1
|
Moghadam Fard A, Goodarzi P, Mottahedi M, Garousi S, Zadabhari H, Kalantari Shahijan M, Esmaeili S, Nabi-Afjadi M, Yousefi B. Therapeutic applications of melatonin in disorders related to the gastrointestinal tract and control of appetite. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5335-5362. [PMID: 38358468 DOI: 10.1007/s00210-024-02972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Most animals have large amounts of the special substance melatonin, which is controlled by the light/dark cycle in the suprachiasmatic nucleus. According to what is now understood, the gastrointestinal tract (GIT) and other areas of the body are sites of melatonin production. According to recent studies, the GIT and adjacent organs depend critically on a massive amount of melatonin. Not unexpectedly, melatonin's many biological properties, such as its antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-metastasis, and antiangiogenic properties, have drawn the attention of researchers more and more. Because melatonin is an antioxidant, it produces a lot of secretions in the GIT's mucus and saliva, which shields cells from damage and promotes the development of certain GIT-related disorders. Melatonin's ability to alter cellular behavior in the GIT and other associated organs, such as the liver and pancreas, is another way that it functions. This behavior alters the secretory and metabolic activities of these cells. In this review, we attempted to shed fresh light on the many roles that melatonin plays in the various regions of the gastrointestinal tract by focusing on its activities for the first time.
Collapse
Affiliation(s)
| | - Pardis Goodarzi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zadabhari
- Physiotherapy and Rehabilitation Faculty, Medipol University Health of Science, Istanbul, Turkey
| | | | - Saeedeh Esmaeili
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahman Yousefi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Arias-Esquivel AM, Vasco ACCDM, Lance J, Warren LK, Rodriguez-Campos LA, Lee MC, Rodriguez CN, Wickens CL. Investigating the gastrointestinal physiology of mature horses with and without a history of cribbing behavior in response to feeding a digestive support supplement. J Equine Vet Sci 2024; 132:104964. [PMID: 37989472 DOI: 10.1016/j.jevs.2023.104964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023]
Abstract
Cribbing, a stereotypic oral behavior observed in horses, involves placing incisors on a fixed object, arching the neck, pulling against the object, and emitting an audible grunt. This behavior has been associated with gastrointestinal (GI) dysfunction and gastric ulceration. In this randomized crossover study, we investigated the impact of a GI support supplement (SPL) on the GI environment and physiology of four cribbing (CB) and four non-cribbing horses (NCB). Mature Quarter Horses, acclimated to individual stalls for 16 hours daily with paddock turnout in pairs for 8 hours per day, were randomly assigned to receive either the SPL or placebo for 21 days, followed by a 2-week washout period. Fecal and gastric samples were collected for pH determination and blood samples were analyzed for serum cortisol and gastrin levels. Endoscopic examinations assessed gastric ulcer severity, and cribbing frequency and bouts were recorded via video surveillance. Data were analyzed using a mixed-model ANOVA. Results showed no differences in fecal and gastric pH between cribbing statuses. However, an interaction between supplementation and cribbing status was observed for squamous mucosa ulcer scores (P=0.003). There were no differences in glandular mucosa ulcer scores, serum cortisol, serum gastrin, and crib-bite count between CB and NCB horses or between supplementation groups. Crib-bout duration did not differ with supplementation, but differences were found between periods (P<0.05) and hour ranges (P<0.001). Our findings suggest that the GI support supplement may not effectively address cribbing behavior or alter the GI environment in NCB or CB horses.
Collapse
Affiliation(s)
- Ana M Arias-Esquivel
- Universidad de Costa Rica, Escuela de Zootecnia, San Pedro Montes de Oca, San José, Costa Rica 11501-2060; University of Florida, Department of Animal Sciences, Gainesville, Florida, United States 32611.
| | | | - Jill Lance
- University of Florida, Department of Animal Sciences, Gainesville, Florida, United States 32611
| | - Lori K Warren
- University of Florida, Department of Animal Sciences, Gainesville, Florida, United States 32611
| | - Luis A Rodriguez-Campos
- Universidad de Costa Rica, Escuela de Zootecnia, San Pedro Montes de Oca, San José, Costa Rica 11501-2060
| | - Megan C Lee
- University of Florida, Department of Animal Sciences, Gainesville, Florida, United States 32611
| | - Christina N Rodriguez
- University of Florida, Department of Animal Sciences, Gainesville, Florida, United States 32611
| | - Carissa L Wickens
- University of Florida, Department of Animal Sciences, Gainesville, Florida, United States 32611
| |
Collapse
|
3
|
Li W, Li T, Liu L, Han Q, Zhang H, Sun Y, Hao R, Ma S. Seasonal photoperiodic influence of pineal melatonin on hypothalamic-pituitary-adrenal axis-hippocampal-receptor in male rats. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
4
|
Peters K, Dahlgren D, Lennernäs H, Sjöblom M. Melatonin-Activated Receptor Signaling Pathways Mediate Protective Effects on Surfactant-Induced Increase in Jejunal Mucosal Permeability in Rats. Int J Mol Sci 2021; 22:10762. [PMID: 34639101 PMCID: PMC8509405 DOI: 10.3390/ijms221910762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/22/2022] Open
Abstract
A well-functional intestinal mucosal barrier can be compromised as a result of various diseases, chemotherapy, radiation, and chemical exposures including surfactants. Currently, there are no approved drugs targeting a dysfunctional intestinal barrier, which emphasizes a significant medical need. One candidate drug reported to regulate intestinal mucosal permeability is melatonin. However, it is still unclear if its effect is primarily receptor mediated or antioxidative, and if it is associated with enteric neural pathways. The aim of this rat intestinal perfusion study was to investigate the mechanisms of melatonin and nicotinic acetylcholine receptors on the increase in intestinal mucosal clearance of 51Cr-labeled ethylenediaminetetraacetate induced by 15 min luminal exposure to the anionic surfactant, sodium dodecyl sulfate. Our results show that melatonin abolished the surfactant-induced increase in intestinal permeability and that this effect was inhibited by luzindole, a melatonin receptor antagonist. In addition, mecamylamine, an antagonist of nicotinic acetylcholine receptors, reduced the surfactant-induced increase in mucosal permeability, using a signaling pathway not influenced by melatonin receptor activation. In conclusion, our results support melatonin as a potentially potent candidate for the oral treatment of a compromised intestinal mucosal barrier, and that its protective effect is primarily receptor-mediated.
Collapse
Affiliation(s)
- Karsten Peters
- Department of Neuroscience, Gastrointestinal Physiology, Uppsala University, 751 24 Uppsala, Sweden;
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, 752 37 Uppsala, Sweden; (D.D.); (H.L.)
| | - David Dahlgren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, 752 37 Uppsala, Sweden; (D.D.); (H.L.)
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and Development, Uppsala University, 752 37 Uppsala, Sweden; (D.D.); (H.L.)
| | - Markus Sjöblom
- Department of Neuroscience, Gastrointestinal Physiology, Uppsala University, 751 24 Uppsala, Sweden;
| |
Collapse
|
5
|
Matos RS, Oriá RB, Bruin PFC, Pinto DV, Viana AFSC, Santos FA, Duarte ASG, Bruin VMS. Acute blockade of endogenous melatonin by Luzindole, with or without peripheral LPS injection, induces jejunal inflammation and morphological alterations in Swiss mice. ACTA ACUST UNITED AC 2021; 54:e11215. [PMID: 34431873 PMCID: PMC8389610 DOI: 10.1590/1414-431x2021e11215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022]
Abstract
This study investigated the acute blockade of endogenous melatonin (MLT) using Luzindole with or without systemic lipopolysaccharide (LPS) challenge and evaluated changes in inflammatory and oxidative stress markers in the mouse jejunum. Luzindole is an MT1/MT2 MLT receptor antagonist. Both receptors occur in the small intestine. Swiss mice were treated with either saline (0.35 mg/kg, ip), Luzindole (0.35 mg/kg, ip), LPS (1.25 mg/kg, ip), or Luzindole+LPS (0.35 and 1.25 mg/kg, ip, respectively). Jejunum samples were evaluated regarding intestinal morphometry, histopathological crypt scoring, and PAS-positive villus goblet cell counting. Inflammatory Iba-1, interleukin (IL)-1β, tumor necrosis factor (TNF)-α, nuclear factor (NF)-kB, myeloperoxidase (MPO), and oxidative stress (NP-SHs, catalase, MDA, nitrate/nitrite) markers were assessed. Mice treated with Luzindole, LPS, and Luzindole+LPS showed villus height shortening. Crypt damage was worse in the LPS group. Luzindole, LPS, and Luzindole+LPS reduced the PAS-goblet cell labeling and increased Iba-1-immunolabelled cells compared to the saline group. Immunoblotting for IL-1β, TNF-α, and NF-kB was greater in the Luzindole group. The LPS-challenged group showed higher MPO activity than the saline and Luzindole groups. Catalase was reduced in the Luzindole and Luzindole+LPS groups compared to saline. The Luzindole group showed an increase in NP-SHs, an effect related to compensatory GSH activity. The acute blockade of endogenous MLT with Luzindole induced early changes in inflammatory markers with altered intestinal morphology. The other non-detectable deleterious effects of Luzindole may be balanced by the unopposed direct action of MLT in immune cells bypassing the MT1/MT2 receptors.
Collapse
Affiliation(s)
- R S Matos
- Laboratório de Sono e Ritmos Biológicos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R B Oriá
- Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil.,Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - P F C Bruin
- Laboratório de Sono e Ritmos Biológicos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - D V Pinto
- Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A F S C Viana
- Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F A Santos
- Laboratório de Produtos Naturais, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A S G Duarte
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - V M S Bruin
- Laboratório de Sono e Ritmos Biológicos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
6
|
Han Q, Du G, Liu L, Wang L, Li W, Zhang H, Sun Y, Zhu P, Hao R, Ma S. Molecular mechanisms of seasonal photoperiod effects of the pineal gland on the hippocampus in rats. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Yasmin F, Sutradhar S, Das P, Mukherjee S. Gut melatonin: A potent candidate in the diversified journey of melatonin research. Gen Comp Endocrinol 2021; 303:113693. [PMID: 33309697 DOI: 10.1016/j.ygcen.2020.113693] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023]
Abstract
After being discovered from the bovine pineal gland by Aaron Lerner and co-workers in the year 1958, various distinguished researchers have reported melatonin (5-methoxy-N-acetyl-tryptamine) from several extra-pineal sources, including the gastrointestinal tract (GIT). In the year 1974, Raikhlin and Kvetnoy first detected this molecule in the gastrointestinal tissue. Later, within the last 45 years, many renowned investigators found that the GIT is a rich source of melatonin, in addition to the pineal gland. In the carp gut, the estimation of Arylalkylamine-N-acetyltransferase (AANAT) mRNA/protein levels, which is the rate-determining enzyme for melatonin biosynthesis in the pineal gland, confirmed the endogenous synthesis of melatonin. The remarkable feature of the pineal gland melatonin is its rhythmic synthesis with a peak at dark-phase and lowest at light-phase in synchronization with seasonal environmental light-dark (LD) cycle. Recent studies on carp demonstrated that the melatonin concentrations and the AANAT protein intensities in different gut segments underwent significant daily fluctuations. However, compared to the melatonin rhythm in the pineal gland, the melatonin profiles in gut tissue displayed daily rhythm in parallel with the feeding cycle of the carp, irrespective of LD conditions of the environment. Notably, in carp, the temporal pattern of the gut melatoninergic system found to vary with the environmental non-photic signal(s), such as food entrainment factors (viz. availability of food, timing of food supply, number(s) of feed per day, quality of food) those act as the most dependable synchronizer(s) in daily rhythm characteristics of gut melatonin and AANAT. Thereby in this review, it appears meaningful to highlight the existing data on the mode of synthesis of melatonin in cells of the digestive tract, and most importantly, the regulation of its synthesis. Finally, in comparison with the dynamic actions of melatonin derived from the pineal gland, this review will lead to underline the role of gut-derived melatonin in a variety of physiological functions.
Collapse
Affiliation(s)
- Farha Yasmin
- Fish Biology and Endocrinology Laboratory, Department of Zoology, University of North Bengal, Darjeeling-734013, India
| | - Sona Sutradhar
- Fish Biology and Endocrinology Laboratory, Department of Zoology, University of North Bengal, Darjeeling-734013, India
| | - Poulami Das
- Fish Biology and Endocrinology Laboratory, Department of Zoology, University of North Bengal, Darjeeling-734013, India
| | - Sourav Mukherjee
- Fish Biology and Endocrinology Laboratory, Department of Zoology, University of North Bengal, Darjeeling-734013, India.
| |
Collapse
|
8
|
THE ROLE OF QUALITY OF LIFE IN MELATONIN CONTENT AS A REGULATOR OF DEFENSE AND AGGRESSION FACTORS IN GASTROESOPHAGEAL REFLUX DISEASE PATIENTS WITH SLEEP APNEA SYNDROME. EUREKA: HEALTH SCIENCES 2021. [DOI: 10.21303/2504-5679.2021.001623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the study: to study the effect of the quality of life on the melatonin content, and at the same time to assess the state of the factors of aggression and protection of the esophageal mucosa in patients with GERD without comorbidities and with concomitant obstructive sleep apnea/hypopnea syndrome (OSAHS).
Methods. 45 patients were taken for the study. 23 of them had GERD concomitant COPD, 22 were with isolated GERD with a non-erosive form.
Melatonin levels were determined using the enzyme immunoassay method (ELIZA). Quality of life was assessed using the SF-36 questionnaire. Antioxidant protection of the mucous membrane (protection factor) – was assessed by the activity of superoxide dismutase (SOD). SOD activity in blood serum was determined by calorimetric method. Determination of the DC level was carried out in the blood by the spectrofluorimetric method.
Results. The study showed that in patients with GERD with concomitant COPD, there is a significant decrease in the indicators of antioxidant activity and melatonin, both with indicators from the control group and with indicators of patients with GERD without comorbidity.
At the same time, in patients with GERD without comorbidities, an increase in the level of DC was observed in comparison with the control group and patients with GERD with concomitant pathology and acidity of gastric juice.
When analyzing the indicators of QOL in patients with GERD with concomitant pathology, there is a significantly more pronounced decrease in mental health, role emotional functioning and vitality.
Conclusions. It has been established that in patients with GERD in the stage of exacerbation of the disease, there is a statistically significant decrease in QOL indicators with a high degree of reliability, manifesting itself in patients without combined pathology in the spectrum of indicators of the physical component of health, and in patients with GERD with concomitant obstructive sleep syndrome – in the spectrum of the psychological component quality of life.
It has been shown that with a decrease in QOL in patients with GERD, the level of melatonin decreases, the decrease in which more clearly increases in patients with concomitant obstructive sleep apnea.
Simultaneously with a drop in the level of melatonin in patients with GERD without associated pathology, the aggression factor increases with a high degree of certainty - that is, a decrease in the pH of gastric juice and an increase in the content of DC, while in patients with GERD with concomitant sleep apnea syndrome, the factor decreases with a high degree of certainty. Protection of the esophageal mucosa – (that is, a decrease in SOD activity), which must be taken into account when treating this category of patients.
Collapse
|
9
|
Wang B, Zhu S, Liu Z, Wei H, Zhang L, He M, Pei F, Zhang J, Sun Q, Duan L. Increased Expression of Colonic Mucosal Melatonin in Patients with Irritable Bowel Syndrome Correlated with Gut Dysbiosis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2020; 18:708-720. [PMID: 33607299 PMCID: PMC8377021 DOI: 10.1016/j.gpb.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/16/2020] [Accepted: 08/15/2020] [Indexed: 02/08/2023]
Abstract
Dysregulation of the gut microbiota/gut hormone axis contributes to the pathogenesis of irritable bowel syndrome (IBS). Melatonin plays a beneficial role in gut motility and immunity. However, altered expression of local mucosal melatonin in IBS and its relationship with the gut microbiota remain unclear. Therefore, we aimed to detect the colonic melatonin levels and microbiota profiles in patients with diarrhea-predominant IBS (IBS-D) and explore their relationship in germ-free (GF) rats and BON-1 cells. Thirty-two IBS-D patients and twenty-eight healthy controls (HCs) were recruited. Fecal specimens from IBS-D patients and HCs were separately transplanted into GF rats by gavage. The levels of colon mucosal melatonin were assessed by immunohistochemical methods, and fecal microbiota communities were analyzed using 16S rDNA sequencing. The effect of butyrate on melatonin synthesis in BON-1 cells was evaluated by ELISA. Melatonin levels were significantly increased and negatively correlated with visceral hypersensitivity in IBS-D patients. GF rats inoculated with fecal microbiota from IBS-D patients had high colonic melatonin levels. Butyrate-producing Clostridium cluster XIVa species, such as Roseburia species and Lachnospira species, were positively related to colonic mucosal melatonin expression. Butyrate significantly increased melatonin secretion in BON-1 cells. Increased melatonin expression may be an adaptive protective mechanism in the development of IBS-D. Moreover, some Clostridium cluster XIVa species could increase melatonin expression via butyrate production. Modulation of the gut hormone/gut microbiota axis offers a promising target of interest for IBS in the future.
Collapse
Affiliation(s)
- Ben Wang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Shiwei Zhu
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Zuojing Liu
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Hui Wei
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Lu Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Meibo He
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Fei Pei
- Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Qinghua Sun
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
10
|
Li T, Wang H, Zhang H, Liu L, Li P, Ma S. Effect of the pineal gland on 5-hydroxytryptamine and γ-aminobutyric acid secretion in the hippocampus of male rats during the summer and winter. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Feng X, Yan J, Li G, Liu J, Fan R, Li S, Zheng L, Zhang Y, Zhu J. Source of dopamine in gastric juice and luminal dopamine-induced duodenal bicarbonate secretion via apical dopamine D 2 receptors. Br J Pharmacol 2020; 177:3258-3272. [PMID: 32154577 PMCID: PMC7312307 DOI: 10.1111/bph.15047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Dopamine protects the duodenal mucosa. Here we have investigated the source of dopamine in gastric juice and the mechanism underlying the effects of luminal dopamine on duodenal bicarbonate secretion (DBS) in rodents. EXPERIMENTAL APPROACH Immunofluorescence, UPLC-MS/MS, gastric incubation and perfusion were used to detect gastric-derived dopamine. Immunofluorescence and RT-PCR were used to examine the expression of dopamine receptors in the duodenal mucosa. Real-time pH titration and pHi measurement were performed to investigate DBS. KEY RESULTS H+ -K+ -ATPase was co-localized with tyrosine hydroxylase and dopamine transporters in gastric parietal cells. Dopamine was increased in in vivo gastric perfusate after intravenous infusion of histamine and in gastric mucosa incubated, in vitro, with bethanechol chloride or tyrosine. D2 receptors were the most abundant dopamine receptors in rat duodenum, mainly distributed on the apical membrane of epithelial cells. Luminal dopamine increased DBS in a concentration-dependent manner, an effect mimicked by a D2 receptor agonist quinpirole and inhibited by the D2 receptor antagonist L741,626, in vivo D2 receptor siRNA and in D2 receptor -/- mice. Dopamine and quinpirole raised the duodenal enterocyte pHi . Quinpirole-evoked DBS and PI3K/Akt activity were inhibited by calcium chelator BAPTA-AM or in D2 receptor-/- mice. CONCLUSION AND IMPLICATIONS Dopamine in the gastric juice is derived from parietal cells and is secreted along with gastric acid. On arrival in the duodenal lumen, dopamine increased DBS via an apical D2 receptor- and calcium-dependent pathway. Our data provide novel insights into the protective effects of dopamine on the duodenal mucosa.
Collapse
Affiliation(s)
- Xiao‐Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Jing‐Ting Yan
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Guang‐Wen Li
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Jing‐Hua Liu
- Grade 2017 Clinical Medicine, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Rui‐Fang Fan
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Shi‐Chao Li
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Li‐Fei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| | - Jin‐Xia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical ScienceCapital Medical UniversityBeijingChina
| |
Collapse
|
12
|
Seidler U, Nylander O, Sjoblom M, Birnir B, Herzig K. Gunnar Flemström's legacy in intestinal bicarbonate secretion-A homage to Gunnar Flemström and his work in intestinal bicarbonate secretion. Acta Physiol (Oxf) 2019; 227:e13321. [PMID: 31152628 DOI: 10.1111/apha.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/07/2019] [Accepted: 05/29/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology Medical University Hannover Hannover Germany
| | - Olof Nylander
- Department of Neuroscience Uppsala University Uppsala Sweden
| | - Markus Sjoblom
- Department of Neuroscience Uppsala University Uppsala Sweden
| | - Bryndis Birnir
- Department of Neuroscience Uppsala University Uppsala Sweden
| | - Karl‐Heinz Herzig
- Research Unit of Biomedicine & Biocenter of Oulu, Medical Research Center (MRC) University of Oulu, University Hospital Oulu Finland
- Department of Gastroenterology and Metabolism Poznan University of Medical Sciences Poznan Poland
| |
Collapse
|
13
|
Sommansson A, Yamskova O, Schiöth HB, Nylander O, Sjöblom M. Long-term oral melatonin administration reduces ethanol-induced increases in duodenal mucosal permeability and motility in rats. Acta Physiol (Oxf) 2014; 212:152-65. [PMID: 24995603 DOI: 10.1111/apha.12339] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/26/2014] [Accepted: 07/01/2014] [Indexed: 12/20/2022]
Abstract
AIM Increased intestinal epithelial permeability is associated with intestinal inflammation and dysfunction. The aim of the present study was to investigate the role of long-term oral melatonin administration on ethanol-induced increases in duodenal mucosal permeability and hypermotility. METHODS Male Sprague-Dawley rats were administered melatonin in their tap water (0.1 mg mL(-1) or 0.5 mg mL(-1) ) for 2 or 4 weeks. After the treatment period, the rats were anaesthetized with Inactin(®) , and a 30-mm duodenal segment was perfused in situ. The effects on duodenal mucosal paracellular permeability, bicarbonate secretion, fluid flux and motor activity were studied. The expression levels of the tight junction components, zona occludens (ZO)-1, ZO-2, and ZO-3, claudin-2, claudin-3, claudin-4, occludin, and myosin light chain kinase and of the melatonin receptors MT1 and MT2 were assessed using qRT-PCR. RESULTS Melatonin administration for 2 weeks significantly reduced the basal paracellular permeability, an effect that was absent after 4 weeks. Perfusing the duodenal segment with 15% ethanol induced marked increases in duodenal paracellular permeability, bicarbonate secretion and motor activity. Melatonin for 2 weeks dose-dependently reduced ethanol-induced increases in permeability and motor activity. Four weeks of melatonin administration reduced the ethanol-induced increases in duodenal motility and bicarbonate secretion but had no effect on the increases in permeability. Two weeks of melatonin administration upregulated the expression of MT1 and MT2 , although both were downregulated after 4 weeks. Melatonin downregulated the expression of ZO-3 and upregulated the expression of claudin-2, even as all other mRNA-levels investigated were unaffected. CONCLUSION Although further studies are needed, our data demonstrate that melatonin administration markedly improves duodenal barrier functions, suggesting its utility in clinical applications when intestinal barrier functions are compromised.
Collapse
Affiliation(s)
- A. Sommansson
- Department of Neuroscience; Division of Gastrointestinal Physiology; Uppsala University; Uppsala Sweden
| | - O. Yamskova
- Department of Neuroscience; Division of Functional Pharmacology; Uppsala University; Uppsala Sweden
| | - H. B. Schiöth
- Department of Neuroscience; Division of Functional Pharmacology; Uppsala University; Uppsala Sweden
| | - O. Nylander
- Department of Neuroscience; Division of Gastrointestinal Physiology; Uppsala University; Uppsala Sweden
| | - M. Sjöblom
- Department of Neuroscience; Division of Gastrointestinal Physiology; Uppsala University; Uppsala Sweden
| |
Collapse
|
14
|
Expression and putative functions of melatonin receptors in malignant cells and tissues. Wien Med Wochenschr 2014; 164:472-8. [PMID: 25023005 DOI: 10.1007/s10354-014-0289-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/10/2014] [Indexed: 01/20/2023]
Abstract
Melatonin, the popular hormone of the darkness, is primarily synthesized in the pineal gland, and acts classically through the G-protein coupled plasma membrane melatonin receptors MT1 and MT2, respectively. Although some of the receptor mediated functions of melatonin, especially those on the (central) circadian system, have been more or less clarified, the functional meaning of MT-receptors in various peripheral organs are still not sufficiently investigated yet. There is, however, accumulating evidence for oncostatic effects of melatonin with both, antioxidative and MT-receptor mediated mechanisms possibly playing a role. This review briefly summarizes the physiology of melatonin and MT-receptors, and discusses the expression and function of MT-receptors in human cancer cells and tissues.
Collapse
|
15
|
The Effect of High-Fat Diet-Induced Pathophysiological Changes in the Gut on Obesity: What Should be the Ideal Treatment? Clin Transl Gastroenterol 2013; 4:e39. [PMID: 23842483 PMCID: PMC3724044 DOI: 10.1038/ctg.2013.11] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/02/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022] Open
Abstract
Obesity is a metabolic disorder and fundamental cause of other fatal diseases including atherosclerosis and cancer. One of the main factor that contributes to the development of obesity is high-fat (HF) consumption. Lipid ingestion will initiate from the gut feedback mechanisms to regulate glucose and lipid metabolisms. But these lipid-sensing pathways are impaired in HF-induced insulin resistance, resulting in hyperglycemia. Besides that, duodenal lipid activates mucosal mast cells, leading to the disruption of the intestinal tight junction. Lipopolysaccharide that is co-transited with dietary fat postprandially, promotes the release of cytokines and the development of metabolic syndrome. HF-diet also alters microbiota composition and enhances fat storage. Although gut is protected by immune system and contains high level of antioxidants, obesity developed presumably when this protective mechanism is compromised by the presence of excessive fat. Several therapeutic approaches targeting different pathways have been proposed. There may be no one single most effective treatment, but all aimed to prevent obesity. This review will elaborate on the physiological and molecular changes in the gut that lead to obesity, and will provide a summary of potential treatments to manage these pathophysiological changes.
Collapse
|
16
|
Sommansson A, Saudi WSW, Nylander O, Sjöblom M. Melatonin inhibits alcohol-induced increases in duodenal mucosal permeability in rats in vivo. Am J Physiol Gastrointest Liver Physiol 2013; 305:G95-G105. [PMID: 23639810 DOI: 10.1152/ajpgi.00074.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Increased intestinal permeability is often associated with epithelial inflammation, leaky gut, or other pathological conditions in the gastrointestinal tract. We recently found that melatonin decreases basal duodenal mucosal permeability, suggesting a mucosal protective mode of action of this agent. The aim of the present study was to elucidate the effects of melatonin on ethanol-, wine-, and HCl-induced changes of duodenal mucosal paracellular permeability and motility. Rats were anesthetized with thiobarbiturate and a ~30-mm segment of the proximal duodenum was perfused in situ. Effects on duodenal mucosal paracellular permeability, assessed by measuring the blood-to-lumen clearance of ⁵¹Cr-EDTA, motility, and morphology, were investigated. Perfusing the duodenal segment with ethanol (10 or 15% alcohol by volume), red wine, or HCl (25-100 mM) induced concentration-dependent increases in paracellular permeability. Luminal ethanol and wine increased, whereas HCl transiently decreased duodenal motility. Administration of melatonin significantly reduced ethanol- and wine-induced increases in permeability by a mechanism abolished by the nicotinic receptor antagonists hexamethonium (iv) or mecamylamine (luminally). Signs of mucosal injury (edema and beginning of desquamation of the epithelium) in response to ethanol exposure were seen only in a few villi, an effect that was histologically not changed by melatonin. Melatonin did not affect HCl-induced increases in mucosal permeability or decreases in motility. Our results show that melatonin reduces ethanol- and wine-induced increases in duodenal paracellular permeability partly via an enteric inhibitory nicotinic-receptor dependent neural pathway. In addition, melatonin inhibits ethanol-induced increases in duodenal motor activity. These results suggest that melatonin may serve important gastrointestinal barrier functions.
Collapse
Affiliation(s)
- Anna Sommansson
- Division of Physiology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
17
|
Sommansson A, Nylander O, Sjöblom M. Melatonin decreases duodenal epithelial paracellular permeability via a nicotinic receptor-dependent pathway in rats in vivo. J Pineal Res 2013; 54:282-91. [PMID: 23009576 DOI: 10.1111/jpi.12013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/14/2012] [Indexed: 12/21/2022]
Abstract
Intestinal epithelial intercellular tight junctions (TJs) provide a rate-limiting barrier restricting passive transepithelial movement of solutes. TJs are highly dynamic areas, and their permeability is changed in response to various stimuli. Defects in the intestinal epithelial TJ barrier may contribute to intestinal inflammation or leaky gut. The gastrointestinal tract may be the largest extrapineal source of endogenous melatonin. Melatonin released from the duodenal mucosa is a potent stimulant of duodenal mucosal bicarbonate secretion (DBS). The aim of this study was to elucidate the role of melatonin in regulating duodenal mucosal barrier functions, including mucosal permeability, DBS, net fluid flux, and duodenal motor activity, in the living animal. Rats were anesthetized with thiobarbiturate, and a ~30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ. Melatonin and the selective melatonin receptor antagonist luzindole were perfused luminally or given intravenously. Effects on permeability (blood-to-lumen clearance of (51)Cr-EDTA), DBS, mucosal net fluid flux, and duodenal motility were monitored. Luminal melatonin caused a rapid decrease in paracellular permeability and an increase in DBS, but had no effect on duodenal motor activity or net fluid flux. Luzindole did not influence any of the basal parameters studied, but significantly inhibited the effects of melatonin. The nonselective and noncompetitive nicotinic acetylcholine receptor antagonist mecamylamine abolished the effect of melatonin on duodenal permeability and reduced that on DBS. In conclusion, these findings provide evidence that melatonin significantly decreases duodenal mucosal paracellular permeability and increases DBS. The data support the important role of melatonin in the neurohumoral regulation of duodenal mucosal barrier.
Collapse
Affiliation(s)
- Anna Sommansson
- Division of Physiology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
18
|
Cholecystokinin but not ghrelin stimulates mucosal bicarbonate secretion in rat duodenum: independence of feeding status and cholinergic stimuli. ACTA ACUST UNITED AC 2013; 183:46-53. [PMID: 23499805 DOI: 10.1016/j.regpep.2013.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/21/2013] [Accepted: 03/03/2013] [Indexed: 01/10/2023]
Abstract
Cholecystokinin (CCK) is an important regulator of food digestion but its influence on small intestinal secretion has received little attention. We characterized effects of CCK-8, ghrelin and some related peptides on duodenal HCO3(-) secretion in vivo and demonstrated CCK-induced calcium signaling in acutely isolated enterocytes. A segment of proximal duodenum with intact blood supply was cannulated in situ in anaesthetized rats. Mucosal HCO3(-) secretion was continuously recorded (pH-stat). Peptides were administrated to the duodenum by close intra-arterial infusion. Clusters of duodenal enterocytes were attached to the bottom of a perfusion chamber. The intracellular calcium concentration ([Ca(2+)]i) was examined by dual-wavelength imaging. CCK-8 (3.0, 15 and 60 pmol/kg,h) caused dose-dependent increases (p<0.01) in duodenal alkaline secretion in both overnight fasted and continuously fed animals. The CCK1R-antagonist devazepide but neither the CCK2R-antagonist YMM022 nor the melatonin MT2-selective antagonist luzindole inhibited the rise in secretion. Atropine decreased sensitivity to CCK-8. The appetite-related peptide ghrelin was without effect on the duodenal secretion in fasted as well as fed animals. Superfusion with CCK-8 (1.0-50 nM) induced [Ca(2+)]i signaling in acutely isolated duodenal enterocytes. After an initial peak response, [Ca(2+)]i returned to near basal values within 3-5min. Devazepide but not YMM022 inhibited this [Ca(2+)]i response. Low doses of CCK-8 stimulate duodenal alkaline secretion and induce enterocyte [Ca(2+)]i signaling by an action at CCK1 receptors. The results point to importance of CCK in the rapid postprandial rise in mucosa-protective duodenal secretion.
Collapse
|
19
|
Sedin J, Sjöblom M, Nylander O. The selective cyclooxygenase-2 inhibitor parecoxib markedly improves the ability of the duodenum to regulate luminal hypertonicity in anaesthetized rats. Acta Physiol (Oxf) 2012; 205:433-51. [PMID: 22251854 DOI: 10.1111/j.1748-1716.2012.02411.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/07/2011] [Accepted: 01/09/2012] [Indexed: 12/18/2022]
Abstract
AIM To examine whether the prevention of post-operative duodenal ileus by treatment with parecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, affects the ability of the duodenum to respond to luminal hypertonicity. METHODS The proximal duodenums of anaesthetized rats were perfused with hypertonic NaCl solutions with osmolalities of 400, 500, 600 or 700 mOsm kg(-1) , and the effects on mucosal permeability, motility, transepithelial net fluid flux and effluent osmolality were assessed in the absence (control) and presence of parecoxib. RESULTS Parecoxib-treated, but not control animals, exhibited duodenal contractions, which were reduced by the nicotinic receptor antagonists mecamylamine and hexamethonium and by perfusion with 700 mOsm kg(-1) . All animals responded to luminal hypertonicity with induction of net fluid secretion, which peaked at an osmolality of 500 mOsm kg(-1) . The hypertonicity-induced increases in fluid secretion were twofold greater in parecoxib-treated than in control rats and attenuated by nicotinic receptor blockade. The decrease in luminal osmolality correlated with the osmolality of the perfusion solution in both control and parecoxib-treated animals but the osmolality-adjusting capability was markedly better in the latter group. Rats exposed to duodenal luminal distension responded to hypertonicity with a greater fluid secretion and a larger decrease in luminal osmolality than control rats. Perfusion with 700 mOsm kg(-1) increased mucosal permeability in parecoxib-treated animals only, an effect abolished by nicotinic receptor blockade. CONCLUSION Parecoxib markedly improved the ability of the duodenum to sense and to decrease luminal hypertonicity by a mechanism most probably involving inhibition of COX-2 and stimulation of nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- J. Sedin
- Division of Physiology; Department of Neuroscience; Biomedical Center; Uppsala University; Uppsala; Sweden
| | - M. Sjöblom
- Division of Physiology; Department of Neuroscience; Biomedical Center; Uppsala University; Uppsala; Sweden
| | - O. Nylander
- Division of Physiology; Department of Neuroscience; Biomedical Center; Uppsala University; Uppsala; Sweden
| |
Collapse
|
20
|
Flemström G, Mäkelä K, Purhonen AK, Sjöblom M, Jedstedt G, Walkowiak J, Herzig KH. Apelin stimulation of duodenal bicarbonate secretion: feeding-dependent and mediated via apelin-induced release of enteric cholecystokinin. Acta Physiol (Oxf) 2011; 201:141-50. [PMID: 20726845 DOI: 10.1111/j.1748-1716.2010.02175.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS Apelin peptides are the endogenous ligand of the G protein-coupled receptor APJ. Proposed actions include involvement in control of cardiovascular functions, appetite and body metabolism. We have investigated the effects of apelin peptides on duodenal bicarbonate secretion in vivo and the release of cholecystokinin (CCK) from acutely isolated mucosal cells and the neuroendocrine cell line STC-1. METHODS Lewis × Dark Agouti rats had free access to water and, unless fasted overnight, free access to food. A segment of proximal duodenum was cannulated in situ in anaesthetized animals. Mucosal bicarbonate secretion was titrated (pH stat) and apelin was administered to the duodenum by close intra-arterial infusion. Total RNA was extracted from mucosal specimens, reverse transcripted to cDNA and the expression of the APJ receptor measured by quantitative real-time PCR. Apelin-induced release of CCK was measured using (1) cells prepared from proximal small intestine and (2) STC-1 cells. RESULTS Even the lowest dose of apelin-13 (6 pmol kg⁻¹ h⁻¹) caused a significant rise in bicarbonate secretion. Stimulation occurred only in continuously fed animals and even a 100-fold greater dose (600 pmol kg⁻¹ h⁻¹) of apelin was without effect in overnight food-deprived animals. Fasting also induced an eightfold decrease in the expression of APJ receptor mRNA. Apelin induced significant release of CCK from both mucosal and STC-1 cells, and the CCK(A) receptor antagonist devazepide abolished bicarbonate secretory responses to apelin. CONCLUSION Apelin-induced stimulation of duodenal electrolyte secretion is feeding-dependent and mediated by local mucosal release of CCK.
Collapse
Affiliation(s)
- G Flemström
- Department of Neuroscience, Uppsala University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Sensing the luminal contents is a prerequisite to activate appropriate gastrointestinal functions. A major task of the duodenal epithelium is to resist the repeated challenges of hydrochloric acid expelled from the stomach. Although extensive research in this field, the complete mechanisms providing this defence remain to be revealed. The duodenal epithelium exports bicarbonate into a submillimetre-thick mucus gel on top of the mucosal surface. Despite the very low pH of the luminal contents, the duodenal mucus-bicarbonate barrier provides a means of maintaining a virtually neutral pH at the epithelial surface. Instead of pH, CO₂ generated by the mixing of acid and bicarbonate at levels not found elsewhere in the body serves as the mediator for sensing the luminal acid. Carbonic anhydrases (CAs) catalyse the reversible hydration of CO₂ and are heavily expressed in the duodenal segment. Accumulating data support the key function of CAs in sensing luminal acid and CO₂. Recent advances demonstrate that the presence of CA II in upper villus plays a crucial role in enterocyte intracellular acidification preceding the secretory increase in response to luminal acid. However, CAs only have a minor role in the bicarbonate supply destined for duodenal bicarbonate secretion into the lumen. The purpose of this review is to summarize the current knowledge of how intraluminal acid is sensed by the duodenal mucosa, with a focus on the role of CAs.
Collapse
Affiliation(s)
- M Sjöblom
- Department of Neuroscience, Uppsala University, Sweden.
| |
Collapse
|
22
|
Flemström G, Bengtsson MW, Mäkelä K, Herzig KH. Effects of short-term food deprivation on orexin-A-induced intestinal bicarbonate secretion in comparison with related secretagogues. Acta Physiol (Oxf) 2010; 198:373-80. [PMID: 20003099 DOI: 10.1111/j.1748-1716.2009.02067.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Studies of gastrointestinal physiology in humans and intact animals are usually conducted after overnight fast. We compared the effects of orexin-A, vasoactive intestinal polypeptide (VIP), melatonin, serotonin, uroguanylin, ghrelin and prostaglandin E(2) (PGE(2)) on duodenal bicarbonate secretion in fed and overnight fasted animals. This review is a summary of our findings. Secretagogues were administered by intra-arterial infusion or luminally (PGE(2)). Enterocyte intracellular calcium ([Ca(2+)](i)) signalling was studied by fluorescence imaging. Total RNA was extracted, reverse transcripted to cDNA and expression of orexin receptors measured by quantitative real-time PCR. Orexin-A stimulates the duodenal secretion in continuously fed animals but not in food-deprived animals. Similarly, short-term fasting causes a 100-fold decrease in the amount of the muscarinic agonist bethanechol required for stimulation of secretion. In contrast, fasting does not affect secretory responses to intra-arterial VIP, melatonin, serotonin, uroguanylin and ghrelin, or that to luminal PGE(2). Orexin-A induces [Ca(2+)](i) signalling in enterocytes from fed rats but no significant [Ca(2+)](i) responses occur in enterocytes from fasted animals. In addition, overnight fasting decreases the expression of mucosal orexin receptors. Short-term food deprivation thus decreases duodenal expression of orexin receptors and abolishes the secretory response to orexin-A as well as orexin-A-induced [Ca(2+)](i) signalling. Fasting, furthermore, decreases mucosal sensitivity to bethanechol. The absence of declines in secretory responses to other secretagogues tested strongly suggests that short-term fasting does not affect the secretory capacity of the duodenal mucosa in general. Studies of intestinal secretion require particular evaluation with respect to feeding status.
Collapse
Affiliation(s)
- G Flemström
- Division of Physiology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
23
|
Chau RMW, Patel BA. Determination of serotonin, melatonin and metabolites in gastrointestinal tissue using high-performance liquid chromatography with electrochemical detection. Biomed Chromatogr 2009; 23:175-81. [DOI: 10.1002/bmc.1100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Aras HC, Ekström J. Melatonin-evoked in vivo secretion of protein and amylase from the parotid gland of the anaesthetised rat. J Pineal Res 2008; 45:413-21. [PMID: 18637985 DOI: 10.1111/j.1600-079x.2008.00609.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intravenous infusion of melatonin (5 and 25 mg/kg over 10 min) evoked a dose-dependent output of protein and amylase but no overt fluid secretion from the parotid gland of the pentobarbitone-anaesthetised rat, as revealed by increased concentrations of protein and amylase activity in a subsequent wash-out flow of saliva in response to an intravenous bolus injection of methacholine (5 microg/kg) 10 min later. The secretory responses to melatonin occurred in the presence of alpha- and beta-adrenoceptor antagonists. They were not affected by the cholecystokinin A-receptor antagonist, lorglumide, and they were reproduced in eviscerated animals acutely subjected to postganglionic sympathetic and parasympathetic denervation of the gland. The responses to melatonin were partially dependent on nitric oxide generation, through the activity of nitric oxide synthase of the neuronal type. Immunoblotting showed both melatonin receptors of type 1 and type 2 to be expressed in parotid gland tissue. The relative specific melatonin 2-receptor antagonist luzindole prevented the expected secretory effects of melatonin. The results favour a direct action by melatonin on melatonin receptors of parotid secretory cells and suggest a potential physiological role for melatonin in the regulation of salivary glandular activities.
Collapse
Affiliation(s)
- Hülya Cevik Aras
- Section of Pharmacology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | |
Collapse
|
25
|
Melatonin inhibits prostaglandin E2- and sodium nitroprusside-induced ion secretion in rat distal colon. Eur J Pharmacol 2007; 581:164-70. [PMID: 18207140 DOI: 10.1016/j.ejphar.2007.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 11/06/2007] [Accepted: 11/15/2007] [Indexed: 02/07/2023]
Abstract
Although the gastrointestinal tract is a rich source of melatonin and possesses numerous melatonin-binding sites, the role of melatonin in this tissue has not yet been fully elucidated. In this work we focused on the role of melatonin in the modulation of ion transport in rat distal colon. Whereas melatonin had no effect on colonic secretion or caused only infrequent and small changes in the short circuit current (Isc) due to its solvent ethanol, this mediator significantly modulated the secretion elicited by some secretagogues. Out of the five substances tested (prostaglandin E(2); 5-hydroxytryptamine; bethanechol; histamine; sodium nitroprusside) melatonin inhibited the effect of prostaglandin E(2) (PGE(2)) and sodium nitroprusside (SNP). Melatonin concentration-dependently decreased PGE(2)-evoked Isc and this inhibitory effect was more obvious from the mucosal side. The basal level of cAMP in colonic mucosa was not influenced by melatonin, but this drug prevented a PGE(2)-induced increase in the level of cAMP. The neurotoxin tetrodotoxin blocked the inhibitory effect of melatonin on SNP-induced Isc. Our data suggests that melatonin takes part in the modulation of colonic ion transport. The modulatory effect of melatonin on PGE(2)-induced Isc occurs directly at the level of the epithelium, whereas the effect on SNP-induced Isc is indirect and located in tetrodotoxin-sensitive enteric neurons.
Collapse
|
26
|
Bengtsson MW, Mäkelä K, Sjöblom M, Uotila S, Akerman KEO, Herzig KH, Flemström G. Food-induced expression of orexin receptors in rat duodenal mucosa regulates the bicarbonate secretory response to orexin-A. Am J Physiol Gastrointest Liver Physiol 2007; 293:G501-9. [PMID: 17585016 DOI: 10.1152/ajpgi.00514.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Presence of appetite-regulating peptides orexin-A and orexin-B in mucosal endocrine cells suggests a role in physiological control of the intestine. Our aim was to characterize orexin-induced stimulation of duodenal bicarbonate secretion and modulation of secretory responses and mucosal orexin receptors by overnight food deprivation. Lewis x Dark Agouti rats were anesthetized and proximal duodenum cannulated in situ. Mucosal bicarbonate secretion (pH stat) and mean arterial blood pressure were continuously recorded. Orexin-A was administered intra-arterially close to the duodenum, intraluminally, or into the brain ventricles. Total RNA was extracted from mucosal specimens, reverse transcribed to cDNA and expression of orexin receptors 1 and 2 (OX1 and OX2) measured by quantitative real-time PCR. OX1 protein was measured by Western blot. Intra-arterial orexin-A (60-600 nmol.h(-1).kg(-1)) increased (P < 0.01) the duodenal secretion in fed but not in fasted animals. The OX1 receptor antagonist SB-334867, which was also found to have a partial agonist action, abolished the orexin-induced secretory response but did not affect secretion induced by the muscarinic agonist bethanechol. Atropine, in contrast, inhibited bethanechol but not orexin-induced secretion. Orexin-A infused into the brain ventricles (2-20 nmol.kg(-1).h(-1)) or added to luminal perfusate (1.0-100 nM) did not affect secretion, indicating that orexin-A acts peripherally and at basolateral receptors. Overnight fasting decreased mucosal OX1 and OX2 mRNA expression (P < 0.01) as well as OX1 protein expression (P < 0.05). We conclude that stimulation of secretion by orexin-A may involve both receptor types and is independent of cholinergic pathways. Intestinal OX receptors and secretory responses are markedly related to food intake.
Collapse
MESH Headings
- Animals
- Atropine/pharmacology
- Benzoxazoles/administration & dosage
- Bethanechol/pharmacology
- Bicarbonates/metabolism
- Cerebral Ventricles/drug effects
- Cerebral Ventricles/metabolism
- Crosses, Genetic
- Dose-Response Relationship, Drug
- Duodenum/drug effects
- Duodenum/metabolism
- Eating/physiology
- Food Deprivation
- Hydrogen-Ion Concentration
- Infusions, Intra-Arterial
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Intestinal Secretions/metabolism
- Intracellular Signaling Peptides and Proteins/administration & dosage
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Naphthyridines
- Neuropeptides/administration & dosage
- Neuropeptides/metabolism
- Orexin Receptors
- Orexins
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/genetics
- Receptors, Neuropeptide/biosynthesis
- Receptors, Neuropeptide/drug effects
- Receptors, Neuropeptide/genetics
- Time Factors
- Up-Regulation
- Urea/administration & dosage
- Urea/analogs & derivatives
Collapse
Affiliation(s)
- Magnus W Bengtsson
- Dept. of Neuroscience, Division of Physiology, Uppsala University, BMC, PO Box 572, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
27
|
Klupińska G, Poplawski T, Drzewoski J, Harasiuk A, Reiter RJ, Blasiak J, Chojnacki J. Therapeutic effect of melatonin in patients with functional dyspepsia. J Clin Gastroenterol 2007; 41:270-4. [PMID: 17426465 DOI: 10.1097/mcg.0b013e318031457a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND GOAL Melatonin may inhibit reactive oxygen species-related pathogenesis in the alimentary tract by neutralizing free radicals. In the present study we assessed the potential protective action of melatonin in ulcerlike dyspepsia. STUDY Sixty patients aged 19 to 39 years with the diagnosis of functional dyspepsia according to the Rome Criteria II and no Helicobacter pylori infection were involved in the study. Melatonin, at a dose of 5 mg (n=30), or placebo (n=30) were taken in the evening for a period of 12 weeks. At this time, patients were on an equivalent diet and were only to take an alkaline drug in case of the abdominal pain. RESULTS After 12 weeks, the dyspeptic symptoms completely subsided in 17 patients in the melatonin-treatment group (56.6%). In other 9 individuals (30.0%) a partial improvement in health was achieved, especially in the frequency and intensity of nocturnal pain. After placebo, the majority of patients (93.3%) did not experience any improvement in symptoms. Multivariate analysis indicated that melatonin (odds ratio 95.86, 95% confidence interval 3.72-2469.37, P<0.01) correlated independently with significantly improved patients health. H. pylori past infection decreased positive effect of melatonin in ulcerlike dyspepsia. CONCLUSIONS Melatonin can be considered as an auxiliary drug in the treatment of ulcerlike dyspepsia.
Collapse
Affiliation(s)
- Grazyna Klupińska
- Department of Gastroenterology and Internal Medicine, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
28
|
Säfsten B, Sjöblom M, Flemström G. Serotonin increases protective duodenal bicarbonate secretion via enteric ganglia and a 5-HT4-dependent pathway. Scand J Gastroenterol 2006; 41:1279-89. [PMID: 17060121 DOI: 10.1080/00365520600641480] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Serotonin (5-HT) is present in much larger amounts in the gut than in the central nervous system and is predominantly synthesized and stored in mucosal enterochromaffin cells. Bicarbonate secretion by the duodenal mucosa is the major mechanism in maintaining mucosal integrity, neutralizing invading protons within the surface mucus gel. In this study the role of local 5-HT in the control of the protective secretion was investigated. MATERIAL AND METHODS A segment of proximal duodenum was perfused in situ in anaesthetized rats and the alkaline secretion was continuously recorded by pH-stat. Intracellular calcium signalling was measured in clusters of human and rat duodenal enterocytes devoid of neural tissue. After loading with the fluorescent probe, fura-2, the clusters were attached to the bottom of a temperature-controlled perfusion chamber. RESULTS Close intra-arterial infusion to the duodenal segment of 5-HT (20-200 nmol kg(-1) h(-1)) dose-dependently increased duodenal mucosal HCO3 secretion. A higher dose (2000 nmol kg(-1) h(-1)) did not further increase secretion. Responses were inhibited by the ganglionic blocker and nicotinic receptor antagonist hexamethonium, and were abolished by the 5-HT4 receptor antagonist SB 204070. The 5-HT3 antagonist tropisetron, in contrast, caused only slight inhibition. Viable human and rat duodenal enterocytes responded to 5-HT (100-500 nM) with an increase in intracellular calcium concentration. Pretreatment with SB 204070 or removal of external calcium abolished the response. CONCLUSIONS Stimulation of the duodenal protective secretion by 5-HT thus involves receptors of the 5-HT4 subtype as well as nicotinic transmission, the myenteric plexus being a likely location. In addition, serotonin acts on enterocyte membrane receptors, inducing intracellular calcium signalling.
Collapse
Affiliation(s)
- Bengt Säfsten
- Gastroenterology Unit, Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden.
| | | | | |
Collapse
|
29
|
Aust S, Brucker B, Graf J, Klimpfinger M, Thalhammer T. Melatonin modulates acid/base transport in human pancreatic carcinoma cells. Cell Physiol Biochem 2006; 18:91-102. [PMID: 16914894 DOI: 10.1159/000095173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Melatonin was found to improve pancreatic organ function in diseased animals. To study whether pancreatic bicarbonate secretion is stimulated by melatonin, investigations were done in two human ductal pancreatic adenocarcinoma cell lines MIA PaCa-2 (MIA) and PANC-1 (PANC). Using the fluorescence pH-sensor BCECF-AM, we monitored melatonin effects on basal intracellular pH (pH(i)), and on pH(i) recovery after intracellular alkalinization produced by the removal of extracellular HCO(3) (-)/CO(2). Exposure to 1 microM melatonin for 24 hrs and presence of the indoleamine during the experiment increases the basal pH(i). Moreover, pHi recovery and HCO(3) (-) secretion are facilitated after the alkaline load. These findings are in line with the observed increase in mRNA expression of the Na(+)/HCO(3) (-)-cotransporter SLC4A4b for the uptake and the Cl(-)/HCO(3) (-)-exchanger SLC26A6 for the secretion of HCO(3) (-). The reduction in Na(+)/H(+)- exchanger SLC9A1 mRNA would favor pH(i) recovery after alkalinization, but it does not explain the initial increase in pHi. This controversial effect and the requirement for continuous presence of melatonin throughout the experiment suggest that nontranscriptional signalling may contribute to the effects of melatonin on acid/base movements. In summary, we show a stimulatory effect of melatonin on bicarbonate secretion in the pancreatic cancer cell lines which may help to prevent duodenal damage.
Collapse
Affiliation(s)
- Sylvia Aust
- Department of Pathophysiology, Center for Physiology and Pathophysiology, Vienna General Hospital, Vienna, Austria
| | | | | | | | | |
Collapse
|
30
|
Abstract
In addition to its antioxidative effects melatonin acts through specific nuclear and plasma membrane receptors. To date, two G-protein coupled melatonin membrane receptors, MT(1) and MT(2), have been cloned in mammals, while the newly purified MT(3) protein belongs to the family of quinone reductases. Screening studies have shown that various tissues of rodents express MT(1) and/or MT(2) melatonin receptors. In humans, melatonin receptors were also detected in several organs, including brain and retina, cardiovascular system, liver and gallbladder, intestine, kidney, immune cells, adipocytes, prostate and breast epithelial cells, ovary/granulosa cells, myometrium, and skin. This review summarizes the data published so far about MT(1) and MT(2) receptors in human tissues and human cells. Established and putative functions of melatonin after receptor activation as well as the clinical relevance of these findings will be discussed.
Collapse
MESH Headings
- Adipocytes/metabolism
- Animals
- Biliary Tract/metabolism
- Breast/metabolism
- Cardiovascular System/metabolism
- Central Nervous System/metabolism
- Female
- Gastrointestinal Tract/metabolism
- Genitalia, Female/metabolism
- Humans
- Immune System/metabolism
- Male
- Melatonin/metabolism
- Polymorphism, Genetic
- Prostate/metabolism
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Signal Transduction
- Skin/cytology
- Skin/metabolism
Collapse
Affiliation(s)
- C Ekmekcioglu
- Department of Physiology, Center for Physiology and Pathophysiology, Medical University Vienna, Schwarzpanierstrasse 17, A-1090 Vienna, Austria.
| |
Collapse
|
31
|
Leppilampi M, Parkkila S, Karttunen T, Gut MO, Gros G, Sjöblom M. Carbonic anhydrase isozyme-II-deficient mice lack the duodenal bicarbonate secretory response to prostaglandin E2. Proc Natl Acad Sci U S A 2005; 102:15247-52. [PMID: 16217040 PMCID: PMC1257747 DOI: 10.1073/pnas.0508007102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Duodenal bicarbonate secretion (DBS) is accepted as the primary mucosal defense against acid discharged from the stomach and is impaired in patients with duodenal ulcer disease. The secretory response to luminal acid is the main physiological stimulus for DBS and involves mediation by PGE2 produced by mucosal cells. The aim of this investigation is to elucidate the role of carbonic anhydrases (CAs) II and IX in PGE2-mediated bicarbonate secretion in the murine duodenum. CA II- and IX-deficient mice and different combinations of their heterozygous and WT counterparts were studied. A 10-mm segment of the proximal duodenum with intact blood supply was isolated, and DBS was titrated by pH-stat (TitroLine-easy, Schott, Mainz, Germany). Mean arterial blood pressure (MAP) was continuously recorded, and blood acid/base balance and gastrointestinal morphology were analyzed. The duodenal segment spontaneously secreted HCO3(-) at a steady basal rate of 5.3 +/- 0.6 micromol x cm(-1) x h(-1). Perfusing the duodenal lumen for 20 min with 47 microM PGE2 caused a significant increase in DBS to 13.0 +/- 2.9 micromol x cm(-1) x h(-1), P < 0.0001. The DBS response to PGE2 was completely absent in Car2-/- mice, whereas basal DBS was normal. The CA IX-deficient mice with normal Car2 alleles showed a slight increase in DBS. Histological abnormalities were observed in the gastroduodenal epithelium in both CA II- and IX-deficient mice. Our data demonstrate a gastrointestinal phenotypic abnormality associated with CA II deficiency. The results show that the stimulatory effect of the duodenal secretagogue PGE2 completely depends on CA II.
Collapse
Affiliation(s)
- Mari Leppilampi
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, FI-33520 Tampere, Finland
| | | | | | | | | | | |
Collapse
|
32
|
Flemström G, Sjöblom M. Epithelial cells and their neighbors. II. New perspectives on efferent signaling between brain, neuroendocrine cells, and gut epithelial cells. Am J Physiol Gastrointest Liver Physiol 2005; 289:G377-80. [PMID: 16093418 DOI: 10.1152/ajpgi.00093.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Surface sensory enteroendocrine cells are established mucosal taste cells that monitor luminal contents and provide an important link in transfer of information from gut epithelium to the central nervous system. Recent studies now show that these cells can also mediate efferent signaling from the brain to the gut. Centrally elicited stimulation of vagal and sympathetic pathways induces release of melatonin, which acts at MT2 receptors to increase mucosal electrolyte secretion. Psychological factors as well mucosal endocrine cell hyperplasia are implicated in functional intestinal disorders. Central nervous influence on the release of transmitters from gut endocrine cells offers an exciting area of future gastrointestinal research with a clinical relevance.
Collapse
Affiliation(s)
- Gunnar Flemström
- Division of Physiology, Department of Neuroscience, Uppsala Univ., BMC, P.O. Box 572, SE-751 23 Uppsala, Sweden.
| | | |
Collapse
|
33
|
Allen A, Flemström G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol 2005; 288:C1-19. [PMID: 15591243 DOI: 10.1152/ajpcell.00102.2004] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Secretion of bicarbonate into the adherent layer of mucus gel creates a pH gradient with a near-neutral pH at the epithelial surfaces in stomach and duodenum, providing the first line of mucosal protection against luminal acid. The continuous adherent mucus layer is also a barrier to luminal pepsin, thereby protecting the underlying mucosa from proteolytic digestion. In this article we review the present state of the gastroduodenal mucus bicarbonate barrier two decades after the first supporting experimental evidence appeared. The primary function of the adherent mucus gel layer is a structural one to create a stable, unstirred layer to support surface neutralization of acid and act as a protective physical barrier against luminal pepsin. Therefore, the emphasis on mucus in this review is on the form and role of the adherent mucus gel layer. The primary function of the mucosal bicarbonate secretion is to neutralize acid diffusing into the mucus gel layer and to be quantitatively sufficient to maintain a near-neutral pH at the mucus-mucosal surface interface. The emphasis on mucosal bicarbonate in this review is on the mechanisms and control of its secretion and the establishment of a surface pH gradient. Evidence suggests that under normal physiological conditions, the mucus bicarbonate barrier is sufficient for protection of the gastric mucosa against acid and pepsin and is even more so for the duodenum.
Collapse
Affiliation(s)
- Adrian Allen
- Physiological Sciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
34
|
Hirokawa M, Furukawa O, Guth PH, Engel E, Kaunitz JD. Low-dose PGE2 mimics the duodenal secretory response to luminal acid in mice. Am J Physiol Gastrointest Liver Physiol 2004; 286:G891-8. [PMID: 14764447 DOI: 10.1152/ajpgi.00458.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Luminal exposure to concentrated acid, the most accepted physiological stimulus for duodenal bicarbonate secretion (DBS), cannot be used with in vitro preparations due to potential tissue damage. We thus examined whether exposure to PGE(2), a well-characterized physiological duodenal secretagogue, could mimic the effects of acid perfusion. DBS was measured in C57/BL mice by pH-stat/back-titration and measurement of total dissolved CO(2) concentration ([CO(2)](t)). Anion transport inhibitor DIDS, anion channel inhibitor 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), carbonic anhydrase inhibitor methazolamide, and nonselective cyclooxygenase inhibitor indomethacin were used to inhibit separate components of HCO(3)(-) secretory pathway. Baseline DBS was not altered by exposure to methazolamide (0.1 mM) but was slightly reduced by DIDS (0.5 mM). DBS and [CO(2)](t) increased after acid and PGE(2) exposure. DIDS (0.5 mM) and NPPB (0.2 mM) abolished acid-induced DBS increase. Methazolamide (0.1 mM) and DIDS inhibited acid-induced [CO(2)](t) increase. DIDS, NPPB, or methazolamide had little effect on DBS in response to high concentration PGE(2) (100 microg/ml). Low concentration PGE(2) (1 microg/ml) increased DBS that was inhibited by DIDS, NPPB, and methazolamide. Pretreatment with indomethacin (5 mg/kg) inhibited DBS induced by acid exposure but not by PGE(2). High-dose PGE(2) substantially increases DBS by a mechanism that appears to be different than secretory response to luminal acid perfusion. Secretory response to low-dose PGE(2), at least in terms of inhibitor profile, closely resembles secretion in response to perfusion of physiological acid concentrations and may be a useful stimulus for in vitro study of DBS in isolated mouse duodenum.
Collapse
Affiliation(s)
- Masahiko Hirokawa
- Center for Ulcer Research and Education: Digestive Diseases Research Center, Los Angeles 90073, USA
| | | | | | | | | |
Collapse
|
35
|
Flemström G, Sjöblom M, Jedstedt G, Akerman KEO. Short fasting dramatically decreases rat duodenal secretory responsiveness to orexin A but not to VIP or melatonin. Am J Physiol Gastrointest Liver Physiol 2003; 285:G1091-6. [PMID: 12869385 DOI: 10.1152/ajpgi.00193.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Orexins are involved in the central nervous control of appetite and behavior, and in addition, they are present in endocrine cells and/or neurons in the intestine. The role of these peptides in peripheral regulation of intestinal secretion has not been investigated. We thus compared the effects of orexin A and some established secretagogues on duodenal HCO3- secretion in fed rats with effects in rats exposed to short (overnight) food deprivation. Rats were anesthetized with thiobarbiturate, a 12-mm segment of proximal duodenum with intact blood supply was cannulated in situ, and the alkaline secretion was titrated by pH stat. Secretagogues were supplied specifically to the duodenum by close intra-arterial infusion. Orexin A (60-600 pmol x kg(-1) x h(-1)) caused marked and dose-dependent stimulation of the duodenal secretion in fed animals but did not affect secretion in overnight food-deprived animals. Similarly, short fasting caused a 100-fold increase in the amount of the muscarinic agonist bethanechol (from 50 to 5,000 nmol x kg(-1) x h(-1)) required for stimulation of the secretion. In contrast, the secretory responses to VIP (50-1,000 pmol x kg(-1) x h(-1)) and melatonin (20-200 nmol x kg(-1) x h(-1)) were not affected. The appetite-regulating peptide orexin A is thus a stimulant of intestinal secretion, but the response to this peptide as well as the muscarinic agonist bethanechol is markedly dependent on previous intake of food. Overnight fasting is a standard experimental procedure in studies of gastrointestinal function and pathophysiology in humans and animals. Studies made on neuroendocrine control of intestinal secretion may require reevaluation with respect to feeding status.
Collapse
Affiliation(s)
- Gunnar Flemström
- Department of Neuroscience, Division of Physiology, Uppsala University, SE-751 23 Uppsala, Sweden.
| | | | | | | |
Collapse
|
36
|
Dong WG, Mei Q, Yu JP, Xu JM, Xiang L, Xu Y. Effects of melatonin on the expression of iNOS and COX-2 in rat models of colitis. World J Gastroenterol 2003; 9:1307-11. [PMID: 12800246 PMCID: PMC4611806 DOI: 10.3748/wjg.v9.i6.1307] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the effects of melatonin (MT) on the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in rat models of colitis.
METHODS: Healthy adult Sprague-Dawlay (SD) rats of both sexes, weighing 280 ± 30 g, were employed in the present study. The rat models of colitis were induced by either acetic acid or 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) enemas. The experimental animals were randomly divided into melatonin treatment and model control group that were intracolicly treated daily with melatonin at doses of 2.5, 5.0, 10.0 mg•kg-1 and equal amount of saline respectively from 24 h following induction of colitis in rats inflicted with acetic acid enema and the seventh day in rats with TNBS to the end of study. A normal control group of rats treated with neither acetic acid nor TNBS but saline enema was also included in the study. On the 28th day of the experiment, the rat colon mucosal damage index (CDMI) was calculated, and the colonic prostaglandin E2 (PGE2), nitric oxide (NO), as well as the iNOS and COX-2 expression were also determined biochemically or immunohistochemically.
RESULTS: CDMI increased to 2.87 ± 0.64 and 3.12 ± 1.12 respectively in rats treated with acetic acid and TNBS enema, which was in accordance with the significantly elevated colonic NO and PGE2 contents, as well as the up-regulated colonic iNOS and COX-2 expression in both of the two rat models of colitis. With treatment by melatonin at the doses of 5.0 and 10.0 mg•kg-1, CDMI in both models of rat colitis was significantly decreased (P < 0.05-0.01), which accorded synchronously and unanimously with the reduced colonic NO and PGE2 content, as well as the down-regulated expression of colonic iNOS and COX-2.
CONCLUSION: Melatonin has a protective effect on colonic injury induced by both acetic acid and TNBS enemas, which is probably via a mechanism of local inhibition of iNOS and COX-2 expression in colonic mucosa.
Collapse
Affiliation(s)
- Wei-Guo Dong
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan 430060, China.
| | | | | | | | | | | |
Collapse
|
37
|
Sjöblom M, Säfsten B, Flemström G. Melatonin-induced calcium signaling in clusters of human and rat duodenal enterocytes. Am J Physiol Gastrointest Liver Physiol 2003; 284:G1034-44. [PMID: 12584110 DOI: 10.1152/ajpgi.00500.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The amount of melatonin present in enterochromaffin cells in the alimentary tract is much higher than that in the central nervous system, and melatonin acting at MT(2) receptors mediates neural stimulation of mucosal HCO(3)(-) secretion in duodenum in vivo. We have examined effects of melatonin and receptor ligands on intracellular free calcium concentration ([Ca(2+)](i)) signaling in human and rat duodenal enterocytes. Clusters of interconnecting enterocytes (10-50 cells) were isolated by mild digestion (collagenase/dispase) of human duodenal biopsies or rat duodenal mucosa loaded with fura-2 AM and attached to the bottom of a temperature-controlled perfusion chamber. Clusters provided viable preparations and respond to stimuli as a syncytium. Melatonin and melatonin receptor agonists 2-iodo-N-butanoyl-5-methoxytryptamine and 2-iodomelatonin (1.0-100 nM) increased enterocyte [Ca(2+)](i), EC(50) of melatonin being 17.0 +/- 2.6 nM. The MT(2) receptor antagonists luzindole and N-pentanoyl-2-benzyltryptamine abolished the [Ca(2+)](i) responses. The muscarinic antagonist atropine (1.0 microM) was without effect on basal [Ca(2+)](i) and did not affect the response to melatonin. In the main type of response, [Ca(2+)](i) spiked rapidly and returned to basal values within 4-6 min. In another type, the initial rise in [Ca(2+)](i) was followed by rhythmic oscillations of high amplitude. Melatonin-induced enterocyte [Ca(2+)](i) signaling as well as mucosal cell-to-cell communication may be involved in stimulation of duodenal mucosal HCO(3)(-) secretion.
Collapse
Affiliation(s)
- Markus Sjöblom
- Division of Physiology, Department of Neuroscience, Uppsala University, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
38
|
Abstract
Melatonin, originating from intestinal enterochromaffin cells, mediates vagal and sympathetic neural stimulation of the HCO secretion by the duodenal mucosa. This alkaline secretion is considered the first line of mucosal defense against hydrochloric acid discharged from the stomach. We have studied whether luminally applied melatonin stimulates the protective secretion and whether a melatonin pathway is involved in acid-induced stimulation of the secretion. Rats were anaesthetized (Inactin) and a 12-mm segment of proximal duodenum with an intact blood supply was cannulated in situ. Mucosal HCO secretion (pH-stat) and the mean arterial blood pressure were continuously recorded. Luminal melatonin at a concentration of 1.0 micro m increased (P < 0.05) the secretion from 7.20 +/- 1.35 to 13.20 +/- 1.51 micro Eq/cm/hr. The MT2 selective antagonist luzindole (600 nmol/kg, i.v.) had no effect on basal HCO secretion, but inhibited (P < 0.05) secretion stimulated by luminal melatonin. Hexamethonium (10 mg/kg i.v. followed by continuous i.v. infusion at a rate of 10 mg/kg/hr), abolishes neurally mediated rises in secretion and also inhibited (P < 0.05) the stimulation by luminal melatonin. Exposure of the lumen to acid containing perfusate (pH 2.0) for 5 min increased (P < 0.05) the HCO secretion from 5.85 +/- 0.82 to 12.35 +/- 1.51 micro Eq/cm/hr, and luzindole significantly inhibited (P < 0.05) this rise in secretion. The study thus demonstrates that luminal melatonin is a potent stimulant of duodenal HCO secretion and, furthermore, strongly suggests melatonin as an important mediator of acid-induced secretion.
Collapse
Affiliation(s)
- Markus Sjöblom
- Department of Neuroscience, Division of Physiology, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
39
|
Flemström G, Sjöblom M. Duodenal defence mechanisms: role of mucosal bicarbonate secretion. Inflammopharmacology 2002. [DOI: 10.1163/156856002321544792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Abstract
The gastrointestinal tract of vertebrate species is a rich source of extrapineal melatonin. The concentration of melatonin in the gastrointestinal tissues surpasses blood levels by 10-100 times and there is at least 400x more melatonin in the gastrointestinal tract than in the pineal gland. The gastrointestinal tract contributes significantly to circulating concentrations of melatonin, especially during the daytime and melatonin may serve as an endocrine, paracrine, or autocrine hormone influencing the regeneration and function of epithelium, enhancing the immune system of the gut, and reducing the tone of gastrointestinal muscles. As binding sites for melatonin exhibit circadian variation in various species, it has been hypothesized that some melatonin found in the gastrointestinal tract might be of pineal origin. Unlike the photoperiodically regulated production of melatonin in the pineal, the release of gastrointestinal melatonin seems to be related to the periodicity of food intake. Phylogenetically, melatonin and its binding sites were detected in the gastrointestinal tract of lower vertebrates, birds, and mammals. Melatonin was found also in large quantities in the embryonic tissue of the mammalian and avian gastrointestinal tract. Food intake and, paradoxically, also longterm food deprivation resulted in an increase of tissue and plasma concentrations of melatonin. Melatonin release may have a direct effect on many gastrointestinal tissues but may also well influence the digestive tract indirectly, via the central nervous system and the sympathetic and parasympathetic nerves. Melatonin prevents ulcerations of gastrointestinal mucosa by an antioxidant action, reduction of secretion of hydrochloric acid, stimulation of the immune system, fostering epithelial regeneration, and increasing microcirculation. Because of its unique properties, melatonin could be considered for prevention or treatment of colorectal cancer, ulcerative colitis, gastric ulcers, irritable bowel syndrome, and childhood colic.
Collapse
|
41
|
Abstract
The gastrointestinal tract of vertebrate species is a rich source of extrapineal melatonin. The concentration of melatonin in the gastrointestinal tissues surpasses blood levels by 10-100 times and there is at least 400x more melatonin in the gastrointestinal tract than in the pineal gland. The gastrointestinal tract contributes significantly to circulating concentrations of melatonin, especially during the daytime and melatonin may serve as an endocrine, paracrine, or autocrine hormone influencing the regeneration and function of epithelium, enhancing the immune system of the gut, and reducing the tone of gastrointestinal muscles. As binding sites for melatonin exhibit circadian variation in various species, it has been hypothesized that some melatonin found in the gastrointestinal tract might be of pineal origin. Unlike the photoperiodically regulated production of melatonin in the pineal, the release of gastrointestinal melatonin seems to be related to the periodicity of food intake. Phylogenetically, melatonin and its binding sites were detected in the gastrointestinal tract of lower vertebrates, birds, and mammals. Melatonin was found also in large quantities in the embryonic tissue of the mammalian and avian gastrointestinal tract. Food intake and, paradoxically, also longterm food deprivation resulted in an increase of tissue and plasma concentrations of melatonin. Melatonin release may have a direct effect on many gastrointestinal tissues but may also well influence the digestive tract indirectly, via the central nervous system and the sympathetic and parasympathetic nerves. Melatonin prevents ulcerations of gastrointestinal mucosa by an antioxidant action, reduction of secretion of hydrochloric acid, stimulation of the immune system, fostering epithelial regeneration, and increasing microcirculation. Because of its unique properties, melatonin could be considered for prevention or treatment of colorectal cancer, ulcerative colitis, gastric ulcers, irritable bowel syndrome, and childhood colic.
Collapse
|