1
|
Franchini M, Cruciani M, Mengoli C, Casadevall A, Glingani C, Joyner MJ, Pirofski LA, Senefeld JW, Shoham S, Sullivan DJ, Zani M, Focosi D. Convalescent plasma and predictors of mortality among hospitalized patients with COVID-19: a systematic review and meta-analysis. Clin Microbiol Infect 2024; 30:1514-1522. [PMID: 39067517 DOI: 10.1016/j.cmi.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Plasma collected from recovered patients with COVID-19 (COVID-19 convalescent plasma [CCP]) was the first antibody-based therapy employed to fight the COVID-19 pandemic. While the therapeutic effect of early administration of CCP in COVID-19 outpatients has been recognized, conflicting data exist regarding the efficacy of CCP administration in hospitalized patients. OBJECTIVES To examine the effect of CCP compared to placebo or standard treatment, and to evaluate whether time from onset of symptoms to treatment initiation influenced the effect. DATA SOURCES Electronic databases were searched for studies published from January 2020 to January 2024. STUDY ELIGIBILITY CRITERIA Randomized clinical trials (RCTs) investigating the effect of CCP on COVID-19 mortality in hospitalized patients with COVID-19. PARTICIPANTS Hospitalized patients with COVID-19. INTERVENTIONS CCP versus no CCP. ASSESSMENT OF RISK OF BIAS Cochrane risk of bias tool for RCTs. METHODS OF DATA SYNTHESIS The random-effects model was used to calculate the pooled risk ratio (RR) with 95% CI for the pooled effect estimates of CCP treatment. The Grading of Recommendations Assessment, Development and Evaluation was used to evaluate the certainty of evidence. RESULTS Twenty-seven RCTs were included, representing 18,877 hospitalized patients with COVID-19. When transfused within 7 days from symptom onset, CCP significantly reduced the risk of death compared to standard therapy or placebo (RR, 0.76; 95% CI, 0.61-0.95), while later CCP administration was not associated with a mortality benefit (RR, 0.98; 95% CI, 0.90-1.06). The certainty of the evidence was graded as moderate. Meta-regression analysis demonstrated increasing mortality effects for longer interval to transfusion or worse initial clinical severity. CONCLUSIONS In-hospital transfusion of CCP within 7 days from symptom onset conferred a mortality benefit.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy.
| | - Mario Cruciani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Carlo Mengoli
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Claudia Glingani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Jonathon W Senefeld
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, IL, USA
| | - Shmuel Shoham
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Sullivan
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD, USA
| | - Matteo Zani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
2
|
Iasella CJ, Hannan SJ, Lyons EJ, Lieber SC, Das A, Dimitrov D, Li W, Saul M, Popescu I, Koshy R, Burke R, Lape B, Brown MJ, Chen X, Sembrat JC, Devonshire K, Kitsios GD, Konstantinidis I, Snyder ME, Chen BB, Merlo CA, Hager DN, Kiss JE, Yazer MH, Wells AH, Morris A, McVerry BJ, McMahon DK, Triulzi DJ, McDyer JF. Impact of variable titer COVID-19 convalescent plasma and recipient SARS-CoV2-specific humoral immunity on survival in hospitalized patients. PLoS One 2024; 19:e0309449. [PMID: 39446792 PMCID: PMC11500870 DOI: 10.1371/journal.pone.0309449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/12/2024] [Indexed: 10/26/2024] Open
Abstract
COVID-19 convalescent plasma (CCP) was one of the first therapies to receive emergency use authorization for management of COVID-19. We assessed the effectiveness of CCP in a propensity-matched analysis, and whether the presence of antibodies in the recipient at the time of treatment or the titer of antibodies in the administered CCP influenced clinical effectiveness. In an inpatient population within a single large health system, a total of 290 CCP patients were matched to 290 controls. While CCP increased titers of anti-SARS-CoV-2 RBD IgG titers post-CCP (p = <0.0001), no differences in 30-day survival were observed between CCP patients and controls in univariate and multivariate analyses. Survival at 30 days was numerically lower in recipients who were seronegative prior to CCP administration, compared to those with low titer and high titer anti-SARS-CoV-2 RBD IgG, respectively, but did not reach statistical significance (56% vs 82% vs 75%, p = 0.16). Patients who received 2 units of high-titer CCP had numerically better survival versus those who received fewer high-titer units, but this was not statistically significant (p = 0.08). CCP did not improve 30-day survival compared to propensity matched controls. Together these data support that CCP therapy provides limited benefit to hospitalized patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carlo J. Iasella
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, United States of America
| | - Stefanie J. Hannan
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Emily J. Lyons
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sophia C. Lieber
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Antu Das
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dimiter Dimitrov
- Department of Medicine, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Wei Li
- Department of Medicine, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Melissa Saul
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Iulia Popescu
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ritchie Koshy
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Robin Burke
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Braidon Lape
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, United States of America
| | - Mark J. Brown
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Xiaoping Chen
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - John C. Sembrat
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kaitlyn Devonshire
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Georgios D. Kitsios
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ioannis Konstantinidis
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mark E. Snyder
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Bill B. Chen
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Christian A. Merlo
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - David N. Hager
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Joseph E. Kiss
- Department of Pathology, Division of Transfusion Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mark H. Yazer
- Department of Pathology, Division of Transfusion Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Alan H. Wells
- Department of Pathology, Division of Laboratory Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Bryan J. McVerry
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Deborah K. McMahon
- Department of Medicine, Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Darrell J. Triulzi
- Department of Pathology, Division of Transfusion Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - John F. McDyer
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
3
|
Verbrugghe C, Wouters E, Devloo R, Nurmi V, Seghers S, De Bleser D, Harvala H, Compernolle V, Feys HB. Biochemical rationale for transfusion of high titre COVID-19 convalescent plasma. Sci Rep 2024; 14:23579. [PMID: 39384892 PMCID: PMC11464705 DOI: 10.1038/s41598-024-75093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
We aimed to model binding of donor antibodies to virus that infects COVID-19 patients following transfusion of convalescent plasma (CCP). An immunosorbent assay was developed to determine apparent affinity (Kd, app). Antibody binding to virus was modelled using antibody concentration and estimations of viral load. Assay and model were validated using reference antibodies and clinical data of monoclonal antibody therapy. A single Kd, app or two resolvable Kd, app were found for IgG in 11% or 89% of CCP donations, respectively. For IgA this was 50%-50%. Median IgG Kd, app was 0.8nM and 3.6nM for IgA, ranging from 0.1-14.7nM and 0.2-156.0nM respectively. The median concentration of IgG was 44.0nM (range 8.4-269.0nM) and significantly higher than IgA at 2.0nM (range 0.4-11.4nM). The model suggested that a double CCP transfusion (i.e. 500 mL) allows for > 80% binding of antibody to virus provided Kd, app was < 1nM and concentration > 150nM. In our cohort from the pre-vaccination era, 4% of donations fulfilled these criteria. Low and mid-range viral loads are found early post exposure, suggesting that convalescent plasma will be most effective then. This study provides a biochemical rationale for selecting high affinity and high antibody concentration CCP transfused early in the disease course.
Collapse
Affiliation(s)
- Caro Verbrugghe
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elise Wouters
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Rosalie Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Visa Nurmi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sabrina Seghers
- Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | | | - Heli Harvala
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Microbiology Services, NHS Blood and Transplant, Colindale, UK
- Infection and Immunity, University College of London, London, UK
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium
- Blood Services of the Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
- , Ottergemsesteenweg 413, Ghent, 9000, Belgium.
| |
Collapse
|
4
|
Abogunrin S, Adelakun A, Akinola T, Bashir U, Fagbohungbe B, Mueller E, Neeser K, Ogunnubi O, Parekh K. Challenges of consolidating evidence collected during a pandemic and lessons for the future. Curr Med Res Opin 2024; 40:1311-1322. [PMID: 38975733 DOI: 10.1080/03007995.2024.2377676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE To illustrate the challenges encountered when gathering rapidly synthesized evidence in response to the coronavirus disease 2019 (COVID-19) pandemic. METHODS In this article, we describe the challenges encountered when we performed a systematic literature review (SLR) of randomized controlled trials (RCTs) on the efficacy and safety of treatments for severe COVID-19. The methods of the SLR are described in full, to show the context of our objectives. Then we use the results of the SLR to demonstrate the problems of producing synthesized evidence in this setting. RESULTS Various challenges were identified during this SLR. These were primarily a result of heterogeneity in the study methodology of eligible studies. Definitions of the patient populations and outcome measurements were highly variable and the majority of studies demonstrated a high risk of bias, preventing quantitative synthesis of the collated evidence. CONCLUSION Consolidating evidence from RCTs evaluating COVID-19 interventions was problematic. Guidance is needed for scenarios with high rapid output in primary research.
Collapse
Affiliation(s)
| | - Alex Adelakun
- Manchester University Foundation Trust, Manchester, UK
| | | | - Usman Bashir
- Community Medicine Department, Bayero University Kano, Kano, Nigeria
| | | | | | | | - Oluseun Ogunnubi
- Department of Psychiatry, College of Medicine of the University of Lagos, Lagos, Nigeria
| | | |
Collapse
|
5
|
Franchini M, Mengoli C, Casadevall A, Focosi D. Exploring Study Design Foibles in Randomized Controlled Trials on Convalescent Plasma in Hospitalized COVID-19 Patients. Life (Basel) 2024; 14:792. [PMID: 39063547 PMCID: PMC11278192 DOI: 10.3390/life14070792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Sample size estimation is an essential step in the design of randomized controlled trials (RCTs) evaluating a treatment effect. Sample size is a critical variable in determining statistical significance and, thus, it significantly influences RCTs' success or failure. During the COVID-19 pandemic, many RCTs tested the efficacy of COVID-19 convalescent plasma (CCP) in hospitalized patients but reported different efficacies, which could be attributed to, in addition to timing and dose, inadequate sample size estimates. Methods: To assess the sample size estimation in RCTs evaluating the effect of treatment with CCP in hospitalized COVID-19 patients, we searched the medical literature between January 2020 and March 2024 through PubMed and other electronic databases, extracting information on expected size effect, statistical power, significance level, and measured efficacy. Results: A total of 32 RCTs were identified. While power and significance level were highly consistent, heterogeneity in the expected size effect was relevant. Approximately one third of the RCTs did not reach the planned sample size for various reasons, with the most important one being slow patient recruitment during the pandemic's peaks. RCTs with a primary outcome in favor of CCP treatment had a significant lower median absolute difference in the expected size effect than unfavorable RCTs (20.0% versus 33.9%, P = 0.04). Conclusions: The analyses of sample sizes in RCTs of CCP treatment in hospitalized COVID-19 patients reveal that many underestimated the number of participants needed because of excessively high expectations on efficacy, and thus, these studies had low statistical power. This, in combination with a lower-than-planned recruitment of cases and controls, could have further negatively influenced the primary outcomes of the RCTs.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Carlo Mengoli
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, MD 21205, USA;
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
6
|
Arevalo-Romero JA, Chingaté-López SM, Camacho BA, Alméciga-Díaz CJ, Ramirez-Segura CA. Next-generation treatments: Immunotherapy and advanced therapies for COVID-19. Heliyon 2024; 10:e26423. [PMID: 38434363 PMCID: PMC10907543 DOI: 10.1016/j.heliyon.2024.e26423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.
Collapse
Affiliation(s)
- Jenny Andrea Arevalo-Romero
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Sandra M. Chingaté-López
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bernardo Armando Camacho
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Carlos Javier Alméciga-Díaz
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Cesar A. Ramirez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| |
Collapse
|
7
|
Franchini M, Cruciani M, Casadevall A, Joyner MJ, Senefeld JW, Sullivan DJ, Zani M, Focosi D. Safety of COVID-19 convalescent plasma: A definitive systematic review and meta-analysis of randomized controlled trials. Transfusion 2024; 64:388-399. [PMID: 38156374 DOI: 10.1111/trf.17701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Mario Cruciani
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathon W Senefeld
- Department of Kinesiology and Community Healthy, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - David J Sullivan
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Matteo Zani
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
8
|
Franchini M, Focosi D. Hyperimmune Plasma and Immunoglobulins against COVID-19: A Narrative Review. Life (Basel) 2024; 14:214. [PMID: 38398723 PMCID: PMC10890293 DOI: 10.3390/life14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Since late 2019, the new SARS-CoV-2 virus belonging to the Coronaviridae family has been responsible for COVID-19 pandemic, a severe acute respiratory syndrome. Several antiviral therapies, mostly derived from previous epidemics, were initially repurposed to fight this not rarely life-threatening respiratory illness. Among them, however, the only specific antibody-based therapy available against SARS-CoV-2 infection during the first year of the pandemic was represented by COVID-19 convalescent plasma (CCP). CCP, collected from recovered individuals, contains high levels of polyclonal antibodies of different subclasses able to neutralize SARS-CoV-2 infection. Tens of randomized controlled trials have been conducted during the last three years of the pandemic to evaluate the safety and the clinical efficacy of CCP in both hospitalized and ambulatory COVID-19 patients, whose main results will be summarized in this narrative review. In addition, we will present the current knowledge on the development of anti-SARS-CoV-2 hyperimmune polyclonal immunoglobulins.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| |
Collapse
|
9
|
|
10
|
Lacombe K, Hueso T, Porcher R, Mekinian A, Chiarabini T, Georgin-Lavialle S, Ader F, Saison J, Martin-Blondel G, De Castro N, Bonnet F, Cazanave C, Francois A, Morel P, Hermine O, Pourcher V, Michel M, Lescure X, Soussi N, Brun P, Pommeret F, Sellier P, Rousset S, Piroth L, Michot JM, Baron G, de Lamballerie X, Mariette X, Tharaux PL, Resche-Rigon M, Ravaud P, Simon T, Tiberghien P. Use of covid-19 convalescent plasma to treat patients admitted to hospital for covid-19 with or without underlying immunodeficiency: open label, randomised clinical trial. BMJ MEDICINE 2023; 2:e000427. [PMID: 37920150 PMCID: PMC10619082 DOI: 10.1136/bmjmed-2022-000427] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/05/2023] [Indexed: 11/04/2023]
Abstract
Objective To evaluate the efficacy of covid-19 convalescent plasma to treat patients admitted to hospital for moderate covid-19 disease with or without underlying immunodeficiency (CORIPLASM trial). Design Open label, randomised clinical trial. Setting CORIMUNO-19 cohort (publicly supported platform of open label, randomised controlled trials of immune modulatory drugs in patients admitted to hospital with moderate or severe covid-19 disease) based on 19 university and general hospitals across France, from 16 April 2020 to 21 April 2021. Participants 120 adults (n=60 in the covid-19 convalescent plasma group, n=60 in the usual care group) admitted to hospital with a positive SARS-CoV2 test result, duration of symptoms <9 days, and World Health Organization score of 4 or 5. 49 patients (n=22, n=27) had underlying immunosuppression. Interventions Open label randomisation to usual care or four units (200-220 mL/unit, 2 units/day over two consecutive days) of covid-19 convalescent plasma with a seroneutralisation titre >40. Main outcome measures Primary outcomes were proportion of patients with a WHO Clinical Progression Scale score of ≥6 on the 10 point scale on day 4 (higher values indicate a worse outcome), and survival without assisted ventilation or additional immunomodulatory treatment by day 14. Secondary outcomes were changes in WHO Clinical Progression Scale scores, overall survival, time to discharge, and time to end of dependence on oxygen supply. Predefined subgroups analyses included immunosuppression status, duration of symptoms before randomisation, and use of steroids. Results 120 patients were recruited and assigned to covid-19 convalescent plasma (n=60) or usual care (n=60), including 22 (covid-19 convalescent plasma) and 27 (usual care) patients who were immunocompromised. 13 (22%) patients who received convalescent plasma had a WHO Clinical Progression Scale score of ≥6 at day 4 versus eight (13%) patients who received usual care (adjusted odds ratio 1.88, 95% credible interval 0.71 to 5.24). By day 14, 19 (31.6%) patients in the convalescent plasma group and 20 (33.3%) patients in the usual care group needed ventilation, additional immunomodulatory treatment, or had died. For cumulative incidence of death, three (5%) patients in the convalescent plasma group and eight (13%) in the usual care group died by day 14 (adjusted hazard ratio 0.40, 95% confidence interval 0.10 to 1.53), and seven (12%) patients in the convalescent plasma group and 12 (20%) in the usual care group by day 28 (adjusted hazard ratio 0.51, 0.20 to 1.32). In a subgroup analysis performed in patients who were immunocompromised, transfusion of covid-19 convalescent plasma was associated with mortality (hazard ratio 0.39, 95% confidence interval 0.14 to 1.10). Conclusions In this study, covid-19 convalescent plasma did not improve early outcomes in patients with moderate covid-19 disease. The efficacy of convalescent plasma in patients who are immunocompromised should be investigated further. Trial registration ClinicalTrials.gov NCT04345991.
Collapse
Affiliation(s)
- Karine Lacombe
- Sorbonne Université, Paris, France
- IPLESP, INSERM, Paris, France
- Infectious Diseases Department, St Antoine Hospital, AP-HP, Paris, France
| | - Thomas Hueso
- Hematology department, Avicenne Hospital, AP-HP, Bobigny, France
- Hôpitaux Universitaires Paris Seine Saint Denis, Bobigny, France
| | - Raphael Porcher
- Centre de Recherche Épidémiologie et Statistique, CRESS-UMR1153, Sorbonne Paris Cité, Paris, France
- Centre d'épidémiologie clinique, Hôpital Hôtel-Dieu, AP-HP, Paris, France
| | - Arsene Mekinian
- Sorbonne Université, Paris, France
- Internal Medicine Department, Saint Antoine Hospital, AP-HP, Paris, France
| | | | - Sophie Georgin-Lavialle
- Sorbonne Université, Paris, France
- Internal Medicine department, Tenon Hospital, AP-HP, Paris, France
| | - Florence Ader
- CIRI, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Infectious Diseases Department, Hospices Civils de Lyon, Lyon, France
| | - Julien Saison
- Infectious Diseases Department, Centre Hospitalier de Valence, Valence, France
| | - Guillaume Martin-Blondel
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 - CNRS UMR5051, Université Toulouse III, Toulouse, France
- Infectious Diseases department, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Nathalie De Castro
- Infectious Diseases department, Saint Louis Hospital, AP-HP, Paris, France
| | - Fabrice Bonnet
- Bordeaux Population Health, INSERM U1219, Université de Bordeaux, Bordeaux, France
- Internal Medicine Department, Saint-André Hospital, Bordeaux, France
| | - Charles Cazanave
- Infectious Diseases Department, Hôpital Pellegrin, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Anne Francois
- Etablissement Francais du Sang, La Plaine Saint-Denis, France
| | - Pascal Morel
- Etablissement Francais du Sang, La Plaine Saint-Denis, France
| | - Olivier Hermine
- Université de Paris, Paris, France
- Hematology Department, Hôpital Necker - Enfants Malades, AP-HP, Paris, France
| | - Valerie Pourcher
- Sorbonne Université, Paris, France
- IPLESP, INSERM, Paris, France
- Infectious Diseases Department, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marc Michel
- Université de Paris Est Créteil, Créteil, France
- Internal Medicine Department, Hôpital henri-Mondor, AP-HP, Créteil, France
| | - Xavier Lescure
- Université de Paris, Paris, France
- Infectious Diseases Department, Hôpital Bichat - Claude Bernard, AP-HP, Paris, France
| | - Nora Soussi
- Clinical Research Platform (URC-CRC-CRB), Saint-Antoine Hospital, AP-HP, Paris, France
| | | | - Fanny Pommeret
- Oncology Department, Institut Gustave Roussy, Villejuif, France
| | - Pierre Sellier
- Infectious Diseases Department, Lariboisière Hospital, AP-HP, Paris, France
| | - Stella Rousset
- Infectious Diseases department, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Lionel Piroth
- Infectious Diseases Department, University Hospital Centre Dijon Bourgogne, Dijon, France
| | | | - Gabriel Baron
- Centre de Recherche Épidémiologie et Statistique, CRESS-UMR1153, Sorbonne Paris Cité, Paris, France
- Centre d'épidémiologie clinique, Hôpital Hôtel-Dieu, AP-HP, Paris, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents, IRD 190-Inserm 1207, Aix-Marseille University, Marseille, France
| | - Xavier Mariette
- Inserm UMR1184, Université Paris-Saclay, Le Kremin-Bicêtre, France
- Rhumatology Department, Centre Hospitalier Universitaire Bicêtre, Le Kremlin-Bicêtre, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Centre - PARCC, Inserm, Université Paris-Cité, Paris, France
| | - Matthieu Resche-Rigon
- INSERM U153, Université Paris-Cité, Paris, France
- Service de biostatistique et information médicale, Saint-Louis Hospital, AP-HP, Paris, France
| | - Philippe Ravaud
- INSERM U153, Université Paris-Cité, Paris, France
- Service de biostatistique et information médicale, Saint-Louis Hospital, AP-HP, Paris, France
| | - Tabassome Simon
- Sorbonne Université, Paris, France
- Département de Pharmacologie clinique, Saint-Antoine Hospital, AP-HP, Paris, France
| | - Pierre Tiberghien
- Etablissement Francais du Sang, La Plaine Saint-Denis, France
- UMR1098 RIGHT, Inserm, Université de Franche-Comté, Besançon, France
| |
Collapse
|
11
|
Steenhuis M, Wouters E, Schrezenmeier H, Rispens T, Tiberghien P, Harvala H, Feys HB, van der Schoot CE. Quality assessment and harmonization of laboratories across Europe for multiple SARS-CoV-2 serology assays. Vox Sang 2023; 118:666-673. [PMID: 37401414 DOI: 10.1111/vox.13480] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND AND OBJECTIVES There is a need for conversion of SARS-CoV-2 serology data from different laboratories to a harmonized international unit. We aimed to compare the performance of multiple SARS-CoV-2 antibody serology assays among 25 laboratories across 12 European countries. MATERIALS AND METHODS To investigate this we have distributed to all participating laboratories a panel of 15 SARS-CoV-2 plasma samples and a single batch of pooled plasma calibrated to the WHO IS 20/136 standard. RESULTS All assays showed excellent discrimination between SARS-CoV-2 seronegative plasma samples and pre-vaccinated seropositive plasma samples but differed substantially in raw antibody titres. Titres could be harmonized to binding antibody units per millilitre by calibration in relation to a reference reagent. CONCLUSION The standardization of antibody quantification is of paramount importance to allow interpretation and comparison of serology data reported in clinical trials in order to identify donor cohorts from whom the most effective convalescent plasma can be collected.
Collapse
Affiliation(s)
- Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| | - Elise Wouters
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Wurttemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| | | | - Heli Harvala
- Microbiology Services, NHS Blood and Transplant, London, UK
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - C Ellen van der Schoot
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
12
|
Uzun G, Müller R, Althaus K, Becker M, Marsall P, Junker D, Nowak-Harnau S, Schneiderhan-Marra N, Klüter H, Schrezenmeier H, Bugert P, Bakchoul T. Correlation between Clinical Characteristics and Antibody Levels in COVID-19 Convalescent Plasma Donor Candidates. Viruses 2023; 15:1357. [PMID: 37376656 DOI: 10.3390/v15061357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) with high neutralizing antibodies has been suggested in preventing disease progression in COVID-19. In this study, we investigated the relationship between clinical donor characteristics and neutralizing anti-SARS-CoV-2 antibodies in CCP donors. COVID-19 convalescent plasma donors were included into the study. Clinical parameters were recorded and anti-SARS-CoV-2 antibody levels (Spike Trimer, Receptor Binding Domain (RBD), S1, S2 and nucleocapsid protein) as well as ACE2 binding inhibition were measured. An ACE2 binding inhibition < 20% was defined as an inadequate neutralization capacity. Univariate and multivariable logistic regression analysis was used to detect the predictors of inadequate neutralization capacity. Ninety-one CCP donors (56 female; 61%) were analyzed. A robust correlation between all SARS-CoV-2 IgG antibodies and ACE2 binding inhibition, as well as a positive correlation between donor age, body mass index, and a negative correlation between time since symptom onset and antibody levels were found. We identified time since symptom onset, normal body mass index (BMI), and the absence of high fever as independent predictors of inadequate neutralization capacity. Gender, duration of symptoms, and number of symptoms were not associated with SARS-CoV-2 IgG antibody levels or neutralization. Neutralizing capacity was correlated with SARS-CoV-2 IgG antibodies and associated with time since symptom onset, BMI, and fever. These clinical parameters can be easily incorporated into the preselection of CCP donors.
Collapse
Affiliation(s)
- Günalp Uzun
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| | - Rebecca Müller
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Karina Althaus
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| | - Matthias Becker
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Patrick Marsall
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Stefanie Nowak-Harnau
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| | - Nicole Schneiderhan-Marra
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770 Reutlingen, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
- Institute for Transfusion Medicine and University Hospital Ulm, University of Ulm, 89081 Ulm, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Tamam Bakchoul
- Centre for Clinical Transfusion Medicine, University Hospital of Tuebingen, 72072 Tuebingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, 72072 Tuebingen, Germany
| |
Collapse
|
13
|
Al-Hatamleh MA, Abusalah MA, Hatmal MM, Alshaer W, Ahmad S, Mohd-Zahid MH, Rahman ENSE, Yean CY, Alias IZ, Uskoković V, Mohamud R. Understanding the challenges to COVID-19 vaccines and treatment options, herd immunity and probability of reinfection. J Taibah Univ Med Sci 2023; 18:600-638. [PMID: 36570799 PMCID: PMC9758618 DOI: 10.1016/j.jtumed.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Unlike pandemics in the past, the outbreak of coronavirus disease 2019 (COVID-19), which rapidly spread worldwide, was met with a different approach to control and measures implemented across affected countries. The lack of understanding of the fundamental nature of the outbreak continues to make COVID-19 challenging to manage for both healthcare practitioners and the scientific community. Challenges to vaccine development and evaluation, current therapeutic options, convalescent plasma therapy, herd immunity, and the emergence of reinfection and new variants remain the major obstacles to combating COVID-19. This review discusses these challenges in the management of COVID-19 at length and highlights the mechanisms needed to provide better understanding of this pandemic.
Collapse
Affiliation(s)
- Mohammad A.I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mai A. Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Ma'mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Manali H. Mohd-Zahid
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Engku Nur Syafirah E.A. Rahman
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Chan Y. Yean
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Iskandar Z. Alias
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
14
|
Iannizzi C, Chai KL, Piechotta V, Valk SJ, Kimber C, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Jindal A, Cryns N, Estcourt LJ, Kreuzberger N, Skoetz N. Convalescent plasma for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2023; 5:CD013600. [PMID: 37162745 PMCID: PMC10171886 DOI: 10.1002/14651858.cd013600.pub6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.
Collapse
Affiliation(s)
- Claire Iannizzi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Aikaj Jindal
- Department of Transfusion Medicine, SPS Hospitals, Ludhiana (Punjab), India
| | - Nora Cryns
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Desmarets M, Hoffmann S, Vauchy C, Rijnders BJA, Toussirot E, Durrbach A, Körper S, Schrezenmeier E, van der Schoot CE, Harvala H, Brunotte G, Appl T, Seifried E, Tiberghien P, Bradshaw D, Roberts DJ, Estcourt LJ, Schrezenmeier H. Early, very high-titre convalescent plasma therapy in clinically vulnerable individuals with mild COVID-19 (COVIC-19): protocol for a randomised, open-label trial. BMJ Open 2023; 13:e071277. [PMID: 37105693 PMCID: PMC10151238 DOI: 10.1136/bmjopen-2022-071277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION COVID-19 convalescent plasma (CCP) is a possible treatment option for COVID-19. A comprehensive number of clinical trials on CCP efficacy have already been conducted. However, many aspects of CCP treatment still require investigations: in particular (1) Optimisation of the CCP product, (2) Identification of the patient population in need and most likely to benefit from this treatment approach, (3) Timing of administration and (4) CCP efficacy across viral variants in vivo. We aimed to test whether high-titre CCP, administered early, is efficacious in preventing hospitalisation or death in high-risk patients. METHODS AND ANALYSIS COVIC-19 is a multicentre, randomised, open-label, adaptive superiority phase III trial comparing CCP with very high neutralising antibody titre administered within 7 days of symptom onset plus standard of care versus standard of care alone. We will enrol patients in two cohorts of vulnerable patients [(1) elderly 70+ years, or younger with comorbidities; (2) immunocompromised patients]. Up to 1020 participants will be enrolled in each cohort (at least 340 with a sample size re-estimation after reaching 102 patients). The primary endpoint is the proportion of participants with (1) Hospitalisation due to progressive COVID-19, or (2) Who died by day 28 after randomisation. Principal analysis will follow the intention-to-treat principle. ETHICS AND DISSEMINATION Ethical approval has been granted by the University of Ulm ethics committee (#41/22) (lead ethics committee for Germany), Comité de protection des personnes Sud-Est I (CPP Sud-Est I) (#2022-A01307-36) (ethics committee for France), and ErasmusMC ethics committee (#MEC-2022-0365) (ethics committee for the Netherlands). Signed informed consent will be obtained from all included patients. The findings will be published in peer-reviewed journals and presented at relevant stakeholder conferences and meetings. TRIAL REGISTRATION Clinical Trials.gov (NCT05271929), EudraCT (2021-006621-22).
Collapse
Affiliation(s)
- Maxime Desmarets
- Centre d'Investigation Clinique Inserm CIC1431, CHU Besançon, Besançon, Bourgogne Franche-Comté, France
- UMR 1098 Right, Inserm, Établissement Français du Sang, Université de Franche-Comté, Besançon, Bourgogne Franche-Comté, France
| | - Simone Hoffmann
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
| | - Charline Vauchy
- Centre d'Investigation Clinique Inserm CIC1431, CHU Besançon, Besançon, Bourgogne Franche-Comté, France
- UMR 1098 Right, Inserm, Établissement Français du Sang, Université de Franche-Comté, Besançon, Bourgogne Franche-Comté, France
| | - Bart J A Rijnders
- University Medical Center, Erasmus MC, Rotterdam, Zuid-Holland, Netherlands
| | - Eric Toussirot
- Centre d'Investigation Clinique Inserm CIC1431, CHU Besançon, Besançon, Bourgogne Franche-Comté, France
- UMR 1098 Right, Inserm, Établissement Français du Sang, Université de Franche-Comté, Besançon, Bourgogne Franche-Comté, France
| | - Antoine Durrbach
- Department of Nephrology, AP-HP Hôpital Henri Mondor, Créteil, Île-de-France, France
| | - Sixten Körper
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Baden-Württemberg, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Noord-Holland, Netherlands
| | - Heli Harvala
- Microbiology Services, NHS Blood and Transplant, Colindale, London, UK
| | - Gaëlle Brunotte
- Centre d'investigation clinique Inserm CIC1431, CHU Besançon, Besançon, France
| | - Thomas Appl
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
| | - Erhard Seifried
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
| | - Pierre Tiberghien
- UMR 1098 Right, Inserm, Établissement Français du Sang, Université de Franche-Comté, Besançon, Bourgogne Franche-Comté, France
- Etablissement Francais du Sang, La Plaine Saint-Denis, Île-de-France, France
| | - Daniel Bradshaw
- Virus Reference Department, UK Health Security Agency, London, UK
| | - David J Roberts
- NHS Blood and Transplant, Oxford, Oxfordshire, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Lise J Estcourt
- NHS Blood and Transplant, Oxford, Oxfordshire, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Hubert Schrezenmeier
- Blood Transfusion Service Baden-Württemberg-Hessen, German Red Cross, Ulm, Baden-Württemberg, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
16
|
Seidel A, Hoffmann S, Jahrsdörfer B, Körper S, Ludwig C, Vieweg C, Albers D, von Maltitz P, Müller R, Lotfi R, Wuchter P, Klüter H, Kirchhoff F, Schmidt M, Münch J, Schrezenmeier H. SARS-CoV-2 vaccination of convalescents boosts neutralization capacity against Omicron subvariants BA.1, BA.2 and BA.5 and can be predicted by anti-S antibody concentrations in serological assays. Front Immunol 2023; 14:1170759. [PMID: 37180152 PMCID: PMC10166809 DOI: 10.3389/fimmu.2023.1170759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Background Recent data on immune evasion of new SARS-CoV-2 variants raise concerns about the efficacy of antibody-based COVID-19 therapies. Therefore, in this study the in-vitro neutralization capacity against SARS-CoV-2 variant B.1 and the Omicron subvariants BA.1, BA.2 and BA.5 of sera from convalescent individuals with and without boost by vaccination was assessed. Methods and findings The study included 313 serum samples from 155 individuals with a history of SARS-CoV-2 infection, divided into subgroups without (n=25) and with SARS-CoV-2 vaccination (n=130). We measured anti-SARS-CoV-2 antibody concentrations by serological assays (anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S) and neutralizing titers against B.1, BA.1, BA.2 and BA.5 in a pseudovirus neutralization assay. Sera of the majority of unvaccinated convalescents did not effectively neutralize Omicron sublineages BA.1, BA.2 and BA.5 (51.7%, 24.1% and 51.7%, resp.). In contrast, 99.3% of the sera of superimmunized individuals (vaccinated convalescents) neutralized the Omicron subvariants BA.1 and BA.5 and 99.6% neutralized BA.2. Neutralizing titers against B.1, BA.1, BA.2 and BA.5 were significantly higher in vaccinated compared to unvaccinated convalescents (p<0.0001) with 52.7-, 210.7-, 141.3- and 105.4-fold higher geometric mean of 50% neutralizing titers (NT50) in vaccinated compared to unvaccinated convalescents. 91.4% of the superimmunized individuals showed neutralization of BA.1, 97.2% of BA.2 and 91.5% of BA.5 with a titer ≥ 640. The increase in neutralizing titers was already achieved by one vaccination dose. Neutralizing titers were highest in the first 3 months after the last immunization event. Concentrations of anti-S antibodies in the anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S assays predicted neutralization capacity against B.1 and Omicron subvariants BA.1, BA.2 and BA.5. Conclusions These findings confirm substantial immune evasion of the Omicron sublineages, which can be overcome by vaccination of convalescents. This informs strategies for choosing of plasma donors in COVID-19 convalescent plasma programs that shall select specifically vaccinated convalescents with very high titers of anti-S antibodies.
Collapse
Affiliation(s)
- Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Simone Hoffmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Carolin Ludwig
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Christiane Vieweg
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Dan Albers
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rebecca Müller
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University; German Red Cross Blood Service Baden-Württemberg– Hessen, Mannheim, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University; German Red Cross Blood Service Baden-Württemberg– Hessen, Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University; German Red Cross Blood Service Baden-Württemberg– Hessen, Mannheim, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Michael Schmidt
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden- Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
17
|
Körper S, Seifried E, Schrezenmeier H. [Value of convalescent plasma in the therapy of COVID-19]. Dtsch Med Wochenschr 2023; 148:423-426. [PMID: 36940693 DOI: 10.1055/a-2013-8775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Convalescent plasma was discussed as a therapeutic option early in the course of the COVID-19 pandemic. However, until the onset of the pandemic, only the results of mostly small single-arm studies in other infectious diseases were available, which did not prove efficacy. In the meantime, the results of more than 30 randomized trials of COVID-19 convalescent plasma (CCP) for treatment of COVID-19 are available 1. Despite the heterogeneity of the results, conclusions for an optimal use are possible.
Collapse
Affiliation(s)
- Sixten Körper
- Institut für Klinische Tranfusionsmedizin und Immungenetik Ulm, Ulm, GERMANY
| | - Erhard Seifried
- Institut für Transfusionsmedizin und Immunhämatologie, DRK-Blutspendedienst Baden-Württemberg-Hessen, Frankfurt
| | - Hubert Schrezenmeier
- 1Institut für klinische Transfusionsmedizin und Immungenetik Ulm, DRK-Blutspendedienst Baden-Württemberg-Hessen, Institut für klinische Transfusionsmedizin, Universitätsklinik Ulm
| |
Collapse
|
18
|
Abstract
BACKGROUND Convalescent plasma has been used for a long time for the treatment of various infectious diseases. The principle is to collect antibody-containing plasma from recovered patients and to transfuse the plasma to infectious patients thereby modifying their immune system. This approach was also used in the SARS-CoV-2 pandemic when no specific drugs were available for the treatment of the disease. DESIGN AND METHODS This short narrative review reports on relevant studies of collection and transfusion of Covid-19 convalescent plasma (CCP) from 2020 until August 2022. Clinical patients' outcome parameters such as need for ventilation, length of hospital stay and mortality were analysed. RESULTS Heterogenous patient groups were studied resulting in difficult comparability of the studies. High titer of transfused neutralizing antibodies, early onset of CCP treatment and moderate disease activity were identified as key parameters for effective treatment. Special subgroups of patients were identified to benefit from CCP treatment. No relevant side effects were observed during and after collection and transfusion of CCP. CONCLUSIONS Transfusion of CCP plasma is an option for the treatment of special subgroups of patients suffering from SARS-CoV-2 infection. CCP can be easily used in low-to-middle income countries where no specific drugs are available for treatment of the disease. Further clinical trials are necessary to define the role of CCP in the treatment of SARS-CoV-2 disease.
Collapse
|
19
|
Reduced Mortality among COVID-19 ICU Patients after Treatment with HemoClear Convalescent Plasma in Suriname. mBio 2023; 14:e0337922. [PMID: 36815780 PMCID: PMC10127603 DOI: 10.1128/mbio.03379-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Convalescent plasma is a promising therapy for coronavirus disease 2019 (COVID-19), but its efficacy in intensive care unit (ICU) patients in low- and middle-income country settings such as Suriname is unknown. Bedside plasma separation using the HemoClear device made convalescent plasma therapy accessible as a treatment option in Suriname. Two hundred patients with severe SARS-CoV-2 infection requiring intensive care were recruited. Fifty eight patients (29%) received COVID-19 convalescent plasma (CCP) treatment in addition to standard of care (SOC). The CCP treatment and SOC groups were matched by age, sex, and disease severity scores. Mortality in the CCP treatment group was significantly lower than that in the SOC group (21% versus 39%; Fisher's exact test P = 0.0133). Multivariate analysis using ICU days showed that CCP treatment reduced mortality (hazard ratio [HR], 0.35; 95% confidence interval [CI], 0.18 to 0.66; P = 0.001), while complication of acute renal failure (creatinine levels, >110 mol/L; HR, 4.45; 95% CI, 2.54 to 7.80; P < 0.0001) was independently associated with death. Decrease in chest X-ray score in the CCP treatment group (median -3 points, interquartile range [IQR] -4 to -1) was significantly greater than that in the SOC group (median -1 point, IQR -3 to 1, Mann-Whitney test P = 0.0004). Improvement in the PaO2/FiO2 ratio was also significantly greater in the CCP treatment group (median 83, IQR 8 to 140) than in the SOC group (median 35, IQR -3 to 92, Mann-Whitney P = 0.0234). Further research is needed for HemoClear-produced CCP as a therapy for SARS-CoV-2 infection together with adequately powered, randomized controlled trials. IMPORTANCE This study compares mortality and other endpoints between intensive care unit COVID-19 patients treated with convalescent plasma plus standard of care (CCP), and a control group of patients hospitalized in the same medical ICU facility treated with standard of care alone (SOC) in a low- and middle-income country (LMIC) setting using bedside donor whole blood separation by gravity (HemoClear) to produce the CCP. It demonstrates a significant 65% survival improvement in HemoClear-produced CCP recipients (HR, 0.35; 95% CI, 0.19 to 0.66; P = 0.001). Although this is an exploratory study, it clearly shows the benefit of using the HemoClear-produced CCP in ICU patients in the Suriname LMIC setting. Additional studies could further substantiate our findings and their applicability for both LMICs and high-income countries and the use of CCP as a prepared readiness method to combat new viral pandemics.
Collapse
|
20
|
Hakim SM, Chikhouni GMA, Ammar MA, Amer AM. Effect of convalescent plasma transfusion on outcomes of coronavirus disease 2019: a meta-analysis with trial sequential analysis. J Anesth 2023; 37:451-464. [PMID: 36811668 PMCID: PMC9944423 DOI: 10.1007/s00540-023-03171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
The aim of this review was to update evidence for benefit of convalescent plasma transfusion (CPT) in patients with coronavirus disease 2019 (COVID-19). Databases were searched for randomized controlled trials (RCT) comparing CPT plus standard treatment versus standard treatment only in adults with COVID-19. Primary outcome measures were mortality and need for invasive mechanical ventilation (IMV). Twenty-Six RCT involving 19,816 patients were included in meta-analysis for mortality. Quantitative synthesis showed no statistically significant benefit of adding CPT to standard treatment (RR = 0.97, 95% CI = 0.92 to 1.02) with unimportant heterogeneity (Q(25) = 26.48, p = .38, I2 = 0.00%). Trim-and-fill-adjusted effect size was unimportantly changed and level of evidence was graded as high. Trial sequential analysis (TSA) indicated information size was adequate and CPT was futile. Seventeen trials involving 16,083 patients were included in meta-analysis for need of IMV. There was no statistically significant effect of CPT (RR = 1.02, 95% CI = 0.95 to 1.10) with unimportant heterogeneity (Q(16) = 9.43, p = .89, I2 = 3.30%). Trim-and-fill-adjusted effect size was trivially changed and level of evidence was graded as high. TSA showed information size was adequate and indicated futility of CPT. It is concluded with high level of certainty that CPT added to standard treatment of COVID-19 is not associated with reduced mortality or need of IMV compared with standard treatment alone. In view of these findings, further trials on efficacy of CPT in COVID-19 patients are probably not needed.
Collapse
Affiliation(s)
- Sameh M Hakim
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, 15 Gamal Noah Street, Almaza, Heliopolis, Cairo, 11341, Egypt.
| | - Ghosoun M A Chikhouni
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, 15 Gamal Noah Street, Almaza, Heliopolis, Cairo, 11341, Egypt
| | - Mona A Ammar
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, 15 Gamal Noah Street, Almaza, Heliopolis, Cairo, 11341, Egypt
| | - Akram M Amer
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, 15 Gamal Noah Street, Almaza, Heliopolis, Cairo, 11341, Egypt
| |
Collapse
|
21
|
Kandula UR, Tuji TS, Gudeta DB, Bulbula KL, Mohammad AA, Wari KD, Abbas A. Effectiveness of COVID-19 Convalescent Plasma (CCP) During the Pandemic Era: A Literature Review. J Blood Med 2023; 14:159-187. [PMID: 36855559 PMCID: PMC9968437 DOI: 10.2147/jbm.s397722] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Worldwide pandemic with coronavirus disease-2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As November 2, 2022, World Health Organization (WHO) received 628,035,553 reported incidents on COVID-19, with 6,572,800 mortalities and, with a total 12,850,970,971 vaccine doses have been delivered as of October 31, 2022. The infection can cause mild or self-limiting symptoms of pulmonary and severe infections or death may be caused by SARS-CoV-2 infection. Simultaneously, antivirals, corticosteroids, immunological treatments, antibiotics, and anticoagulants have been proposed as potential medicines to cure COVID-19 affected patients. Among these initial treatments, COVID-19 convalescent plasma (CCP), which was retrieved from COVID-19 recovered patients to be used as passive immune therapy, in which antibodies from cured patients were given to infected patients to prevent illness. Such treatment has yielded the best results in earlier with preventative or early stages of illness. Convalescent plasma (CP) is the first treatment available when infectious disease initially appears, although few randomized controlled trials (RCTs) were conducted to evaluate its effectiveness. The historical record suggests with potential benefit for other respiratory infections, as coronaviruses like Severe Acute Respiratory Syndrome-CoV-I (SARS-CoV-I) and Middle Eastern Respiratory Syndrome (MERS), though the analysis of such research is constrained by some non-randomized experiments (NREs). Rigorous studies on CP are made more demanding by the following with the immediacy of the epidemics, CP use may restrict the ability to utilize it for clinical testing, non-homogenous nature of product, highly decentralized manufacturing process; constraints with capacity to measure biologic function, ultimate availability of substitute therapies, as antivirals, purified immune globulins, or monoclonal antibodies. Though, it is still not clear how effectively CCP works among hospitalized COVID-19 patients. The current review tries to focus on its efficiency and usage in clinical scenarios and identifying existing benefits of implementation during pandemic or how it may assist with future pandemic preventions.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Techane Sisay Tuji
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Kassech Leta Bulbula
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | | | - Ketema Diriba Wari
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Ahmad Abbas
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
22
|
Schrezenmeier H, Hoffmann S, Hofmann H, Appl T, Jahrsdörfer B, Seifried E, Körper S. Immune Plasma for the Treatment of COVID-19: Lessons Learned so far. Hamostaseologie 2023; 43:67-74. [PMID: 36807822 DOI: 10.1055/a-1987-3682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) has been explored as one of the treatment options for COVID-19. Results of many cohort studies and clinical trials have been recently published. At first glance, the results of the CCP studies appear to be inconsistent. However, it became clear that CCP is not beneficial if CCP with low anti-SARS-CoV-2 antibody concentrations is used, if it is administered late in advanced disease stages, and to patients who already mounted an antibody response against SARS-CoV-2 at the time of CCP transfusion. On the other hand, CCP may prevent progression to severe COVID-19 when very high-titer CCP is given early in vulnerable patients. Immune escape of new variants is a challenge for passive immunotherapy. While new variants of concern developed resistance to most clinically used monoclonal antibodies very rapidly, immune plasma from individuals immunized by both a natural SARS-CoV-2 infection and SARS-CoV-2 vaccination retained neutralizing activity against variants. This review briefly summarizes the evidence on CCP treatment to date and identifies further research needs. Ongoing research on passive immunotherapy is not only relevant for improving care for vulnerable patients in the ongoing SARS-CoV-2 pandemic, but even more as a model for passive immunotherapy in case of future pandemics with a newly evolving pathogen. Compared to other drugs, which must be newly developed in a pandemic (e.g., monoclonal antibodies, antiviral drugs), convalescent plasma is rapidly available, inexpensive to produce, and can be adaptive to viral evolution by selection of contemporary convalescent donors.
Collapse
Affiliation(s)
- Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Simone Hoffmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Henrike Hofmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen, Frankfurt, Germany
| | - Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
23
|
Deng J, Heybati K, Ramaraju HB, Zhou F, Rayner D, Heybati S. Differential efficacy and safety of anti-SARS-CoV-2 antibody therapies for the management of COVID-19: a systematic review and network meta-analysis. Infection 2023; 51:21-35. [PMID: 35438413 PMCID: PMC9016212 DOI: 10.1007/s15010-022-01825-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/01/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE To assess and compare the relative efficacy and safety of anti-SARS-CoV-2 antibody regimens for COVID-19. METHODS This systematic review and random-effects network meta-analysis was conducted according to PRISMA-NMA. Literature searches were conducted across MEDLINE, EMBASE, PubMed, Web of Science, CENTRAL, and CNKI up to February 20th, 2022. Interventions were ranked using P scores. RESULTS Fifty-five RCTs (N = 45,005) were included in the review. Bamlanivimab + etesevimab (OR 0.13, 95% CI 0.02-0.77) was associated with a significant reduction in mortality compared to standard of care/placebo. Casirivimab + imdevimab reduced mortality (OR 0.67, 95% CI 0.50-0.91) in baseline seronegative patients only. Four different regimens led to a significant decrease in the incidence of hospitalization compared to standard of care/placebo with sotrovimab ranking first in terms of efficacy (OR 0.20, 95% CI 0.08-0.48). No treatment improved incidence of mechanical ventilation, duration of hospital/ICU stay, and time to viral clearance. Convalescent plasma and anti-COVID IVIg both led to a significant increase in adverse events compared to standard of care/placebo, but no treatment increased the odds of serious adverse events. CONCLUSION Anti-SARS-CoV-2 mAbs are safe, and could be effective in improving mortality and incidence of hospitalization. Convalescent plasma and anti-COVID IVIg were not efficacious and could increase odds of adverse events. Future trials should further examine the effect of baseline seronegativity, disease severity, patient risk factors, and SARS-CoV-2 strain variation on the efficacy of these regimes. REGISTRATION PROSPERO-CRD42021289903.
Collapse
Affiliation(s)
- Jiawen Deng
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada.
| | - Kiyan Heybati
- Mayo Clinic Alix School of Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | | | - Fangwen Zhou
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Daniel Rayner
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Shayan Heybati
- Faculty of Health Sciences, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
24
|
Niemann G, Germer M, Hauf M, Poelsler G, Röder J, Schüttrumpf J. Hyperimmunplasma: Gewinnung, Verarbeitung und therapeutische
Anwendungen. TRANSFUSIONSMEDIZIN 2023. [DOI: 10.1055/a-1894-1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
ZusammenfassungDas Prinzip der passiven Immunisierung ist seit dem 19. Jahrhundert bekannt und
wird auch bei aktuellen Pandemien als Ansatz zur Prophylaxe und Therapie
eingesetzt. Der Schutz wird hierbei übertragen durch Blut, Serum oder
Plasma, welche Immunglobuline gegen spezifische Krankheitserreger,
Bakterientoxine oder sonstige Antigene enthalten, sowie durch aus Humanplasma
industriell aufgereinigte Immunglobuline. Die aktuell verwendeten
Reinigungsverfahren für Immunglobuline aus Humanplasma beruhen auf der
von Edwin J. Cohn entwickelten Fraktionierung von Plasma. Zur Gewinnung von
Immunglobulinen mit hohen Antikörpertitern gegen spezifische Antigene,
sogenannte Hyperimmunglobuline, muss zunächst Hyperimmunplasma gezielt
von ausgewählten Spendern gewonnen werden. Diese Spender haben
erhöhte Antikörpertiter gegen spezifische Krankheitserreger,
Bakterientoxine oder sonstige Antigene, wenn sie im Rahmen einer vorangegangenen
Infektion natürlich immunisiert wurden, einen zugelassenen Impfstoff zur
Immunisierung erhalten haben oder gezielt zum Zweck der Plasmaspende immunisiert
wurden. Aktuell sind in Deutschland, Österreich und der Schweiz
Hyperimmunglobulinprodukte für verschiedene Anwendungen im Patienten
zugelassen, von denen die meisten aus humanem Blutplasma gewonnen werden. Um die
Herstellung der Produkte und damit letztlich die Behandlung der Patienten
gewährleisten zu können, werden resiliente Lieferketten
benötigt. Hierzu bedarf es unter anderem Änderungen in den
Rahmenbedingungen für die Spenderimmunisierung in Deutschland.
Collapse
|
25
|
Iannizzi C, Chai KL, Piechotta V, Valk SJ, Kimber C, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Jindal A, Cryns N, Estcourt LJ, Kreuzberger N, Skoetz N. Convalescent plasma for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2023; 2:CD013600. [PMID: 36734509 PMCID: PMC9891348 DOI: 10.1002/14651858.cd013600.pub5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have low certainty evidence for our primary outcomes. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.
Collapse
Affiliation(s)
- Claire Iannizzi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Aikaj Jindal
- Department of Transfusion Medicine, SPS Hospitals, Ludhiana (Punjab), India
| | - Nora Cryns
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Kimber C, Lamikanra AA, Geneen LJ, Sandercock J, Dorée C, Valk SJ, Estcourt LJ. A systematic review of the safety and efficacy of convalescent plasma or immunoglobulin treatment for people with severe respiratory viral infections due to coronaviruses or influenza. Transfus Med 2023; 33:26-38. [PMID: 36412541 DOI: 10.1111/tme.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Evaluate the safety and effectiveness of convalescent plasma (CP) or hyperimmune immunoglobulin (hIVIG) in severe respiratory disease caused by coronaviruses or influenza, in patients of all ages requiring hospital admission. METHODS We searched multiple electronic databases for all publications to 12th October 2020, and RCTs only to 28th June 2021. Two reviewers screened, extracted, and analysed data. We used Cochrane ROB (Risk of Bias)1 for RCTs, ROBINS-I for non-RCTs, and GRADE to assess the certainty of the evidence. RESULTS Data from 30 RCTs and 2 non-RCTs showed no overall difference between groups for all-cause mortality and adverse events in four comparisons. Certainty of the evidence was downgraded for high ROB and imprecision. (1) CP versus standard care (SoC) (20 RCTS, 2 non-RCTs, very-low to moderate-high certainty); (2) CP versus biologically active control (6 RCTs, very-low certainty); (3) hIVIG versus SoC (3 RCTs, very-low certainty); (4) early CP versus deferred CP (1 RCT, very-low certainty). Subgrouping by titre improved precision in one outcome (30-day mortality) for the 'COVID high-titre' category in Comparison 1 (no difference, high certainty) and Comparison 2 (favours CP, very-low certainty). Post hoc analysis suggests a possible benefit of CP in patients testing negative for antibodies at baseline, compared with those testing positive. CONCLUSION A minimum titre should be established and ensured for a positive biological response to the therapy. Further research on the impact of CP/hIVIG in patients who have not yet produced antibodies to the virus would be useful to target therapies at groups who will potentially benefit the most.
Collapse
Affiliation(s)
- Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Abigail A Lamikanra
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Pathology Directorate, National Health Service (NHS) Blood and Transplant, Oxford, UK
| | - Louise J Geneen
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Josie Sandercock
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Carolyn Dorée
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah J Valk
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
| | - Lise J Estcourt
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| |
Collapse
|
27
|
Bai AD, Jiang Y, Nguyen DL, Lo CKL, Stefanova I, Guo K, Wang F, Zhang C, Sayeau K, Garg A, Loeb M. Comparison of Preprint Postings of Randomized Clinical Trials on COVID-19 and Corresponding Published Journal Articles: A Systematic Review. JAMA Netw Open 2023; 6:e2253301. [PMID: 36705921 DOI: 10.1001/jamanetworkopen.2022.53301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
IMPORTANCE Randomized clinical trials (RCTs) on COVID-19 are increasingly being posted as preprints before publication in a scientific, peer-reviewed journal. OBJECTIVE To assess time to journal publication for COVID-19 RCT preprints and to compare differences between pairs of preprints and corresponding journal articles. EVIDENCE REVIEW This systematic review used a meta-epidemiologic approach to conduct a literature search using the World Health Organization COVID-19 database and Embase to identify preprints published between January 1 and December 31, 2021. This review included RCTs with human participants and research questions regarding the treatment or prevention of COVID-19. For each preprint, a literature search was done to locate the corresponding journal article. Two independent reviewers read the full text, extracted data, and assessed risk of bias using the Cochrane Risk of Bias 2 tool. Time to publication was analyzed using a Cox proportional hazards regression model. Differences between preprint and journal article pairs in terms of outcomes, analyses, results, or conclusions were described. Statistical analysis was performed on October 17, 2022. FINDINGS This study included 152 preprints. As of October 1, 2022, 119 of 152 preprints (78.3%) had been published in journals. The median time to publication was 186 days (range, 17-407 days). In a multivariable model, larger sample size and low risk of bias were associated with journal publication. With a sample size of less than 200 as the reference, sample sizes of 201 to 1000 and greater than 1000 had hazard ratios (HRs) of 1.23 (95% CI, 0.80-1.91) and 2.19 (95% CI, 1.36-3.53) for publication, respectively. With high risk of bias as the reference, medium-risk articles with some concerns for bias had an HR of 1.77 (95% CI, 1.02-3.09); those with a low risk of bias had an HR of 3.01 (95% CI, 1.71-5.30). Of the 119 published preprints, there were differences in terms of outcomes, analyses, results, or conclusions in 65 studies (54.6%). The main conclusion in the preprint contradicted the conclusion in the journal article for 2 studies (1.7%). CONCLUSIONS AND RELEVANCE These findings suggest that there is a substantial time lag from preprint posting to journal publication. Preprints with smaller sample sizes and high risk of bias were less likely to be published. Finally, although differences in terms of outcomes, analyses, results, or conclusions were observed for preprint and journal article pairs in most studies, the main conclusion remained consistent for the majority of studies.
Collapse
Affiliation(s)
- Anthony D Bai
- Division of Infectious Diseases, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yunbo Jiang
- Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - David L Nguyen
- Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Carson K L Lo
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Kevin Guo
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Frank Wang
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cindy Zhang
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kyle Sayeau
- Mental Health and Addictions Care Program, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Akhil Garg
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Mark Loeb
- Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Division of Medical Microbiology, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
28
|
Strengers P, O'Brien SF, Politis C, Mayr W, Seifried E, Spencer BR. White paper on pandemic preparedness in the blood supply. Vox Sang 2023; 118:8-15. [PMID: 36427057 DOI: 10.1111/vox.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/30/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVES In March 2020, the WHO declared the SARS-CoV-2 corona virus a pandemic which caused a great disruption to global society and had a pronounced effect on the worldwide supply of blood. MATERIALS AND METHODS In 2022 an on-line meeting was organised with experts from Austria, Canada, Germany, Greece, Netherlands and United States to explore the opportunities for increasing preparedness within blood systems for a potential future pandemic with similar, or more devastating, consequences. The main themes included the value of preparedness, current risks to the blood supply, supply chain vulnerabilities, and the role of innovation in increasing resiliency and safety. RESULTS Seven key recommendations were formulated and including required actions at different levels. CONCLUSION Although SARS-CoV-2 might be seen as a unique event, global health risks are expected to increase and will affect blood transfusion medicine if no preparedness plans are developed.
Collapse
Affiliation(s)
| | | | - Constantina Politis
- Department of Medicine, Athens University, Athens, Greece.,National Public Health Organization, Athens, Greece
| | - Wolfgang Mayr
- Medical University of Vienna, Vienna, Austria.,Austrian Red Cross Blood Transfusion Service, Vienna, Austria.,European Blood Alliance, Amsterdam, Netherlands
| | - Erhard Seifried
- European Blood Alliance, Amsterdam, Netherlands.,DRK Blutspendedienst, Frankfurt, Germany
| | | |
Collapse
|
29
|
Cognasse F, Hamzeh-Cognasse H, Rosa M, Corseaux D, Bonneaudeau B, Pierre C, Huet J, Arthaud CA, Eyraud MA, Prier A, Duchez AC, Ebermeyer T, Heestermans M, Audoux-Caire E, Philippot Q, Le Voyer T, Hequet O, Fillet AM, Chavarin P, Legrand D, Richard P, Pirenne F, Gallian P, Casanova JL, Susen S, Morel P, Lacombe K, Bastard P, Tiberghien P. Inflammatory markers and auto-Abs to type I IFNs in COVID-19 convalescent plasma cohort study. EBioMedicine 2022; 87:104414. [PMID: 36535107 PMCID: PMC9758484 DOI: 10.1016/j.ebiom.2022.104414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND COVID-19 convalescent plasma (CCP) contains neutralising anti-SARS-CoV-2 antibodies that may be useful as COVID-19 passive immunotherapy in patients at risk of developing severe disease. Such plasma from convalescent patients may also have additional immune-modulatory properties when transfused to COVID-19 patients. METHODS CCP (n = 766) was compared to non-convalescent control plasma (n = 166) for soluble inflammatory markers, ex-vivo inflammatory bioactivity on endothelial cells, neutralising auto-Abs to type I IFNs and reported adverse events in the recipients. FINDINGS CCP exhibited a statistically significant increase in IL-6 and TNF-alpha levels (0.531 ± 0.04 vs 0.271 ± 0.04; (95% confidence interval [CI], 0.07371-0.4446; p = 0.0061) and 0.900 ± 0.07 vs 0.283 ± 0.07 pg/mL; (95% [CI], 0.3097-0.9202; p = 0.0000829) and lower IL-10 (0.731 ± 0.07 vs 1.22 ± 0.19 pg/mL; (95% [CI], -0.8180 to -0.1633; p = 0.0034) levels than control plasma. Neutralising auto-Abs against type I IFNs were detected in 14/766 (1.8%) CCPs and were not associated with reported adverse events when transfused. Inflammatory markers and bioactivity in CCP with or without auto-Abs, or in CCP whether or not linked to adverse events in transfused patients, did not differ to a statistically significant extent. INTERPRETATION Overall, CCP exhibited moderately increased inflammatory markers compared to the control plasma with no discernible differences in ex-vivo bioactivity. Auto-Abs to type I IFNs detected in a small fraction of CCP were not associated with reported adverse events or differences in inflammatory markers. Additional studies, including careful clinical evaluation of patients treated with CCP, are required in order to further define the clinical relevance of these findings. FUNDING French National Blood Service-EFS, the Association "Les Amis de Rémi" Savigneux, France, the "Fondation pour la Recherche Médicale (Medical Research Foundation)-REACTing 2020".
Collapse
Affiliation(s)
- Fabrice Cognasse
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France,Corresponding author. Etablissement Français du Sang Auvergne-Rhône-Alpes, INSERM U1059, Campus Santé Innovation - 10 rue de la Marandière, 42270, Saint-Priest-en-Jarez, France.
| | - Hind Hamzeh-Cognasse
- Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Mickael Rosa
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1011- EGID, F-59000 Lille, France,Centre National de la Recherche Scientifique (National Scientific Research Centre), Surgical Critical Care, Department of Anaesthesiology and Critical Care, U1019 - Unité Mixte de Recherche 9017 (Mixed Research Unit 9017) – Lille Centre for Infection and Immunity, France
| | - Delphine Corseaux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1011- EGID, F-59000 Lille, France,Centre National de la Recherche Scientifique (National Scientific Research Centre), Surgical Critical Care, Department of Anaesthesiology and Critical Care, U1019 - Unité Mixte de Recherche 9017 (Mixed Research Unit 9017) – Lille Centre for Infection and Immunity, France
| | | | - Chloe Pierre
- Etablissement Français du Sang, La Plaine, St Denis, France
| | - Julie Huet
- Etablissement Français du Sang, La Plaine, St Denis, France
| | - Charles Antoine Arthaud
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Marie Ange Eyraud
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Amélie Prier
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Anne Claire Duchez
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Theo Ebermeyer
- Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Marco Heestermans
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Estelle Audoux-Caire
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France,Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,University of Paris, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,University of Paris, Imagine Institute, Paris, France
| | - Olivier Hequet
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | | | - Patricia Chavarin
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - Dominique Legrand
- Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | | | - France Pirenne
- Univ Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale (Mondor Biomedical Research Institute) (IMRB), Creteil, France & Laboratory of Excellence GR-Ex, Paris, France
| | - Pierre Gallian
- Etablissement Français du Sang, La Plaine, St Denis, France,UMR “Unité des Virus Emergents” (Emerging Virus Unit), Aix-Marseille University - IRD 190 - INSERM 1207 - IRBA - EFS - IHU Méditerranée Infection, Marseille, France
| | - Jean Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,University of Paris, Imagine Institute, Paris, France,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA,Howard Hughes Medical Institute, New York, NY, USA
| | - Sophie Susen
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1011- EGID, F-59000 Lille, France,Centre National de la Recherche Scientifique (National Scientific Research Centre), Surgical Critical Care, Department of Anaesthesiology and Critical Care, U1019 - Unité Mixte de Recherche 9017 (Mixed Research Unit 9017) – Lille Centre for Infection and Immunity, France
| | - Pascal Morel
- Etablissement Français du Sang, La Plaine, St Denis, France
| | - Karine Lacombe
- Sorbonne University, Inserm IPLESP, Infectious Diseases Department, Saint-Antoine Hospital, APHP (University Hospital Trust), Paris, France
| | - Paul Bastard
- Etablissement Français du Sang, La Plaine, St Denis, France,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163 (National Institute for Health and Medical Research), Necker Hospital for Sick Children, Paris, France,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine, St Denis, France,UMR RIGHT U1098, INSERM, Etablissement Français du Sang, University of Franche-Comté, Besançon, France
| |
Collapse
|
30
|
Körper S, Grüner B, Zickler D, Wiesmann T, Wuchter P, Blasczyk R, Zacharowski K, Spieth P, Tonn T, Rosenberger P, Paul G, Pilch J, Schwäble J, Bakchoul T, Thiele T, Knörlein J, Dollinger MM, Krebs J, Bentz M, Corman VM, Kilalic D, Schmidtke-Schrezenmeier G, Lepper PM, Ernst L, Wulf H, Ulrich A, Weiss M, Kruse JM, Burkhardt T, Müller R, Klüter H, Schmidt M, Jahrsdörfer B, Lotfi R, Rojewski M, Appl T, Mayer B, Schnecko P, Seifried E, Schrezenmeier H. One-year follow-up of the CAPSID randomized trial for high-dose convalescent plasma in severe COVID-19 patients. J Clin Invest 2022; 132:e163657. [PMID: 36326824 PMCID: PMC9753994 DOI: 10.1172/jci163657] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUNDResults of many randomized trials on COVID-19 convalescent plasma (CCP) have been reported, but information on long-term outcome after CCP treatment is limited. The objectives of this extended observation of the randomized CAPSID trial are to assess long-term outcome and disease burden in patients initially treated with or without CCP.METHODSOf 105 randomized patients, 50 participated in the extended observation. Quality of life (QoL) was assessed by questionnaires and a structured interview. CCP donors (n = 113) with asymptomatic to moderate COVID-19 were included as a reference group.RESULTSThe median follow-up of patients was 396 days, and the estimated 1-year survival was 78.7% in the CCP group and 60.2% in the control (P = 0.08). The subgroup treated with a higher cumulative amount of neutralizing antibodies showed a better 1-year survival compared with the control group (91.5% versus 60.2%, P = 0.01). Medical events and QoL assessments showed a consistent trend for better results in the CCP group without reaching statistical significance. There was no difference in the increase in neutralizing antibodies after vaccination between the CCP and control groups.CONCLUSIONThe trial demonstrated a trend toward better outcome in the CCP group without reaching statistical significance. A predefined subgroup analysis showed a significantly better outcome (long-term survival, time to discharge from ICU, and time to hospital discharge) among those who received a higher amount of neutralizing antibodies compared with the control group. A substantial long-term disease burden remains after severe COVID-19.Trial registrationEudraCT 2020-001310-38 and ClinicalTrials.gov NCT04433910.FundingBundesministerium für Gesundheit (German Federal Ministry of Health).
Collapse
Affiliation(s)
- Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Beate Grüner
- Division of Infectious Diseases, University Hospital and Medical Center Ulm, Ulm, Germany
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Wiesmann
- Department of Anesthesiology and Intensive Care Medicine, Phillips-University Marburg, Marburg, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University, Germany
| | - Peter Spieth
- Department of Anesthesiology and Critical Care Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Torsten Tonn
- Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden and German Red Cross Blood Donation Service North-East gGmbH, Dresden, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Gregor Paul
- Department of Gastroenterology, Hepatology, Pneumology and Infectious Diseases, Klinikum Stuttgart, Stuttgart, Germany
| | - Jan Pilch
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Hospital, Homburg/Saar, Germany
| | - Joachim Schwäble
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Tamam Bakchoul
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Thiele
- Institute of Transfusion Medicine, University Hospital Greifswald, Greifswald, Germany
| | - Julian Knörlein
- Clinic of Anesthesiology and Intensive Care Medicine, University Medical Center of Freiburg, Freiburg, Germany
| | | | - Jörg Krebs
- Clinic for Anesthesiology and Surgical Intensive Care Medicine, University of Mannheim, Mannheim, Germany
| | - Martin Bentz
- Department of Internal Medicine III, Hospital of Karlsruhe, Karlsruhe, Germany
| | - Victor M. Corman
- Institute of Virology, Charité - University Medicine Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and German Centre for Infection Research, Berlin, Germany
| | - Dzenan Kilalic
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | | | - Philipp M. Lepper
- Department of Internal Medicine V – Pneumology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Lucas Ernst
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hinnerk Wulf
- Department of Anesthesiology and Intensive Care Medicine, Phillips-University Marburg, Marburg, Germany
| | - Alexandra Ulrich
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Manfred Weiss
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Jan Matthias Kruse
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Burkhardt
- Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden and German Red Cross Blood Donation Service North-East gGmbH, Dresden, Germany
| | - Rebecca Müller
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Michael Schmidt
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Markus Rojewski
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
31
|
Kiss-Dala N, Szabo BG, Lakatos B, Reti M, Szlavik J, Valyi-Nagy I. Use of convalescent plasma therapy in hospitalised adult patients with non-critical COVID-19: a focus on the elderly from Hungary. GeroScience 2022; 44:2427-2445. [PMID: 36367599 PMCID: PMC9650173 DOI: 10.1007/s11357-022-00683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Convalescent plasma therapy might be a feasible option for treatment of novel infections. During the early phases of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, several promising results were published with convalescent plasma therapy, followed by more disappointing findings of randomised controlled trials. In our single-centre, open-label, prospective, cohort study, we assessed the findings of 180 patients treated with convalescent plasma during the first four waves of the pandemic in Hungary. The primary outcome was all-cause mortality; secondary outcomes were clinical improvement and need for intensive care unit admission by day 28. Subgroup analysis comparing elderly and non-elderly (less than 65 years of age) was performed. Twenty (11.4%) patients died by day 28, at significantly higher rates in the elderly subgroup (3 vs. 17, p < 0.01). One hundred twenty-eight (72.7%) patients showed clinical improvement, and 15 (8.5%) were transferred to the intensive care unit until day 28. Non-elderly patients showed clinical improvement by day 28 in significantly higher rates (improvement 74 vs. 54, no improvement 15 vs. 11, worsening or death 4 vs. 18 patients, p < 0.01). In conclusion, we found similar clinical outcome results as randomised controlled trials, and the impact of risk factors for unfavourable clinical outcomes among patients in the elderly population.
Collapse
Affiliation(s)
- Noemi Kiss-Dala
- School of PhD Studies, Semmelweis University, H-1085 Ulloi Ut 26, Budapest, Hungary.
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary.
| | - Balint Gergely Szabo
- School of PhD Studies, Semmelweis University, H-1085 Ulloi Ut 26, Budapest, Hungary
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Botond Lakatos
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Marienn Reti
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Janos Szlavik
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| | - Istvan Valyi-Nagy
- South Pest Central Hospital, National Institute of Haematology and Infectious Diseases, Szent Laszlo Campus, H-1097 Albert Florian Ut 5-7., Budapest, Hungary
| |
Collapse
|
32
|
Bartelt LA, Markmann AJ, Nelson B, Keys J, Root H, Henderson HI, Kuruc J, Baker C, Bhowmik DR, Hou YJ, Premkumar L, Cornaby C, Schmitz JL, Weiss S, Park Y, Baric R, de Silva AM, Lachiewicz A, Napravnik S, van Duin D, Margolis DM. Outcomes of Convalescent Plasma with Defined High versus Lower Neutralizing Antibody Titers against SARS-CoV-2 among Hospitalized Patients: CoronaVirus Inactivating Plasma (CoVIP) Study. mBio 2022; 13:e0175122. [PMID: 36135380 PMCID: PMC9601237 DOI: 10.1128/mbio.01751-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/06/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) was an early and widely adopted putative therapy for severe COVID-19. Results from randomized control trials and observational studies have failed to demonstrate a clear therapeutic role for CCP for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Underlying these inconclusive findings is a broad heterogeneity in the concentrations of neutralizing antibodies (nAbs) between different CCP donors. We conducted this study to evaluate the effectiveness and safety of nAb titer-defined CCP in adults admitted to an academic referral hospital. Patients positive by a SARS-CoV-2 nucleic acid amplification test and with symptoms for <10 days were eligible. Participants received either CCP with nAb titers of >1:640 (high-titer group) or ≥1:160 to 1:640 (standard-titer group) in addition to standard of care treatments. The primary clinical outcome was time to hospital discharge, with mortality and respiratory support evaluated as secondary outcomes. Adverse events were contrasted by CCP titer. Between 28 August and 4 December 2020, 316 participants were screened, and 55 received CCP, with 14 and 41 receiving high- versus standard-titer CCP, respectively. Time to hospital discharge was shorter among participants receiving high- versus standard-titer CCP, accounting for death as a competing event (hazard ratio, 1.94; 95% confidence interval [CI], 1.05 to 3.58; Gray's P = 0.02). Severe adverse events (SAEs) (≥grade 3) occurred in 4 (29%) and 23 (56%) of participants receiving the high versus standard titer, respectively, by day 28 (risk ratio, 0.51; 95% CI, 0.21 to 1.22; Fisher's P = 0.12). There were no observed treatment-related AEs. (This study has been registered at ClinicalTrials.gov under registration no. NCT04524507). IMPORTANCE In this study, in a high-risk population of patients admitted for COVID-19, we found an earlier time to hospital discharge among participants receiving CCP with nAb titers of >1:640 compared with participants receiving CCP with a lower nAb titer and no CCP-related AEs. The significance of our research is in identifying a dose response of CCP and clinical outcomes based on nAb titer. Although limited by a small study size, these findings support further study of high-nAb-titer CCP defined as >1:640 in the treatment of COVID-19.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Alena J. Markmann
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Bridget Nelson
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jessica Keys
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Heather Root
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- The AIDS Center at Montefiore, Division of Infectious Diseases, Montefiore Medical Center, Bronx, New York, USA
| | - Heather I. Henderson
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - JoAnn Kuruc
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Caroline Baker
- UNC HIV Cure Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - D. Ryan Bhowmik
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Yixuan J. Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Caleb Cornaby
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - John L. Schmitz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Susan Weiss
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pathology, Carolinas Pathology Group, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Yara Park
- Department of Pathology & Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ralph Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Anne Lachiewicz
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sonia Napravnik
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David van Duin
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- Department of Medicine, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC HIV Cure Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
33
|
Körper S, Schrezenmeier EV, Rincon-Arevalo H, Grüner B, Zickler D, Weiss M, Wiesmann T, Zacharowski K, Kalbhenn J, Bentz M, Dollinger MM, Paul G, Lepper PM, Ernst L, Wulf H, Zinn S, Appl T, Jahrsdörfer B, Rojewski M, Lotfi R, Dörner T, Jungwirth B, Seifried E, Fürst D, Schrezenmeier H. Cytokine levels associated with favorable clinical outcome in the CAPSID randomized trial of convalescent plasma in patients with severe COVID-19. Front Immunol 2022; 13:1008438. [PMID: 36275695 PMCID: PMC9582990 DOI: 10.3389/fimmu.2022.1008438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives To determine the profile of cytokines in patients with severe COVID-19 who were enrolled in a trial of COVID-19 convalescent plasma (CCP). Methods Patients were randomized to receive standard treatment and 3 CCP units or standard treatment alone (CAPSID trial, ClinicalTrials.gov NCT04433910). The primary outcome was a dichotomous composite outcome (survival and no longer severe COVID-19 on day 21). Time to clinical improvement was a key secondary endpoint. The concentrations of 27 cytokines were measured (baseline, day 7). We analyzed the change and the correlation between serum cytokine levels over time in different subgroups and the prediction of outcome in receiver operating characteristics (ROC) analyses and in multivariate models. Results The majority of cytokines showed significant changes from baseline to day 7. Some were strongly correlated amongst each other (at baseline the cluster IL-1ß, IL-2, IL-6, IL-8, G-CSF, MIP-1α, the cluster PDGF-BB, RANTES or the cluster IL-4, IL-17, Eotaxin, bFGF, TNF-α). The correlation matrix substantially changed from baseline to day 7. The heatmaps of the absolute values of the correlation matrix indicated an association of CCP treatment and clinical outcome with the cytokine pattern. Low levels of IP-10, IFN-γ, MCP-1 and IL-1ß on day 0 were predictive of treatment success in a ROC analysis. In multivariate models, low levels of IL-1ß, IFN-γ and MCP-1 on day 0 were significantly associated with both treatment success and shorter time to clinical improvement. Low levels of IP-10, IL-1RA, IL-6, MCP-1 and IFN-γ on day 7 and high levels of IL-9, PDGF and RANTES on day 7 were predictive of treatment success in ROC analyses. Low levels of IP-10, MCP-1 and high levels of RANTES, on day 7 were associated with both treatment success and shorter time to clinical improvement in multivariate models. Conclusion This analysis demonstrates a considerable dynamic of cytokines over time, which is influenced by both treatment and clinical course of COVID-19. Levels of IL-1ß and MCP-1 at baseline and MCP-1, IP-10 and RANTES on day 7 were associated with a favorable outcome across several endpoints. These cytokines should be included in future trials for further evaluation as predictive factors.
Collapse
Affiliation(s)
- Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Eva Vanessa Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Charité Universitätsmedizin Berlin, Berlin Institute of Health (BIH) Academy, Berlin, Germany
| | - Hector Rincon-Arevalo
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Beate Grüner
- Division of Infectious Diseases, University Hospital and Medical Center Ulm, Ulm, Germany
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manfred Weiss
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Thomas Wiesmann
- Department of Anaesthesiology and Intensive Care Medicine, Phillips-University Marburg, Marburg, Germany
| | - Kai Zacharowski
- Clinic of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Johannes Kalbhenn
- Clinic of Anesthesiology and Intensive Care Medicine University Medical Center of Freiburg, Freiburg, Germany
| | - Martin Bentz
- Department of Internal Medicine III, Hospital of Karlsruhe, Karlsruhe, Germany
| | | | - Gregor Paul
- Department of Gastroenterology, Hepatology, Pneumology and Infectious Diseases, Klinikum Stuttgart, Stuttgart, Germany
| | - Philipp M. Lepper
- Department of Internal Medicine V – Pneumology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Lucas Ernst
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hinnerk Wulf
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Sebastian Zinn
- Department of Anaesthesiology and Intensive Care Medicine, Phillips-University Marburg, Marburg, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Markus Rojewski
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Bettina Jungwirth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen, Frankfurt, Germany
| | - Daniel Fürst
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- *Correspondence: Hubert Schrezenmeier,
| |
Collapse
|
34
|
White H, McDonald SJ, Barber B, Davis J, Burr L, Nair P, Mukherjee S, Tendal B, Elliott J, McGloughlin S, Turner T. Care for adults with COVID-19: living guidelines from the National COVID-19 Clinical Evidence Taskforce. Med J Aust 2022; 217:368-378. [PMID: 36150213 PMCID: PMC9538623 DOI: 10.5694/mja2.51718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION The Australian National COVID-19 Clinical Evidence Taskforce was established in March 2020 to maintain up-to-date recommendations for the treatment of people with coronavirus disease 2019 (COVID-19). The original guideline (April 2020) has been continuously updated and expanded from nine to 176 recommendations, facilitated by the rapid identification, appraisal, and analysis of clinical trial findings and subsequent review by expert panels. MAIN RECOMMENDATIONS In this article, we describe the recommendations for treating non-pregnant adults with COVID-19, as current on 1 August 2022 (version 61.0). The Taskforce has made specific recommendations for adults with severe/critical or mild disease, including definitions of disease severity, recommendations for therapy, COVID-19 prophylaxis, respiratory support, and supportive care. CHANGES IN MANAGEMENT AS A RESULT OF THE GUIDELINE The Taskforce currently recommends eight drug treatments for people with COVID-19 who do not require supplemental oxygen (inhaled corticosteroids, casirivimab/imdevimab, molnupiravir, nirmatrelvir/ritonavir, regdanvimab, remdesivir, sotrovimab, tixagevimab/cilgavimab) and six for those who require supplemental oxygen (systemic corticosteroids, remdesivir, tocilizumab, sarilumab, baricitinib, casirivimab/imdevimab). Based on evidence of their achieving no or only limited benefit, ten drug treatments or treatment combinations are not recommended; an additional 42 drug treatments should only be used in the context of randomised trials. Additional recommendations include support for the use of continuous positive airway pressure, prone positioning, and endotracheal intubation in patients whose condition is deteriorating, and prophylactic anticoagulation for preventing venous thromboembolism. The latest updates and full recommendations are available at www.covid19evidence.net.au.
Collapse
Affiliation(s)
- Heath White
- Cochrane AustraliaMonash UniversityMelbourneVIC
| | | | | | - Joshua Davis
- John Hunter HospitalNewcastleNSW
- The University of NewcastleNewcastleNSW
| | - Lucy Burr
- Mater Hospital BrisbaneBrisbaneQLD
- Mater Research InstituteUniversity of QueenslandBrisbaneQLD
| | | | | | | | | | | | | |
Collapse
|
35
|
Uzun G, Singh A, Abou-Khalel W, Pelzl L, Weich K, Nowak-Harnau S, Althaus K, Bugert P, Klüter H, Bakchoul T. Platelets and Sera from Donors of Convalescent Plasma after Mild COVID-19 Show No Procoagulant Phenotype. Hamostaseologie 2022; 42:S14-S23. [DOI: 10.1055/a-1797-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
AbstractCoronavirus disease-2019 (COVID-19) is associated with increased thromboembolic complications. Long-term alteration in the coagulation system after acute COVID-19 infection is still a subject of research. Furthermore, the effect of sera from convalescent subjects on platelets is not known. In this study, we investigated platelet phenotype, coagulation, and fibrinolysis in COVID-19 convalescent plasma (CCP) donors and analyzed convalescent sera-induced effects on platelets. We investigated CCP donors who had a history of mild COVID-19 infection and donors who did not have COVID-19 were used as controls. We analyzed phosphatidylserine (PS) externalization, CD62p expression, and glycoprotein VI (GPVI) shedding both in platelet-rich plasma (PRP) and after incubation of washed healthy platelets with donors' sera using flow cytometry. Coagulation and fibrinolysis systems were assessed with thromboelastometry. Forty-seven CCP donors (22 males, 25 females; mean age (±SD): 41.4 ± 13.7 years) with a history of mild COVID-19 infection were included. Median duration after acute COVID-19 infection was 97 days (range, 34–401). We did not find an increased PS externalization, CD62p expression, or GPVI shedding in platelets from CCP donors. Sera from CCP donors did not induce PS externalization or GPVI shedding in healthy platelets. Sera-induced CD62p expression was slightly, albeit statistically significantly, lower in CCP donors than in plasma donors without a history of COVID-19. One patient showed increased maximum clot firmness and prolonged lysis time in thromboelastometry. Our findings suggest that procoagulant platelet phenotype is not present after mild COVID-19. Furthermore, CCP sera do not affect the activation status of platelets.
Collapse
Affiliation(s)
- Günalp Uzun
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Anurag Singh
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University Hospital of Tübingen, Tübingen, Germany
| | - Wissam Abou-Khalel
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Lisann Pelzl
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University Hospital of Tübingen, Tübingen, Germany
| | - Karoline Weich
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Stefanie Nowak-Harnau
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Karina Althaus
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University Hospital of Tübingen, Tübingen, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Hessen, Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Hessen, Mannheim, Germany
| | - Tamam Bakchoul
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Joyner MJ, Carter RE, Fairweather D, Wright RS. Convalescent plasma and COVID-19: Time for a second-second look? Transfus Med 2022; 33:16-20. [PMID: 36089562 PMCID: PMC9538409 DOI: 10.1111/tme.12915] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
In this short narrative, we highlight some of our experiences leading the US Convalescent Plasma Program at the beginning of the pandemic in the spring and summer of 2020. This includes a brief summary of how the program emerged and high-level lessons we learned. We also share our impressions about why convalescent plasma was used at scale in the United States, early in the pandemic and share ideas that might inform the use of convalescent plasma in future outbreaks of novel infectious diseases.
Collapse
Affiliation(s)
- Michael J. Joyner
- Department of Anesthesiology & Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Rickey E. Carter
- Department of Quantitative Health Sciences, Division of Clinical Trials & BiostatisticsMayo ClinicJacksonvilleFloridaUSA
| | | | - R. Scott Wright
- Department of Cardiovascular DiseasesMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
37
|
Battaglini D, Cruz F, Robba C, Pelosi P, Rocco PRM. Failed clinical trials on COVID-19 acute respiratory distress syndrome in hospitalized patients: common oversights and streamlining the development of clinically effective therapeutics. Expert Opin Investig Drugs 2022; 31:995-1015. [PMID: 36047644 DOI: 10.1080/13543784.2022.2120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The coronavirus disease 2019 (COVID-19) pandemic has put a strain on global healthcare systems. Despite admirable efforts to develop rapidly new pharmacotherapies, supportive treatments remain the standard of care. Multiple clinical trials have failed due to design issues, biased patient enrollment, small sample sizes, inadequate control groups, and lack of long-term outcomes monitoring. AREAS COVERED This narrative review depicts the current situation around failed and success COVID-19 clinical trials and recommendations in hospitalized patients with COVID-19, oversights and streamlining of clinically effective therapeutics. PubMed, EBSCO, Cochrane Library, and WHO and NIH guidelines were searched for relevant literature up to 5 August 2022. EXPERT OPINION The WHO, NIH, and IDSA have issued recommendations to better clarify which drugs should be used during the different phases of the disease. Given the biases and high heterogeneity of published studies, interpretation of the current literature is difficult. Future clinical trials should be designed to standardize clinical approaches, with appropriate organization, patient selection, addition of control groups, and careful identification of disease phase to reduce heterogeneity and bias and should rely on the integration of scientific societies to promote a consensus on interpretation of the data and recommendations for optimal COVID-19 therapies.
Collapse
Affiliation(s)
- Denise Battaglini
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy
| | - Fernanda Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chiara Robba
- Policlinico San Martino, IRCCS per l'Oncologia e Neuroscienze, Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| | - Paolo Pelosi
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Genoa, Italy.,Policlinico San Martino, IRCCS per l'Oncologia e Neuroscienze, Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Estcourt LJ, Cohn CS, Pagano MB, Iannizzi C, Kreuzberger N, Skoetz N, Allen ES, Bloch EM, Beaudoin G, Casadevall A, Devine DV, Foroutan F, Gniadek TJ, Goel R, Gorlin J, Grossman BJ, Joyner MJ, Metcalf RA, Raval JS, Rice TW, Shaz BH, Vassallo RR, Winters JL, Tobian AAR. Clinical Practice Guidelines From the Association for the Advancement of Blood and Biotherapies (AABB): COVID-19 Convalescent Plasma. Ann Intern Med 2022; 175:1310-1321. [PMID: 35969859 PMCID: PMC9450870 DOI: 10.7326/m22-1079] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DESCRIPTION Coronavirus disease 2019 convalescent plasma (CCP) has emerged as a potential treatment of COVID-19. However, meta-analysis data and recommendations are limited. The Association for the Advancement of Blood and Biotherapies (AABB) developed clinical practice guidelines for the appropriate use of CCP. METHODS These guidelines are based on 2 living systematic reviews of randomized controlled trials (RCTs) evaluating CCP from 1 January 2019 to 26 January 2022. There were 33 RCTs assessing 21 916 participants. The results were summarized using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) method. An expert panel reviewed the data using the GRADE framework to formulate recommendations. RECOMMENDATION 1 (OUTPATIENT) The AABB suggests CCP transfusion in addition to the usual standard of care for outpatients with COVID-19 who are at high risk for disease progression (weak recommendation, moderate-certainty evidence). RECOMMENDATION 2 (INPATIENT) The AABB recommends against CCP transfusion for unselected hospitalized persons with moderate or severe disease (strong recommendation, high-certainty evidence). This recommendation does not apply to immunosuppressed patients or those who lack antibodies against SARS-CoV-2. RECOMMENDATION 3 (INPATIENT) The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 who do not have SARS-CoV-2 antibodies detected at admission (weak recommendation, low-certainty evidence). RECOMMENDATION 4 (INPATIENT) The AABB suggests CCP transfusion in addition to the usual standard of care for hospitalized patients with COVID-19 and preexisting immunosuppression (weak recommendation, low-certainty evidence). RECOMMENDATION 5 (PROPHYLAXIS) The AABB suggests against prophylactic CCP transfusion for uninfected persons with close contact exposure to a person with COVID-19 (weak recommendation, low-certainty evidence). GOOD CLINICAL PRACTICE STATEMENT CCP is most effective when transfused with high neutralizing titers to infected patients early after symptom onset.
Collapse
Affiliation(s)
- Lise J Estcourt
- NHS Blood and Transplant and Radcliffe Department of Medicine, University of Oxford, United Kingdom (L.J.E.)
| | - Claudia S Cohn
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, Minnesota (C.S.C.)
| | - Monica B Pagano
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, Washington (M.B.P.)
| | - Claire Iannizzi
- Evidence-based Oncology, Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (C.I., N.K., N.S.)
| | - Nina Kreuzberger
- Evidence-based Oncology, Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (C.I., N.K., N.S.)
| | - Nicole Skoetz
- Evidence-based Oncology, Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (C.I., N.K., N.S.)
| | - Elizabeth S Allen
- University of California San Diego, Department of Pathology, La Jolla, California (E.S.A.)
| | - Evan M Bloch
- The Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Maryland (E.M.B., R.G., A.A.R.T.)
| | | | - Arturo Casadevall
- The Johns Hopkins University School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, Maryland (A.C.)
| | - Dana V Devine
- Canadian Blood Services, Vancouver, British Columbia, Canada (D.V.D.)
| | - Farid Foroutan
- University Health Network, Ted Rogers Centre for Heart Research, Toronto, and Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada (F.F.)
| | - Thomas J Gniadek
- NorthShore University Health System, Department of Pathology and Laboratory Medicine, Evanston, Illinois (T.J.G.)
| | - Ruchika Goel
- The Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Maryland (E.M.B., R.G., A.A.R.T.)
| | - Jed Gorlin
- Innovative Blood Resources, Division of New York Blood Center Enterprises, St. Paul, Minnesota (J.G.)
| | - Brenda J Grossman
- Washington University in St. Louis School of Medicine, Department of Pathology and Immunology, St. Louis, Missouri (B.J.G.)
| | - Michael J Joyner
- Mayo Clinic, Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota (M.J.J.)
| | - Ryan A Metcalf
- University of Utah, Department of Pathology, Salt Lake City, Utah (R.A.M.)
| | - Jay S Raval
- University of New Mexico, Department of Pathology, Albuquerque, New Mexico (J.S.R.)
| | - Todd W Rice
- Vanderbilt University Medical Center, Division of Allergy, Pulmonary, and Critical Care Medicine, Nashville, Tennessee (T.W.R.)
| | - Beth H Shaz
- Duke University, Department of Pathology, Durham, North Carolina (B.H.S.)
| | | | - Jeffrey L Winters
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, Minnesota (J.L.W.)
| | - Aaron A R Tobian
- The Johns Hopkins University School of Medicine, Department of Pathology, Baltimore, Maryland (E.M.B., R.G., A.A.R.T.)
| |
Collapse
|
39
|
Lee HJ, Lee JH, Cho Y, Ngoc LTN, Lee YC. Efficacy and Safety of COVID-19 Treatment Using Convalescent Plasma Transfusion: Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10622. [PMID: 36078338 PMCID: PMC9518594 DOI: 10.3390/ijerph191710622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the efficacy and safety of convalescent plasma (CP) transfusion against the coronavirus disease 2019 (COVID-19) via a systematic review and meta-analysis of randomized controlled trials (RCTs). A total of 5467 articles obtained from electronic databases were assessed; however, only 34 RCTs were eligible after manually screening and eliminating unnecessary studies. The beneficial effect was addressed by assessing the risk ratio (RR) and standardized mean differences (SMDs) of the meta-analysis. It was demonstrated that CP therapy is not effective in improving clinical outcomes, including reducing mortality with an RR of 0.88 [0.76; 1.03] (I2 = 68% and p = 0.10) and length of hospitalization with SMD of -0.47 [-0.95; 0.00] (I2 = 99% and p = 0.05). Subgroup analysis provided strong evidence that CP transfusion does not significantly reduce all-cause mortality compared to standard of care (SOC) with an RR of 1.01 [0.99; 1.03] (I2 = 70% and p = 0.33). In addition, CP was found to be safe for and well-tolerated by COVID-19 patients as was the SOC in healthcare settings. Overall, the results suggest that CP should not be applied outside of randomized trials because of less benefit in improving clinical outcomes for COVID-19 treatment.
Collapse
Affiliation(s)
- Hyun-Jun Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Gyeonggi-Do, Korea
| | - Jun-Hyeong Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Gyeonggi-Do, Korea
| | - Yejin Cho
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Gyeonggi-Do, Korea
| | - Le Thi Nhu Ngoc
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Gyeonggi-Do, Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Gyeonggi-Do, Korea
| |
Collapse
|
40
|
Convalescent Plasma for COVID-19: A Single Center Prospective Experience with Serial Antibody Measurements and Review of the Literature. Pathogens 2022; 11:pathogens11090958. [PMID: 36145390 PMCID: PMC9503397 DOI: 10.3390/pathogens11090958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Background: High-titer convalescent plasma given early for COVID-19 may decrease progression into a severe infection. Here, we reported a study of serial antibody measurements in patients who received CP at our center and performed a systematic review of randomized trials on CP. Methods: Our center participated in the Mayo Clinic Expanded Access Program for COVID-19 Convalescent Plasma. Patients diagnosed with COVID-19 by nasopharyngeal polymerase chain reaction at our center between April and August 2020 were included in the study if staffing was available for specimen collection. Through a colloidal gold immunochromatography assay, these patients’ IgM and IgG antibody responses were measured at baseline (Day 0) and after transfusion (Day 1, 2, etc.). Donor CP antibody levels were measured as well. Results: 110 serum specimens were obtained from 21 COVID-19 patients, 16 of whom received CP. The median time from developing symptoms to receiving CP was 11 days (range 4−21). In 9 of 14 (64%) cases where both recipient and donor CP antibody levels were tested, donor COVID-19 IgG was lower than that of the recipient. Higher donor antibody levels compared with the recipient (R = 0.71, p < 0.01) and low patient IgG before CP transfusion (p = 0.0108) correlated with increasing patient IgG levels from baseline to Day 1. Among all patients, an increased COVID-19 IgG in the short-term and longitudinally was positively correlated with improved clinical outcomes (ρ = 0.69, p = 0.003 and ρ = 0.58, p < 0.006, respectively). Conclusions: In a real-world setting where donor CP was not screened for the presence of antibodies, CP in donors might have less COVID-19 IgG than in recipients. An increase in patient antibody levels in the short term and longitudinally was associated with improved clinical outcomes.
Collapse
|
41
|
Zhou CK, Bennett MM, Villa CH, Hammonds KP, Lu Y, Ettlinger J, Priest EL, Gottlieb RL, Davis S, Mays E, Clarke TC, Shoaibi A, Wong HL, Anderson SA, Kelly RJ. Multi-center matched cohort study of convalescent plasma for hospitalized patients with COVID-19. PLoS One 2022; 17:e0273223. [PMID: 35980913 PMCID: PMC9387784 DOI: 10.1371/journal.pone.0273223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Although frequently used in the early pandemic, data on the effectiveness of COVID-19 convalescent plasma (CCP) remain mixed. We investigated the effectiveness and safety of CCP in hospitalized COVID-19 patients in real-world practices during the first two waves of the pandemic in a multi-hospital healthcare system in Texas.
Methods and findings
Among 11,322 hospitalized patients with confirmed COVID-19 infection from July 1, 2020 to April 15, 2021, we included patients who received CCP and matched them with those who did not receive CCP within ±2 days of the transfusion date across sites within strata of sex, age groups, days and use of dexamethasone from hospital admission to the match date, and oxygen requirements 4–12 hours prior to the match date. Cox proportional hazards model estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for effectiveness outcomes in a propensity score 1:1 matched cohort. Pre-defined safety outcomes were described. We included 1,245 patients each in the CCP treated and untreated groups. Oxygen support was required by 93% of patients at the baseline. The pre-defined primary effectiveness outcome of 28-day in-hospital all-cause mortality (HR = 0.85; 95%CI: 0.66,1.10) were similar between treatment groups. Sensitivity and stratified analyses found similar null results. CCP-treated patients were less likely to be discharged alive (HR = 0.82; 95%CI: 0.74, 0.91), and more likely to receive mechanical ventilation (HR = 1.48; 95%CI: 1.12, 1.96). Safety outcomes were rare and similar between treatment groups.
Conclusion
The findings in this large, matched cohort of patients hospitalized with COVID-19 and mostly requiring oxygen support at the time of treatment, do not support a clinical benefit in 28-day in-hospital all-cause mortality for CCP. Future studies should assess the potential benefits with specifically high-titer units in perhaps certain subgroups of patients (e.g. those with early disease or immunocompromised).
Collapse
Affiliation(s)
- Cindy Ke Zhou
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Monica M. Bennett
- Baylor Scott & White Research Institute, Dallas, TX, United States of America
| | - Carlos H. Villa
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kendall P. Hammonds
- Baylor Scott & White Research Institute, Dallas, TX, United States of America
| | - Yun Lu
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jason Ettlinger
- Baylor Scott & White Research Institute, Dallas, TX, United States of America
| | - Elisa L. Priest
- Baylor Scott & White Research Institute, Dallas, TX, United States of America
| | - Robert L. Gottlieb
- Baylor Scott & White Research Institute, Dallas, TX, United States of America
- Baylor University Medical Center, Dallas, Texas, United States of America
- Baylor Heart and Vascular Hospital, Dallas, Texas, United States of America
- Baylor Scott and White The Heart Hospital, Plano, Texas, United States of America
- Texas A&M Health Science Center, Dallas, Texas, United States of America
- TCU and University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Steven Davis
- Baylor Scott & White Medical Center–Irving, Irving, Texas, United States of America
| | - Edward Mays
- Baylor University Medical Center, Dallas, Texas, United States of America
| | - Tainya C. Clarke
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Azadeh Shoaibi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hui-Lee Wong
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Steven A. Anderson
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ronan J. Kelly
- Baylor University Medical Center, Dallas, Texas, United States of America
- Charles A. Sammons Cancer Center Baylor University Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Qian Z, Zhang Z, Ma H, Shao S, Kang H, Tong Z. The efficiency of convalescent plasma in COVID-19 patients: A systematic review and meta-analysis of randomized controlled clinical trials. Front Immunol 2022; 13:964398. [PMID: 35967398 PMCID: PMC9366612 DOI: 10.3389/fimmu.2022.964398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to assess whether convalescent plasma therapy could offer survival advantages for patients with novel coronavirus disease 2019 (COVID-19). An electronic search of Pubmed, Web of Science, Embase, Cochrane library and MedRxiv was performed from January 1st, 2020 to April 1st, 2022. We included studies containing patients with COVID-19 and treated with CCP. Data were independently extracted by two reviewers and synthesized with a random-effect analysis model. The primary outcome was 28-d mortality. Secondary outcomes included length of hospital stay, ventilation-free days, 14-d mortality, improvements of symptoms, progression of diseases and requirements of mechanical ventilation. Safety outcomes included the incidence of all adverse events (AEs) and serious adverse events (SAEs). The Cochrane risk-of-bias assessment tool 2.0 was used to assess the potential risk of bias in eligible studies. The heterogeneity of results was assessed by I^2 test and Q statistic test. The possibility of publication bias was assessed by conducting Begg and Egger test. GRADE (Grading of Recommendations Assessment, Development and Evaluation) method were used for quality of evidence. This study had been registered on PROSPERO, CRD42021273608. 32 RCTs comprising 21478 patients with Covid-19 were included. Compared to the control group, COVID-19 patients receiving CCP were not associated with significantly reduced 28-d mortality (CCP 20.0% vs control 20.8%; risk ratio 0.94; 95% CI 0.87-1.02; p = 0.16; I² = 8%). For all secondary outcomes, there were no significant differences between CCP group and control group. The incidence of AEs (26.9% vs 19.4%,; risk ratio 1.14; 95% CI 0.99-01.31; p = 0.06; I² = 38%) and SAEs (16.3% vs 13.5%; risk ratio 1.03; 95% CI 0.87-1.20; p = 0.76; I² = 42%) tended to be higher in the CCP group compared to the control group, while the differences did not reach statistical significance. In all, CCP therapy was not related to significantly improved 28-d mortality or symptoms recovery, and should not be viewed as a routine treatment for COVID-19 patients. Trial registration number CRD42021273608. Registration on February 28, 2022. Systematic review registration https://www.crd.york.ac.uk/prospero/, Identifier CRD42022313265.
Collapse
Affiliation(s)
- Zhenbei Qian
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhijin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haomiao Ma
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuai Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hanyujie Kang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Rahimi-Levene N, Shapira J, Tzur I, Shiloah E, Peer V, Levin E, Izak M, Shinar E, Ziv-Baran T, Weinberger M, Zimhony O, Chen J, Maor Y. Predictors of mortality in COVID-19 patients treated with convalescent plasma therapy. PLoS One 2022; 17:e0271036. [PMID: 35852992 PMCID: PMC9295964 DOI: 10.1371/journal.pone.0271036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Several options to treat hospitalized severe COVID-19 patients have been suggested. The study aimed to describe survival in patients treated with convalescent COVID plasma (CCP) and to identify in-hospital mortality predictors. This prospective cohort study examined data from 112 severe COVID-19 patients hospitalized in the Corona Departments in an acute care hospital who received two units of CCP (at least one of them high-titer). Demographic and medical data was retrieved from the patients’ electronic health records (EHR). Possible predictors for in-hospital mortality were analyzed in a univariate analysis and those found to be clinically significant were further analyzed in a multivariable analysis. Median age was 67 years (IQR 55–74) and 66 (58.9%) of them were males. Of them, 20 (17.9%) died in hospital. On multivariable analysis diabetes mellitus (p = 0.004, OR 91.54), mechanical ventilation (p = 0.001, OR 59.07) and lower albumin levels at treatment (p = 0.027, OR 0.74) were significantly associated with increased in-hospital mortality. In our study, in-hospital mortality in patients receiving CCP is similar to that reported for the general population, however certain variables mentioned above were associated with increased in-hospital mortality. In the literature, these variables were also associated with a worse outcome in patients with COVID-19 who did not receive CCP. As evidence points toward a benefit from CCP treatment in immunocompromised patients, we believe the above risk factors can further define COVID-19 patients at increased risk for mortality, enabling the selection of candidates for early treatment in an outpatient setting if possible.
Collapse
Affiliation(s)
| | - Jonathan Shapira
- Internal Medicine Department H, Shamir Medical Center, Zerifin, Israel
| | - Irma Tzur
- Internal Medicine Department F, Shamir Medical Center, Zerifin, Israel
| | - Eli Shiloah
- Internal Medicine Department E, Shamir Medical Center, Zerifin, Israel
| | | | - Ella Levin
- Blood Bank, Shamir Medical Center, Zerifin, Israel
| | - Marina Izak
- National Blood Services, Magen David Adom, Ramat Gan, Israel
| | - Eilat Shinar
- National Blood Services, Magen David Adom, Ramat Gan, Israel
| | - Tomer Ziv-Baran
- Department of Epidemiological Studies, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Miriam Weinberger
- Department of Infectious Diseases, Shamir Medical Center, Zerifin, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Zimhony
- Infectious Diseases Unit, Kaplan Medical Center, Rehovot, Israel
| | - Jacob Chen
- Hospital Management, Meir Medical Center, Kfar Saba, Israel
- Trauma and Combat Medicine Branch, Israel Defense Forces, Medical Corps, Tel Hashomer, Ramat Gan, Israel
| | - Yasmin Maor
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Infectious Diseases, Wolfson Medical Center, Holon, Israel
| |
Collapse
|
44
|
Metcalf RA, Cohn CS, Allen ES, Bakhtary S, Gniadek T, Gupta G, Harm S, Haspel R, Hess A, Jacobson J, Lokhandwala PM, Murphy C, Poston J, Prochaska MT, Raval JS, Saifee NH, Salazar E, Shan H, Zantek N, Pagano MB. Current advances in transfusion medicine 2021: A critical review of selected topics by the AABB Clinical Transfusion Medicine Committee. Transfusion 2022; 62:1435-1445. [PMID: 35713186 DOI: 10.1111/trf.16944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Each year the AABB Clinical Transfusion Medicine Committee (CTMC) procures a synopsis highlighting new, important, and clinically relevant studies in the field of transfusion medicine (TM). This has been made available as a publication in Transfusion since 2018. METHODS CTMC members reviewed and identified original manuscripts covering TM-related topics published electronically (ahead-of-print) or in print from December 2020 to December 2021. Selection of publications was discussed at committee meetings and chosen based on perceived relevance and originality. Next, committee members worked in pairs to create a synopsis of each topic, which was then reviewed by additional committee members. The first and senior authors assembled the final manuscript. Although this synopsis is extensive, it is not exhaustive, and some articles may have been excluded or missed. RESULTS The following topics are included: blood products; convalescent plasma; donor collections and testing; hemoglobinopathies; immunohematology and genomics; hemostasis; patient blood management; pediatrics; therapeutic apheresis; and cell therapy. CONCLUSIONS This synopsis highlights and summarizes recent key developments in TM and may be useful for educational purposes.
Collapse
Affiliation(s)
- Ryan A Metcalf
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Claudia S Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth S Allen
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Sara Bakhtary
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Thomas Gniadek
- Department of Pathology, NorthShore University Health System, Chicago, Illinois, USA
| | - Gaurav Gupta
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sarah Harm
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Richard Haspel
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Aaron Hess
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jessica Jacobson
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Colin Murphy
- Department of Pathology, University of Maryland, Baltimore, Maryland, USA
| | - Jacqueline Poston
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Micah T Prochaska
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Jay S Raval
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Eric Salazar
- Department of Pathology, UT Health San Antonio, San Antonio, Texas, USA
| | - Hua Shan
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Nichole Zantek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Monica B Pagano
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
45
|
Belov A, Huang Y, Villa CH, Whitaker BI, Forshee R, Anderson SA, Eder A, Verdun N, Joyner MJ, Wright SR, Carter RE, Hung DT, Homer M, Hoffman C, Lauer M, Marks P. Early administration of COVID-19 convalescent plasma with high titer antibody content by live viral neutralization assay is associated with modest clinical efficacy. Am J Hematol 2022; 97:770-779. [PMID: 35303377 PMCID: PMC9082011 DOI: 10.1002/ajh.26531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
The efficacy of COVID‐19 convalescent plasma (CCP) as a treatment for hospitalized patients with COVID‐19 remains somewhat controversial; however, many studies have not evaluated CCP documented to have high neutralizing antibody titer by a highly accurate assay. To evaluate the correlation of the administration of CCP with titer determined by a live viral neutralization assay with 7‐ and 28‐day death rates during hospitalization, a total of 23 118 patients receiving a single unit of CCP were stratified into two groups: those receiving high titer CCP (>250 50% inhibitory dilution, ID50; n = 13 636) or low titer CCP (≤250 ID50; n = 9482). Multivariable Cox regression was performed to assess risk factors. Non‐intubated patients who were transfused with high titer CCP showed 1.1% and 1.7% absolute reductions in overall 7‐ and 28‐day death rates, respectively, compared to those non‐intubated patients receiving low titer CCP. No benefit of CCP was observed in intubated patients. The relative benefit of high titer CCP was confirmed in multivariable Cox regression. Administration of CCP with high titer antibody content determined by live viral neutralization assay to non‐intubated patients is associated with modest clinical efficacy. Although shown to be only of modest clinical benefit, CCP may play a role in the future should viral variants develop that are not neutralized by other available therapeutics.
Collapse
Affiliation(s)
- Artur Belov
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Yin Huang
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Carlos H. Villa
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Barbee I. Whitaker
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Richard Forshee
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Steven A. Anderson
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Anne Eder
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Nicole Verdun
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine Mayo Clinic Rochester Minnesota USA
| | - Scott R. Wright
- Department of Cardiology and the Human Research Protection Program Mayo Clinic Rochester Minnesota USA
| | - Rickey E. Carter
- Department of Quantitative Health Sciences Mayo Clinic Jacksonville Florida USA
| | - Deborah T. Hung
- Infectious Disease and Microbiome Program Broad Institute Cambridge Massachusetts USA
| | - Mary Homer
- Biomedical Advanced Research and Development Authority (BARDA) District of Columbia Washington USA
| | - Corey Hoffman
- Biomedical Advanced Research and Development Authority (BARDA) District of Columbia Washington USA
| | - Michael Lauer
- Office of the Director National Institutes of Health Bethesda Maryland USA
| | - Peter Marks
- Center for Biologics Evaluation and Research US FDA Silver Spring Maryland USA
| | | |
Collapse
|
46
|
Beraud M, Goodhue Meyer E, Lozano M, Bah A, Vassallo R, Brown BL. Lessons learned from the use of convalescent plasma for the treatment of COVID-19 and specific considerations for immunocompromised patients. Transfus Apher Sci 2022; 61:103355. [PMID: 35063360 PMCID: PMC8757642 DOI: 10.1016/j.transci.2022.103355] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) convalescent plasma (CovCP) infusions have been widely used for the treatment of hospitalized patients with COVID-19. The aims of this narrative review were to analyze the safety and efficacy of CovCP infusions in the overall population and in immunocompromised patients with COVID-19 and to identify the lessons learned concerning the use of convalescent plasma (CP) to fill treatment gaps for emerging viruses. Systematic searches (PubMed, Scopus, and COVID-19 Research) were conducted to identify peer-reviewed articles and pre-prints published between March 1, 2020 and May 1, 2021 on the use of CovCP for the treatment of patients with COVID-19. From 261 retrieved articles, 37 articles reporting robust controlled studies in the overall population of patients with COVID-19 and 9 articles in immunocompromised patients with COVID-19 were selected. While CovCP infusions are well tolerated in both populations, they do not seem to improve clinical outcomes in critically-ill patients with COVID-19 and no conclusion could be drawn concerning their potential benefits in immunocompromised patients with COVID-19. To be better prepared for future epidemics/pandemics and to evaluate potential benefits of CP treatment, only CP units with high neutralizing antibodies (NAbs) titers should be infused in patients with low NAb titers, patient eligibility criteria should be based on the disease pathophysiology, and measured clinical outcomes and methods should be comparable across studies. Even if CovCP infusions did not improve clinical outcomes in patients with COVID-19, NAb-containing CP infusions remain a safe, widely available and potentially beneficial treatment option for future epidemics/pandemics.
Collapse
Affiliation(s)
- Mickael Beraud
- Terumo Blood and Cell Technologies Europe NV, Ikaroslaan 41, 1930, Zaventem, Belgium.
| | - Erin Goodhue Meyer
- Terumo Blood and Cell Technologies, 10811 W Collins Ave, Lakewood, CO, 80215, United States.
| | - Miquel Lozano
- Department of Hemotherapy and Hemostasis, ICMHO, University Clinic Hospital, IDIBAPS, University of Barcelona, Villarroel 170, 08036, Barcelona, Catalonia, Spain.
| | - Aicha Bah
- Terumo Blood and Cell Technologies Europe NV, Ikaroslaan 41, 1930, Zaventem, Belgium.
| | - Ralph Vassallo
- Vitalant, 6210 E Oak St, Scottsdale, AZ, 85257, United States.
| | - Bethany L Brown
- American Red Cross, Biomedical Services, Holland Laboratory for the Biomedical Sciences, 15601 Crabbs Branch Way, Rockville, MD, 20855, United States.
| |
Collapse
|
47
|
Song AT, Rocha V, Mendrone-Júnior A, Calado RT, De Santis GC, Benites BD, Costa-Lima C, Vargas T, Marques LS, Fernandes JC, Breda FC, Wendel S, Fachini R, Rizzo LV, Kutner JM, Avelino-Silva VI, Machado RR, Durigon EL, Chevret S, Kallas EG. Treatment of severe COVID-19 patients with either low- or high-volume of convalescent plasma versus standard of care: A multicenter Bayesian randomized open-label clinical trial (COOP-COVID-19-MCTI). LANCET REGIONAL HEALTH. AMERICAS 2022; 10:100216. [PMID: 35308034 PMCID: PMC8923059 DOI: 10.1016/j.lana.2022.100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Administration of convalescent plasma may serve as an adjunct to supportive treatment to prevent COVID-19 progression and death. We aimed to evaluate the efficacy and safety of 2 volumes of intravenous convalescent plasma (CP) with high antibody titers for the treatment of severe cases of COVID-19. Methods We conducted a Bayesian, randomized, open-label, multicenter, controlled clinical trial in 7 Brazilian hospitals. Adults admitted to hospital with positive RT-PCR for SARS-CoV2, within 10 days of the symptom onset, were eligible. Patients were randomly assigned (1:1:1) to receive standard of care (SoC) alone, or in combination with 200 mL (150-300 mL) of CP (Low-volume), or 400 mL (300-600 mL) of CP (High-volume); infusion had to be performed within 24 h of randomization. Randomization was centralized, stratified by center. The primary outcome was the time until clinical improvement up to day 28, measured by the WHO ten-point scale, assessed in the intention-to-treat population. Interim and terminal analyses were performed in a Bayesian framework. Trial registered at ClinicalTrials.gov: NCT04415086. Findings Between June 2, 2020, and November 18, 2020, 129 patients were enrolled and randomly assigned to SoC (n = 42), Low-volume (n = 43) or High-volume (n = 44) CP. Donors presented a median titer of neutralizing antibodies of 1:320 (interquartile range, 1:160 to 1:1088). No evidence of any benefit of convalescent plasma was observed, with Bayesian estimate of 28-day clinical improvement of 72.7% (95%CI, 58.8 to 84.7) in the SoC versus 64.1% (95%ci, 53.8 to 73.7) in the pooled experimental groups (mean difference of -8.7%, 95%CI, -24.6 to 8.2). There was one case of cutaneous mild allergic reaction related to plasma transfusion and one case of suspected transfusion-related acute lung injury but deemed not to be related to convalescent plasma infusion. Interpretation In this prospective, randomized trial of adult hospitalized patients with severe COVID-19, convalescent plasma was not associated with clinical benefits. Funding Brazilian Ministry of Science, Technology and Innovation, Fundação de Amparo à Pesquisa do Estado de São Paulo.
Collapse
Affiliation(s)
- Alice T.W. Song
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Rodrigo T. Calado
- Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gil C. De Santis
- Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Bruno D. Benites
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Carolina Costa-Lima
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Taiani Vargas
- Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | - Leonardo S. Marques
- Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | | | | | | | | | - Luiz V. Rizzo
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Vivian I. Avelino-Silva
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Rafael R.G. Machado
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Edison L. Durigon
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sylvie Chevret
- Biostatistical Department, Hôpital Saint-Louis, Paris University, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Esper G. Kallas
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
González SE, Regairaz L, Salazar MR, Ferrando NS, González Martínez VV, Carrera Ramos PM, Pesci SA, Vidal JM, Kreplak N, Estenssoro E. Timing of convalescent plasma administration and 28-day mortality in COVID-19 pneumonia. J Investig Med 2022; 70:1258-1264. [PMID: 35135872 PMCID: PMC8845095 DOI: 10.1136/jim-2021-002158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
This is a multicenter cohort study including consecutive, hospitalized patients ≥18 years, with moderate to severe COVID-19, carried out to evaluate the relationship between the timing of convalescent plasma administration and 28-day mortality. Data were prospectively collected between May 14, 2020 and October 31, 2020. Patients were grouped according to the timing of administration of convalescent plasma as <3 days, between 3 and 7 days, and >7 days. The main outcome variable was 28-day mortality. Independent predictors of mortality were identified by logistic regression. Of 4719 patients receiving convalescent plasma, 3036 (64.3%) were in the general ward, 1171 (24.8%) in the intensive care unit (ICU), and 512 (10.8%) in the ICU on mechanical ventilation. Convalescent plasma was administered to 3113 (66%) patients within the first 3 days of hospital admission, to 1380 (29.2%) between 3 and 7 days, and to 226 after 7 days; 28-day mortality was, respectively, 18.1%, 30.4% and 38.9% (p<0.001). In the regression model, convalescent plasma administration within the first 3 days of admission was associated with reduced 28-day mortality, compared with the administration after 7 days (OR 0.40, 95% CI 0.30 to 0.53). Early convalescent plasma administration was associated to a significant decreased mortality in patients in the general ward (OR 0.45, 95% CI 0.29 to 0.69) and in the ICU (OR 0.35, 95% CI 0.19 to 0.64), but not in those requiring mechanical ventilation (OR 0.52, 95% CI 0.27 to 1.01). In conclusion, this study suggests that early administration of convalescent plasma to patients with COVID-19 pneumonia is critical to obtain therapeutic benefit.
Collapse
Affiliation(s)
- Soledad E González
- Epidemiología, Ministerio de Salud de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Lorena Regairaz
- Inmunología, Hospital Interzonal Especializado en Pediatría 'Sor María Ludovica', La Plata, Buenos Aires, Argentina
| | - Martin R Salazar
- Clínica Médica, Hospital Interzonal General de Agudos General San Martin, La Plata, Argentina
- Medicina Interna, Universidad Nacional de la Plata Facultad de Ciencias Medicas, La Plata, Buenos Aires, Argentina
| | - Noelia S Ferrando
- Estadística, Instituto de Hemoterapia, La Plata, Buenos Aires, Argentina
| | | | - Patricia M Carrera Ramos
- Instituto de Investigaciones Pediátricas 'Prof. Fernando E. Vitieri', La Plata, Buenos Aires, Argentina
| | - Santiago A Pesci
- Epidemiología, Ministerio de Salud de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Juan M Vidal
- Epidemiología, Ministerio de Salud de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Nicolás Kreplak
- Ministro de Salud Pública, Ministerio de Salud de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| | - Elisa Estenssoro
- Terapia Intensiva, Hospital Interzonal General de Agudos General San Martin, La Plata, Argentina
| |
Collapse
|
49
|
Yang S, Tong Y, Chen L, Yu W. Human Identical Sequences, hyaluronan, and hymecromone ─ the new mechanism and management of COVID-19. MOLECULAR BIOMEDICINE 2022; 3:15. [PMID: 35593963 PMCID: PMC9120813 DOI: 10.1186/s43556-022-00077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 has created formidable damage to public health and market economy. Currently, SARS-CoV-2 variants has exacerbated the transmission from person-to-person. Even after a great deal of investigation on COVID-19, SARS-CoV-2 is still rampaging globally, emphasizing the urgent need to reformulate effective prevention and treatment strategies. Here, we review the latest research progress of COVID-19 and provide distinct perspectives on the mechanism and management of COVID-19. Specially, we highlight the significance of Human Identical Sequences (HIS), hyaluronan, and hymecromone ("Three-H") for the understanding and intervention of COVID-19. Firstly, HIS activate inflammation-related genes to influence COVID-19 progress through NamiRNA-Enhancer network. Accumulation of hyaluronan induced by HIS-mediated HAS2 upregulation is a substantial basis for clinical manifestations of COVID-19, especially in lymphocytopenia and pulmonary ground-glass opacity. Secondly, detection of plasma hyaluronan can be effective for evaluating the progression and severity of COVID-19. Thirdly, spike glycoprotein of SARS-CoV-2 may bind to hyaluronan and further serve as an allergen to stimulate allergic reaction, causing sudden adverse effects after vaccination or the aggravation of COVID-19. Finally, antisense oligonucleotides of HIS or inhibitors of hyaluronan synthesis (hymecromone) or antiallergic agents could be promising therapeutic agents for COVID-19. Collectively, Three-H could hold the key to understand the pathogenic mechanism and create effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
50
|
Bein G. Die Dosis macht das Gift (Dosis-Wirkungs-Beziehung). TRANSFUSIONSMEDIZIN 2022. [DOI: 10.1055/a-1623-8779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|