1
|
Lone IM, Iraqi FA. Genetics of murine type 2 diabetes and comorbidities. Mamm Genome 2022; 33:421-436. [PMID: 35113203 DOI: 10.1007/s00335-022-09948-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
ABSTRAC Type 2 diabetes (T2D) is a polygenic and multifactorial complex disease, defined as chronic metabolic disorder. It's a major global health concern with an estimated 463 million adults aged 20-79 years with diabetes and projected to increase up to 700 million by 2045. T2D was reported to be one of the four leading causes of non-communicable disease (NCD) deaths in 2012. Environmental factors play a part in the development of polygenic forms of diabetes. Polygenic forms of diabetes often run-in families. Fortunately, T2D, which accounts for 90-95% of the entire four types of diabetes including, Type 1 diabetes (T1D), T2D, monogenic diabetes syndromes (MGDS), and Gestational diabetes mellitus, can be prevented or delayed through nutrition and lifestyle changes as well as through pharmacologic interventions. Typical symptom of the T2D is high blood glucose levels and comprehensive insulin resistance of the body, producing an impaired glucose tolerance. Impaired glucose tolerance of T2D is accompanied by extensive health complications, including cardiovascular diseases (CVD) that vary in morbidity and mortality among populations. The pathogenesis of T2D varies between populations and/or ethnic groupings and is known to be attributed extremely by genetic components and environmental factors. It is evident that genetic background plays a critical role in determining the host response toward certain environmental conditions, whether or not of developing T2D (susceptibility versus resistant). T2D is considered as a silent disease that can progress for years before its diagnosis. Once T2D is diagnosed, many metabolic malfunctions are observed whether as side effects or as independent comorbidity. Mouse models have been proven to be a powerful tool for mapping genetic factors that underline the susceptibility to T2D development as well its comorbidities. Here, we have conducted a comprehensive search throughout the published data covering the time span from early 1990s till the time of writing this review, for already reported quantitative trait locus (QTL) associated with murine T2D and comorbidities in different mouse models, which contain different genetic backgrounds. Our search has resulted in finding 54 QTLs associated with T2D in addition to 72 QTLs associated with comorbidities associated with the disease. We summarized the genomic locations of these mapped QTLs in graphical formats, so as to show the overlapping positions between of these mapped QTLs, which may suggest that some of these QTLs could be underlined by sharing gene/s. Finally, we reviewed and addressed published reports that show the success of translation of the identified mouse QTLs/genes associated with the disease in humans.
Collapse
Affiliation(s)
- Iqbal M Lone
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel
| | - Fuad A Iraqi
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel-Aviv, Israel.
| |
Collapse
|
2
|
Kumar M, Srivastav AK, Parmar D. Genetic analysis and epistatic interaction association of lipid traits in a C57xBalb/c F2 mice. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Nolte MJ, Jing P, Dewey CN, Payseur BA. Giant Island Mice Exhibit Widespread Gene Expression Changes in Key Metabolic Organs. Genome Biol Evol 2020; 12:1277-1301. [PMID: 32531054 PMCID: PMC7487164 DOI: 10.1093/gbe/evaa118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2020] [Indexed: 12/02/2022] Open
Abstract
Island populations repeatedly evolve extreme body sizes, but the genomic basis of this pattern remains largely unknown. To understand how organisms on islands evolve gigantism, we compared genome-wide patterns of gene expression in Gough Island mice, the largest wild house mice in the world, and mainland mice from the WSB/EiJ wild-derived inbred strain. We used RNA-seq to quantify differential gene expression in three key metabolic organs: gonadal adipose depot, hypothalamus, and liver. Between 4,000 and 8,800 genes were significantly differentially expressed across the evaluated organs, representing between 20% and 50% of detected transcripts, with 20% or more of differentially expressed transcripts in each organ exhibiting expression fold changes of at least 2×. A minimum of 73 candidate genes for extreme size evolution, including Irs1 and Lrp1, were identified by considering differential expression jointly with other data sets: 1) genomic positions of published quantitative trait loci for body weight and growth rate, 2) whole-genome sequencing of 16 wild-caught Gough Island mice that revealed fixed single-nucleotide differences between the strains, and 3) publicly available tissue-specific regulatory elements. Additionally, patterns of differential expression across three time points in the liver revealed that Arid5b potentially regulates hundreds of genes. Functional enrichment analyses pointed to cell cycling, mitochondrial function, signaling pathways, inflammatory response, and nutrient metabolism as potential causes of weight accumulation in Gough Island mice. Collectively, our results indicate that extensive gene regulatory evolution in metabolic organs accompanied the rapid evolution of gigantism during the short time house mice have inhabited Gough Island.
Collapse
Affiliation(s)
- Mark J Nolte
- Laboratory of Genetics, University of Wisconsin - Madison
| | - Peicheng Jing
- Laboratory of Genetics, University of Wisconsin - Madison
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin - Madison
| |
Collapse
|
4
|
Karunakaran S, Clee SM. Genetics of metabolic syndrome: potential clues from wild-derived inbred mouse strains. Physiol Genomics 2018; 50:35-51. [DOI: 10.1152/physiolgenomics.00059.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The metabolic syndrome (MetS) is a complex constellation of metabolic abnormalities including obesity, abnormal glucose metabolism, dyslipidemia, and elevated blood pressure that together substantially increase risk for cardiovascular disease and Type 2 diabetes. Both genetic and environmental factors contribute to the development of MetS, but this process is still far from understood. Human studies have revealed only part of the underlying basis. Studies in mice offer many strengths that can complement human studies to help elucidate the etiology and pathophysiology of MetS. Here we review the ways mice can contribute to MetS research. In particular, we focus on the information that can be obtained from studies of the inbred strains, with specific focus on the phenotypes of the wild-derived inbred strains. These are newly derived inbred strains that were created from wild-caught mice. They contain substantial genetic variation that is not present in the classical inbred strains, have phenotypes of relevance for MetS, and various mouse strain resources have been created to facilitate the mining of this new genetic variation. Thus studies using wild-derived inbred strains hold great promise for increasing our understanding of MetS.
Collapse
Affiliation(s)
- Subashini Karunakaran
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanne M. Clee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Kreznar JH, Keller MP, Traeger LL, Rabaglia ME, Schueler KL, Stapleton DS, Zhao W, Vivas EI, Yandell BS, Broman AT, Hagenbuch B, Attie AD, Rey FE. Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes. Cell Rep 2017; 18:1739-1750. [PMID: 28199845 DOI: 10.1016/j.celrep.2017.01.062] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/09/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022] Open
Abstract
Genetic variation drives phenotypic diversity and influences the predisposition to metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in diabetes-related phenotypes and gut microbiota composition among the different mouse strains in response to the dietary challenge and identified taxa associated with these traits. Follow-up microbiota transplant experiments showed that altering the composition of the gut microbiota modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring microbial communities with enhanced capacity for processing dietary sugars and for generating hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic and phenotypic diversity observed among mouse strains and provide a link between the gut microbiome and insulin secretion.
Collapse
Affiliation(s)
- Julia H Kreznar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lindsay L Traeger
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary E Rabaglia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Donald S Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wen Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eugenio I Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aimee Teo Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas, Kansas City, KS 66160, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Chen J, Kaiyala KJ, Lam J, Agrawal N, Nguyen L, Ogimoto K, Spencer D, Morton GJ, Schwartz MW, Dichek HL. In vivo structure-function studies of human hepatic lipase: the catalytic function rescues the lean phenotype of HL-deficient (hl-/-) mice. Physiol Rep 2015; 3:e12365. [PMID: 25862097 PMCID: PMC4425970 DOI: 10.14814/phy2.12365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 11/30/2022] Open
Abstract
The lean body weight phenotype of hepatic lipase (HL)-deficient mice (hl(-/-)) suggests that HL is required for normal weight gain, but the underlying mechanisms are unknown. HL plays a unique role in lipoprotein metabolism performing bridging as well as catalytic functions, either of which could participate in energy homeostasis. To determine if both the catalytic and bridging functions or the catalytic function alone are required for the effect of HL on body weight, we studied (hl(-/-)) mice that transgenically express physiologic levels of human (h)HL (with catalytic and bridging functions) or a catalytically-inactive (ci)HL variant (with bridging function only) in which the catalytic Serine 145 was mutated to Alanine. As expected, HL activity in postheparin plasma was restored to physiologic levels only in hHL-transgenic mice (hl(-/-)hHL). During high-fat diet feeding, hHL-transgenic mice exhibited increased body weight gain and body adiposity relative to hl(-/-)ciHL mice. A similar, albeit less robust effect was observed in female hHL-transgenic relative to hl(-/-)ciHL mice. To delineate the basis for this effect, we determined cumulative food intake and measured energy expenditure using calorimetry. Interestingly, in both genders, food intake was 5-10% higher in hl(-/-)hHL mice relative to hl(-/-)ciHL controls. Similarly, energy expenditure was ~10% lower in HL-transgenic mice after adjusting for differences in total body weight. Our results demonstrate that (1) the catalytic function of HL is required to rescue the lean body weight phenotype of hl(-/-) mice; (2) this effect involves complementary changes in both sides of the energy balance equation; and (3) the bridging function alone is insufficient to rescue the lean phenotype of hl(-/-)ciHL mice.
Collapse
Affiliation(s)
- Jeffrey Chen
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Karl J Kaiyala
- Department of Dental Public Health Sciences, School of Dentistry University of Washington, Seattle, Washington
| | - Jennifer Lam
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Nalini Agrawal
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Lisa Nguyen
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Kayoko Ogimoto
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | - Dean Spencer
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Gregory J Morton
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | - Michael W Schwartz
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington
| | - Helén L Dichek
- Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Gularte-Mérida R, DiCarlo LM, Robertson G, Simon J, Johnson WD, Kappen C, Medrano JF, Richards BK. High-resolution mapping of a genetic locus regulating preferential carbohydrate intake, total kilocalories, and food volume on mouse chromosome 17. PLoS One 2014; 9:e110424. [PMID: 25330228 PMCID: PMC4203797 DOI: 10.1371/journal.pone.0110424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022] Open
Abstract
The specific genes regulating the quantitative variation in macronutrient preference and food intake are virtually unknown. We fine mapped a previously identified mouse chromosome 17 region harboring quantitative trait loci (QTL) with large effects on preferential macronutrient intake-carbohydrate (Mnic1), total kilcalories (Kcal2), and total food volume (Tfv1) using interval-specific strains. These loci were isolated in the [C57BL/6J.CAST/EiJ-17.1-(D17Mit19-D17Mit50); B6.CAST-17.1] strain, possessing a ∼ 40.1 Mb region of CAST DNA on the B6 genome. In a macronutrient selection paradigm, the B6.CAST-17.1 subcongenic mice eat 30% more calories from the carbohydrate-rich diet, ∼ 10% more total calories, and ∼ 9% more total food volume per body weight. In the current study, a cross between carbohydrate-preferring B6.CAST-17.1 and fat-preferring, inbred B6 mice was used to generate a subcongenic-derived F2 mapping population; genotypes were determined using a high-density, custom SNP panel. Genetic linkage analysis substantially reduced the 95% confidence interval for Mnic1 (encompassing Kcal2 and Tfv1) from 40.1 to 29.5 Mb and more precisely established its boundaries. Notably, no genetic linkage for self-selected fat intake was detected, underscoring the carbohydrate-specific effect of this locus. A second key finding was the separation of two energy balance QTLs: Mnic1/Kcal2/Tfv1 for food intake and a newly discovered locus regulating short term body weight gain. The Mnic1/Kcal2/Tfv1 QTL was further de-limited to 19.0 Mb, based on the absence of nutrient intake phenotypes in subcongenic HQ17IIa mice. Analyses of available sequence data and gene ontologies, along with comprehensive expression profiling in the hypothalamus of non-recombinant, cast/cast and b6/b6 F2 controls, focused our attention on candidates within the QTL interval. Zfp811, Zfp870, and Btnl6 showed differential expression and also contain stop codons, but have no known biology related to food intake regulation. The genes Decr2, Ppard and Agapt1 are more appealing candidates because of their involvement in lipid metabolism and down-regulation in carbohydrate-preferring animals.
Collapse
Affiliation(s)
- Rodrigo Gularte-Mérida
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Lisa M. DiCarlo
- Genetics of Eating Behavior Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Ginger Robertson
- Genetics of Eating Behavior Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Jacob Simon
- Genetics of Eating Behavior Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - William D. Johnson
- Biostatistics Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Juan F. Medrano
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Brenda K. Richards
- Genetics of Eating Behavior Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
Spruiell K, Jones DZ, Cullen JM, Awumey EM, Gonzalez FJ, Gyamfi MA. Role of human pregnane X receptor in high fat diet-induced obesity in pre-menopausal female mice. Biochem Pharmacol 2014; 89:399-412. [PMID: 24721462 DOI: 10.1016/j.bcp.2014.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 12/15/2022]
Abstract
Obesity is a complex metabolic disorder that is more prevalent among women. Until now, the only relevant rodent models of diet-induced obesity were via the use of ovariectomized ("postmenopausal") females. However, recent reports suggest that the xenobiotic nuclear receptor pregnane X receptor (PXR) may contribute to obesity. Therefore, we compared the roles of mouse and human PXRs in diet-induced obesity between wild type (WT) and PXR-humanized (hPXR) transgenic female mice fed either control or high-fat diets (HFD) for 16 weeks. HFD-fed hPXR mice gained weight more rapidly than controls, exhibited hyperinsulinemia, and impaired glucose tolerance. Fundamental differences were observed between control-fed hPXR and WT females: hPXR mice possessed reduced estrogen receptor α (ERα) but enhanced uncoupling protein 1 (UCP1) protein expression in white adipose tissue (WAT); increased protein expression of the hepatic cytochrome P450 3A11 (CYP3A11) and key gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose 6-phosphatase, and increased total cholesterol. Interestingly, HFD ingestion induced both UCP1 and glucokinase protein expression in WT mice, but inhibited these enzymes in hPXR females. Unlike WT mice, CYP3A11 protein, serum 17β-estradiol levels, and WAT ERα expression were unaffected by HFD in hPXR females. Together, these studies indicate that the hPXR gene promotes obesity and metabolic syndrome by dysregulating lipid and glucose homeostasis while inhibiting UCP1 expression. Furthermore, our studies indicate that the human PXR suppresses the protective role of estrogen in metabolic disorders. Finally, these data identify PXR-humanized mice as a promising in vivo research model for studying obesity and diabetes in women.
Collapse
Affiliation(s)
- Krisstonia Spruiell
- Cardiovascular & Metabolic Diseases Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707, USA; Department of Biology, North Carolina Central University, Durham, NC 27707, USA
| | - Dominique Z Jones
- Cardiovascular & Metabolic Diseases Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707, USA
| | - John M Cullen
- North Carolina College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Emmanuel M Awumey
- Cardiovascular & Metabolic Diseases Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707, USA; Department of Biology, North Carolina Central University, Durham, NC 27707, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Building 37, Room 3106, Bethesda, MD 20892, USA
| | - Maxwell A Gyamfi
- Cardiovascular & Metabolic Diseases Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707, USA.
| |
Collapse
|
9
|
Genetic dissection of quantitative trait Loci for hemostasis and thrombosis on mouse chromosomes 11 and 5 using congenic and subcongenic strains. PLoS One 2013; 8:e77539. [PMID: 24147020 PMCID: PMC3798288 DOI: 10.1371/journal.pone.0077539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/06/2013] [Indexed: 12/25/2022] Open
Abstract
Susceptibility to thrombosis varies in human populations as well as many inbred mouse strains. Only a small portion of this variation has been identified, suggesting that there are unknown modifier genes. The objective of this study was to narrow the quantitative trait locus (QTL) intervals previously identified for hemostasis and thrombosis on mouse distal chromosome 11 (Hmtb6) and on chromosome 5 (Hmtb4 and Hmtb5). In a tail bleeding/rebleeding assay, a reporter assay for hemostasis and thrombosis, subcongenic strain (6A-2) had longer clot stability time than did C57BL/6J (B6) mice but a similar time to the B6-Chr11A/J consomic mice, confirming the Hmtb6 phenotype. Six congenic and subcongenic strains were constructed for chromosome 5, and the congenic strain, 2A-1, containing the shortest A/J interval (16.6 cM, 26.6 Mbp) in the Hmtb4 region, had prolonged clot stability time compared to B6 mice. In the 3A-2 and CSS-5 mice bleeding time was shorter than for B6, mice confirming the Hmtb5 QTL. An increase in bleeding time was identified in another congenic strain (3A-1) with A/J interval (24.8 cM, 32.9 Mbp) in the proximal region of chromosome 5, confirming a QTL for bleeding previously mapped to that region and designated as Hmtb10. The subcongenic strain 4A-2 with the A/J fragment in the proximal region had a long occlusion time of the carotid artery after ferric chloride injury and reduced dilation after injury to the abdominal aorta compared to B6 mice, suggesting an additional locus in the proximal region, which was designated Hmtb11 (5 cM, 21.4 Mbp). CSS-17 mice crossed with congenic strains, 3A-1 and 3A-2, modified tail bleeding. Using congenic and subcongenic analysis, candidate genes previously identified and novel genes were identified as modifiers of hemostasis and thrombosis in each of the loci Hmtb6, Hmtb4, Hmtb10, and Hmtb11.
Collapse
|
10
|
Snyder EE, Walts B, Pérusse L, Chagnon YC, Weisnagel SJ, Rankinen T, Bouchard C. The Human Obesity Gene Map: The 2003 Update. ACTA ACUST UNITED AC 2012; 12:369-439. [PMID: 15044658 DOI: 10.1038/oby.2004.47] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This is the tenth update of the human obesity gene map, incorporating published results up to the end of October 2003 and continuing the previous format. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome-wide scans and animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. Transgenic and knockout murine models relevant to obesity are also incorporated (N = 55). As of October 2003, 41 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. QTLs reported from animal models currently number 183. There are 208 human QTLs for obesity phenotypes from genome-wide scans and candidate regions in targeted studies. A total of 35 genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 272 studies reporting positive associations with 90 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, more than 430 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Eric E Snyder
- Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808-4124, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Pérusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Snyder EE, Bouchard C. The Human Obesity Gene Map: The 2004 Update. ACTA ACUST UNITED AC 2012; 13:381-490. [PMID: 15833932 DOI: 10.1038/oby.2005.50] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single-gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity-related phenotypes from 50 genome-wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Louis Pérusse
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Farahani P, Fisler JS, Wong H, Diament AL, Yi N, Warden CH. Reciprocal Hemizygosity Analysis of Mouse Hepatic Lipase Reveals Influence on Obesity. ACTA ACUST UNITED AC 2012; 12:292-305. [PMID: 14981222 DOI: 10.1038/oby.2004.37] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES We previously demonstrated coincident quantitative trait loci (QTLs) for percentage body fat, plasma hepatic lipase (HL) activity, and plasma cholesterol on mouse chromosome 7. In the present study, we investigated whether hepatic lipase (Lipc) is an obesity gene, whether Lipc interacts with an unknown gene on chromosome 7, and how HL activity is linked to the chromosome 7 locus. RESEARCH METHODS AND PROCEDURES BSB mice are a model of complex obesity due to interactions among genes from C57BL/6J and Mus spretus (SPRET) in (C57BL/6J x SPRET) x C57BL/6J backcross mice. Five crosses tested the impact on obesity of combinations of inactive (knockout) and wild-type Lipc alleles from C57BL/6J or SPRET in a reciprocal hemizygosity analysis. RESULTS The combined data from this allelic series suggest that Lipc alleles, and not alleles from a gene linked to Lipc, influence obesity. No interaction between Lipc and chromosome 7 was demonstrated. We confirmed the chromosome 7 QTLs for obesity, HL activity, and cholesterol. Because obesity and HL activity are not consistently associated in the BSB model, linkage of HL activity to chromosome 7 is not secondary to obesity per se. We also report, for the first time to our knowledge, a QTL in mammals for food intake. DISCUSSION This use of reciprocal hemizygosity analysis in mammals, which, to our knowledge, is the first reported, reveals its power to detect previously unknown effects of Lipc on obesity.
Collapse
Affiliation(s)
- Poupak Farahani
- Rowe Program in Genetics, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
13
|
Andreux PA, Williams EG, Koutnikova H, Houtkooper RH, Champy MF, Henry H, Schoonjans K, Williams RW, Auwerx J. Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits. Cell 2012; 150:1287-99. [PMID: 22939713 DOI: 10.1016/j.cell.2012.08.012] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/06/2012] [Accepted: 08/03/2012] [Indexed: 01/22/2023]
Abstract
Metabolic homeostasis is achieved by complex molecular and cellular networks that differ significantly among individuals and are difficult to model with genetically engineered lines of mice optimized to study single gene function. Here, we systematically acquired metabolic phenotypes by using the EUMODIC EMPReSS protocols across a large panel of isogenic but diverse strains of mice (BXD type) to study the genetic control of metabolism. We generated and analyzed 140 classical phenotypes and deposited these in an open-access web service for systems genetics (www.genenetwork.org). Heritability, influence of sex, and genetic modifiers of traits were examined singly and jointly by using quantitative-trait locus (QTL) and expression QTL-mapping methods. Traits and networks were linked to loci encompassing both known variants and novel candidate genes, including alkaline phosphatase (ALPL), here linked to hypophosphatasia. The assembled and curated phenotypes provide key resources and exemplars that can be used to dissect complex metabolic traits and disorders.
Collapse
Affiliation(s)
- Pénélope A Andreux
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale de Lausanne 1015, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Phenotypic and gene expression differences between DA, BN and WOKW rats. PLoS One 2012; 7:e38981. [PMID: 22768054 PMCID: PMC3387203 DOI: 10.1371/journal.pone.0038981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/15/2012] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Because inbred rat strains are widely used as laboratory models, knowledge of phenotypic and genetic variations between strains will be useful to obtain insight into the relationship between different strains. METHODS AND RESULTS We studied phenotypic traits: of each strain--BN/K, DA/K and WOKW--10 male rats were studied for body weight and serum constituents at an age of 10 and 30 weeks. In addition, a total of 95 rats were studied for life expectancy. At an age of 30 weeks, these male rats were killed by an overdose of anesthetic (Sevofluran, Abbott), and the subcutaneous and visceral adipose tissue as well as bone tissue were removed to study the expression of 20 genes. There were significant differences in body weight, serum lipids and leptin at an age of 30 weeks between strains. Regarding life expectancy, BN rats lived longest (1072±228d). The highest gene expression was found in bone of BN rats. In adipose tissues, Nfkb1 is only expressed in subcutaneous adipocytes, and 5 genes, Col2a1, Mmp9, Tnfa, Ins1 and Cyp24a1, are not expressed in adipocytes. The ranking BN = DA>WOKW was observed in only one gene in subcutaneous (Fto) and visceral adipocytes (Col6a1). There were no significant differences in gene expression of one gene in subcutaneous adipocytes and of 3 genes in visceral adipocytes. Comparing the gene expression in visceral and subcutaneous adipocytes, only one gene showed a comparable behavior (Bmp1). CONCLUSION From these results, it can be concluded that obvious phenotypic differences are caused by genetic differences between three rat strains, BN, DA and WOKW, as supported by gene expression studies in bone and adipose tissues. Especially BN rats can be used to study the genetic basis of long life.
Collapse
|
15
|
Marcelin G, Liu SM, Li X, Schwartz GJ, Chua S. Genetic control of ATGL-mediated lipolysis modulates adipose triglyceride stores in leptin-deficient mice. J Lipid Res 2012; 53:964-972. [PMID: 22383686 PMCID: PMC3329395 DOI: 10.1194/jlr.m022467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/14/2012] [Indexed: 12/23/2022] Open
Abstract
Dissecting the genetics of complex traits such as obesity allows the identification of causal genes for disease. Here, we show that the BALB/c mouse strain carries genetic variants that confer resistance to obesity induced by leptin-deficiency or a high-fat diet (HFD). We set out to identify the physiological and genetic bases underlying this phenotype. When compared with C57BL6/J ob/ob mice (B6), BALB/c ob/ob mice exhibited decreased food intake, increased thermogenic capacity, and improved fat catabolism, each of which can potentially modify obesity. Interestingly, analysis of F1 ob/ob (progeny of B6 ob/+ × BALB/c ob+) mice revealed that obesity resistance in BALB/c ob/ob mice principally relied upon improved fat mobilization. This was mechanistically explained by increased adipose triglyceride lipase (ATGL) content in adipocytes, along with increased lipolysis and fatty acid oxidation. We conducted a genome-wide scan and defined a quantitative trait locus (QTL) on chromosome 2. BALB/c alleles on chromosome 2 not only associated with the obesity resistance phenotype but also supported increased ATGL content in adipose tissue. In summary, our study provides evidence that leptin-independent control of adipocyte lipolysis rates directly modifies the balance of macronutrient handling and is sufficient to regulate fat mass in the absence of alterations in food intake and energy expenditure.-Marcelin, G., S-M. Liu, X. Li, G. J. Schwartz, and S. Chua.
Collapse
Affiliation(s)
- Genevieve Marcelin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Shun-Mei Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Xiaosong Li
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Gary J Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461;; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Streamson Chua
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461;; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461.
| |
Collapse
|
16
|
Langfelder P, Castellani LW, Zhou Z, Paul E, Davis R, Schadt EE, Lusis AJ, Horvath S, Mehrabian M. A systems genetic analysis of high density lipoprotein metabolism and network preservation across mouse models. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:435-47. [PMID: 21807117 DOI: 10.1016/j.bbalip.2011.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 01/22/2023]
Abstract
We report a systems genetic analysis of high density lipoprotein (HDL) levels in an F2 intercross between inbred strains CAST/EiJ and C57BL/6J. We previously showed that there are dramatic differences in HDL metabolism in a cross between these strains, and we now report co-expression network analysis of HDL that integrates global expression data from liver and adipose with relevant metabolic traits. Using data from a total of 293 F2 intercross mice, we constructed weighted gene co-expression networks and identified modules (subnetworks) associated with HDL and clinical traits. These were examined for genes implicated in HDL levels based on large human genome-wide associations studies (GWAS) and examined with respect to conservation between tissue and sexes in a total of 9 data sets. We identify genes that are consistently ranked high by association with HDL across the 9 data sets. We focus in particular on two genes, Wfdc2 and Hdac3, that are located in close proximity to HDL QTL peaks where causal testing indicates that they may affect HDL. Our results provide a rich resource for studies of complex metabolic interactions involving HDL. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Peter Langfelder
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Gonda (Goldschmied) Neuroscience and Genetics Research Center, 695 Charles E. Young Drive South, Box 708822, Los Angeles, CA 90095-7088, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mollah MBR, Ishikawa A. Intersubspecific subcongenic mouse strain analysis reveals closely linked QTLs with opposite effects on body weight. Mamm Genome 2011; 22:282-9. [PMID: 21451961 DOI: 10.1007/s00335-011-9323-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 03/08/2011] [Indexed: 11/28/2022]
Abstract
A previous genome-wide QTL study revealed many QTLs affecting postnatal body weight and growth in an intersubspecific backcross mouse population between the C57BL/6J (B6) strain and wild Mus musculus castaneus mice captured in the Philippines. Subsequently, several closely linked QTLs for body composition traits were revealed in an F(2) intercross population between B6 and B6.Cg-Pbwg1, a congenic strain on the B6 genetic background carrying the growth QTL Pbwg1 on proximal chromosome 2. However, no QTL affecting body weight has been duplicated in the F(2) population, except for mapping an overdominant QTL that causes heterosis of body weight. In this study, we developed 17 intersubspecific subcongenic strains with overlapping and nonoverlapping castaneus regions from the B6.Cg-Pbwg1 congenic strain in order to search for and genetically dissect QTLs affecting body weight into distinct closely linked loci. Phenotypic comparisons of several developed subcongenic strains with the B6 strain revealed that two closely linked but distinct QTLs that regulate body weight, named Pbwg1.11 and Pbwg1.12, are located on an 8.9-Mb region between D2Mit270 and D2Mit472 and on the next 3.6-Mb region between D2Mit205 and D2Mit182, respectively. Further analyses using F(2) segregating populations obtained from intercrosses between B6 and each of the two selected subcongenic strains confirmed the presence of these two body weight QTLs. Pbwg1.11 had an additive effect on body weight at 6, 10, and 13 weeks of age, and its castaneus allele decreased it. In contrast, the castaneus allele at Pbwg1.12 acted in a dominant fashion and surprisingly increased body weight at 6, 10, and 13 weeks of age despite the body weight of wild castaneus mice being 60% of that of B6 mice. These findings illustrate the complex genetic nature of body weight regulation and support the importance of subcongenic mouse analysis to dissect closely linked loci.
Collapse
Affiliation(s)
- Md Bazlur R Mollah
- Laboratory of Animal Genetics, Division of Applied Genetics and Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | | |
Collapse
|
18
|
Burkhardt R, Sündermann S, Ludwig D, Ceglarek U, Holdt LM, Thiery J, Teupser D. Cosegregation of aortic root atherosclerosis and intermediate lipid phenotypes on chromosomes 2 and 8 in an intercross of C57BL/6 and BALBc/ByJ low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol 2011; 31:775-84. [PMID: 21252064 DOI: 10.1161/atvbaha.110.213843] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We sought to identify novel atherosclerosis-modifying loci and their potential functional links in a genome-wide approach using cosegregation analysis of atherosclerosis and related intermediate phenotypes in mice. METHODS AND RESULTS We carried out an F2 intercross between atherosclerosis-susceptible C57BL/6 mice and atherosclerosis-resistant BALB/cByJ mice on the low-density lipoprotein receptor(-/-) background to examine the genetic basis for their differences in atherosclerosis susceptibility. Atherosclerotic lesion size and a comprehensive panel of 61 atherosclerosis-related phenotypes, including plasma levels of lipids, cytokines, and chemokines were measured in 376 F2 mice. Quantitative trait locus mapping revealed a novel significant locus (logarithm of odds, 6.18) for atherosclerosis on proximal mouse chromosome (Chr) 2 (Ath39), which was associated with major variations in lesion size (14%). Plasma very-low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, lanosterol, and phytosterol levels cosegregated with atherosclerosis at this locus. Moreover, these lipid traits showed significant correlations with lesion size, suggesting that they share the same underlying genetic factor. We also describe a second male-specific locus on Chr 8 (Ath40) where atherosclerosis and lipids cosegregated. CONCLUSIONS Our study revealed new loci for atherosclerosis susceptibility on mouse Chr 2 and 8, which might exert their effects on lesion size via plasma lipid levels.
Collapse
Affiliation(s)
- Ralph Burkhardt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Liebigstrasse 27, 04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Genome-wide mapping analyses are now commonplace in many species and several networks of interacting loci have been reported. However, relatively few details regarding epistatic interactions and their contribution to complex trait variation in multicellular organisms are available and the identification of positional candidate loci for epistatic QTL (epiQTL) is hampered, especially in mammals, by the limited genetic resolution inherent in most study designs. Here we further investigate the genetic architecture of reproductive fatpad weight in mice using the F(10) generation of the LG,SM advanced intercross (AI) line. We apply multiple mapping techniques including a single-locus model, locus-specific composite interval mapping (CIM), and tests for multiple QTL per chromosome to the 12 chromosomes known to harbor single-locus QTL (slQTL) affecting obesity in this cross. We also perform a genome-wide scan for pairwise epistasis. Using this combination of approaches we detect 199 peaks spread over all 19 autosomes, which potentially contribute to trait variation including all eight original F(2) loci (Adip1-8), novel slQTL peaks on chromosomes 7 and 9, and several novel epistatic loci. Extensive epistasis is confirmed involving both slQTL confidence intervals (C.I.) as well as regions that show no significant additive or dominance effects. These results provide important new insights into mapping complex genetic architectures and the role of epistasis in complex trait variation.
Collapse
|
20
|
Mollah MBR, Ishikawa A. A wild derived quantitative trait locus on mouse chromosome 2 prevents obesity. BMC Genet 2010; 11:84. [PMID: 20860848 PMCID: PMC2955677 DOI: 10.1186/1471-2156-11-84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 09/23/2010] [Indexed: 11/30/2022] Open
Abstract
Background The genetic architecture of multifactorial traits such as obesity has been poorly understood. Quantitative trait locus (QTL) analysis is widely used to localize loci affecting multifactorial traits on chromosomal regions. However, large confidence intervals and small phenotypic effects of identified QTLs and closely linked loci are impeding the identification of causative genes that underlie the QTLs. Here we developed five subcongenic mouse strains with overlapping and non-overlapping wild-derived genomic regions from an F2 intercross of a previously developed congenic strain, B6.Cg-Pbwg1, and its genetic background strain, C57BL/6J (B6). The subcongenic strains developed were phenotyped on low-fat standard chow and a high-fat diet to fine-map a previously identified obesity QTL. Microarray analysis was performed with Affymetrix GeneChips to search for candidate genes of the QTL. Results The obesity QTL was physically mapped to an 8.8-Mb region of mouse chromosome 2. The wild-derived allele significantly decreased white fat pad weight, body weight and serum levels of glucose and triglyceride. It was also resistant to the high-fat diet. Among 29 genes residing within the 8.8-Mb region, Gpd2, Upp2, Acvr1c, March7 and Rbms1 showed great differential expression in livers and/or gonadal fat pads between B6.Cg-Pbwg1 and B6 mice. Conclusions The wild-derived QTL allele prevented obesity in both mice fed a low-fat standard diet and mice fed a high-fat diet. This finding will pave the way for identification of causative genes for obesity. A further understanding of this unique QTL effect at genetic and molecular levels may lead to the discovery of new biological and pathologic pathways associated with obesity.
Collapse
Affiliation(s)
- Md Bazlur R Mollah
- Laboratory of Animal Genetics, Division of Applied Genetics and Physiology, Department of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | | |
Collapse
|
21
|
Elagin RB, Jaume JC. Glucose intolerance and diabetes following antigen-specific insulitis in diabetes-susceptible "humanized" transgenic mice. Biochem Biophys Res Commun 2010; 395:99-103. [PMID: 20350527 DOI: 10.1016/j.bbrc.2010.03.146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 03/24/2010] [Indexed: 11/28/2022]
Abstract
The genetic contribution of antigen-presenting molecules and the environmental ignition of an antigen-specific immune attack to pancreatic beta-cells define autoimmune diabetes. We focused here on generating an antigen-specific model of autoimmune diabetes in humanized double-transgenic mice carrying antigen-presenting HLA-DQ8 diabetes-linked haplotype and expressing human autoantigen GAD65 in pancreatic beta-cells using a relatively diabetes-susceptible strain of mice. Double transgenic (DQ8-GAD65) mice and controls were immunized with cDNA encoding human GAD65 in adenoviral vectors and monitored for glucose intolerance and diabetes. Human-GAD65 immunization induced insulitis, glucose intolerance and diabetes in double-transgenic mice, while controls were insulitis free and glucose tolerant. Glucose intolerance 10 weeks post-immunization was followed by diabetes later on in most animals. Destructive insulitis characterized by inflammation and apoptosis correlated with the diabetes outcome. Humoral immune responses to hGAD65 were sustained in mice with diabetes while transient in non-responders. Insulitis was massive in mice with diabetes while mild in non-responders by the end of the study. Our results show for the first time the occurrence of antigen-specific induced insulitis, impaired glucose homeostasis and diabetes after immunization with a clinically relevant, human autoantigen in the context of HLA-DQ8 diabetes-susceptibility transgenes and human GAD65 expression in beta-cells. This animal model will facilitate studies of mechanisms of disease involved in development of autoimmunity to GAD65 in the context of HLA-DQ8. Furthermore, this model would be ideal for testing therapeutic strategies aimed at preventing human beta-cell loss and/or restoring function in the setting of autoimmune diabetes.
Collapse
Affiliation(s)
- Raya B Elagin
- Endocrinology, Diabetes and Metabolism Section, Department of Medicine, School of Medicine and Veterans Affairs Medical Center, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | |
Collapse
|
22
|
Chiu HK, Qian K, Ogimoto K, Morton GJ, Wisse BE, Agrawal N, McDonald TO, Schwartz MW, Dichek HL. Mice lacking hepatic lipase are lean and protected against diet-induced obesity and hepatic steatosis. Endocrinology 2010; 151:993-1001. [PMID: 20056822 PMCID: PMC2840680 DOI: 10.1210/en.2009-1100] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatic lipase (HL)-mediated lipoprotein hydrolysis provides free fatty acids for energy, storage, and nutrient signaling and may play a role in energy homeostasis. Because HL-activity increases with increased visceral fat, we hypothesized that increased HL-activity favors weight gain and obesity and consequently, that HL deficiency would reduce body fat stores and protect against diet-induced obesity. To test this hypothesis, we compared wild-type mice (with endogenous HL) and mice genetically deficient in HL with respect to daily body weight and food intake, body composition, and adipocyte size on both chow and high-fat (HF) diets. Key determinants of energy expenditure, including rate of oxygen consumption, heat production, and locomotor activity, were measured by indirect calorimetry. HL-deficient mice exhibited reduced weight gain on both diets (by 32%, chow; by 50%, HF; both P < 0.0001, n = 6-7 per genotype), effects that were associated with reduced average daily food intake (by 22-30% on both diets, P < 0.0001) and a modest increase in the rate of oxygen consumption (by 25%, P < 0.003) during the light cycle. Moreover, in mice fed the HF diet, HL deficiency reduced both body fat (by 30%, P < 0.0001) and adipocyte size (by 53%, P < 0.01) and fully prevented the development of hepatic steatosis. Also, HL deficiency reduced adipose tissue macrophage content, consistent with reduced inflammation and a lean phenotype. Our results demonstrate that in mice, HL deficiency protects against diet-induced obesity and its hepatic sequelae. Inhibition of HL-activity may therefore have value in the prevention and/or treatment of obesity.
Collapse
Affiliation(s)
- Harvey K Chiu
- Department of Pediatrics, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pratt SM, Chiu S, Espinal GM, Shibata NM, Wong H, Warden CH. Mouse hepatic lipase alleles with variable effects on lipoprotein composition and size. J Lipid Res 2009; 51:1035-48. [PMID: 19965617 DOI: 10.1194/jlr.m002378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structural features responsible for the activities of hepatic lipase (HL) can be clarified by in vivo comparisons of naturally occurring variants. The coding sequence of HL from C57BL/6J (B6) and SPRET/EiJ (SPRET) mice differs by four amino acids (S106N, A156V, L416V, S480T); however, these changes are not predicted to influence HL function. To test for allelic effects, we generated SPRET-HL transgenics with physiological levels of HL mRNA and HL activity that was parallel in female transgenics and about 70% higher in male transgenics, toward tri-[3H]oleate, compared with B6 controls. We found no correlation between activity levels and plasma lipids. However, significant allelic effects on plasma lipids were observed. Compared with B6-HL, SPRET-HL mediated reductions in total cholesterol (TC) and VLDL-, LDL- and HDL-cholesterol and HDL-triglyceride (TG) in fed males, and SPRET-HL decreased total TG and VLDL- and HDL-TG levels in fasted males. Fasted female transgenics had reduced TC compared with controls. We also found allele and sex effects on lipoprotein particle size. Male transgenic mice had increased VLDL and decreased LDL size, and female transgenic mice had decreased HDL size compared with control animals. These findings demonstrate highly divergent effects of naturally occurring HL coding sequence variants on lipid and lipoprotein metabolism.
Collapse
Affiliation(s)
- Serena M Pratt
- Section of Neurobiology, Physiology, Behavior, Department of Pediatrics, University of California, Davis, CA, USA
| | | | | | | | | | | |
Collapse
|
24
|
Expression quantitative trait loci mapping with multivariate sparse partial least squares regression. Genetics 2009; 182:79-90. [PMID: 19270271 DOI: 10.1534/genetics.109.100362] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression quantitative trait loci (eQTL) mapping concerns finding genomic variation to elucidate variation of expression traits. This problem poses significant challenges due to high dimensionality of both the gene expression and the genomic marker data. We propose a multivariate response regression approach with simultaneous variable selection and dimension reduction for the eQTL mapping problem. Transcripts with similar expression are clustered into groups, and their expression profiles are viewed as a multivariate response. Then, we employ our recently developed sparse partial least-squares regression methodology to select markers associated with each cluster of genes. We demonstrate with extensive simulations that our eQTL mapping with multivariate response sparse partial least-squares regression (M-SPLS eQTL) method overcomes the issue of multiple transcript- or marker-specific analyses, thereby avoiding potential elevation of type I error. Additionally, joint analysis of multiple transcripts by multivariate response regression increases power for detecting weak linkages. We illustrate that M-SPLS eQTL compares competitively with other approaches and has a number of significant advantages, including the ability to handle highly correlated genotype data and computational efficiency. We provide an application of this methodology to a mouse data set concerning obesity and diabetes.
Collapse
|
25
|
Schmitt AO, Al-Hasani H, Cheverud JM, Pomp D, Bünger L, Brockmann GA. Fine mapping of mouse QTLs for fatness using SNP data. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2008; 11:341-50. [PMID: 18092907 DOI: 10.1089/omi.2007.0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Quantitative trait loci (QTLs), as determined in crossbred studies, are a valuable resource to identify genes responsible for the corresponding phenotypic variances. Due to their broad chromosomal extension of some dozens of megabases, further steps are necessary to bring the number of candidate genes that underlie the detected effects to a reasonable order of magnitude. We use a set of 13,370 SNPs to identify informative haplotype blocks in 22 mouse QTLs for fatness. About half of the genes in a typical QTL overlap with haplotype blocks, which are different for the two base mouse lines, and which, thus, qualify for further analysis. For these genes we collect four more pieces of evidence for association with fat accumulation, namely (1) homology to genes identified in a Caenorhabditis elegans knock-out experiment as fat decreasing or fat increasing, (2) the overexpression of the genes in mouse fat, liver, muscle, or hypothalamus tissues, (3) the occurrence of a gene in several independently found QTLs, and (4) the information provided by gene ontology, to achieve a ranked list of 131 candidate genes. Ten genes fulfill three or four of the above sketched criteria and are discussed briefly, 121 further genes fulfilling two criteria are provided as on-line material. Viewing the genomic region of fatness-related QTLs under several different aspects is appropriate to assess the many thousands of genes that reside in such QTLs and to produce lists of more robust candidate genes.
Collapse
Affiliation(s)
- Armin O Schmitt
- Institute for Animal Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Rance KA, Hambly C, Dalgleish G, Fustin JM, Bünger L, Speakman JR. Quantitative trait Loci for regional adiposity in mouse lines divergently selected for food intake. Obesity (Silver Spring) 2007; 15:2994-3004. [PMID: 18198308 DOI: 10.1038/oby.2007.357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Obesity is thought to result from an interaction between genotype and environment. Excessive adiposity is associated with a number of important comorbidities; however, the risk of obesity-related disease varies with the distribution of fat throughout the body. The aim of this study was to map quantitative trait loci (QTLs) associated with regional fat depots in mouse lines divergently selected for food intake corrected for body mass. RESEARCH METHODS AND PROCEDURES Using an F2 intercross design (n = 457), the dry mass of regional white (subcutaneous, gonadal, retroperitoneal, and mesenteric) adipose tissue (WAT) and brown adipose tissue (BAT) depots were analyzed to map QTLs. RESULTS The total variance explained by the mapped QTL varied between 12% and 39% for BAT and gonadal fat depots, respectively. Using the genome-wide significance threshold, nine QTLs were associated with multiple fat depots. Chromosomes 4 and 19 were associated with WAT and BAT and chromosome 9 with WAT depots. Significant sex x QTL interactions were identified for gonadal fat on chromosomes 9, 16, and 19. The pattern of QTLs identified for the regional deposits showed the most similarity between retroperitoneal and gonadal fat, whereas BAT showed the least similarity to the WAT depots. Analysis of total fat mass explained in excess of 40% of total variance. DISCUSSION There was limited concordance between the QTLs mapped in our study and those reported previously. This is likely to reflect the unique nature of the mouse lines used. Results provide an insight into the genetic basis of regional fat distribution.
Collapse
Affiliation(s)
- Kellie A Rance
- Aberdeen Centre for Energy Regulation and Obesity, School of Biological Sciences, University of Aberdeen, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Sullivan KA, Hayes JM, Wiggin TD, Backus C, Oh SS, Lentz SI, Brosius F, Feldman EL. Mouse models of diabetic neuropathy. Neurobiol Dis 2007; 28:276-85. [PMID: 17804249 PMCID: PMC3730836 DOI: 10.1016/j.nbd.2007.07.022] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/11/2007] [Accepted: 07/17/2007] [Indexed: 11/16/2022] Open
Abstract
Diabetic neuropathy (DN) is a debilitating complication of type 1 and type 2 diabetes. Rodent models of DN do not fully replicate the pathology observed in human patients. We examined DN in streptozotocin (STZ)-induced [B6] and spontaneous type 1 diabetes [B6Ins2(Akita)] and spontaneous type 2 diabetes [B6-db/db, BKS-db/db]. Despite persistent hyperglycemia, the STZ-treated B6 and B6Ins2(Akita) mice were resistant to the development of DN. In contrast, DN developed in both type 2 diabetes models: the B6-db/db and BKS-db/db mice. The persistence of hyperglycemia and development of DN in the B6-db/db mice required an increased fat diet while the BKS-db/db mice developed severe DN and remained hyperglycemic on standard mouse chow. Our data support the hypothesis that genetic background and diet influence the development of DN and should be considered when developing new models of DN.
Collapse
Affiliation(s)
- Kelli A. Sullivan
- Department of Neurology, University of Michigan, University of Michigan, Ann Arbor, Michigan USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, University of Michigan, Ann Arbor, Michigan USA
| | - Timothy D. Wiggin
- Department of Neurology, University of Michigan, University of Michigan, Ann Arbor, Michigan USA
| | - Carey Backus
- Department of Neurology, University of Michigan, University of Michigan, Ann Arbor, Michigan USA
| | - Sang Su Oh
- Department of Neurology, University of Michigan, University of Michigan, Ann Arbor, Michigan USA
| | - Stephen I. Lentz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Michigan, Ann Arbor, Michigan USA
| | - Frank Brosius
- Department of Internal Medicine, Division of Nephrology, University of Michigan, University of Michigan, Ann Arbor, Michigan USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, University of Michigan, Ann Arbor, Michigan USA
- §Corresponding Author: Eva L. Feldman, M.D., Ph.D., University of Michigan, Department of Neurology, 5017 Basic Science Research Building (BSRB), 109 Zina Pitcher Road, Ann Arbor, MI 48109-2200, 734-763-7274 (phone), 734-763-7275 (fax),
| |
Collapse
|
28
|
Davis RC, Jin A, Rosales M, Yu S, Xia X, Ranola K, Schadt EE, Lusis AJ. A genome-wide set of congenic mouse strains derived from CAST/Ei on a C57BL/6 background. Genomics 2007; 90:306-13. [PMID: 17600671 DOI: 10.1016/j.ygeno.2007.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 01/09/2023]
Abstract
We previously reported the construction of two sets of heterozygous congenic strains spanning the mouse genome. For both sets, C57BL/6J was employed as the background strain while DNA from either DBA/2 or CAST/Ei was introgressed to form the congenic region. We have subsequently bred most of these strains to produce homozygous breeding stocks. Here, we report the characterization of the strain set based on CAST/Ei. CAST/Ei is the most genetically distant strain within the Mus mus species and many trait variations relevant to common diseases have been identified in CAST/Ei mice. Despite breeding difficulties for some congenic regions, presumably due to incompatible allelic variations between CAST/Ei and C57BL/6, the resulting congenic strains cover about 80% of the autosomal chromosomes and will be useful as a resource for the further analysis of quantitative trait loci between the strains.
Collapse
Affiliation(s)
- Richard C Davis
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095-1679, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chiu S, Kim K, Haus KA, Espinal GM, Millon LV, Warden CH. Identification of positional candidate genes for body weight and adiposity in subcongenic mice. Physiol Genomics 2007; 31:75-85. [PMID: 17536020 DOI: 10.1152/physiolgenomics.00267.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously constructed a congenic mouse, B6.S-D2Mit194-D2Mit311 (B6.S-2) with 27 Mb of SPRET/Ei donor DNA on distal chromosome 2 in a C57BL/6J background that captured an obesity quantitative trait locus (QTL). Mice homozygous for SPRET/Ei alleles at the donor region had decreased body weight and obesity-related phenotypes (Diament AL, Farahani P, Chiu S, Fisler J, Warden CH. Mamm Genome 15: 452-459, 2004). In this study, we constructed five overlapping subcongenics with smaller SPRET/Ei donor regions to fine map the underlying gene(s). One of the five subcongenic lines derived from the B6.S-2 founding congenic, B6.S-2A, captured the body weight and adiposity phenotypes in a donor region with a maximum size of 7.4 Mb. Homozygous SPRET/Ei donor alleles in both the founding congenic and the derived B6.S-2A subcongenic exhibited significant decreases in body weight, multiple fat pad weights, and adiposity index (total fat pad weight divided by body weight). Interval-specific microarray analysis in four tissues for donor region genes from the founding B6.S-2 congenic identified several differentially expressed genes mapping to the B6.S-2A subcongenic donor region, including prohormone convertase 2 (PC2; gene name: Pcsk2). Quantitative real-time PCR confirmed a modest decrease of PC2 expression in brains of mice homozygous for SPRET/Ei donor alleles. Analysis of the relative levels of mRNA for B6 and SPRET/Ei in heterozygous congenic mice showed differentially higher expression of the C57BL/6J allele over the SPRET/Ei allele, indicating a cis regulation of differential expression. Using subcongenic mapping, we successfully narrowed a body weight and obesity QTL interval and identified PC2 as a positional candidate gene.
Collapse
Affiliation(s)
- Sally Chiu
- Rowe Program in Genetics, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ishikawa A, Kim EH, Bolor H, Mollah MBR, Namikawa T. A growth QTL (Pbwg1) region of mouse chromosome 2 contains closely linked loci affecting growth and body composition. Mamm Genome 2007; 18:229-39. [PMID: 17514348 DOI: 10.1007/s00335-007-9009-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 03/02/2007] [Indexed: 01/19/2023]
Abstract
Previous QTL studies have identified 24 QTLs for body weight and growth from 3 to 10 weeks after birth in an intersubspecific backcross mouse population between C57BL/6J and wild Mus musculus castaneus that has 60% of the body size of C57BL/6J. The castaneus allele at the most potent QTL (Pbwg1) on proximal chromosome 2 retards growth. In this study we have developed a congenic strain with a 44.1-Mb interval containing the castaneus allele at Pbwg1 by recurrent backcrossing to C57BL/6J. The congenic mouse developed was characterized by significantly higher body weight gain between 1 and 3 weeks of age and lower weight of white fat pads at 10 weeks of age than C57BL/6J. However, no clear difference in body weight at 1-10 weeks of age was observed between congenic and C57BL/6J strains. QTL analysis with 269 F(2) mice between the two strains did not identify any QTLs for body weight at 1, 3, 6, and 10 weeks of age, but it discovered eight closely linked QTLs affecting body weight gain from 1 to 3 weeks of age, lean body weight, weight of white fat pads, and body length within the Pbwg1 region. The castaneus alleles at all fat pad QTLs reduced the phenotypes, whereas at the remaining growth and body composition QTLs, they increased the trait values. These results illustrate that Pbwg1, which initially appeared to be a single locus, was resolved into several loci with opposite effects on the composition traits of overall body weight. This gives a reason for the loss of the Pbwg1 effect found in the original backcross population.
Collapse
Affiliation(s)
- Akira Ishikawa
- Laboratory of Animal Genetics, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan.
| | | | | | | | | |
Collapse
|
31
|
Papoutsakis C, Dedoussis GV. Gene-diet interactions in childhood obesity: paucity of evidence as the epidemic of childhood obesity continues to rise. Per Med 2007; 4:133-146. [PMID: 29788630 DOI: 10.2217/17410541.4.2.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Childhood obesity is growing rapidly worldwide. Although there have been enormous advances in the genetic underpinnings of obesity in recent years, the pathways that lead to obesity are still not completely understood. One of the ongoing challenges is the lack of a comprehensive definition of the obese phenotype that encompasses intermediary phenotypic expressions of biological and behavioral nature. Interactions between genetic and environmental factors, including nutrient exposures and dietary behaviors, can influence the development of the obese phenotype. Specifically, genes play a decisive role in the etiology of childhood obesity under the permissive circumstances of an obesogenic environment (increase in energy intake with a decrease in physical activity). Like many diseases, the causes of obesity are complex and their investigation requires novel approaches. Given the many contributors to obesity (weight gain, weight loss, weight maintenance, variability in body composition), as well as the dynamic nature of this issue, genomic tools must continue to be employed to evaluate all dimensions of the obesity phenotype, such as biochemical characteristics, susceptibility markers, nutrient intake, feeding practices and gene-environment interactions. Fundamental knowledge of the types of genes involved and available gene-diet interaction studies in children's obesity are reviewed. Although there is a paucity of existing literature in this specific domain of childhood obesity, ongoing investigations utilizing large cohorts have potential for providing the knowledge needed for targeted interventions in the future.
Collapse
Affiliation(s)
- Constantina Papoutsakis
- Harokopio University, Department of Nutrition and Dietetics, 70 El. Venizelou Street, 17671 Athens, Greece.
| | - George V Dedoussis
- Harokopio University, Department of Nutrition and Dietetics, 70 El. Venizelou Street, 17671 Athens, Greece.
| |
Collapse
|
32
|
Abstract
Inbred mouse strains provide genetic diversity comparable to that of the human population. Like humans, mice have a wide range of diabetes-related phenotypes. The inbred mouse strains differ in the response of their critical physiological functions, such as insulin sensitivity, insulin secretion, beta-cell proliferation and survival, and fuel partitioning, to diet and obesity. Most of the critical genes underlying these differences have not been identified, although many loci have been mapped. The dramatic improvements in genomic and bioinformatics resources are accelerating the pace of gene discovery. This review describes how mouse genetics can be used to discover diabetes-related genes, summarizes how the mouse strains differ in their diabetes-related phenotypes, and describes several examples of how loci identified in the mouse may directly relate to human diabetes.
Collapse
Affiliation(s)
- Susanne M Clee
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, USA
| | | |
Collapse
|
33
|
Farber CR, Medrano JF. Fine mapping reveals sex bias in quantitative trait loci affecting growth, skeletal size and obesity-related traits on mouse chromosomes 2 and 11. Genetics 2007; 175:349-60. [PMID: 17110492 PMCID: PMC1775020 DOI: 10.1534/genetics.106.063693] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/16/2006] [Indexed: 01/30/2023] Open
Abstract
Previous speed congenic analysis has suggested that the expression of growth and obesity quantitative trait loci (QTL) on distal mouse chromosomes (MMU) 2 and 11, segregating between the CAST/EiJ (CAST) and C57BL/6J-hg/hg (HG) strains, is dependent on sex. To confirm, fine map, and further evaluate QTL x sex interactions, we constructed congenic by recipient F2 crosses for the HG.CAST-(D2Mit329-D2Mit457)N(6) (HG2D) and HG.CAST-(D11Mit260-D11Mit255)N(6) (HG11) congenic strains. Over 700 F2 mice were densely genotyped and phenotyped for a panel of 40 body and organ weight, skeletal length, and obesity-related traits at 9 weeks of age. Linkage analysis revealed 20 QTL affecting a representative subset of phenotypes in HG2DF2 and HG11F2 mice. The effect of sex was quantified by comparing two linear models: the first model included sex as an additive covariate and the second incorporated sex as an additive and an interactive covariate. Of the 20 QTL, 8 were sex biased, sex specific, or sex antagonistic. Most traits were regulated by single QTL; however, two closely linked loci were identified for five traits in HG2DF2 mice. Additionally, the confidence intervals for most QTL were significantly reduced relative to the original mapping results, setting the stage for quantitative trait gene (QTG) discovery. These results highlight the importance of assessing the contribution of sex in complex trait analyses.
Collapse
Affiliation(s)
- Charles R Farber
- Department of Animal Science, University of California, Davis, California 95016-8521, USA
| | | |
Collapse
|
34
|
Vitarius JA, Sehayek E, Breslow JL. Identification of quantitative trait loci affecting body composition in a mouse intercross. Proc Natl Acad Sci U S A 2006; 103:19860-5. [PMID: 17179051 PMCID: PMC1750913 DOI: 10.1073/pnas.0609232103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gravimetric analysis and dual energy x-ray absorptiometry densitometry were used to determine lean, fat, and bone tissue traits in a F(2) mouse population from a C57BL/6J and CASA/Rk intercross (B6CASAF2). These traits were used in a linkage analysis to identify quantitative trait loci that affect body composition. Linkage mapping showed that body weight (BW) loci on proximal chromosome 2 occurred in the same region as body length, lean tissue mass, and bone mineral content and on chromosome 13 in the same region as lean tissue mass, bone mineral density, and bone mineral content. Fat-related loci occurring on mid-chromosome 2 near 60 cM, proximal chromosome 6, and mid-chromosome 10 were distinct from BW, lean tissue, and bone tissue loci. In B6CASAF2 females, heterozygotes and CASA/Rk homozygotes at the chromosome 6 locus marker had higher body fat percentages, and this locus was responsible for 11% of the variance for body fat percentage. Female heterozygotes and C57BL/6J homozygotes at the chromosome 15 locus marker had higher bone mineral densities, and this locus could explain 8% of that trait's variance. A survey of the literature did not reveal any previous reports of fat-specific loci in the chromosomal 10 region near 42 cM reported in this study. The results of this study indicate that BW and BMI have limited usefulness as phenotypes in linkage or association studies when used as obesity phenotypes.
Collapse
Affiliation(s)
- James A. Vitarius
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Ephraim Sehayek
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Jan L. Breslow
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, NY 10021
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Lee SJ, Liu J, Westcott AM, Vieth JA, DeRaedt SJ, Yang S, Joe B, Cicila GT. Substitution mapping in dahl rats identifies two distinct blood pressure quantitative trait loci within 1.12- and 1.25-mb intervals on chromosome 3. Genetics 2006; 174:2203-13. [PMID: 17028336 PMCID: PMC1698641 DOI: 10.1534/genetics.106.061747] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 09/27/2006] [Indexed: 02/08/2023] Open
Abstract
Substitution mapping was used to refine the localization of blood pressure (BP) quantitative trait loci (QTL) within the congenic region of S.R-Edn3 rats located at the q terminus of rat chromosome 3 (RNO3). An F2(SxS.R-Edn3) population (n=173) was screened to identify rats having crossovers within the congenic region of RNO3 and six congenic substrains were developed that carry shorter segments of R-rat-derived RNO3. Five of the six congenic substrains had significantly lower BP compared to the parental S rat. The lack of BP lowering effect demonstrated by the S.R(ET3x5) substrain and the BP lowering effect retained by the S.R(ET3x2) substrain together define the RNO3 BP QTL-containing region as approximately 4.64 Mb. Two nonoverlapping substrains, S.R(ET3x1) and S.R(ET3x6), had significantly lower BP compared to the S strain, indicating the presence of two distinct BP QTL in the RNO3 q terminus. The RNO3 q terminus was fine mapped with newly developed polymorphic markers to characterize the extent of the congenic regions. The two RNO3 BP QTL regions were thus defined as within intervals of 0.05-1.12 and 0.72-1.25 Mb, respectively. Also important was our difficulty in fine mapping and marker placement in this portion of the rat genome (and thus candidate gene identification) using the available genomic data, including the rat genome sequence.
Collapse
Affiliation(s)
- Soon Jin Lee
- Department of Physiology, Pharmacology, Metabolism and Cardiovascular Sciences, University of Toledo College of Medicine, Toledo, Ohio 43614, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
McDaniel AH, Li X, Tordoff MG, Bachmanov AA, Reed DR. A locus on mouse Chromosome 9 (Adip5) affects the relative weight of the gonadal but not retroperitoneal adipose depot. Mamm Genome 2006; 17:1078-92. [PMID: 17103052 PMCID: PMC1698868 DOI: 10.1007/s00335-006-0055-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 06/28/2006] [Indexed: 11/27/2022]
Abstract
To identify the gene or genes on mouse Chromosome 9 that contribute to strain differences in fatness, we conducted an expanded mapping analysis to better define the region where suggestive linkage was found, using the F(2 )generation of an intercross between the C57BL/6ByJ and 129P3/J mouse strains. Six traits were studied: the summed weight of two adipose depots, the weight of each depot, analyzed individually (the gonadal and retroperitoneal depot), and the weight of each depot (summed and individual) relative to body size. We found significant linkage (LOD = 4.6) that accounted for the relative weight of the summed adipose depots, and another for the relative weight of the gonadal (LOD = 5.3) but not retroperitoneal (LOD = 0.9) adipose depot. This linkage is near marker rs30280752 (61.1 Mb, Build 34) and probably is equivalent to the quantitative trait locus (QTL) Adip5. Because the causal gene is unknown, we identified and evaluated several candidates within the confidence interval with functional significance to the body fatness phenotype (Il18, Acat1, Cyp19a1, Crabp1, Man2c1, Neil1, Mpi1, Csk, Lsm16, Adpgk, Bbs4, Hexa, Thsd4, Dpp8, Anxa2, and Lipc). We conclude that the Adip5 locus is specific to the gonadal adipose depot and that a gene or genes near the linkage peak may account for this QTL.
Collapse
Affiliation(s)
- Amanda H. McDaniel
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| | - Xia Li
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| | - Michael G. Tordoff
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| | - Alexander A. Bachmanov
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| | - Danielle R. Reed
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia,
Pennsylvania 19104, USA
| |
Collapse
|
37
|
Wuschke S, Dahm S, Schmidt C, Joost HG, Al-Hasani H. A meta-analysis of quantitative trait loci associated with body weight and adiposity in mice. Int J Obes (Lond) 2006; 31:829-41. [PMID: 17060928 DOI: 10.1038/sj.ijo.0803473] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Cross-breeding experiments with different mouse strains have successfully been used by many groups to identify genetic loci that predispose for obesity. In order to provide a statistical assessment of these quantitative trait loci (QTL) as a basis for a systematic investigation of candidate genes, we have performed a meta-analysis of genome-wide linkage scans for body weight and body fat. DATA From a total of 34 published mouse cross-breeding experiments, we compiled a list of 162 non-redundant QTL for body weight and 117 QTL for fat weight and body fat percentage. Collectively, these studies include data from 42 different parental mouse strains and >14,500 individual mice. METHODS The results of the studies were analyzed using the truncated product method (TPM). RESULTS The analysis revealed significant evidence (logarithm of odds (LOD) score >4.3) for linkage of body weight and adiposity to 49 different segments of the mouse genome. The most prominent regions with linkage for body weight and body fat (LOD scores 14.8-21.8) on chromosomes 1, 2, 7, 11, 15, and 17 contain a total of 58 QTL for body weight and body fat. At least 34 candidate genes and genetic loci, which have been implicated in regulation of body weight and body composition in rodents and/or humans, are found in these regions, including CCAAT/enhancer-binding protein alpha (C/EBPA), sterol regulatory element-binding transcription factor 1 (SREBP-1), peroxisome proliferator activator receptor delta (PPARD), and hydroxysteroid 11-beta dehydrogenase 1 (HSD11B1). Our results demonstrate the presence of numerous distinct consensus QTL regions with highly significant LOD scores that control body weight and body composition. An interactive physical map of the QTL is available online at (http://www.obesitygenes.org).
Collapse
Affiliation(s)
- S Wuschke
- Department of Pharmacology, German Institute for Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | | | | | | | | |
Collapse
|
38
|
Thone-Reineke C, Kalk P, Dorn M, Klaus S, Simon K, Pfab T, Godes M, Persson P, Unger T, Hocher B. High-protein nutrition during pregnancy and lactation programs blood pressure, food efficiency, and body weight of the offspring in a sex-dependent manner. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1025-30. [PMID: 16675628 DOI: 10.1152/ajpregu.00898.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Maternal low-protein diet during pregnancy is a risk factor for cardiovascular disease of the offspring in later life. The impact of high-protein diet during pregnancy on the cardiovascular phenotype of the offspring, however, is still unknown. We examined the influence of a high-protein diet during pregnancy and lactation on the renal, hemodynamic, and metabolic phenotype of the F1 generation. Female Wistar rats were either fed a normal protein diet (20% protein: NP) or an isocaloric high-protein diet (40% protein: HP) throughout pregnancy and lactation. At weaning, the offspring were fed with standard diet, and they were allocated according to sex and maternal diet to four groups: normal-protein male (NPm, n = 25), normal-protein female (NPf, n = 19), high-protein male (HPm, n = 24), high-protein female (HPf, n = 29). During the experiment (22 wk), the animals were characterized by repeated measurement of body weight, food intake, blood pressure, glucose tolerance, energy expenditure, and kidney function. At the end of the study period histomorphological analyses of the kidneys and weight measurement of reproductive fat pads were conducted. There were no differences in birth weight between the study groups. No influence of maternal diet on energy expenditure, glucose tolerance, and plasma lipid levels was detected. Blood pressure and glomerulosclerosis were elevated in male offspring only, whereas female offspring were characterized by an increased food efficiency, higher body weight, and increased fat pads. Our study demonstrates that a high-protein diet during pregnancy and lactation in rats programs blood pressure, food efficiency, and body weight of the offspring in a sex-dependent manner.
Collapse
Affiliation(s)
- C Thone-Reineke
- Center for Cardiovascular Research, Department of Pharmacology and Toxicology, Charité-Universitätmedizin, Berlin
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rohrer GA, Thallman RM, Shackelford S, Wheeler T, Koohmaraie M. A genome scan for loci affecting pork quality in a Duroc-Landrace F population. Anim Genet 2006; 37:17-27. [PMID: 16441291 DOI: 10.1111/j.1365-2052.2005.01368.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A genome scan was conducted on 370 F2 Duroc-Landrace pigs. Microsatellite markers (n = 182) were genotyped across the entire F2 population, all F1 parents and the paternal grandparents. Breed of origin of all chromosomal segments inherited in F2 progeny were predicted using GenoProb, where genotypic data, genetic maps and extended pedigrees were used as inputs. Statistical tests for quantitative trait loci (QTL) associations were conducted on 41 phenotypes with SAS using output from GenoProb for genotypic data. Fixed effects included sex and age at slaughter. For certain analyses carcass weight, RYR1 genotype and/or PRKAG3 genotype were also included as covariates. Subjective and objective measures of pork colour, marbling and tenderness were recorded, as well as measures of carcass fatness and muscularity. Test results were adjusted to a genome-wide level of significance. Five genomic regions presented significant evidence for QTL at chromosome 1 positions 6 cM (intramuscular fat) and 67 cM (Hunter L*), chromosome 2 position 62 cM (taste panel tenderness), chromosome 17 position 50 (loineye area and image analysis estimated loineye area) and X position 87 cM (carcass weight). Sixty-six suggestive associations were detected. Fourteen of these associations were within the regions with significant QTL on chromosomes 2, 17 and X, and the remaining 52 associations resided in 29 other regions on 13 different chromosomes of the porcine genome. The chromosome 2 region of 60-66 cM was associated with all measures of pork tenderness and the region on chromosome 17 (32-39 cM) was associated with both measures of intramuscular fat and loineye area. After verification, the QTL for marbling and tenderness should be useful in commercial production to improve pork quality as the population was developed from two of the three most utilized breeds of swine in the USA.
Collapse
Affiliation(s)
- G A Rohrer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| | | | | | | | | |
Collapse
|
40
|
Farber CR, Corva PM, Medrano JF. Genome-wide isolation of growth and obesity QTL using mouse speed congenic strains. BMC Genomics 2006; 7:102. [PMID: 16670015 PMCID: PMC1482699 DOI: 10.1186/1471-2164-7-102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Accepted: 05/02/2006] [Indexed: 12/26/2022] Open
Abstract
Background High growth (hg) modifier and background independent quantitative trait loci (QTL) affecting growth, adiposity and carcass composition were previously identified on mouse chromosomes (MMU) 1, 2, 5, 8, 9, 11 and 17. To confirm and further characterize each QTL, two panels of speed congenic strains were developed by introgressing CAST/EiJ (CAST) QTL alleles onto either mutant C57Bl/6J-hg/hg (HG) or wild type C57Bl/6J (B6) genetic backgrounds. Results The first speed congenic panel was developed by introgressing four overlapping donor regions spanning MMU2 in its entirety onto both HG and B6 backgrounds, for a total of eight strains. Phenotypic characterization of the MMU2 panel confirmed the segregation of multiple growth and obesity QTL and strongly suggested that a subset of these loci modify the effects of the hg deletion. The second panel consisted of individual donor regions on an HG background for each QTL on MMU1, 5, 8, 9, 11 and 17. Of the six developed strains, five were successfully characterized and displayed significant differences in growth and/or obesity as compared to controls. All five displayed phenotypes similar to those originally attributed to each QTL, however, novel phenotypes were unmasked in several of the strains including sex-specific effects. Conclusion The speed congenic strains developed herein constitute an invaluable genomic resource and provide the foundation to identify the specific nature of genetic variation influencing growth and obesity.
Collapse
Affiliation(s)
- Charles R Farber
- Department of Animal Science, University of California Davis, One Shields Ave, Davis, CA 95016-8521, USA
| | - Pablo M Corva
- Department of Animal Science, University of Mar del Plata, CC 276, 7620 Balcarce, Argentina
| | - Juan F Medrano
- Department of Animal Science, University of California Davis, One Shields Ave, Davis, CA 95016-8521, USA
| |
Collapse
|
41
|
Mizutani S, Gomi H, Hirayama I, Izumi T. Chromosome 2 locus Nidd5 has a potent effect on adiposity in the TSOD mouse. Mamm Genome 2006; 17:375-84. [PMID: 16688528 DOI: 10.1007/s00335-005-0161-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 01/17/2006] [Indexed: 12/31/2022]
Abstract
We previously reported a quantitative trait locus for body weight, non-insulin-dependent diabetes 5 (Nidd5), on Chromosome 2 in the TSOD (Tsumura, Suzuki, Obese Diabetes) mouse, a model of polygenic obese type 2 diabetes. To find the gene responsible for a specific component of the pathogenesis, we used a marker-assisted selection protocol to produce congenic strains. These mice are designed to carry a control BALB/cA-derived genomic interval and a TSOD background to look for loss of phenotype. One of the strains with the widest congenic interval, D2Mit297-D2Mit304, showed reductions in both body weight and adiposity compared with TSOD mice. The phenotypic analyses of other congenic strains further narrowed the locus in a 9.4-Mb interval between D2Mit433 and D2Mit91, around which numerous loci for body weight and adiposity have been mapped previously. Although the locus showed a relatively modest effect on body weight, it had a major influence on fat mass that explains approximately 60% of the difference in the adipose index between parental TSOD and BALB/cA mice. Furthermore, the congenic strain with a minimal BALB/cA-derived region showed significantly smaller cell sizes of white and brown adipocytes compared with the control littermates. However, the locus did not primarily affect food consumption, general activity, or rectal temperature after cold exposure, although there are clear differences in these traits between the parental strains. The present work physically delineates the major locus for adiposity in the TSOD mouse.
Collapse
Affiliation(s)
- Shin Mizutani
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan.
| | | | | | | |
Collapse
|
42
|
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14:529-644. [PMID: 16741264 DOI: 10.1038/oby.2006.71] [Citation(s) in RCA: 698] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kobayashi M, Io F, Kawai T, Kumazawa M, Ikegami H, Nishimura M, Ohno T, Horio F. Major quantitative trait locus on chromosome 2 for glucose tolerance in diabetic SMXA-5 mouse established from non-diabetic SM/J and A/J strains. Diabetologia 2006; 49:486-95. [PMID: 16447060 DOI: 10.1007/s00125-005-0121-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The SMXA-5 mouse is one of the SMXA recombinant inbred substrains established from the non-diabetic SM/J and A/J strains, and is a model for polygenic type 2 diabetes, characterised by moderately impaired glucose tolerance and hyperinsulinaemia. These diabetic traits are worsened by feeding a high-fat diet. The aim of this study was to dissect the diabetogenic loci in the A/J regions of the SMXA-5 genome that contribute to diabetes-related traits. MATERIALS AND METHODS We analysed the quantitative trait loci (QTL) for diabetes-related traits and obesity in (SM/JxSMXA-5)F(2) intercross mice fed a high-fat diet. To verify the function of the responsible locus that was mapped in the present study, we constructed a congenic strain and characterised its diabetes-related traits. RESULTS A major QTL for glucose tolerance, free-fed blood glucose concentration and BMI was mapped on chromosome 2. This locus existed near D2Mit15, with the highest logarithm of the odds score (12.6) for glucose concentration at 120 min in a glucose tolerance test, and was designated T2dm2sa. The diabetogenic allele of T2dm2sa originated in the A/J strain. SM.A-T2dm2sa, a congenic strain that introgressed the T2dm2sa region of A/J genome into SM/J, exhibited overt impaired glucose tolerance and hyperinsulinaemia. CONCLUSIONS/INTERPRETATION The development of impaired glucose tolerance in SM.A-T2dm2sa mice confirmed the results of QTL analysis for diabetes-related traits in F(2) intercross mice. The present results suggest that there are latent diabetogenic loci in the genomes of non-diabetic A/J and SM/J mice, and that the coexistence of these loci, including T2dm2sa, causes impaired glucose tolerance in SMXA-5 and SM.A-T2dm2sa mice.
Collapse
Affiliation(s)
- M Kobayashi
- Department of Applied Molecular Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lan H, Chen M, Flowers JB, Yandell BS, Stapleton DS, Mata CM, Mui ETK, Flowers MT, Schueler KL, Manly KF, Williams RW, Kendziorski C, Attie AD. Combined expression trait correlations and expression quantitative trait locus mapping. PLoS Genet 2006; 2:e6. [PMID: 16424919 PMCID: PMC1331977 DOI: 10.1371/journal.pgen.0020006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 12/06/2005] [Indexed: 02/07/2023] Open
Abstract
Coordinated regulation of gene expression levels across a series of experimental conditions provides valuable information about the functions of correlated transcripts. The consideration of gene expression correlation over a time or tissue dimension has proved valuable in predicting gene function. Here, we consider correlations over a genetic dimension. In addition to identifying coregulated genes, the genetic dimension also supplies us with information about the genomic locations of putative regulatory loci. We calculated correlations among approximately 45,000 expression traits derived from 60 individuals in an F2 sample segregating for obesity and diabetes. By combining the correlation results with linkage mapping information, we were able to identify regulatory networks, make functional predictions for uncharacterized genes, and characterize novel members of known pathways. We found evidence of coordinate regulation of 174 G protein–coupled receptor protein signaling pathway expression traits. Of the 174 traits, 50 had their major LOD peak within 10 cM of a locus on Chromosome 2, and 81 others had a secondary peak in this region. We also characterized a Riken cDNA clone that showed strong correlation with stearoyl-CoA desaturase 1 expression. Experimental validation confirmed that this clone is involved in the regulation of lipid metabolism. We conclude that trait correlation combined with linkage mapping can reveal regulatory networks that would otherwise be missed if we studied only mRNA traits with statistically significant linkages in this small cross. The combined analysis is more sensitive compared with linkage mapping alone. In order to annotate gene function and identify potential members of regulatory networks, the authors explore correlation of expression profiles across a genetic dimension, namely genotypes segregating in a panel of 60 F2 mice derived from a cross used to explore diabetes in obese mice. They first identified 6,016 seed transcripts for which they observe that the gene expression is linked to a particular region of the genome. Then they searched for transcripts whose expression is highly correlated with the seed transcripts and tested for enrichment of common biological functions among the lists of correlated transcripts. They found and explored the properties of 1,341 sets of transcripts that share a particular “gene ontology” term. Thirty-eight seeds in the G protein–coupled receptor protein signaling pathway were correlated with 174 transcripts, all of which are also annotated as G protein–coupled receptor protein signaling pathway and 131 of which share a regulatory locus on Chromosome 2. The authors note many of these findings would have been missed by simple expression quantitative trait loci analysis without the correlation step. The approach was used to identify a common set of genes involved in lipid metabolism.
Collapse
Affiliation(s)
- Hong Lan
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Meng Chen
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jessica B Flowers
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Donnie S Stapleton
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christine M Mata
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Eric Ton-Keen Mui
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Matthew T Flowers
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kenneth F Manly
- Departments of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert W Williams
- Departments of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Stylianou IM, Korstanje R, Li R, Sheehan S, Paigen B, Churchill GA. Quantitative trait locus analysis for obesity reveals multiple networks of interacting loci. Mamm Genome 2006; 17:22-36. [PMID: 16416088 DOI: 10.1007/s00335-005-0091-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 09/08/2005] [Indexed: 11/26/2022]
Abstract
Obesity is a highly heritable and genetically complex trait with hundreds of potential loci identified. An intercross of 513 F2 progeny between the SM/J x NZB/BINJ inbred mouse strains was generated to identify quantitative trait loci (QTL) that are involved in the weight of four fat pads: mesenteric, inguinal, gonadal, and retroperitoneal. Sex and lean body weight were treated as covariates in the analysis of these fat pads. This analysis uncoupled genetic effects related to overall body size from those influencing the adiposity of a mouse. We identified multiple significant QTL. QTL alleles associated with increased lean body weight and individual fat pad weights are contributed by the NZB background. Adiposity loci are distinct from these body size QTLs and high-adiposity alleles are contributed by the SM background. An extended network of epistatic QTL is also observed. A QTL on Chr 19 is the center of a network of eight interacting QTL, Chr 4 is the center of six, and Chr 17 the center of four interacting QTL. We conclude that interacting networks of multiple genes characterize the regulation of fat pad depots and body weight. Haplotype patterns and a literature-driven approach were used to generate hypotheses regarding the identity of the genes and pathways underlying the QTL.
Collapse
|
46
|
Suto JI. Identification of Mutation in the Growth Differentiation Factor 5 (Gdf5) Gene in NC-brp/brp Mice. J Vet Med Sci 2006; 68:1121-4. [PMID: 17085896 DOI: 10.1292/jvms.68.1121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A brachypodism (brp) mutation arose spontaneously in the inbred NC mouse strain, producing a phenotype similar to that caused by bp mutation; therefore, it is strongly suggested that brp and bp are allelic. A series of bp mutations are due to defects in the growth differentiation factor 5 (Gdf5) gene. Nucleotide sequence analysis on the Gdf5 gene in NC-brp/brp mice revealed that an irregular insertion of a unit ;GGCAGCC' in exon 2 caused a frame shift leading to a premature stop codon. In addition to the known physiologic roles of brp, I found that brp significantly reduced the litter size. The brp is a novel mutant allele at the Gdf5 gene locus; I would like to name this allele Gdf5(brp).
Collapse
Affiliation(s)
- Jun-ichi Suto
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Ibaraki, Japan
| |
Collapse
|
47
|
Drake TA, Schadt EE, Davis RC, Lusis AJ. Integrating Genetic and Gene Expression Data to Study the Metabolic Syndrome and Diabetes in Mice. Am J Ther 2005; 12:503-11. [PMID: 16280644 DOI: 10.1097/01.mjt.0000178775.39149.64] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increasingly, the mouse is becoming the standard model for mammalian physiology and disease. It can be genetically analyzed and manipulated with relative ease. Moreover, the endogenous genetic variation that exists among inbred mouse strains can be exploited to identify genetic control of complex physiologic processes involved in diabetes and the metabolic syndrome, among other conditions relevant to human disease. Recent advances in genetics and gene expression technology have greatly increased the knowledge to be derived from this approach when applied to traditional genetic studies.
Collapse
Affiliation(s)
- Thomas A Drake
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095-1732, USA.
| | | | | | | |
Collapse
|
48
|
Srivastava AK, Mohan S, Masinde GL, Yu H, Baylink DJ. Identification of quantitative trait loci that regulate obesity and serum lipid levels in MRL/MpJ x SJL/J inbred mice. J Lipid Res 2005; 47:123-33. [PMID: 16254318 DOI: 10.1194/jlr.m500295-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The total body fat mass and serum concentration of total cholesterol, HDL cholesterol, and triglyceride (TG) differ between standard diet-fed female inbred mouse strains MRL/MpJ (MRL) and SJL/J (SJL) by 38-120% (P < 0.01). To investigate genetic regulation of obesity and serum lipid levels, we performed a genome-wide linkage analysis in 621 MRLx SJL F2 female mice. Fat mass was affected by two significant loci, D11Mit36 [43.7 cM, logarithm of the odds ratio (LOD) 11.2] and D16Mit51 (50.3 cM, LOD 3.9), and one suggestive locus at D7Mit44 (50 cM, LOD 2.4). TG levels were affected by two novel loci at D1Mit43 (76 cM, LOD 3.8) and D12Mit201 (26 cM, LOD 4.1), and two suggestive loci on chromosomes 5 and 17. HDL and cholesterol concentrations were influenced by significant loci on chromosomes 1, 3, 5, 7, and 17 that were in the regions identified earlier for other strains of mice, except for a suggestive locus on chromosome 14 that was specific to the MRL x SJL cross. In summary, linkage analysis in MRL x SJL F2 mice disclosed novel loci affecting TG, HDL, and fat mass, a measure of obesity. Knowledge of the genes in these quantitative trait loci will enhance our understanding of obesity and lipid metabolism.
Collapse
Affiliation(s)
- Apurva K Srivastava
- Musculoskeletal Disease Center, Loma Linda VA Health Care Systems, Loma Linda, CA 92357, USA.
| | | | | | | | | |
Collapse
|
49
|
Allan MF, Eisen EJ, Pomp D. Genomic mapping of direct and correlated responses to long-term selection for rapid growth rate in mice. Genetics 2005; 170:1863-77. [PMID: 15944354 PMCID: PMC1449794 DOI: 10.1534/genetics.105.041319] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 05/02/2005] [Indexed: 01/07/2023] Open
Abstract
Understanding the genetic architecture of traits such as growth, body composition, and energy balance has become a primary focus for biomedical and agricultural research. The objective of this study was to map QTL in a large F(2) (n = 1181) population resulting from an intercross between the M16 and ICR lines of mice. The M16 line, developed by long-term selection for 3- to 6-week weight gain, is larger, heavier, fatter, hyperphagic, and diabetic relative to its randomly selected control line of ICR origin. The F(2) population was phenotyped for growth and energy intake at weekly intervals from 4 to 8 weeks of age and for body composition and plasma levels of insulin, leptin, TNFalpha, IL6, and glucose at 8 weeks and was genotyped for 80 microsatellite markers. Since the F(2) was a cross between a selection line and its unselected control, the QTL identified likely represent genes that contributed to direct and correlated responses to long-term selection for rapid growth rate. Across all traits measured, 95 QTL were identified, likely representing 19 unique regions on 13 chromosomes. Four chromosomes (2, 6, 11, and 17) harbored loci contributing disproportionately to selection response. Several QTL demonstrating differential regulation of regional adipose deposition and age-dependent regulation of growth and energy consumption were identified.
Collapse
Affiliation(s)
- Mark F Allan
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska 68583, USA
| | | | | |
Collapse
|
50
|
Barbieri M, Rizzo MR, Papa M, Acampora R, De Angelis L, Olivieri F, Marchegiani F, Franceschi C, Paolisso G. Role of interaction between variants in the PPARG and interleukin-6 genes on obesity related metabolic risk factors. Exp Gerontol 2005; 40:599-604. [PMID: 16029943 DOI: 10.1016/j.exger.2005.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 05/20/2005] [Accepted: 05/23/2005] [Indexed: 01/22/2023]
Abstract
The combined effect of Peroxisome proliferator-activated receptor gamma (PPARG) Pro/Ala and interleukin-6 G174C gene variants, was evaluated in 429 Caucasian subjects in order to determine whether subjects carrying both variants were at different risk for obesity. In particular, the combined contribution of these two variants (both independent and interaction effects) to the total variation of obesity-related factors was estimated. All subjects were genotyped for codon 12 Pro/Ala locus variability and for the interleukin-6-174 C/G promoter polymorphism. Subjects with the Ala variant had significantly lower BMI, insulin resistance, triglyceride levels than those without. Furthermore, subjects with Ala variant had significantly lower IL-6 levels (0.88 +/- 0.9 vs 1.61 +/- 2.25 pg/ml; p = 0.041). In contrast, the IL6-C variant was significantly associated with lower plasma IL-6 and with lower total cholesterol levels but was not significantly associated with any other obesity risk factors. Indeed, subjects carrying both PPARG and IL-6 gene variants, had a clearly more favourable profile of obesity related risk factors than subjects with one variant, having Ala+/C+ carriers lower BMI (22.8 +/- 2.3 vs 24.14 +/- 1.9; f = 5.31; p < 0.005), insulin resistance (1.49 +/- 0.70 vs 2.13 +/- 0.92; f = 4.342; p = 0.038) and triglyceride levels (79.15 +/- 32.9 vs 98 +/- 6.73 mg/dl; f = 3.120; p < 0.005). These findings suggest that the effect of the two genetic variants on 'obesity related' factors is additive.
Collapse
Affiliation(s)
- M Barbieri
- Department of Geriatric Medicine and Metabolic Diseases--II, University of Naples, VI Divisione di Medicina Interna, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|