted public health campaigns to promote the consumption of dairy products as part of a balanced diet, emphasizing their specific health benefits. Such efforts could be especially effective if tailored to demographic factors such as gender and dietary habits.
Collapse
Affiliation(s)
- Dominika Jakubowska
- Faculty of Economic Sciences, Department of Market and Consumption, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland
| | - Aneta Zofia Dąbrowska
- Faculty of Food Science, Department of Dairy Science and Quality Management, University of Warmia and Mazury in Olsztyn, Oczapowskiego 7, 10-719 Olsztyn, Poland
| | - Katarzyna Staniewska
- Faculty of Food Science, Department of Commodity Science and Food Analysis, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10-726 Olsztyn, Poland
| | - Katarzyna Kiełczewska
- Faculty of Food Science, Department of Dairy Science and Quality Management, University of Warmia and Mazury in Olsztyn, Oczapowskiego 7, 10-719 Olsztyn, Poland
| | - Katarzyna E Przybyłowicz
- Faculty of Food Science, Department of Human Nutrition, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-718 Olsztyn, Poland
| | - Justyna Żulewska
- Faculty of Food Science, Department of Dairy Science and Quality Management, University of Warmia and Mazury in Olsztyn, Oczapowskiego 7, 10-719 Olsztyn, Poland
| | - Adriana Łobacz
- Faculty of Food Science, Department of Dairy Science and Quality Management, University of Warmia and Mazury in Olsztyn, Oczapowskiego 7, 10-719 Olsztyn, Poland
| |
Collapse
|
14
|
Zhang Y, Huang L, Ou S. Research progress on the association between TMAO and vascular calcification in patients with chronic kidney disease. Ren Fail 2024; 46:2435485. [PMID: 39627031 PMCID: PMC11616764 DOI: 10.1080/0886022x.2024.2435485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 12/06/2024] Open
Abstract
Vascular calcification (VC) is a common complication in patients with chronic kidney disease (CKD) and a major risk factor for increased cardiovascular mortality in patients with CKD. Its pathology and pathogenesis are complex and have not been fully elucidated. Trimethylamine N-oxide (TMAO) is an enteric-borne uremic toxin that has been found to play a role in the progression of VC. This article mainly reviews the metabolism of TMAO, the relationship between TMAO and VC in CKD patients, and possible treatments for TMAO, aiming to further explore the mechanism of VC occurrence in CKD patients and provide potential diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Liangying Huang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Santao Ou
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
15
|
Li S, Mu R, Zhu Y, Zhao F, Qiu Q, Si H, Wright ADG, Li Z. Shifts in the microbial community and metabolome in rumen ecological niches during antler growth. Comput Struct Biotechnol J 2024; 23:1608-1618. [PMID: 38680874 PMCID: PMC11047195 DOI: 10.1016/j.csbj.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
Antlers are hallmark organ of deer, exhibiting a relatively high growth rate among mammals, and requiring large amounts of nutrients to meet its development. The rumen microbiota plays key roles in nutrient metabolism. However, changes in the microbiota and metabolome in the rumen during antler growth are largely unknown. We investigated rumen microbiota (liquid, solid, ventral epithelium, and dorsal epithelium) and metabolic profiles of sika deer at the early (EG), metaphase (MG) and fast growth (FG) stages. Our data showed greater concentrations of acetate and propionate in the rumens of sika deer from the MG and FG groups than in those of the EG group. However, microbial diversity decreased during antler growth, and was negatively correlated with short-chain fatty acid (SCFA) levels. Prevotella, Ruminococcus, Schaedlerella and Stenotrophomonas were the dominant bacteria in the liquid, solid, ventral epithelium, and dorsal epithelium fractions. The proportions of Stomatobaculum, Succiniclasticum, Comamonas and Anaerotruncus increased significantly in the liquid or dorsal epithelium fractions. Untargeted metabolomics analysis revealed that the metabolites also changed significantly, revealing 237 significantly different metabolites, among which the concentrations of γ-aminobutyrate and creatine increased during antler growth. Arginine and proline metabolism and alanine, aspartate and glutamate metabolism were enhanced. The co-occurrence network results showed that the associations between the rumen microbiota and metabolites different among the three groups. Our results revealed that the different rumen ecological niches were characterized by distinct microbiota compositions, and the production of SCFAs and the metabolism of specific amino acids were significantly changed during antler growth.
Collapse
Affiliation(s)
- Songze Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ruina Mu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuhang Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Fei Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710100, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | | | - Zhipeng Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
16
|
Wang K, Liu X, Huang H, Suo M, Wang J, Liu X, Zhang J, Chen X, Li Z. A new target for treating intervertebral disk degeneration: gut microbes. Front Microbiol 2024; 15:1452774. [PMID: 39678913 PMCID: PMC11638241 DOI: 10.3389/fmicb.2024.1452774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 12/17/2024] Open
Abstract
Intervertebral disk degeneration (IDD) is a common clinical spinal disease and one of the main causes of low back pain (LBP). Generally speaking, IDD is considered a natural degenerative process with age. However, with the deepening of research, people have discovered that IDD is not only related to age, but also has many factors that can induce and accelerate its progression. In addition, the pathogenesis of IDD remains unclear, resulting in limited traditional treatment methods that cannot effectively prevent and treat IDD. Conservative treatment may lead to patients' dependence on drugs, and the pain relief effect is not obvious. Similarly, surgical treatment is highly invasive, with a longer recovery time and a higher recurrence rate. With the deepening of exploration, people have discovered that intestinal microorganisms are an important symbiotic microbial community in the human body and are closely related to the occurrence and development of various diseases. Changes in intestinal microorganisms and their metabolites may affect the body's inflammatory response, immune regulation, and metabolic processes, thereby affecting the health of the intervertebral disk. In this context, the gut microbiota has received considerable attention as a potential target for delaying or treating IDD. This article first introduces the impact of gut microbes on common distal organs, and then focuses on three potential mechanisms by which gut microbes and their metabolites influence IDD. Finally, we also summarized the methods of delaying or treating IDD by interfering with intestinal microorganisms and their metabolites. Further understanding of the potential mechanisms between intestinal microorganisms and IDD will help to formulate reasonable IDD treatment strategies to achieve ideal therapeutic effects.
Collapse
Affiliation(s)
- Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Chen
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning, China
| |
Collapse
|
17
|
Alvarez JA, Yang CA, Ojuri V, Buckley K, Bedi B, Musonge-Effoe J, Soibi-Harry A, Lahiri CD. Sex Differences in Metabolic Disorders of Aging and Obesity in People with HIV. Curr HIV/AIDS Rep 2024; 22:3. [PMID: 39570329 PMCID: PMC11773452 DOI: 10.1007/s11904-024-00711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE OF REVIEW As advances in antiretroviral therapy for people with HIV (PWH) have prolonged lifespans, prevalence of aging and obesity related metabolic disorders have increased. The purpose of this review is to summarize recent research assessing sex differences in metabolic disorders among PWH, including weight gain/obesity, steatotic liver disease, insulin resistance/diabetes, dyslipidemia, bone loss/osteoporosis, and sarcopenia. RECENT FINDINGS A growing body of evidence shows that women with HIV are at increased risk of developing metabolic disorders compared to men, including body weight gain and obesity, type 2 diabetes mellitus, dyslipidemia, bone loss, and sarcopenia, while men with HIV are at higher risk for hepatosteatosis and hepatic fibrosis. Future work should prioritize the adequate representation of women in HIV clinical studies. Understanding sex-specific mechanisms underlying metabolic dysfunction in PWH is imperative so that interventions can be developed to address a growing global epidemic of metabolic diseases.
Collapse
Affiliation(s)
- Jessica A Alvarez
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, GA, USA
| | - Chin-An Yang
- Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Victoria Ojuri
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Brahmchetna Bedi
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Joffi Musonge-Effoe
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Adaiah Soibi-Harry
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Cecile D Lahiri
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
- , 341 Ponce de Leon Ave NE Research Unit, Suite 5022, 30308, Atlanta, Georgia.
| |
Collapse
|
18
|
Guo M, He S, Song W, Mai J, Yuan X, Huang Y, Xi H, Sun G, Chen Y, Du B, Liu X. The Lachnospiraceae-butyric acid axis and its role in glucocorticoid-associated osteonecrosis. J Transl Med 2024; 22:1015. [PMID: 39529113 PMCID: PMC11552339 DOI: 10.1186/s12967-024-05813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Glucocorticoids (GCs) are key inducers of osteonecrosis, yet not all patients treated with GCs develop glucocorticoid-associated osteonecrosis (GAON). The factors mediating this relationship are unclear. Studies have shown that gut microbiota and their metabolites influence bone metabolism, but their role in GAON is unclear. This study aimed to explore the connection between GAON and gut microbiota. Through bidirectional Mendelian randomization analysis, we identified 14 gut microbial taxa, including Lachnospiraceae (IVW, P = 0.011), associated with GAON. RNA-seq analysis revealed that GAON differentially expressed genes (DEGs) were enriched for intestinal inflammatory response mechanisms. We then compared patients who developed GAON (17 cases), those who did not (GAnON, 15 cases), and those untreated with GCs (Blank, 15 cases) for gut microbiota composition, short-chain fatty acids (SCFAs), and serum inflammatory factors. Our findings indicated a decrease in Lachnospiraceae abundance (GAON 17.13%, GAnON 12.51%, Blank 24.52%) in GC-treated patients. Serum inflammatory factors (IL-17 A, IL-33, and TNF-α) associated with GAON (59.603 ± 12.147, 89.337 ± 20.714, 42.584 ± 9.185) showed significant differences between Blank (1.446 ± 0.683, 11.534 ± 4.705, 4.682 ± 1.48) and GAnON (25.353 ± 8.181, 32.527 ± 7.352, 12.49 ± 3.217) groups, with a negative correlation between these factors and Lachnospiraceae levels. Butyric acid levels in SCFAs varied among groups (P<0.01) and correlated with Lachnospiraceae and inflammatory factors. Controlled experiments in GAON rats demonstrated butyric acid's osteoprotective role in GAON development (P<0.01). In conclusion, our study suggests that reduced Lachnospiraceae and butyric acid levels, along with increased inflammation due to GCs use, contribute to GAON. Butyric acid may mediate the effects of Lachnospiraceae and inflammation. Butyrate supplementation could potentially reduce GAON incidence, offering a novel approach for its clinical management.
Collapse
Affiliation(s)
- Mingbin Guo
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu Province, 210029, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Shuai He
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu Province, 210029, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Wei Song
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu Province, 210029, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Jianbin Mai
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu Province, 210029, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Xinwei Yuan
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu Province, 210029, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Yixuan Huang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu Province, 210029, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Hongzhong Xi
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu Province, 210029, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Guangquan Sun
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu Province, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Yugen Chen
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu Province, 210029, China
- Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Bin Du
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu Province, 210029, China.
- Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Xin Liu
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu Province, 210029, China.
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
19
|
Xu B, Song P, Jiang F, Cai Z, Gu H, Gao H, Li B, Liang C, Qin W, Zhang J, Yan J, Liu D, Sun G, Zhang T. Large-scale metagenomic assembly provide new insights into the genetic evolution of gut microbiomes in plateau ungulates. NPJ Biofilms Microbiomes 2024; 10:120. [PMID: 39505908 PMCID: PMC11541592 DOI: 10.1038/s41522-024-00597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Trillions of microbes colonize the ungulate gastrointestinal tract, playing a pivotal role in enhancing host nutrient utilization by breaking down cellulose and hemicellulose present in plants. Here, through large-scale metagenomic assembly, we established a catalog of 131,416 metagenome-assembled genomes (MAGs) and 11,175 high-quality species-level genome bins (SGBs) from 17 species of ungulates in China. Our study revealed the convergent evolution of high relative abundances of carbohydrate-active enzymes (CAZymes) in the gut microbiomes of plateau-dwelling ungulates. Notably, two significant factors contribute to this phenotype: structural variations in their gut microbiome genomes, which contain more CAZymes, and the presence of novel gut microbiota species, particularly those in the genus Cryptobacteroides, which are undergoing independent rapid evolution and speciation and have higher gene densities of CAZymes. Furthermore, these enrichment CAZymes in the gut microbiomes are highly enrichment in known metabolic pathways for short-chain fatty acid (SCFA) production. Our findings not only provide a valuable genomic resource for understanding the gut microbiomes of ungulates but also offer fresh insights into the interaction between gut microbiomes and their hosts, as well as the co-adaptation of hosts and their gut microbiomes to their environments.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Zhenyuan Cai
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Haifeng Gu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Bin Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Chengbo Liang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China
| | - Wen Qin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University 10743, Xining, 810016, Qinghai, China
| | - Jingjie Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University 10743, Xining, 810016, Qinghai, China
| | - Jingyan Yan
- College of Agriculture and Animal Husbandry, Qinghai University 10743, Xining, 810016, Qinghai, China
| | - Daoxin Liu
- College of Agriculture and Animal Husbandry, Qinghai University 10743, Xining, 810016, Qinghai, China
| | - Guo Sun
- College of Agriculture and Animal Husbandry, Qinghai University 10743, Xining, 810016, Qinghai, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, Qinghai, China.
| |
Collapse
|
20
|
Gao N, Zhuang Y, Zheng Y, Li Y, Wang Y, Zhu S, Fan M, Tian W, Jiang Y, Wang Y, Cui M, Suo C, Zhang T, Jin L, Chen X, Xu K. Investigating the link between gut microbiome and bone mineral density: The role of genetic factors. Bone 2024; 188:117239. [PMID: 39179139 DOI: 10.1016/j.bone.2024.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/19/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Osteoporosis is a complex metabolic bone disease that severely undermines the quality of life and overall health of the elderly. While previous studies have established a close relationship between gut microbiome and host bone metabolism, the role of genetic factors has received less scrutiny. This research aims to identify potential taxa associated with various bone mineral density states, incorporating assessments of genetic factors. Fecal microbiome profiles from 605 individuals (334 females and 271 males) aged 55-65 from the Taizhou Imaging Study with osteopenia (n = 270, 170 women) or osteoporosis (n = 94, 85 women) or normal (n = 241, 79 women) were determined using shotgun metagenomic sequencing. The linear discriminant analysis was employed to identify differentially enriched taxa. Utilizing the Kyoto Encyclopedia of Genes and Genomes for annotation, functional pathway analysis was conducted to identify differentially metabolic pathways. Polygenic risk score for osteoporosis was estimated to represent genetic susceptibility to osteoporosis, followed by stratification and interaction analyses. Gut flora diversity did not show significant differences among various bone mineral groups. After multivariable adjustment, certain species, such as Clostridium leptum, Fusicatenibacter saccharivorans and Roseburia hominis, were enriched in osteoporosis patients. Statistically significant interactions between the polygenic risk score and taxa Roseburia faecis, Megasphaera elsdenii were observed (P for interaction = 0.005, 0.018, respectively). Stratified analyses revealed a significantly negative association between Roseburia faecis and bone mineral density in the low-genetic-risk group (β = -0.045, P < 0.05), while Turicimonas muris was positively associated with bone mineral density in the high-genetic-risk group (β = 4.177, P < 0.05) after multivariable adjustments. Functional predictions of the gut microbiome indicated an increase in pathways related to structural proteins in high-genetic-risk patients, while low-genetic-risk patients exhibited enrichment in enzyme-related pathways. This study emphasizes the association between gut microbes and bone mass, offering new insights into the interaction between genetic background and gut microbiome.
Collapse
Affiliation(s)
- Ningxin Gao
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yue Zhuang
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yi Zheng
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yucan Li
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yawen Wang
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Min Fan
- Taixing Disease Control and Prevention Center, Taizhou, Jiangsu, China
| | - Weizhong Tian
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Yingzhe Wang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Mei Cui
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Suo
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Tiejun Zhang
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China.
| |
Collapse
|
21
|
Nosal BM, Thornton SN, Darooghegi Mofrad M, Sakaki JR, Mahoney KJ, Macdonald Z, Daddi L, Tran TDB, Weinstock G, Zhou Y, Lee ECH, Chun OK. Blackcurrants shape gut microbiota profile and reduce risk of postmenopausal osteoporosis via the gut-bone axis: Evidence from a pilot randomized controlled trial. J Nutr Biochem 2024; 133:109701. [PMID: 39019119 DOI: 10.1016/j.jnutbio.2024.109701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
This study aimed to investigate the effects of blackcurrant (BC) on gut microbiota abundance and composition, inflammatory and immune responses, and their relationship with bone mass changes. The effects of BC on bone mineral density (BMD), gut microbiota, and blood inflammatory and immune biomarkers were evaluated using DXA, stool and fasting blood collected from a pilot three-arm, randomized, double-blind, placebo-controlled clinical trial. Fifty-one peri- and early postmenopausal women aged 45-60 years were randomly assigned into one of three treatment groups for 6 months: control, low BC (392 mg/day) and high BC (784 mg/day); and 40 women completed the trial. BC supplementation for 6 months effectively mitigated the loss of whole-body BMD (P<.05). Six-month changes (%) in peripheral IL-1β (P=.056) and RANKL (P=.052) for the high BC group were marginally significantly lower than the control group. Six-month changes in whole-body BMD were inversely correlated with changes in RANKL (P<.01). In proteome analysis, four plasma proteins showed increased expression in the high BC group: IGFBP4, tetranectin, fetuin-B, and vitamin K-dependent protein S. BC dose-dependently increased the relative abundance of Ruminococcus 2 (P<.05), one of six bacteria correlated with BMD changes in the high BC group (P<.05), suggesting it might be the key bacteria that drove bone protective effects. Daily BC consumption for 6 months mitigated bone loss in this population potentially through modulating the gut microbiota composition and suppressing osteoclastogenic cytokines. Larger-scale clinical trials on the potential benefits of BC and connection of Ruminococcus 2 with BMD maintenance in postmenopausal women are warranted. Trial Registration: NCT04431960, https://classic.clinicaltrials.gov/ct2/show/NCT04431960.
Collapse
Affiliation(s)
- Briana M Nosal
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Staci N Thornton
- Department of Kinesiology, University of Connecticut, Storrs, CT
| | | | - Junichi R Sakaki
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT
| | - Kyle J Mahoney
- Department of Kinesiology, University of Connecticut, Storrs, CT
| | | | - Lauren Daddi
- Department of Medicine, University of Connecticut Health, Farmington, CT
| | | | | | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health, Farmington, CT
| | | | - Ock K Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT.
| |
Collapse
|
22
|
Wang F, Wei W, Liu PJ. Effects of probiotic supplementation on bone health in postmenopausal women: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1487998. [PMID: 39553313 PMCID: PMC11563942 DOI: 10.3389/fendo.2024.1487998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Context The beneficial effects of probiotic supplementation on bone health in postmenopausal women require further validation. Objective This study systematically reviewed and conducted a meta-analysis of randomized controlled trials (RCTs) to assess the relationship between probiotic supplementation and changes in bone mineral density (BMD) and bone turnover markers (BTMs) among postmenopausal women. Methods A systematic search was conducted across four databases to retrieve data on lumbar spine BMD, hip BMD, collagen type 1 cross-linked C-telopeptide (CTX), receptor activator of nuclear factor-κB ligand (RANKL), osteocalcin (OC), osteoprotegerin (OPG), N-terminal propeptide of type 1 procollagen (P1NP), and bone-specific alkaline phosphatase (BALP) in postmenopausal women. Eligible RCTs were quantitatively analyzed using random-effects meta-analyses. Additional analyses, including subgroup, sensitivity, and meta-regression analyses, were performed. Results Twelve RCTs involving 1183 postmenopausal women were included. Compared with the control group, postmenopausal women who received probiotic supplementation showed significantly greater BMD in both the lumbar spine (standardized mean difference [SMD] = 0.60, 95% confidence interval [CI] 0.14 to 1.05) and the hip (SMD = 0.74, 95%CI 0.15 to 1.33). Additionally, probiotic supplementation was associated with reduced levels of CTX (SMD = -1.51, 95%CI -1.88 to -0.41) and BALP (SMD = -1.80, 95%CI -2.78 to -0.81). No significant differences were found between the probiotic and control groups in terms of other BTMs. Subgroup analyses revealed that the increase in BMD due to probiotic supplementation was more significant in postmenopausal women with osteopenia than in those with osteoporosis. The meta-analysis results for both lumbar spine and hip BMD remained robust after conducting sensitivity analyses and meta-regressions. Conclusion Supplementation with probiotics may increase BMD among postmenopausal women, with stronger evidence in women with osteopenia than osteoporosis. Further RCTs are suggested to confirm and refine these findings. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024576764.
Collapse
|
23
|
Hirano A, Kadoya H, Takasu M, Iwakura T, Kajimoto E, Tatsugawa R, Matsuura T, Kurumatani H, Yamamoto T, Kidokoro K, Kishi S, Nagasu H, Sasaki T, Kashihara N. Effects of Beraprost on Intestinal Microcirculation and Barrier Function in a Mouse Model of Renal Failure. Microcirculation 2024; 31:e12889. [PMID: 39348278 DOI: 10.1111/micc.12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024]
Abstract
OBJECTIVE Endothelial dysfunction plays an important role in the pathogenesis of chronic kidney disease. Prostacyclin (PGI2), an endothelial cell-produced endogenous prostaglandin, plays a crucial role in maintaining endothelial function. However, its effects on intestinal microcirculation and barrier function are not fully understood. We hypothesized that PGI2 improves intestinal microcirculation and barrier function via endothelial protective effects. METHODS ICR and ICGN (a spontaneous nephrotic model) mice were used in this study. Intestinal microcirculation was visualized in vivo to investigate PGI2 effects. Beraprost served as PGI2. PGI2 administration spanned 4 weeks, following which we assessed its influence on intestinal endothelial, intestinal barrier, and renal functions. RESULTS We visualized intestinal microcirculation and endothelial glycocalyx in the intestinal blood vessels. Beraprost administration induced a 1.2-fold dilatation of the vascular diameter of the small intestine. Intestinal blood flow in ICGN mice was significantly reduced compared that in ICR mice but improved with beraprost administration. ICGN mice exhibited reduced serum albumin levels, decreased ambulation, an imbalance in intestinal reactive oxygen species (ROS)/nitric oxide (NO), and impaired tight junctions; all were ameliorated by beraprost administration. CONCLUSIONS Beraprost improves intestinal microcirculation and barrier function by ameliorating ROS/NO imbalances, thereby reducing physical inactivity during renal failure.
Collapse
Affiliation(s)
- Akira Hirano
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hiroyuki Kadoya
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Department of General Geriatric Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Masanobu Takasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tsukasa Iwakura
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Eriko Kajimoto
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Rie Tatsugawa
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | | | | | - Toshiya Yamamoto
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Department of General Geriatric Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Department of Medical Science, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
24
|
Fang Y, Tian Z, Li W, Li D, Li J, Hu Z, Qiu Y, Zhu Z, Liu Z. Gut microbiota alterations in adolescent idiopathic scoliosis: a comparison study with healthy control and congenital scoliosis. Spine Deform 2024:10.1007/s43390-024-00988-8. [PMID: 39438431 DOI: 10.1007/s43390-024-00988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This study aims to compare the composition of GM isolated from individuals with AIS or congenital scoliosis (CS) and age-matched control (Ctr). METHODS A total of 48 patients with AIS, 24 patients with CS, and 31 healthy individuals were recruited as the discovery cohort, and 9 pairs of siblings where one was affected by AIS were recruited as the validation cohort. The GM profile was determined with 16S rRNA sequencing, and the alpha-diversity and beta-diversity metrics were performed with Mothur. Linear discriminant analysis (LDA) analysis was performed to identify the enriched species. RESULTS The α diversity (Chao1 index) was significantly lower in AIS patients with low BMI (< 18.5) than those with normal BMI. The PcoA analysis showed a trend of clustering of GM in AIS compared to that in Ctr and CS groups (r2 = 0.0553, p = 0.001). METASTAT analysis showed Cellulomonadaceae was significantly enriched in AIS groups compared to CS and Ctr. LDA analysis showed 9 enriched species in AIS patients. Compared to Ctr, two species including Hungatella genus and Bacteroides fragilis were significantly enriched, while the Firmicutes versus Bacteroidetes (F/B) ratio and the Ruminococcus genus were significantly decreased in AIS but not CS groups. The significantly reduced F/B ratio and Ruminococcus genus in AIS were replicated in the validation cohort. CONCLUSIONS Our study elucidated an association between low BMI and GM diversity in AIS patients. The reduced F/B ratio and Ruminococcus genus in AIS patients were identified and validated in 9 pairs of AIS patients and their unaffected siblings. Our pilot results may help understand the anthropometric discrepancy in these patients and support a possible role of GM in the pathogenesis of AIS.
Collapse
Affiliation(s)
- Yinyu Fang
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Zhen Tian
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Weibiao Li
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Dongyue Li
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Zongshan Hu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, 210008, China.
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
- Division of Spine Surgery, Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
25
|
Song C, Liu F, Mei Y, Cai W, Cheng K, Guo D, Liu Y, Shi H, Duan DD, Liu Z. Integrated metagenomic and metabonomic mechanisms for the therapeutic effects of Duhuo Jisheng decoction on intervertebral disc degeneration. PLoS One 2024; 19:e0310014. [PMID: 39418241 PMCID: PMC11486403 DOI: 10.1371/journal.pone.0310014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent orthopedic condition with lower back pain as the predominant clinical presentation that challenges clinical treatment with few therapeutic options. Duhuo Jisheng Decoction (DHJSD) has been proven effective in the therapy of IVDD, but the precise underlying mechanisms remain not fully elucidated. The current study was designed to test our hypothesis that DHJSD may systematically correct the phenotypic disruption of the gut microbiota and changes in the serum metabolome linked to IVDD. Analysis of the active ingredients of DHJSD by ultra high performance liquid chromatography. An integrated metagenomic and metabonomic approach was used to analyze feces and blood samples from normal and IVDD rats. Compared to the control group, fiber ring pinning on the caudal 3 to caudal 5 segments of the rats caused IVDD and significantly altered the compositions of the intestinal microbiota and serum metabolites. Integrated analysis revealed commonly-altered metabolic pathways shared by both intestinal microbiota and serum metabolome of the IVDD rats. DHJSD inhibited the degenerative process and restored the compositions of the perturbed gut microbiota, particularly the relative abundance of commensal microbes of the Prevotellaceae family. DHJSD also corrected the altered metabolic pathways involved in the metabolism of glycine, serine, threonine, valine, the citric acid cycle, and biosynthesis of leucine and isoleucine. DHJSD inhibited the disc degeneration process by an integrated metagenomic and metabonomic mechanism to restore the microbiome profile and normalize the metabonomic pathways.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Fei Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yongliang Mei
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Daru Guo
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yong Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Houyin Shi
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Dayue Darrel Duan
- Center for Phenomics of Traditional Chinese Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Luzhou Longmatan District People’s Hospital, Luzhou, Sichuan Province, China
| |
Collapse
|
26
|
Nian S, Tang S, Shen S, Yue W, Zhao C, Zou T, Li W, Li N, Lu S, Chen J. Landscape of the Lumbar Cartilaginous End Plate Microbiota and Metabolites in Patients with Modic Changes. J Bone Joint Surg Am 2024; 106:1866-1875. [PMID: 39159220 PMCID: PMC11593973 DOI: 10.2106/jbjs.23.00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
BACKGROUND Modic changes (MCs), vertebral end plate and bone marrow damage observed by magnetic resonance imaging, are an independent risk factor for low back pain. The compositions of and interaction between microbiota and metabolites in the lumbar cartilaginous end plates (LCEPs) of patients with MCs have not been identified. METHODS Patients with lumbar disc degeneration who were undergoing lumbar spinal fusion surgery were recruited between April 2020 and April 2021. LCEPs were collected for 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC/MS)-based targeted metabolomic profiling. Of the 54 patients recruited, 24 had no MCs and 30 had changes classified as Modic type 2 or 3. The primary goal was to identify specific genera of microbiota associated with MCs, and secondary goals included investigating differences in metabolites between patients with and without MCs and exploring the correlation between these metabolites and microorganisms. RESULTS Investigation of the microbiota community structure revealed that both alpha diversity and beta diversity were significantly different between patients with and without MCs, and the abundances of 26 genera were significantly different between these 2 groups. Metabolomic analysis revealed that 26 metabolites were significantly different between the 2 groups. The unsaturated fatty acid pathway was found to be the main pathway related to MCs. Multiomic correlation analysis suggested that Caulobacteraceae (unclassified) and Mycobacterium, Clostridium, Blautia, and Bifidobacterium at the genus level were linked to dysregulation of fatty acid metabolism, contributing to the pathogenesis of MCs. CONCLUSIONS Our study represents a foundational effort to examine the landscape of the microbiota and metabolites in patients with MCs, informing future studies on the pathogenesis of and targeted therapy for MCs. LEVEL OF EVIDENCE Prognostic Level II . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Sunqi Nian
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Shaohua Tang
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wenqiang Yue
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Caiwang Zhao
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Tiannan Zou
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Weichao Li
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Na Li
- Department of Anesthesiology, 920th Hospital of the Joint Logistics Support Force, Kunming, Yunnan, People’s Republic of China
| | - Sheng Lu
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| | - Jiayu Chen
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
27
|
Rajasekaran S, Vasudevan G, Tangavel C, Ramachandran K, Nayagam SM, Muthurajan R, Gopalakrishnan C, Anand SV, Shetty AP, Kanna RM. Does the gut microbiome influence disc health and disease? The interplay between dysbiosis, pathobionts, and disc inflammation: a pilot study. Spine J 2024; 24:1952-1963. [PMID: 38925301 DOI: 10.1016/j.spinee.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND CONTEXT Gut microbiome alterations resulting in inflammatory responses have been implicated in many distant effects on different organs. However, its influence on disc health is still not fully investigated. PURPOSE Our objective was to document the gut biome in healthy volunteers and patients with disc degeneration and to understand the role of gut dysbiosis on human disc health. STUDY DESIGN Experimental case-control study. PATIENT SAMPLE We included 40 patients with disc degeneration (DG) and 20 healthy volunteers (HV). HV comprised of age groups 30 to 60 years with no known record of back pain and no clinical comorbidities, with normal MRI. Diseased group (DG) were patients in the same age group undergoing surgery for disc disease (disc herniation-25; discogenic stenosis-15) and without instability (with Modic-20; and non-Modic-20). OUTCOME MEASURES N/A. METHODS We analyzed 16S V3-V4 rDNA gut metagenome from 20 healthy volunteers (HV) and compared the top signature genera from 40 patients with disc degeneration (DG) across Modic and non-Modic groups. Norgen Stool DNA Kit was used for DNA extraction from ∼200 mg of each faecal sample collected using the Norgen Stool Collection Kit.16S V3-V4 rDNA amplicons were generated with universal bacterial primers 341F and 806R and amplified with Q5 High-Fidelity DNA Polymerase. Libraries were sequenced with 250×2 PE to an average of 0.1 million raw reads per sample (Illumina Novaseq 6000). Demultiplexed raw data was assessed with FastQC, and adapter trimmed reads >Q30 reads were processed in the QIME2 pipeline. Serum C-reactive protein (CRP) was measured by the immunoturbimetry method and Fatty acid-binding protein 5 (FABP5) was measured in albumin-globulin-depleted plasma through global proteome analysis. RESULTS We observed significant gut dysbiosis between HV and DG and also between the Modic and non-Modic groups. In the Modic group, commensals Bifidobacterium and Ruminococcus were significantly depleted, while pathobionts Streptococcus, Prevotella, and Butryvibrio were enriched. Firmicutes/Bacteroidetes ratio was decreased in DG (Modic-0.62, non-Modic-0.43) compared to HV (0.70). Bacteria-producing beneficial short-chain fatty acids were also depleted in DG. Elevated serum CRP and increased FABP5 were observed in DG. CONCLUSION The study revealed gut dysbiosis, an altered Firmicutes/Bacteroidetes ratio, reduced SCFA-producing bacteria, and increased systemic and local inflammation in association with disc disease, especially in Modic changes. The findings have considerable importance for our understanding and prevention of disc degeneration.
Collapse
Affiliation(s)
| | - Gowdaman Vasudevan
- Ganga Research Centre, Vattamalaipalayam, NGGO Colony Post, SF No.442, Coimbatore, Tamil Nadu, India
| | - Chitraa Tangavel
- Ganga Research Centre, Vattamalaipalayam, NGGO Colony Post, SF No.442, Coimbatore, Tamil Nadu, India
| | - Karthik Ramachandran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, India
| | - Sharon Miracle Nayagam
- Ganga Research Centre, Vattamalaipalayam, NGGO Colony Post, SF No.442, Coimbatore, Tamil Nadu, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Lawley Rd, Coimbatore, Tamil Nadu, India
| | - Chellappa Gopalakrishnan
- Ganga Research Centre, Vattamalaipalayam, NGGO Colony Post, SF No.442, Coimbatore, Tamil Nadu, India
| | - Sri Vijay Anand
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, India
| | - Ajoy Prasad Shetty
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, India
| | - Rishi Mugesh Kanna
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, India
| |
Collapse
|
28
|
Li R, Miao Z, Liu Y, Chen X, Wang H, Su J, Chen J. The Brain-Gut-Bone Axis in Neurodegenerative Diseases: Insights, Challenges, and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307971. [PMID: 39120490 PMCID: PMC11481201 DOI: 10.1002/advs.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases are global health challenges characterized by the progressive degeneration of nerve cells, leading to cognitive and motor impairments. The brain-gut-bone axis, a complex network that modulates multiple physiological systems, has gained increasing attention owing to its profound effects on the occurrence and development of neurodegenerative diseases. No comprehensive review has been conducted to clarify the triangular relationship involving the brain-gut-bone axis and its potential for innovative therapies for neurodegenerative disorders. In light of this, a new perspective is aimed to propose on the interplay between the brain, gut, and bone systems, highlighting the potential of their dynamic communication in neurodegenerative diseases, as they modulate multiple physiological systems, including the nervous, immune, endocrine, and metabolic systems. Therapeutic strategies for maintaining the balance of the axis, including brain health regulation, intestinal microbiota regulation, and improving skeletal health, are also explored. The intricate physiological interactions within the brain-gut-bone axis pose a challenge in the development of effective treatments that can comprehensively target this system. Furthermore, the safety of these treatments requires further evaluation. This review offers a novel insights and strategies for the prevention and treatment of neurodegenerative diseases, which have important implications for clinical practice and patient well-being.
Collapse
Affiliation(s)
- Rong Li
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Zong Miao
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Yu'e Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xiao Chen
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Hongxiang Wang
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Jiacan Su
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Juxiang Chen
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
29
|
Behler-Janbeck F, Baranowsky A, Yorgan TA, Jaeckstein MY, Worthmann A, Fuh MM, Gunasekaran K, Tiegs G, Amling M, Schinke T, Heeren J. The short-chain fatty acid receptors Gpr41/43 regulate bone mass by promoting adipogenic differentiation of mesenchymal stem cells. Front Endocrinol (Lausanne) 2024; 15:1392418. [PMID: 39363899 PMCID: PMC11446854 DOI: 10.3389/fendo.2024.1392418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/24/2024] [Indexed: 10/05/2024] Open
Abstract
Bone is a dynamic tissue that is constantly remodeled throughout adult life. Recently, it has been shown that bone turnover decreases shortly after food consumption. This process has been linked to the fermentation of non-digestible food ingredients such as inulin by gut microbes, which results in the production of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate. SCFAs exert various metabolic functions, which in part can be explained by activation of G protein-coupled receptors (Gpr) 41 and 43. However, the potential relevance of a SCFA-Gpr41/43 signaling axis for bone metabolism has not been established. The aim of our study is to investigate the role of Gpr41/43 in bone metabolism and osteogenic differentiation of mesenchymal stem cells. For this purpose, we analyzed the skeletal phenotype of wild type controls (WT) and Gpr41/43 double knockout (Gpr41/43 dKO) mice fed either a chow or an inulin-enriched diet. In addition, we isolated bone marrow derived mesenchymal stem cells from WT and Gpr41/43 dKO mice and differentiated them into osteoblasts in the absence or presence of acetate. MicroCT scanning of femoral bones of Gpr41/43 dKO mice revealed a significant increase of trabecular bone volume and trabecular compared to WT controls. Treatment of WT bone marrow-derived osteoblasts with acetate resulted in decreased mineralization and substantial downregulation of bone formation markers such as Phex, Ptgs2 and Col1a1. Notably, this effect was strongly attenuated in differentiated osteoblasts lacking Gpr41/43. Inversely, acetate supplementation resulted in higher levels of adipocyte marker genes including Pparg, Lpl and Adipoq in bone marrow-derived cells from WT mice, an effect blunted in differentiated cells isolated from Gpr41/43 dKO mice. Overall, these data indicate that acetate regulates bone architecture via SCFA-Gpr41/43 signaling by modulating the osteogenic versus adipogenic differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Friederike Behler-Janbeck
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur A. Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Y. Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marceline M. Fuh
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karthikeyan Gunasekaran
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Ge Y, Jia Z, Zhao S, Zhang W, Shi X, Xie R, Gong Y, Sheng J, van 't Hof RJ, Yang J, Han C, Hu X, Wang Y, Wu Y, Li C, Wang M. Mitigating lead-induced osteoporosis: The role of butyrate in gut-bone axis restoration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116943. [PMID: 39216219 DOI: 10.1016/j.ecoenv.2024.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Lead (Pb) is an environmentally widespread bone toxic pollutant, contributes to the development of osteoporosis. Butyric acid, mainly produced by the fermentation of indigestible dietary fiber by gut microbiota, plays a pivotal role in the maintenance of bone homeostasis. However, the effects of butyric acids on the Pb induced osteoporosis have not yet been elucidated. In this study, our results showed that Pb exposure was negatively related to the abundance of butyric acid, in the Pb-exposed population and Pb-exposed mice. Pb exposure caused gut microbiota disorders, resulting in the decline of butyric acid-producing bacteria, such as Butyrivibrio_crossotus, Clostridium_sp._JN9, and the butyrate-producing enzymes through the acetyl-CoA pathway. Moreover, results from the NHANES data suggested that dietary intake of butyrate was associated with a reduced risk of osteoporosis in lead-burdened populations, particularly among men or participants aged 18-60 years. In addition, butyrate supplementation in mice with chronic Pb exposure improved the bone microarchitectures, repaired intestinal damage, upregulated the proportion of Treg cells. Taken together, these results demonstrated that chronic Pb exposure disturbs the gut-bone axis, which can be restored by butyric acid supplement. Our results suggest that butyrate supplementation is a possible therapeutic strategy for lead-induced bone toxicity.
Collapse
Affiliation(s)
- Yuqiu Ge
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Public Health Research Center, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongtang Jia
- Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Shiting Zhao
- Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - WenChao Zhang
- Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xian Shi
- Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruijin Xie
- Affiliated Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Gong
- Department of Occupational Medicine, Wuxi Center for Disease Control and Prevention, Wuxi, Jiangsu, China
| | - Jixiang Sheng
- Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Rob J van 't Hof
- Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom
| | - Jiatao Yang
- Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chunqing Han
- Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiping Hu
- Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yafeng Wang
- Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Wu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of medicine, Jiangnan University, China; Lab of Modern Environmental Toxicology, School of Public Health Research, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Public Health Research Center, Jiangnan University, Wuxi, Jiangsu, China.
| | - Chunping Li
- Department of Occupational Medicine, Wuxi Center for Disease Control and Prevention, Wuxi, Jiangsu, China.
| | - Miaomiao Wang
- Department of Occupational Medicine, Wuxi Center for Disease Control and Prevention, Wuxi, Jiangsu, China.
| |
Collapse
|
31
|
Lai J, Gong L, Liu Y, Zhang X, Liu W, Han M, Zhou D, Shi S. Associations between gut microbiota and osteoporosis or osteopenia in a cohort of Chinese Han youth. Sci Rep 2024; 14:20948. [PMID: 39251661 PMCID: PMC11385745 DOI: 10.1038/s41598-024-71731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Osteoporosis (OP) is a common metabolic bone disease characterized by low bone mass and microstructural deterioration of bone. Changes in the composition and structure of gut microbiota (GM) are related to changes of bone mass and bone microstructure. However, the relationship between GM and bone mineral density (BMD) is complex, and data are especially scarce for Chinese Han youth. Therefore, 62 Chinese Han youth participants were recruited. Furthermore, according to the T-score evaluation criteria of the World Health Organization (WHO), we divided the BMD levels of participants into three groups: osteoporosis\BDL, osteopenia\BDM, normal bone density\BDH, and the associations between GM community and BMD groups were conducted. According to alpha and beta diversity analysis, significant differences were found in the microbial richness and composition between groups. The dominant phyla of GM in a cohort of Chinese Han youth were Bacteroidota (50.6%) and Firmicutes (41.6%). Anaerobic microorganisms, such as g_Faecalibacterium and g_Megamonas, account for the largest proportion in the gut, which were mainly Firmicutes phylum. The dominant genera and species in the three BMD groups were g_Prevotella, g_Bacteroides, g_Faecalibacterium, g_Megamonas, s_Prevotella copri, s_unclassified_g_Faecalibacterium, s_unclassified_g_Prevotella, s_unclassified_g_Bacteroides and s_Bacteroides plebeius. g_Faecalibacterium, g_Bacteroides and g_Ruminococcus differed between the BDH and BDL groups as well as between the BDH and BDM groups. LEfSe showed three genus communities and eight species communities were enriched in the three BMD groups, respectively. The associations between microbial relative abundance and T-score was not statistically significant by Spearman and regression analysis. In conclusion, the alpha diversity indexes in the BDH group were higher than in the BDL group, and several taxa were identified that may be the targets for diagnosis and therapy of OP.
Collapse
Affiliation(s)
- Junren Lai
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Li Gong
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Yan Liu
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Xuelian Zhang
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 14430, Urumqi, Xinjiang, People's Republic of China
| | - Wenqi Liu
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Meng Han
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China
| | - Duoqi Zhou
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China.
- School of Life Sciences, 1318 North jixian Road, 246133, Anqing, Anhui, People's Republic of China.
| | - Shuiqin Shi
- Anhui Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui College of Life Sciences, Anqing Normal University, 246133, Anqing, Anhui, People's Republic of China.
- School of Life Sciences, 1318 North jixian Road, 246133, Anqing, Anhui, People's Republic of China.
| |
Collapse
|
32
|
Zhao Y, Si S, Ren Y, Wu X, Zhang Z, Tian Y, Li J, Li Y, Hou M, Yao X, Xu Z, Jiang R, Kang X, Gong Y, Li Q, Tian Y. Marine red yeast supplementation improves laying performance by regulating small intestinal homeostasis in aging chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:177-190. [PMID: 39263442 PMCID: PMC11388669 DOI: 10.1016/j.aninu.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/25/2024] [Accepted: 04/03/2024] [Indexed: 09/13/2024]
Abstract
Recent studies have shown that age-related aging evolution is accompanied by imbalances in intestinal homeostasis. Marine red yeast (MRY) is a functional probiotic that has been shown to have antioxidant, immune and other properties. Therefore, we chose 900 healthy Hy-Line Brown hens at 433 d old as the research subjects and evaluated the correlation between intestinal health, laying performance, and egg quality in aged hens through the supplementation of MRY. These laying hens were assigned into 5 groups and received diet supplementation with 0%, 0.5%, 1.0%, 1.5%, and 2% MRY for 12 weeks. The results showed that MRY supplementation increased egg production rate, average egg weight, and egg quality, and decreased feed conversion ratio and daily feed intake (P < 0.05). The MRY supplement improved antioxidant indicators such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), stimulated villus height, and increased the villus height to crypt depth ratio (V/C ratio) in the intestine (P < 0.05). It also regulated the expression of intestinal inflammatory factors (transforming growth factor-β [TGF-β], interleukin [IL]-1β, IL-8, tumor necrosis factor-α [TNF-α]) while increasing serum immunoglobulin G (IgG) levels (P < 0.05). Furthermore, MRY supplementation upregulated the mRNA expression of tight junction proteins (occludin and zonula occludens-1 [ZO-1]), anti-apoptotic gene (Bcl-2), and autophagy-related proteins (beclin-1 and light chain 3I [LC3I]) in the intestine (P < 0.05). The MRY supplement also led to an increase in the concentration of short-chain fatty acids in the cecum, and the relative abundance of the phylum Bacteroidetes, and genera Bacteroides and Rikenellaceae_RC9_gut_group. The LEfSe analysis revealed an enrichment of Sutterella and Akkermansia muciniphila. In conclusion, the results of this experiment indicated that the additional supplementation of MRY can improve the production performance of laying hens and may contribute to the restoration and balance of intestinal homeostasis, which supports the application potential of MRY as a green and efficient feed additive for improving the laying performance in chickens.
Collapse
Affiliation(s)
- Yudian Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Sujin Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yangguang Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jing Li
- AB Vista, Marlborough SN8 4AN, UK
| | - Yijie Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Meng Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xueyang Yao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhaoheng Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Qiang Li
- Henan College of Animal Husbandry and Economics, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
33
|
Mehta M, Hodgson E, Reimer RA, Gabel L. Gut microbiome-targeted therapies and bone health across the lifespan: a scoping review. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39216013 DOI: 10.1080/10408398.2024.2397459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Emerging evidence suggests that bone turnover is influenced by the gut microbiome through critical bone signaling pathways. The purpose of this scoping review is to examine prebiotic, probiotic, and synbiotic interventions on bone outcomes in humans across the lifespan. PubMed, Scopus, and EBSCOhost were searched until January 2023 to identify clinical trials examining bone mineral density (BMD) or bone mineral content (BMC) with gut microbiome interventions. Of three prebiotic interventions, one reported higher areal BMD (aBMD) in adolescents. In two studies in postmenopausal women, no changes in aBMD were observed despite decreased biomarkers of bone resorption. Probiotic interventions in perimenopausal or postmenopausal women demonstrated increased aBMD or attenuated bone loss in various bone regions. All studies observed attenuated bone loss (n = 4) or increased aBMD (n = 1). One study assessed a synbiotic intervention on aBMD and observed decreased biomarkers of bone resorption but no changes in aBMD. Results suggest potential for microbiome-targeted therapies (prebiotics, probiotics and synbiotics) to attenuate bone loss. However, changes in biomarkers of bone turnover were not always accompanied by changes in bone mineralization. Future studies should utilize longer duration interventions to investigate the influence of prebiotic, probiotic, and synbiotic interventions across diverse age, sex, and ethnic cohorts.
Collapse
Affiliation(s)
- Maahika Mehta
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Erin Hodgson
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Raylene A Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Leigh Gabel
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
34
|
Zhang S, Liu Y, Yu W, Gu X. Research trends and hotspots on osteoporosis: a decade-long bibliometric and visualization analysis from 2014 to 2023. Front Med (Lausanne) 2024; 11:1436486. [PMID: 39267978 PMCID: PMC11390546 DOI: 10.3389/fmed.2024.1436486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Background Osteoporosis is characterized by diminished bone density and quality, compromised bone microstructure, and increased bone fragility, culminating in a heightened risk of fracture. Relatively few attempts have been made to survey the breadth of osteoporosis research using bibliometric approaches. This study aims to delineate the current landscape of osteoporosis research, offering clarity and visualization, while also identifying potential future directions for investigation. Methods We retrieved and filtered articles and reviews pertaining to osteoporosis from the Web of Science Core Collection database, specifically the Science Citation Index Expanded (SCI-E) edition, spanning the years 2014 to 2023. Informatics tools such as CiteSpace and VOSviewer were employed to dissect the intellectual framework, discern trends, and pinpoint focal points of interest within osteoporosis research. Results Our dataset comprised 33,928 osteoporosis-related publications, with a notable surge in annual publication numbers throughout the last decade. China and the United States lead in terms of research output. The University of California System contributed substantially to this body of work, with Amgen demonstrating the highest degree of centrality within the network. Cooper Cyrus emerged as a pivotal figure in the field. An analysis of highly-cited studies, co-citation networks, and keyword co-occurrence revealed that recent years have predominantly concentrated on elucidating mechanisms underlying osteoporosis, as well as its diagnosis, prevention, and treatment strategies. Burst detection analyses of citations and keywords highlighted osteoblasts, sarcopenia, gut microbiota, and denosumab as contemporary hotspots within osteoporosis research. Conclusion This bibliometric analysis has provided a visual representation of the fundamental knowledge structure, prevailing trends, and key focal areas within osteoporosis research. The identification of osteoblasts, sarcopenia, gut microbiota, and denosumab as current hotspots may guide future research endeavors. Continued efforts directed at understanding the mechanisms, fracture outcomes, diagnostics, and therapeutics related to osteoporosis are anticipated to deepen our comprehension of this complex disease.
Collapse
Affiliation(s)
- Song Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Ye Liu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xiyao Gu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| |
Collapse
|
35
|
Ma F, Zhang W, Zhou G, Qi Y, Mao HR, Chen J, Lu Z, Wu W, Zou X, Deng D, Lv S, Xiang N, Wang X. Epimedii Folium decoction ameliorates osteoporosis in mice through NLRP3/caspase-1/IL-1β signalling pathway and gut-bone axis. Int Immunopharmacol 2024; 137:112472. [PMID: 38897131 DOI: 10.1016/j.intimp.2024.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
AIM OF THE STUDY This study aimed to determine the effect of Epimedium brevicornu Maxim. (EF) on osteoporosis (OP) and its underlying molecular mechanisms, and to explore the existence of the "Gut-Bone Axis". MATERIAL AND METHODS The impact of EF decoction (EFD) on OP was evaluated using istopathological examination and biochemical assays. Targeted metabolomics was employed to identify key molecules and explore their molecular mechanisms. Alterations in the gut microbiota (GM) were evaluated by 16S rRNA gene sequencing. The role of the GM was clarified using an antibiotic cocktail and faecal microbiota transplantation. RESULTS EFD significantly increased the weight (14.06%), femur length (4.34%), abdominal fat weight (61.14%), uterine weight (69.86%), and insulin-like growth factor 1 (IGF-1) levels (59.48%), while reducing serum type I collagen cross-linked carboxy-terminal peptide (CTX-I) levels (15.02%) in osteoporotic mice. The mechanism of action may involve the regulation of the NLRP3/cleaved caspase-1/IL-1β signalling pathway in improving intestinal tight junction proteins and bone metabolism. Additionally, EFD modulated the abundance of related GM communities, such as Lactobacillus, Coriobacteriaceae, bacteria of family S24-7, Clostridiales, and Prevotella, and increased propionate and butyrate levels. Antibiotic-induced dysbiosis of gut bacteria disrupted OP regulation of bone metabolism, which was restored by the recovery of GM. CONCLUSIONS Our study is the first to demonstrate that EFD works in an OP mouse model by utilising GM and butyric acid. Thus, EF shows promise as a potential remedy for OP in the future.
Collapse
Affiliation(s)
- Fuqiang Ma
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China; The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, 24 Jinghua Road, Luoyang, Henan 471003, PR China
| | - Weiming Zhang
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China; Department of Dermatology, Wuhan No.1 Hospital, 215 Zhongshan Avenue, Wuhan, Hubei 430022, PR China
| | - Guangwen Zhou
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Yu Qi
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - He-Rong Mao
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Jie Chen
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Zhilin Lu
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Wenjing Wu
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China
| | - Xinrong Zou
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China
| | - Danfang Deng
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China
| | - Shenhui Lv
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China.
| | - Nan Xiang
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China.
| | - Xiaoqin Wang
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China.
| |
Collapse
|
36
|
Gvozdenović N, Šarac I, Ćorić A, Karan S, Nikolić S, Ždrale I, Milešević J. Impact of Vitamin D Status and Nutrition on the Occurrence of Long Bone Fractures Due to Falls in Elderly Subjects in the Vojvodina Region of Serbia. Nutrients 2024; 16:2702. [PMID: 39203838 PMCID: PMC11356805 DOI: 10.3390/nu16162702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Bone fractures are a significant public health issue among elderly subjects. This study examines the impact of diet and vitamin D status on the risk of long bone fractures due to falls in elderly subjects in Vojvodina, Serbia. Conducted at the University Clinical Center of Vojvodina in autumn/winter 2022-2023, the study included 210 subjects >65 years: 105 (F: 80/M: 15) with long bone fractures due to falls and 105 (F: 80/M: 15) controls. Groups were similar regarding age and BMI. Dietary intakes (by two 24-h recalls) and serum vitamin D levels were analyzed. The fracture group had a significantly lower median daily vitamin D intake (1.4 μg/day vs. 5.8 μg/day), intake of calcium, energy, proteins, fats, fibers, dairy products, eggs, fish, edible fats/oils, and a higher intake of sweets (p < 0.001 for all). Serum vitamin D levels were significantly lower in the fracture group (40.0 nmol/L vs. 76.0 nmol/L, p < 0.001). Logistic regression identified serum vitamin D as the most important protective factor against fractures, and ROC curve analysis indicated that serum vitamin D levels > 50.5 nmol/L decreased fracture risk. Nutritional improvements (increased intake of vitamin D and protein sources such as fish, eggs, and dairy), increased sun exposure, and routine vitamin D supplementation during winter are advised.
Collapse
Affiliation(s)
- Nemanja Gvozdenović
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Center of Vojvodina, 21137 Novi Sad, Serbia
| | - Ivana Šarac
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia;
| | - Andrijana Ćorić
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
| | - Saša Karan
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Center of Vojvodina, 21137 Novi Sad, Serbia
| | - Stanislava Nikolić
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
- Center of Laboratory Medicine, University Clinical Center of Vojvodina, 21137 Novi Sad, Serbia
| | - Isidora Ždrale
- Faculty of Medicine, University of Novi Sad, 21137 Novi Sad, Serbia; (N.G.); (A.Ć.); (S.K.); (S.N.); (I.Ž.)
| | - Jelena Milešević
- Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia;
| |
Collapse
|
37
|
Chen M, Wei W, Li Y, Ge S, Shen J, Guo J, Zhang Y, Huang X, Sun X, Cheng D, Zheng H, Chang F, Chen J, Liu J, Zhang Q, Zhou T, Yu K, Tang P. Cholestyramine alleviates bone and muscle loss in irritable bowel syndrome via regulating bile acid metabolism. Cell Prolif 2024; 57:e13638. [PMID: 38523511 PMCID: PMC11294414 DOI: 10.1111/cpr.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a widespread gastrointestinal disorder known for its multifaceted pathogenesis and varied extraintestinal manifestations, yet its implications for bone and muscle health are underexplored. Recent studies suggest a link between IBS and musculoskeletal disorders, but a comprehensive understanding remains elusive, especially concerning the role of bile acids (BAs) in this context. This study aimed to elucidate the potential contribution of IBS to bone and muscle deterioration via alterations in gut microbiota and BA profiles, hypothesizing that cholestyramine could counteract these adverse effects. We employed a mouse model to characterize IBS and analysed its impact on bone and muscle health. Our results revealed that IBS promotes bone and muscle loss, accompanied by microbial dysbiosis and elevated BAs. Administering cholestyramine significantly mitigated these effects, highlighting its therapeutic potential. This research not only confirms the critical role of BAs and gut microbiota in IBS-associated bone and muscle loss but also demonstrates the efficacy of cholestyramine in ameliorating these conditions, thereby contributing significantly to the field's understanding and offering a promising avenue for treatment.
Collapse
Affiliation(s)
- Ming Chen
- Senior Department of OrthopedicsThe Fourth Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Wei Wei
- Department of Clinical Nutrition, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yi Li
- Senior Department of OrthopedicsThe Fourth Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Siliang Ge
- Senior Department of OrthopedicsThe Fourth Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Junmin Shen
- Senior Department of OrthopedicsThe Fourth Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Jiayu Guo
- Department of Clinical Nutrition, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Yu Zhang
- Department of Clinical Nutrition, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Xiang Huang
- Senior Department of OrthopedicsThe Fourth Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Xinyu Sun
- Senior Department of OrthopedicsThe Fourth Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Dongliang Cheng
- Senior Department of OrthopedicsThe Fourth Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Huayong Zheng
- Senior Department of OrthopedicsThe Fourth Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Feifan Chang
- Senior Department of OrthopedicsThe Fourth Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Junyu Chen
- Senior Department of OrthopedicsThe Fourth Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Jiang Liu
- Department of Orthopedic SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qinxiang Zhang
- Senior Department of OrthopedicsThe Fourth Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Tianjunke Zhou
- Senior Department of OrthopedicsThe Fourth Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| | - Kang Yu
- Department of Clinical Nutrition, Peking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Peifu Tang
- Senior Department of OrthopedicsThe Fourth Medical Center of Chinese PLA General HospitalBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijingChina
| |
Collapse
|
38
|
Wu H, Sun Z, Guo Q, Li C. Mapping knowledge landscapes and research frontiers of gastrointestinal microbiota and bone metabolism: a text-mining study. Front Cell Infect Microbiol 2024; 14:1407180. [PMID: 39055979 PMCID: PMC11270605 DOI: 10.3389/fcimb.2024.1407180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction Extensive research efforts have been dedicated to elucidating the intricate pathways by which gastrointestinal microbiota and their metabolites exert influence on the processes of bone formation. Nonetheless, a notable gap exists in the literature concerning a bibliometric analysis of research trends at the nexus of gastrointestinal microbiota and bone metabolism. Methods To address this scholarly void, the present study employs a suite of bibliometric tools including online platforms, CiteSpace and VOSviewer to scrutinize the pertinent literature in the realm of gastrointestinal microbiota and bone metabolism. Results and discussion Examination of the temporal distribution of publications spanning from 2000 to 2023 reveals a discernible upward trajectory in research output, characterized by an average annual growth rate of 19.2%. Notably, China and the United States emerge as primary contributors. Predominant among contributing institutions are Emory University, Harvard University, and the University of California. Pacifici R from Emory University contributed the most research with 15 publications. In the realm of academic journals, Nutrients emerges as the foremost publisher, followed closely by Frontiers in Microbiology and PLOS One. And PLOS One attains the highest average citations of 32.48. Analysis of highly cited papers underscores a burgeoning interest in the therapeutic potential of probiotics or probiotic blends in modulating bone metabolism by augmenting host immune responses. Notably, significant research attention has coalesced around the therapeutic interventions of probiotics, particularly Lactobacillus reuteri, in osteoporosis, as well as the role of gastrointestinal microbiota in the etiology and progression of osteoarthritis. Keyword analysis reveals prevalent terms including gut microbiota, osteoporosis, bone density, probiotics, inflammation, SCFAs, metabolism, osteoarthritis, calcium absorption, obesity, double-blind, prebiotics, mechanisms, postmenopausal women, supplementation, risk factors, oxidative stress, and immune system. Future research endeavors warrant a nuanced exploration of topics such as inflammation, obesity, SCFAs, postmenopausal osteoporosis, skeletal muscle, oxidative stress, double-blind trials, and pathogenic mechanisms. In summary, this study presents a comprehensive bibliometric analysis of global research on the interplay between gastrointestinal microbiota and bone metabolism, offering valuable insights for scholars, particularly nascent researchers, embarking on analogous investigations within this domain.
Collapse
Affiliation(s)
- Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Qiang Guo
- Department of Spine and Joint Surgery, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Cheng Li
- Department of Spine Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Center for Musculoskeletal Surgery (CMSC), Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
39
|
Li W, Zhan M, Wen Y, Chen Y, Zhang Z, Wang S, Tian D, Tian S. Recent Progress of Oral Functional Nanomaterials for Intestinal Microbiota Regulation. Pharmaceutics 2024; 16:921. [PMID: 39065618 PMCID: PMC11280463 DOI: 10.3390/pharmaceutics16070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota is closely associated with human health, and alterations in gut microbiota can influence various physiological and pathological activities in the human body. Therefore, microbiota regulation has become an important strategy in current disease treatment, albeit facing numerous challenges. Nanomaterials, owing to their excellent protective properties, drug release capabilities, targeting abilities, and good biocompatibility, have been widely developed and utilized in pharmaceuticals and dietary fields. In recent years, significant progress has been made in research on utilizing nanomaterials to assist in regulating gut microbiota for disease intervention. This review explores the latest advancements in the application of nanomaterials for microbiota regulation and offers insights into the future development of nanomaterials in modulating gut microbiota.
Collapse
Affiliation(s)
- Wanneng Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Minle Zhan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Yue Wen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Zhongchao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (W.L.); (Y.W.); (Y.C.); (Z.Z.); (S.W.)
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
40
|
Hansdah K, Lui JC. Emerging Insights into the Endocrine Regulation of Bone Homeostasis by Gut Microbiome. J Endocr Soc 2024; 8:bvae117. [PMID: 38957653 PMCID: PMC11215793 DOI: 10.1210/jendso/bvae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 07/04/2024] Open
Abstract
Gut microbiota plays an important role in the regulation of bone homeostasis and bone health. Recent studies showed that these effects could be mediated through microbial metabolites released by the microbiota like short-chain fatty acids, metabolism of endogenous molecules such as bile acids, or a complex interplay between microbiota, the endocrine system, and the immune system. Importantly, some studies showed a reciprocal relationship between the endocrine system and gut microbiota. For instance, postmenopausal estrogen deficiency could lead to dysbiosis of the gut microbiota, which could in turn affect various immune response and bone remodeling. In addition, evidence showed that shift in the indigenous gut microbiota caused by antibiotics treatment may also impact normal skeletal growth and maturation. In this mini-review, we describe recent findings on the role of microbiome in bone homeostasis, with a particular focus on molecular mechanisms and their interactions with the endocrine and immune system. We will also discuss the recent findings on estrogen deficiency and microbiota dysbiosis, and the clinical implications for the development of new therapeutic strategies for osteoporosis and other bone disorders.
Collapse
Affiliation(s)
- Kirtal Hansdah
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Zhao X, Liu J, Zhang L, Ma C, Liu Y, Wen H, Li CQ. Gut microbiota, inflammatory factors, and scoliosis: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38561. [PMID: 38875409 PMCID: PMC11175948 DOI: 10.1097/md.0000000000038561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Several studies have reported a potential association between the gut microbiota (GM) and scoliosis. However, the causal relationship between GM and scoliosis and the role of inflammatory factors (IFs) as mediators remain unclear. This study aimed to analyze the relationship between GM, IFs, and scoliosis. We investigated whether IFs act as mediators in pathways from the GM to scoliosis. Additionally, using reverse Mendelian randomization (MR) analysis, we further investigated the potential impact of genetic predisposition to scoliosis on the GM and IFs. In this study, we searched for publicly available genome-wide association study aggregate data and utilized the MR method to establish bidirectional causal relationships among 211 GM taxa, 91 IFs, and scoliosis. To ensure the reliability of our research findings, we employed 5 MR methods, with the inverse variance weighting approach serving as the primary statistical method, and assessed the robustness of the results through various sensitivity analyses. Additionally, we investigated whether IFs mediate pathways from GM to scoliosis. Three negative causal correlations were observed between the genetic predisposition to GM and scoliosis. Additionally, both positive and negative correlations were found between IFs and scoliosis, with 3 positive and 3 negative correlations observed. IFs do not appear to act as mediators in the pathway from GM to scoliosis. In conclusion, this study demonstrated a causal association between the GM, IFs, and scoliosis, indicating that IFs are not mediators in the pathway from the GM to scoliosis. These findings offer new insights into prevention and treatment strategies for scoliosis.
Collapse
Affiliation(s)
- Xiaojiang Zhao
- Department of Physical Education and Arts, Bengbu Medical College, Bengbu, China
- Graduate School, Adamson University, Manila, Philippines
| | - Jingjing Liu
- Physical Education Department, Bozhou University, Bozhou, China
| | - Lei Zhang
- Department of Physical Education and Arts, Bengbu Medical College, Bengbu, China
| | - Chao Ma
- Department of Physical Education and Arts, Bengbu Medical College, Bengbu, China
| | - Yanan Liu
- Department of Physical Education and Arts, Bengbu Medical College, Bengbu, China
| | - Hebao Wen
- Department of Physical Education and Arts, Bengbu Medical College, Bengbu, China
| | - Chang Qing Li
- Department of Physical Education and Arts, Bengbu Medical College, Bengbu, China
| |
Collapse
|
42
|
Lu L, Li J, Liu L, Wang C, Xie Y, Yu X, Tian L. Grape seed extract prevents oestrogen deficiency-induced bone loss by modulating the gut microbiota and metabolites. Microb Biotechnol 2024; 17:e14485. [PMID: 38850270 PMCID: PMC11162104 DOI: 10.1111/1751-7915.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024] Open
Abstract
Proanthocyanidin-rich grape seed extract (GSE) has been shown to have the potential to protect bones, although the underlying mechanism remains unknown. The current study aims to explore GSE's preventive and therapeutic impact on bone loss induced by oestrogen deficiency and the underlying mechanism through the gut microbiota (GM) and metabolomic responses. In oestrogen-deficient ovariectomized (OVX) mice, GSE ameliorated bone loss by inhibiting the expansion of bone marrow adipose tissue (BMAT), restoring BMAT lipolysis and promoting bone formation. GSE regulated OVX-induced GM dysbiosis by reducing the abundance of opportunistic pathogenic bacteria, such as Alistipes, Turicibacter and Romboutsia, while elevating the abundance of beneficial bacteria, such as Bifidobacterium. The modified GM primarily impacted lipid and amino acid metabolism. Furthermore, the serum metabolites of GSE exhibited a significant enrichment in lipid metabolism. In summary, GSE shows potential as a functional food for preventing oestrogen deficiency-induced bone loss by modulating GM and metabolite-mediated lipid metabolism.
Collapse
Affiliation(s)
- Lingyun Lu
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China HospitalSichuan UniversityChengduChina
| | - Jiao Li
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China HospitalSichuan UniversityChengduChina
| | - Lu Liu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Cui Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Ying Xie
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
43
|
Shanmugam S, Barbé F, Park JH, Chevaux E, Kim IH. Supplemental effect of Pediococcus acidilactici CNCM I-4622 probiotic on the laying characteristics and calcium and phosphorus metabolism in laying hens. Sci Rep 2024; 14:12489. [PMID: 38821966 PMCID: PMC11143341 DOI: 10.1038/s41598-024-62779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
The close link between intestinal microbiota and bone health ('gut-bone' axis) has recently been revealed: the modulation of the amount and nature of bacteria present in the intestinal tract has an impact on bone health and calcium (Ca) metabolism. Probiotics are known to favorably impact the intestinal microbiota. The objective of this study was to investigate the effect of Pediococcus acidilactici CNCM I-4622 (PA) on laying performance, egg/eggshell quality, Ca metabolism and bone mineralization and resistance in relatively old layers (50 wks old at the beginning of the experiment) during 14 weeks. 480 Hy Line brown layers were divided into 2 groups (CON and PA: 3 layers/rep, 80 rep/group) and fed with a diet formulated to be suboptimal in calcium (Ca) and phosphorus (P) (- 10% of the requirements). The total egg weight was improved by 1.1% overall with PA, related to an improvement of the weight of marketable eggs (+ 0.9%). PA induced a decreased % of downgraded eggs, mainly broken eggs (- 0.4 pts) and FCR improvement (- 0.8% for all eggs, - 0.9% for marketable eggs). PA also led to higher Haugh units (HU: + 7.4%). PA tended to decrease crypt depth after the 14 weeks of supplementation period in the jejunum (- 25.2%) and ileum (- 17.6%). As a consequence, the VH/CD ratio appeared increased by PA at the end of the trial in the jejunum (+ 63.0%) and ileum (+ 48.0%). Ca and P retention were increased by 4 pts following PA supplementation, translating into increased bone hardness (+ 19%), bone cohesiveness (+ 43%) and bone Ca & P (+ 1 pt) for PA-supplemented layers. Blood Ca and P were respectively improved by 5% and 12% with PA. In addition, blood calcitriol and osteocalcin concentrations were respectively improved by + 83% and + 3% in PA group at the end of the trial, compared to CON group. There was no difference between the 2 groups for ALP (alkaline phosphatase) and PTH (parathyroid hormone). PA significantly decreased the expression of the following genes: occludin in the small intestine, calbindin 1 in the ovarian tissue and actin B in the bone. PA therefore improved zootechnical performance of these relatively old layers, and egg quality. The parallel increase in Ca and P in the blood and in the bone following PA supplementation suggests an improvement of the mineral supply for eggshell formation without impacting bone integrity, and even increasing bone resistance.
Collapse
Affiliation(s)
- Sureshkumar Shanmugam
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea
| | - Florence Barbé
- Lallemand SAS, 19 rue des Briquetiers, 31702, Blagnac Cedex, France.
| | - Jae Hong Park
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea
| | - Eric Chevaux
- Lallemand SAS, 19 rue des Briquetiers, 31702, Blagnac Cedex, France
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea.
| |
Collapse
|
44
|
Yang K, Chen Y, Wang M, Zhang Y, Yuan Y, Hou H, Mao YH. The Improvement and Related Mechanism of Microecologics on the Sports Performance and Post-Exercise Recovery of Athletes: A Narrative Review. Nutrients 2024; 16:1602. [PMID: 38892536 PMCID: PMC11174581 DOI: 10.3390/nu16111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The diversity and functionality of gut microbiota may play a crucial role in the function of human motor-related systems. In addition to traditional nutritional supplements, there is growing interest in microecologics due to their potential to enhance sports performance and facilitate post-exercise recovery by modulating the gut microecological environment. However, there is a lack of relevant reviews on this topic. This review provides a comprehensive overview of studies investigating the effects of various types of microecologics, such as probiotics, prebiotics, synbiotics, and postbiotics, on enhancing sports performance and facilitating post-exercise recovery by regulating energy metabolism, mitigating oxidative-stress-induced damage, modulating immune responses, and attenuating bone loss. Although further investigations are warranted to elucidate the underlying mechanisms through which microecologics exert their effects. In summary, this study aims to provide scientific evidence for the future development of microecologics in athletics.
Collapse
Affiliation(s)
- Keer Yang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yonglin Chen
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Minghan Wang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yishuo Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Haoyang Hou
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
| | - Yu-Heng Mao
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (K.Y.); (Y.C.); (M.W.); (Y.Z.); (Y.Y.); (H.H.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
45
|
Masheghati F, Asgharzadeh MR, Jafari A, Masoudi N, Maleki-Kakelar H. The role of gut microbiota and probiotics in preventing, treating, and boosting the immune system in colorectal cancer. Life Sci 2024; 344:122529. [PMID: 38490297 DOI: 10.1016/j.lfs.2024.122529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
The gut microbiome plays a significant role in developing colorectal cancer (CRC). The gut microbiome usually acts as a protective barrier against harmful pathogens and infections in the intestine, while also regulating inflammation by affecting the human immune system. The gut microbiota and probiotics play a role not only in intestinal inflammation associated with tumor formation but also in regulating anti-cancer immune response. As a result, they associated with tumor progression and the effectiveness of anti-cancer therapies. Research indicates that gut microbiota and probiotics can be used as biomarkers to predict the impact of immunotherapy and enhance its efficacy in treating CRC by regulating it. This review examines the importance of gut microbiota and probiotics in the development and progression of CRC, as well as their synergistic impact on anti-cancer treatments.
Collapse
Affiliation(s)
- Forough Masheghati
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Naser Masoudi
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of General Surgery, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
46
|
Han D, Wang W, Gong J, Ma Y, Li Y. Microbiota metabolites in bone: Shaping health and Confronting disease. Heliyon 2024; 10:e28435. [PMID: 38560225 PMCID: PMC10979239 DOI: 10.1016/j.heliyon.2024.e28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| |
Collapse
|
47
|
Cook CV, Lighty AM, Smith BJ, Ford Versypt AN. A review of mathematical modeling of bone remodeling from a systems biology perspective. FRONTIERS IN SYSTEMS BIOLOGY 2024; 4:1368555. [PMID: 40012834 PMCID: PMC11864782 DOI: 10.3389/fsysb.2024.1368555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Bone remodeling is an essential, delicately balanced physiological process of coordinated activity of bone cells that remove and deposit new bone tissue in the adult skeleton. Due to the complex nature of this process, many mathematical models of bone remodeling have been developed. Each of these models has unique features, but they have underlying patterns. In this review, the authors highlight the important aspects frequently found in mathematical models for bone remodeling and discuss how and why these aspects are included when considering the physiology of the bone basic multicellular unit, which is the term used for the collection of cells responsible for bone remodeling. The review also emphasizes the view of bone remodeling from a systems biology perspective. Understanding the systemic mechanisms involved in remodeling will help provide information on bone pathology associated with aging, endocrine disorders, cancers, and inflammatory conditions and enhance systems pharmacology. Furthermore, some features of the bone remodeling cycle and interactions with other organ systems that have not yet been modeled mathematically are discussed as promising future directions in the field.
Collapse
Affiliation(s)
- Carley V. Cook
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Ariel M. Lighty
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Brenda J. Smith
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, United States
- Department of Obstetrics and Gynecology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
48
|
Liu H, Song P, Zhang H, Zhou F, Ji N, Wang M, Zhou G, Han R, Liu X, Weng W, Tan H, Wang S, Zheng L, Jing Y, Su J. Synthetic biology-based bacterial extracellular vesicles displaying BMP-2 and CXCR4 to ameliorate osteoporosis. J Extracell Vesicles 2024; 13:e12429. [PMID: 38576241 PMCID: PMC10995478 DOI: 10.1002/jev2.12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Osteoporosis (OP) is a systematic bone disease characterized by low bone mass and fragile bone microarchitecture. Conventional treatment for OP has limited efficacy and long-term toxicity. Synthetic biology makes bacterial extracellular vesicle (BEVs)-based therapeutic strategies a promising alternative for the treatment of OP. Here, we constructed a recombinant probiotics Escherichia coli Nissle 1917-pET28a-ClyA-BMP-2-CXCR4 (ECN-pClyA-BMP-2-CXCR4), in which BMP-2 and CXCR4 were overexpressed in fusion with BEVs surface protein ClyA. Subsequently, we isolated engineered BEVs-BMP-2-CXCR4 (BEVs-BC) for OP therapy. The engineered BEVs-BC exhibited great bone targeting in vivo. In addition, BEVs-BC had good biocompatibility and remarkable ability to promote osteogenic differentiation of BMSCs. Finally, the synthetic biology-based BEVs-BC significantly prevented the OP in an ovariectomized (OVX) mouse model. In conclusion, we constructed BEVs-BC with both bone-targeting and bone-forming in one-step using synthetic biology, which provides an effective strategy for OP and has great potential for industrialization.
Collapse
|
49
|
Huang F, Pan H, Tan Z, Chen L, Li T, Liu Y. Prevotella histicola Prevented Particle-Induced Osteolysis via Gut Microbiota-Dependent Modulation of Inflammation in Ti-Treated Mice. Probiotics Antimicrob Proteins 2024; 16:383-393. [PMID: 36897512 DOI: 10.1007/s12602-023-10057-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Wear particles generated from total joint replacements induce chronic osteolysis mediated by inflammatory upregulation, which leads to implant failure. Recent studies have suggested an important role of the gut microbiota in modulating the host's metabolism and immune system, leading to alterations in bone mass. Following gavage with P. histicola, micro-CT and HE staining revealed that osteolysis was significantly reduced in titanium (Ti)-treated mice. Immunofluorescence analysis revealed an increased macrophage (M)1/M2 ratio in the guts of Ti-treated mice, which decreased when P. histicola was added. P. histicola was also found to upregulate the tight junction proteins ZO-1, occludin, claudin-1, and MUC2 in the gut, reduce the levels of inflammatory factors IL-1β, IL-6, IL-8, and TNF-α, primarily in the ileum and colon, and decrease the expression of IL-1β and TNF-α and increase the level of IL-10 in the serum and cranium. Furthermore, P. histicola treatment resulted in a significant downregulation of CTX-1, RANKL, and RANKL/OPG. These findings demonstrate that P. histicola significantly mitigates osteolysis in Ti-treated mice by improving intestinal microbiota that repairs intestinal leakage and reduces systemic and local inflammation which in turn inhibits RANKL expression for bone resorption. P. histicola treatment may thus be therapeutically beneficial for particle-induced osteolysis.
Collapse
Affiliation(s)
- Furong Huang
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, Wenzhou, 325000, China
| | - Hao Pan
- Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, Wenzhou, 325000, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zenglin Tan
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lei Chen
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ting Li
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yangbo Liu
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
50
|
Zhou K, Xie J, Su Y, Fang J. Lactobacillus reuteri for chronic periodontitis: focus on underlying mechanisms and future perspectives. Biotechnol Genet Eng Rev 2024; 40:381-408. [PMID: 36856460 DOI: 10.1080/02648725.2023.2183617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Chronic periodontitis is a common oral disorder caused by pathogenic bacteria. Despite the wide use of antibiotics as the conventional adjunctive treatment, the challenges of increased antibiotic resistance and limited therapeutic effect receive considerable attention and the developments of alternative treatments gain increasing consideration. Growing evidence showed that Lactobacillus reuteri (LR) may represent a promising alternative adjunct for chronic periodontitis. It can attenuate inflammation and reduce tissue disruption. LR-assisted treatment has been shown to be effective and relatively safe in multiple clinical trials, and accumulating evidence suggests its significant biological roles. In the current review, we focus on capturing the underlying mechanisms of LR involved in chronic periodontitis, thereby representing a scientific foundation for LR-assisted therapy. Furthermore, we point out the challenges and future directions for further clinical trials to improve the clinical applicability for LR.
Collapse
Affiliation(s)
- Keyi Zhou
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Jiaman Xie
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Yuan Su
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Jingxian Fang
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| |
Collapse
|